
V&R	Project				Job Ref.		
VINCENT & RYMILL	2	20 WELLS ROAD LONDON NW3 1LH				17 J02	
VINICENT & DVMIII	Section				Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		STRUCTRAL (CALCULATION	S		1	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY	TV	03/10/2017					

	The state of the s	1	l u
PITCHED ROOF	KN/m ²	CEILING	KN/m ²
Tiles	0.70	Ceiling Joists	0.10
Felt & battens	0.05	Plasterboard	<u>0.15</u>
Rafters	<u>0.10</u>	D. L.	0.25 KN/m ²
	<u>0.85</u>	I. L. where applicable	<u>0.25</u> KN/m ²
30° on plan load D. L.	1.00 KN/m ²		0.50 KN/m ²
30º Imposed Load	0.60 KN/m ²		
	1.60 KN/m ²		
FLAT ROOF	KN/m ²	TIMBER FLOORS	KN/m ²
Felt	0.25	Boards	0.20
Boards	0.25	Joists	0.10
Joists & firrings	0.15	Ceiling	<u>0.30</u>
Ceiling	<u>0.15</u>	D. L.	0.60 KN/m ²
D. L.	0.80 KN/m ²	I. L.	1.50 KN/m ²
L.L.	0.75 KN/m ²		2.10 KN/m ²
	1.55 KN/m ²		
200 RIBDECK	KN/m ²		
Finish	1.90		
Self Weight	<u>4.10</u>		
D. L.	6.00 KN/m ²		
I. L.	1.50 KN/m ²		
	7.50 KN/m ²		
MASONRY	KN/m ²		
102 Brick	2.20 KN/m ²		
100 lt. wt blk + (1 x plaster)	1.10 KN/m ²		
330 BRICK	6.80 KN/m ²		
215 BRICK	4.60 KN/m ²		

V&R	Project				Job Ref.		
VINCENT & RYMILL		20 WELLS ROAD LONDON NW3 1LH				17 J02	
VINICENT & DVMILL	Section		Sheet no./rev.				
VINCENT & RYMILL LAKESIDE COUNTRY CLUB		STRUCTRAL (2				
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY	TV	03/10/2017					

Project

20 WELLS ROAD NW3 ILH.

Job No.

Sheet No. 03

Made by: TV

Date: 007 2017

Checked by:

Portion

WALL LOADINGS

	
WALL A	. WALL = 8.5 × 6.8 = 57.80
	Resta 2.5 × 1.0 = 2.50
	Roof IL 2.5 × 6.6 = 1.50
	FLAT ROOFDL 2.1 × 0.8 = 1.75
	FLAT ROOF I. 2.1 × 0.6 = 1.30
	1st Fix 3.6 x 6.6 = 2.20
	1 st rul 1 3.6 × 1.5 = 5.40
	64.20 8.20 mm
	m.
3	
WALLB	WALL 3.5 × 3.5 = 12.30
	FLATRE DC 2.1 × 6.8 = 1.70
	FLAT RF IL 2.1 × 0.6 = 1.30
	14.00 1.30 Km
	Mu
WALL C.	WALL 3.5 x 3.5 x 0.6 = 7.4
	The state of the s
	$ReoFR$ $2 \times 1.0 = 2.0$ $ReoFI(. 2 \times 0.6 = 1.20$
	9.41m/n 1.20m/n
WALL D	1F /H
	WARE 8.5 × 6.8 = 57.80
	ROOF DL 1.5 × 1.0 = 1.50
	ROOF II. 1.5 × 0.6 = 0.90
	Tool 02 1.0 × 0.6 = 0.60
	FLOOR I. 1.0 × 1.5 = 1.50
	59.3mln 2.40mln
NALE	WALL 8.5 x 6.8 x 0.6 = 34.70
WALL E	WALL 8.5 × 6.8 × 0.6 = 34.70 ROSER 1.0 × 1.0 = 1.00
NALE	Roofa 1.0 × 1.0 = 1.00
WALE	Roof I 1.0 × 0.6 = 1.00
WALE	Roofa 1.0 × 1.0 = 1.00

Project

20 WELLS ROAD NW3 ILH.

Job No.

