St Aloysius Convent Thermal Envelope Design Base Summary Energy Consumption Assessment

## MECHANICAL AND ELECTRICAL SERVICES ASSESSMENT REPORT

Document Reference: 443/4.2/01



Consolux M&E Consulting Ltd (Liverpool) The Cotton Exchange 16 Bixteth Street, Liverpool, L3 9JR Tel: 0151 7089469 Email: liverpool@consolux.co.uk

Consolux M&E Consulting Ltd (London) 35 Piccadilly London W1J 0DW Tel: 0207 7343030 Email: london@consolux.co.uk

> Submitted and Prepared by: Reuben Hendriks Date: November 2017 Issue: S1 Project No: 443 **Revision: P2**



## Document History

| Issue | Date              | Purpose                 | Author          |
|-------|-------------------|-------------------------|-----------------|
| P1    | 6th October 2017  | Report Submission       | Megan Wood      |
| P2    | 7th November 2017 | Energy Strategy Updates | Reuben Hendriks |
|       |                   |                         |                 |
|       |                   |                         |                 |
|       |                   |                         |                 |
|       |                   |                         |                 |

## Approvals

This document requires the following approvals: Signed approval forms are filed in the Management section of the project files

| Name              | Signature | Title    | Date of Issue                 | Version |
|-------------------|-----------|----------|-------------------------------|---------|
| Richard Greenough | Bh        | Director | 7 <sup>th</sup> November 2017 | Р2      |
|                   |           |          |                               |         |
|                   |           |          |                               |         |
|                   |           |          |                               |         |
|                   |           |          |                               |         |

## Distribution

| Name            | Organisation           | Role      |
|-----------------|------------------------|-----------|
| Patrick Rogers  | Alcyum Solutions Ltd   | C/A       |
| Bronwen Gombert | Connected Architecture | Architect |
|                 |                        |           |
|                 |                        |           |
|                 |                        |           |
|                 |                        |           |

Note: Unless otherwise noted herein, the conclusions and recommendations contained in this report are based on the information supplied by the Client and visual inspection and testing (if any) described within. CONSOLUX can accept no liability in respect of differences between the actual structure and the information supplied except

- (i) where these are readily apparent by visual inspection or
- (ii) Where physical investigation has been undertaken by, or under the control of Consolux Ltd, and then only to the extent of such physical investigation.





## Contents

| 1.0 | Introduction                                                             | .4 |
|-----|--------------------------------------------------------------------------|----|
| 2.0 | Heat Loss Assessment                                                     | .4 |
| 2.1 | External Wall U-Values                                                   | .4 |
| 2.2 | Glazing U-Values                                                         | .4 |
| 2.3 | Proposed Improvements and Energy Strategies                              | .4 |
| 2.4 | Total Heat Loss Components                                               | .6 |
| 3.0 | Thermal Model Calculation - Existing Building                            | .7 |
| 4.0 | Thermal Model Calculation – Energy Assessment – Existing Building        | .9 |
| 5.0 | Thermal Model Calculation – New Thermal Improvements                     | 10 |
| 6.0 | Thermal Model Calculation – Energy Assessment – New Thermal Improvements | 12 |
| 7.0 | Summary and Analysis of Results                                          | 13 |



Consolux M&E Consulting Ltd have been engaged by Patrick Rogers of Alcyum Solutions Ltd to carry out a desktop based survey of the thermal envelope of the existing building. The building was modeled using Cymap 2018 and its Energy program. This thermal model produced heat losses, heat gains, and energy costs with the U-values used in section 2. By comparing the results from the historical and proposed buildings, an assessment was made of the potential savings.

The purpose of this assessment is compare the energy consumption of the current building aginst the building with proposed improved thermal elements. This should help to show how the proposed improvements reduce the running costs of the building and lead to savings over a period of time.

## 2.0 Heat Loss Assessment

The renovation to St Aloysius Convent is proposed to improve the thermal envelope of the existing building, through new thermal elements such as an internal wall lining to existing external walls and the replacement of windows and doors.

As a comparison between the current thermal envelope of St Aloysius Convent and the proposed with additional insulated wall lining, thermal models have been produced with the relevant U-Values:

## 2.1 External Wall U-Values

- The **historical** U-Value limit of 1.7 W/m<sup>2</sup>K for walls, as per the Building Regulations 1965 Part F Thermal Insulation.
- The **proposed** U-Value of 0.2 W/m<sup>2</sup>K when insulated wall lining has been included.

## 2.2 Glazing U-Values

- The historical U-Value limit of 5.0 W/m<sup>2</sup>K for windows, as previously there was not a limit and thus based on single glazing.
- The proposed U-Value of 1.6 W/m<sup>2</sup>K for windows has been used based on Approved Document L1B.

## 2.3 Proposed Improvements and Energy Strategies

## 2.3.1 Material Improvements

The building is to be internally insulated with an improved wall lining to improve its heat loss characteristics. The windows are to be replaced from single glazed units to double glazed. The doors are to be replaced to meet current L1B u values. Together, these material improvements will lead to a significant reduction in the amount of energy required to keep the building at required temperatures set in CIBSE Guide B Table 1.1.

## 2.3.2 Lighting improvements

Lower energy LED lighting is to be used together with PIR/Presence/Absence detectors. This would reduce energy consumption when rooms are not occupied. In the Chapel and Prayer rooms, DALI panel will be used to facilitate light settings management to allow for greater control of lighting.

## 2.3.3 Heating Strategy

3No. gas fuel condensing boilers will supply low pressure heating to radiators throughout the building. The heating pump will be able to analyse the heating system and optimise its settings to adjust its operation when there are changes in heating demand. This would lead to minimum energy consumption.



CONSOLUX

#### 2.3.4 Domestic Water Strategy

Water supply to plant room will be circulated throughout the building with a water booster set. Hot water production would be through a condensing water heater with modulating burners to allow for the optimum amount of gas to be used to maximise energy efficiency and cost savings.

