County Series 1:2,500 scale

ROADS Road over single stream Road over River or Canal RAILWAYS

ABBREVIATIONS

A.	Trigonometrical Station	1.1. 31.	St.	Sluice
607 1	Altitude at Trigonometrical S	tation	Tr.	Trough
a second a second	Platado de Higonomotilosi o		Sp	Spring
14-14:323-9-12	Bench Mark	1.11	397	Well
342 +	Surface Level	C.,.*	M.B M.P	Mooring Ring Mooring Post
4	Permanent Traverse Station		BS	Boundary Stone
0 0	Antiquities (site of)		BP	Boundary Post
Summer of file	Arrow denotes flow of water			

National Grid 1:2,500 / 1:1,250 scale

GENERAL FEATURES

💭 😂 Non-coniferous Trees	11HHIIII Slopes	ofo Antiquity (site of
大夫 Coniferous Trees	Cliff	Culver
3 主 Surveyed Treas	Ø Cave Entrance	N++> Direction of water flow
දා හි		Electricity Pylo
Coppice, Osier	a a aBoulders	ETL
♀ ₀ ௹Scrub	Sloping Masonry	ATriangulation Station
TBracken	Roofed Building	•tsTraverse Station (permanent
ο _μ ιτιτ _{θη}	Glasshouse	个Bench Mark
	Archway	+Surface Leve
	0-0 °0 Change of boundary mereing	·rpRevision Point (instrumentally fixed
Mo Reeds	? S see AREAS notes	A Revision Point & Bench Mark coinciden
Slopes	Quarry Refuse	Heap Sloping Masonry
		Top

BOUNDARIES

England & Wales
County Boundary (geographical)
• • • County & Civil Parish Boundary coterminous
• • • Admin County or County Borough Boundary
-OOO London Borough Boundary
M B Bdy UD Bdy R D Bdy County District Boundaries based on civil parish
England, Wales & Scotland
Boro (or Burgh) Const & Ward Bdy
Boro (or Burgh) Const & Ward Bdy
Scotland
* County Boundary (geographical)
· · · †
Co Cnl Bdy *
<u>Co</u> CnIBdy . †
Co of City Bdy * County of the City Boundary
Co of City Bdy . +
Burgh Bdy*Burgh Boundary
Burgh Bdy † ,, ,, ,,
Dist_Bdy*District Council Boundary
Dist Bdy †
* Not with parish † Coincident with parish

ABBREVIATIONS

B H	Beer House
B M	Bench Mark
B P	Boundary Post
B S	Boundary Scone
C	Crane
C M	Club House
Chy	Chimney
Cn	Capstan
D Pn	Drinking Founcain
3k	Dock
EI PEle	eccricity Pillar or Post
ETL Electric	ity Transmission Line
FA	Fire Alarm
AP	Fire Alarm Pillar
FBFi	ilter Bed, Foot Bridge
F B M Fun	damental Bench Mark
5	Flagataff

F Sta	M P U Mail Pick-up
G P Guide Post	M \$ Mile Stone
G V C Gas Valve Compound	N T National Trust
H Hydrant or Hydraulic	NTLNormal Tidal Limit
ha	N T S National Trust for Scotland
L.B	PPillar, Pole or Post
L & Sta Lifeboat Station	P C Public Convenience
L C Level Crossing	PC8Police Call Box
L.GLoading Gauge	PH Public House
L Ho Lighthouse	PO Post Office
L Twr Lighting Tower	Pp Pump
m Metres	PTPPolice Telephone Pillar
M H W Mean High Water	Rosr Reservoir
M H W S Mean High Water Springs	R H Road House
M L W	rp Revision Point
MIWS Maan Low Water Sering	5 Stone
M.P	S BSignal Bax

2		
12		·
S L	 	Signal Light
\$1	 	Sluice
S P	 	Signal Post
Spr	 	Spring
S Sta .	 	Signal Station
TCB.	 	Telephone Call Box
TCP.	 	Telephone Call Post
7k	 	Tank or Track
Tr	 	Trough
ts	 	Traverse Station
w	 	
WB	 	Weighbridge
Wd Pp	 	Wind Pump
Wks	 	Works
Wr Pt	 	Water Point
WrT.	 	Water Tap

Historical Map Pack Legend

County Series 1:1,250 scale **County Series & National Grid** 1:2,500 scale

Information present on these legends is sourced from the same Ordnance Survey mapping as the maps used in this product.

If you have a query regarding any of the maps provided within this map pack, please contact GroundSure's technical helpline. We will endeavour to answer any queries you may have.

Technical Helpline:

Tel 08444159000

groundsureinsight@groundsure.com www.groundsure.com

APPENDIX G PRELIMINARY UXO RISK ASSESSMENT

Express Preliminary

UXO Risk Assessment

1st Line Defence Limited Unit 3, Maple Park, Essex Road, Hoddesdon, Herts, EN11 0EX Tel: +44 (0)1992 245020 E-mail: <u>info@1stlinedefence.co.uk</u> Company No: 7717863 VAT No: 128 8833 79

www.1stlinedefence.co.uk

Client	RSK
Project	The Hope Project
Site Address	The Hope Project, Camden, NW1 7JE
Report Reference	EP3439-00
Date	06/05/2016
Originator	WE

Assessment Objective

This preliminary risk assessment is a qualitative screening exercise to assess the likely potential of encountering unexploded ordnance (UXO) at The Hope Project. The assessment involves the consideration of the basic factors that affect the potential for UXO to be present at a site as outlined in Stage One of the UXO risk management process.

Background

This assessment uses the sources of information available in-house to 1st Line Defence Limited to enable the placement of a development site in context with events that may have led to the presence of German air-delivered or Allied military UXO. The report will identify any immediate necessity for risk mitigation or additional research in the form of a Detailed UXO Risk Assessment. It makes use of 1st Line Defence's extensive historical archives, library and unique geo-databases as well as internet resources, and is researched and compiled by UXO specialists and graduate researchers.

The assessment directly follows CIRIA C681 guidelines "Unexploded Ordnance, a Guide for the Construction Industry". The document will therefore assess the following factors:

- Basic Site Data
- Previous Military Use
- Indicators of potential aerial delivered UXO threat
- Consideration of any Mitigating Factors
- Extent of Proposed Intrusive Works
- Any requirement for Further Work

It should be noted that the vast majority of construction sites in the UK will have a low or negligible risk of encountering UXO and should be able to be screened out at this preliminary stage. The report is meant as a common sense 'first step' in the UXO risk management process. The content of the report and conclusions drawn are based on basic, preliminary research using the information available to 1st Line Defence at the time this report was produced.

....

RISK Assessment Considera	tions
Site location and description/current use	The site is located in Mornington Crescent, in the London Borough of Camden. The site is an irregular shaped parcel of land. The eastern area of the site is defined by the former Hope and Anchor Pub, and the western section is occupied by the nightclub 'Koko'. The northern site boundary is adjacent to a number of commercial premises adjoining Camden High Street. The eastern site boundary is adjacent to Bayham Street. The southern site boundary is adjacent to Crowndale Road and the eastern site boundary is adjacent to Camden High Street. The site is centred on the approximate OS grid reference: TQ 2923683404
Are there any indicators of current/historical military activity on/close to the site?	There is no evidence to suggest any current or historic military occupation of the site area in available record sets. The closest recorded anti-aircraft battery was located 3.1km to the north-west in the vicinity of Primrose Hill. Regent's Park Barracks is located 450m to the west of the site area. There are numerous urban features located between the site and the barracks, including train lines, significantly reducing the chance of ordnance from the barracks contaminating the site area.
What was the pre- and post- WWII history of the site?	WWI era OS mapping indicates that the site was occupied by a 'Picture Theatre'. The building was also known as the Camden Theatre and was constructed in 1900. A 'Public House' is also evident in the east of the site at this time. There is no obivous alteration evident to structures on site in post WWI or pre WWII mapping. The Camden Theatre, later labelled the 'Camden Hippodrome' and the adjoining public house also appear unaltered in post war mapping.
Was the area subject to bombing during WWII?	The site was situated in the Metropolitan Borough of St. Pancras during WWII. St. Pancras experienced a high density bombing campaign with 258.4 items of ordnance recorded per 1,000 acres. A total of 641 HE bombs, 8 Parachute Mines, 14 Oil Bombs, 11 Phosphorus Bombs, 20 V1 Pilotless Aircraft and 2 V2 long range rocket bombs were recorded. There is no record of any strikes within the site boundary, or recorded on structures immediately adjacent to the site area on the available London bomb census mapping from the National Archives. The closest recorded strikes occurred on Oakley street and on Harrington Square, both located to the south of the site. Neither strike is considered sufficiently proximate to have resulted in significant damage or disturbance to the site area.
Is there any evidence of bomb damage on/close to the site?	London Bomb Damage Mapping indicates that the site was not damaged during WWII. Structures to the east and to the south of the site suffered general blast damage, largely light in nature. The closest structures recorded to have endured significant damage are located to the south-east on Oakley Street and to the south on Harrington Place. The damage largely corresponds with bomb census mapping. In addition low resolution WWII era photography indicates that the structures on the site were present and undamaged. The image further corroborates consulted records indicating areas of clearance to the south.

To what degree would the site have been subject to access?	Local historical information indicates that The Camden Hippodrome Theatre was converted into a cinema from 1913 and was later shut to the public at the outbreak of the war, in alignment with government policy. The theatre was reopened after the conclusion of the Blitz, although its exact date of reopening is not clear at this stage. Despite this it is considered likely that both the theatre and public house on-site would have served some form of communal or civic purpose during the war d, and would have been subject to regular, thorough, and specific post raid checks. In 1945 the site was used by the BBC as a base for broadcasting.
To what degree has the site been developed post-WWII?	There has been no significant structural development to the site area in the post war era.
What is the nature and extent of the intrusive works proposed?	The exact nature of the proposed works have not been disclosed at the time of writing but are believed to include site investigation works prior to the redevelopment of the Koko night club and the demolition of two adjacent buildings.

Summary and Conclusions

The site area was located in the Metropolitan Borough of St Pancras. St Pancras endured a high density bombing campaign during WWII, although the area immediately around the site appears to have evaded the worst concentration of bombing.

There is no record of bombing within the site area. The site does not alter in OS mapping, and it is not described as having sustained any damage in damage mapping. The structure appears relatively undamaged in low resolution WWII era photography.

The site was occupied by a theatre (converted into a cinema) and a Public House during WWII. The theatre was not open to the public for commercial purposes during the Blitz, but due to its size and importance is still likely to have been utilised by the local community and is anticipated to have sustained a reasonable frequency of access. It is highly likely that damage to the site and to adjacent structures would have been noted and investigated, and that the site would have been subject to regular and specific checks for signs of UXO.

There is no available record of any current or historic military occupation of the site area.

Recommendations

Based on the findings of this report, the risk of encountering UXO during the proposed works is considered to be **minimal**. Whilst it would be possible to undertake a Detailed UXO Threat Assessment for the site and obtain all available local historical information, it is not considered likely that this information would significantly change this preliminary assessment given the findings of this report. It is therefore **not recommended that any further action** should be taken for this site.

If the client has any anecdotal or empirical evidence of UXO risk on site, please contact 1st Line Defence.

APPENDIX H EXPLORATORY HOLE RECORDS

Contract:								Client:			Borehole:			
	The Hope Project							The Hope Lease Ltd						
Contract Re	f:		_	Start:	29.0	6.16	Grour	nd Level:	Co-ordinates:	Sheet:				
371475 End: 0				01.0	7.16		22.75			1	of 4			
Samples and In-situ Tests					ater	fill & rru- ation		Daa	- vistion of Observe	lced /el	Depth	Material		
Depth	No	Туре	Res	ults	Ŵ	Back Inst ment		Des	cription of Strata	Redu	ness)	Legend		
-								NCRETE.	/	22.65	0.10			
-								NCRETE.	/	- 22.45	- 0.30			
- - - -							Grav char clay	vel is very angular to coal, ash, clinker an pockets.	subrounded fine to coarse flint, brick, d pottery. With occasional light brown	- - - -	(0.90)			
- 1.10	1	ES	Tubx1,	VL + J				Below 0.85m, occas	ional half bricks.	21.55	1.20			
	1	П				• • • •	⊢irm infille	i brown mottled grey ed with grey clay	silty CLAY. With occasional burrows	Ē				
1.60-2.05	1	SPT	N=	=5			LOI	NDON CLAY FORM	ATION)	-	-	××		
1.60	2	D					coar	. At 1.40m, brown a se gravel of cla	nd orange mottled. Rare subrounded avstone and rare fragments of	-	-	xx		
-						÷₿.	carb	onaceous matter.		-	-	x		
-							•			-	-			
2.50	1	UT	40 bl	ows			• •			-	-			
-			100% re	ecovery		N.∎N	•			E		xx		
2.95	3	D					• . • •	. Below 2.95m, fiss	ured. With occasional mica and light	-	-	xx		
-							brow	vn fine sand partings	. Frequent orange silt lenses.	-	-			
- 3.50-3.95	2	SPT	N=	=9			• •	Below 3.50m, occas	ional selenite crystals					
3.50	4	D		•			•			-	-	<u>× </u>		
-						́₽.	•			-	-	xx		
-							。 。			E	-			
4 50			40 14				•			-	(6.60)			
- 4.50 [2	01	40 bi 100% re	ows ecovery			•	Below 4.50m, stiff.		Ē		<u> </u>		
-	5	П					•	Bolow 4 05m with fr	request becoming occasional partings	-	-	××		
- 4.95	5	D					of or	range fine sand.	equent becoming occasional partings	-	-	xx		
-								-		-				
5.50	6	D						. Below 5.50m, occ	asional nodules of cemented orange	-	-			
-						/////	Sand			-	-	× 		
6.00-6.45	3	SPT	N=	16						-	_	xx		
6.00		D								-	-	<u> </u>		
-										-	-			
-										-	-			
7.00	8	D								-	-	××		
-										-	-	xx		
7 50	3	UT	45 h	ows							Ē			
-	Ĩ		100% re	ecovery							7.80	<u> </u>		
7.95	9	D					Stiff fissured dark grey silty CLAY. Fissures are very closely spaced, randomly orientated. With occasional mica and rare				-			
-							pock	pockets of orange fine sand. Rare, locally occasional, forams.				××		
1	10	-						NDON CLAY FORM	AHON)	-	-	xx		
- 8.50 [10	ט								-	Ē			
-							1			É	-			

	E	Boring Pro	gress and	Water (Observation	5	Chiselling / Slow Progress			Conorol Domorko					
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks					
	Duto	11110	Depth	Depth	(mm)	Depth			(111.11111)	1 Inspection pit due to 1	1.20m by others				
	29/06/16	08:00	1.20	-	150	Dry				2 Water seenage encountered at a depth of					
	29/06/16	17:00	6.50	1.50	150	Dry				24.50m. 3. On completion, the borehole was grouted to a					
'	30/06/16	08:00	6.50	1.50	150	Dry									
	30/06/16		24.50	1.50	150	24.50				depth of 5.90m. A 50r	nm diameter combined				
	30/06/16	17:00	30.00	1.50	150	Dry				gas and groundwater standpipe was installed by engineer on 5/7/16 to a depth of 5.00m,					
	01/07/16	08:00	30.00	1.50	150	Dry									
	01/07/16	17:00	30.00	1.50	150	Dry			-		_				
										All dimensions in metres	Scale: 1:50				
	Method	Inspec	tion pit +	- Pla	ant Dar	ndo 150 ((cut	Drilled	Dave	Logged	Checked				
	Used: Cable percussion		n Us	ed:	·	By:	Rosenwold	I By: CSiberry	By: AGS						

Contract:	ontract:							Client:			Borehole:			
	Т	'he H	ope Pro	ojec	ct			The Hope Lease Ltd					BH1	
Contract Re	f:		St	art:	29.06	.16	Groun	d Level:		Co-ordinates:	Sheet:			
371475 E				nd:	01.07	.16		22.75				2	of 4	
Samples and In-situ Tests		tu Tests		Vater	istru- ntation		Description of Strata		duced evel	Depth (Thick	Material Graphic			
Depth	No	Туре	Result	s							Re	ness)	Legend	
- 9.00-9.45 - 9.00 - - -	4 11	SPT D	N=20				Stiff spac pock (LON (strai	fissured dark gre ed, randomly orie ets of orange fine IDON CLAY FOR tum copied from 7	ey s enta sa RMA 7.80	silty CLAY. Fissures are very closely ated. With occasional mica and rare nd. Rare, locally occasional, forams. ATION) Im from previous sheet)	- - - - - -	-		
- 10.00	12	D					/	At 10.00m, rare bl	lack	< fine sand pockets.		-		
- 10.50	4	UT	65 blow 100% reco	s very							- - - -	-	××	
- 10.95 - -	13	D					1	3elow 10.95m ver	ry s	tiff, dark brownish grey.		(6.70)		
- 11.50 	14	D					I	Between 11.80m a	and	1 11.90m, claystone.	-	-		
- 12.00-12.45 - 12.00	5 15	SPT D	N=23								- - - - -	-		
- 13.00	16	D					1	Between 12.80m a	and	1 13.10m, claystone.		-		
13.50	5	UT	65 blow 100% reco	s very							- - -	-		
- 13.95 - -	17	D									- 825	- 14 50		
- 14.50	18	D					Stiff fine a	/ very stiff dark g and medium. With ws infilled with gr	gre 1 oc	y slightly sandy silty CLAY. Sand is ccasional mica. Rare forams and rare clav.	-	-		
- 15.00-15.45 - 15.00 	6 19	SPT D	N=27				(LON silty (IDON CLAY FOR At 15.00m, with clay.	RMA thio	ATIÓN) ck laminations of very stiff dark grey		-		
- 16.00	20	D										-		
16.50	6	UT	80 blow 100% reco	s very							- - -	-		
- - - -	21	D										- - -		
17.50	22	D					/	At 17.50m, rare py	yriti	sed wood fragments.		(6.50)		