Sheet No. 04-

Made by: TV:

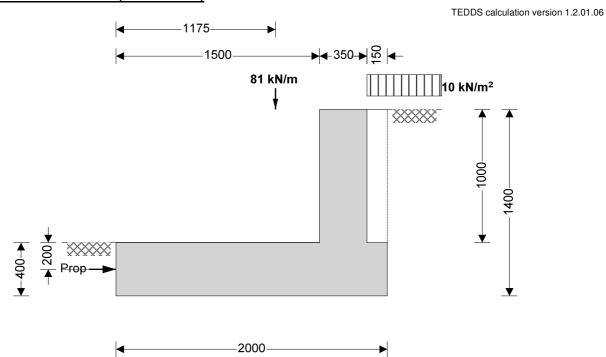
Date: OCT 2017.

Checked by:

Portion

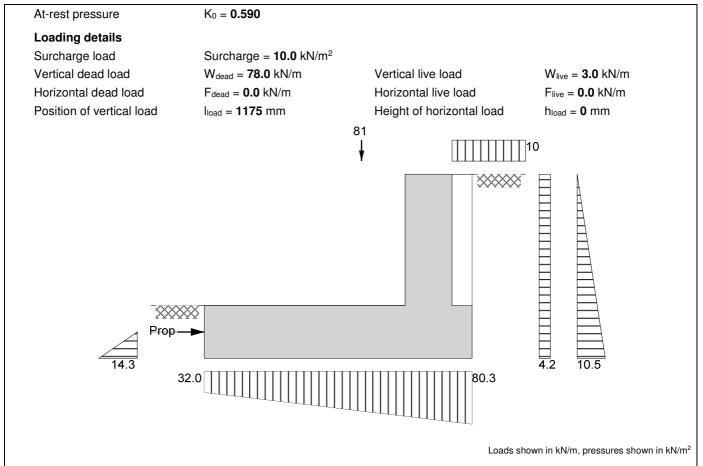
WALL WADINGS

WAL	G.	KIAL		8.	J	6.8	=	57.80		
- VAICE		The state of the s						5.00		
		Reof I		C	.,	6.6		3.00		
				7					3.00	
		Floor	The second second					the state of the s		
		TOOK	-	7. (- ^	. 1.7	=			
	T			-	_					
NAIL	J,	WALL	=	3.	2 ×	(32	•	12.50	SWI-	
WALL	V			, ,		2 (
WALC		WALL					in more made	the contract of the same and th		
								1.80		
		TUL I	=	> ×	١.	. 7			4.50	
							lo	1.9Wh	4.50 m/c.	
					_					
								1		
			-							
-										
			-	-						


V & R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY BASEMENT CALCS				5	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

BASEMENT WALL AND BASE DESIGNS

WALL G – PARTY WALL


RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

wan uctans			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 1000 mm	Wall stem thickness	$t_{wall} = 350 \text{ mm}$
Length of toe	l _{toe} = 1500 mm	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	l _{base} = 2000 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	$h_{wall} = 1400 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	$l_{ds} = 1050 \text{ mm}$		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 0 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ_{wall} = 23.6 kN/m ³	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	$h_{\text{eff}} = 1400 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = \textbf{18.0} \text{ kN/m}^3$	Saturated density	$\gamma_s = \textbf{21.0} \text{ kN/m}^3$
Design shear strength	$\phi' = 24.2 \text{ deg}$	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	$K_p = 4.187$

V&R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	P		6			
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

Calculate propping force

Propping force $F_{prop} = 0.0 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 112.3 kN/m Distance to reaction $x_{\text{bar}} = 1143 \text{ mm}$

Eccentricity of reaction e = 143 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 32.0 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 80.3 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project				Job Ref.	
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL	Section		Sheet no./rev.			
LAKESIDE COUNTRY CLUB	PI	RELIMINARY B		7		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

