
Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 1

Copyright (c) 2007, Quality Tree Software, Inc. 2

Agile Myths, Busted

Contrary to popular myth, Agile methods are not sloppy, ad hoc, do-whatever-feels-

good processes. Quite the contrary. As Mary Poppendieck points out, speed

requires discipline (see http://www.poppendieck.com/lean-six-sigma.htm). And

Extreme Programming in particular is one of the most disciplined software

development processes I’ve ever seen.

This means that some of the teams that claim to be doing “Agile” aren’t.

Compressing the schedule, throwing out the documentation, and coding up to the

last minute is not Agile: it may result in short term speed but at the cost of long term

pain. Agile methods are above all sustainable.

Agile teams really do need testers – or at least people who have strong testing skills.

But there is a small grain of truth in the idea that Agile teams don’t need QA. That’s

because Agile teams don’t need is QA acting as a Quality Police. The business

stakeholder – whether the Scrum Product Owner or the XP “Customer” – define

what’s acceptable and what’s not. The QA or Test group supports the business

stakeholder by helping them clarify acceptance criteria and understand risks.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 3

Version 5.6 Copyright (c) 2007, Quality Tree Software, Inc. 4

Testing Moves the Project Forward

On traditional projects, testing is usually treated as a quality gate, and the QA/Test

group often serves as the quality gatekeeper. It’s considered the responsibility of

testing to prevent bad software from going out to the field. The result of this

approach is long, drawn out bug scrub meetings in which we argue about the priority

of the bugs found in test and whether or not they are sufficiently important and/or

severe to delay a release.

On Agile teams, we build the product well from the beginning, using testing to

provide feedback on an ongoing basis about how well the emerging product is

meeting the business needs.

This sounds like a small shift, but it has profound implications. The adversarial

relationship that some organizations foster between testers and developers must be

replaced with a spirit of collaboration. It’s a completely different mindset.

Copyright (c) 2007, Quality Tree Software, Inc. 5

Testing is NOT a Phase…

…on Agile teams, testing is a way of life.

Agile teams test continuously. It’s the only way to be sure that the features

implemented during a given iteration or sprint are actually done.

Continuous testing is the only way to ensure continuous progress.

Everyone Tests

On traditional projects, the independent testers are responsible for all test activities.

In Agile, getting the testing done is the responsibility of the whole team. Yes, testers

execute tests. Developers do too.

The need to get all testing done in an iteration may mean that the team simply

cannot do as much in each sprint as they originally thought. If this is the case, then

Agile has made visible the impedance mismatch between test and dev that already

existed. And that means that the team was not going as fast as they thought. They

appeared to be going quickly because the developers were going fast. But if the

testing isn't done, then the features aren't done, and the team just does not have the

velocity they think.

Another way of thinking about this idea is that testing is the "herbie" on the team

(see Goldratt's The Goal). Theory of Constraints says that the whole team can only

go as fast as the slowest part. To go faster, the team has to widen the throughput of

the slowest part of the process. Eliminate the bottleneck; everyone tests.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 6

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 7

Shortening Feedback Loops

How long does the team have to wait for information about how the software is

behaving? Measure the time between when a programmer writes a line of code and

when someone or something executes that code and provides information about how

it behaves. That’s a feedback loop.

If the software isn’t tested until the very end of a long release, the feedback loops

will be extended and can be measured in months. That’s too long.

Shorter feedback loops increase Agility. Fortunately, on Agile projects the software

is ready to test almost from the beginning. And Agile teams typically employ

several levels of testing to uncover different types of information.

Automated unit tests check the behavior of individual functions/methods and object

interactions. They’re run often, and provide feedback in minutes. Automated

acceptance tests usually check the behavior of the system end-to-end. (Although,

sometimes they bypass the GUI, checking the underlying business logic.) They’re

typically run on checked in code on an ongoing basis, providing feedback in an hour

or so. Agile projects favor automated tests because of the rapid feedback they

provide.

Manual regression tests take longer to execute and, because a human must be

available, may not begin immediately. Feedback time increases to days or weeks.

Manual testing, particularly manual exploratory testing, is still important. However,

Agile teams typically find that the fast feedback afforded by automated regression is

a key to detecting problems quickly, thus reducing risk and rework.

Version 5.6 Copyright (c) 2007, Quality Tree Software, Inc. 8

So Where Do Those Expectations Come From?

Once upon a time, before I started working on XP projects, I worked on a project

where the developer protested “SCOPE CREEP!” to every bug report I filed.

Sadly, the two of us built up a lot of animosity arguing over whether or not the bugs

I found were bugs or enhancements. I reasoned that I was testing conditions that
were likely to occur in the real world, and “not crashing” did not count as an
enhancement. The programmer argued that he’d done what he’d been asked to do
and that it was too late to add more work to his plate. “No one said anything about
the software being able to handle corrupt data!” he snapped.

I realized that the programmer thought I was making up new requirements as I went

along.

Of course, that’s not what I intended. The way I saw it, my testing was revealing

answers to questions no one had thought to ask before: What if this file is locked?
What if that connection is broken? What if the data is corrupted? I would have asked
the questions earlier if I could, but this was a waterfall-ish project, and testing
happened at the very end of the process.

