Camley Street Natural Park 12 Camley Street London N1C 4PW

Combined Geotechnical, Preliminary and Quantitative Contamination Risk Assessment and Waste Classification Report

Report No. R17-12131

June 2017

Report prepared for the benefit of:

London Wildlife Trust Dean Bradley House Horseferry Road London SW1P 2AF

Document Control					
Report Section	Prepared By	Approved By			
Preliminary Ground Contamination Risk Assessment	AMadisente	then the min			
ASSESSITIETT	Alex Minchell-Bewick BSc MSc DIC AIEMA MIEnvSc CEnv	Steven McSwiney BA mod Geol MSc FGS			
Factual Section	R Walk	then the mon			
	Rebecca Webb BSc FGS	Steven McSwiney BA mod Geol MSc FGS			
Geotechnical Assessment	R Walk	then the min			
Assessment	Rebecca Webb BSc FGS	Steven McSwiney BA mod Geol MSc FGS			
Ground Contamination Risk Assessment	AMadisente	thenthemin			
	Alex Minchell-Bewick BSc MSc DIC AIEMA MIEnvSc CEnv	Steven McSwiney BA mod Geol MSc FGS			

Revisions						
Reference	Revised By	Approved By	Date			

Limitations

This report was **prepared specifically for the Client's project and may not be appropriate to alternative schemes. The** copyright for the report and licence for its use shall remain vested in Ashdown Site Investigation Limited (the Company) who disclaim all responsibility or liability (whether at common law or under the express or implied terms of the Contract between the Company and the Client) for any loss or damage of whatever nature in the event that this report is relied on by a third party, or is issued in circumstances or for projects for which it was not originally commissioned.

The risk assessment presented in this **report follows 'source**-pathway-**receptor' techniques for the determination of** whether a site is contaminated. This is standard practice in the UK, being intrinsic to Part 2A of the Environmental Protection Act 1990 as amended.

The report considers the proposed end users as the most sensitive human health receptors. If significant risks to construction workers are identified by the preliminary assessment attention is drawn to this, although it is noted that no assessment of risk from acute exposure has been undertaken in this connection.

This report is not intended to be either an ecological, archaeological or flood risk assessment. An appropriate specialist should be consulted about any concerns that may arise in this regard.

EXECUTIVE SUMMARY

The following presents a summary of the main findings of the ground investigation. It is emphasised that no reliance should be placed on any individual point until the whole of the report has been read as other sections of the report may put into context the information contained herein.

It is proposed to demolish and rebuild the visitor centre at Camley Street Natural Park, Camley Street, London.

The site currently contains a prefabricated wooden building used as a visitor centre for the Camley Street Natural Park.

The site formerly comprised part of a larger area of Coal Shoots. These were demolished by the time of the 1968 map and the site was referred to as a nature park by the 1987 map review.

Reference to geological datasets indicates that the site is expected to be underlain by the London Clay Formation. The ground investigation confirmed the underlying soils to comprise a significant thickness of made ground, overlying the undisturbed soils of the London Clay Formation.

The London Clay Formation is classed as an Unproductive Stratum. The site does not lie within an Environment Agency Source Protection Zone with regard to the protection of the quality of groundwater that is abstracted for potable supply.

The preliminary contamination risk assessment identified potential complete pollutant linkages relating to the proposed end users due to the historical use of the site.

The ground investigation identified the presence of asbestos materials within the made ground soils present beneath the site. The depth of made ground recorded also represents a potential source of ground gas generation.

Further works are recommended to allow a more detailed assessment of the risk posed to the proposed development.

Precautions against shrinkage and heave for any new foundation system (pile caps and ground beams etc.) should assume a low volume change potential for the fine grained made ground soils and a high volume change potential for the London Clay Formation soils.

Given the significant thickness of made ground encountered and the depth to the competent soils of the London Clay Formation, present at a depth of around 3.5m, it is recommended that piled foundations should be adopted. Indicative pile capacities are included in the body of the report.

A DS-4 Design Sulfate Class and an AC-3s ACEC classification should be assumed as a minimum for the design of concrete in contact with the ground.

In view of the significant thickness of made ground, it is recommended that ground floors should be suspended.

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	WALKOVER SURVEY	2
3.	ENVIRONMENTAL AND GEO-ENVIRONMENTAL DATA REVIEW	2
3.1	Geological and Hydrogeological Information	2
3.2	Agency & Hydrological Data	4
3.3	Waste	4
3.4	Hazardous Substance	4
3.5	Industrial Land Use	4
3.6	Sensitive Land Use	4
4.	HISTORICAL MAP REVIEW	5
5.	PRELIMINARY CONTAMINATION RISK ASSESSMENT	6
5.1	Introduction	6
5.2	Basis of Assessment	6
5.3	Potential Contamination Sources Identified	7
5.4	Preliminary Conceptual Model	7
6.	GROUND INVESTIGATION	9
6.1	Introduction	9
6.2	Exploratory Holes	9
6.3	Sampling	9
6.4	In Situ Testing	10
6.5	Installations	10
6.6	Laboratory Testing	10
7.	GROUND CONDITIONS	12
7.1	Stratigraphy	12
7.2	Stability Croundwater Conditions	12
7.3 7.4	Groundwater Conditions Existing Foundations	12 12
8.	GEOTECHNICAL ASSESSMENT	13
8.1 8.2	Foundations Groundwater	13 15
0.2 8.3	Stability of Excavations	15
8.4	Aggressivity to Concrete	16
8.5	Ground Floors	16
9.	QUANTITATIVE CONTAMINATION ASSESSMENT	17
9.1	Assessment Strategy	17
9.2	Analysis of Contamination Test Results	17
9.3	Quantitative Contamination Risk Assessment	20
9.4	Risks to Other Potential Receptors	22
9.5	Recommendations	22
9.6	Handling and Disposal of Waste	23

FIGURES AND APPENDICES

FIGURES

Figure 1Site Location PlanFigure 2Exploratory Hole Location PlanFigure 3Foundation Details

APPENDIX A

Assessment Area

APPENDIX B

Site Walkover Photographs

APPENDIX C

Exploratory Hole Notes In Situ Testing Notes Exploratory Hole Records DPSH-B Dynamic Probe Records

APPENDIX D

Geotechnical Laboratory Testing Notes Geotechnical Test Results Contamination Test Results

APPENDIX E

Classification of Probability, Consequence and Risk

1. INTRODUCTION

It is proposed to demolish and rebuild the visitor centre at Camley Natural Park, 12 Camley Street, London.

Ashdown Site Investigation Limited was requested to provide an estimate for carrying out a combined geotechnical and ground contamination risk assessment of the area of proposed redevelopment by Ian Jupp of Huntley Cartwright. The scope of the works allowed for and the terms and conditions under which the works were to be undertaken were set out within the offer letter Q17-5880, dated 7th April 2017. The instruction to proceed was received on behalf of the client, London Wildlife Trust, Dean Bradley House, Horseferry Road, London, SW1P 2AF by means of a signed order, dated 18th April 2017.

The objectives of the works were to:

- a) Establish the expected geology, hydrogeology and hydrology at the site;
- b) Ascertain the development history and current site use;
- c) Develop a preliminary conceptual model of the site identifying potential complete pollutant linkages relating to end users of the proposed development works, to controlled waters beneath and in the vicinity of the site, or to other off-site sensitive receptors, if identified;
- d) Investigate the ground and groundwater conditions in the area of the proposed development;
- e) Investigate the form of foundations to existing structures;
- f) Provide advice to assist others in undertaking design of foundations and ground floors;
- g) Test for the presence of contaminants identified by the preliminary conceptual model; and
- h) Develop a quantitative conceptual model of the site, refining the preliminary model to identify any remaining pollutant linkages.

The preliminary conceptual model has been based on the findings of a walkover survey and reference to historical Ordnance Survey maps and published geological and environmental information obtained from various sources.

Copies of the historical maps and geo-environmental data referred to in this report are included in a separate volume¹.

¹ Geo-Environmental Data and Historical Maps (Ashdown Site Investigation Limited, Report Number R17-12131/map, dated May 2017.

2. WALKOVER SURVEY

The site under assessment comprises an irregular shaped plot of land located within the north western part of the wider Camley Street Natural Park. The extent of the area within which the assessment was requested to be carried out is shown on the plan presented as Appendix A. It is noted that the site boundary shown within the accompanying maps and data encompasses the entire park.

This area is centred on the approximate Ordnance Survey national grid reference TQ 2995 8351. A site location plan and site plan are presented as Figure 1 and Figure 2, respectively. Photographs taken during the walkover survey are included in Appendix A.

Access to the site is off Camley Street to the southwest. The park extends further to the southeast and the Grand Union Canal lies to its northeast. The north western part of the assessment area was hoarded off and inaccessible due to construction works being carried out on a new bridge spanning the canal.

The site contains a wooden prefabricated building used as a visitor centre for the park. A number of mature trees were present near the building and the ground around was surfaced with a mixture of woodchip, brick paviors and paving slabs.

3. ENVIRONMENTAL AND GEO-ENVIRONMENTAL DATA REVIEW

3.1 Geological and Hydrogeological Information

3.1.1 Expected Geology, Aquifer Designation & Groundwater Vulnerability

The stratigraphic unit that may be expected to underlie the site is presented in the following table.

Туре	Stratum	Aquifer Designation	Source Protection Zone
Bedrock	London Clay Formation	Unproductive Stratum	The site does not lie within an Environment Agency Source Protection Zone with regard to the protection of the quality of groundwater that is abstracted for potable supply.

Table 1. Expected Strata, Aquifer Designation and Description

3.1.1.1 London Clay Formation

The London Clay Formation comprises a blue grey silty clay, which tends to weather to brown near to the upper surface. With depth, the clay becomes very stiff/hard, is frequently fissured and can contain some inclusions and beds of weak mudstone and siltstone.

3.1.2 Groundwater and Surface Water Abstraction Licences

The closest groundwater abstraction licence is recorded to lie 336m to the east of the site and is recorded as being for a heat pump.

The closest surface water abstraction licence is recorded to lie 177m to the north west of the site but refers to water use within the Camley Street Nature Park.

3.1.3 Surface Water Features

The nearest recorded significant surface water feature is the Grand Union Canal located adjacent to site to the northeast.

The data states that the canal is reported to be "River Quality C".

3.1.4 Flooding

The site does not lie within an Environment Agency Flood Zone.

The site does not lie within an area where the British Geological Survey report a risk from groundwater flooding to be present.

3.1.5 Mining, Natural Ground Subsidence & Radon

Table 2.	Natural	Ground	Subsidence	Hazards
----------	---------	--------	------------	---------

Section	Risk Assessment		
Coal Mining Affected Areas	In an area that might not be affected by coal mining		
Non-Coal Mining Areas of Great Britain	No Hazard		
Potential for Collapsible Ground Stability Hazards	Very Low		
Potential for Compressible Ground Stability Hazards No Hazard			
Potential for Ground Dissolution Stability Hazards	No Hazard		
Potential for Landslide Ground Stability Hazards	Very Low		
Potential for Running Sand Ground Stability Hazards	No Hazard		
Potential for Shrinking or Swelling Clay Ground Stability Hazards Moderate			
Radon Affected Areas	The site is reported to be within an area where less than 1% of properties are at or above the action level requiring radon gas protection measures to be installed in new buildings.		
Radon Protection Measures	No radon protection measures are reported by the British Geological Survey to be necessary in the construction of new dwellings or extensions.		

It should be noted that the assessment provided within the data represents a generic assessment only.

Detailed assessment of the geotechnical characteristics of the soils encountered at the site is presented in Section 8 of this report.

3.2 Agency & Hydrological Data

The data has been reviewed and any entries referring to locations on, or in close proximity to, the site that may pose a potential risk are discussed within the following table.

Table 3. Agency & Hydrogeological Data

Section	Discussion
Pollution Incidents to Controlled Waters	A category 3 – minor incident is recorded within the canal, but no details as to when this occurred or what pollutants were involved is provided.

Following a review of the data, none of the other entries within this section are considered to pose a significant risk to the site.

3.3 Waste

The data has been reviewed and any entries referring to locations on, or in close proximity to, the site that may pose a potential risk are discussed within the following table.

Table 4.Waste Data

Section	Discussion
Licensed Waste Management Facilities	Two sites are listed on the opposite side of Camley Road to the south west. Both were licensed as waste transfer stations from around 1992 to 2001. These appear to relate to the redevelopment works around the Kings Cross/St Pancras area that took place around that time. This area has since been developed as part of the railway line.
Registered Waste Transfer Sites	The two sites referred to above are also identified here.

Following a review of the data, none of the other entries within this section are considered to pose a significant risk to the site.

3.4 Hazardous Substance

The data has been reviewed and none of the entries within this section are considered to pose a significant risk to the site.

3.5 Industrial Land Use

The data has been reviewed and none of the entries within this section are considered to pose a significant risk to the site.

3.6 Sensitive Land Use

The data has been reviewed and no sensitive land uses relevant to the proposed development have been identified within 500m of the site.

4. **HISTORICAL MAP REVIEW**

Historical Ordnance Survey maps covering the area of the site have been reviewed and are summarised in the following table.

It is noted that each map presents information applicable at the time of the survey (or revision date) and is subject to surveying and cartographic errors and/or advances. Revisions to maps are made at irregular intervals and it is possible that significant developments may have taken place on or within the vicinity of the site that are not shown on the maps.

'In the Vicinity of the Site' generally refers to features of relevance within approximately 250m of the site boundary, but may also include more distant features if considered to be pertinent to the assessment of the development history.

Table 5.	Summarv	of Significant	Features	Identified	on Historical Maps
rubic bi	Sannary	or orgrinicane	r cutures .	rachtenica	on motorical maps

Map Details	On-Site	In the Vicinity of the Site
1873 1:1,056	The site is occupied by part of a large Coal Shoot.	The Coal Shoot occupies the whole of the footprint of what is now the park. The "Imperial Gas Works" which includes a large number of gasometers and several retort houses, is present some 175m to the south east of the assessment site. The road to the south west is labelled as Cambridge Street. Further coal shoots are present on the opposite side of the road.
		The canal is shown to the north east.
1968 1:1,250	The coal shoots are no longer shown and the site is clear of structures.	The coal shoots on the opposite side of what is now labelled as Camley Street are also no longer shown.
1987 1:1,250	A structure is now shown on the footprint of the existing visitor centre building and the site is labelled as part of a "nature park" .	

5. PRELIMINARY CONTAMINATION RISK ASSESSMENT

5.1 Introduction

A preliminary risk assessment considers the potential sources of contamination identified, the receptors that may be present in view of the development proposals and the contaminant pathways by which these may be linked. A complete pollutant linkage is only deemed to exist where all three are present and a site is considered suitable for use where no complete pollutant linkages are identified.