#### 2.3.5 Domestic Water Appliances

Taps and fittings would be fitted with flow control equipment which reduces the consumption. Cisterns would be of a water saving, low-flush or dual-flush type which would reduce toilet flushing.

#### 2.3.6 Ventilation strategy

All extractor fans for bathrooms to be low specific fan power with boost mode wired into the light switch. Overrun setting on fans will minimise energy use after occupant has left the room. A heat recovery unit will provide ventilation to the basement library and will be controlled with an ambient response humidity sensor to allow for optimum ventilation.

#### Heat Loss Summary

|             | Total Heat Loss | Total Heat Loss | Average Heat Loss | Average Heat Loss |
|-------------|-----------------|-----------------|-------------------|-------------------|
| Floor Level | Existing        | New             | Existing          | New               |
|             | (W)             | (W)             | (W/m²)            | (W/m²)            |
| Basement    | 5213            | 3220            | 94.78             | 58.54             |
| Ground      | 16134           | 4820            | 90.64             | 24.27             |
| First       | 19954           | 5852            | 85.27             | 23.73             |
| Second      | 21309           | 5698            | 91.85             | 24.56             |
| Third       | 22784           | 5934            | 99.06             | 25.8              |
| Total       | 85.4 kW         | 25.5kW          | 91.93             | 26.61             |



## 2.4 Total Heat Loss Components

The requirement for conservation of fuel and power, is stated in Building Regulations Part L1B. Reasonable provision is to be made by limiting heat gains and losses, through thermal elements and other parts of the building fabric, and providing fixed building services which are energy efficient, have effective controls, and are commissioned by testing and adjusting as necessary to ensure they use no more fuel and power than is reasonable in the circumstances. The heat loss figures shown, detail the existing envelope with retained elements fall short of the required minimum U-Values to achieve a sustainably viable heat loss, as opposed to the introduction of proposed elements, with added insulated wall lining decreasing the heat loss significantly. The proposed thermal elements fully meet the requirements set in Building Regulations Part L1B.

|                                         | Existing Elements | New Elements |
|-----------------------------------------|-------------------|--------------|
| Fabric Loss (kW)                        | 64.1              | 14.5         |
| Infiltration &<br>Ventilation Loss (kW) | 21.3              | 11           |





## 3.0 Thermal Model Calculation - Existing Building

| CADline Limited           | 443 - St Aloysius Convent Historical.CYC | Page 1     |
|---------------------------|------------------------------------------|------------|
| 443 - St Aloysius Convent | Engineer: Reuben Hendriks                | 06/10/2017 |

## Heatloss Calculation:- 443 - ST ALOYSIUS CONVENT HISTORICAL.CYC (06/10/2017)443 - ST ALOYSIUS CONVENT HISTORICAL.CYC (06/10/2017)

| Project Reference       | 443 - St Aloysius Convent |                                      |                 |  |
|-------------------------|---------------------------|--------------------------------------|-----------------|--|
| Thermal Response Factor | 3.17                      | Temperature Type                     | DRT             |  |
| Building Weight         | LightWeight               | Plant Hours                          | 8 hrs           |  |
| Convective Heating      | 70 %                      | Preheat Hours<br>Design Outside Temp | 2 hrs<br>-5.0 C |  |

## Total Zone + Building Heatlosses In kW

| Zone<br>Number | Boosted<br>Plant kW | Total<br>Loss kW | Fabric<br>Loss kW | Infiltration<br>+ Vent kW | Mean<br>W/m² K | Mean<br>W/m <sup>3</sup> | Glazing<br>% | Floor<br>Area m <sup>2</sup> |
|----------------|---------------------|------------------|-------------------|---------------------------|----------------|--------------------------|--------------|------------------------------|
| 1              | 5.5                 | 2.6              | 0.7               | 1.9                       | 4.19           | 25.6                     |              | 40                           |
| 2              | 23.0                | 12.1             | 8.6               | 3.5                       | 3.23           | 30.2                     | 29           | 158                          |
| 4              | 29.7                | 14.4             | 10.3              | 4.1                       | 2.71           | 23.0                     | 18           | 234                          |
| 6              | 3.9                 | 2.2              | 1.8               | 0.4                       | 2.36           | 46.1                     | 7            | 20                           |
| 7              | 60.2                | 35.3             | 29.6              | 5.7                       | 3.97           | 53.0                     | 51           | 252                          |
| 9              | 32.1                | 17.3             | 12.3              | 4.9                       | 3.07           | 31.1                     | 34           | 188                          |
| 11             | 1.6                 | 0.9              | 0.7               | 0.2                       | 1.95           | 55.1                     | 7            | 6                            |
| 13             | 0.5                 | 0.2              | 0.0               | 0.2                       |                | 13.8                     |              | 5                            |
| 14             | 5.2                 | 2.8              | 1.8               | 1.0                       | 2.05           | 38.7                     | 7            | 25                           |
| Building       | 161.8               | 87.8             | 65.7              | 22.1                      | 3.28           | 35.1                     | 34           | 958                          |