RETAINING WA	ALL DESIGN	(BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 0.0 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 89.0 \text{ kN/m}$ Moment at heel $M_{toe} = 76.2 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required A_s toe req = **536.1** mm²/m Area provided A_s toe prov = **754** mm²/m

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.259 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.463 \text{ N/mm}^2$

 $v_{toe} < v_{c_{-}toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

As the moment is negative the design of the retaining wall heel is beyond the scope of this calculation

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 75 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 16.9 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 10.6 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required $A_{s_stem_req} = 455.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

V & R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL	Section		Sheet no./rev.			
LAKESIDE COUNTRY CLUB	F	RELIMINARY B		8		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

Chack	chaar	resistance	at wall	etam
CHECK	Sileai	resistance	at wan	Stelli

Design shear stress $v_{stem} = 0.063 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_stem} = 0.534 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

Check retaining wall deflection

Max span/depth ratio $ratio_{max} = 14.00$ Actual span/depth ratio $ratio_{act} = 3.72$

PASS - Span to depth ratio is acceptable

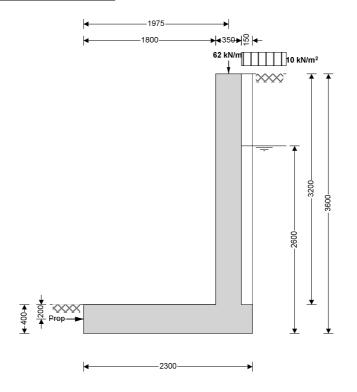
V&R	Project				Job Ref.	
VINCENT & RYMILL	2	17.	J02			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section			Sheet no./rev.		
	P	RELIMINARY B	ASEMENT CAL	.CS		9
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

Indicative retaining wall reinforcement diagram Stem reinforcement Heel reinforcement

Toe bars - 12 mm dia.@ 150 mm centres - $(754 \text{ mm}^2/\text{m})$

The design of the retaining wall heel is beyond the scope of this calculation!

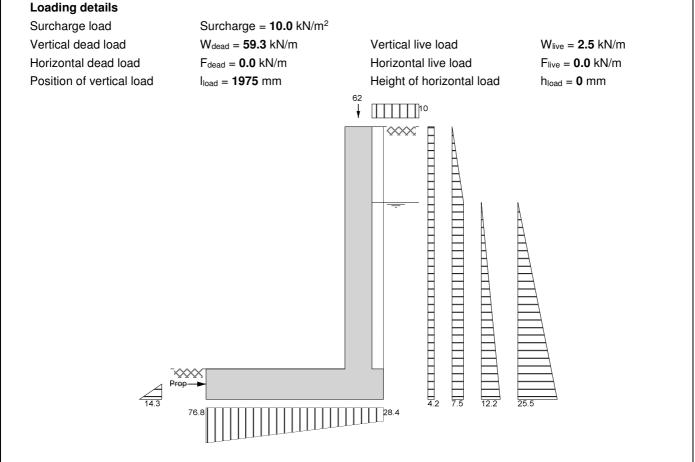
Stem bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)


V & R	Project			Job Ref.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	20 WELLS ROAD LONDON NW3				17.	J02
	Section			Sheet no./rev.		
	PRELIMINARY BASEMENT CALCS				10	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

WALL H - END WALL - WALL D SIMILAR

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)


TEDDS calculation version 1.2.01.06

		••
waii	deta	IIS

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{\text{wall}} = 350 \text{ mm}$
Length of toe	I _{toe} = 1800 mm	Length of heel	$I_{\text{heel}} = 150 \text{ mm}$
Overall length of base	l _{base} = 2300 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	$h_{wall} = 3600 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	$I_{ds} = 1900 \text{ mm}$		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 2600 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ_{wall} = 23.6 kN/m ³	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	$h_{eff} = 3600 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	γ_s = 21.0 kN/m ³
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = \textbf{0.0} \text{ deg}$
Design shear strength	φ'b = 24.2 deg	Design base friction	$\delta_{\text{b}} = \text{18.6 deg}$
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		