Where a complete pollutant linkage is deemed to be present, an assessment of the level of risk associated with the pollutant linkage has been carried out in line with published guidance².

The level of risk is determined using the risk matrix presented in the following table. Classifications of probability, consequence and risk are presented in Appendix E.

			Probability				
		Very Low	Low	Moderate	High		
Consequence	Very Minor	Negligible	Very Low	Low	Low/Moderate		
	Minor	Very Low	Low	Low/Moderate	Moderate		
	Moderate	Low	Low/Moderate	Moderate	High		
	Severe	Low/Moderate	Moderate	High	Very High		

Table 6.Risk Assessment Matrix

5.2 Basis of Assessment

The assessment of risk has been made on the basis that the site will remain as part of a publicly accessible park, with a new visitor centre.

Should the proposed development plans be altered, a revised risk assessment may be required.

It is noted that an asbestos survey of the existing structure and infrastructure³ was beyond the brief of this report. The risk assessment has been undertaken on the basis that should asbestos be identified within buildings or infrastructure these materials will be removed appropriately by licensed contractors and asbestos materials disposed of in accordance with legal requirements prior to demolition or other works in order to avoid contaminating soils at the site.

The findings of the preliminary contamination assessment have been used to inform the ground investigation works which are discussed in the following section of the report.

² Contaminated Land Risk Assessment: A guide to good practice, CIRIA C552, 2001.

³ As defined under Section 5(a) of the Control of Asbestos Regulations, 2012.

5.3 Potential Contamination Sources Identified

The following potential sources of contamination have been identified by the preliminary contamination risk assessment:

- Historical use of the site as a Coal Shoot
- Historical demolition works

The Category 3 pollution incident is not considered to pose a significant risk to the site given the expected dispersion and flow of any contaminants away from the site.

The licensed waste management facilities and waste transfer sites are not considered to pose a significant risk to the site given that activities were likely to have been controlled under the terms of the licences and that the area has since been redeveloped.

5.4 Preliminary Conceptual Model

The preliminary conceptual model for the proposed development is presented in the following table.

Table 7. Preliminary Conceptual Model

Potential Sources Identified	Potential Contaminants	Receptor	Potential Pathways	Pathway Present?	Probability	Consequence	Overall Assessment of Risk	Pollutant Linkage Present?
			Dermal contact with soil and dust (indoor & outdoor)	Yes	High	Moderate	High	Yes
			Ingestion of soil and indoor dust	Yes	High	Moderate	High	Yes
	Heavy metals PAH compounds	Human Health	Consumption of home-grown produce and attached soil	No	Р	athway not pres	ent	No
Historical use of the site as a	Petroleum	(End Users)	Inhalation of soil dust (indoor and outdoor)	Yes	High	Moderate	High	Yes
coal shoot	Hydrocarbons Asbestos	Groundwater	Contamination of incoming services	Yes	Low	Minor	Low/Moderate	Yes
			Inhalation of soil vapours	Yes	Low	Minor	Low/Moderate	Yes
			Inhalation of soil gases/Risk of explosion	No	Contaminants do not pose a risk via this pathway			No
			Migration to groundwater	Yes	Very Low	Very Minor	Negligible	No
			Dermal contact with soil and dust (indoor & outdoor)	Yes	Moderate	Moderate	Moderate	Yes
			Ingestion of soil and indoor dust	Yes	Moderate	Moderate	Moderate	Yes
			Consumption of home-grown produce and attached soil	No	Р	Pathway not present		No
Historical Demolition Works	PAH compounds Asbestos	(End Users)	Inhalation of soil dust (indoor and outdoor)	Yes	Moderate	Moderate	Moderate	Yes
	ASDESIOS		Contamination of incoming services	No	Contaminan	te de pet pece a	rick via those	No
			Inhalation of soil vapours	No	Contaminants do not pose a risk via these		No	
			Inhalation of soil gases/Risk of explosion	No		pathways		No
		Groundwater	Migration to groundwater	Yes	Very Low	Very Minor	Negligible	No

6. **GROUND INVESTIGATION**

6.1 Introduction

The ground investigation comprised the excavation of two hand dug foundation inspection pits and the drilling of a dynamic sampler borehole. In view of the significant depth of made ground encountered at the site, a single gas monitoring standpipe was installed to enable future monitoring if required. The fieldwork was carried out on 9th May 2017. The exploratory hole locations are shown on Figure 2.

The locations of the exploratory holes were provided within the specification provided by Ian Jupp of Huntley Cartwright and indicated on the plan included in Appendix A. It is noted that at the time of the intrusive works the northern most part of the development area was hoarded/fenced off and being utilised as a compound for the construction of a new bridge over the Union Canal. Given that access was not permitted to this part of the site, the exploratory holes prescribed as TPO1 and BHO1 could not be excavated. However it is understood that a ground investigation, including the boring of a deep borehole, was undertaken within this northern part of the site as part of the bridge redevelopment works.

Descriptions of the strata encountered and comments on groundwater conditions are shown in the exploratory hole records given in Appendix C, together with notes to assist in their interpretation.

6.2 Exploratory Holes

6.2.1 Dynamic Sampler Borehole

A single borehole (designated BH02) was drilled to a depth of 10m below ground level.

The borehole was formed by a series of 1.0m long, open ended, hollow steel tubes of up to 100mm diameter, each containing a removable plastic liner. The tubes, progressively reducing in diameter, were driven into the ground by means of a track-mounted drop weight. Each tube was extracted from the ground using a hydraulically operated jack and the enclosed sample was recovered in its plastic liner.

The system enables sub-samples to be taken for detailed examination and laboratory testing.

6.2.2 Foundation Inspection Pits

Two pits (designated TPO2 and TPO3) were excavated using hand-tools to depths of 0.34m and 0.55m below ground level, respectively, to enable inspection of the foundations to the existing building.

6.3 Sampling

Disturbed samples of soil were taken at the depths shown in the exploratory hole records and were collected in plastic liners, plastic bags, plastic tubs or amber jars fitted with gas tight lids.

On collection the amber jars were stored in cool boxes with cooling blocks to maintain temperatures below 4°C until transferred to refrigerators upon return to the office and subsequently forwarded to the external accredited chemical testing laboratory.

6.4 In Situ Testing

The depths of in situ testing, together with the test results, are either given on the exploratory hole records or are summarised separately in Appendix C. Notes providing additional information on the tests performed are included in the appendix.

6.4.1 DPSH Dynamic Probe (Super Heavy) Testing

Continuous dynamic probe testing was undertaken adjacent to borehole BH02. The test was conducted to a depth of 10m below ground level using a super heavy DPSH-B⁴ probing geometry.

The DPSH-B configuration is similar to that of the standard penetration test (SPT); the main differences being that the tip comprises a 90° cone, the driving rods are lighter than those used for SPT testing and the blow counts are recorded over 100mm increments rather than 300mm, as is the case for the SPT.

The blow counts recorded and the calculated dynamic point resistances, which account for inertia of the anvil and driving rods, are presented on the borehole records and separately in Appendix C.

6.4.2 Undrained Shear Strength

Undrained shear strength determinations were made in situ within the fine-grained soils using a Geonor hand shear vane. Additionally, undrained shear strength determinations were made within samples of the fine grained soils held in the dynamic sampler liners using a hand penetrometer.

6.5 Installations

In view of the significant depth of made ground encountered a gas monitoring standpipe was installed within borehole BH02 to a depth of 3.5m to enable future monitoring if required. A description of the installation is shown on the exploratory hole record in Appendix C.

6.6 Laboratory Testing

Laboratory testing was scheduled by Ashdown Site Investigation Ltd. Results from the laboratory tests are provided in Appendix D.

⁴ As defined by BS EN ISO 22476-2:2005.

ASHDOWN SITE INVESTIGATION

6.6.1 Geotechnical Testing

Geotechnical testing was undertaken by Ashdown Site Investigation Ltd in accordance with the methods given in BS1377⁵. Chemical testing to enable classification of the chemical environment of soils in accordance with BRE SD1⁶ was undertaken by an external UKAS accredited laboratory. Notes to assist with the interpretation of the tests are contained within Appendix D.

6.6.2 Chemical Testing

Chemical testing of selected samples was undertaken by a laboratory with recognised (UKAS and MCERTS) accreditation for quality control.

⁵ BS1377:1990 Parts 1 to 8, Methods of test for soils for civil engineering purposes.

⁶ BRE Special Digest 1:2005 Concrete in Aggressive Ground.

7. GROUND CONDITIONS

7.1 Stratigraphy

7.1.1 Surface Covering

Each of the exploratory holes was excavated through a surface cover of wood chippings some 50mm to 150mm in thickness.

7.1.2 Made Ground

Made ground, generally comprising gravelly sandy clay was recorded to the full depth of TPO2 and TPO3, and to a depth of 3.5m below ground level within borehole BHO2. The gravel fraction comprised variable quantities of brick, concrete, slate, chalk, clay tile, ceramic tile, metal, glass, shell, flint and clinker-like material.

Underlying the existing timber structure a layer of sandy gravel of crushed concrete, brick and flint material was encountered to a depth of 0.30m and 0.35m in trial pits TP02 and TP03, respectively.

7.1.3 London Clay Formation

Beneath the made ground the dynamic sampler borehole encountered generally stiff to very stiff clay soils which continued to the full depth of the investigation.

These soils are considered to be representative of the London Clay Formation soils indicated on the published geology map.

7.2 Stability

Borehole BH02 collapsed to a depth of 8.0m on completion of drilling. The shallow hand dug pits were recorded to be stable during excavation.

7.3 Groundwater Conditions

Each of the exploratory holes was recorded to be dry during the short period of the intrusive works.

7.4 Existing Foundations

Details of the foundations exposed within the foundation inspection pits are included as Figure 3 of this report.

The existing timber structure appears to be supported on a layer of crushed material, possibly compacted when placed, recorded to be some 300mm and 250mm thick at the locations of TP02 and TP03, respectively. Beneath the crushed material layer, made ground soils were encountered.

8. GEOTECHNICAL ASSESSMENT

At the time of preparation of this report no specific development proposal for the site had been finalised, although it is understood that the development proposals will comprise the construction of a new single storey building to replace the existing building. No specific details were available concerning the specific loads likely to be applied to the foundations.

8.1 Foundations

8.1.1 Soil Shrinkage/Heave Potential

The fine-grained soils of the made ground and London Clay Formation have been classified as clays of intermediate and high plasticity and with modified plasticity indices of 11% and 43% the soils may be expected to exhibit a low and high volume change potential, respectively.

It is recommended that the design of precautions against shrinkage and heave for any new foundation system (pile caps and ground beams etc.) should assume a low volume change potential for the fine grained made ground and a high volume change potential for the London Clay Formation soils and take into account current guidance such as that given by the Building Research Establishment (BRE)⁷ or the National House Builders Council (NHBC)⁸.

Whilst this report has been prepared to provide advice to assist designers in undertaking detailed design, the report itself does not represent a detailed design statement. It is recommended that an arboricultural survey of the site should be conducted to establish the species and maturity of the existing trees in the areas of the proposed new buildings. The survey should be extended to include a review of historical photographs and detailed site plans (if available) to establish the species and location of any felled trees that may affect foundation design. The information obtained from the arboricultural survey, information on proposed planting schemes and the findings of this report should be provided to the structural engineer responsible for the detailed design of foundation systems, including assessment of requirements for sleeving or reinforcing of piled foundations and requirements for placement of void formers et cetera.

8.1.2 Spread Foundations

All made ground and any soils disturbed by the construction or removal of any previously existing foundations or services should be regarded as being variable in nature and state of compaction and, as such, unsuitable as a founding medium for shallow footings.

Given the significant thickness of made ground encountered and the depth to the competent soils of the London Clay Formation, encountered at some 3.5m depth, the construction of conventional spread foundations at this site is unlikely to be a viable option.

⁷ www.bre.co.uk : BRE Digests 40, 241 and 242, Low rise buildings on shrinkable clay soils, parts 1, 2 and 3; and BRE Digest 298, The influence of trees on house foundations in clay soils and BRE Digest 412, Desiccation in clay soils.

⁸ <u>http://www.nhbc.co.uk/</u> : NHBC Standards, Chapter 4.2.

8.1.3 Piled Foundations

In view of the depth of made ground beneath the site it is recommended that a piled foundation should be adopted, with the underlying London Clay Formation deposits providing support to piled foundations by a combination of side adhesion (skin friction) and end bearing.

The proven ground conditions would indicate that bored piles could be employed to provide a suitable foundation solution. However, the method of installation would have to accommodate the presence of potential relict structural obstructions and/or naturally occurring hard strata that were recorded within the borehole/dynamic probe undertaken. In addition, the selection of piling techniques should consider access constraints applicable to particular plant and potential vibration effects on existing services, structures, roadways and the canal bank.

Depending on the method employed it is considered likely that driving displacement (driven) piles through the very stiff soils and claystone layers would prove difficult and could be disruptive to nearby structures and services.

For the purpose of this initial discussion and for reasons given above, consideration has been given to the adoption of bored piles, the use of which would prove beneficial as, this method enables temporary steel casing to be installed to stabilise the pile bore and a range of boring tools, including chisels, can be employed to progress pile bores through difficult ground. The use of bentonite slurry may be required where high groundwater pressures are encountered within sand horizons in order to avoid sand rising within the pile bore.

Calculations to determine illustrative working loads for axially loaded piles have been undertaken; each calculation assuming a single pile acting in compression. Indicative capacities are presented in the following table. Available capacities may vary for piles acting in tension.

The soil profile assumed for these calculations has been based on examination of the recovered samples and the results of in situ and laboratory testing. A modelled ground profile comprising made ground to a depth of 3.5m overlying stiff to very stiff clays has been adopted. Groundwater has been assumed to be present below the base of the piles.

In consideration of the presence of made ground, which may be highly variable and compressible, the benefit of shaft resistance within the upper 3.5m has been discounted.

Working Loads of Piles (kN)					
	Size (mm)				
Length (m)	250	300	450		
8	150	185	320		
10	205	255	425		

Table 8. Indicative Axially Loaded Pile Working Capacities

Notes:

The structural strength of the concrete used in construction may limit the available working loads of the piles. Indicated pile lengths are from existing ground level. A factor of safety of 3.0 has been applied. The benefit of shaft resistance within the upper 3.5m has been discounted.

Working capacities for pile groups should be assessed when final design details are known, although for preliminary design purposes it is likely that piles spaced at least 3 x pile diameter from other piles in any group will behave as single piles.

Where preliminary and working pile load tests are undertaken it may be appropriate to reduce Safety Factors, although 2.5 may be a minimum local authority requirement. Should testing not be undertaken it is suggested that a factor of safety of at least 3.0 should be adopted.