17.50	oring F Time	D Progress Bore De	s and Water Ot chole Casing pth Depth	Diservations Borehole Diameter (mm)	Water Depth	t 17.50m, r Chiselli From	are pyritise	Progress Duration (hh:mm)	agments. General I with a response zone 5.00m. 4. Standing groundwater a depth of 4.85m depti 5. SPT hammer DR02-20 used.	Rema betweer in boref h. 016 (<i>E</i> _r =	(6.50) arks 1.40m hole on \$ = 63.019	and 5/7/16 at
17.50	22 oring F Time	D Progress Bore De	s and Water Ot hole Casing pth Depth	bservations Borehole Diameter (mm)	Water Depth	t 17.50m, r Chiselli From	ng / Slow f	Progress Duration (hh:mm)	agments. General I with a response zone 5.00m. 4. Standing groundwater a depth of 4.85m depti 5. SPT hammer DR02-20 used.	Rema betweer in borel h. D16 (<i>E</i> , =	(6.50) arks 1.40m hole on 9 = 63.019	and 5/7/16 at
17.50 Bi	22 oring F Time	D Progress Bore De	s and Water Ot hole Casing pth Depth	bservations Borehole Diameter (mm)	Water Depth	t 17.50m, r Chiselli From	ng / Slow F	Progress	agments. General I	Rema	(6.50) arks	
- 17.50 	22 oring F	D	s and Water Ot	oservations	A	t 17.50m, r	are pyritise	ed wood fr	agments.	Rem	(6.50)	x x x
17.50	22	D			A	t 17.50m, r	are pyritise	ed wood fr	agments.	-	(6.50)	
17.50	22	D			A	t 17.50m, r	are pyritise	ed wood fr	agments.	- - - -	(6.50)	
_ 10.95 - -				/////								
10.95										-		
-	21	D	100% recovery							- - -	- - -	
- 16.50	6	UT	80 blows							-	- - -	
- 16.00	20	D								- - - -	-	
 - 15.00-15.4 - 15.00 -	5 6 19	SPT D	N=27		(LONI	DON CLAY At 15.00m, lay.	FORMAT with thick	TION) Iaminatio	ns of very stiff dark grey	-	-	
- 14.50	18	D			Stiff / fine a	very stiff nd medium	dark grey . With occ	slightly sa asional mi	ndy silty CLAY. Sand is ca. Rare forams and rare	8.25	14.50	
- 	17	D								- - -	-	
- 13.50	5	UT	65 blows 100% recovery							-	- - -	
- 13.00	16	D				elween 12	.00111 anu	13.1011, 06	aysione.	-	- - - -	××
- - - -						ahuaan 10	00m and /	10.10m al		- - - -	-	
	13.00 13.50 13.95 14.50 15.00-15.4 15.00 16.00 16.50	13.00 16 13.50 5 13.95 17 14.50 18 15.00-15.45 6 16.00 20 16.50 6 16.95 21	13.00 16 D 13.50 5 UT 13.95 17 D 14.50 18 D 15.00-15.45 69 SPT 16.00 20 D 16.50 6 UT 16.95 21 D	13.00 16 D 13.50 5 UT 65 blows 100% recovery 13.95 17 D 100% recovery 14.50 18 D 14.50 18 D 15.00-15.45 69 SPT N=27 16.00 20 D 180 blows 100% recovery 16.50 6 UT 80 blows 100% recovery 16.95 21 D 100% recovery	13.0016D13.505UT $\begin{array}{c} 65 \ blows \\ 100\% \ recovery \end{array}$ 13.9517D14.5018D15.00-15.45 $\begin{array}{c} 69 \ blows \\ 100\% \ recovery \end{array}$ 16.0020D16.506UT $\begin{array}{c} 80 \ blows \\ 100\% \ recovery \end{array}$ 16.9521D	13.00 16 D B 13.50 5 UT 65 blows B 13.95 17 D B B 14.50 18 D B B 15.00-15.45 69 SPT N=27 B 16.00 20 D B B 16.50 6 UT 80 blows B 16.95 21 D B B	13.00 16 D Between 12 13.50 5 UT 65 blows Between 12 13.95 17 D Between 12 14.50 18 D Between 12 15.00-15.45 6 SPT N=27 Between 12 16.00 20 D stift / very stiff stift / very stiff 16.50 6 UT 80 blows stift / very stiff 16.95 21 D stift stift / very stiff	13.00 16 D Between 12.80m and 1 13.50 5 UT 65 blows 100% recovery Between 12.80m and 1 13.95 17 D Between 12.80m and 1 14.50 18 D Between 12.80m and 1 15.00-15.45 6 SPT N=27 Between 12.80m and 1 16.00 20 D At 15.00m, with thick silty clay. 16.50 6 UT 80 blows 100% recovery At 15.00m, with thick silty clay. 16.95 21 D Between 12.80m and 1	13.00 16 D Between 12.80m and 13.10m, classing of the second	13.0016DAAA13.505UT65 blows 100% recovery Between 12.80m and 13.10m, claystone.13.9517DStiff / very stiff dark grey slightly sandy silty CLAY. Sand is fine and medium. With occasional mica. Rare forams and rare burrows infilled with grey clay.14.5018D PN=27Stiff / very stiff dark grey slightly sandy silty CLAY. Sand is fine and medium. With occasional mica. Rare forams and rare burrows infilled with grey clay.16.0020D PN=27N=2716.5040WT 100% recovery80 blows 100% recoveryImage: Clay Stiff / very stiff dark grey slightly sandy silty CLAY. Sand is fine and medium. With occasional mica. Rare forams and rare burrows infilled with grey clay.16.0020D Image: Clay Stiff / very stiff dark grey slightly sandy silty clay.16.9521D80 blows Image: Clay Stiff / very stiff dark grey slightly sandy silty clay Stiff / very stiff dark grey slightly sandy silty clay.	13.00 16 D Between 12.80m and 13.10m, claystone. 13.50 5 UT 65 blows 100% recovery Between 12.80m and 13.10m, claystone. 13.50 17 D Between 12.80m and 13.10m, claystone. 8.25 14.50 18 D Between 12.80m and 13.10m, claystone. 8.25 14.50 18 D At 15.00m, with occasional mica. Rare forams and rare burrows infilled with grey clay. 8.25 15.00-15.45 69 SPT N=27 N=27 At 15.00m, with thick laminations of very stiff dark grey silty clay. 16.00 20 D 80 At 15.00m, with thick laminations of very stiff dark grey silty clay. 16.95 21 D 80 blows 100% recovery	13.00 16 D A

Contract:								Client:			Boreho	ole:	
	T	The Hope Project Start: 29.06.16 Gr						The	Hope Lease L	td			BH1
Contract Re	f:		Sta	art:	29.0	6.16	Ground	d Level:	Co-ordinates:		Sheet:		
3	8714	475	En	d:	01.0	7.16		22.75		•		3	of 4
Samp	les a	ind In-si	tu Tests		ater	kfill & stru- itation		De	scription of Strata		luced	Depth (Thick	Material Graphic
Depth	No	Туре	Results	6	3	Bac Ins men					Red	ness)	Legend
- 18.00-18.45 - 18.00 	7 23	SPT D	N=31				Stiff / fine a burro (LON (strat	/ very stiff dark gr and medium. With ws infilled with gre DON CLAY FORM um copied from 14	ey slightly sandy silty occasional mica. Rare / clay. ATION) 50m from previous sh	r CLAY. Sand is forams and rare	-	-	
- - -	24	D									-	-	
19.50	7	UT	90 blows 89% recove	s ery							- - - -	-	
	25	D							ad as firm		-	-	
	20	D					<i>F</i>	at 20.50m, recover			1.75	21.00	××
21.00-21.45	8 27	D	N=33				Very Rare (LON	stiff fissured dark light brown fine sa DON CLAY FORM	rey silty CLAY. With nd partings and rare fo ATION)	occasional mica. Drams.	- - - - - -		
22.00	28	D										-	
22.50	8	UT	90 blows 78% recove	s ery							-0.20	22.95	xx x xx
22.95	29 30	D					Very With Occa grey o (LON	stiff dark grey sli occasional light sional mica and ra clay. Occasional bl DON CLAY FORM	ghtly sandy silty CLA brown fine sand are forams. Rare burn ack clay lenses <4mm ATION)	Y. Sand is fine. pockets <3mm. rows infilled with n.	- - - - - -	(1.05)	
- 24.00-24.45	9	SPT	N=32				Stiff /	very stiff dark gre	ish brown silty CLAY.	With occasional	-1.25	24.00	xx
	31	D			~		pocke with v and b (LON	ets of partially pyr veins of pyrite. Octourrows infilled with DON CLAY FORM	tised black carbonace casional light brown fil grey clay. ATION)	eous matter and ne sand partings		(1.00)	
25.00	32	D					Stiff / light greer	very stiff sandy sil brown fine sand glauconitic fine	y CLAY. Sand is fine. bockets <20mm and and medium sand	With occasional occasional dark speckling. Rare	-2.65	25.40	
25.50	9	UT	100 blow 78% recove	s ery			foran (HAR	NS and occasional I	nica. N - SWANSCOMBE		- - -	-	
25.95	33	D					very are e: (LAM	sun fissured brow xtremely closely sp IBETH GROUP) At 25.95m, blue-gre	aced, randomly orient y and yellowish browr	ated, polished.	-	-	
26.50	34	D									- - - - -	- - -	

RSKE	Used: C	able	percu	ssion	Used	d:	Jan	down)	oui	By:	Ro	senwol	d By: CSiberry	By:		AGS
LIBR: nviro	Method	ner	oction	nit +	Plant		Jane	40 150 (cut	Drilled		Davo	All dimensions in metres	Scale:	<u>1:50</u>)
MRY_V8_06.GLB LIDV inment Ltd, 18 Frogmo																
version: ore Roac			De	pth De	epth	(mm	ו)	Depth				(111.1111)				
v8_06 1, Hem	Date	Time	Bore	hole Ca	ising	Boreh	ole	Water	From			Duration	General F	Rema	arks	
013 F el Hen	Во	ring F	Progress	and Wat	ter Ob	servat	tions		Chisell	ing / Slo	w F	rogress	a			
npstea	-													-	-	
sion: v8_06 id, Hertford:	26.50	34	D					At	25.95m,	blue-gre	ey a	nd yellowi	sh brown mottled.	-	-	
- Core+Lo shire, HP3	25.95 	33	D		- 1			Very s are ext (LAMB	tiff fissur tremely cl BETH GR	ed brov osely sp OUP)	vn i bace	mottled bl ed, randon	lue-grey CLAY. Fissures nly orientated, polished.	- - - -	-	
98 - 001 1 9RT. Tel: (- 25.50	9	UT	100 bl 78% rec	ows covery			green forams (HARV	glauconi and occa VICH FOI	tic fine asional r RMATIC	an nica N -	d mediun a. SWANS(n sand speckling. Rare	<u>-2.65</u>	- <u>25.40</u> -	
-og CABLI 01442 437	- 25.00	32	D					Stiff / v	very stiff s	andy sil	ty C	LAY. San	d is fine. With occasional	-2.25	25.00	
E PERCUSS 500, Fax: 01						~		with ve and bu (LOND	ins of part pins of py prows infi OON CLA	rite. Oco lled with Y FORM	casi gre 1AT	onal light onal light ey clay. ION)	brown fine sand partings	-	(1.00)	
1442 4375	- 24.00-24.45 - 24.00	9	SPT	N=3	32			Stiff / v	very stiff d	lark grey	/ish	brown sill	ty CLAY. With occasional	- <u>-1.25</u>	24.00	
- A4H 37 50, Web: w	23.50	30	D					Occas grey cl (LONE	ional mic ay. Occas OON CLA	a and ra sional bl Y FORM	are ack 1AT	forams. F clay lense ION)	Rare burrows infilled with es <4mm.	-	(1.05)	
WWW.FSK.CC	22.95	29	D		,			Very s With	tiff dark	grey slig al light	ghtl br	y sandy s own fine	silty CLAY. Sand is fine. sand pockets <3mm.	-0.20	22.95	
NUPE PK D.uk. 09/0	22.50	8	UT	90 blc 78% rec	ows									-	-	
8/16 - 11:4	22.00	28	D											- -	-(1.95)	
-1 - v8_06. 18 CST								(LONE	ON CLA	YFORM	1AT	ION)		-	-	

DRAFT

Contract:								Client:				Boreho	le:	
	Т	'he H	ope P	Projec	ct				The	Hope Le	ase Ltd			BH1
Contract Re	f:			Start:	29.0	6.16	Ground	d Level:		Co-ordinate	es:	Sheet:		
3	3714	75		End:	01.0	7.16		22.75					4	of 4
Samp	oles a	nd In-si	itu Tests	5	ater	fill & tru- ation			Dee		1	uced /el	Depth	Material
Depth	No	Туре	Res	sults	Ň	Back Inst ment			Dese	cription of S	trata	Redu	ness)	Legend
27.00-27.43	10 35	SPT D	N=	54*			Very	stiff fissure	d brown	n mottled bl	ue-grey CLAY. Fissures	F	-	
-		_					(LAM	IBETH GRO	UP)			Ę	-	
-							(<i>strat</i>	Below 27.00r	n, mottl	ed dark red.	evious sneet)	Ē	(4.60)	
- - 28.00	36	D										F	-	
		_											-	
28.50	10	UT	110 k	blows								E	-	
-		_	67% re	ecovery								F	-	
28.95	37	D					browi	Below 28.95 n.	im, blue	e-grey mottle	d dark red and yellowish	F	-	
- 29.20	38	D					E	Below 29.20r	n, silty.			Ę	-	
29.50-29.92 29.50	11 39	D	N=	:56*								Ę	-	×
							Cable	e percussion	boreho	le terminate	d at a depth of 30.00m.	-7.25	30.00	××
-												E	-	
-												E	-	
-												E	-	
-												F	-	
-												Ę	-	
-												Ę	-	
-													-	
-												E	-	
-												E	-	
-												F	-	
-												F	-	
-												Ę	-	
-												Ę	-	
												-	-	
-												E	-	
-												E	-	
-												F	-	
-												F	-	
-												Ę	-	
- -												Ē	-	
-												<u>t</u>	<u> </u>	
Во	ring P	rogress	and Wa	ater Ob	serva	tions		Chisellin	ig / Slov	v Progress	Conoral	Dame	- rl	
Date	Time	Bore	hole C	Casing	Boreh Diame	ole eter	Water	From	То	Duration	General	Rema	arks	
		De	pth D	Jepth	(mn	ו)	Depth		-					

Inspection pit + Cable percussion

Method

Used:

 Plant Used:
 Dando 150 (cut down)
 Drilled By:
 Dave Rosenwold
 Logged By:
 CSiberry By:
 Checked By:

WINDOW SAMPLE LOG

Contract:						Clie	ent:				Window	<i>w</i> Samp	le:
	The Ho	pe P	roje	ct				The	Hope Lease Ltd				WS1
Contract Ref:			Start:	20.07.16	Gro	und Le	vel:		Co-ordinates:		Sheet:		
37	1475		End:	20.07.16		1	9.4	10				1	of 1
Progress		Sam	ples / T	ests		ter fill &	ation				le/	Depth	Material
Window Run	Depth	No	Туре	Results		Wat Back	ment		Description of Strata		Redu Lev	(Thick ness)	Legend
0.00 - 1.00 (98mm dia) 100% rec	-							MADE GRO CLAY. Gravito coarse (Reworked MADE GRO angular to flint and brid Betw	OUND: Brown slightly sandy set vel is very angular to subangu flint, brick, concrete and London Clay). OUND: (Soft) brown CLAY w subangular fine to coarse gr ck. een 0.40m and 0.50m, black	gravelly ular fine d ash. rith rare ravel of c sandy	- - - - - - - - -	(0.35) 0.35 0.50	
1.00 - 2.00 (85mm dia) 100% rec	0.70 - 1.00-1.45 - -	D1	D	N=32				clay. Firm becor With occas silty fine si spaced, ra gleying ar Occasional (LONDON Belov selenite cry Betwee At 1	ning stiff fissured brown silty sional thin laminae of orange and. Fissures are extremely andomly orientated, with bl nd locally with fine sand mica. CLAY FORMATION) w 1.00m occasional locally f stals. en 1.25m and 1.35m, clayston 45m thin borizon of very s	CLAY. brown closely ue-grey d infill. requent e. tiff/bard	-	-	
2.00 - 3.00 (75mm dia)	- 1.63 - 2.00-2.45 - 2.30	D3 2 D5	D SPT D	N=19				yellow silt, i	veen 2.00m and 3.00m, occorright of very 3	asional	-	- - - - - - - -	
3.00 - 3.60 (65mm dia)	- 2.75 - 3.00-3.45	D6 3	D SPT	N=21	2	20/07					-	-	
100% rec	- 3.60-3.71 - - - - - -	4	SPT	N=250*				At 3.6 ∖to coarse g Window sa on clayston	0m, claystone recovered as r ravel. mpler terminated at a depth o e.	medium / f 3.71m	- 15.69 - - - - - - -	- - - - - - - -	x _ x

E	Drilling Pro	gress and	Water C	bservation	S			Can	oral	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks		
20/07/16 20/07/16 20/07/16 20/07/16		0.00 1.25 2.00 3.71	- 1.00 1.00 1.00	0 98 85 65	Dry 1.25 2.00 3.20	1. Wind 2. Wind 3. Grou pullin 4. On co stanc 1.00r	ow samp ow samp ndwater g casing ompletion pipe was n and 3.6	bler advanced the bler refused at a level at 3.20m u . Water level at n, a 50mm diam s installed at a c 50m.	nrough a depth upon cc 2.10m neter cc depth o	Trial Pit TP13a. of 3.60m on clays ompletion of drillin on completion of ombined gas and f 3.60m, with a re	stone. g, rising to 3.00 installation. groundwater mo sponse zone be	m after onitoring etween
						A	ll dimens	sions in metres		Scale:	1:25	
Method Jsed:	Inspec Tracke	tion pit + d windov	∙ Pla v ^{Use}	nt ed: Be	espoke R	ig	Drilled By:	lan Cowan	Logge By:	ed CSiberry + SRamaswamy	Checked By:	AGS

WINDOW SAMPLE LOG

Contract:						С	lient:				Window	w Samp	le:
	The Ho	oe P	roje	ct				The	Hope Lease Ltd				WS2
Contract Ref:			Start:	20.07.16	Gro	ound	Level:		Co-ordinates:		Sheet:		
37	1475		End:	20.07.16			17.6	65				1	of 2
Progress		Sam	oles / T	ests		er fill &	ru- ation				lced /el	Depth	Material
Window Run	Depth	No	Туре	Results		Wat	Inst menta		Description of Strata		Redu	(Thick ness)	Legend
	-							MADE G GRAVEL. (fine to coar	ROUND: Brown clayey Gravel is very angular to sub se flint, brock, concrete and v	sandy bangular vood.	-	(0.60)	
0.00 - 1.00 (98mm dia) 100% rec	-					•	·=··	Oliff finance			17.05	0.60	
	-					。 。 。 。		lenses of selenite cry (LONDON)	d brown slity CLAY. With oc orange fine sand and oc stals. CLAY FORMATION)	casional	-	-	
	1.00-1.45 	1	SPT	N=20				At cemented crystals in fissures. Below	0.95m, 30mm nodule of v orange fine sand with core of nodule. Blue-grey gle 0.95m, fissures stained dark i	ery stiff selenite eying on red.	-	-	
1.00 - 2.00 (85mm dia) 100% rec	- - 1.60	D2	D					At 1.4 silty fine cemented. Betw	5m, 2mm thick lense of dark and medium sand, occ een 1.57m and 1.70m, sub	asionaly	-	_(2.00)	
- - - - -	2.00-2.45 	2	SPT	N=21				sand dustin sand dustin Below dark orange At 1. selenite cr medium sau	an, smooth, with dark orar g. y 1.70m, occasional thin lar a fine and medium sand. 90m, horizon of coarse sar ystals in a dark orange f nd horizon. Damp.	nge fine ninae of nd sized ine and	-	-	
2.00 - 3.00 (75mm dia) 100% rec	-		5			• • • • • • •		Stiff fissur	ed dark grey silty CLA ^v	Y. With	15.05	2.60	
- - - V	- 2.65 - -	D4	D			• • • •		occasional With silt dua (LONDON)	mica and light brown silt stings on fissures. CLAY FORMATION)	pockets.	-	-	
	- - -	3	SPT	N=27		• • • • • • • • •					-	-	
3.00 - 4.00 (65mm dia) - 100% rec	- - 3.55 - -	D6	D					Betv fissure, plai	veen 3.60m and 3.87m, sui n, smooth, with silt dustings.	bvertical	-	-	
- 4.00 - 5.00 (65mm dia) 100% rec	- - - - - - -	4	SPT	N=28							-	-(2.85) - - - -	

Used:	Trac	ked wind	ow	Use	d: Bes	spoke F	Rig	By:	lan Cowan	By:	SRamaswam	By:		AG
Method	Insp	ection pi	t +	Plan	t			Drilled		Logge	ed CSiberry +	Check	ed	
							A	All dimens	sions in metres	1	Scale:	1:25		
20/07/16 20/07/16		0.00 5.45	1	- .00	0 65	Dry Dry	- 1. Winc 2. Bore 3. On c stand 0.55r	low samp hole dry o ompletion dpipe was m and 4.5	bler advanced th on completion. n, a 50mm diam s installed at a c 55m.	nrough neter co depth c	Trial Pit TP9. ombined gas and of 4.55m, with a re	groundv sponse	vater mo zone be	onitoring etween
Date	Time	e Boreho Depth (m)	e Ca D	asing epth (m)	Borehole Diameter (mm)	Water Depth (m)			Gene	eral	Remarks			
D	Drilling	Progress a	nd Wa	ater Ob	servations				Con	orol	Domorka			
			1			<u> </u>	r_`H_`J					L	L	<u> </u>
- 4.00 - 5.0 (65mm d 100% re	- - - - - - - - - - - - - - - - - - -	4.00-4.45	4	SPT	N=28							-	- -(2.85) - - -	
3.00 - 4.0 (65mm d 100% re	- - - - - - - - - - - - -	3.00-3.45 3.55	3 D6	SPT	N=27			Bet	ween 3.60m a ain, smooth, with	ind 3.8 h silt di	37m, subvertical ustings.	-		
- 100% re	- C	2.65	D4	D			S 	tiff fissu ccasiona /ith silt du .ONDON	ured dark gre I mica and ligh ustings on fissun I CLAY FORMA	ey silt ht brov res. TION)	y CLAY. With wn silt pockets.	<u>15.05</u> - -	2.60	
- V - X - 2 .00 - 3.0	- - - - - - - - - - - - - - - - - - -	2.00-2.45	2	SPT	N=21		di	Betv ssure, pl and dusti Belo ark orang At elenite co nedium sa	ween 1.57m ar lain, smooth, v ng. w 1.70m, occa ge fine and med 1.90m, horizon rystals in a d and horizon. Da	nd 1.7 with da asional ium sa of coa dark o mp.	0m, sub-vertical ark orange fine thin laminae of nd. arse sand sized range fine and	-	-	