V&R	Project			Job Ref.		
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17	J02
VINCENT & DVMILI	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY BASEMENT CALCS				11	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

Loads shown in kN/m, pressures shown in kN/m²

Calculate propping force

Propping force $F_{prop} = 46.6 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 121.1 kN/m Distance to reaction $x_{bar} = 974 \text{ mm}$

Eccentricity of reaction e = 176 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 76.8 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 28.4 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project			Job Ref.		
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17.	J02
VINCENT & RYMILL	Section			Sheet no./rev.		
LAKESIDE COUNTRY CLUB	PRELIMINARY BASEMENT CALCS			12		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 46.6 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 144.5 \text{ kN/m}$ Moment at heel $M_{toe} = 195.9 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s_toe_req} = 1386.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.422 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.563 \text{ N/mm}^2$

*v*_{toe} < *v*_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 17.9 \text{ kN/m}$ Moment at heel $M_{heel} = 4.7 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

 $A_{s_heel_req} = \textbf{520.0} \text{ mm}^2/\text{m} \qquad Area provided \qquad A_{s_heel_prov} = \textbf{754} \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.052 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c heel = **0.463** N/mm²

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 20 WELLS ROAD LONDON NW3 17J02 Sheet no./rev. Section **VINCENT & RYMILL** PRELIMINARY BASEMENT CALCS 13 LAKESIDE COUNTRY CLUB Calc. by Date Date Chk'd by Date App'd by FRIMLEY GREEN 03/10/2017 SURREY TV

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 75 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{stem} = 25.4 \text{ kN/m}$ Moment at base of stem $M_{stem} = 151.5 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

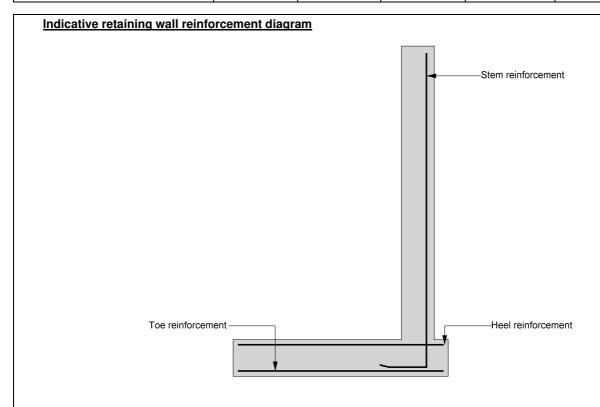
 $Area \ required \qquad \qquad A_{s_stem_req} = \textbf{1391.8} \ mm^2/m \qquad Area \ provided \qquad \qquad A_{s_stem_prov} = \textbf{2011} \ mm^2/m$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.095 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress


Concrete shear stress $V_{c_stem} = 0.744 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

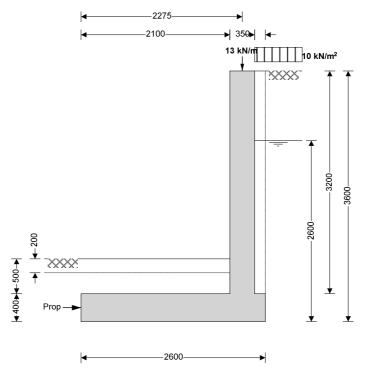
SURREY

Project			Job Ref.		
20 WELLS ROAD LONDON NW3			17.	J02	
Section			Sheet no./rev.		
PRELIMINARY BASEMENT CALCS				14	
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	03/10/2017				

Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

Heel bars - 12 mm dia.@ 150 mm centres - $(754 \text{ mm}^2/\text{m})$

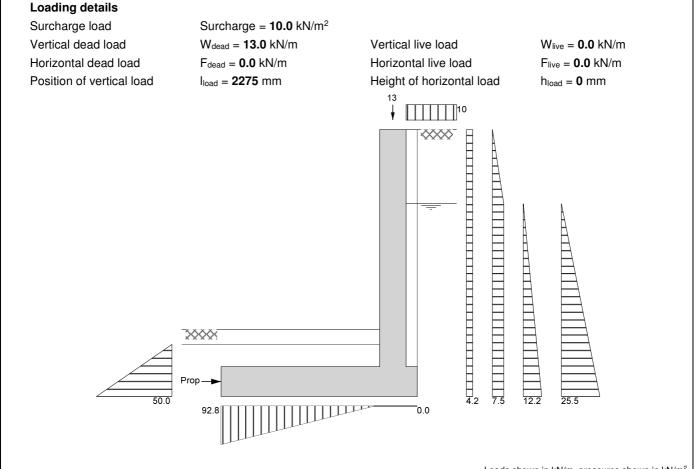
Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)


V&R	Project				Job Ref.	
VINCENT & RYMILL		20 WELLS ROA	17	J02		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section			Sheet no./rev.		
	F	PRELIMINARY B	ASEMENT CA	LCS		15
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

WALL J

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)


TEDDS calculation version 1.2.01.06

Wall	details
wan	ucians

D	a		
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{wall} = 350 \text{ mm}$
Length of toe	$I_{toe} = 2100 \text{ mm}$	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	l _{base} = 2600 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	l _{ds} = 1900 mm		
Depth of cover in front of wall	d _{cover} = 500 mm	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 2600 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{base} = 23.6 \text{ kN/m}^3$
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} = 18.0 \text{ kN/m}^{3}$	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ'b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = \textbf{18.0} \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$	·	

V & R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section	Sheet no./rev.				
	PRELIMINARY BASEMENT CALCS					16
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

Loads shown in kN/m, pressures shown in kN/m 2

Calculate propping force

Propping force $F_{prop} = 45.1 \text{ kN/m}$

Check bearing pressure

R = 94.0 kN/mTotal vertical reaction Distance to reaction $x_{bar} = 675 \text{ mm}$

e = **625** mm Eccentricity of reaction

Reaction acts outside middle third of base

 $p_{heel} = 0.0 \text{ kN/m}^2$ Bearing pressure at toe $p_{toe} = 92.8 \text{ kN/m}^2$ Bearing pressure at heel

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project				Job Ref.	
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINICENT & DVMILL	Section		Sheet no./rev.			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY BASEMENT CALCS				17	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 45.1 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 88.3 \text{ kN/m}$ Moment at heel $M_{toe} = 208.9 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s \text{ toe req}} = 1481.4 \text{ mm}^2/\text{m}$ Area provided $A_{s \text{ toe prov}} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.258 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.644 \text{ N/mm}^2$

*v*_{toe} < *v*_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 17.9 \text{ kN/m}$ Moment at heel $M_{heel} = 4.7 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad A_{s_heel_prov} = 754 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.052 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c heel = **0.463** N/mm²

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 20 WELLS ROAD LONDON NW3 17J02 Sheet no./rev. Section **VINCENT & RYMILL** PRELIMINARY BASEMENT CALCS 18 LAKESIDE COUNTRY CLUB Calc. by Date Date Chk'd by Date App'd by FRIMLEY GREEN 03/10/2017 SURREY TV

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem C_{stem} = **75** mm Cover in wall c_{wall} = **50** mm

Design of retaining wall stem

Shear at base of stem $V_{stem} = 27.4 \text{ kN/m}$ Moment at base of stem $M_{stem} = 151.5 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

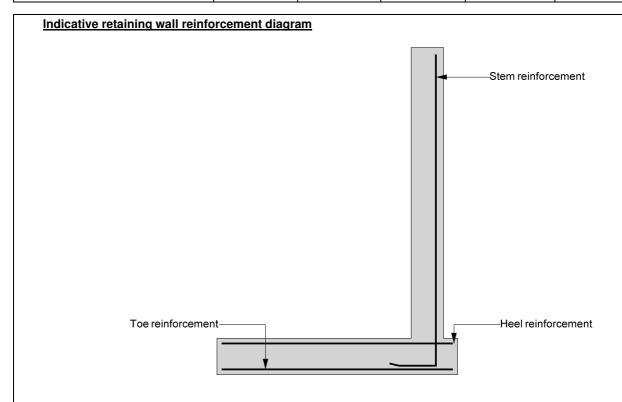
Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s_stem_req} = 1391.8 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = 0.103 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$


PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_stem} = 0.744 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

V&R VINCENT & RYMILL	
VINCENT & RYMILL	
LAKESIDE COUNTRY CLUB	
FRIMLEY GREEN	
SURREY	

Project		Job Ref.				
	20 WELLS ROA	17.	J02			
Section				Sheet no./rev.		
PRELIMINARY BASEMENT CALCS					19	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	03/10/2017					

Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

Heel bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

V&R	Project		Job Ref.			
VINCENT & RYMILL VINCENT & RYMILL LAKESIDE COUNTRY CLUB	2	17J02				
	Section	Sheet no./rev.				
	PRELIMINARY BASEMENT CALCS				20	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

BASEMENT SLAB

UPLIFT = $2.6 \times 10 = 26 \text{KN/m}^2$

 $SWT + FINISH = 6.8KN/m^2$

DESIGN LOAD = 27KN/m² UPLIFT.

DowLOADING UNDER NORMAL CONDITION DESIGN LOAD = 12KN/m²

TOP REINFT

 $BM = 27 X 2.75^2 / 8 = 25.5 KN.m$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

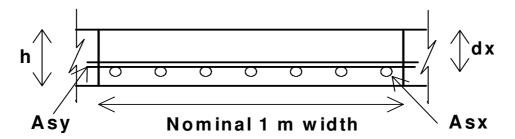
TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

Cover to tension reinforcement resisting sagging $c_b = 50 \text{ mm}$


Trial bar diameter $D_{tryx} = 10 \text{ mm}$

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 145 \text{ mm}$$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 26.0 \text{ kNm/m}$

V&R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINICENT O DVAILL	Section				Sheet no./rev.	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY BASEMENT CALCS				21	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 26.0 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.035$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 138 \text{ mm}$$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 16 \text{ mm}$

Area of tension steel required

$$A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 434 \text{ mm}^2/\text{m}$$

Tension steel

Provide 10 dia bars @ 100 centres outer tension steel resisting sagging

 $A_{sx_prov} = A_{sx} = 785 \text{ mm}^2/\text{m}$

Area of outer tension steel provided sufficient to resist sagging

TRANSVERSE BOTTOM STEEL - INNER

Inner layer of transverse steel

Provide 10 dia bars @ 100 centres

$$A_{sy_prov} = A_{sy} = 785 \text{ mm}^2/\text{m}$$

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 200000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

$$A_{st_min} = k \times A_c = 260 \text{ mm}^2/\text{m}$$

$$A_{st_max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$$

Steel defined:

Outer steel resisting sagging A_{sx_prov} = **785** mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **785** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $l_x = 2.750$ m

Design ultimate moment in shorter span per m width $m_{sx} = 26 \text{ kNm/m}$

Depth to outer tension steel $d_x = 145 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx_prov} = 785 \text{ mm}^2/\text{m}$

Area of tension reinforcement required Asx_req = 434 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Project Job Ref. 20 WELLS ROAD LONDON NW3 17J02 Section Sheet no./rev. **VINCENT & RYMILL** PRELIMINARY BASEMENT CALCS 22 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date FRIMLEY GREEN App'd by TV 03/10/2017 **SURREY**

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = 20

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 184.3 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **1.691**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 4.91 \text{ m}$

Check the actual beam span

Actual span/depth ratio $l_x / d_x = 18.97$

Span depth limit ratio_{span depth} × factor_{tens} = **33.83**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 200 mm

Effective depth to bottom outer tension reinforcement $d_x = 145.0$ mm

Diameter of tension reinforcement $D_x = 10 \text{ mm}$

Diameter of links $L_{diax} = 0$ mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 50.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} =$$
50.0 mm

Permissable minimum nominal cover to all reinforcement (Table 3.4)