For all piling options it is recommended that the advice of specialist foundation contractors should be sought at the earliest opportunity and that piling specifications should be obtained with reference to their particular products as this may affect the calculated pile capacity. The piling contractor is likely to require ground investigation data to a depth at least 5m below the base of piles, which given the depth of made ground encountered may necessitate further ground investigation works.

8.1.4 Alternative Foundation Systems

Various specialist foundation systems, including stone and concrete columns, are marketed by specialist foundation contractors, some of which may be suitable for use at this site. Specialist contractors should be consulted about the applicability of their specific foundation systems to this site.

8.2 Groundwater

Whilst groundwater was not encountered during the short period of the intrusive works the potential for perched groundwater to be present, for example within the made ground, should not be overlooked. It is also possible that heavy precipitation during construction could lead to the ingress of perched groundwater or surface water run-off into excavations. In such circumstances it would be expected that water entering into excavations would be adequately managed by pumping from sumps.

8.3 Stability of Excavations

All made ground soils exposed in excavations should be assumed to be unstable, even in the short term. Where stable excavations are required, excavations should either be suitably supported or side slopes should be battered back to a safe angle of repose.

All excavations requiring human entry must be shored or battered as necessary to conform to current best practice, as accepted by the Health and Safety Executive (HSE)⁹. Current legislation requires that where personnel access is required into any excavation a competent person must inspect excavation supports or battering of slopes at the start of the working shift and at other specified times. No work should take place until the excavation is safe. Excavations should also be inspected after any event that may have affected their stability, such as a significant weather event, changes in surcharge loadings imposed by temporary storage of materials or changes in site traffic plans or alteration of support systems. Inspections should be formally recorded and any faults that are found should be corrected immediately.

Particular attention must be paid to ensuring the stability of nearby structures, services and neighbouring sites as well as the road frontages/canal.

⁹ Relevant guidance is given on the HSE website, <u>www.hse.gov.uk</u>

8.4 Aggressivity to Concrete

The aggressivity of the soils to concrete has been assessed in accordance with guidance published by the BRE¹⁰.

In consideration of the soils encountered beneath the site and its historical usage it is recommended that 'brown field conditions' should be assumed for the purpose of assessing the aggressivity of the chemical environment for concrete classification (ACEC class). Given that groundwater was not encountered, 'static groundwater' conditions may be assumed.

Assessment of the chemical analysis of the soil indicates a sulphate content falling into Design Sulfate Classes DS-2 and DS-5 of Table C2. The results of the pH tests indicate that the underlying soils are alkaline.

In accordance with the digest, a DS-4 Design Sulfate Class and an AC-3s ACEC classification should be assumed as a minimum for the design of concrete in contact with the ground.

8.5 Ground Floors

In view of the significant thickness of made ground, it is recommended that ground floors should be suspended.

¹⁰ BRE Special Digest 1:2005 Concrete in Aggressive Ground.

9. QUANTITATIVE CONTAMINATION ASSESSMENT

9.1 Assessment Strategy

The design of the ground investigation was specified by the client. As discussed in section 6, due to bridge construction works taking place in the northern part of the assessment site, no intrusive works were permitted to be carried out in this area.

The potential sources identified by the preliminary risk assessment could result in contamination being present anywhere on the site. The limited number of non-targeted sampling positions completed is considered sufficient to enable an initial quantitative contamination assessment of risk posed to end users of the site but further works would be required to inform a more detailed assessment of risk.

9.2 Analysis of Contamination Test Results

The results of the testing carried out on the made ground soils encountered beneath the site have been compared with generic soil screening values (SSVs) comprising the 'Suitable For Use Levels' (S4ULs) calculated as a joint project between LQM and CIEH¹¹. In lieu of an S4UL screening value for lead, the Category 4 Screening Level (C4SL) was used, as published within SP1010¹².

In view of the proposed development the assessment has been made against SSVs calculated **for the generic 'Public Park' (POS**_{park}) land use¹³. The POS_{park} land use is intended to be representative of an open space provided for recreational use. In modelling this land use it has been assumed to be a relatively large area of predominately grassed open space with no more than 25% of exposed soil. The critical receptor for this land use is considered to be a young female child using the site on a regular basis from birth to age 6.

It is noted that given that the soft covered areas present around the visitor centre are generally raised and fenced off, and are therefore not directly accessible by end users, the assumptions made for the generic land use are considered to be relatively conservative.

9.2.1 Heavy Metals and PAH compounds

The following table summarises the soil screening values along with the maximum and minimum concentrations for the heavy metals and PAH compounds tested for.

¹¹ The LQM/CIEH Suitable 4 Use Levels, 2015.

¹² SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Final Project Report, published by DEFRA, 2014.

¹³ SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Final Project Report, published by DEFRA, 2014.

Contaminant	SSV (mg/kg)	No. of Samples	Minimum Concentration (mg/kg)	Maximum concentration (mg/kg)	Limit of Detection (mg/kg)	No of exceedances	
Arsenic	170	5	13	22	< 2	0	
Water Soluble Boron	46000	5	<lod< td=""><td>2.4</td><td>< 1</td><td>0</td></lod<>	2.4	< 1	0	
Cadmium	555	5	<lod< td=""><td>0.5</td><td>< 0.2</td><td>0</td></lod<>	0.5	< 0.2	0	
Chromium	33000	5	12	41	< 2	0	
Hexavalent Chromium	220	5	<lod< td=""><td><lod< td=""><td>< 2</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 2</td><td>0</td></lod<>	< 2	0	
Copper	44000	5	20	70	< 4	0	
Lead	1300	5	25	423	< 3	0	
Mercury	240	5	<lod< td=""><td>2.9</td><td>< 1</td><td>0</td></lod<>	2.9	< 1	0	
Nickel	3400	5	12	46	< 3	0	
Selenium	1800	5	<lod< td=""><td><lod< td=""><td>< 3</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 3</td><td>0</td></lod<>	< 3	0	
Zinc	170000	5	70	278	< 3	0	
Naphthalene	1200	5	<lod< td=""><td>0.13</td><td>< 0.1</td><td>0</td></lod<>	0.13	< 0.1	0	
Acenaphthylene	29000	5	<lod< td=""><td><lod< td=""><td>< 0.1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td>0</td></lod<>	< 0.1	0	
Acenaphthene	29000	5	<lod< td=""><td><lod< td=""><td>< 0.1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td>0</td></lod<>	< 0.1	0	
Fluorene	20000	5	<lod< td=""><td><lod< td=""><td>< 0.1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td>0</td></lod<>	< 0.1	0	
Phenanthrene	6200	5	<lod< td=""><td>1.07</td><td>< 0.1</td><td>0</td></lod<>	1.07	< 0.1	0	
Anthracene	150000	5	<lod< td=""><td>0.21</td><td>< 0.1</td><td>0</td></lod<>	0.21	< 0.1	0	
Fluoranthene	6300	5	<lod< td=""><td>2.15</td><td>< 0.1</td><td>0</td></lod<>	2.15	< 0.1	0	
Pyrene	15000	5	<lod< td=""><td>1.84</td><td>< 0.1</td><td>0</td></lod<>	1.84	< 0.1	0	
Benz(a)anthracene	49	5	<lod< td=""><td>1.01</td><td>< 0.1</td><td>0</td></lod<>	1.01	< 0.1	0	
Chrysene	93	5	<lod< td=""><td>0.98</td><td>< 0.1</td><td>0</td></lod<>	0.98	< 0.1	0	
Benzo(b)fluoranthene	13	5	<lod< td=""><td>1.5</td><td>< 0.1</td><td>0</td></lod<>	1.5	< 0.1	0	
Benzo(k)fluoranthene	370	5	<lod< td=""><td>0.46</td><td>< 0.1</td><td>0</td></lod<>	0.46	< 0.1	0	
Benzo(a)pyrene	11	5	<lod< td=""><td>0.92</td><td>< 0.1</td><td>0</td></lod<>	0.92	< 0.1	0	
Indeno(123-cd)pyrene	150	5	<lod< td=""><td>0.58</td><td>< 0.1</td><td>0</td></lod<>	0.58	< 0.1	0	
Dibenz(ah)anthracene	1.1	5	<lod< td=""><td><lod< td=""><td>< 0.1</td><td>0</td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td>0</td></lod<>	< 0.1	0	
Benzo(ghi)perylene	1400	5	<lod< td=""><td>0.39</td><td>< 0.1</td><td>0</td></lod<>	0.39	< 0.1	0	
Arsenic	170	5	13	22	< 2	0	

Table 9. Summary of Test Results and Statistical Analysis for Heavy Metals and PAH Compounds

None of the concentrations of heavy metals or PAH compounds recorded exceeded the generic screening values.

9.2.2 Asbestos

Shallow samples of the made ground from the three intrusive positions carried out were screened for the presence of asbestos. The two samples taken from the foundation inspection pits recorded the presence of chrysotile and amosite fibres within the soil matrix.

9.2.3 Petroleum Hydrocarbons and BTEX compounds

Two samples of the made ground and one of the undisturbed London Clay Formation were tested for total concentrations of petroleum hydrocarbons within the results speciated by

aromatic and aliphatic equivalent carbon weight fractions. The samples were also tested for concentrations of BTEX compounds.

Samples of made ground taken from trial pits TP02 and TP03 were tested for total concentrations of petroleum hydrocarbons with the results speciated only by equivalent carbon weight fractions. Although full speciation of these results was not undertaken, the results of the testing undertaken can still be compared with the more stringent of the screening values for the respective equivalent carbon weight fraction and, where the concentration recorded is found to be lower, then it can be concluded that no significant risk is present.

The following table lists the screening values for petroleum hydrocarbon equivalent carbon weight fractions calculated for 1% organic content.

Table 10.	Soil Screening Values	for petroleum h	vdrocarbon	equivalent carbon	weight fractions
rubic 101	Son Screening Values	ioi pecioicaini n	y al ocal boll	equivalence carbon	Weight hactions

Petroleum Hydrocarbon Fraction	SSV (mg/kg)	Petroleum Hydrocarbon Fraction	SSV (mg/kg)
Aliphatic EC 5-6	95000	Aromatic EC 5-7	76000
Aliphatic EC >6-8	150000	Aromatic EC >7-8	87000
Aliphatic EC >8-10	14000	Aromatic EC >8-10	7200
Aliphatic EC >10-12	21000	Aromatic EC >10-12	9200
Aliphatic EC >12-16	25000	Aromatic EC >12-16	10000
Aliphatic EC >16-35	450000	Aromatic EC >16-21	7600
Aliphatic EC >35-44	450000	Aromatic EC >21-35	7800
		Aromatic EC >35-44	7800

Table 11. Soil Screening Values for BTEX Compounds

BTEX Compound	SSV (mg/kg)
Benzene	87000
Toluene	17000
Ethylbenzene	17000
p- Xylene ¹	17000

¹ Xylene has three structural isomers, the SSV presented is for p-Xylene, which has the most conservative SSV.

None of the samples recorded any concentrations of petroleum hydrocarbons or BTEX compounds above the generic SSV. No visual or olfactory evidence of suspected contamination was noted within the intrusive positions.

9.2.4 Ground Gases

No potential sources of ground gas were identified by the preliminary risk assessment. However, the intrusive investigation recorded the presence of a significant depth of made ground beneath the site. Reworked and fill materials, such as those encountered within the borehole, have the potential to act as a source of gas generation. A gas monitoring well was installed within borehole BH02, but monitoring of the well was beyond the scope of this investigation.

9.3 Quantitative Contamination Risk Assessment

9.3.1 Quantitative Conceptual Model

The quantitative conceptual model for the proposed development is presented in the following table.

Table 12. Quantitative Conceptual Model

Sources Identified	Contaminants	Receptor	Potential Pathways	Pathway Present?	Probability	Consequence	Overall Assessment of Risk	Pollutant Linkage Present?
Made Ground beneath the site gases			Dermal contact with soil and dust (indoor & outdoor).	No	Contaminants do not pose a risk via these pathways			No
			Ingestion of soil and indoor dust.	No				No
	Askastas	Human Health	Consumption of home-grown produce and attached soil.	No				No
	Potential ground	I ground (End Users)	Inhalation of soil dust (indoor and outdoor).	Yes	Low	Moderate	Low/ Moderate	Yes
	yases		Contamination of incoming services.	No	Contaminants do not pose a risk via these		No	
			Inhalation of soil vapours.	No	pathways		No	
			Inhalation of soil gases/Risk of explosion.	Yes	Low	Minor	Low	Yes
		Groundwater	Migration to groundwater.	No	Contaminants do not pose a risk via this pathway			No

9.4 Risks to Other Potential Receptors

The following general guidance is given with regard to other potential on site receptors, which may not necessarily be statutory drivers for remedial works.

As a minimum and in accordance with industry best practice all ground-workers should be issued with the appropriate PPE and should be instructed in safe working methods, particularly in view of the potential for asbestos to be encountered within the made ground soils.

As a precautionary measure instructions should be given in the recognition of potentially hazardous materials, including oily and odorous soil and water and discoloured or fibrous substances. Any oil-like substances contacting the skin must be washed off immediately using an appropriate cleanser. Operatives should be warned to avoid contact between hands and mouth before washing. The consumption of food and smoking must be confined to designated clean areas. Suitable welfare (washing) facilities should be provided. These precautions should be taken in addition to anything highlighted by a site specific risk assessment which should be undertaken by any contractor prior to commencing work.

A comparison of the test results from the made ground from across the site has been made against the screening criteria¹⁴ and indicates that the protection of water supply services is unlikely to be required. However it is noted that the testing undertaken to date does not encompass all of the contaminants that may be required by water supply companies for assessment purposes. Notwithstanding the above it is strongly recommended that designers consult with the proposed water supply company to ascertain whether they require further laboratory testing and assessment specific to proposed routes of services.

All site personnel should be appropriately briefed on what actions to take in the event that evidence of significant contamination is identified or suspected.

9.5 Recommendations

Complete and potentially complete pollutant linkages have been identified to be present at the site.

Given the source identified further works are recommended to allow a more detailed assessment of the risk to be made.

To assess the risk from ground gases, it is recommended that additional standpipes be installed and a programme of gas monitoring carried out to determine whether or not a significant risk from ground gases is present that would require some form of protection to be incorporated into the proposed building.

Given the presence of asbestos fibres within two of the three shallow samples of made ground tested, further assessment should be carried out to determine whether widespread asbestos contamination is present, or whether the contamination is limited to the made ground soils beneath the existing building where the two samples which recorded asbestos were taken from.

¹⁴ Set out within Table 3.1 of the Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites, UK Water Industry Research, 2010.

This additional testing would also assist with the waste classification as discussed in the following section.