WINDOW SAMPLE LOG

Contract:						Client	:		Window	<i>w</i> Samp	le:
	The Ho	pe P	roje	ct			The	Hope Lease Ltd			WS2
Contract Ref:			Start:	20.07.16	Grour	d Leve	l:	Co-ordinates:	Sheet:		
37	1475		End:	20.07.16		17.	65			2	of 2
Progress		Sam	oles / T	Fests		& - ioi			ed le	Depth	Material
Window Run	Depth	No	Туре	Results	Wate	Backfil Instru mentat		Description of Strata	Reduc	(Thick ness)	Graphic Legend
4.00 - 5.00 (65mm dia) 100% rec ↓ ↓	4.80	D8 5	D	N=32			Mindow s 5.45m.	im, nodule of light brown claystone. red dark grey silty CLAY. With mica and light brown silt pockets. stings on fissures. CLAY FORMATION) copied from 2.60m from previous ampler terminated at a depth of		- - - - - - - - - - - - - - - - - - -	
Drillin	g Progress a	ind W	ater O	bservations				General Remarks			
	Boreho	le C	asing	Borehole	Water			General Remarks			

[Drilling Pro	ogress and	Water Ol	oservations	6			Con	orol	Domorko		
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			Gen	eral	Remarks		
						A	II dimens	sions in metres		Scale:	1:25	
Method	Inspec	tion pit -	Plan	it d [.] Bo	anaka D		Drilled By:	lon Cowon	Logge	d CSiberry +	Checked	
0000	паске			. ве	spoke R	ig	D y.	ian Cowan	Dy .	SRamaswam	y ^{by.}	AUD

	LE	GEND)										
	-	 - S	Sectior	n Line									
		① a	Concre and 0.3	ete with da 31m.	amp proo	fsheet	at 0.0	08m					
		(2) n s	IADE rown s of sanc nediun ub-rou occasic	GROUNI silty very ly gravell n. Gravel unded fine onal clink	D: Dark re gravelly S y CLAY. S is sub-an e to coars er, ash ar	ed brow SAND w Sand is Igular to Igular to Igu	n and vith c fine , con slate	d lasts to crete,					
			Grou	ind Level	: 22.80m /	AOD							
			E	Excavated	d 07.07.16	6							
			Log	ged by: N	/like McCa	ann							
	Rev.	Date		Amendm	lent	Drawn	Chkd.	Appd.					
	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom												
	Client	TI	ΗEŀ	HOPE	LEASI	E LTC	D						
	Projec	ct Title	ΉE	HOPE	PRO	JECT	-						
	Drawi	ng Title											
				TRIAL	. PIT 1								
	Drawr ASC	n Date	7.16	Checked I CS 1	Date 3.07.16	Approved CS	Date 13.0	7.16					
	Scale AS	SHOV	VN	Orig Size A3		Dimension M	IS						
	Project	^{ct No.} 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg					
	Drawi	ng No. 1			-			^{Rev.} P1					
n													

1

	LE	GEN	D										
	_	_	Sectior	n Line									
		1	Concre	te									
		2	MADE Brown Gravel to coar Occasi	GROUN slightly s is very a se flint, l onal poo	D: andy grav ingular to s prick, ash a kets of ligl	elly silty sub-rou and clin nt browi	y CL/ nded ker. n clay	AY. I fine y.					
		3	Firm gr gravelly to roun	ey and b y silty CL ded fine	orown mott AY. Grave to coarse	tled slig el is ver multico	htly y ang loure	gular ed flint.					
			Grou	ind Leve	l: 22.80m	AOD							
			E	Excavate	d 28.06.16	6							
			Log	ged by:	Claire Sibe	erry							
	Rev.	Date		Amend	ment	Drawn	Chkd.	Appd.					
mm	18 Frogmore Road Hemel Hempstead Hertfordshire UPD OPT												
			Hertfordshir HP3 9RT United King	dom	Email: info@rs Web: www.rs	k.co.uk k.co.uk							
	Client	The	е Нор	e Lea	se Ltd								
	Projec	t Title											
			THE	HOPE	E PRO.	JECT							
	Drawi	ng Title											
				TRIA	_ PIT 2								
	Drawr ASC	Dati C 04.	。 07.16	Checked	Date 04.07.16	Approved CS	Date 04.0	7.16					
	Scale AS	SHC	WN	Orig Size A3		Dimension M	IS						
	Project	nt No. 1475	- R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg					
	Drawi	ng No. 2						^{Rev.} P1					

_

_											
	LE	GENE)								
	-	S	Sectior	n Line							
		 M S C C	IADE Iravelly ubang oncrei f blacl cccasic bamp, lightly in)	GROUNI y CLAY. (jular fine te, ash, c k carbona onal pock recovere sandy sil	D: Brown Gravel is v to coarse linker. Oc aceous ma ets of ligh d as soft, ty CLAY	slightly very any flint, br casiona atter an atter an t browr dark br (on end	sanc gular ick, al poo d clay rown I of ro	ly to ckets /.			
		Gro	undwa	ater in Ba	se of Pit (29.06.1	6)				
			Grou	ind Level	: 22.80m	AOD	- /				
			E	Excavated	1 28.06.16	3					
			Log	ged by: C	Claire Sibe	erry					
	Rev.	Date		Amendm	ent	Drawn	Chkd.	Appd.			
	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom										
		TI	HEF	HOPE	LEAS	E LTC	C				
	Projec	t ⊺itle T	ΉE	HOPE	PRO	JECT					
	Drawi	ng Title									
	TRIAL PIT 3										
	DrawnDateCheckedDateApprovedDateASC04.07.16CS04.07.16CS04.07.16										
	Scale AS	SHOV	VN	Orig Size A3		Dimensior M	IS				
	Project	^{et No.} 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg			
	Drawi	ng No. 3						^{Rev.} P1			
n											

.

_											
	LE	GENE)								
			Sectior	n Line							
		1 v f	/IADE vith oc very ar lint and	GROUNE casional l ngular to s d brick.	D: Brown brick cobb sub-angul	sandy (bles. Gr ar fine	GRA avel to co	VEL is arse			
		2 s 1 1	/IADE gravelly sub-an concre ght bro	GROUNE y silty CL/ gular fine te clinker, own clay	D: Brown AY. Grave to coarse ash and pockets.	slightly el is ang e flint, b tile. Oc	sanc gular rick, casic	ly to onal			
		3 F	irm br Grou	own silty Ind Level:	CLAY. 22.80m	AOD					
			E	Excavated	128.06.16	6					
			Log	ged by: C	laire Sibe	erry					
	Rev.	Date		Amendm	ent	Drawn	Chkd.	Appd.			
	Client	18 He Hi Un T	B Frogmori emel Hem ertfordshir P3 9RT nited King	e Road T pstead F e E dom	Tel: +44 (0) Fax: +44 (0) mail: info@rsl Web: www.rsl	1442 43750 1442 43755 k.co.uk k.co.uk)				
		Т	ΉE	HOPE	PRO	JECT					
	Drawi	ng Title									
	TRIAL PIT 4										
	DrawnDateCheckedDateApprovedDateASC04.07.16CS04.07.16CS04.07.16										
	Scale AS	SHOV	VN	Orig Size A3		Dimensior M	IS				
	Project	no. 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg			
	Drawi	ng No. 4						^{Rev.} P1			
n											

	LE	GEND)								
	 MADE GROUND: Brown and dark brown silty gravelly SAND with high cobble content. Sand is fine to medium. Gravel is angular to sub-rounded fine to coarse concrete, brick and occasional pieces of earthenware. MADE GROUND: Brown and dark brown gravelly CLAY. Gravel is angular to sub-angular fine to coarse red brick, concrete and clinker slag. Possible MADE GROUND: Firm orange brown, brown mottled grey CLAY with pockets of orange brown silty sand. Excavated 30.06.16 - 08.07.16 Ground Level: 22.35m AOD Logged by: Mike McCann 										
	Logged by: Mike McCann										
	Rev. Date Amendment Drawn Chkd. Appd.										
nm	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom										
	Client	Tł	HE F	HOPE	LEASI	E LTC	C				
	Projec	t Title	ΉE	HOPE	E PRO.	JECT					
	Drawi	ng Title									
				TRIAI	_ PIT 5						
	DrawnDateCheckedDateApprovedDateASC04.07.16CS04.07.16CS04.07.16										
	Scale AS	SHOV	VN	Orig Size A3		Dimension M	IS				
	Project	^{et No.} 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg			
	Drawi	ng No. 5						^{Rev.}			

	LE	GEND)														
		S	Sectior	n Line													
		(1) ss cc A (2) F C b	IADE andy o ub-an oncre at top: Tirm fis CLAY o rown	GROUNI CLAY. Gr gular fine te and as 50mm lay soured browith occa silt and oc	D: Brown ravel is ar to coarse h. yer of blac own and g sional poo ccasional	slightly igular to of bric ck sand grey mo ckets of mica.	grav o k, flir ly cla ttled i light	elly nt, y silty									
	Groundwater at 0.75m																
	Ground Level: 20.60m AOD																
	Excavated 30.06.16																
	Logged by: Claire Siberry																
	Rev. Date Amendment Drawn Chkd. Appd.																
	Client	18 He HF Ur	Frogmore emel Hem ertfordshir 23 9RT hited King	e Road pstead e E	Tel: +44 (0) Fax: +44 (0) Email: info@rsi Web: www.rs	1442 43750 1442 43755 k.co.uk k.co.uk	0										
		TI	HEH	HOPE	LEAS	E LTC	D										
	Projec	ct Title	ΉE	HOPE	PRO	JECT											
	Drawi	ng Title															
				TRIAL	. PIT 6												
	DrawnDateCheckedDateApprovedDateASC12.07.16CS12.07.16CS12.07.16																
	Scale Orig Size Dimensions AS SHOWN A3 m																
	Project No. Drawing File 371475 - R01 (00) 371475 (R01-00) TP.dwg																
	Drawing No. Rev. P1																
n																	

	LE	EGEND)									
		 - 5	Sectior	n Line								
		(1) N N (2) 9 S S C	IADE IADE Iravelly ub-an oncre	GROUNI GROUNI y CLAY. (gular fine te and cliu	D: Black a D: Brown Gravel is a to coarse nker.	sh GR/ slightly angular of bric	AVEL sanc to k, as	 ly h,				
		(3) (C) (3) (C	CLAY N rey gl	with occase eying on t	sional mic fissures.	a and o	occas	sional				
			G	roundwat	er at 0.53	m						
			Grou	nd Level:	20.65m	AOD						
			E	Excavated	13.06.16	6						
			Log	iged by C	laire Sibe	erry						
	Rev. Date Amendment Drawn Chkd. Appd.											
	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom											
	Client	TI	ΗEŀ	HOPE	LEASI	E LTC	C					
	Proje	ct Title	ΉE	HOPE	PRO	JECT						
	Drawi	ing Title										
				TRIAL	. PIT 7							
	DrawnDateCheckedDateApprovedDateASC12.07.16CS12.07.16CS12.07.16											
	Scale Orig Size Dimensions AS SHOWN A3 m											
	Project	ct No. 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg				
	Drawi	ing No. 7						^{Rev.}				
n												

	LE	EGENE)									
	-	 S M g s a a	Section IADE Iravelly ub-an Ind clin Ind gre Tirm fis Inccasio	a Line GROUNI y CLAY. (gular fine nker. Occ ey mottleo sured bro onal mica	D: Brown Gravel is a to coarse asional p d clay. own mottle	sandy s angular e of bric ockets o ed grey	slight to k, flir of bro	ly own Y with				
		I	Grou E Log	nd Level: Excavated Iged by C	20.65m / 1 30.06.16 laire Sibe	AOD S erry	I					
	Rey, Date Amendment Drawn Child Apod											
	Rev.	Date		Amendm	ent	Drawn	Chkd.	Appd.				
	Client	18 He HF Ur T i	Frogmore amel Hem ertfordshir 23 9RT iited Kinge	e Road pstead dom	rel: +44 (0) Fax: +44 (0) Email: info@rs Neb: www.rs	1442 43750 1442 43755 k.co.uk k.co.uk	00 50					
	Projec	ct Title	ΉE	HOPE	PRO	JECT						
	Drawi	ing Title										
	TRIAL PIT 8											
	Drawn	n Date	7.16	Checked [CS 0	Date 4.07.16	Approved CS	Date 04.0	7.16				
	Scale Orig Size Dimensions AS SHOWN A3 m											
	Project No. Drawing File 371475 - R01 (00) 371475 (R01-00) TP.dwg											
	Drawing No. Rev. P1											
n												

	LE	EGENE)								
		- - S	Sectior	n Line							
		(1) A S C	IADE BRAVE ub-an oncret	GROUNI EL. Grave gular fine te and wo	D: Brown I is very a to coarse ood.	clayey s angular e flint, b	sand to rick,	у			
			Gi Grou E Log	roundwat nd Level: Excavated iged by C	er at 0.35 17.65m 101.07.16	m AOD S erry					
	Rev.	Date		Amendm	ent	Drawn	Chkd.	Appd.			
	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom										
	Client	TI	HEF	HOPE	LEASI	ELTO	C				
	Projec	ct Title	ΉE	HOPE	PRO	JECT					
	Drawi	ing Title									
				TRIAL	PIT 9						
	DrawnDateCheckedDateApprovedDateASC05.07.16CS05.07.16CS05.07.16										
	Scale	SHOV	VN	Orig Size A3		Dimensior M	IS				
	Project No. Drawing File 371475 - R01 (00) 371475 (R01-00) TP.dwg										
	Drawi	ing No.		()	0.110(Rev. P1			
n											

_											
	LE	GEN)								
	-	(Sectior	n Line							
			MADE sand/sa and sub clinker	GROUN andy GR b-angula and cond	D: Brown AVEL. Gra r fine to co crete.	silty gra avel is a barse fli	avelly angul nt, bi	ar rick,			
		② F	Firm fis	sured br with occa	own and g isional mic	grey mo ca spec	ttled kling	silty			
			Grou	Ind Level	: 17.60m	AOD					
			E	Excavate	d 29.06.16	5					
		1	Log	ged by C	Claire Sibe	erry		1			
	Rev. Date Amendment Drawn Chkd. Appd.										
mm	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RTTel: +44 (0) 1442 437500 Fax: +44 (0) 1442 437550 Fax: www.rsk.co.ukTel: Fax: www.rsk.co.uk										
	Client	Т	HEF	HOPE	LEASI	E LTO	D				
	Projec	ct Title									
		F	ΓHE	HOPE	E PRO.	JECT					
	Drawi	ng Title									
			-	TRIAL	PIT 10)					
	Drawr ASC	n Date C 05.0	7.16	Checked CS (Date 05.07.16	Approved CS	Date 05.0	7.16			
	Scale AS	SHO\	WN	Orig Size A3		Dimension M	IS				
	Project	ct No. 1475 -	R01	(00)	Drawing File 371475 (R01-00)	TP.dv	wg			
	Drawi	ng No. 10						^{Rev.}			

_

	LE	GENE)								
	J	S	Sectior	n Line							
		1 C f	IADE GRAVE	GROUNE EL. Grave coarse flir): Brown I is very a nt, brick a	slightly angular Ind tile.	silty to ar	sandy ıgular			
		(2) (2) (2) (2) (5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	IADE ravelly ub-rou vith oc Recove	GROUNE y CLAY. (unded fine casional ered as so	D: Brown Gravel is a to coars pockets o oft and sa	slightly angular e flint a f firm cl turated	sanc to nd b ay.	ly rick			
			Gi	roundwate	er at 0.40	m					
			Grou	ind Level:	17.65m	AOD					
			E	Excavated	01.07.16	3					
		_	Log	ged by C	laire Sibe	erry	_				
	Rev.	Date	Drawn	Chkd.	Appd.						
	Client	18 He Hf Ur TI	Frogmord mel Hem ertfordshin 23 9RT nited King	e Road T pstead F e E dom	Tel: +44 (0) Fax: +44 (0) Email: info@rs Web: www.rs	1442 43750 1442 43755 k.co.uk k.co.uk	00				
		Т	ΉE	HOPE	PRO	JECT					
	Drawi	ng Title	-	FRIAL	PIT 11	I					
	Drawr ASC	DrawnDateCheckedDateApprovedDateASC05.07.16CS05.07.16CS05.07.16									
	Scale	SHOV	VN	Orig Size A3		Dimension M	IS				
	Project	ct No. 1475 -	R01 ((00)	Drawing File	R01-00)	TP.d	wg			
	Drawi	ng No. 11						^{Rev.}			
т											

_

	LE	EGENE)									
		 - S	Sectior	n Line								
		1 G fi	IADE BRAVE ne to	GROUNE EL. Grave coarse flir	D: Brown I is very a nt, concre	slightly angular ete, bric	silty to ar k and	sandy igular I tile.				
		② F 0	irm to	stiff brow	n mottleo ge silt poo	l grey C ckets.	CLAY	with				
	Groundwater at 0.60m											
	Ground Level: 17.55m AOD											
	Excavated 01.07.16											
	Logged by Claire Siberry											
	Rev. Date Amendment Drawn Chkd. Appd.											
	18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT United Kingdom											
	Client	Tł	ΗEŀ	HOPE	LEASI	ELTI	D					
	Projec	ct Title	ΉE	HOPE	PRO	JECT	-					
	Drawi	ing Title										
	TRIAL PIT 12											
	Drawn	n Date	7.16	Checked D	_{Date} 6.07.16	Approved CS	Date 06.0	7.16				
	Scale Orig Size Dimensions AS SHOWN A3 m											
	Project No. Drawing File 371475 - R01 (00) 371475 (R01-00) TP.dwg											
	Drawi	ing No. 12		-				^{Rev.} P1				
7												

.