 $c_{min} = 35 \text{ mm}$

Cover over steel resisting sagging OK

2 LAYERS A393 TOP

BOTTOM REINFORCEMENT

 $BM = 12 \times 2.75^2 / 8 = 11.4 \text{KN.m}$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

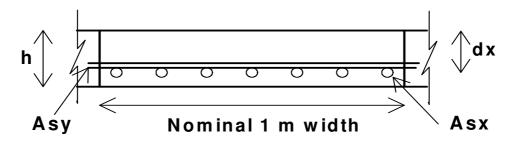
CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

Project Job Ref. 20 WELLS ROAD LONDON NW3 17J02 Section Sheet no./rev. **VINCENT & RYMILL** PRELIMINARY BASEMENT CALCS 23 LAKESIDE COUNTRY CLUB Calc. by Chk'd by Date FRIMLEY GREEN App'd by TV 03/10/2017 SURREY

Cover to tension reinforcement resisting sagging cb = 35 mm


Trial bar diameter $D_{tryx} = 10 \text{ mm}$

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 160 \text{ mm}$$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete fcu = 35 N/mm²

One-way spanning slab

(simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 12.0 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 12.0 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.013$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 152 mm$$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 18 \text{ mm}$

Area of tension steel required

$$A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 182 \text{ mm}^2/\text{m}$$

Tension steel

Provide 10 dia bars @ 200 centres outer tension steel resisting sagging

$$A_{sx_prov} = A_{sx} = 393 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

TRANSVERSE BOTTOM STEEL - INNER

Inner layer of transverse steel

Provide 10 dia bars @ 200 centres

V&R	Project		Job Ref.			
VINCENT & RYMILL	20 WELLS ROAD LONDON NW3				17J02	
VINCENT & RYMILL	Section		Sheet no./rev.			
	PRELIMINARY BASEMENT CALCS				24	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY	TV	03/10/2017				

 $A_{sy_prov} = A_{sy} = 393 \text{ mm}^2/\text{m}$

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 200000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

 $A_{st min} = k \times A_c = 260 \text{ mm}^2/\text{m}$

 $A_{st max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$

Steel defined:

Outer steel resisting sagging A_{sx prov} = 393 mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **393** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $l_x = 2.750 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 12 \text{ kNm/m}$

Depth to outer tension steel $d_x = 160 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx\ prov} = 393\ mm^2/m$

Area of tension reinforcement required Asx_req = 182 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = **20**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

 $f_{\text{s}} = 2 \times f_{\text{y}} \times A_{\text{sx_req}} \, / \, \left(3 \times A_{\text{sx_prov}} \times \beta_{\text{bx}} \, \right) = \text{154.0 N/mm}^2$

factor_{tens} = min (2, 0.55 + (477 N/mm² - f_s) / (120 × (0.9 N/mm² + m_{sx} / d_x^2))) = **2.000**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 6.40 \text{ m}$

Check the actual beam span

Actual span/depth ratio $l_x / d_x = 17.19$

Span depth limit ratio_{span depth} × factor_{tens} = **40.00**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 200 mm

Effective depth to bottom outer tension reinforcement $d_x = 160.0$ mm

Diameter of tension reinforcement $D_x = 10 \text{ mm}$

Diameter of links Ldiax = 0 mm

Cover to outer tension reinforcement

V&R	Project		Job Ref.	Job Ref.			
VINCENT & RYMILL VINCENT & RYMILL LAKESIDE COUNTRY CLUB		20 WELLS ROAD LONDON NW3				17J02	
	Section		Sheet no./rev.	Sheet no./rev.			
	PRELIMINARY BASEMENT CALCS					25	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY	TV	03/10/2017					

Ctenx =	h	- d _^ -	D_{v}	2 =	35.	O	mm

Nominal cover to links steel

 $c_{nomx} = c_{tenx} - L_{diax} = 35.0 \text{ mm}$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

 $c_{min} = 35 \text{ mm}$

Cover over steel resisting sagging OK

A393 BOTTOM