## **Room Heatlosses**

| No.     | Room                           | Total   | Fabric  | Infiltration | Mean<br>W/m2 K | Control | W/m <sup>3</sup> | Glazing        | Floor    |
|---------|--------------------------------|---------|---------|--------------|----------------|---------|------------------|----------------|----------|
| 1 (10)  | B-PlantRm (heat rain to sna    | LOSS VV | LUSS VV | T Venit VV   | WHITE IS       | temp c  | 8                | 70             | Area III |
| 2 (10)  | B Intake (bast gain to spa     | 211     |         |              |                |         | 100              | 202            |          |
| 2 (10)  | B-intake (near gain to space)  | 470     | 210     | 150          | 1.01           | 21.0    | E0.E             | 20             | 2        |
| 3(14)   | B-AWC                          | 4/0     | 310     | 100          | 1.01           | 21.0    | 00.0             | 20             | -        |
| 4 (2)   | B-Laundry                      | 187     | 180     | 211          | 1.02           | 17.0    | 34.4             | 23             | 10       |
| 5 (0)   | B-Library                      | 2158    | 1//1    | 388          | 1.38           | 21.0    | 40.1             | 1              | 20       |
| 6 (12)  | B-Store (heat gain to space)   | 3.777   | 2000    |              |                |         | 27               | 2.2572         | 4        |
| 7 (10)  | LiftShaft (heat gain to space) | 1957    | 1500    | 5.55         | 100            | <u></u> |                  | 1000           | 2        |
| 8 (4)   | B-Corridor                     | 1782    | 1415    | 367          | 1.21           | 21.0    | 37.3             | 5              | 21       |
| 9 (4)   | G-MainEntrance                 | 2240    | 1746    | 494          | 1.63           | 21.0    | 31.0             | 1. <del></del> | 25       |
| 10 (11) | G-Reception                    | 945     | 712     | 233          | 1.95           | 21.0    | 55.1             | 7              | 6        |
| 11 (9)  | G-MeetingRm1                   | 1804    | 1466    | 338          | 2.93           | 21.0    | 53.5             | 31             | 12       |
| 12 (9)  | G-MeetingRm2                   | 788     | 494     | 295          | 2.49           | 21.0    | 28.3             | 20             | 10       |
| 13 (9)  | G-MeetingRm3                   | 1076    | 851     | 225          | 4.07           | 21.0    | 75.5             | 59             | 5        |
| 14 (9)  | G-MeetingRm4                   | 1767    | 1405    | 362          | 5.15           | 21.0    | 44.7             | 86             | 14       |
| 15 (9)  | G-MeetingRm5                   | 775     | 546     | 229          | 3.66           | 21.0    | 47.5             | 49             | 6        |
| 16 (9)  | G-MeetingRm6                   | 775     | 546     | 229          | 3.66           | 21.0    | 47.5             | 49             | 6        |
| 17 (7)  | G-Chapel                       | 4970    | 4296    | 674          | 3.58           | 21.0    | 50.2             | 47             | 35       |
| 18 (7)  | G-Sacristy                     | 686     | 420     | 266          | 2.71           | 21.0    | 31.2             | 26             | 8        |
| 19 (14) | G-WC1                          | 351     | 204     | 146          | 1.68           | 21.0    | 54.8             |                | 2        |
| 20 (14) | G-WC2                          | 141     | 0       | 141          |                | 21.0    | 22.1             | 10 <del></del> | 2        |
| 21 (14) | G-AWC                          | 577     | 364     | 213          | 1.68           | 21.0    | 42.5             | S              | 5        |
| 22 (13) | G-TeaPoint                     | 216     | 0       | 216          |                | 21.0    | 13.8             | 100            | 5        |
| 23 (4)  | G-Corridor                     | 1455    | 861     | 593          | 4.22           | 21.0    | 13.8             | 63             | 37       |
| 24 (9)  | 1-MeetingRm7                   | 750     | 504     | 246          | 2.48           | 21.0    | 40.3             | 20             | 6        |
| 25 (9)  | 1-MeetingRm8                   | 1516    | 973     | 543          | 2.51           | 21.0    | 17.9             | 20             | 28       |