9.6 Handling and Disposal of Waste

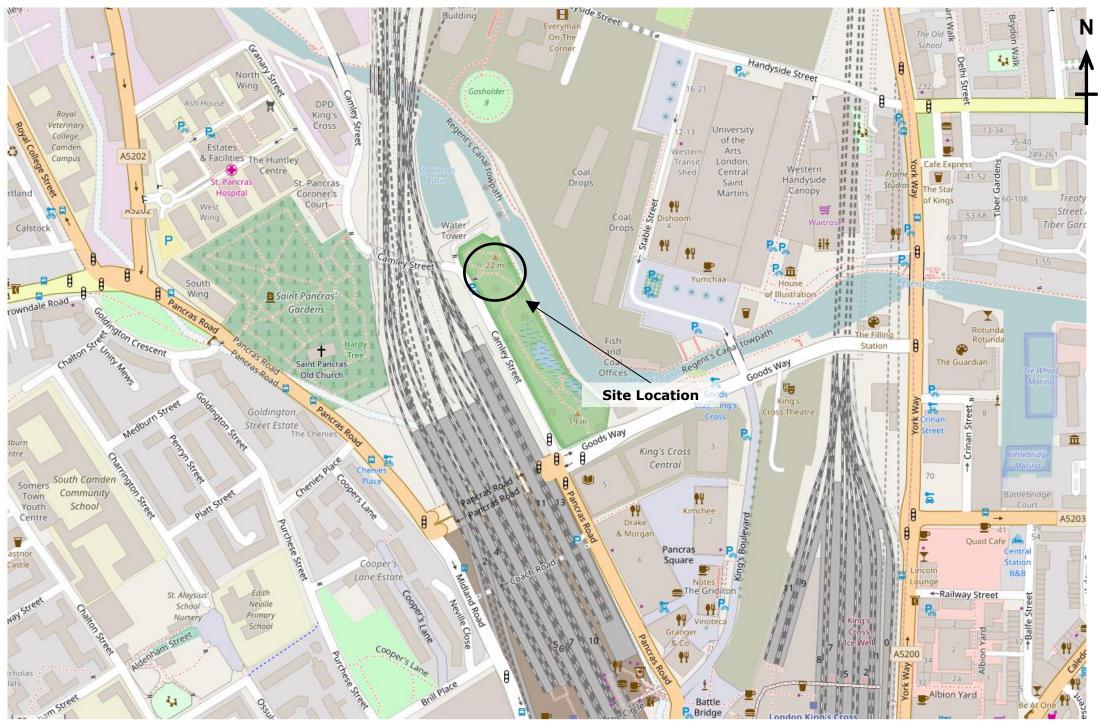
Soils and other materials taken for disposal should be handled, transferred and disposed of as controlled waste in accordance with current waste management and duty of care regulations and comply with current codes of practice¹⁵. Waste transfer notes detailing the site address, the waste type, details of the haulage contractor and full details of the disposal site must be kept.

Specifically, the disposal of any asbestos containing materials should be undertaken by appropriately trained personnel. The disposal of such material should be undertaken in accordance with the Hazardous Waste Regulations 2005, as amended.

Asbestos has been recorded within two of the three samples of made ground analysed. Quantitative analysis of the percentage of asbestos present by mass within the sample was beyond the scope of the assessment and therefore at this stage it should be assumed that any made ground soils to be disposed of will need to be classified as hazardous waste with a code from the list of wastes (LoW) of 17 05 03 due to the presence of asbestos within the soil matrix.

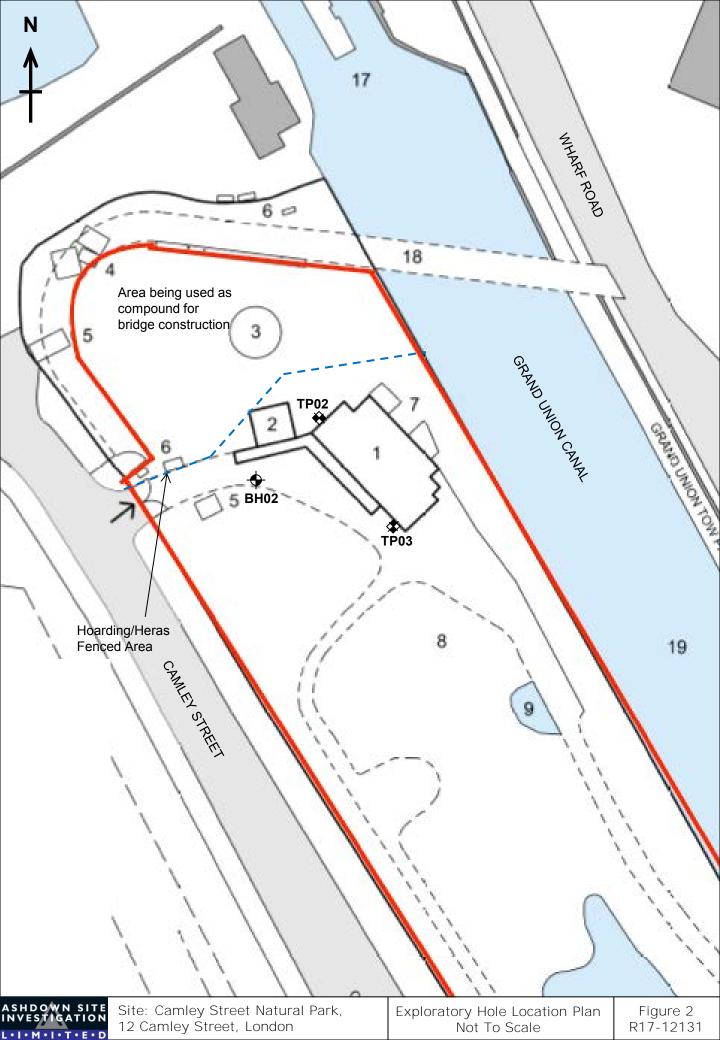
Further testing, as recommended within Section 9.5, could include quantitative analysis to determine the percentage of asbestos by mass within the made ground. If it can be shown that the percentage present is less than 0.1%, or that asbestos is only present at some locations, then it may be possible to demonstrate that the made ground soils could be classified as non-hazardous waste, or specific areas may be able to be delineated for disposal as hazardous waste.

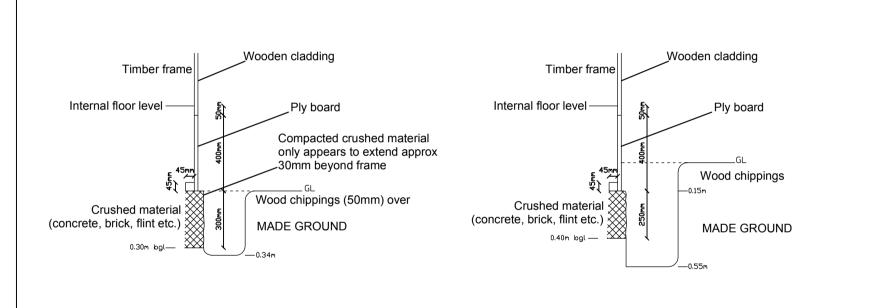
WAC testing was carried out on the sample taken from borehole BH02. This sample did not meet the criteria for inert waste.


Ashdown Site Investigation Ltd. June 2017

¹⁵ Waste Duty of Care Code of Practice, Dept. for Environment Food & Rural Affairs.

FIGURES


- Figure 1 Site Location Plan
- Figure 2 Exploratory Hole Location Plan Figure 3 Foundation Details

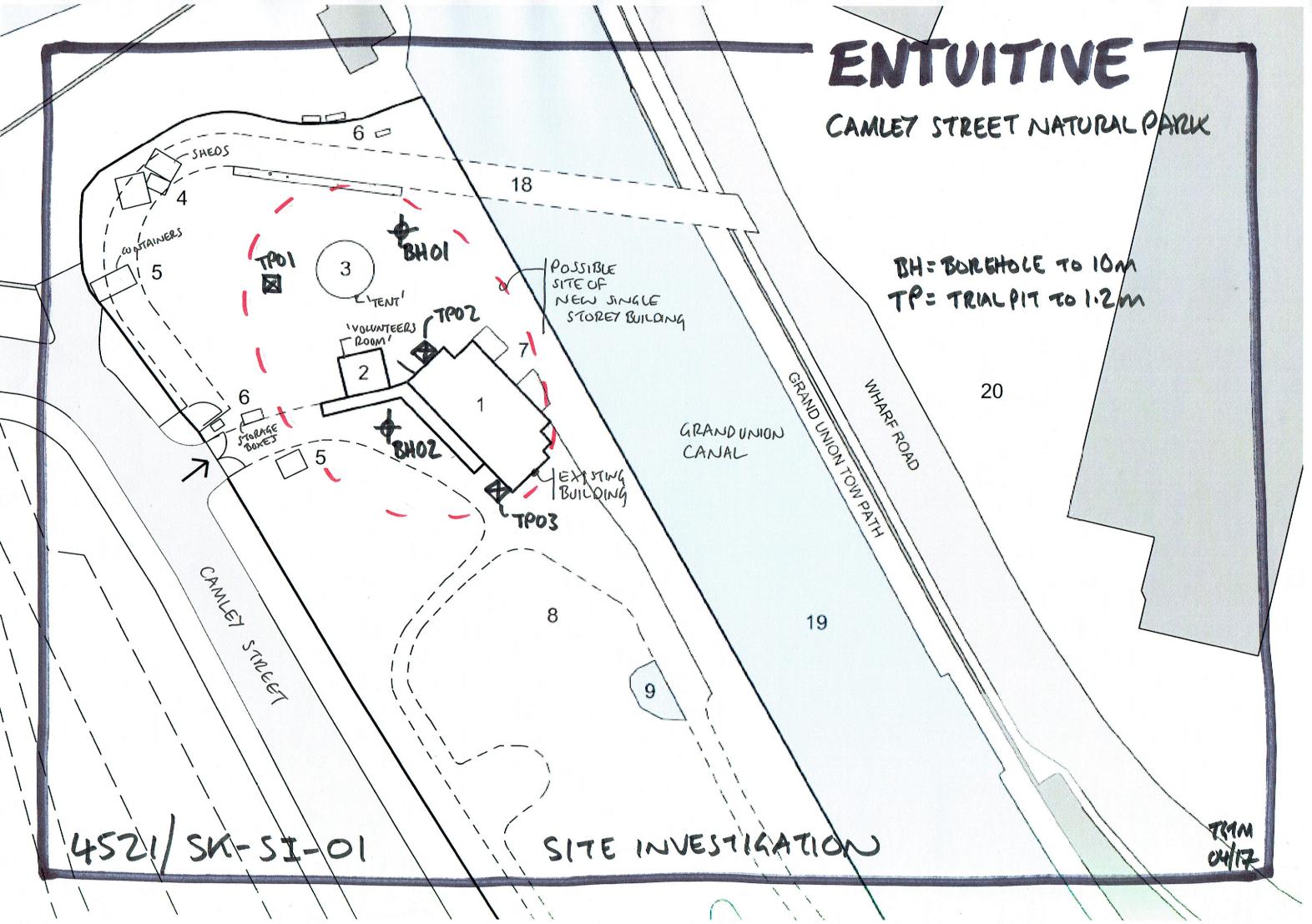


© OpenStreetMap contributors, CC BY-SA

ASHDOWN SITE INVESTIGATION L.I.M.I.T.E.D

Site Location Plan. Not To Scale

TP03


TP02

APPENDIX A

Assessment Area

APPENDIX B

Site Walkover Photographs

APPENDIX C

Exploratory Hole Notes In Situ Testing Notes Exploratory Hole Records DPSH-B Dynamic Probe Records

NOTES FOR THE INTERPRETATION OF EXPLORATORY HOLE RECORDS

1 Symbols and abbreviations

Samples

- U 'Undisturbed' Sample: also known as 'U100' or 'U4' 100mm diameter by 450mm long. The number of blows to drive in the sampling tube is shown after the test index letter in the SPT column.
- Uo Sample not obtained.
- U* Full penetration of sample not obtained.
- Pi Piston Sample: 'Undisturbed' sample 100mm diameter by 600mm long.
- D Disturbed Sample.
- R Root Sample.
- B Bulk Disturbed Sample.
- W Water Sample.
- J Jar Sample (sample taken in amber glass jar fitted with gas tight lid)
- T Tub Sample
- Vi Vial Sample

In situ Testing

- S Standard penetration test (SPT): In the borehole record the depth of the test is that at the start of the normal 450mm penetration. The number of blows per 75mm penetration is recorded, with the initial 150mm for seating blows being recorded followed by the blows recorded for the remaining 300mm of the test. The total blows to achieve the standard penetration of 300mm, discounting the seating blows, is noted as the N value on the log. Where the full penetration of the test cannot be achieved (a refusal) the number of blows achieved and the penetration achieved will be reported.
- C Standard Penetration Test (SPT) conducted usually in coarse grained soils or weak rocks using the same procedure as for the SPT but with a 50mm diameter, 60° apex solid cone fitted in place of the sampler. Variations in test results are indicated by the same symbols as for the SPT (above).
- V Shear Vane Test: Undrained shear strength (cohesion) (kN/m²) shown within the Vane/Pen Test and N Value column.
- H Hand penetrometer Test: Undrained shear strength (cohesion) (kN/m²) shown within the Vane/Pen Test and N Value column.
- P Perth Penetrometer Test: See "In Situ Testing Notes" for full description. Number of blows for 300mm penetration shown under Vane/Pen Test and N Value column. In sand the number of blows is approximately equivalent to the SPT "N" value.

Excavation Method

- CP Cable Percussion Borehole
- WLS Dynamic Sampler Borehole using windowless sampler tubes
- WS Dynamic Sampler Borehole using window sampler tubes
- TP Trial Pit excavated using mechanic excavator
- HDP Trial Pit excavated using hand tools

2 Soil Description

Description and classification of soils has been carried out using as a general basis the British Standard Geotechnical investigation and testing – Identification and classification of soil, Part 1 Identification and description (BS EN ISO 14688-1:2002+A1:2013) and Part 2 Principles of classification (BS EN 14688-2:2004+A1:2013) as well as the BS5930:2015 code of Practice for Ground Investigations.

Fine Grained Soils

The consistency of fine grained soils given in the report is based on visual inspection of the samples and the strength is based on results of in situ and/or laboratory undrained shear strength tests when carried out.

Consistency	Manual Test
Very Soft	Soil exudes between fingers when squeezed in hand
Soft	Soils can be moulded by light finger pressure
Firm	Cannot be moulded by finger but rolled to 3mm threads without breaking/crumbling
Stiff	Crumbles/breaks when rolled to 3mm thick threads but can be moulded into a lump again
Very Stiff	Cannot be moulded and crumbles under pressure, can be indented by thumbnail

The consistency is determined on the following basis:

The terms used for the designation of the undrained shear strength are as follows:

Undrained Shear Strength	
Extremely to Very Low	<20 kPa
Low	20-40 kPa
Medium	40-75 kPa
High	75-150 kPa
Very High	150-300 kPa
Extremely high	300-600 kPa

Note: The undrained shear strength of the soils is measured either by laboratory testing or in the field using hand shear vane.