Plan View: (1:10)

		GENL)						
			Sectior	n Line					
		1 g s	/IADE iravelly ub-an	GROUN y CLAY. gular fine te and as	D: Brown Gravel is to coarse h. (Rewo	slightly very ang e flint, b rked Lo	sanc gular rick, ndon	ly to Clay)	
		② F	irm br	own mot onal oran	tled grey (ge fine sa	CLAY w	vith kets.		
		St	rong s to se	ewage o ewer and	dour (Pit a in bin sto	adjacen res)	t		
			Grou	ndwater a	at 0.60m,	Black			
			Grou	ind Level	: 19.40m	AOD			
			E	Excavate	d 06.07.16	6			
			Log	ged by C	Claire Sibe	erry			
	Rev. Date Amendment Drawn Chkd. Appd.								
	RSK								
mm		18 He HF Ur	Frogmon emel Hem ertfordshir P3 9RT hited King	e Road pstead e dom	Tel: +44 (0) Fax: +44 (0) Email: info@rs Web: www.rs	1442 43750 1442 43755 k.co.uk k.co.uk	10 50		
	Client								
		TI	HEF	HOPE	LEASI	E LTC)		
	Projec	t Title							
		Т	ΉE	HOPE	E PRO	JECT			
	Drawi	ng Title							
			Т	RIAL	PIT 13	а			
	Drawn Date Checked Date Approved Date ASC 12.07.16 CS 12.07.16 CS 12.07.16								
	Scale Orig Size Dimensions AS SHOWN A3 m								
	Project	no. 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg	
	Drawi	^{ng No.} 13a						^{Rev.} P1	

_											
	LE	GEND)								
	-	 S	Sectior	n Line							
		N g to a	IADE ravelly o sub- nd tile	GROUNI y silty CL angular f	D: Brown AY. Grave lint, brick,	slightly el is ver concre	sanc y ang te, cl	ly gular nalk			
			Grou	nd Level Excavated	: 19.40m / d 06.07.16	AOD S					
				igea by c		, i i y 					
	Rev.	Date		Amendm	nent	Drawn	Chkd.	Appd.			
mm	18 Frogmore Road Tel: +44 (0) 1442 437500 Hemel Hempstead Fax: +44 (0) 1442 437550 Hertfordshire Email: info@rsk.co.uk HP3 9RT Web: www.rsk.co.uk United Kingdom Web: www.rsk.co.uk										
	Client	Tł	HE F	IOPE	LEASI	ELTO	D				
	Projec	t Title									
		Т	ΉE	HOPE	E PROJ	JECT					
	Drawi	ng Title									
			Т	RIAL	PIT 13	b					
	Drawr ASC	Date	7.16	Checked CS 1	Date 3.07.16	Approved CS	Date 13.0	7.16			
	Scale AS	SHOV	VN	Orig Size A3		Dimension M	IS				
	Project 37	^{et No.} 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg			
	Drawi	^{ng No.} 13b						^{Rev.}			

	LE	GEND)					
	-	 M C M M	Sectior ADE Gravel o coar ADE slightly angular and bri bockets Firm to silty CL enses. Ground Grou	n Line GROUN is very a se flint. GROUN gravelly r and sul ck with o s. (Rewo stiff fissi AY with dwater so	D: Brown ngular to s D: Brown silty CLA o-angular f occasional rked Lond ured brown occasional eepage at : 19.35m	sandy (sub-rou mottled Y. Grav fine to c black a lon Clay n mottle al orang 1.00m AOD	GRA ndec grey el is coars sh /) ed gru e silt	/EL. fine , e flint
			E	Excavate	d 11.07.16	3		
			Log	ged by (Claire Sibe	erry		
	Rev.	Date		Amendr	nent	Drawn	Chkd.	Appd.
mm		18 He Hi Ui	B Frogmore emel Hem ertfordshin P3 9RT nited Kinge	e Road pstead e dom	Tel: +44 (0) Fax: +44 (0) Email: info@rs Web: www.rs	1442 43750 1442 43755 k.co.uk k.co.uk	00 50	
	Client	T	HEF	HOPE	LEASI	E LTI	C	
	Projec	t Title	ΉE	HOPE	E PRO	JECT		
	Drawi	ng Title						
			_	TRIAL	PIT 14	1		
	Drawr ASC	Date	7.16	Checked CS	^{Date} 14.07.16	Approved CS	Date 14.0	7.16
	Scale	SHOV	٧N	Orig Size A3		Dimensior M	IS	
	Project	^{ct No.} 1475 -	R01 ((00)	Drawing File 371475 (R01-00)	TP.d	wg
	Drawi	ng No. 14						Rev. P1

STANDARD PENETRATION TEST SUMMARY TABLE

Exploratory	Depth	Hole	Casing	Water	Seatin	g Drive	Те	st Drive		Hammer	Calibration	Energy		
Position ID	(m)	Dia (mm)	Depth (m)	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	ID	Date	Ratio (%)	N ₆₀	Comments
BH1	1.60	150	1.50	DRY	1,1	150	1,1,1,2		N=5	DR02-2016	11/04/2016	63.01	5	
	3.50	150	1.50	DRY	1,1	150	2,2,2,3		N=9	DR02-2016	11/04/2016	63.01	9	
	6.00	150	1.50	DRY	2,3	150	3,4,4,5		N=16	DR02-2016	11/04/2016	63.01	17	
	9.00	150	1.50	DRY	2,3	150	4,5,5,6		N=20	DR02-2016	11/04/2016	63.01	21	
	12.00	150	1.50	DRY	2,4	150	5,5,6,7		N=23	DR02-2016	11/04/2016	63.01	24	
	15.00	150	1.50	DRY	3,5	150	6,6,7,8		N=27	DR02-2016	11/04/2016	63.01	28	
	18.00	150	1.50	DRY	3,5	150	6,7,8,10		N=31	DR02-2016	11/04/2016	63.01	33	
	21.00	150	1.50	DRY	4,6	150	7,8,8,10		N=33	DR02-2016	11/04/2016	63.01	35	
	24.00	150	1.50	DRY	4,6	150	6,7,9,10		N=32	DR02-2016	11/04/2016	63.01	34	
	27.00	150	1.50	DRY	5,9	150	11,13,16,10+	280	N=54*	DR02-2016	11/04/2016	63.01	57	
	29.50	150	1.50	DRY	6,9	150	12,14,16,8+	270	N=56*	DR02-2016	11/04/2016	63.01	59	
WS1	1.00			DRY	4	150	3,18,6,5		N=32					
	2.00			2.00	5	150	4,4,5,6		N=19					
	3.00			2.90	7	150	4,5,6,6		N=21					
	3.60			3.60	25	50	50+	60	N=250*					
WS2	1.00			DRY	5	150	4,6,5,5		N=20					
Notes: 1. Tests carried 2. Reported blow 3. Where full tes 4. Tests carried 5. Entries in the	out in gene vs are for 7 t drive was out using a water dept	eral acco 5mm pe not ach split sp h colum	ordance with netration u nieved, actu poon sample n reflects th	h BS EN I nless indi Ial penetra er unless he measu	SO 22476 cated "+" ation (R) a noted as red water	-3:2005, i and extra SPT(c) (d depth at	ncluding amendn polated N value (I lenotes use of so time of test.	nent A1 (2 N*) reporte lid cone m	011). ed. nethod) in the o	comments column.		N ₆₀ = (Meas	ured hamm	er energy ratio / 60) x N value
F		vironr	nent I to	4					Compiled By				Date	Contract Ref:
DCK	18 Fro	gmore	Road							CSIBEF	RRY	2	22.07.16	371475
	Hemel Her HI	Hem tfords P3 9F	pstead hire RT		Contract:				The Ho	pe Project				Page: 1 of 2

GINT_LIBRARY_V8_06.GLB : G - SUMMARY OF SPT TESTS - V2 - A4L : 371475 THE HOPE PROJECT.GPJ : 22/07/16 14:59 : CS1 :

STANDARD PENETRATION TEST SUMMARY TABLE

Exploratory	Depth	Hole	Casing	Water	Seatin	g Drive	Τe	est Drive		Hammer	Calibration	Energy		
Position ID	(m)	Dia (mm)	Depth (m)	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	ID	Date	Ratio (%)	N ₆₀	Comments
WS2	2.00			DRY	6	150	5,5,5,6		N=21					
	3.00			DRY	9	150	6,6,6,9		N=27					
	4.00			DRY	10	150	5,7,8,8		N=28					
	5.00			DRY	12	150	7,8,9,8		N=32					
Notes: 1. Tests carried of the second secon	but in gene	ral acco	rdance with	n BS EN I	SO 22476	-3:2005, ir	ncluding amendr	nent A1 (2	011).					
3. Where full test 4. Tests carried o 5. Entries in the	drive was out using a water deptl	not ach split sp i columi	ieved, actu oon sample n reflects th	al penetra er unless ne measu	ation (R) a noted as red water	nd extrap SPT(c) (d depth at	oolated N value (I enotes use of so time of test.	N*) reporte lid cone m	ed. nethod) in the	comments column				
F	SK En	vironn	nent Lto	I -									Date	
RSK	Hemel Hemel Hert HI	gmore Hemp fordsl 23 9R	e Road ostead hire T		Contract:				The Ho	pe Project			22.07.16	Page: 2 of 2 AG

GINT_LIBRARY_V8_06.GLB : G - SUMMARY OF SPT TESTS - V2 - A4L : 371475 THE HOPE PROJECT.GPJ : 22/07/16 14:59 : CS1 :

APPENDIX I GROUND GAS / WATER MONITORING DATA

Equipment Used & Remarks

[Pressures]	Previous	During	<u>Start</u>	End
Round 2	Constant	Constant	1007	1007
Round 3	Constant	Constant	1009	1009
Round 4	Falling	Falling	1019	1019

Dipmeter + GA2000 + Weather: Dry and Sunnry + Ground: Dry + Wind: Light Dipmeter + GA2000 + Weather: Dry, sunny, hot + Ground: Dry + Wind: Light Dipmeter + GA2000 + Weather: Dry, sunny, cool + Ground: Dry + Wind: Light

Exploratory Position ID	Monitoring Round	Measured Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BH1	2	5.00	03/08/2016 11:05:00	-	1007	0.1 _(SS)	3.90	0.0 _(SS)	0.0 _(SS)	20.6 _(SS)	0.0 _(SS)	0.0 _(SS)	0.0 _(SS)	1.0 _(SS)	
BH1	2	5.00	15 secs	-	1007	-	3.90	0.0	0.0	20.1	0.0	-	0.0	1.0	
BH1	2	5.00	30 secs	-	1007	-	3.90	0.0	0.0	19.8	0.0	-	0.0	1.0	
BH1	2	5.00	60 secs	-	1007	-	3.90	0.0	0.0	19.7	0.0	-	0.0	1.0	
BH1	2	5.00	90 secs	-	1007	-	3.90	0.0	0.0	19.6	0.0	-	0.0	1.0	
BH1	2	5.00	120 secs	-	1007	-	3.90	0.0	0.0	19.6	0.0	-	0.0	1.0	
BH1	2	5.00	180 secs	-	1007	-	3.90	0.0	0.0	19.5	0.0	-	0.0	1.0	
BH1	2	5.00	240 secs	-	1007	-	3.90	0.0	0.0	19.3	0.0	-	0.0	2.0	
BH1	2	5.00	300 secs	-	1007	-	3.90	0.0	0.0	19.3	0.0	-	1.0	2.0	
BH1	2	5.00	360 secs	-	1007	-	3.90	0.0	0.0	19.2	0.0	-	0.0	1.0	
BH1	2	5.00	420 secs	-	1007	-	3.90	0.0	0.0	19.1	0.0	-	0.0	1.0	
BH1	2	5.00	540 secs	-	1007	-	3.90	0.0	0.0	19.2	0.0	-	0.0	1.0	
BH1	2	5.00	600 secs	-	1007	-	3.90	0.0	0.0	19.2	0.0	-	0.0	1.0	
BH1	4		03/11/2016 13:30:00	-	-	-	-	-	-	-	-	-	-	-	
	Remarks	: Borehole o	bstructed - no mor	itoring und	lertaken.										
BH1	3	5.00	08/09/2019 11:15:00	-	1009	-0.1 _(SS)	4.02	0.0	0.0	20.4	0.0	-	0.0	1.0	
BH1	3	5.00	15 secs	-	1009	-	4.02	0.0	0.0	19.3	0.0	-	0.0	1.0	
BH1	3	5.00	30 secs	-	1009	-	4.02	0.0	0.0	19.4	0.0	-	0.0	1.0	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment I td	Compiled By	Date	Checked By	Date	Contract Ref:			
CK	18 Frogmore Road		04/11/16				371475		
	Hemel Hempstead	Contract:				Page:			
	Hertfordshire HP3 9RT		The Hop	e Project		1	of	4	AGS

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
BH1	3	5.00	60 secs	-	1009	-	4.02	0.0	0.0	19.9	0.0	-	0.0	1.0	
BH1	3	5.00	120 secs	-	1009	-	4.02	0.0	0.0	20.0	0.0	-	0.0	1.0	
BH1	3	5.00	180 secs	-	1009	-	4.02	0.0	0.0	20.1	0.0	-	0.0	1.0	
BH1	3	5.00	240 secs	-	1009	-	4.02	0.0	0.0	20.1	0.0	-	0.0	2.0	
BH1	3	5.00	300 secs	-	1009	-	4.02	0.0	0.0	20.1	0.0	-	2.0	2.0	
BH1	3	5.00	360 secs	-	1009	-	4.02	0.0	0.0	20.2	0.0	-	0.0	1.0	
BH1	3	5.00	420 secs		1009	-	4.02	0.0	0.0	20.2	0.0	-	0.0	1.0	
WS1	2	3.60	03/08/2016 13:35:00	!	1007	0.2 _(SS)	0.88	<u>+</u>	'	 			-	-	
	Remarks	s: Initial flow	of 13.4 l/hr noted f	alling to 0.2	2 l/hr after	5 minutes	. Water su	cked up int	to analyser	. Test abor	rted.				
WS1	3	3.58	08/09/2016 12:00:00	- '	1009	0.1 _(SS)	0.95	-	- '	20.5	-	-	1.0	1.0	
	Remarks	s: Initial flow	of >>> I/hr (release	e of pressu	ire heard),	falling to 1	4.2 l.hr the	en to 0.1 l/ł	hr after 10	minutes.					
WS1	3	3.58	30 secs	-	-	-	0.95	1.1	20.0	7.5	22.0	-	4.0	1.0	
WS1	3	3.58	60 secs	-	-	-	0.95	15.3	1.3	3.2	26.0	-	5.0	2.0	
WS1	3	3.58	120 secs	-	-	-	0.95	15.9	1.4	1.7	28.0	-	3.0	2.0	
WS1	3	3.58	180 secs	-	-	-	0.95	17.2	4.1	2.1	>>>	-	9.0	4.0	
WS1	3	3.58	240 secs	-	-	-	0.95	18.4	11.8	5.2	>>>	-	12.0	52.0	
WS1	3	3.58	300 secs	-	-	-	0.95	18.4	11.9	6.8	>>>	-	11.0	84.0	
WS1	3	3.58	360 secs	-	-	-	0.95	18.4	12.5	9.5	>>>	-	7.0	110.0	
WS1	3	3.58	420 secs	-	-	-	0.95	16.9	10.6	11.6	>>>	-	5.0	125.0	
WS1	3	3.58	480 secs	-	-	-	0.95	14.5	7.2	13.4	>>>	-	10.0	119.0	
WS1	3	3.58	540 secs	-	-	-	0.95	12.2	4.7	14.7	82.0	-	7.0	113.0	
WS1	3	3.58	600 secs	-	-	-	0.95	11.0	2.6	15.6	50.0	-	2.0	105.0	
WS1	3	3.58	660 secs	-	-	-	0.95	10.1	2.6	16.1	37.0	-	6.0	97.0	
WS1	3	3.58	720 secs	-	- '	-	0.95	9.3	1.4	16.4	26.0	-	4.0	88.0	
(ey: I = Initial, P	= Peak, SS =	Steady State.	Note: LEL = Lower	Explosive L	_imit = 5% v	<i></i>									
	CK Enviro	nment I tr	d <u>Cc</u>	mpiled By			Date		Chec	ked By		Da	te	Contract Ref:	
	18 Frogma	ore Road	, <u> </u>			04	i /11/16								371475
	Hemel Her Hertfor HP3	mpstead Jshire 9RT	Contract:				The H [,]	ope Proj	ect		1			Page:	2 of 4

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)		
WS1	3	3.58	780 secs	-	-	-	0.95	8.6	1.1	16.7	22.0	-	7.0	80.0		
WS1	3	3.58	840 secs	-	-	-	0.95	8.2	1.0	16.8	19.0	-	6.0	73.0		
WS1	4	3.50	03/11/2016 14:00:00	-	1018	-0.4 _(SS)	1.00	0.0	-	20.0	-	-	-	-		
ļ	Remarks	s: Initial flow	of >>> I/hr (release	e of pressu	ire heard),	then stear	dy fall to -0	.4 I/hr after	f 6 minutes	s. Strong m	iethane / h	⊣ ıydrogen sı	ulphide odr	our when pum	ping during moni	torin
WS1	4	3.50	15 secs	-	-	-	1.00	0.0	0.0	20.4	0.0	-	0.0	1.0		
WS1	4	3.50	30 secs	-	-	-	1.00	33.1	71.0	3.6	>>>	-	0.0	99.0		
WS1	4	3.50	60 secs	-	-	-	1.00	36.4	70.9	0.2	>>>	-	0.0	161.0		
WS1	4	3.50	90 secs	-	-	-	1.00	36.3	70.8	0.0	>>>	-	0.0	175.0		
WS1	4	3.50	120 secs	-	-	-	1.00	36.1	71.2	0.0	>>>	-	0.0	180.0		
WS1	4	3.50	180 secs	-	-	-	1.00	35.8	71.0	0.0	>>>	-	0.0	185.0		
WS1	4	3.50	240 secs	-	-	-	1.00	35.5	70.8	0.0	>>>	-	0.0	196.0		
WS1	4	3.50	300 secs	-	-	-	1.00	35.6	70.9	0.0	>>>	-	0.0	214.0		
WS1	4	3.50	360 secs	-	-	-	1.00	34.5	60.7	1.7	>>>	-	0.0	>>>		
WS1	4	3.50	420 secs	-	-	-	1.00	26.8	38.7	5.5	>>>	-	0.0	>>>		
WS1	4	3.50	480 secs	-	-	-	1.00	23.4	26.7	7.7	0.0	-	0.0	>>>		
WS1	4	3.50	540 secs	-	-	-	1.00	20.7	19.8	9.5	>>>	-	5.0	>>>		
WS1	4	3.50	600 secs	-	-	-	1.00	19.3	15.4	10.7	>>>	-	0.0	>>>		
WS1	4	3.50	660 secs	-	-	-	1.00	18.1	13.0	11.5	>>>	-	7.0	>>>		
WS1	4	3.50	720 secs	-	-	-	1.00	17.1	9.9	12.3	>>>	-	4.0	>>>		
WS1	4	3.50	780 secs	-	-	-	1.00	15.6	6.9	13.3	>>>	-	3.0	>>>		
WS1	4	3.50	840 secs	-	-	-	1.00	14.5	5.3	13.8	>>>	-	5.0	>>>		
WS1	4	3.50	980 secs	-	-	-	1.00	8.2	2.3	16.6	49.0	-	3.0	109.0		
WS1	4	3.50	1040 secs	-	-	-	1.00	8.8	2.7	16.2	55.0	-	5.0	112.0		
WS1	4	3.50	1100 secs	-	-	-	1.00	9.5	2.9	15.7	59.0	-	5.0	101.0		
WS1	4	3.50	1160 secs	-	-	-	1.00	9.8	2.8	15.7	55.0	-	2.0	69.0		
ey: I = Initial, P	= Peak, SS =	Steady State.	Note: LEL = Lower		_imit = 5% v	·/v.	Data			-kod Ry				Contract Ref:		
R	SK Enviro	nment Ltr	d			+				Keu by				Contract	274 475	
CK ¹	18 Frogmo	ore Road				04	/11/16								3/14/5	
	Hemel Her Hertfor HP3	mpstead Jshire 9RT	Contract:				The H	ope Proj	ect					Page:	3 of 4	

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	PID (ppm)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)	
WS1	4	3.50	1220 secs	-	-	-	1.00	9.1	2.4	16.0	49.0	-	1.0	51.0	
WS1	4	3.50	1280 secs	-	-	-	1.00	9.2	2.3	15.8	44.0	-	2.0	40.0	
WS2	2	4.53	03/08/2016 12:05:00	-	1007	-	0.18	-	-	-	-	0.0 _(SS)	-	-	
	Remarks	: Water suck	ted up into gas and	alyser. Tes	t aborted.	Basement	partly floo	ded, includ	ing corrido	or next to V	VS2.				
WS2	3	4.55	08/09/2016 12:40:00	-	1009	0.1 _(SS)	0.50	0.4	0.1	18.8	1.0	-	2.0	2.0	
	Remarks	: Initial flow of	of >>> I/hr (release	of pressu	re heard) t	hen falling	to 0.1 l/hr	after 5 mir	utes.						
WS2	3	4.55	30 secs	-	-	-	0.50	0.3	0.0	19.1	0.0	-	2.0	2.0	
WS2	3	4.55	60 secs	-	-	-	0.50	0.2	0.0	19.5	0.0	-	0.0	2.0	
WS2	3	4.55	120 secs	-	-	-	0.50	0.0	0.0	20.2	0.0	-	0.0	2.0	
WS2	3	4.55	180 secs	-	-	-	0.50	0.0	0.0	20.5	0.0	-	0.0	1.0	
WS2	3	4.55	240 secs	-	-	-	0.50	0.0	0.0	20.7	0.0	-	1.0	1.0	
WS2	3	4.55	300 secs	-	-	-	0.50	0.0	0.0	20.8	0.0	-	1.0	2.0	
WS2	3	4.55	360 secs	-	-	-	0.50	0.0	0.0	20.7	0.0	-	0.0	1.0	
WS2	4	4.56	03/11/2016 13:45:00	-	1019	-1.0 _(SS)	0.37	0.0	-	20.3	-	-	-	-	
	Remarks	: Initial flow of	of 11.3 l/hr (release	e of pressu	re heard),	falling to -	1.0 l/hr afte	er 2 minute	S.						
WS2	4	4.58	15 secs	-	-	-	0.39	1.8	-	17.8	0.0	-	0.0	1.0	
WS2	4	4.58	30 secs	-	-	-	0.39	1.9	-	17.1	-	-	-	1.0	
WS2	4	4.58	60 secs	-	-	-	0.39	1.9	-	17.0	-	-	-	-	
	Remarks	: Water suck	ked up into gas mo	nitor - test	aborted.										
	- Dook SS - 1	Stoody State	Noto: El _ L ower		imit - 5% v	h.									
ι – ππιαι, Γ	i can, 00 - 1	Sidady Olaie.				/ • -	Date		Chec	ked By		Dat	ie I	Contract Ref:	
R:	SK Enviro 18 Froama	nment Lto pre Road				04	/11/16		Oneo			Da			371475
	Hemel He Hertford HP3 9	mpstead dshire	Contract:				The Ho	ope Proj	ect					Page:	4 of 4