## **Room Heatlosses**

| No.     | Room                            | Total  | Fabric | Infiltration | Mean               | Control | W/m <sup>3</sup> | Glazing | Floor               |
|---------|---------------------------------|--------|--------|--------------|--------------------|---------|------------------|---------|---------------------|
| Zone    | Name                            | Loss W | Loss W | + Vent W     | W/m <sup>2</sup> K | Temp C  |                  | %       | Area m <sup>2</sup> |
| 26 (9)  | 1-MeetingRm9                    | 1143   | 715    | 428          | 3.01               | 21.0    | 22.1             | 33      | 17                  |
| 27 (7)  | 1-Kitchen                       | 3376   | 2886   | 490          | 4.28               | 21.0    | 53.9             | 64      | 21                  |
| 28 (12) | 1-ChairStore (heat gain to sp   |        | 100    | 223          | 1000               | 22      |                  |         | 3                   |
| 29 (9)  | 1-MeetingRm10                   | 607    | 384    | 224          | 2.90               | 21.0    | 42.2             | 30      | 5                   |
| 30 (9)  | 1-MeetingRm11                   | 2739   | 2227   | 512          | 2,99               | 21.0    | 39.3             | 33      | 23                  |
| 31 (9)  | 1-MeetingRm12                   | 1204   | 757    | 447          | 2.92               | 21.0    | 21.4             | 31      | 19                  |
| 32 (9)  | 1-MeetingRm13                   | 1378   | 882    | 496          | 2.64               | 21.0    | 19.0             | 24      | 24                  |
| 33 (9)  | 1-MeetingRm14                   | 940    | 582    | 358          | 2.34               | 21.0    | 23.8             | 16      | 13                  |
| 34 (7)  | 1-ResourceCent                  | 2501   | 2008   | 493          | 2.75               | 21.0    | 37.6             | 26      | 22                  |
| 35 (14) | 1-WC                            | 1250   | 904    | 346          | 2.04               | 21.0    | 34.4             | 9       | 12                  |
| 36 (12) | 1-CIStore (heat gain to space)  |        |        |              |                    |         |                  | S       | 1                   |
| 37 (4)  | 1-Corridor                      | 2550   | 1849   | 701          | 2.86               | 21.0    | 19.2             | 29      | 44                  |
| 38 (7)  | 2-Office1                       | 1048   | 755    | 292          | 2.62               | 210     | 35.7             | 23      | 11                  |
| 39 (2)  | 2-Bed1                          | 977    | 640    | 337          | 2.89               | 21.0    | 25.1             | 30      | 15                  |
| 40 (1)  | 2-Ensuite1                      | 182    | 18     | 164          | 2.00               | 23.0    | 21.8             | ~       | 3                   |
| 41 (2)  | 2-Bed2                          | 977    | 640    | 337          | 2.89               | 21.0    | 25.1             | 30      | 15                  |
| 42 (1)  | 2-Ensuite2                      | 182    | 18     | 185          | 2.00               | 23.0    | 21.7             | ~       | 3                   |
| 43 (7)  | 21 00000                        | 4097   | 2616   | 471          | 5.84               | 21.0    | 89.9             | 08      | 22                  |
| 44 (7)  | 2-Dining Rm                     | 1258   | 1000   | 247          | 5.63               | 21.0    | 82.4             | 00      | 22                  |
| 45 (7)  | 2 Kiteban                       | 2811   | 2220   | 202          | 4.14               | 21.0    | 85.4             | 81      | 15                  |
| 48 (2)  | 2-Rod2                          | 000    | 853    | 227          | 2.05               | 21.0    | 25.4             | 22      | 15                  |
| 47 (1)  | 2-Bed3                          | 193    | 19     | 184          | 2.85               | 22.0    | 21.0             | 32      | 2                   |
| 40 (1)  | 2-Ensures                       | 103    | 00     | 104          | 2.05               | 23.0    | 21.8             | 22      |                     |
| 40 (2)  | 2-Be04                          | 991    | 603    | 33/          | 2.90               | 21.0    | 20.0             | 32      | 10                  |
| 48 (1)  | 2-Ensuite4                      | 162    | 750    | 104          | 0.00               | 23.0    | 21.0             | -       | 3                   |
| OU (2)  | 2-Bedo                          | 1103   | /52    | 350          | 2.00               | 21.0    | 20.0             | 24      | 10                  |
| 51 (1)  | 2-Ensuiteo                      | 220    | 02     | 1/3          |                    | 23.0    | 23.7             |         | 1                   |
| 52 (2)  | 2-Bedo                          | 1783   | 1430   | 302          | 2.14               | 21.0    | 45.0             | 20      | 10                  |
| 53 (1)  | 2-Ensuited                      | 3/5    | 208    | 168          | 1.68               | 23.0    | 44.9             |         | 3                   |
| 54 (7)  | 2-Office2                       | 1019   | //3    | 246          | 2.05               | 21.0    | 50.5             | 9       | 8                   |
| 55 (12) | 2-CIStore1 (heat gain to space) |        |        |              |                    |         | · · · · ·        | 1.000   | 3                   |
| 58 (12) | 2-CIStore2 (heat gain to space) | 1.11   | 100    |              | 1000               |         | 6.078            | 1.52    | 2                   |
| 57 (1)  | 2-AShower                       | 192    | 11     | 182          |                    | 23.0    | 18.1             |         | 4                   |
| 58 (4)  | 2-CorridorA                     | 2409   | 1772   | 637          | 2.95               | 21.0    | 20.6             | 31      | 44                  |
| 59 (4)  | 2-CorridorB                     | 536    | 138    | 398          | 1.52               | 21.0    | 19.5             | 100     | 10                  |
| 60 (7)  | 3-Lounge                        | 1130   | 860    | 270          | 1.58               | 21.0    | 42.5             | 24      | 11                  |
| 61 (2)  | 3-Bed7                          | 1123   | 811    | 312          | 1.41               | 21.0    | 31.8             | 31      | 15                  |
| 62 (1)  | 3-Ensuite7                      | 211    | 62     | 149          |                    | 23.0    | 27.9             |         | 3                   |
| 63 (2)  | 3-Bed8                          | 1123   | 811    | 312          | 1.41               | 21.0    | 31.8             | 31      | 15                  |
| 64 (1)  | 3-Ensuite8                      | 213    | 63     | 150          |                    | 23.0    | 28.0             | 1       | 3                   |
| 65 (7)  | 3-Lounge2                       | 4036   | 3600   | 436          | 3.19               | 21.0    | 75.0             | 100     | 22                  |
| 66 (7)  | 3-Kitchen                       | 3849   | 3348   | 500          | 2.70               | 21.0    | 68.6             | 72      | 23                  |
| 67 (2)  | 3-Bed9                          | 1123   | 811    | 312          | 1.41               | 21.0    | 31.8             | 31      | 15                  |
| 68 (1)  | 3-Ensuite9                      | 212    | 63     | 149          |                    | 23.0    | 28.0             | 1       | 3                   |
| 69 (2)  | 3-Bed10                         | 1119   | 807    | 312          | 1.41               | 21.0    | 31.7             | 30      | 15                  |
| 70 (1)  | 3-Ensuite10                     | 213    | 65     | 149          | · · · · ·          | 23.0    | 28.2             | 8 275 8 | 3                   |
| 71 (7)  | 3-Office4                       | 1054   | 795    | 259          | 1.66               | 21.0    | 42.2             | 39      | 10                  |
| 72 (7)  | 3-Office5                       | 880    | 613    | 267          | 1.29               | 21.0    | 33.7             | 19      | 11                  |
| 73 (7)  | 3-PrayerRm                      | 2802   | 2364   | 438          | 1.62               | 21.0    | 46.9             | 18      | 25                  |
| 74 (12) | 3-UtilityRm (heat gain to spa   |        |        |              |                    |         |                  |         | 4                   |
| 75 (12) | 3-CIStore (heat gain to space)  |        |        |              |                    |         |                  | 1.000   | 2                   |
| 76 (1)  | 3-Bathroom                      | 233    | 68     | 165          |                    | 23.0    | 24.3             | S 100 S | 4                   |
| 77 (4)  | 3-CorridorA                     | 2808   | 2239   | 569          | 1.34               | 21.0    | 28.1             | 31      | 42                  |
| 78 (4)  | 3-CorridorB                     | 655    | 285    | 370          | 0.81               | 21.0    | 26.3             |         | 10                  |