It is recognised that any coarse grained soil that has in excess of approximately 35% fine grained soil (clay and silt) can often be expected to behave as a fine grained soil despite the dominance of coarse grained material within the soil mass. To reflect this, it is the soil type that dominates the behaviour of the soil mass that appears on the exploratory hole records.

Coarse Grained Soils

The relative densities of coarse grained soils (sand and gravel) given in the report are based on field estimations and the results of the Standard Penetration Test (SPT) and equivalent correlation from other testing. The classification in terms of "N" Values is as follows:

SPT 'N' Value	Relative Density
0-4	Very Loose
4-10	Loose
10-30	Medium Dense
30-50	Dense
Greater than 50	Very Dense

3 Rock Description

Description and classification of rocks has been carried out using as a general basis the British Standard Geotechnical investigation and testing – Identification and classification of rock, Part 1 Identification and classification (BS EN ISO 14689-1:2003) as well as the BS5930:2015 code of Practice for Ground Investigations.

The description of rock mass includes the type of rock, structure, discontinuities and weathering.

The unconfined compressive strength of rock material is determined on the following basis:

Term	Field Identification	Unconfined Compressive Strength (MPa)
Extremely Weak	Indented by thumbnail	Less than 1
Very Weak	Crumbles under firm blows with point of geological hammer, peeled by pocket knife	1 to 5
Weak	Peeled by pocket knife with difficulty, shallow indentations made by firm blow with geological hammer	5 to 25
Medium Strong	Cannot be peeled or scraped with knife, can be fractured with single firm blow of geological hammer	25 to 50
Strong	Requires more than one blow of geological hammer to fracture	50 to 100
Very Strong	Requires may blows of geological hammer to fracture it	100 to 250
Extremely Strong	Can only be chipped with geological hammer	Greater and 250

The terms describing discontinuity and bedding spacing are as follows:

Bedding Thickness

2000mm
2000-600mm
600-200mm
200-60mm
60-20mm
20-6mm
<6mm

Discontinuity Spacing

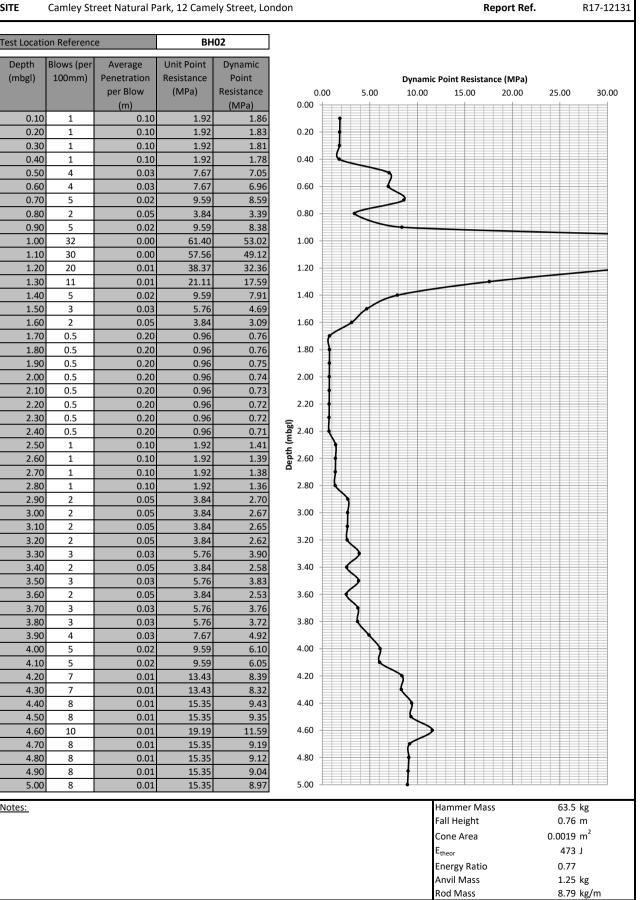
Discontinuity opacing	
Very Wide	>2000mm
Wide	2000-600mm
Medium	600-200mm
Close	200-60mm
Very Close	60-20mm
Extremely Close	<20mm

Chalk

Chalk description is based on BS EN ISO 14688, BS EN ISO 14689 and BS5930. The classification of chalk generally follows the guidance offered by the Construction Industry Research and Information Association (CIRIA) C574, 'Engineering in Chalk'. This is based on assessment of chalk density, discontinuity and aperture spacing, and the proportion of intact chalk to silt of chalk. See additional chalk classification notes.

	D O W N S T I G	N SITE Ation	Site	Name: C	amley Street	Natural P	ark, 12 (Camley Street, London			
L • I •	M • I •				17-12131			1			
Web	: www.ashdov Tel: 01273 48	vnsi.co.uk			9/05/2017 9/05/2017			Borehole Number:	BH02	S	heet 1 of 2
Standpipe	Sample/ Test Type	Samples and I Depth From (m)			Dynamic Probe Blows/100mm 5 10 15 20 25		Depth		Stratum Description		
	,						0.00	-	Wood Chippings		
	J T D	0.20 0.25					0.10	MADE GROUND: Brown subangular, fine to coarse b clinke		ile, metal,	
	ΤL	1.10					-	-			
	D	1.30						- - - -			
	D	1.70 1.80					1.50	MADE GROUND: Black/g odour. Gravel is angular to ai			
]Т D	2.70 2.80									
	J T D H	3.60 3.65 3.80		170			3.50	Very stiff orange brown mo	ottled grey slightly sand Clay Formation)	ly silty CLA	Y. (London
	V	4.00		>130			4.30	Very stiff grey mottled o angular to subangular, fine with nodules of claystone be	to coarse claystone. (Lo		
	D	4.60 4.65						- - - - - -			
	V	5.00		>130			5.00 -	С	ontinued on next sheet		
Rem Groundv		iole dry on co	ompletion.						Excavation I	Vethod:	WLS
		iole collapsed				ine with gray	velsurroue	d; 1.50m to ground level plain pipe v	Borehole Di	ameter:	Various
								d; 1.50m to ground level plain pipe v ith the ground surface.		1ade By:	PM

Web: ww Tel:	ntac@ashd ww.ashdow : 01273 483 ample/ Test Type H D J T H D H	samples and I Depth From (m) 5.50 5.80 6.25 6.30 6.50	Ene	t Date: 0 d Date: 0 Test Result (>250	9/05/ Dyna		mm Legend	Depth	Borehole Number:		ndon Clay												
dpipe Sad	Type H D JT H D	5.50 5.80 6.25 6.30	n Situ Testing	Test Result	Dyn	amic Probe Blows/100	mm Legend	Depth	Very stiff orange brown mottl	ed grey silty CLAY. (Lo	ndon Clay	/ Formati											
dpipe Sai	Type H D JT H D	(m) 5.50 5.80 6.25 6.30	Depth To (m)					Depth	Very stiff orange brown mottl	ed grey silty CLAY. (Lo													
	D JT H	5.80 6.25 6.30		>250																			
	D JT H	5.80 6.25 6.30		>250				-	becoming brown and grey mot	tled and fissured below	5.60m dep	th.											
	D JT H	5.80 6.25 6.30		>250				-	becoming brown and grey mot	tled and fissured below	5.60m dep	th.											
	D JT H	5.80 6.25 6.30		>250				-	becoming brown and grey mot	tled and fissured below	5.60m dep	th.											
	D JT H	5.80 6.25 6.30							becoming brown and grey mot	tled and fissured below	5.60m dep	th.											
	D D	6.25 6.30							becoming brown and grey mot	tied and fissured below	5.60m dep	vtn.											
	D D	6.25 6.30									I.												
	Л Н Д	6.30							-														
	Л Н Д	6.30							-														
	Л Н Д	6.30					<u> []</u>		-														
	Л Н Д	6.30					<u></u>																
	H																						
	D	6.50							with selenite crystals and occas	sional shell fragments be	low 6.30m	۱ depth.											
				>251				-	-														
									-														
	Н	6.80					F		-														
		6.80		>251					-														
								-	-														
									with a thin layer of weak orang	e claystone at 7.30m de	pth.												
	D	7.50						-	-														
	н	7.60		>251				•	-														
	JT 7.80			JT 7.80					JT 7.80	T 7.80	JT 7.80					<u></u>		-					
					JT 7.80	JT 7.80						JT 7.80	JT 7.80	7.80	7.80	7.80							
																							-
								-															
									-														
									-														
								-	-														
									-														
	н	8.70		>251																			
	D	8.80							-														
								-]														
									-														
	D	9.30							becoming grey below 9.20m														
	н	9.50		>251			[]	-															
							[]																
							[]		4														
	D	9.80					[]		4														
	н	9.80		>251			=	10.00	1														
								10.00 -	End	of borehole at 10.00m													
Remarl		مام ما																					
oundwate	ter: Boreh	ole dry on co	mpletion.							Excavation N	lethod:	WLS											
Stabili	ity: Boreh	ole collapsed	l to 8.00m o	n completio	n																		
Note	t es: Standr	pipe installer	to 3.50m d	epth: 3.50m	to 1.50	m slotter	d pipe with gra	vel surround	d; 1.50m to ground level plain pipe witl	Borehole Dia	meter:	Variou											

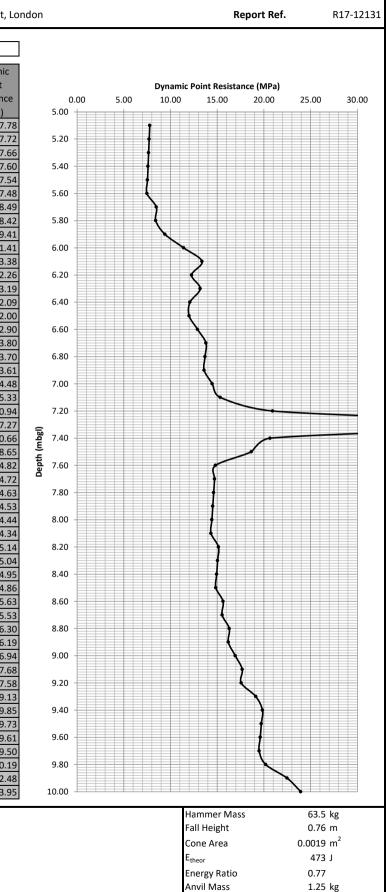

INVES	OWN S TIGATI			Camley Str R17-12131		al Park, 12 Camley Street, London		
E-mail: con	tact@ashdownsi. ww.ashdownsi.co.	co.uk c		09/05/201			TD00	
Tel:	01273 483119			09/05/201		Trial Pit Number:	TP02	Sheet 1 of 1
Sample/ Test Type	Samples and Depth From (m)	In Situ Testing Depth To (m)	Test Result	Legend	Depth/ Reduced Level	Stratum Descript	on	
					0.00	Woodchippir		
D*	0.20				0.05	MADE GROUND: firm brown gravelly silty sandy fine to coarse brick, clay tile, ceramic tile, metal		
J T D	0.20 0.32				0.34	flint.		
JT	0.32					with crushed concrete, brick and flint material e of 0.30m. End of trial pit at 0		re to a depth
					_			
Remarl	 ke							
	er: Trial pit dry	on completior	1.				Excavation Method	d: HDP
Stabili	ty: Trial pit stat	le on complet	ion.				Pit Length	1: n/a
							Pit Width	n: n/a
Note	es: * Samples t	aken of crushe	d material ber	neath structure.			Made By	y: PM

	OWN S TIGATI					ral Park, 12 Camley Sti	reet, London			
L • I • M	tact@ashdownsi	co.uk		R17-1213						
Web: wv Tel:	vw.ashdownsi.co. 01273 483119	uk		: 09/05/201 : 09/05/201			Trial Pit Number:	TP03	She	eet 1 of 1
	Samples and	In Situ Testing	Liiu Date	. 09/03/201						
Sample/ Test Type	Depth From (m)	Depth To (m)	Test Result	Legend	Depth/ Reduced Level		Stratum Descriptio	n		
D*	0.15				0.00	-	Woodchippin	gs.		
JΤ	0.15 0.15				0.25		n firm gravelly silty sandy ay tile, ceramic tile, metal,			
D J T	0.35 0.35				0.40	-	flint. oncrete and flint material b			
						of 0.40m.	End of trial pit at 0.			
Remarl Groundwate	KS er: Trial pit dry	on completio	n.			1		Excavation Me	thod:	HDP
Stabili	ty: Trial pit stab	le on comple	tion.					Pit Le	ength:	n/a
									Vidth:	n/a
Note	es: * Samples t	aken of crush	ed material be	neath structure					de By:	PM

ASHDOWN SITE INVESTIGATION LTD

Dynamic Probe Record

SITE


ASHDOWN SITE INVESTIGATION LTD

Dynamic Probe Record

SITE Camley Street Natural Park, 12 Camely Street, London

BH02

Test Location Reference

Rod Mass

8.79 kg/m

Depth Blows (per Average Unit Point Dynamic 100mm) (mbgl) Penetration Resistance Point per Blow (MPa) Resistance (m) (MPa) 5.10 0.01 13.43 7 7.78 7 5.20 0.01 13.43 7.72 5.30 7 0.01 13.43 7.66 5.40 7 0.01 13.43 7.60 7 5.50 0.01 13.43 7.54 5.60 7 0.01 13.43 7.48 5.70 8 0.01 15.35 8.49 5.80 15.35 8 0.01 8.42 9 5.90 0.01 17.27 9.41 6.00 11 0.01 21.11 11.41 0.01 13.38 6.10 13 24.94 6.20 12 0.01 23.02 12.26 6.30 13 0.01 24.94 13.19 6.40 0.01 23.02 12.09 12 6.50 0.01 23.02 12.00 12 12.90 6.60 13 0.01 24.94 6.70 14 0.01 26.86 13.80 6.80 14 0.01 26.86 13.70 13.61 6.90 14 0.01 26.86 7.00 15 0.01 28.78 14.48 7.10 16 0.01 30.70 15.33 20.94 7.20 0.00 22 42.21 7.30 47.27 50 0.00 95.93 7.40 22 0.00 42.21 20.66 7.50 20 0.01 38.37 18.65 7.60 16 0.01 30.70 14.82 7.70 16 0.01 30.70 14.72 7.80 0.01 30.70 16 14.63 7.90 16 0.01 30.70 14.53 0.01 30.70 14.44 8.00 16 8.10 0.01 30.70 14.34 16 8.20 17 0.01 32.62 15.14 8.30 0.01 15.04 17 32.62 8.40 17 0.01 32.62 14.95 0.01 8.50 17 32.62 14.86 8.60 18 0.01 34.54 15.63 8.70 18 0.01 34.54 15.53 8.80 19 0.01 36.45 16.30 8.90 19 0.01 36.45 16.19 9.00 20 0.01 38.37 16.94 17.68 9.10 0.00 21 40.29 40.29 17.58 9.20 21 0.00 9.30 23 0.00 44.13 19.13 0.00 9.40 46.05 19.85 24 9.50 24 0.00 46.05 19.73 9.60 24 0.00 46.05 19.61 9.70 24 0.00 19.50 46.05 9.80 0.00 47.97 20.19 25 28 9.90 0.00 53.72 22.48 10.00 30 0.00 57.56 23.95 Notes:

APPENDIX D

Geotechnical Laboratory Testing Notes Geotechnical Test Results Contamination Test Results

GEOTECHNICAL LABORATORY TESTING NOTES

1 Soil Description

Description and classification of soils has been carried out using as a general basis the British Standard Geotechnical investigation and testing – Identification and classification of soil, Part 1 Identification and description (BS EN ISO 14688-1:2002+A1:2013) and Part 2 Principles of classification (BS EN 14688-2:2004 +A1:2013) as well as the BS5930:2015 code of Practice for Ground Investigations.