	Weather	Ground Conditions	Wind Conditions	<u>Air Temperature</u> (°C)	Equipment Used & Remarks
Round 1 Round 2 Round 3 Round 4	Dry and Sunnry Dry and Sunnry Dry, sunny, hot Dry, sunny, cool	Dry Dry Dry Dry	Light Light Light Light	- - -	Dipmeter Dipmeter + GA2000 Dipmeter + GA2000 Dipmeter + GA2000

Exploratory Position ID	Pipe Ref	Pipe Diameter	Monitoring Round / Test Number	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring	Water Depth (mbgl)	Remarks
BH1	1	50	1/1	5.00	5.00	1.40 to 5.00	20/07/2016 09:50	3.90	Operator: CSiberry, General Remarks: Borehole developed.
BH1	1	50	2/1	5.00	5.00	1.40 to 5.00	03/08/2016 11:05	3.90	Operator: CSiberry
BH1	1	50	3 / 1	5.00	4.97	1.40 to 5.00	08/09/2016 11:15	4.02	Operator: CSiberry
BH1	1	50	4 / 1	5.00	NDA	1.40 to 5.00	03/11/2016 13:30		Operator: CSiberry, General Remarks: Borehole obstructed - no monitoring undertaken.
WS1	1	50	2 / 1	3.60	3.60	1.00 to 3.60	03/08/2016 13:35	0.88	Operator: CSiberry, Weather: Damp in bin store., Surface Conditions: Damp, General Remarks: Groundwater noted to be black and have a very strong sewage odour. Water
									sample taken at 0.88m. Borehole developed.
WS1	1	50	3 / 1	3.60	3.60	1.00 to 3.60	08/09/2016 12:00	0.95	Operator: CSiberry, Weather: Damp in bin store., Surface Conditions: Damp
WS1	1	50	4 / 1	3.60	3.50	1.00 to 3.60	03/11/2016 14:00	1.00	Operator: CSiberry, Weather: Damp in bin store., Surface Conditions: Damp
WS2	1	50	2 / 1	4.55	4.53	0.55 to 5.00	03/08/2016 12:05	0.18	Operator: CSiberry, Weather: Dry, sunny, Surface Conditions: Flooded, General Remarks: Basement partly flooded, including corridor next to WS2. Borehole
									developed.
WS2	1	50	3 / 1	4.55	4.54	0.55 to 5.00	08/09/2016 12:40	0.48	Operator: CSiberry, Weather: Dry, sunny, Surface Conditions: Damp
WS2	1	50	4 / 1	4.55	4.56	0.55 to 5.00	03/11/2016 13:45	0.37	Operator: CSiberry, Weather: Dry, sunny, Surface Conditions: Damp
ev: NDA denote	es 'no dat	a available							

 RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT
 Compiled By
 Date
 Contract Ref:

 Set Contract:

GINT_LIBRARY_V8_06.GLB : E - WATER LEVEL - GENERAL - SMALL : 371475 THE HOPE PROJECT.GPJ : 04/11/16 10:49 : CS1 :

APPENDIX J CERTIFICATES OF GEOTECHNICAL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04334 1

Date: 27 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager:CProject Name:TProject Ref:3Order No:NDate Samples Received:14Date Instructions Received:14Date Analysis Completed:24

Claire Siberry The Hope Project, Camden 371475 N/A 14/07/16 14/07/16 26/07/16

Prepared by:

Danielle Brierley Administrative Assistant

Approved by:

GWaller

Gill Walker Laboratory Manager

Client Project Name: The Hope Project, Camden

_					Client Pro	ject Ref: 37	1475		
Lab Sample ID	16/04334/1	16/04334/2	16/04334/3	16/04334/4	16/04334/5	16/04334/6	16/04334/7		
Client Sample No	6	11	16	22	29	34	1		
Client Sample ID	BH1	BH1	BH1	BH1	BH1	BH1	BH1		
Depth to Top	5.50	9.00	13.00	17.50	22.95	26.50	1.40		
Depth To Bottom									
Date Sampled									Ŧ
Sample Type	Soil - D	Soil - D	Solid	Soil - D	Soil - D	Soil - D	Soil - D		od re
Sample Matrix Code	5	3	7	5	5	5	3	Units	Meth
% Stones >10mm _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	A-T-044
pH BRE _D ^{M#}	7.84	8.20	8.31	8.43	8.52	9.23	8.02	рН	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	-	-	-	-	-	-	5.68	mg/l	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1)D ^{M#}	-	-	-	-	-	-	8	mg/l	A-T-026s
Nitrate BRE, SO4 equiv. (water sol $2:1)_D$	-	-	-	-	-	-	0.7	mg/l	A-T-026s
Sulphate BRE (water sol 2:1) _D ^{M#}	2610	719	160	644	494	99	116	mg/l	A-T-026s
Sulphate BRE (acid sol) _D ^{M#}	-	-	-	-	-	-	0.05	% w/w	A-T-028s
Sulphur BRE (total)₀	-	-	-	-	-	-	0.02	% w/w	A-T-024s
Magnesium BRE (water sol 2:1) _D	-	-	-	-	-	-	25	mg/l	A-T-SOLMETS

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04541

1

Date: 29 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 25/07/16 25/07/16 29/07/16

Prepared by:

Nanshal

Melanie Marshall Laboratory Coordinator Approved by:

Georgia King Client Service Manager

Page 1 of 3

Client Project Name: The Hope Project, Camden

							-
Lab Sample ID	16/04541/1	16/04541/2	16/04541/3				
Client Sample No	1	5	3				
Client Sample ID	WS1	WS1	WS2				
Depth to Top	0.70	2.30	2.00				
Depth To Bottom		2.40					
Date Sampled							*
Sample Type	Soil - D	Soil - D	Soil - D			<i>"</i>	od re
Sample Matrix Code	5	6	3			Unit	Meth
% Stones >10mm _A [#]	<0.1	<0.1	<0.1			% w/w	A-T-044
pH BRE _D ^{M#}	7.97	7.76	7.81			рН	A-T-031s
Sulphate BRE (water sol 2:1) _D ^{M#}	1490	2490	2640			mg/l	A-T-026s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **05/08/2016 14:03:17**.

Testing reported after this date is not covered by this Verification Certificate.

Dimitris Xirouchakis

Approved Signatory Dimitris Xirouchakis (Associate Laboratory Director)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

Ø		Contract:	Job No:
<u> <u>Colo</u></u>	STRUCTURAL SOILS LTD	The Hope Project	583462

STRUCTURAL SOILS LTD

TEST REPORT

Report No.	583462-01 (00)				1774
Date	08-August-201	6	Contract	The Hope	Project	
Client Address	RSK 18 Frogmore F Apsley Hemel Hempst Hertfordshire HP3 9RT	Rd tead				
For the Atte	ntion of	Claire Sibe	erry			
Samples su Testing Star Testing Con	bmitted by clien ted npleted	t	12-July-201 14-July-201 27-July-201	6 6 6	Client Reference Client Order No. Instruction Type	371475 n/a Written
Tests marke Laboratory.	ed 'Not UKAS A	ccredited' in	this report a	re not includ	ed in the UKAS Accr	reditation Schedule for our
UKAS Accre	edited Tests					
* This clause o	1.01 1.03 1.10 1.13a 5.04 f BS1377 is no long	Moisture C Liquid Limi Particle Siz Particle Siz 1990,claus Undrained (definitive n	content (oven it (one point r ze Distributio ze Distributio se 9.4 shear streng method) 100	drying meth nethod) & F n wet sieve i n sedimenta th triaxial co mm diamete	nod) BS1377:Part 2:1 Plastic Limit BS1377: method BS1377:Part tion pipette method B ompression without p or specimens BS1377	1990:clause 3.2 (superseded)* Part 2:1990,clause 4.4/5.3 2:1990,clause 9.2 3S1377:Part 2: ore pressure measurement 7:Part 7:1990,clause 8.4
Please Note: Test were un	Remaining samp dertaken on samp	oles will be ret oles 'as recei	tained for a pe ved' unless otl	eriod of one m herwise stated	ionth from today and w d.	ill then be disposed of .
Opinions and	interpretations e	xpressed in t uctural Soils Lte	his report are d 18 Frogmore F	outside the so Rd Hemel Hem	cope of accreditation fo pstead HP3 9RT Tel.0144	or this laboratory. 42 416661

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	% <425um	Description of Sample	
BH1	2	D	1.60	27					Brown CLAY	
BH1	3	D	2.95	31					Brown slightly sandy CLAY	
BH1	4	D	3.50	32	70	27	43	98	Brown slightly sandy CLAY with occasional gypsum	
BH1	5	D	4.95	30	60	24	36	99	Brown slightly sandy CLAY	
BH1	7	D	6.00	30					Brown slightly sandy CLAY	
BH1	8	D	7.00	35					Brown slightly gravelly slightly sandy CLAY	
BH1	10	D	8.50	29					Brown slightly sandy CLAY	
BH1	12	D	10.00	29	76	31	45	100	Brown CLAY	
Contract:								Contract Ref:		
	STF S(RUCT OILS	URAL LTD	-				The Hope Project 583462		

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF CLASSIFICATION - A4L : 583462 THE HOPE PROJECT RSK 371475.GPJ : 27/07/16 07:11 : AF3 :

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
BH1	14	D	11.50	29					Dark grey CLAY
BH1	15	D	12.00	30					Dark brown CLAY
BH1	17	D	13.95	30					Grey CLAY
BH1	19	D	15.00	26					Dark brown CLAY
BH1	20	D	16.00	28	78	33	45	100	Dark brown slightly sandy CLAY
BH1	21	D	16.95	24					Dark grey slightly sandy CLAY
BH1	24	D	19.00	23					Dark brown slightly sandy CLAY
BH1	26	D	20.50	22					Brown slightly sandy CLAY
	STF S(RUCT	URAL LTD	Contra	act:				Contract Ref: The Hope Project 583462

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF CLASSIFICATION - A4L : 583462 THE HOPE PROJECT RSK 371475.GPJ : 27/07/16 07:11 : AF3 :

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

BH128D22.0027783048100Dark brown CLAYBH131D4.0022.001.011.011.011.011.011.01BH131D24.00221.011.011.01Dark brown CLAYBH133D25.952.415.612.513.111.00Dark brown CLAYBH133D25.952.445.612.513.111.00Brown mettled grey CLAYBH136D28.002.445.612.513.111.00Brown mettled grey CLAYBH136D28.002.445.612.513.111.00Brown mettled grey CLAYBH136D28.002.445.612.513.111.00Brown mettled grey CLAYBH136D28.002.445.612.513.111.00Brown mettled grey CLAYBH137D28.002.445.612.413.211.00Grey mettled reddish brown CLAYBH13.71D2.8552.015.612.413.211.00Grey mettled reddish brown CLAYBH13.91D2.9.551.911.011.011.01Grey mettled reddish brown CLAYBH13.91D2.9.551.911.011.011.01Grey mettled reddish brown CLAYBH13.91D2.9.551.911.011.01<	xploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	% <425um	Description of Sample
BH1 28 D 22.00 27 78 30 48 100 Dark brown CLAY IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					%	%	%			
Image: Marking Markin	BH1	28	D	22.00	27	78	30	48	100	Dark brown CLAY
BH1 31 D 24.00 22 C C Dark brown CLAY a I I I I I I I I Dark brown CLAY BH1 33 D 25.95 24 56 25 31 100 Brown mottled grey CLAY BH1 36 D 28.00 24 I I I I I BH1 36 D 28.00 24 I I I I I I I BH1 36 D 28.00 24 I I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII										
AAAAAAAAAABH133D25.9524562531100Brown mottled grey CLAYBH136D28.00241111BH136D28.0024111Grey mottled reddish brown CLAYBH137D28.9520562432100Grey mottled reddish brown CLAYBH139D29.5019111111BH139D29.5019111111III <t< td=""><td>BH1</td><td>31</td><td>D</td><td>24.00</td><td>22</td><td></td><td></td><td></td><td></td><td>Dark brown CLAY</td></t<>	BH1	31	D	24.00	22					Dark brown CLAY
BH1 33 D 25.95 24 56 25 31 100 Brown mottled grey CLAY Image: Second										
AndAndAndAndAndAndAndAndAndBH136D28.0024CCGrey mottled reddish brown CLAYBH137D28.9520562432100Grey mottled reddish brown CLAYBH137D28.9520562432100Grey mottled reddish brown CLAYBH139D29.5019CCCGrey mottled reddish brown CLAYBH139D29.5019CCCGrey mottled reddish brown CLAYBH1SSSSSSSSBH1SSSSSSSSBH1SSS <td>BH1</td> <td>33</td> <td>D</td> <td>25.95</td> <td>24</td> <td>56</td> <td>25</td> <td>31</td> <td>100</td> <td>Brown mottled grey CLAY</td>	BH1	33	D	25.95	24	56	25	31	100	Brown mottled grey CLAY
Image: Marking MarMarking Marking Ma	BH1	36	D	28.00	24					Grey mottled reddish brown CLAY
BH1 37 D 28.95 20 56 24 32 100 Grey mottled reddish brown CLAY Image: Image										
Image: Second system Image: Second system <th< td=""><td>BH1</td><td>37</td><td>D</td><td>28.95</td><td>20</td><td>56</td><td>24</td><td>32</td><td>100</td><td>Grey mottled reddish brown CLAY</td></th<>	BH1	37	D	28.95	20	56	24	32	100	Grey mottled reddish brown CLAY
Image: Constraint of the second sec	BH1	39	D	29.50	19					Grey mottled reddish brown CLAY
	<u>a</u>				Contra	act:				Contract Ref:
Contract: Contract Ref:		STRUCTURAL SOILS LTD			The Hope Project 583462					

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF CLASSIFICATION - A4L : 583462 THE HOPE PROJECT RSK 371475.GPJ : 27/07/16 07:11 : AF3 :

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

ploratory sition ID	Sample Ref	Sample Type	Depth (m)	Moisture Content	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample
WS1	2	D	1.00	25	73	32	41	98	Brown slightly sandy CLAY with much gypsum
WS1	4	D	2.00	26					Brown slightly sandy CLAY with much gypsum
WS1	6	D	2.75	30	70	28	42	98	Brown slightly sandy CLAY
WS2	2	D	1.60	30					Brown slightly sandy CLAY
WS2	4	D	2.65	28	75	30	45	100	Brown slightly sandy CLAY
WS2	6	D	3.55	28					Brown CLAY
WS2	8	D	4.80	28	75	26	49	100	Dark brown slightly sandy CLAY
				Contra	act:	<u> </u>			Contract Ref:
	STF S(RUCT	URAL LTD	-					The Hope Project 583462

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF CLASSIFICATION - A4L : 583462 THE HOPE PROJECT RSK 371475.GPJ : 05/08/16 13:04 : SC1 :

583462 01 (00) 7 of 18

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PrjVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - PSD - A4P | 563462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 07:12 | AF3 |

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PrjVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - PSD - A4P | 563462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 07:12 | AF3 |

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 1 Sample Type: **U** Depth (m): 2.50

Description : Brown slightly sandy CLAY

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PryVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - TRIAXIAL - BS - A4P | 583462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262333, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 07:14 | AF3 |

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 2 Sample Type: U Depth (m): 4.50

Description : Brown slightly sandy CLAY with occasional gypsum

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PryVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - TRIAXIAL - BS - A4P | 583462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262333, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 07:15 | AF3 |

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 3 Sample Type: U Depth (m): 7.50

Description : Brown slightly sandy CLAY

AGS

HP3 9RT

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 5 Sample Type: **U** Depth (m): 13.50

Description : Brown slightly sandy CLAY

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 6 Sample Type: U Depth (m): 16.50

Description : Dark grey slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.62		
	Height	(mm)	208.67		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m ³)	2.02		
	Dry Density	(Mg/m ³)	1.63		
TEST DETAILS	Membrane Thickness	(mm)	0.23		
	Rate of Axial Displacement	(%/min)	0.79		
	Cell Pressure	(kPa)	330		
	Membrane Correction	(kPa)	0.26		
	Corrected Deviator Stress	(kPa)	685		
	Undrained Shear Strength	(kPa)	342		
	Strain at Failure	(%)	4.3		
	Mode of Failure		Brittle		

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 7 Sample Type: **U** Depth (m): 19.50

Description : Dark grey slightly sandy CLAY

AGS

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 8 Sample Type: U Depth (m): 22.50

Description : Dark greyish brown slightly sandy CLAY

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PrjVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - TRIAXIAL - BS - A4P | 583462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262333, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 14:22 | AF3 |

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1 Sample Ref: 9 Sample Type: U Depth (m): 25.50

Description : Brown mottled grey slightly sandy CLAY

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_012 PryVersion: v8_06 - Core+Logs+Geotech Lab-Hemel - 003 | Graph L - TRIAXIAL - BS - A4P | 583462 THE HOPE PROJECT RSK 371475.GPJ - v8_06. Structural Soils Ltd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tei: 01442-262333, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 27/07/16 - 07:17 | AF3 |

APPENDIX K LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 16/03976 1

Date: 06 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 29/06/16 29/06/16 05/07/16

Prepared by:

PA

Danielle Brierley Administrative Assistant

Approved by:

Lianne Bromiley Senior Client Manager

Client Project Name: The Hope Project, Camden

Client Pr	oiect Ref:	371475
Onentri	0,000,000,000	011410

Lab Sample ID	16/03976/1					
Client Sample No	1					
Client Sample ID	BH1					
Depth to Top	1.10					
Depth To Bottom						
Date Sampled	27-Jun-16					Į.
Sample Type	Soil - ES					od re
Sample Matrix Code	6A				Units	Meth
% Stones >10mm _A [#]	3.6				% w/w	A-T-044
Organic matter ^{M#}	4.8				% w/w	A-T-032 OM
Arsenic _D ^{M#}	13				mg/kg	A-T-024s
Cadmium _p ^{M#}	1.2				mg/kg	A-T-024s
Copper _D ^{M#}	115				mg/kg	A-T-024s
Chromium _p ^{M#}	16				mg/kg	A-T-024s
Lead _D ^{M#}	300				mg/kg	A-T-024s
Mercury _D	0.69				mg/kg	A-T-024s
Nickel ^{M#}	22				mg/kg	A-T-024s
Selenium _D	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	84				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Barrier and State and						
Lab Sample ID	16/03976/1					
Client Sample No	1					
Client Sample ID	BH1					
Depth to Top	1.10					
Depth To Bottom						
Date Sampled	27-Jun-16					af.
Sample Type	Soil - ES					od re
Sample Matrix Code	6A				Units	Meth
Asbestos in Soil (inc. matrix)						
Asbestos in soil _A [#]	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test?p	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/03976/1						
Client Sample No	1						
Client Sample ID	BH1					-	
Depth to Top	1.10						Method ref
Depth To Bottom							
Date Sampled	27-Jun-16					Units	
Sample Type	Soil - ES						
Sample Matrix Code	6A						
PAH 16							
Acenaphthene _A ^{M#}	<0.01					mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01					mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02					mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04					mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04					mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05					mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05					mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07					mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06					mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04					mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08					mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01					mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03					mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03					mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03					mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07					mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08					mg/kg	A-T-019s
TPH Banded 1 with ID							
>C6-C8 _A #	<10					mg/kg	A-T-007s
>C8-C10 _A #	<10					mg/kg	A-T-007s
>C10-C12 _A #	<10					mg/kg	A-T-007s
>C12-C16 _A [#]	<10					mg/kg	A-T-007s
>C16-C21 _A #	<10					mg/kg	A-T-007s
>C21-C40 _A	<10					mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10					mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A						A-T-007s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04010 1

Date: 07 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 30/06/16 30/06/16 07/07/16

Prepared by:

Kate Ellison Administrative Assistant

Approved by:

lock

lain Haslock Analytical Consultant

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04010/1	16/04010/2					
Client Sample No	1	1					
Client Sample ID	TP2	TP4					
Depth to Top	0.50	0.60					
Depth To Bottom							
Date Sampled	28-Jun-16	28-Jun-16					*
Sample Type	Soil - ES	Soil - ES					od re
Sample Matrix Code	4AB	5AB				Units	Meth
% Stones >10mm _A #	3.2	22.3				% w/w	A-T-044
Organic matter _D ^{M#}	-	2.8				% w/w	A-T-032 OM
Arsenic ^{D^{M#}}	19	12				mg/kg	A-T-024s
Cadmium _p ^{M#}	1.5	1.5				mg/kg	A-T-024s
Copper ^{_M#}	75	45				mg/kg	A-T-024s
Chromium _D ^{M#}	16	19				mg/kg	A-T-024s
Lead _D ^{M#}	501	308				mg/kg	A-T-024s
Mercury _D	1.19	0.99				mg/kg	A-T-024s
Nickel ^{D^{M#}}	22	19				mg/kg	A-T-024s
Selenium _D	<1	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	60	51				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04010/1	16/04010/2				_	
Client Sample No	1	1					
Client Sample ID	TP2	TP4					
Depth to Top	0.50	0.60					
Depth To Bottom							
Date Sampled	28-Jun-16	28-Jun-16				Units	od ref
Sample Type	Soil - ES	Soil - ES					
Sample Matrix Code	4AB	5AB					Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04010/1	16/04010/2					
Client Sample No	1	1					
Client Sample ID	TP2	TP4				-	
Depth to Top	0.50	0.60					
Depth To Bottom							
Date Sampled	28-Jun-16	28-Jun-16					
Sample Type	Soil - ES	Soil - ES					Method re
Sample Matrix Code	4AB	5AB				Units	
PAH 16							
Acenaphthene _A ^{M#}	<0.01	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	0.06				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	0.07				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.09				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.06				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04				mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08	0.12				mg/kg	A-T-019s
Fluorene ^{M#}	<0.01	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	0.06				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	0.05				mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	0.09				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	0.68				mg/kg	A-T-019s
TPH Banded 1 with ID							
>C6-C8 _A #	<10	<10				mg/kg	A-T-007s
>C8-C10 _A #	<10	<10				mg/kg	A-T-007s
>C10-C12 _A #	<10	<10				mg/kg	A-T-007s
>C12-C16 _A #	<10	<10				mg/kg	A-T-007s
>C16-C21 _A #	<10	<10				mg/kg	A-T-007s
>C21-C40 _A	<10	<10				mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A	N/A					A-T-007s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04078

1

Date: 14 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 04/07/16 04/07/16 12/07/16

Prepared by:

Danielle Brierley Administrative Assistant

Georgia King Client Service Manager

Client Project Name: The Hope Project, Camden

Client	Proie	ect R	ef: :	37147	'5
Ollent	FIUIG		CI. (5/ 14/	5

Lab Sample ID	16/04078/1	16/04078/2	16/04078/3				
Client Sample No	1	1	1				
Client Sample ID	TP5	TP6	TP9				
Depth to Top	0.50	0.80	0.40				
Depth To Bottom							
Date Sampled	30-Jun-16	30-Jun-16	29-Jun-16				Į
Sample Type	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	4A	6A	4A			Units	Meth
% Stones >10mm _A [#]	3.4	<0.1	16.7			% w/w	A-T-044
Organic matter ^{D##}	7.4	0.6	-			% w/w	A-T-032 OM
Arsenic ^{D^{M#}}	20	11	6			mg/kg	A-T-024s
Cadmium _p ^{M#}	1.8	2.2	1.2			mg/kg	A-T-024s
Copper ^{_M#}	84	24	22			mg/kg	A-T-024s
Chromium _D ^{M#}	22	30	20			mg/kg	A-T-024s
Lead _D ^{M#}	928	68	73			mg/kg	A-T-024s
Mercury _D	1.49	<0.17	<0.17			mg/kg	A-T-024s
Nickel ^{D^{M#}}	20	32	17			mg/kg	A-T-024s
Selenium _D	<1	<1	<1			mg/kg	A-T-024s
Zinc _D ^{M#}	74	58	38			mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04078/1	16/04078/2	16/04078/3				
Client Sample No	1	1	1				
Client Sample ID	TP5	TP6	TP9				
Depth to Top	0.50	0.80	0.40				
Depth To Bottom							
Date Sampled	30-Jun-16	30-Jun-16	29-Jun-16				*
Sample Type	Soil - ES	Soil - ES	Soil - ES			<i>"</i>	od re
Sample Matrix Code	4A	6A	4A			Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A [#]	NAD	NAD	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A				Gravimetry

Client Project Name: The Hope Project, Camden

-							
Lab Sample ID	16/04078/1	16/04078/2	16/04078/3				
Client Sample No	1	1	1				
Client Sample ID	TP5	TP6	TP9				
Depth to Top	0.50	0.80	0.40				
Depth To Bottom							
Date Sampled	30-Jun-16	30-Jun-16	29-Jun-16				_
Sample Type	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	4A	6A	4A			Units	Metho
PAH 16							
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.08	<0.04	<0.04			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.10	<0.04	<0.04			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.12	<0.05	<0.05			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	0.08	<0.06	<0.06			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene ^{M#}	<0.08	<0.08	<0.08			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.06	<0.03	<0.03			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.44	<0.08	<0.08			mg/kg	A-T-019s
TPH Banded 1 with ID							
>C6-C8 _A #	<10	-	<10			mg/kg	A-T-007s
>C8-C10 _A #	<10	-	<10			mg/kg	A-T-007s
>C10-C12 _A #	<10	-	<10			mg/kg	A-T-007s
>C12-C16 _A #	<10	-	<10			mg/kg	A-T-007s
>C16-C21 _A #	<10	-	<10			mg/kg	A-T-007s
>C21-C40 _A	<10	-	<10			mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10	-	<10			mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A	-	N/A				A-T-007s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04078/1	16/04078/2	16/04078/3				
Client Sample No	1	1	1				
Client Sample ID	TP5	TP6	TP9				
Depth to Top	0.50	0.80	0.40				
Depth To Bottom							
Date Sampled	30-Jun-16	30-Jun-16	29-Jun-16				
Sample Type	Soil - ES	Soil - ES	Soil - ES				od ref
Sample Matrix Code	4A	6A	4A			Units	Metho
voc							
Dichlorodifluoromethane _A #	-	-	<1			µg/kg	A-T-006s
Chloromethane _A #	-	-	<10			µg/kg	A-T-006s
Vinyl Chloride _A #	-	-	<0.2			µg/kg	A-T-006s
Bromomethane _A #	-	-	<1			µg/kg	A-T-006s
Chloroethane _A [#]	-	-	<1			µg/kg	A-T-006s
Trichlorofluoromethane _A #	-	-	<1			µg/kg	A-T-006s
1,1-Dichloroethene _A [#]	-	-	<1			µg/kg	A-T-006s
Carbon Disulphide _A #	-	-	<1			µg/kg	A-T-006s
Dichloromethane A	-	-	<5			µg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	<1			µg/kg	A-T-006s
1,1-Dichloroethane _A [#]	-	-	<1			µg/kg	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	<1			µg/kg	A-T-006s
2,2-Dichloropropane _A [#]	-	-	<1			µg/kg	A-T-006s
Bromochloromethane _A #	-	-	<5			µg/kg	A-T-006s
Chloroform _A [#]	-	-	<1			µg/kg	A-T-006s
1,1,1-Trichloroethane _A [#]	-	-	<1			µg/kg	A-T-006s
1,1-Dichloropropene _A [#]	-	-	<1			µg/kg	A-T-006s
Carbon Tetrachloride _A [#]	-	-	<1			µg/kg	A-T-006s
1,2-Dichloroethane _A [#]	-	-	<2			µg/kg	A-T-006s
Benzene " [#]	-	-	<1			µg/kg	A-T-006s
Trichloroethene _A #	-	-	<1			µg/kg	A-T-006s
1,2-Dichloropropane _A [#]	-	-	<1			µg/kg	A-T-006s
Dibromomethane _A [#]	-	-	<1			µg/kg	A-T-006s
Bromodichloromethane _A [#]	-	-	<10			µg/kg	A-T-006s
cis 1,3-Dichloropropene _A [#]	-	-	<1			µg/kg	A-T-006s
Toluene " [#]	-	-	<1			µg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	<1			µg/kg	A-T-006s
1,1,2-Trichloroethane _A [#]	-	-	<1			µg/kg	A-T-006s
1,3-Dichloropropane _A [#]	-	-	<1			µg/kg	A-T-006s
Tetrachloroethene _A #	-	-	<1			µg/kg	A-T-006s
Dibromochloromethane _A #	-	-	<3			µg/kg	A-T-006s
1,2-Dibromoethane _A #	-	-	<1			µg/kg	A-T-006s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04078/1	16/04078/2	16/04078/3				
Client Sample No	1	1	1				
Client Sample ID	TP5	TP6	TP9				
Depth to Top	0.50	0.80	0.40				
Depth To Bottom							
Date Sampled	30-Jun-16	30-Jun-16	29-Jun-16				f
Sample Type	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	4A	6A	4 A			Units	Meth
Chlorobenzene _A #	-	-	<1			µg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	<1			µg/kg	A-T-006s
Ethylbenzene _A #	-	-	<1			µg/kg	A-T-006s
m & p Xylene _A #	-	-	<1			µg/kg	A-T-006s
o-Xylene _A #	-	-	<1			µg/kg	A-T-006s
Styrene _A [#]	-	-	<1			µg/kg	A-T-006s
Bromoform _A [#]	-	-	<1			µg/kg	A-T-006s
lsopropylbenzene _A [#]	-	-	<1			µg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	<1			µg/kg	A-T-006s
1,2,3-Trichloropropane _A [#]	-	-	<1			µg/kg	A-T-006s
Bromobenzene _A [#]	-	-	<1			µg/kg	A-T-006s
n-Propylbenzene _A #	-	-	<1			µg/kg	A-T-006s
2-Chlorotoluene _A #	-	-	<1			µg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	<1			µg/kg	A-T-006s
4-Chlorotoluene _A #	-	-	<1			µg/kg	A-T-006s
tert-Butylbenzene _A [#]	-	-	<2			µg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	<1			µg/kg	A-T-006s
sec-Butylbenzene _A #	-	-	<1			µg/kg	A-T-006s
4-Isopropyltoluene _A #	-	-	<1			µg/kg	A-T-006s
1,3-Dichlorobenzene _A	-	-	<1			µg/kg	A-T-006s
1,4-Dichlorobenzene _A #	-	-	<1			µg/kg	A-T-006s
n-Butylbenzene _A #	-	-	<1			µg/kg	A-T-006s
1,2-Dichlorobenzene _A [#]	-	-	<1			µg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	-	-	<2			µg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	<3			µg/kg	A-T-006s
Hexachlorobutadiene _A #	-	-	<1			µg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	<3			µg/kg	A-T-006s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04167 1

Date: 20 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 07/07/16 07/07/16 15/07/16

Prepared by:

Kate Ellison Administrative Assistant

Lianne Bromiley Senior Client Manager

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04167/1					
Client Sample No	1					
Client Sample ID	TP7					
Depth to Top	0.35					
Depth To Bottom						
Date Sampled	05-Jul-16					ł
Sample Type	Soil - ES					od re
Sample Matrix Code	6A				Units	Meth
% Stones >10mm _A [#]	6.6				% w/w	A-T-044
Organic matter ^{M#}	9.8				% w/w	A-T-032 OM
Arsenic _D ^{M#}	9				mg/kg	A-T-024s
Cadmium _D ^{M#}	2.1				mg/kg	A-T-024s
Copper _D ^{M#}	39				mg/kg	A-T-024s
Chromium _D ^{M#}	30				mg/kg	A-T-024s
Lead _D ^{M#}	218				mg/kg	A-T-024s
Mercury _D	0.37				mg/kg	A-T-024s
Nickel ^{M#}	24				mg/kg	A-T-024s
Selenium	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	70				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04167/1					
Client Sample No	1					
Client Sample ID	TP7					
Depth to Top	0.35					
Depth To Bottom						
Date Sampled	05-Jul-16					¥
Sample Type	Soil - ES				<i>"</i>	od re
Sample Matrix Code	6A				Units	Meth
Asbestos in Soil (inc. matrix)						
Asbestos in soil _A [#]	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04167/1					
Client Sample No	1					
Client Sample ID	TP7					
Depth to Top	0.35					
Depth To Bottom						
Date Sampled	05-Jul-16					
Sample Type	Soil - ES					od ref
Sample Matrix Code	6A				Units	Metho
PAH 16						
Acenaphthene _A ^{M#}	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.09				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.12				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.06				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	0.10				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.38				mg/kg	A-T-019s
TPH Banded 1 with ID						
>C6-C8 _A #	<10				mg/kg	A-T-007s
>C8-C10 _A #	<10				mg/kg	A-T-007s
>C10-C12 _A #	<10				mg/kg	A-T-007s
>C12-C16 _A [#]	<10				mg/kg	A-T-007s
>C16-C21 _A #	<10				mg/kg	A-T-007s
>C21-C40 _A	<10				mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A					A-T-007s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04207 1

Date: 20 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 08/07/16 08/07/16 20/07/16

Prepared by:

Kate Ellison Administrative Assistant

GWaller

Gill Walker Laboratory Manager

Client Project Name: The Hope Project, Camden

Client Pro	iect Ref	371475
Onentirio	jeet nen	571475

Lab Sample ID	16/04207/1					
Client Sample No	1					
Client Sample ID	TP13a					
Depth to Top	0.30					
Depth To Bottom						
Date Sampled	06-Jul-16					¥.
Sample Type	Soil - ES					od re
Sample Matrix Code	5AB				Units	Meth
% Stones >10mm _A [#]	0.8				% w/w	A-T-044
Organic matter ^{M#}	0.8				% w/w	A-T-032 OM
Arsenic _D ^{M#}	9				mg/kg	A-T-024s
Cadmium _p ^{M#}	2.3				mg/kg	A-T-024s
Copper _D ^{M#}	25				mg/kg	A-T-024s
Chromium _D ^{M#}	33				mg/kg	A-T-024s
Lead _D ^{M#}	110				mg/kg	A-T-024s
Mercury _D	<0.17				mg/kg	A-T-024s
Nickel ^{D^{M#}}	31				mg/kg	A-T-024s
Selenium _D	<1				mg/kg	A-T-024s
Zinc _o ^{M#}	62				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04207/1					
Client Sample No	1					
Client Sample ID	TP13a					
Depth to Top	0.30					
Depth To Bottom						
Date Sampled	06-Jul-16					¥
Sample Type	Soil - ES				<i>"</i>	od re
Sample Matrix Code	5AB				Unit	Meth
Asbestos in Soil (inc. matrix)						
Asbestos in soil _A [#]	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04207/1					
Client Sample No	1					
Client Sample ID	TP13a					
Depth to Top	0.30					
Depth To Bottom						
Date Sampled	06-Jul-16					-
Sample Type	Soil - ES					od ref
Sample Matrix Code	5AB				Units	Metho
PAH 16						
Acenaphthene _A ^{M#}	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07				mg/kg	A-T-019s
Chrysene ^{A^{M#}}	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08				mg/kg	A-T-019s
TPH Banded 1 with ID						
>C6-C8 _A #	<10				mg/kg	A-T-007s
>C8-C10 _A #	<10				mg/kg	A-T-007s
>C10-C12 _A #	<10				mg/kg	A-T-007s
>C12-C16 _A #	<10				mg/kg	A-T-007s
>C16-C21 _A #	<10				mg/kg	A-T-007s
>C21-C40 _A	<10				mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A					A-T-007s

Client Project Name: The Hope Project, Camden

-						
Lab Sample ID	16/04207/1					
Client Sample No	1					
Client Sample ID	TP13a					
Depth to Top	0.30					
Depth To Bottom					-	
Date Sampled	06-Jul-16				-	
Sample Type	Soil - ES					od ref
Sample Matrix Code	5AB				Jnits	Aetho
voc						
Dichlorodifluoromethane _A #	<1				µg/kg	A-T-006s
Chloromethane _A #	<10				µg/kg	A-T-006s
Vinyl Chloride _A [#]	<0.2				µg/kg	A-T-006s
Bromomethane _A #	<1				µg/kg	A-T-006s
Chloroethane _A [#]	<1				µg/kg	A-T-006s
Trichlorofluoromethane _A [#]	<1				µg/kg	A-T-006s
1,1-Dichloroethene _A [#]	<1				μg/kg	A-T-006s
Carbon Disulphide _A [#]	<1				μg/kg	A-T-006s
Dichloromethane A	<5				µg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	<1				µg/kg	A-T-006s
1,1-Dichloroethane _A [#]	<1				µg/kg	A-T-006s
cis 1,2-Dichloroethene _A #	<1				µg/kg	A-T-006s
2,2-Dichloropropane _A [#]	<1				µg/kg	A-T-006s
Bromochloromethane _A #	<5				µg/kg	A-T-006s
Chloroform _A #	<1				µg/kg	A-T-006s
1,1,1-Trichloroethane _A #	<1				µg/kg	A-T-006s
1,1-Dichloropropene _A #	<1				µg/kg	A-T-006s
Carbon Tetrachloride _A #	<1				µg/kg	A-T-006s
1,2-Dichloroethane _A #	<2				µg/kg	A-T-006s
Benzene " [#]	<1				µg/kg	A-T-006s
Trichloroethene _A #	<1				µg/kg	A-T-006s
1,2-Dichloropropane _A #	<1				µg/kg	A-T-006s
Dibromomethane _A #	<1				µg/kg	A-T-006s
Bromodichloromethane _A #	<10				µg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	<1				µg/kg	A-T-006s
Toluene "*	<1				µg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	<1				µg/kg	A-T-006s
1,1,2-Trichloroethane _A #	<1				µg/kg	A-T-006s
1,3-Dichloropropane _A #	<1				µg/kg	A-T-006s
Tetrachloroethene _A #	<1				µg/kg	A-T-006s
Dibromochloromethane _A #	<3				µg/kg	A-T-006s
1,2-Dibromoethane _A #	<1				µg/kg	A-T-006s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04207/1					
Client Sample No	1					
Client Sample ID	TP13a					
Depth to Top	0.30					
Depth To Bottom						
Date Sampled	06-Jul-16					÷
Sample Type	Soil - ES					od re
Sample Matrix Code	5AB				Units	Meth
Chlorobenzene _A #	<1				µg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	<1				µg/kg	A-T-006s
Ethylbenzene _A #	<1				µg/kg	A-T-006s
m & p Xylene _A #	<1				µg/kg	A-T-006s
o-Xylene _A #	<1				µg/kg	A-T-006s
Styrene _A [#]	<1				µg/kg	A-T-006s
Bromoform _A #	<1				µg/kg	A-T-006s
lsopropylbenzene _A [#]	<1				µg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	<1				µg/kg	A-T-006s
1,2,3-Trichloropropane _A #	<1				µg/kg	A-T-006s
Bromobenzene _A #	<1				µg/kg	A-T-006s
n-Propylbenzene [#]	<1				µg/kg	A-T-006s
2-Chlorotoluene _A #	<1				µg/kg	A-T-006s
1,3,5-Trimethylbenzene ⁴	<1				µg/kg	A-T-006s
4-Chlorotoluene _A #	<1				µg/kg	A-T-006s
tert-Butylbenzene _A #	<2				µg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	<1				µg/kg	A-T-006s
sec-Butylbenzene _A [#]	<1				µg/kg	A-T-006s
4-IsopropyItoluene _A #	<1				µg/kg	A-T-006s
1,3-Dichlorobenzene _A	<1				µg/kg	A-T-006s
1,4-Dichlorobenzene _A #	<1				µg/kg	A-T-006s
n-Butylbenzene _A #	<1				µg/kg	A-T-006s
1,2-Dichlorobenzene ⁴	<1				µg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	<2				µg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	<3				µg/kg	A-T-006s
Hexachlorobutadiene _A #	<1				µg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	<3				µg/kg	A-T-006s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04246 1

Date: 20 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Mike McCann/Nigel Austin The Hope Project, Camden 371475 N/A 11/07/16 11/07/16 19/07/16

Prepared by:

Kate Ellison Administrative Assistant

John Gustafson Director

Client Project Name: The Hope Project, Camden

Client	Project	Ref:	371475
Olicilit	110,000		011410

Lab Sample ID	16/04246/1					
Client Sample No	1					
Client Sample ID	TP1					
Depth to Top	0.70					
Depth To Bottom						
Date Sampled	08-Jul-16					4
Sample Type	Soil - ES					od re
Sample Matrix Code	6A				Units	Meth
% Stones >10mm _A [#]	22.4				% w/w	A-T-044
Arsenic _D ^{M#}	16				mg/kg	A-T-024s
Cadmium _D ^{M#}	1.9				mg/kg	A-T-024s
Copper _D ^{M#}	94				mg/kg	A-T-024s
Chromium _D ^{M#}	21				mg/kg	A-T-024s
Lead _D ^{M#}	353				mg/kg	A-T-024s
Mercury _D	1.14				mg/kg	A-T-024s
Nickel ^{D^{M#}}	24				mg/kg	A-T-024s
Selenium _D	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	63				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04246/1					
Client Sample No	1					
Client Sample ID	TP1					
Depth to Top	0.70					
Depth To Bottom						
Date Sampled	08-Jul-16					*
Sample Type	Soil - ES				<i>"</i>	od re
Sample Matrix Code	6A				Units	Meth
Asbestos in Soil (inc. matrix)						
Asbestos in soil _A [#]	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04246/1					
Client Sample No	1					
Client Sample ID	TP1					
Depth to Top	0.70					
Depth To Bottom						
Date Sampled	08-Jul-16					
Sample Type	Soil - ES					od rei
Sample Matrix Code	6A				Units	Metho
PAH 16						
Acenaphthene _A ^{M#}	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08				mg/kg	A-T-019s
TPH Banded 1 with ID						
>C6-C8 _A #	<10				mg/kg	A-T-007s
>C8-C10 _A #	<10				mg/kg	A-T-007s
>C10-C12 _A [#]	<10				mg/kg	A-T-007s
>C12-C16 _A [#]	<10				mg/kg	A-T-007s
>C16-C21 _A #	<10				mg/kg	A-T-007s
>C21-C40 _A	<10				mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A					A-T-007s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 16/04376 1

Date: 27 July, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 18/07/16 18/07/16 27/07/16

Prepared by:

Danielle Brierley Administrative Assistant

aslock

lain Haslock Analytical Consultant

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04376/1					
Client Sample No	1					
Client Sample ID	TP14					
Depth to Top	0.20					
Depth To Bottom						
Date Sampled	11-Jul-16					ł
Sample Type	Soil - ES					od re
Sample Matrix Code	6A				Units	Meth
% Stones >10mm _A [#]	<0.1				% w/w	A-T-044
Arsenic ^{D^{M#}}	9				mg/kg	A-T-024s
Cadmium _p ^{M#}	2.1				mg/kg	A-T-024s
Copper _D ^{M#}	35				mg/kg	A-T-024s
Chromium _D ^{M#}	39				mg/kg	A-T-024s
Lead _D ^{M#}	61				mg/kg	A-T-024s
Mercury _D	0.31				mg/kg	A-T-024s
Nickel ^{D^{M#}}	35				mg/kg	A-T-024s
Selenium _D	<1				mg/kg	A-T-024s
Zinc _p ^{M#}	66				mg/kg	A-T-024s

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04376/1					
Client Sample No	1					
Client Sample ID	TP14					
Depth to Top	0.20					
Depth To Bottom						
Date Sampled	11-Jul-16					at a
Sample Type	Soil - ES				<i>"</i>	er bo
Sample Matrix Code	6A				Units	Meth
Asbestos in Soil (inc. matrix)						
Asbestos in soil _A [#]	NAD					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A					Gravimetry

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04376/1					
Client Sample No	1					
Client Sample ID	TP14					
Depth to Top	0.20					
Depth To Bottom						
Date Sampled	11-Jul-16					
Sample Type	Soil - ES					od ref
Sample Matrix Code	6A				Units	Metho
PAH 16						
Acenaphthene _A ^{M#}	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	A-T-019s
Pyrene ^{A^{M#}}	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08				mg/kg	A-T-019s
TPH Banded 1 with ID						
>C6-C8 _A #	<10				mg/kg	A-T-007s
>C8-C10 _A #	<10				mg/kg	A-T-007s
>C10-C12 _A #	<10				mg/kg	A-T-007s
>C12-C16 _A [#]	<10				mg/kg	A-T-007s
>C16-C21 _A #	<10				mg/kg	A-T-007s
>C21-C40 _A	<10				mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	N/A					A-T-007s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

16-Aug-16

Final Test Report

Envirolab Job Number: Issue Number:	16/04078 1	Date:
Client:	RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT	
Project Manager: Project Name: Project Ref: Order No:	Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A	
Date Samples Received: Date Instructions Received: Date Analysis Completed:	4-Jul-16 4-Jul-16 16-Aug-16	

Notes - Soil analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER.

Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Manshall

Melanie Marshall Laboratory Coordinator

John Gustafson Director

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	16/04078/1		Landfill W	Vaste Acceptance Crite	eria Limits		
Client Sample Number				1						
Client Sample ID				TP5						
Depth to Top				0.5			Stable Non-reactive	Hozardova Wasto		
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in	Hazardous waste Landfill		
Date Sampled				30/06/2016	;		Non-Hazardous Landfill			
Sample Type				Soil - ES						
Sample Matrix Code				4A						
Solid Waste Analysis		_								
pH (pH Units) _D	A-T-031	Υ	Υ	9.98		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	1.53		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.2		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	Υ	Ν	7.1	Γ	-		10		
Total Organic Carbon (%) _D	A-T-032	Υ	Υ	3.4		3	5	6		
PAH Sum of 17 (mg/kg) _A	A-T-019	Ν	Ν	0.46		100	-	-		
Mineral Oil (mg/kg) _A	A-T-007	Ν	Ν	<10		500	-	-		
Sum of 7 PCBs (mg/kg) _D	A-T-004	Ν	Ν	<0.007		1	-	-		
Sum of BTEX (mg/kg) _A	A-T-022	Ν	Ν	<0.01		6	-	-		
		<u> </u>	-	10:1	10:1	Limit value	s for compliance leaching	g test using		
Eluate Analysis				mg/l	mg/kg	BS EN 12457-3 at L/S 10 l/kg (mg/kg)				
Arsenic	A-T-025	Υ	Ν	0.017	0.160	0.5	2	25		
Barium	A-T-025	Υ	Ν	0.013	0.130	20	100	300		
Cadmium	A-T-025	Υ	Ν	<0.001	<0.01	0.04	1	5		
Chromium	A-T-025	Y	Ν	<0.001	<0.01	0.5	10	70		
Copper	A-T-025	Y	Ν	0.002	0.030	2	50	100		
Mercury	A-T-025	Y	Ν	<0.0001	<0.001	0.01	0.2	2		
Molybdenum	A-T-025	Y	Ν	0.003	0.030	0.5	10	30		
Nickel	A-T-025	Y	Ν	0.003	0.030	0.4	10	40		
Lead	A-T-025	Y	Ν	0.006	0.060	0.5	10	50		
Antimony	A-T-025	Y	Ν	0.002	0.030	0.06	0.7	5		
Selenium	A-T-025	Y	N	< 0.001	<0.01	0.1	0.5	/		
	A-T-025	Y	N	0.013	0.130	4	50	200		
	A-1-026	Y	N	2	15	800	15000	25000		
Fluoride	A-1-026	Y	N	0.3	3.0	10	150	500		
Suprate as 50_4	A-1-026	Y	N	8	80	1000	20000	50000		
1 otal Dissoived Solids	A-1-035	N	N	61	589	4000	60000	100000		
Phenol index	A-1-000	N	N	<0.01	<0.1	500		1000		
Dissolved Organic Carbon	A-1-032	IN	N	<0.2	<200	500	800	1000		
Leach Test Information	A T 004		v	0.0	1					
pH (pH Units)	A-1-031	N	Y	6.9						
Maga Sampla (kg)	A-1-037	N	N	0.010						
Dry Matter (%)	A T 044	N	N	76.0						
	A-1-044		N	70.9	I					

Final Test Report

Envirolab Job Number: Issue Number:	16/04246 1	Date:	16-Aug-16
Client:	RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT		
Project Manager: Project Name: Project Ref: Order No:	Claire Siberry/Mike McCann/Nigel Austin The Hope Project, Camden 371475 N/A		
Date Samples Received: Date Instructions Received: Date Analysis Completed:	11-Jul-16 11-Jul-16 16-Aug-16		

Notes - Soil analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER.

Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Manshall

Melanie Marshall Laboratory Coordinator

GWaller

Gill Walker Laboratory Manager

Sample Details												
Lab Sample ID	Method	ISO17025	MCERTS	16/04246/1		Landfill Waste Acceptance Criteria Limits						
Client Sample Number				1								
Client Sample ID				TP1								
Depth to Top				0.7			Stable Non-reactive	Hazardous Waste Landfill				
Depth to Bottom				08/07/2016		Inert Waste Landfill	Hazardous Waste in					
Date Sampled							Non-Hazardous Landfill					
Sample Type				Soil - ES								
Sample Matrix Code				6A								
Solid Waste Analysis												
pH (pH Units) _D	A-T-031	Υ	Υ	8.51		-	>6	-				
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.78		-	to be evaluated	to be evaluated				
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.1		-	to be evaluated	to be evaluated				
Loss on Ignition (%) _D	A-T-030	Υ	Ν	4.7		-	-	10				
Total Organic Carbon (%) _D	A-T-032	Υ	Υ	2.86		3	5	6				
PAH Sum of 17 (mg/kg) A	A-T-019	Ν	Ν	<0.08		100	-	-				
Mineral Oil (mg/kg) _A	A-T-007	Ν	Ν	<10		500	-	-				
Sum of 7 PCBs (mg/kg) _D	A-T-004	Ν	Ν	< 0.007		1	-	-				
Sum of BTEX (mg/kg) _A	A-T-022	Ν	Ν	<0.01		6	-	-				
				10:1 10:1		Limit values for compliance leaching test using						
Eluate Analysis				mg/l	mg/kg	BS EN 12457-3 at L/S 10 l/kg (mg/kg)						
Arsenic	A-T-025	Υ	Ν	0.020	0.160	0.5	2	25				
Barium	A-T-025	Υ	Ν	0.009	0.060	20	100	300				
Cadmium	A-T-025	Υ	Ν	< 0.001	<0.01	0.04	1	5				
Chromium	A-T-025	Υ	Ν	0.001	<0.01	0.5	10	70				
Copper	A-T-025	Υ	Ν	0.004	0.030	2	50	100				
Mercury	A-T-025	Υ	Ν	<0.0001	<0.001	0.01	0.2	2				
Molybdenum	A-T-025	Y	Ν	0.002	0.020	0.5	10	30				
Nickel	A-T-025	Υ	Ν	<0.001	<0.01	0.4	10	40				
Lead	A-T-025	Υ	Ν	0.008	0.060	0.5	10	50				
Antimony	A-T-025	Υ	Ν	0.001	<0.01	0.06	0.7	5				
Selenium	A-T-025	Υ	Ν	<0.001	<0.01	0.1	0.5	7				
Zinc	A-T-025	Υ	Ν	0.006	0.050	4	50	200				
Chloride	A-T-026	Υ	Ν	<1.00	<10	800	15000	25000				
Fluoride	A-T-026	Υ	Ν	0.2	2.0	10	150	500				
Sulphate as SO ₄	A-T-026	Υ	Ν	4	33	1000	20000	50000				
Total Dissolved Solids	A-T-035	Ν	Ν	48	372	4000	60000	100000				
Phenol Index	A-T-050	Ν	Ν	<0.01	<0.1	1	-	-				
Dissolved Organic Carbon	A-T-032	Ν	Ν	<0.2	<200	500	800	1000				
Leach Test Information												
pH (pH Units)	A-T-031	Ν	Υ	7.4								
Conductivity (µS/cm)	A-1-037	N	N	96								
Mass Sample (kg)				0.171								
Dry Matter (%)	A-1-044	Ν	Ν	61.5								
Stated acceptance limits ar	e for guidar	nce	onh	y and Enviro	olab cannot	be held responsible for	any discrepancies with	current legislation				

APPENDIX L LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

16/04872 1

Date: 18 August, 2016

Client:

RSK Environment Ltd Hemel 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Claire Siberry/Nigel Austin The Hope Project, Camden 371475 N/A 08/08/16 08/08/16 18/08/16

Prepared by:

Approved by:

Manshal

Melanie Marshall Laboratory Coordinator

Georgia King Client Service Manager

Client Project Name: The Hope Project, Camden

Lab Sample ID	16/04872/1					
Client Sample No	1					
Client Sample ID	WS1					
Depth to Top	0.88					
Depth To Bottom						
Date Sampled	03-Aug-16					Method ref
Sample Type	Water - EW					
Sample Matrix Code	N/A				Units	
pH (w) _A [#]	6.54				рН	A-T-031w
Sulphate (w) _A [#]	2472				mg/l	A-T-026w
Arsenic (dissolved) _A [#]	4				µg/l	A-T-025w
Cadmium (dissolved) _A [#]	<0.2				µg/l	A-T-025w
Copper (dissolved) _A [#]	<1				µg/l	A-T-025w
Chromium (dissolved) _A #	1				µg/l	A-T-025w
Lead (dissolved) _A #	<1				µg/l	A-T-025w
Mercury (dissolved) _A #	<0.1				µg/l	A-T-025w
Nickel (dissolved) _A [#]	7				µg/l	A-T-025w
Selenium (dissolved) _A #	3				µg/l	A-T-025w
Zinc (dissolved) _A #	<1				µg/l	A-T-025w

Envirolab Job Number: 16/04872

Client Project Name: The Hope Project, Camden

Client Project Ref: 371475

Lab Sample ID	16/04872/1					
Client Sample No	1					
Client Sample ID	WS1					
Depth to Top	0.88					
Depth To Bottom						
Date Sampled	03-Aug-16					÷
Sample Type	Water - EW					od re
Sample Matrix Code	N/A				Units	Meth
PAH 16MS (w)						
Acenaphthene (w) _A [#]	<0.01				μg/l	A-T-019w
Acenaphthylene (w) _A #	<0.01				µg/l	A-T-019w
Anthracene (w) _A [#]	<0.01				μg/l	A-T-019w
Benzo(a)anthracene (w) _A [#]	<0.01				μg/l	A-T-019w
Benzo(a)pyrene (w) _A [#]	<0.01				μg/l	A-T-019w
Benzo(b)fluoranthene (w) _A [#]	<0.01				μg/l	A-T-019w
Benzo(ghi)perylene (w) _A [#]	<0.01				μg/l	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01				μg/l	A-T-019w
Chrysene (w) _A [#]	<0.01				μg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01				μg/l	A-T-019w
Fluoranthene (w) _A #	<0.01				μg/l	A-T-019w
Fluorene (w) _A [#]	0.01				μg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A [#]	<0.01				μg/l	A-T-019w
Naphthalene (w) _A [#]	<0.01				μg/l	A-T-019w
Phenanthrene (w) _A [#]	0.02				µg/l	A-T-019w
Pyrene (w) _A [#]	<0.01				µg/l	A-T-019w
PAH (total 16) (w) _A [#]	0.03				μg/l	A-T-019w

Envirolab Job Number: 16/04872

Client Project Name: The Hope Project, Camden

Client Project Ref: 371475

Lab Sample ID	16/04872/1					
Client Sample No	1					
Client Sample ID	WS1					
Depth to Top	0.88					
Depth To Bottom						
Date Sampled	03-Aug-16					
Sample Type	Water - EW					od ref
Sample Matrix Code	N/A				Units	Metho
TPH CWG						
Ali >C5-C6 (w) _A [#]	<2				μg/l	A-T-022w
Ali >C6-C8 (w) _A #	50				μg/l	A-T-022w
Ali >C8-C10 (w) _A [#]	<1				μg/l	A-T-022w
Ali >C10-C12 (w) _A [#]	<5				μg/l	A-T-023w
Ali >C12-C16 (w) _A [#]	<5				μg/l	A-T-023w
Ali >C16-C21 (w) _A #	<5				μg/l	A-T-023w
Ali >C21-C35 (w) _A [#]	<5				μg/l	A-T-023w
Total Aliphatics (w) _A	51				μg/l	A-T-022+23w
Aro >C5-C7 (w) _A [#]	<1				μg/l	A-T-022w
Aro >C7-C8 (w) _A [#]	<1				μg/l	A-T-022w
Aro >C8-C9 (w) _A [#]	<1				μg/l	A-T-022w
Aro >C9-C10 (w) _A [#]	<1				μg/l	A-T-022w
Aro >C10-C12 (w) _A [#]	<5				μg/l	A-T-023w
Aro >C12-C16 (w) _A [#]	<5				μg/l	A-T-023w
Aro >C16-C21 (w) _A [#]	<5				μg/l	A-T-023w
Aro >C21-C35 (w) _A [#]	<5				μg/l	A-T-023w
Total Aromatics (w) _A	<5				μg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	51				μg/l	A-T-022+23w
BTEX - Benzene (w) _A [#]	<1				μg/l	A-T-022w
BTEX - Toluene (w) _A [#]	<1				μg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1				μg/l	A-T-022w
BTEX - m & p Xylene (w) _A #	<1				μg/l	A-T-022w
BTEX - o Xylene (w) _A [#]	<1				μg/l	A-T-022w
MTBE (w) _A [#]	<1				μg/l	A-T-022w

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

APPENDIX M HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 2.51 model with the Johnson and Ettinger model for soil and groundwater volatilisation. RSK has updated the inputs within RBCA to reflect EA guidance^(1,5,8,9). The SAC and GrAC collectively are termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

- direct soil and dust ingestion
- dermal contact with soil both indoors and outdoors

• indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the chemical restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database and to outputs from the RBCA model for all petroleum hydrocarbon fractions (including

BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C₈–C₉ (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5-C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8-C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8-C_9 have been taken from styrene.

For the GrAC, the HCV used in the modelling were derived using the toxicological data for the SAC amended as follows:

- An adult weighing 70kg and breathing 15.7m³ air per day in accordance with the revised exposure parameters used in the SP1010 final project report for the Category 4 Screening Levels (C4SL) (Table 3.2⁽³⁾) and USEPA data⁽¹²⁾
- Background inhalation (mean daily intake(MDI)) for an adult (Age Class 17).

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater. The GrAC were produced using the input parameters in Table 3. Inhalation rates have not been updated.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾

are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 4 with the combined GAC in Table 5.