## 4.0 <u>Thermal Model Calculation – Energy Assessment – Existing Building</u>

December

| CADline Limited           | 443 - St Aloysius Convent Historical.CYC | Page 1     |
|---------------------------|------------------------------------------|------------|
| 443 - St Aloysius Convent | Engineer: Reuben Hendriks                | 10/10/2017 |

# Energy Consumption Using File:- 443 - St Aloysius Convent Historical.CYC (10/10/2017)

This Report includes:

Summary Report

## **General Information**

January

| Project Referen<br>Areas Calculate<br>Weather File | nce 44<br>ed All<br>!W | 3 - St Aloysius Co<br>Rooms<br>/eather Global 201 | sius Convent<br>Ibal 2010.DBE - |            |                      |  |
|----------------------------------------------------|------------------------|---------------------------------------------------|---------------------------------|------------|----------------------|--|
| Item                                               | Month<br>On            | Month<br>Off                                      | Fuel Type                       | Fuel Price | System<br>Efficiency |  |
| Cooling                                            | June                   | August                                            | Elect Direct                    | 0.16 £/kWh | 383 %                |  |
| Heating                                            | October                | April                                             | Natural Gas                     | 0.04 £/kWh | 80 %                 |  |
| Lights                                             | January                | December                                          | Elect Direct                    | 0.16 £/kWh |                      |  |

| Item    | Hour | Hour | People | Lighting | Equipment |
|---------|------|------|--------|----------|-----------|
|         | On   | Off  | % Used | % Used   | % Used    |
| Cooling | 9    | 17   | 100    | 100      | 100       |
| Heating | 9    | 17   |        |          |           |

0.16 £/kWh

Elect Direct

## **Summary Results**

Equip

| Month     | Hea       | ting | Coo   | ling | L     | ights | Equip  | ment |
|-----------|-----------|------|-------|------|-------|-------|--------|------|
|           | £         | GJ   | £     | GJ   | £     | GJ    | £      | GJ   |
| January   | 1261.1    | 113  |       |      | 63.9  | 1     | 279.9  | 6    |
| February  | 917.6     | 83   |       |      | 35.2  | 1     | 252.8  | 6    |
| March     | 704.2     | 63   |       |      | 27.8  | 1     | 279.9  | 6    |
| April     | 372.8     | 34   |       |      | 16.2  | 0     | 270.8  | 6    |
| May       |           |      |       |      | 10.3  | 0     | 279.9  | 6    |
| June      |           |      | 172.5 | 4    | 10.0  | 0     | 270.8  | 6    |
| July      | . <b></b> |      | 252.0 | 6    | 10.3  | 0     | 279.9  | 6    |
| August    |           |      | 236.8 | 5    | 16.7  | 0     | 279.9  | 6    |
| September |           |      |       |      | 26.9  | 1     | 270.8  | 6    |
| October   | 351.7     | 32   |       |      | 38.9  | 1     | 279.9  | 6    |
| November  | 807.9     | 73   |       | 1202 | 61.8  | 1     | 270.8  | 6    |
| December  | 1055.0    | 95   |       |      | 63.9  | 1     | 279.9  | 6    |
| Total     | 5470.2    | 492  | 661.2 | 15   | 381.9 | 9     | 3295.3 | 74   |





## 5.0 <u>Thermal Model Calculation – New Thermal Improvements</u>

| CADline Limited           | 443 - St Aloysius Convent.CYC | Page 1     |
|---------------------------|-------------------------------|------------|
| 443 - St Aloysius Convent | Engineer: Reuben Hendriks     | 09/10/2017 |

## Heatloss Calculation:- 443 - ST ALOYSIUS CONVENT.CYC (09/10/2017)443 -ST ALOYSIUS CONVENT.CYC (09/10/2017)

| Project Reference       | 443 - St Aloysi | 443 - St Aloysius Convent |        |  |  |  |
|-------------------------|-----------------|---------------------------|--------|--|--|--|
| Thermal Response Factor | 5.83            | Temperature Type          | DRT    |  |  |  |
| Building Weight         | LightWeight     | Plant Hours               | 8 hrs  |  |  |  |
| Convective Heating      | 70 %            | Preheat Hours             | 2 hrs  |  |  |  |
|                         |                 | Design Outside Temp       | -5.0 C |  |  |  |

## Total Zone + Building Heatlosses In kW

| Zone     | Boosted  | Total   | Fabric            | Infiltration | Mean   | Mean             | Glazing | Floor               |
|----------|----------|---------|-------------------|--------------|--------|------------------|---------|---------------------|
| Number   | Plant kW | Loss kW | Loss kW           | + Vent kW    | W/m² K | W/m <sup>3</sup> | %       | Area m <sup>2</sup> |
| 1        | 1.7      | 0.7     | 0.2               | 0.5          | 0.72   | 6.7              |         | 40                  |
| 2        | 7.4      | 3.2     | 1.5               | 1.7          | 0.56   | 8.0              | 29      | 158                 |
| 4        | 12.7     | 5.6     | 2.8               | 2.8          | 0.73   | 8.9              | 18      | 234                 |
| 6        | 2.5      | 1.5     | 1.3               | 0.2          | 1.72   | 32.3             | 7       | 20                  |
| 7        | 20.1     | 9.1     | 6.2               | 3.0          | 0.80   | 13.7             | 51      | 252                 |
| 9        | 10.7     | 4.6     | 2. <mark>1</mark> | 2.4          | 0.52   | 8.2              | 34      | 188                 |
| 11       | 0.4      | 0.2     | 0.1               | 0.1          | 0.23   | 10.9             | 7       | 6                   |
| 13       | 0.2      | 0.1     | 0.0               | 0.1          |        | 4.4              |         | 5                   |
| 14       | 1.4      | 0.6     | 0.3               | 0.3          | 0.36   | 8.9              | 7       | 25                  |
| Building | 57.3     | 25.5    | 14.5              | 11.0         | 0.70   | 10.2             | 34      | 958                 |