2 Index Tests

Index (Atterberg Limit) tests are undertaken on samples of fine grained soils provide the primary information for the classification of fine grained soils.

Fine grained soil is tested to determine its liquid and plastic limits, which are moisture contents that define boundaries between material consistency states. These tests are used to evaluate indices used for soil identification and to help determine the shrinkage and swelling characteristics of the soil under conditions of changing moisture content. The tests are carried out in accordance with BS1377: Part 2: 1990 + A1:1996 Classification tests.

The consistency index is derived from the Index Tests and is summarized in the following table. These divisions may be approximate, particularly for low plasticity soils. The consistency recorded on the soil classification summary is derived from the consistency index.

Consistency	Consistency Index
Very Soft	<0.25
Soft	0.25 to 0.50
Firm	0.50 to 0.75
Stiff	0.75 to 1.00
Very Stiff	>1.00

3 Particle Size Distribution Tests

Sieve analyses are carried out soil samples to establish their particle size distribution that can assist in the assessment of the permeability and classification of granular soils.

The tests are carried out in accordance with BS1377: Part 2: 1990 + A1:1996 Classification tests.

4 <u>Natural Moisture/ Saturated Moisture Content Determination of Chalk</u>

The results of natural moisture or saturated moisture content tests of disturbed samples of chalk are used to assist in the classification of the chalk to determine key geotechnical parameters of strength, density and crushing properties.

The tests are carried out in accordance with BS1377: Part 2: 1990 + A1:1996 Classification tests.

5 Soil Suction Testing

Soil suction tests are undertaken for the determination of the state of desiccation in clay soils.

The testing is carried out in accordance with the Building Research Establishment Information Paper IP4/93, dated February 1993.

6 Triaxial Compression Tests

Undrained triaxial compression tests are carried out on undisturbed samples of cohesive soil in order to assist in the determination of the undrained shear strength of the soil. The results of moisture content and density determinations are also included.

The tests are carried out in accordance with BS1377: Part 7: 1990 + A1:1994 Shear strength tests (total stress).

7 Shear Vane and Hand Penetrometer Testing

Undisturbed samples are tested in the laboratory using a Geonor Hand Shear Vane for the determination of their undrained shear strength.

The vane tests are carried out in general accordance with BS1377: Part 7: 1990 + A1:1994 Shear strength tests (total stress).

8 One Dimensional Consolidation Tests

One-dimensional consolidation tests are performed on undisturbed soil samples to ascertain their settlement characteristics.

The tests are carried out in accordance with BS1377: Part 5: 1990 + A1:1994 Compressibility, Permeability and Durability tests.

9 Dry Density / Moisture Content Relationship (Compaction) Testing

Compaction testing for the determination of the dry density / moisture content relationship is carried out on using either a 2.5kg, 4.5kg hammer or a vibrating hammer.

The tests are carried out in accordance with the British Standard BS1377: Part 4: 1990 + A1 & A2:2002 Compaction-related tests.

10 California Bearing Ratio

The soil is usually compacted at the as dug "natural" moisture content and often at moisture contents around the natural moisture content.

The California bearing ratio is determined in accordance with the British Standard BS1377: Part 4: 1990 + A1 & A2:2002 Compaction related tests.

11 Chemical Testing

Soil samples are tested for their concentration of water soluble sulphate and pH for use in concrete mix design.

Water samples are tested for total sulphate concentration and pH value.

Where a water soluble sulphate content in soils or a total sulphate content in groundwater exceeds 3000 mg/I SO₄ the magnesium sulphate content of the samples is required to be determined (BRE Special Digest 1:2005).

ASHDOWN SITE INVESTIGATION LIMITED

Soil Classification Summary

Site Name:

Camley Street Natural Park, 12 Camley Street, London

Street, London

Job No:

BH/TP	I/TP Depth		Equiv. Moist.	Atterberg Limits				Cons.	% passing	
No.	(m)	Moist. Cont. (w %)	Cont. (wa %)	WI %	Wp %	lp %	Class'n	Index (Ic)	425 μm sieve	Visual Description of Sample
BH02	1.80	23		48	24	24	CI		47	MADE GROUND: Dark brown slightly sandy slightly gravelly clay. Gravel is fine to coarse flint, brick, glass and wood.
BH02	3.65	28		65	22	43	СН	0.86*	99	Stiff dark grey and orange grey mottled black speckled CLAY with rare fine to medium flint gravel.
	od: Classif	ination Tra	to D01077	Dort 0: 1	000. 14-1	bod 4 4				Choot No. 4
	od: Classif	Sheet No. 1								

Alex Bewick Ashdown Site Investigations Ltd The Old Dairy Swanborough Farm Swanborough Lewes East Sussex BN7 3PF

QTS Environmental Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 17-59114

Site Reference: Camley Street Natural Park, 12 Camley Street, London

Project / Job Ref: R17-12131

Order No: P17-4821

Sample Receipt Date: 17/05/2017

Sample Scheduled Date: 18/05/2017

Report Issue Number: 1

Reporting Date: 24/05/2017

Authorised by: KO C

Kevin Old Associate Director of Laboratory

QTSE is the trading name of DETS Ltd, company registration number 03705645

Authorised by: 2 and

Russell Jarvis Associate Director of Client Services

0.96

0.85

Soil Analysis Certificate								
QTS Environmental Report No: 17	-59114		Date Sampled	09/05/17	09/05/17	09/05/17	09/05/17	
Ashdown Site Investigations Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Camley Street Nat Camley Street, London	ural Park, 12		TP / BH No	BH02	BH02	BH02	BH02	
Project / Job Ref: R17-12131		A	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: P17-4821			Depth (m)	1.30	2.80	4.65	9.80	
Reporting Date: 24/05/2017		Q	TSE Sample No	269255	269256	269257	269258	
Determinand	Unit	RL	Accreditation					
рН	pH Units	N/a	MCERTS	7.9	7.9	7.9	7.7	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	4281	2648	1195	3006	
Total Sulphate as SO ₄	%	< 0.02	NONE	0.43	0.26	0.12	0.30	
W/S Sulphate as SO ₄ (2:1)	ma/l	< 10	MCERTS	473	501	229	957	

MCERTS

NONE

0.47

1 25

0.50

0.84

0.23

0.04

Total Sulphur

W/S Sulphate as SO₄ (2:1)

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Analysis carried out on the dried sample is corrected for the stone content

g/l

< 0.01

< 0.02

Subcontracted analysis ^(S)

Soil Analysis Certificate - Sample Descriptions
QTS Environmental Report No: 17-59114
Ashdown Site Investigations Ltd
Site Reference: Camley Street Natural Park, 12 Camley Street, London
Project / Job Ref: R17-12131
Order No: P17-4821
Reporting Date: 24/05/2017

QTSE Sam	ple No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
	269255	BH02	None Supplied	1.30	19.6	Black sandy clay
	269256	BH02	None Supplied	2.80	26.8	Brown clayey sand
	269257	BH02	None Supplied	4.65	17.5	Brown sandy clay
	269258	BH02	None Supplied	9.80	17.4	Brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous	s Information	
QTS Environmental Report No: 17-59114		
Ashdown Site Investigations Ltd		
Site Reference: Camley Street Natural Park, 12 Camley Stre	eet, London	
Project / Job Ref: R17-12131		
Order No: P17-4821		
Reporting Date: 24/05/2017		
Matrix Analysed Determinand	Brief Method Description	Method