Working with XP teams has taught me that every test, whether manual or automated,

scripted or exploratory, represents a bundle of expectations. Like the file tests I ran
on that early project, sometimes those expectations represent implicit requirements
(like “don’t crash”). But sometimes my expectations turn out to be unreasonable.
So now, before I spend a huge amount of time testing for a given type of risk, I ask
questions to clarify my expectations with the project stakeholders.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 9

Keep the Code Clean

This principle is an example of the discipline that Agile teams have. It takes

tremendous internal discipline to fix bugs as they are found. If it’s a genuine bug, as

opposed to a new story, it is fixed within the iteration. To do otherwise is like

cooking in a filthy kitchen: it takes longer to wade through the mess to do the

cooking, and the resulting food may or may not be edible.

Lightweight Documentation

Instead of writing verbose, comprehensive test documentation, Agile testers:

•! Use reusable checklists to suggest tests

•! Focus on the essence of the test rather than the incidental details

•! Use lightweight documentation styles/tools

•! Capturing test ideas in charters for Exploratory Testing

•! Leverage documents for multiple purpose

Leveraging One Test Artifact for Manual and Automated Tests

Rather than investing in extensive, heavyweight step-by-step manual test scripts in

Word or a test management tool, we capture expectations in a format supported by

automated test frameworks like FIT/Fitnesse. The test could be executed manually,

but more importantly that same test artifact becomes an automated test when the

programmers write a fixture to connect the test to the software under test.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 10

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 11

“Done Done,” Not Just Done

In traditional environments that have a strict division between development and test,

it is typical for the developers to say they are “done” with a feature when they have

implemented it, but before it is tested.

Of course the feature isn’t “done” until it’s been tested and any bugs have been

fixed. That’s why there’s a long standing joke in the industry that a given software

release is usually “90% done” for 90% of the project. (Or, in other words, the last

10% of the effort takes 90% of the time.)

Agile teams don’t count something as “done,” and ready to be accepted by the

Product Owner or Customer until it has been implemented and tested.

Copyright (c) 2007, Quality Tree Software, Inc. 12

Test-Last v. Test-Driven

In traditional environments, tests are derived from project artifacts such as

requirements documents. The requirements and design come first, and the tests

follow. And executing those tests happens at the end of the project. This is a “test-

last” approach.

However, tests provide concrete examples of what it means for the emerging

software to meet the requirements. Defining the tests with the requirements, rather

than after, and using those tests to drive the development effort, gives us much more

clear done criteria and shared focus on the goal. This test-first approach can be seen

in the TDD and ATDD practices (see later slides).

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 13

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 14

Copyright (c) 2007, Quality Tree Software, Inc. 15

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 16

Copyright (c) 2007, Quality Tree Software, Inc. 17

The ATDD Cycle!

Discuss: work with the business stakeholders to understand their real

needs and concerns. In traditional environments, this is usually called
“requirements elicitation.” In the context of Agile development, the

purpose of this discussion is not to gather a huge list of requirements but
rather to understand what the business stakeholder needs from one
particular feature. During these discussions, ask questions designed to

uncover assumptions, understand expectations around non-functional
needs such as stability, reliability, security, etc., and explore the full scope

of work the business stakeholder is requesting.!

Distill: collaborate with the business stakeholders to distill their stated
needs into a set of acceptance tests, or examples, that define “done.”

These tests should focus on externally detectable behavior and will be
expressed in tables or keywords.!

Develop: write the code to implement the requested feature using test-
driven development (TDD). !

Demonstrate: show the business stakeholder the new feature in the

emerging system and request feedback. !

Version 5.6 Copyright (c) 2007, Quality Tree Software, Inc. 18

A Short History of Exploratory Testing

Cem Kaner coined the term “Exploratory Testing” in his book Testing Computer

Software, although the practice of Exploratory Testing certainly predates the book.

Since the book’s publication two decades ago, Cem Kaner, James Bach, and a group

of others (including Elisabeth Hendrickson and James Lyndsay) have worked to

articulate just what Exploratory Testing is and how to do it.

Exploratory Testing Can Be Rigorous

Two key things distinguish good Exploratory Testing as a disciplined form of

testing:

•! Using a wide variety of analysis/testing techniques to target vulnerabilities

from multiple perspectives.

•! Using charters to focus effort on those vulnerabilities that are of most interest

to stakeholders.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 19

Agile Testing Overview

20 Copyright (c) 2007 Quality Tree Software, Inc.

Collaborative Testing

Even before I started working with XP teams, I felt that it is important for testers to

collaborate with all the other project stakeholders. In the course of my years in this

industry, I have observed that isolation usually leads to duplicated and wasted effort.

Working on XP teams confirmed my beliefs. By integrating testing and

development, we produced more solid code, more quickly, than I had seen on any of

my past projects. Certainly there are contexts where independent testing is required,

such as with safety-critical systems. But that doesn’t mean the independent testers

should be the only ones testing.

In XP, testing isn’t a phase but rather a way of working so that at any given point in

a project, you know that the work done to date meets the expectations stakeholders

have of that work. And that requires a whole team effort.

Agile Testing Overview

Copyright (c) 2008, Quality Tree Software, Inc. 21