## **Room Heatlosses**

| No.     | Room                           | Total         | Fabric | Infiltration | Mean             | Control | W/m <sup>3</sup> | Glazing | Floor   |
|---------|--------------------------------|---------------|--------|--------------|------------------|---------|------------------|---------|---------|
| Zone    | Name                           | Loss W        | Loss W | + Vent W     | W/m² K           | Temp C  | - and so and so  | %       | Area m² |
| 1 (10)  | B-PlantRm (heat gain to spa    | () <b></b> () |        |              |                  |         |                  |         | 4       |
| 2 (10)  | B-Intake (heat gain to space)  | 1.000         |        |              |                  |         |                  | 0.000   | 3       |
| 3 (14)  | B-AWC                          | 189           | 147    | 42           | 0.74             | 21.0    | 20.1             | 28      | 4       |
| 4 (2)   | B-Laundry                      | 382           | 294    | 88           | 0.76             | 17.0    | 16.5             | 23      | 10      |
| 5 (6)   | B-Library                      | 1512          | 1297   | 215          | 1.02             | 21.0    | 32.3             | 7       | 20      |
| 6 (12)  | B-Store (heat gain to space)   |               |        |              |                  |         |                  |         | 4       |
| 7 (10)  | LiftShaft (heat gain to space) | (             |        |              | ( <u>11111</u> ) |         |                  | 10000   | 2       |
| 8 (4)   | B-Corridor                     | 1137          | 923    | 214          | 0.86             | 21.0    | 23.8             | 5       | 21      |
| 9 (4)   | G-MainEntrance                 | 746           | 428    | 318          | 0.39             | 21.0    | 10.3             |         | 25      |
| 10 (11) | G-Reception                    | 187           | 111    | 75           | 0.23             | 21.0    | 10.9             | 7       | 6       |
| 11 (9)  | G-MeetingRm1                   | 357           | 208    | 149          | 0.40             | 21.0    | 10.6             | 31      | 12      |
| 12 (9)  | G-MeetingRm2                   | 195           | 73     | 122          | 0.33             | 21.0    | 7.0              | 20      | 10      |
| 13 (9)  | G-MeetingRm3                   | 255           | 192    | 63           | 0.90             | 21.0    | 17.9             | 59      | 5       |
| 14 (9)  | G-MeetingRm4                   | 515           | 340    | 175          | 1.23             | 21.0    | 13.0             | 86      | 14      |
| 15 (9)  | G-MeetingRm5                   | 152           | 80     | 72           | 0.53             | 21.0    | 9.3              | 49      | 6       |
| 16 (9)  | G-MeetingRm6                   | 152           | 80     | 72           | 0.53             | 21.0    | 9.3              | 49      | 6       |
| 17 (7)  | G-Chapel                       | 1302          | 862    | 439          | 0.70             | 21.0    | 13.2             | 47      | 35      |
| 18 (7)  | G-Sacristy                     | 153           | 57     | 96           | 0.36             | 21.0    | 7.0              | 26      | 8       |
| 19 (14) | G-WC1                          | 50            | 22     | 28           | 0.18             | 21.0    | 7.8              |         | 2       |
| 20 (14) | G-WC2                          | 28            | 0      | 28           |                  | 21.0    | 4.4              |         | 2       |
| 21 (14) | G-AWC                          | 99            | 40     | 59           | 0.18             | 21.0    | 7.3              |         | 5       |
| 22 (13) | G-TeaPoint                     | 68            | 0      | 68           |                  | 21.0    | 4.4              |         | 5       |
| 23 (4)  | G-Corridor                     | 681           | 221    | 459          | 0.63             | 21.0    | 6.5              | 63      | 37      |
| 24 (9)  | 1-MeetingRm7                   | 148           | 66     | 82           | 0.32             | 21.0    | 7.9              | 20      | 6       |
| 25 (9)  | 1-MeetingRm8                   | 495           | 125    | 369          | 0.33             | 21.0    | 5.8              | 20      | 28      |