Sail D Born - Water Soluble Documentation of water soluble boron in soil by 21 hol water ender Dollawed by ICP-QS E001 Sail D Californi Section 20 formation of actions in soil by sourced action to be action through the postability of the solution the solution of the solution of the solution at solutio	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soli AR ETEX Determination of BTEX by prevagence C2-MS Etex Ete	Soil		Boron - Water Soluble	Datermination of water soluble boron in soil by 2:1 bet water extract followed by ICD OES	
Soil D Cattoms Differmination of calcors in soil by acau-rolaid digitation fillowed by CPGSS FDO2 Soil AR Orterature - Heavalam Determination of holosic by activation with work a sharehold by on chromatography E009 Soil AR Overature - Heavalam Determination of complex cannot by difficulton in work the by addication, addition of the soil by acameter the solid formation of complex cannot by difficulton formation of complex cannot by difficulton formation of complex cannot by addication of the solid formation of complex cannot by addication of the solid formation of complex cannot by addication of the solid formation of complex cannot by addication of addication of the solid formation of the solid formation of addication of addication of the solid formation of the solid formation of addication of addication of the solid formation of addication of a					
Soil D Chiefe Valle South (21) Determination of characterization multim visit of sandyced purchastion in worth from thy salification, salific					
Sait AR Chromium - Hexavaterin Description optimistry E816 Sait AR Cognitize - Congrise Determination of comparise ty colorimetry E816 Sait AR Cognitize - Congrise Determination of the cyandrab ty distillation followed by colorimetry E816 Sait AR Cyandra - Trias Determination of the cyandrab by distillation followed by colorimetry E816 Sait AR Cyandra - Trias Determination of the cyandrab by distillation followed by colorimetry E816 Sait AR Densel Renard Call Call Call Call Call Call Call Cal					
Soli AR Chromiter Treated and the state of complex synaptic by distillation followed by colorimetry. Color Soli AR Copanies. Tree Determination of complex synaptic by distillation followed by colorimetry. (615) Soli AR Copanies. Tree Determination of the copanies by distillation followed by colorimetry. (615) Soli AR Copanies. Tree Determination of the copanies by distillation followed by colorimetry. (615) Soli AR Devel Angen Daradis CIO. (224) biotrimitetion of electrical conductivity by addition of saturated collowed by electronetic measurement (604) Soli AR Deterning Complexity Distribution Distribution of electrical conductivity by addition of saturated collowed by electronetic measurement (603) Soli AR Deterning Complexity Distribution	5011			Determination of bevavalent chromium in soil by extraction in water then by acidification, addition of	
Sail AR Coparise Determination of compace sparate by distiliation followed by contributy EDIS Soil AR Coparise Total Determination of free gradies by distiliation followed by contributy EDIS Soil AR Opend Range Organisa, Clib. C24 Soil mode or an observation with read organisa by distiliation followed by contributive for a control of source or accurate by accurate and incompace organisation. EDIS Soil AR Devel Range Organisa, Clib. C24 Soil mode or accurate an observation of source or accurate by accurate and incomo source or accurate and source or accurate by accurate and incomo source or accurate and accurate and source or accurate and source or accurate and accurate a	Soil	AR	Chromium - Hexavalent		E016
Soli AR Cyanite - Free Determination of these spanisor by distition followed by calcrimetry EDIS Soli D Cyclobeane Litrectable Matter (CM) Gravimericably determined though extraction with cyclobeane by CE-ID EDIS Soli AR Electrical Conductivity Determination of telecondering extractistic hydrocarbons by CE-ID EDIS Soli AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by CE-NS EDIS Soli AR Electrical Conductivity Determination of electrical standard thy saddition of water followed by CE-NS EDIS Soli AR Electrical Conductivity Determination of electrical standard thy saddition of water followed by CE-NS EDIS Soli AR Electrical Conductivity Determination of electrical standard thy saddition of water followed by CE-NS EDIS Soli AR Eleft Hold Litt Determination of electrical standard thy directrication by CE-NB EDIS Soli D Fluctobe - Vield Cite Action Determination of electrical standard with water analysed by ion chromate biolowed by CO-NS EDIS Soli D Fluctobe - Vield Cite Action Determination of tractine of egalic carbon by oxidial with polasial multi-polasial with anal standaria standaria standaria standaria standaria standa	Soil	٨D	Cvanida Complex		E015
Soli AR Channels - Total Determination of total cyanide by distillation followed by control system CD15 Soli AR Direct Extractable Method Extractable Method<					
Soli D Cockbinsene Extractable Matter (CEM) Gravmetrically otermined through extraction with cyclobesene E011 Soli AR Desel Range Organics (CEI) C20 betermination of extractable Mytocrathems ty C2-110 E004 Soli AR Electrical Conductivity Determination of electrical conductivity by addition of starting display for display determination of electrical conductivity by addition of starting display display determination of electrical conductivity by addition of starting display di					
Soli AR Desal Range Granits (CID - C24) Determination of hexane/accounce attractibile hydrocarbons (SG C-FID E004 Soli AR Electrical Conductivity Determination of electrical conductivity by addition of subtraded acidum subhate followed by ECAS E022 Soli AR Electrical Conductivity Determination of electrical conductivity by addition of subtraded acidum subhate followed by ECAS E020 Soli AR Electrical Conductivity Determination of electrical conductivity by addition of subtraded by ECAS E020 Soli AR EPH EPRAtic III adammation of electrical conductivity by addition of subtrade by ECAS E020 Soli AR EPH EPRAtic III adammation of electrical conductivity by addition of subtrade by ECA E020 Soli AR EPH EPRAtic III adammation of electrical conductivity by addition of units of the III adamate electrical by ECA E020 Soli D FPACE (Faction Organic Carbon by ECA) E020 Soli D Loss on Ignition # 45000 E020 E020 Soli D FOC (Fraction Organic Carbon by ECA) E020 E025 E025 Soli D Margesium <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium sulphate followed by E022 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Soil AR EPH TEXAS (16-C40) Determination of acoton-Presame extractable hydrocarbons by CE-FID E040 Soil AR EPH TEXAS (16-C40; C2: C10-C12; Determination of acoton-Presame extractable hydrocarbons by CE-FID E040 Soil D Fluinde: Water Soluble Determination of acoton-Presame extractable hydrocarbons by CE-FID E040 Soil D Fluinde: Water Soluble Determination of rogenic cabon by oxoleling with potestum dioronate followed by C100 E030 Soil D Kasta Soluble Determination of water soluble magnesium by extraction with water followed by C10-DES E030 Soil D Maneral OI (10: 0-C40) Determination of mates by aqua-raging cigosion followed by C10-DES E030 Soil D Maneral OI (10: 0-C40)					
Soli AR Electrical Conductivity Sector Conductivity Determination of electrical conductivity by addition of water followed by GC-MS Electrical Conductivity Soli D Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC-MS Electrical Conductivity	2011	AK	Dieser Range Organics (CTO - C24)		E004
Sol AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Sol D Elemental Sulpru Betermination of elemental sulpru psouth extraction followed by Ce-NS E004 Sol AR EPH FD04ct ID Determination of acoton-fhexame extractable hydrocarbons by CC-FID E004 Sol AR EPH FD04ct ID Determination of acoton-fhexame extractable hydrocarbons by CC-FID E004 Sol AR EPH FD04ct ID Determination of acoton-fhexame extractable hydrocarbons by CC-FID E004 Sol D Fluctore Sol Co-CHD Determination of fraction crystaction with water a analysed by ion chromaterography E009 Sol D Loss on Ignition # 450cc Determination of inscin by gravimetrically with the sample being ignited in a muffic E009 Sol A Meanus with real Objectimination of inscin by aduareign digetion followed by ICP-OES E002 Sol AR Meanus with real Objectimination of inscin by aduareign digetion followed by ICP-OES E002 Sol AR Meanus with real Objectimination of materia by aduareign digetion followed by ICP-OES E002 Sol AR	Soil	AR	Electrical Conductivity		E022
Soil D Elemental support Determination of elemental support Solution AB ED20 Soil AR EPH (CL0 – Cd0 Determination of actorin-Prease extractable hydroatorus by G2-HD ED00 Soil AR EPH TEXAS (GA-00, FL0-ED, C10 – C10 Determination of actorin-Prease extractable hydroatorus by G2-HD ED01 Soil AR EPH TEXAS (GA-00, FL0-ED, C10 – C10 Determination of actorin-Prease extractable hydroatorus by G2-HD ED01 Soil D FL0-Cl6 + CL0 - Cd0 Determination of actorin-Prease extractable hydroatorus by G2-HD ED01 Soil D FL0-Cl6 + CL0 - Cd0 Determination of actorin-Prease extractable hydroatorus by G2-HD ED01 Soil D Loss on lightion @ 450cC Determination of rotable by valuable ED01 Soil D Magnesium - Water Soluble Determination of notable hydroacarbons by G2-HD Factorinating with SPE ED02 Soil AR Mineral OI (C10 - Cd) Determination of rotable by valuable ED02 Soil AR Mineral OI (C10 - Cd) Determination of rotable by valuable by valuable ED03 Soil AR				electrometric measurement	
Soil AR EPH (CI0 – C40) Determination of actome/hearne extratable hydrocarbons by CC-FI0 ED04 Soil AR EPH TEXAS (C6-C6, C8-C10, C10-C12) Determination of actome/hearne extratable hydrocarbons by CC-FI0 TC3 to C40, C6 to C8 by C12-C16, C16-C12, C12-C40 Determination of actome/hearne extratable hydrocarbons by CC-FI0 TC3 to C40, C6 to C8 by C12-C16, C16-C12, C12-C40 Determination of Flucride by extraction with water a analysed by ion chromatography E004 Soil D Floc/forde - Water Soluble Determination of Flucride by extraction with water analysed by ion chromatography E009 Soil D Floc/forde - Water Soluble Determination of soci on signition in soil by gravimetrically with the sample being ignited in a mulfile (urnace E019 Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES E005 Soil AR Mineral OII (C10 - C40) Determination of native soluble magnesium by extraction with water followed by ICP-OES E004 Soil AR Mineral OII (C10 - C40) Determination of nitrate by extraction with water followed by ICP-OES E003 Soil AR PAH - Speciated (EA 16) Determination of nitrate by extraction with water followed by ICP-OES E003 Soil AR	Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil AR EPH (CI0 – C40) Determination of actome/hearne extratable hydrocarbons by CC-FI0 ED04 Soil AR EPH TEXAS (C6-C6, C8-C10, C10-C12) Determination of actome/hearne extratable hydrocarbons by CC-FI0 TC3 to C40, C6 to C8 by C12-C16, C16-C12, C12-C40 Determination of actome/hearne extratable hydrocarbons by CC-FI0 TC3 to C40, C6 to C8 by C12-C16, C16-C12, C12-C40 Determination of Flucride by extraction with water a analysed by ion chromatography E004 Soil D Floc/forde - Water Soluble Determination of Flucride by extraction with water analysed by ion chromatography E009 Soil D Floc/forde - Water Soluble Determination of soci on signition in soil by gravimetrically with the sample being ignited in a mulfile (urnace E019 Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES E005 Soil AR Mineral OII (C10 - C40) Determination of native soluble magnesium by extraction with water followed by ICP-OES E004 Soil AR Mineral OII (C10 - C40) Determination of nitrate by extraction with water followed by ICP-OES E003 Soil AR PAH - Speciated (EA 16) Determination of nitrate by extraction with water followed by ICP-OES E003 Soil AR	Coll	D	Flomontal Sulphur	Determination of elemental culphur by column extraction followed by CC MS	5020
Soil AR EPH Product ID Determination of acoton-/hexane extractable hydrocarbons by CC-FID EEOD Soil AR EPH TEXX CC 60, C6: 10: C10: C12 Determination of acoton-/hexane extractable hydrocarbons by CC-FID for CB to C40, C6 to C8 by EEOD Soil D Fluoride - Water Soluble Petermination of Fluoride by extraction with water //// analysis of the company EEOD Soil D Fluoride - Water Soluble Determination of fluoride by extraction with water //// analysis of the company EEOP Soil D Magnesium - Water Soluble Determination of olds on lipolition in soil by gravimetrically with the sample being ignited in a multile E019 Soil D Magnesium - Water Soluble Determination of the soluble magnesium by extractable hydrocarbons by GC-FID fractionating with SPE E002 Soil AR Mineral OII (C10 - C40 Determination of thrace by extraction with water falowed by ICP-OES E002 Soil AR Mineral OII (C10 - C40 Determination of organic matter by extraction with water falowed by ICP-OES E004 Soil AR PAH - Speciated (EPA 10 Georemination of organic matter by extraction with water falowed by ICP-OES E004 Soil <td></td> <td></td> <td></td> <td></td> <td></td>					
Soil AR EPH TEXAS (56-68, C8-C10, C10-C12, Determination of acetone/howare extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by E004 Soil D Flootde - Water Soluble Determination of acetone/howare extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by E009 Soil D Flootde - Water Soluble Determination of acetone down by oxidising with potassium dichronate followed by E010 Soil D Loss on Ignition @ 4500; Entermination of magnesium - Water Soluble Determination of materia by agua-regia digestion followed by ICP-OES E005 Soil D Magnesium - Water Soluble Determination of metals by agua-regia digestion followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) Petermination of metals by agua-regia digestion followed by ICP-OES E003 Soil AR Mineral OII (C10 - C40) Petermination of organic matter by oxidising with patasium dichromate followed by ICP-OES E003 Soil AR Mineral OII (C10 - C40) Petermination of practic with water followed by ICP-OES E003 Soil AR Mineral OII (C10 - C40) Petermination of finatite by oxidising with patasiting dichromatically with the ICO10 E004 Soil AR Mineral OII (C10 - C4					
Soli C12-C16, C16-C21, C21-C40) badspace GC-MS E004 Soli D Fluoride-Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatography E009 Soli D Fluoride-Water Soluble Determination of Sucride by extraction with water followed by ICP-DES E010 Soli D Magnesium-Water Soluble Determination of mater soluble magnesium by extraction with water followed by ICP-DES E025 Soli D Magnesium-Water Soluble Determination of mater soluble magnesium by extraction with water followed by ICP-DES E026 Soli AR Mineral OII (C10 - C40 Determination of mater by quar-regiral digestion followed by ICP-DES E002 Soli AR Mineral OII (C10 - C40 Determination of mater by quar-regiral digestion followed by ICP-DES E002 Soli AR Mineral OII (C10 - C40 Determination of intrate by vartaction with water & analysed by ion chromatography E009 Soli AR Mineral OII (C10 - C40 Determination of radia drawind dr	2011	AR	EPH Product ID	Determination of acetone/nexane extractable hydrocarbons by GC-FTD	E004
Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatography E009 Soil D FOC (fraction Organic Carbon) Provide the extraction of organic carbon by oddsing with potassium dichromate followed by E000 E010 Soil D Loss on Ignition @ 45002 Entermination of Insci by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) Petermination of water soluble magnesium by extraction with water followed by ICP-OES E003 Soil AR Mineral OII (C10 - C40) Petermination of progenic matter by advanced by ICP-OES E003 Soil AR Mineral OII (C10 - C40) Petermination of organic matter by advanced by ICP-OES E003 Soil D Nitrate - Water Soluble (2-1) Determination of regaric matter by advanced by ICP-OES E003 Soil AR PAH - Speciated (EPA 10) E004 E005 E003 Soil AR PAH - Speciated (EPA 10) E004 racicion with water colowed by CC-MS E004<	Soil	AR			E004
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with polassium dichromate followed by E010 Soil D Loss on Ignition @4 stoc Determination of loss on ignition with water followed by ICP-0ES E023 Soil D Magnesium - Water Soluble Determination of netasits y agure-regis direstion followed by ICP-0ES E023 Soil AR Mineral OII (C10 - C40) Determination of netasits y agure-regis direstion followed by ICP-0ES E023 Soil AR Mineral OII (C10 - C40) Determination of netasits y agure-regis direstion followed by ICP-0ES E023 Soil AR Moisture content, distance on the distance and regis direstion followed by ICP-0ES E023 Soil D Nitrate - Water Soluble (21) Determination of regain cratter by oxidising with polassium dichromate followed by ICP-0ES E023 Soil AR PAH - Speciated (EPA 16) Determination of organic ratter by oxidising with polassium dichromate followed by ICP-0ES E026 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with water & analysed by icn chromatography E020 Soil AR PAE-7 Congeness D	0.11	6			5000
Soli D FOULTRACION organic Carlot Loss on Ignition @ 4000C Entrained transformation Entrained transformation <thentrained trained transformationtransform</thentrained 	2011	D	Fluoride - Water Soluble		E009
Soli D Loss on Ignition @ 4500. Soli D Loss on Ignition in soli by gravimetrically with the sample being ignited in a muffle formation. E019 Soli D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 Soli D Magnesium - Water Soluble Determination of metals by agua-regia digestion followed by ICP-OES E020 Soli AR Mineral Oil (C10 - C40) Determination of reaking/actions extractable hydrocarbons by GC-HD fractionating with SPE exot E004 Soli AR Moisture Content Molisture content determined gravimetrically E003 Soli D Nitate - Water Soluble (21) Determination of organic matter by exitaction with water & analysed by lon chromatography E009 Soli AR PAH - Specialed (EPA 16) Determination of PAI compounds by extraction with actence and hexane followed by GC-MS with the torn (11) sulphate water followed by conditioned the compound by extraction with perforement there E001 Soli AR PAH - Specialed (EPA 16) Determination of PAI compounds by extraction with actenne and hexane followed by GC-MS with the torn (11) sulphate water followed by conditioned the compound by extraction with actenne and hexane followed by coc-MS E008 E001	Soil	D	FOC (Fraction Organic Carbon)		E010
Soil D Loss on rightion water Loss Loss Loss Loss Soil D Magnesium - Water Soluble Determination of meater soluble magnesium by extraction with water followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) cattridge Determination of meater by extraction with water followed by ICP-OES E002 Soil AR Moisture Content Moisture content. determined gravimetrically E003 Soil D Nitrate - Water Soluble (21) Determination of irrate by extraction with water & analysed by ion chromatography E003 Soil D Organic Matter Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrograte and internal standards E005 Soil AR PAH - Speciated (EPA 16) Determination of PAB by extraction with action and hexane followed by GC-MS E008 Soil AR PCB - 7 Congeners Determination of pheosy by extraction with action and hexane followed by GC-MS E004 Soil AR Pheolose. There Xiraz (FPE) determination of pheosy by extraction with action and hexane followed by GC-MS E003 Soil AR Pheolose There Xiraz (FPE) determination of pheosy by extractio			· · · · · · · · · · · · · · · · · · ·		
Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 Soil D Metals Determination of metate sty aqua-regia algestion followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) Determination of hexane/actone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Moisture Content Molsture content: determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by Itration with ron (11) sulphate E003 Soil AR PAH - Speciated (EP 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the de of surrogate and internal standards E006 Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction with petroleum ether E001 Soil AR PCB - 7 Congeners Determination of phenos by citilation followed by electrometric measurement E007 Soil AR Phenosis - Total (monohydric) E001 Determination of phenos by citilation followed by electrometric measurement E007 Soil AR Phenosis -	Soil	D	Loss on Ignition @ 450oC		E019
Soil D Metas Determination of metas by aqua-regia digestion followed by CP-0ES E002 Soil AR Mineral OII (C10 - C40) artificate Determination of havane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Mineral OII (C10 - C40) artificate Determination of intrate by extraction with water & analysed by ion chromatography E002 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxitaction with water & analysed by ion chromatography E003 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with petroleum ether E010 Soil AR PAH - Speciated (EPA 16) Determination of thread by distillation followed by GC-MS E008 Soil AR PAH - Speciated (EPA 16) Determination of pheno by distillation followed by colorimetry E001 Soil AR Phenoles - Total (monohydric) Determination of pheno by distillation followed by colorimetry E001 Soil AR Phenoles - Total (monohydric) Determination of subplate by extraction with water & analysed by ion chromatography E007 Soil AR Solid and (esS 04) - Total					
Soil AR Mineral Oil (C10 - C40 Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Moisture Content Moisture content<					
Soil AR Mineral OII (C10 - C40) Entriduge E004 Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by lon chromatography E009 Soil D Organic Matte Determination of organic matter by oxidising with polassium dichromate followed by titration with the ror (11) subhate E009 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards E009 Soil AR PAH - Speciated (EPA 16) Getermination of PAH compounds by extraction with perfolement the standards E008 Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohytric) Determination of phenols by distiliation followed by clorimetry E007 Soil D Sulphate (as S04) - Total (monohytric) Determination of total sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as S04) - Water Soluble (2:1) Determination of total sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Pheopols - Total (monohytric) </td <td>Soil</td> <td>D</td> <td>Metals</td> <td></td> <td>E002</td>	Soil	D	Metals		E002
Soil AR Moisture Content Moisture content: determined grav/metrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of itrate by extraction with water & analysed by ion chromatography E003 Soil D Organic Matter Determination of runter by oxidising with potassium dichromate followed by titration with the control (1) sulphate E001 Soil AR PAH - Speciated (EPA 16) Determination of PAB torgande and internal standards E005 Soil AR PAH - Speciated (EPA 16) Determination of PAB torgande through extraction with acetone and hexane followed by GC-MS E005 Soil AR Phenols. Total (monohytic)) Determination of phe by addition of water followed by colorimetry E001 Soil AR Phenols. Total (monohytic)) Determination of phesphate by extraction with water followed by ICP-DES E003 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-DES E004 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-DES E004 Soil D Sulphate (as SO4) -	Soil	AR	Mineral Oil (C10 - C40)		F004
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E009 Soil D Organic Matter Determination of organic matter by oxidising with potassium dichromate followed by titration with error (11) sulphate E009 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS E008 Soil D Petroleum ther Extract PCE Gravimented through extraction with acetone and hexane followed by GC-MS E001 Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by electrometric measurement E007 Soil D Phosphate - Water Soluble (2:1) Determination of total sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Vater Soluble (2:1) Determination of uphasphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of uphasphate by extraction with madua-regia followed by (CP-OES E018 <td></td> <td></td> <td></td> <td></td> <td></td>					
SoilDOrganic Matter tor (II) sulphate tor (II) sulphate tor (II) sulphate tor (II) sulphate tor (II) sulphateE010SoilARPAH - Speciated (EPA 16) use of surrogate and internal standardsDetermination of PAH compounds by extraction in acetone and hexane followed by GC-MSE008SoilARPCB - 7 Congeners PCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SoilARPCB - 7 Congeners PCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SoilARPhenols - Total (monohydric) Determination of phe by extraction with acetone and hexane followed by ICP-OESE010SoilARPhenols - Total (monohydric) Determination of phesphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with water & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with water & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with acetone and hexane followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction in acetone and hexane followed by econy addition of formination of formination					
SoilDOriginit within iron (II) subhateEnd to the subscription of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standardsE005SoilARPCB-7 CongenessDetermination of PAH compounds by extraction with acetone and hexane followed by GC-MSE008SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with acetone and hexane followed by GC-MSE009SoilARPhenols - Total (monohydric)Determination of PAH compounds by extraction with acetone and hexane followed by GC-MSE009SoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with acetone and hexane followed by ICP-OESE017SoilDSulphate (as SO4) - TotalDetermination of phosphate by extraction with vater & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of subplate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of subplate by extraction with acetone and hexane followed by ICP-OESE014SoilARSulphideSulphide by extraction with acetone and phase aceils followed by ICP-OESE014SoilARThiocyanate (as SCV)Determination of subplate by extraction with water subplate by ICP-OESE014SoilARThiocyanate (as SCV)Determination of thiocyanate by extraction with water followed by ICP-OESE024SoilARThole extractable Matter (TEM)Gravimetrically determi	Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil AR PAH - Speciated (EPA 16) Use of surrogate and internal standards E005 Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E008 Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohydric) Determination of PAB by extraction of analysed by ion chromatography E007 Soil D Phenols - Total (monohydric) Determination of phosphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphate (as SCN) Determination of sulphate by extraction with augu-regia followed by ICP-OES E024 Soil AR	Soil	D	Organic Matter		F010
SoilARPAR - Speciated (PA 16)use of surrogate and internal standardsE005SoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SoilDPetroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum etherE011SoilARPhenols - Total (monohydric) Determination of phenols by distillation followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1)Determination of phenols by distillation followed by colorimetryE021SoilDSulphate (as SO4) - Total Determination of phons by distillation with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of valer soluble sulphate by extraction with water followed by ICP-OESE014SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with acua-regia followed by ICP-OESE024SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with acua-regia followed by ICP-OESE024SoilARThocyanate (as SCN)Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by addition of ferric intrate followed by colorimetryE025 </td <td>0011</td> <td></td> <td>organio mattor</td> <td></td> <td>2010</td>	0011		organio mattor		2010
SollARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SollDPetroleum Ether Extract (PED)Gravimetrically determined through extraction with petroleum etherE011SollARPhenols - Total (monohydric)Determination of pH by addition of water followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with n0% HC followed by ICP-OESE013SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with n0% HC followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate (as SCN)Determination of semi-volatile organic compounds by extraction in acetone and hexane followed byE009SoilARThiocyanate (as SCN)Determination of thexane/acetone extractable hydrocarbons by GC-FID fractionating with SPEE004SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extractable hydrocarbons by GC-FID fractionating with SPEE004Soil <td>Soil</td> <td>AR</td> <td>PAH - Speciated (FPA 16)</td> <td></td> <td>E005</td>	Soil	AR	PAH - Speciated (FPA 16)		E005
SoliDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherE011SoliARpHDetermination of pH by addition of Water followed by electrometric measurementE007SoliDPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetryE021SoliDSulphate (as SO4) - Total Determination of subphate by extraction with water & analysed by ion chromatographyE009SoliDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water & analysed by ion chromatographyE009SoliDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water & analysed by ion chromatographyE009SoliDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water & analysed by ion chromatographyE009SoliDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water followed by ICP-OESE014SoliARSulphate (as SO4) - Vater Soluble (2:1)Determination of total subphur by extraction with aqua-regia followed by ICP-OESE024SoliARSvbcCDetermination of thicyanate by extraction with aqua-regia followed by ICP-OESE024SoliARThiocyanate (as SCN)Determination of thicyanate by extraction with tolueneE017SoliDTotal Organic Carbon (TOC)Determination of fricin trate followed by colorimetryE017SoliDTotal Organic Carbon (TOC)Determination of			,		
SoilARpHDetermination of pH by addition of water followed by electrometric measurementE007SoilDPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetryE021SoilDSulphate (as SO4) - TotalDetermination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate (as SO4)Determination of sulphate by extraction with aqua-regia followed by acidification followed by econsE009SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction with aqua-regia followed by acidification followed by acidition of feric nitrate followed by colorimetryE017SoilDTotal Organic Carbon (TOC)Determination of thiocyanate by extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydroca					
SoilARPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1)Determination of phenols by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - TotalDetermination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphute - TotalDetermination of total sulphute by extraction with aqua-regia followed by ICP-OESE024SoilARSvocDetermination of thiceyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE006SoilARThiocyanate (as SCN) addition of ferric nitrate followed by colorimetryE011SoilDTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, C16-C21, C21-C36, C36-C48, C8-C10, C12-C16, C16-C21, C21-C35, C35-C44Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C43. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35, C35-C44)Determination of he					
SoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE014SoilARSulphur - TotalDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed byE006SoilARThiocyanate (as SCN)Determination of ferric nitrate followed by colorimetryE017SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with ion (II) sulphateE011SoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, Determination of hexane/acetone extracta					
SoilDSulphate (as SO4) - TotalDetermination of total sulphate by extraction with 10% HCl followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphur by extraction with agua-regia followed by ICP-OESE014SoilDSulphur - TotalDetermination of total sulphur by extraction in acetone and hexane followed by GC-MSE024SoilARSVOCDetermination of total sulphur by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of foric nitrate followed by extraction in acetone and hexane followed by GC-MSE017SoilDTotal Organic Carbon (TOC)Determination of organic matter by extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C35-C44,E004SoilAR <td></td> <td></td> <td></td> <td></td> <td></td>					
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE014SoilARSulphur - TotalDetermination of sulphur by extraction with water followed by ICP-OESE024SoilDSulphur - TotalDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by addition of ferric nitrate followed by colorimetryE009SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDTotal Organic Carbon (TCC)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TCC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,E004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartr					
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE014SoilARSulphideDetermination of sulphide by distillation followed by colorimetryE018SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARSvocDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Icon (II) sulphateDetermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydroca	Soil		Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	
SoilARSulphideDetermination of sulphide by distillation followed by colorimetryE018SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by addition of ferric nitrate followed by colorimetryE018SoilARThiocyanate (as SCN) Toluene Extractable Matter (TEM)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C23, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C23, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractabl					
SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARSVCCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thicoyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C36, C10-C12, C12-C16, C16-C21, C21-C36, cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C36, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of volatile organic compounds by headspace GC-MSE001		_			
SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by acidification followed by acidification of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE001	Soil	AR			E018
SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by acidification followed by acidification of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE001	Soil	D	Sulphur - Total	Determination of total sulphur by extraction with agua-regia followed by ICP-OES	E024
SoilARStoleGC-MSEEESoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration withE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004Soil <td< td=""><td>Soll</td><td></td><td></td><td></td><td>E004</td></td<>	Soll				E004
SoilARThiotyanate (as Sch) addition of ferric nitrate followed by colorimetryEDITSoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Iron (II) sulphateDetermination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MSE004	3011	АК	SVUC		LUUO
SoilARThiotyanate (as Sch) addition of ferric nitrate followed by colorimetryEDITSoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Iron (II) sulphateDetermination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MSE004	Cell	4.0		Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	F017
SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of volatile organic compounds by headspace GC-MSE001	2011	AK	i hiocyanate (as SCN)		EUI/
SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of volatile organic compounds by headspace GC-MSE001	Soil	D	Toluene Extractable Matter (TEM)		E011
SoilDTotal Organic Carbon (TOC) iron (TI) sulphateEUTOSoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C23, C35-C44, eartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004		L.			1
SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C14, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCs Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004	Soil	D	i otal Organic Carbon (TOC)		E010
SoilARC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE001					1
SoilARaro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of hoxane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE001					1
aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C21-C35, C35-C44 E004 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001	Soil	AR			E004
Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C12-C16, C16-C21, C21-C35, C35-C44, C5 to C44, C5				cartridge for C8 to C35. C5 to C8 by headspace GC-MS	
Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001			C12-C16, C16-C21, C21-C35)		1
Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001					t
Soli AR aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soli AR VOCs Determination of volatile organic compounds by headspace GC-MS E001					
aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001	Soil	ΔR			E004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001	5011		aro: C5-C7, C7-C8, C8-C10, C10-C12,	cartridge for C8 to C44. C5 to C8 by headspace GC-MS	L004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001			C12-C16, C16-C21, C21-C35, C35-C44)		1
	Soll	٨D		Determination of volatile graphic compounds by besteross CC MS	E001
	Soil	AR			E001