Figure 1: Conceptual model for CLEA commercial scenario

Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

Parameter	Value	Justification				
Land use	Commercial	Chosen land use				
Receptor	Female worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾				
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)				
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)				
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult				
End AC	17	years. Assumption given in Box 3.5, SR3 ⁽⁵⁾				
SOM (%)	6	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾				
	1	To provide SAC for sites where SOM < 6% as often				
	2.5	observed by RSK				
рН	7	Model default				

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m³ day⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

Figure 2: GrAC conceptual model for RBCA commercial scenario

Table 3: Commercial – RBCA inputs

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years 49		From Box 3.5, SR3 ⁽⁵⁾
Receptor weight	kg	70	Female adult, Table 4.6, SR3 ⁽⁵⁾
Exposure duration	Years	49	From Box 3.5, SR3 ⁽⁵⁾
Exposure frequency	Days/yr	86.25	Weighted using occupancy period of 9 hours per day for 230 days of the year ((9hours x 230 days)/24 hours)
Soil type – sandy loam	•		
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾
Volumetric air content	-	0.20	

Parameter	Unit	Value	Justification			
Dry bulk density	g cm ⁻ ³ or kg/L	1.21				
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽⁵⁾ equivalent to 307 cm/day			
Vapour permeability	m²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽⁵⁾			
Capillary zone thickness	m	0.1	Professional judgement			
Building						
Building volume/area ratio	m	9.6	Table 3.10, SR3 ⁽⁵⁾			
Foundation area	m²	424	Table 3.10, SR3 ⁽⁵⁾			
Foundation perimeter	m	82.40	Based on square root of building area being 20.59m			
Building air exchange rate	d ⁻¹	24	Table 3.10, SR3 ⁽⁵⁾ Building air exchange rate equivalent			
Depth to bottom of foundation slab	m	0.15	to 2.8E-04 s ⁻¹			
Foundation thickness	m	0.15	Table 3.10, SR3 ⁽⁵⁾			
Foundation crack fraction	-	3.89E-04	Calculated from floor crack area of 0.165m ² and building footprint of 424m ² in Table 4.21, SR3 ⁽⁵⁾			
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption			
Volumetric air content of cracks	-	0.2	Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾			
Indoor/outdoor differential pressure	Ра	4.4	From Table 3.10, SR3 ⁽⁵⁾ Equivalent to 44 g/cm/s ²			

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-valuessqvs</u> (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015)

Table 4

Human health generic assessment criteria by pathway for commercial scenario

	Not	GrAC	SAC appropri	iate to pathway So	OM 1% (mg/kg)	Soil saturation limit	SAC approp	riate to pathway SON	l 2.5% (mg/kg)	Soil saturation limit	SAC appropr	iate to pathway S	OM 6% (mg/kg)	Soil saturation
Compound	es	(µg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
Metals														
Arsenic	(a,b)	-	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR
Cadmium	(a)	-	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	NR	7.73E+02	8.57E+02	4.10E+02	NR
Chromium (III) - trivalent	(C)	-	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	NR	3.31E+05	8.57E+03	NR	NR
Chromium (VI) - hexavalent	(a,d)	-	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	NR	9.62E+02	4.91E+01	NR	NR
Copper		-	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR
Lead	(a)	-	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	5.60E+01	NR	1.54E+01	NR	4.31E+00	NR	3.26E+01	NR	1.07E+01	NR	5.80E+01	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)		-	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR
Methyl Mercury (Hg4+)		1.00E+05	3.38E+02	2.13E+03	2.92E+02	7.33E+01	3.38E+02	3.87E+03	3.11E+02	1.42E+02	3.38E+02	7.33E+03	3.23E+02	3.04E+02
Nickel	(d)	-	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR
Selenium	(b)	-	1.23E+04	NR	NR	NR	1.23E+04	NR	NR	NR	1.23E+04	NR	NR	NR
Zinc	(b)	-	7.35E+05	1.97E+08	NR	NR	7.35E+05	1.97E+08	NR	NR	7.35E+05	1.97E+08	NR	NR
Cyanide (free)		-	6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	NR	6.56E+02	7.51E+04	6.53E+02	NR
Volatile Organic Compounds Benzene	(a)	1.36E+05	1.09E+03	2.79E+01	2.72E+01	1.22E+03	1.09E+03	5.19E+01	4.96E+01	2.26E+03	1.09E+03	1.08E+02	9.80E+01	4.71E+03
Toluene		5.90E+05	4.24E+05	6.49E+04	5.63E+04	8.69E+02	4.24E+05	1.43E+05	1.07E+05	1.92E+03	4.24E+05	3.24E+05	1.84E+05	4.36E+03
Ethylbenzene		1.80E+05	1.91E+05	5.89E+03	5.71E+03	5.18E+02	1.91E+05	1.38E+04	1.28E+04	1.22E+03	1.91E+05	3.21E+04	2.75E+04	2.84E+03
Xvlene - m		2.00E+05	3.43E+05	6.26E+03	6.15E+03	6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.47E+03	3.43E+05	3.44E+04	3.12E+04	3.46E+03
Xylene - o		1.73E+05	3.43E+05	6.73E+03	6.60E+03	4.78E+02	3.43E+05	1.57E+04	1.50E+04	1.12E+03	3.43E+05	3.65E+04	3.30E+04	2.62E+03
Xvlene - p		2.00E+05	3.43E+05	6.03E+03	5.92E+03	5.76E+02	3.43E+05	1.41E+04	1.36E+04	1.35E+03	3.43E+05	3.28E+04	3.00E+04	3.17E+03
Total xvlene		1.73E+05	3.43E+05	6.03E+03	5.92E+03	6.25E+02	3.43E+05	1.41E+04	1.36E+04	1.47E+03	3.43E+05	3.28E+04	3.00E+04	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		4.80E+07	5.72E+05	7.54E+04	6.66E+04	2.04E+04	5.72E+05	1.22E+05	1.01E+05	3.31E+04	5.72E+05	2.31E+05	1.65E+05	6.27E+04
Trichloroethene		3.73E+03	9.53E+02	1.23E+00	1.23E+00	1.54E+03	9.53E+02	2.58E+00	2.57E+00	3.22E+03	9.53E+02	5.72E+00	5.69E+00	7.14E+03
Tetrachloroethene		3.43E+04	1.12E+04	1.86E+01	1.86E+01	4.24E+02	1.12E+04	4.17E+01	4.16E+01	9.51E+02	1.12E+04	9.57E+01	9.49E+01	2.18E+03
1.1.1-Trichloroethane		1.30E+06	1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	6.39E+03
1.1.1.2 Tetrachloroethane		1.60E+05	1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	1.40E+04
1.1.2.2-Tetrachloroethane		1.63E+05	1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	1.20E+04
Carbon Tetrachloride		5.47E+03	7.62E+03	2.87E+00	2.87E+00	1.52E+03	7.62E+03	6.29E+00	6.28E+00	3.32E+03	7.62E+03	1.43E+01	1.42E+01	7.54E+03
1.2-Dichloroethane		5.71E+03	2.29E+02	6.73E-01	6.71E-01	3.41E+03	2.29E+02	9.71E-01	9.67E-01	4.91E+03	2.29E+02	1.67E+00	1.65E+00	8.43E+03
Vinvl Chloride		3.82E+02	2.67E+01	5.95E-02	5.94E-02	1.36E+03	2.67E+01	7.70E-02	7.67E-02	1.76E+03	2.67E+01	1.18E-01	1.17E-01	2.69E+03
1.2.4-Trimethylbenzene		5.59E+04	NR	3.29E+02	NR	4.74E+02	NR	6.41E+02	NB	1.16E+03	NR	1.04E+03	NR	2.76E+03
1.3.5-Trimethylbenzene	(e)	-	NB	NB	NB	2.30E+02	NB	NB	NB	5.52E+02	NB	NB	NB	1.30E+03
Semi-Volatile Organic Compounds														
Acenaphthene		4.11E+03	1.10E+05	2.75E+06	1.06E+05	5.70E+01	1.10E+05	5.36E+06	1.08E+05	1.41E+02	1.10E+05	8.83E+06	1.08E+05	3.36E+02
Acenaphthylene		7.95E+03	1.10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Anthracene		-	5.49E+05	1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+00
Benzo(a)anthracene		-	2.84E+02	4.08E+02	1.67E+02	1.71E+00	2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.67E+02	1.76E+02	1.03E+01
Benzo(b)fluoranthene		-	7.13E+01	1.17E+02	4.43E+01	1.22E+00	7.13E+01	1.20E+02	4.47E+01	3.04E+00	7.13E+01	1.21E+02	4.49E+01	7.29E+00
Benzo(g,h,i)perylene		-	6.29E+03	1.05E+04	3.93E+03	1.54E-02	6.29E+03	1.06E+04	3.95E+03	3.85E-02	6.29E+03	1.07E+04	3.96E+03	9.23E-02
Benzo(k)fluoranthene		-	1.88E+03	3.11E+03	1.17E+03	6.87E-01	1.88E+03	3.17E+03	1.18E+03	1.72E+00	1.88E+03	3.21E+03	1.19E+03	4.12E+00
Chrysene		-	5.67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Dibenzo(a,h)anthracene		-	5.67E+00	9.32E+00	3.53E+00	3.93E-03	5.67E+00	9.52E+00	3.55E+00	9.82E-03	5.67E+00	9.64E+00	3.57E+00	2.36E-02
Fluoranthene		-	2.29E+04	1.89E+06	2.26E+04	1.89E+01	2.29E+04	2.72E+06	2.27E+04	4.73E+01	2.29E+04	3.32E+06	2.27E+04	1.13E+02
Fluorene		-	7.31E+04	4.55E+05	6.30E+04	3.09E+01	7.31E+04	1.06E+06	6.84E+04	7.65E+01	7.31E+04	2.24E+06	7.08E+04	1.83E+02
Indeno(1,2,3-cd)pyrene		-	8.10E+02	1.31E+03	5.01E+02	6.13E-02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Phenanthrene		-	2.28E+04	5.35E+05	2.19E+04	3.60E+01	2.28E+04	1.09E+06	2.24E+04	8.96E+01	2.28E+04	1.86E+06	2.25E+04	2.14E+02
Pyrene	I	-	5.49E+04	4.47E+06	5.42E+04	2.20E+00	5.49E+04	6.46E+06	5.44E+04	5.49E+00	5.49E+04	7.91E+06	5.45E+04	1.32E+01
Benzo(a)pyrene	(a)	-	7.68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Naphthalene		1.90E+04	3.64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenol		-	1.10E+06	2.65E+04	2.59E+04	2.42E+04	1.10E+06	3.04E+04	2.96E+04	3.81E+04	1.10E+06	3.46E+04	3.35E+04	7.03E+04

Human health generic assessment criteria by pathway for commercial scenario

	٥N	GrAC	SAC appropri	ate to pathway SC	OM 1% (mg/kg)	Soil saturation limit	SAC approp	riate to pathway SOM	l 2.5% (mg/kg)	Soil saturation limit	SAC appropr	iate to pathway S	OM 6% (mg/kg)	Soil saturation
Compound	tes	(µg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
						_								

Total petroleum hydrocarbons														
Aliphatic hydrocarbons EC5-EC6		3.59E+04	4.77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		5.37E+03	4.77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		4.27E+02	9.53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		3.39E+01	9.53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		7.59E-01	9.53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35	(b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC9 (sty	/rene)	2.90E+05	2.29E+04	3.66E+04	1.41E+04	6.26E+02	2.29E+04	8.39E+04	1.80E+04	1.44E+03	2.29E+04	1.93E+05	2.04E+04	3.35E+03
Aromatic hydrocarbons >EC9-EC10		6.46E+04	3.81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12		2.45E+04	3.81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8.99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16		5.75E+03	3.81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
Aromatic hydrocarbons >EC16-EC21	(b)	-	2.82E+04	NR	NR	5.37E+01	2.83E+04	NR	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35	(b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44	(b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01

Notes:

Table 4

EC - equivalent carbon. GrAC - groundwater screening value. SAC - soil screening value.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cells have also been hatched red and the GrAC set at the solubility limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Commercial Scenario

Compound	GrAC for Groundwater (µg/l)	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals Arconio		640	640	640
Cadmium	-	410	410	410
Chromium (III) - trivalent	-	8,600	8,600	8,600
Chromium (VI) - hexavalent	-	49	49	49
Copper	-	68,000	68,000	68,000
Elemental Mercury (Hg ⁰)	56	15 (4)	33 (11)	58 (26)
norganic Mercury (Hg ²⁺)	-	1.120	1.120	1.120
Methyl Mercury (Hg ⁴⁺)	100000	290 (73)	310 (142)	320
Nickel	-	980	980	980
Selenium	-	12,000	12,000	12,000
ZINC Cvanide (free)		740,000	740,000	740,000
		000	050	000
Volatile Organic Compounds				
Benzene	136190	27	50	98
Foluene	590000	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Ethylbenzene	180000	6,000 (518)	13,000 (1,216)	27,000 (2,844)
Kylene - o	173000	6,200 (823)	15,000 (1,474)	33,000 (2,618)
Xylene - p	200000	5.900 (576)	13,600 (1,353)	30,000 (3,167)
Total xylene	173000	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Methyl tertiary-Butyl ether (MTBE)	48000000	67,000 (20,400)	101,000 (33,100)	165,000 (62,700)
Trichloroethene	3730	1	3	6
	34310	20	40	3 000
1.1.1.2 Tetrachloroethane	160000	110	250	560
1,1,2,2-Tetrachloroethane	162840	270	550	1.130
Carbon Tetrachloride	5470	2.9	6.3	14.2
1,2-Dichloroethane	5710	0.67	0.97	1.65
Vinyl Chloride	382	0.06	0.08	0.12
1,2,4-Trimethylbenzene	55900	330	640 ND	1,040
1,3,5- Inmethylbenzene	-	NR	INK	NR
Semi-Volatile Organic Compounds				
Acenaphthene	4110	110,000	110,000	110,000
Acenaphthylene	7950	110,000	110,000	110,000
Anthracene	-	520,000	540,000	540,000
Benzo(a)anthracene	-	170	170	180
Benzo(b)fluoranthene	-	44	45	45
Benzo(g,n,i)peryiene Benzo(k)fluoranthene	-	3,900	3,900	4,000
Chrysene	-	350	350	350
Dibenzo(a,h)anthracene	-	3.5	3.6	3.6
Fluoranthene	-	23,000	23,000	23,000
Fluorene	-	63,000 (31)	68,000	71,000
Indeno(1,2,3-cd)pyrene	-	500	510	510
Prienaniinrene	-	54 000	22,000	23,000
Benzo(a)pyrene	-	77	77	77
Naphthalene	19000	1,800 (76)	3,900 (183)	7,800 (432)
Phenol	-	440*	690*	1,300*
Total Petroleum Hydrocarbons	05000	0.000 (00.4)	F 000 (FF0)	10 100 (1 150)
Aliphatic hydrocarbons EC5-EC6	35900	3,200 (304)	5,900 (558)	12,100 (1,150)
Aliphatic hydrocarbons >EC ₆ -EC ₈	5370	7,800 (144)	17,400 (322)	39,600 (736)
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	427	2,000 (78)	4,800 (190)	11,300 (451)
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	34	9,700 (48)	22,900 (118)	47,300 (283)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	0.759	59,000 (24)	82,000 (59)	90,000 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	-	1,000,000**	1,000,000**	1,000,000**
Aliphatic hydrocarbons >EC35-EC44	-	1,000,000**	1,000,000**	1,000,000**
Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene)	290000	14,000 (626)	18,000 (1,440)	20,000 (3,350)
Aromatic hydrocarbons >EC9-EC10	64600	3,500 (613)	8,100 (1,503)	17,000 (3,580)
	24500	16,000 (364)	28,000 (899)	34,000 (2,150)
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	5750	36,000 (169)	37,000	38,000
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂ Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	0,00			, - • •
Aromatic hydrocarbons >E C_{10} -E C_{12} Aromatic hydrocarbons >E C_{12} -E C_{16} Aromatic hydrocarbons >E C_{1c} -E C_{24}	-	28.000	28.000	28.000
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂ Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁ Aromatic hydrocarbons >EC ₂₀ -EC ₂₀	-	28,000	28,000 28.000	28,000 28.000
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂ Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁ Aromatic hydrocarbons >EC ₂₁ -EC ₃₅ Aromatic hydrocarbons >EC ₂₂ -EC ₃₅	-	28,000 28,000 28,000	28,000 28,000 28,000	28,000 28,000 28,000

APPENDIX N GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75m below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125
	(Not including compounds within group 1a)		
1a	• BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic $C_5\!\!-\!\!C_{10})$	2	1.4
	(Not including compounds within group 2e and 2f)		
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation	•	•
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable
Notes:	where indicated as 'suitable', the material is considered resistant to perme	eation or degra	adation and

Table A3: Generic assessment criteria for water supply pipes

no threshold concentration has been specified by UKWIR.

APPENDIX O COMPARISON OF WATER LABORATORY DATA TO CONTROLLED WATERS GAC

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Protection of the water environment

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past.

The term 'controlled waters' refers to coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater and surface water protection as well as drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out in the Environment Agency's Groundwater Protection: Principles and Practice (GP3) guidance document⁽¹⁾. When assessing risks to groundwater the following need to be taken into consideration:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - *limit* the entry of other (non-hazardous) pollutants into groundwater so as to avoid pollution, and to avoid deterioration of the status of groundwater bodies or sustained, upward trends in pollutant concentration.
- Where hazardous substances or non-hazardous pollutants have already entered groundwater, the priority is to
 - minimise further entry of hazardous substances and non-hazardous pollutants into groundwater
 - take necessary and reasonable measures to limit the pollution of groundwater or impact on the status of the groundwater body from the future expansion of a contaminant 'plume', if necessary by actively reducing its extent if the economic, social and environmental benefits of doing so outweigh the costs.

DEFINITIONS AND SUBSTANCE CLASSIFICATIONS

Risks to surface waters:

When assessing risks to surface waters, the following list of definitions should be understood:

Priority substances (PS) are harmful substances originally identified under the Water Framework Directive (WFD) 2000/60/EC as substances 'presenting a significant risk to or via the aquatic environment' at a European level. Member States are required to incorporate the identified **PS** into their country-wide monitoring programmes. There are currently 33 **PS** defined within the Priority Substances Directive (2013/39/EU; Annex 1), with a further 12 additional substances due to come into force from 22 December 2018. Directive 2013/39/EU has been transposed into domestic legislation for England and Wales by The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Under the umbrella of **PS**, there is a sub-set of substances identified as being "hazardous", and these are referred to as **Priority hazardous substances (PHS).** The list of **PHS** is defined at EU level within the Priority Substances Directive (2013/39/EU). The WFD defines hazardous substances as 'substances (or groups of substances) that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' There are currently 15 **PHS**, with a further 6 additional substances due to come into force from 22 December 2018.

There is also another group of substances defined at EU level and which are referred to as **other pollutants (OP)** in Directive 2013/39/EU. These are additional substances which although not **priority substances**, have EQS which are identical to those laid down in the legislation which applied prior to 13 January 2009 (Directive 2008/105/EU). The **OP** are listed along with the **priority substance (PS)** within the Priority Substances Directive (2013/39/EU),and their associated EQS are also listed therein. There are 6 **OP** defined within the Priority Substances Directive (2013/39/EU).

In addition to the EU level substances, there are also a group of pollutants defined at a Member State level, referred to as **Specific pollutants (SP)**. These substances are pollutants which are released in significant quantities into water bodies in each of the individual European Member States. Under the WFD, Member States are required to set their own EQS for these substances. An indicative list of **SP** is given in Annex VIII of the WFD. Many of the substances categorised as **SP** in the UK were formerly List 2 substances under the old Groundwater Directive (80/68/EEC). The **SP** are defined within Part 2 (Table 1) of The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Risks to groundwater:

When assessing risks to groundwater, the following definitions should be understood:

Under the requirements of the Groundwater Daughter Directive (2006/118/EU), the UK has published a list of substances it considers to be **hazardous substances** with respect to groundwater. In their advisory capacity to the government, this list has been derived by the UK Joint Agencies Groundwater Directive Advisory Group (JAGDAG), of which the Environment Agency is a member. Although currently under review, the existing list of groundwater hazardous substances is largely based on the former List 1 substances which were defined under the (now repealed) Groundwater Directive (80/68/EEC), with the addition of radioactive substances which are also now classed as **hazardous substances**. The JAGDAG list of **hazardous substances** is extensive, and can be found in full at:

http://www.wfduk.org/sites/default/files/Media/Substances%20transferred%20from%20List%20I%20%26%20II%20to%20hazardous%20or%20non%20hazardous.pdf

Given the above classifications, any other pollutant which has not been classified as a hazardous substance by JAGDAG, is referred to as a **non-hazardous pollutant (NHP)**.

Selecting the appropriate assessment criteria

When assessing the risks to controlled waters, various assessment criteria apply, depending on the nature of the assessment and the conceptual site model.

Where a surface water body is involved, then Environmental Quality Standards (EQS) are the relevant assessment criteria as they are designed to be protective of surface water ecology.

Where a public water supply or a Principal aquifer is involved, then the standards defined in The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source of assessment criteria. The Private Water Supplies Regulations⁽³⁾ may also be applicable in some cases. For instances where there are no UK assessment criteria, then the World Health Organisation (WHO) drinking water guidelines⁽⁴⁾ may be used.

This appendix presents the generic assessment criteria (GAC) that RSK considers suitable for assessing risks to controlled waters for our most commonly encountered determinants. A full list of EQS for England and Wales are included in The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

The RSK GAC for controlled waters are presented in **Table 1**. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The appropriate target concentrations should be selected with consideration to:

- the site conceptual model (i.e. the receptor at potential risk);
- whether the substance is already present in groundwater at the site;
- whether or not the substance is classified as a priority hazardous substance under the Priority Substances Directive (2013/39/EC) (see above), or as a hazardous substance according to the current list of JAGDAG determinations⁽⁵⁾; and
- background concentrations in the aquifer (if applicable).

It is important to remember that the WFD and GP3⁽¹⁾ guidance allow a risk-based and a costbenefit approach to be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is required either on a technical or cost-benefit basis.

Table 1: Target concentrations for controlled waters

Target concentrations shaded in green	Target concentrations shaded in orange
are <u>statutory values</u>	are <u>non-statutory values</u>

Note: Units µg/I throughout

Substance classification			Target concentrations (μg/l)			
		Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent	
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾				Freshwater	Transitional (estuaries) and coastal waters
Metals & other inorganics						
-	Specific pollutant	Arsenic	-	10 ⁽²⁾	50 ^(6a)	25 ^(6a)
Hazardous substance	Priority substance	Cadmium	0.1 ⁽⁷⁾	5 ⁽²⁾	≤0.08, 0.08, 0.09, 0.15, 0.25 ^(6b)	0.2 ^(6a)
-	-	Chromium (total)	-	50 ⁽²⁾	Sum values for chromium III and VI	
-	Specific pollutant	Chromium (III)	_	Use value for total chromium	4.7 ^(6a)	-
-	Specific pollutant	Chromium (VI)			3.4 ^(6a)	0.6 ^(6a)
-	Specific pollutant					3.76 dissolved, where DOC ≤1mg/l ^(6a)
		Copper	-	2,000 ⁽²⁾	1 bioavailable ^(6a)	3.76µg/l + (2.677µg/l x ((DOC/2) – 0.5µg/l)) dissolved, where DOC >1mg/l ^(6a)