## St Aloysius Convent – Energy Consumption Assessment 443-4.2-(RH)-Mechanical and Electrical Services Assessment Report

| No.     | Room                               | Total              | Fabric    | Infiltration | Mean               | Control     | W/m <sup>3</sup> | Glazing | Floor               |
|---------|------------------------------------|--------------------|-----------|--------------|--------------------|-------------|------------------|---------|---------------------|
| Zone    | Name                               | Loss W             | Loss W    | + Vent W     | W/m <sup>2</sup> K | Temp C      |                  | %       | Area m <sup>2</sup> |
| 26 (9)  | 1-MeetingRm9                       | 324                | 98        | 226          | 0.42               | 21.0        | 6.3              | 33      | 17                  |
| 27 (7)  | 1-Kitchen                          | 943                | 664       | 279          | 0.96               | 21.0        | 15.1             | 64      | 21                  |
| 28 (12) | 1-ChairStore (heat gain to sp      |                    |           |              |                    |             |                  |         | 3                   |
| 29 (9)  | 1-MeetingRm10                      | 118                | 55        | 63           | 0.40               | 21.0        | 8.2              | 30      | 5                   |
| 30 (9)  | 1-MeetingRm11                      | 812                | 504       | 308          | 0.66               | 21.0        | 11.7             | 33      | 23                  |
| 31 (9)  | 1-MeetingRm12                      | 350                | 103       | 246          | 0.40               | 21.0        | 6.2              | 31      | 19                  |
| 32 (9)  | 1-MeetingRm13                      | 433                | 117       | 316          | 0.35               | 21.0        | 6.0              | 24      | 24                  |
| 33 (9)  | 1-MeetingRm14                      | 247                | 75        | 172          | 0.30               | 21.0        | 6.3              | 16      | 13                  |
| 34 (7)  | 1-ResourceCent                     | 570                | 278       | 292          | 0.37               | 21.0        | 8.6              | 26      | 22                  |
| 35 (14) | 1-WC                               | 273                | 114       | 159          | 0.24               | 21.0        | 7.5              | 9       | 12                  |
| 36 (12) | 1-CIStore (heat gain to space)     |                    |           |              |                    |             |                  |         | 1                   |
| 37 (4)  | 1-Corridor                         | 938                | 355       | 582          | 0.54               | 21.0        | 7.0              | 29      | 44                  |
| 38 (7)  | 2-Office1                          | 230                | 101       | 129          | 0.35               | 21.0        | 7.8              | 23      | 11                  |
| 39 (2)  | 2-Bed1                             | 257                | 86        | 170          | 0.40               | 21.0        | 6.6              | 30      | 15                  |
| 40 (1)  | 2-Ensuite1                         | 51                 | 12        | 39           |                    | 23.0        | 6.1              |         | 3                   |
| 41 (2)  | 2-Bed2                             | 257                | 86        | 170          | 0.40               | 21.0        | 6.6              | 30      | 15                  |
| 42 (1)  | 2-Ensuite2                         | 51                 | 11        | 40           |                    | 23.0        | 6.1              |         | 3                   |
| 43 (7)  | 2-Lounge                           | <mark>11</mark> 91 | 924       | 267          | 1.38               | 21.0        | 20.1             | 98      | 22                  |
| 44 (7)  | 2-DiningRm                         | 346                | 256       | 89           | 1.37               | 21.0        | 17.2             | 98      | 8                   |
| 45 (7)  | 2-Kitchen                          | 688                | 509       | 178          | 0.92               | 21.0        | 17.2             | 61      | 15                  |
| 46 (2)  | 2-Bed3                             | 259                | 89        | 170          | 0.41               | 21.0        | 6.7              | 32      | 15                  |
| 47 (1)  | 2-Ensuite3                         | 51                 | 12        | 39           |                    | 23.0        | 6.1              |         | 3                   |
| 48 (2)  | 2-Bed4                             | 259                | 89        | 170          | 0.41               | 21.0        | 6.7              | 32      | 15                  |
| 49 (1)  | 2-Ensuite4                         | 51                 | 11        | 39           |                    | 23.0        | 6.1              |         | 3                   |
| 50 (2)  | 2-Bed5                             | 282                | 100       | 182          | 0.36               | 21.0        | 6.8              | 24      | 16                  |
| 51 (1)  | 2-Ensuite5                         | 76                 | 32        | 45           |                    | 23.0        | 8.0              |         | 4                   |
| 52 (2)  | 2-Bed6                             | 370                | 196       | 174          | 0.37               | 21.0        | 9.3              | 26      | 15                  |
| 53 (1)  | 2-Ensuite6                         | 73                 | 34        | 39           | 0.18               | 23.0        | 8.8              |         | 3                   |
| 54 (7)  | 2-Office2                          | 183                | 95        | 89           | 0.25               | 21.0        | 9.1              | 9       | 8                   |
| 55 (12) | 2-CIStore1 (heat gain to space)    |                    |           |              |                    |             |                  | 775     | 3                   |
| 56 (12) | 2-CIStore2 (heat gain to space)    |                    |           |              |                    |             |                  |         | 2                   |
| 57 (1)  | 2-AShower                          | 61                 | 11        | 50           |                    | 23.0        | 5.7              |         | 4                   |
| 58 (4)  | 2-CorridorA                        | 856                | 345       | 512          | 0.56               | 21.0        | 7.3              | 31      | 44                  |
| 59 (4)  | 2-CorridorB                        | 200                | 80        | 120          | 0.88               | 21.0        | 7.3              |         | 10                  |
| 60 (7)  | 3-Lounge                           | 247                | 130       | 117          | 0.24               | 21.0        | 9.3              | 24      | 11                  |
| 61 (2)  | 3-Bed/                             | 284                | 129       | 155          | 0.23               | 21.0        | 8.0              | 31      | 15                  |
| 62 (1)  | 3-Ensuite/                         | 50                 | 10        | 30           | 0.00               | 23.0        | 0.7              |         | 3                   |
| 63 (2)  | 3-Bedð                             | 284                | 129       | 155          | 0.23               | 21.0        | 8.0              | 31      | 15                  |
| 64 (1)  | 3 Lourage 2                        | 110                | 15        | 242          | 0.77               | 23.0        | 0.7              | 100     | 22                  |
| 65 (7)  | 3 Kitaban                          | 1041               | 902       | 242          | 0.77               | 21.0        | 19.5             | 72      | 22                  |
| 67 (2)  | 3 Bodg                             | 284                | 120       | 155          | 0.02               | 21.0        | 8.0              | 31      | 25                  |
| 68 (1)  | 3 Encuito9                         | 204                | 129       | 36           | 0.25               | 21.0        | 6.7              | 51      | 13                  |
| 69 (2)  | 3-Bed10                            | 283                | 128       | 155          | 0.22               | 21.0        | 8.0              | 30      | 15                  |
| 70 (1)  | 3 Ensuite10                        | 52                 | 120       | 36           | 0.22               | 23.0        | 6.8              | 50      | 3                   |
| 71 (7)  | 3-Office4                          | 238                | 128       | 110          | 0.26               | 21.0        | 9.0              | 30      | 10                  |
| 72 (7)  | 3-Office5                          | 200                | 108       | 115          | 0.20               | 21.0        | 8.5              | 19      | 11                  |
| 73 (7)  | 3-PraverRm                         | 610                | 347       | 263          | 0.23               | 21.0        | 10.2             | 18      | 25                  |
| 74 (12) | 3-UtilityRm (heat gain to spa      |                    |           |              | 0.20               |             | .0.2             |         | 4                   |
| 75 (12) | 3-CIStore (heat gain to space)     |                    |           |              |                    |             |                  |         | 2                   |
| 76 (1)  | 3-Bathroom                         | 61                 | 15        | 45           |                    | 23.0        | 63               |         | 4                   |
| 77 (4)  | 3-CorridorA                        | 813                | 374       | 439          | 0.22               | 21.0        | 8.1              | 31      | 42                  |
| 78 (4)  | 3-CorridorB                        | 222                | 113       | 109          | 0.32               | 21.0        | 8.9              |         | 10                  |
|         | neter und winderen Schöll Schötzen |                    | 101001000 | 100000000    |                    | 10000000000 | 0.000            |         | 0.00                |





#### 6.0 <u>Thermal Model Calculation – Energy Assessment – New Thermal Improvements</u>

| CADline Limited           | 443 - St Aloysius Convent.CYC | Page 1     |
|---------------------------|-------------------------------|------------|
| 443 - St Aloysius Convent | Engineer: Reuben Hendriks     | 10/10/2017 |

## Energy Consumption Using File:- 443 - St Aloysius Convent.CYC (10/10/2017)

This Report includes:

Summary Report

## **General Information**

| Project Reference | 443 -  | St Aloysius Conve | ent       |            |        |
|-------------------|--------|-------------------|-----------|------------|--------|
| Areas Calculated  | All Ro | oms               |           |            |        |
| Weather File      | !Wea   | ther Global 2010. | DBE -     |            |        |
|                   |        |                   |           |            |        |
| Itom              | Month  | Month             | Fuel Type | Eucl Price | Sustam |

| Month   | Month                                                | Fuel Type                                                                                     | Fuel Price                                                                                                                  | System                                         |
|---------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| On      | Off                                                  |                                                                                               |                                                                                                                             | Efficiency                                     |
| June    | August                                               | Elect Direct                                                                                  | 0.16 £/kWh                                                                                                                  | 383 %                                          |
| October | April                                                | Natural Gas                                                                                   | 0.04 £/kWh                                                                                                                  | 80 %                                           |
| January | December                                             | Elect Direct                                                                                  | 0.16 £/kWh                                                                                                                  |                                                |
| January | December                                             | Elect Direct                                                                                  | 0.16 £/kWh                                                                                                                  |                                                |
|         | Month<br>On<br>June<br>October<br>January<br>January | Month Month<br>On Off<br>June August<br>October April<br>January December<br>January December | MonthMonthFuel TypeOnOffJuneAugustElect DirectOctoberAprilNatural GasJanuaryDecemberElect DirectJanuaryDecemberElect Direct | Month  Month  Fuel Type  Fuel Price    On  Off |

| Item    | Hour | Hour | People | Lighting | Equipment |
|---------|------|------|--------|----------|-----------|
|         | On   | Off  | % Used | % Used   | % Used    |
| Cooling | 9    | 17   | 100    | 100      | 100       |
| Heating | 9    | 17   |        | 1000     |           |

## **Summary Results**

| Month     | Heating |     | Cooling |    | Lights |    | Equipment |    |
|-----------|---------|-----|---------|----|--------|----|-----------|----|
|           | £       | GJ  | £       | GJ | £      | GJ | £         | GJ |
| January   | 283.2   | 28  |         |    | 65.1   | 1  | 285.1     | 6  |
| February  | 189.0   | 18  |         |    | 35.8   | 1  | 257.5     | 6  |
| March     | 113.6   | 11  |         |    | 28.4   | 1  | 285.1     | 6  |
| April     | 48.0    | 5   |         |    | 16.5   | 0  | 275.9     | 6  |
| May       |         |     |         |    | 10.5   | 0  | 285.1     | 6  |
| June      | 1.00000 |     | 407.4   | 9  | 10.2   | 0  | 275.9     | 6  |
| July      |         |     | 428.5   | 9  | 10.5   | 0  | 285.1     | 6  |
| August    |         |     | 407.2   | 9  | 17.0   | 0  | 285.1     | 6  |
| September |         |     |         |    | 27.4   | 1  | 275.9     | 6  |
| October   | 61.9    | 6   |         |    | 39.7   | 1  | 285.1     | 6  |
| November  | 190.4   | 19  |         |    | 63.0   | 1  | 275.9     | 6  |
| December  | 263.7   | 26  |         |    | 65.1   | 1  | 285.1     | 6  |
| Total     | 1149.8  | 112 | 1243.1  | 27 | 389.0  | 9  | 3357.1    | 74 |





## 7.0 <u>Summary and Analysis of Results</u>

|                  | Existing Elements | New Elements |
|------------------|-------------------|--------------|
| Heating Cost (£) | 5470.20           | 1149.80      |
| Cooling Cost (£) | 661.20            | 1243.10      |
| Total Cost (£)   | 6131.40           | 2392.90      |

The summary table above compares the annual costs of energy consumption of St Aloysius Convent as modelled by Cymap 2018. There is a significant reduction in heating costs due to the improved thermal characteristics of the building. The lower U-values have led to lower heat losses and thus less requirement to keep the building heated at a comfort levels. The improved building fabric also leads to an increased cost to cooling. This is due to the improved insulation of the external walls. As there are no cooling systems to be installed presently, this cost should not be taken into consideration.

The impact of improving the U-values to prevent heat loss, result in an overall increase in savings on annual energy consumption. Guidance on thermal elements from Building Regulations L1B section 5.12 state that reasonable provision would be to upgrade the existing thermal elements. A reasonable test of economic feasibility would be to achieve a simple payback of 15 years or less. Where the standard is not technically, functionally or economically feasible, then the external thermal elements should be upgraded to the best standard that is technically and functionally feasible and delivers a simple payback period of 15 years or less.