D Dried

Alex Bewick Ashdown Site Investigations Ltd The Old Dairy Swanborough Farm Swanborough Lewes East Sussex BN7 3PF

 QTS Environmental Ltd

 Unit 1

 Rose Lane Industrial Estate

 Rose Lane

 Lenham Heath

 Kent

 ME17 2JN

 t: 01622 850410

 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 17-58872

Site Reference: Camley Street Natural Park, 12 Camley Street, London

Project / Job Ref: R17-12131

Order No: P17-4817

Sample Receipt Date: 12/05/2017

Sample Scheduled Date: 12/05/2017

Report Issue Number: 1

Reporting Date: 18/05/2017

Authorised by: KO C

Kevin Old Associate Director of Laboratory

QTSE is the trading name of DETS Ltd, company registration number 03705645

Authorised by: 2 and

Russell Jarvis Associate Director of Client Services

Soil Analysis Certificate

OTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

٦

Joh Analysis Certificate								
QTS Environmental Report No: 17-58	3872		Date Sampled	09/05/17	09/05/17	09/05/17	09/05/17	09/05/17
Ashdown Site Investigations Ltd			Time Sampled	None Supplied				
Site Reference: Camley Street Natura	al Park, 12		TP / BH No	BH02	BH02	BH02	TP02	TP03
Camley Street, London								
Project / Job Ref: R17-12131		A	Additional Refs	None Supplied				
Order No: P17-4817			Depth (m)	0.10	1.70	3.60	0.20	0.15
Reporting Date: 18/05/2017		Q	FSE Sample No	268367	268368	268369	268370	268371
Determineral	11-14	DI	A					
Determinand	Unit N/a	RL N/a	Accreditation	Not Detected			Detected	Detected
Asbestos Screen ^(S)		IV/d	13017025	NOI Delected			Fibre bundles	Fibre bundles
Sample Matrix ^(S)	Material Type	N/a	NONE				present	present
(2)	21112		10017005					Chrysotile
Asbestos Type ^(S)	PLM Result	N/a	ISO17025				Chrysotile	Amosite
рН	pH Units	N/a	MCERTS	7.3	7.8	7.7	7.2	7.4
Total Sulphate as SO ₄	mg/kg	< 200	NONE				6739	7895
Total Sulphate as SO ₄	%	< 0.02	NONE				0.67	0.79
Organic Matter	%	< 0.1	MCERTS	5.8	1.3	0.1	3.6	5.2
Arsenic (As)	mg/kg	< 2	MCERTS	22	13	14	16	15
W/S Boron	mg/kg	< 1	NONE	2.2	2	< 1	< 1	2.4
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.5	0.2	< 0.2	0.4	0.4
Chromium (Cr)	mg/kg	< 2	MCERTS	27	12	41	31	27
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	60	67	20	63	70
Lead (Pb)	mg/kg	< 3	MCERTS	336	423	25	156	211
Mercury (Hg)	mg/kg	< 1	NONE	< 1	2.9	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	21	12	46	16	15
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mg/kg	< 3	MCERTS	268	70	72	226	278

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C

Analysis carried out on the dried sample is corrected for the stone content

he samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials: Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Javeed Malik

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - $\ensuremath{\mathsf{PT}}'$ with type(s).

Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs							
QTS Environmental Repor			Date Sampled	09/05/17	09/05/17	09/05/17	09/05/17	09/05/17
Ashdown Site Investigation	ons Ltd		Time Sampled	None Supplied				
Site Reference: Camley S			TP / BH No	BH02	BH02	BH02	TP02	TP03
12 Camley Street, London	1							
Project / Job Ref: R17-12	2131	A	Additional Refs	None Supplied				
Order No: P17-4817			Depth (m)	0.10	1.70	3.60	0.20	0.15
Reporting Date: 18/05/2	017	Q	FSE Sample No	268367	268368	268369	268370	268371
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	1.07	< 0.1	< 0.1	0.60	0.50
Anthracene	mg/kg	< 0.1	MCERTS	0.21	< 0.1	< 0.1	0.15	0.12
Fluoranthene	mg/kg	< 0.1	MCERTS	2.15	< 0.1	< 0.1	1.26	1.17
Pyrene	mg/kg	< 0.1	MCERTS	1.84	< 0.1	< 0.1	1.17	1.07
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.01	< 0.1	< 0.1	0.60	0.65
Chrysene	mg/kg	< 0.1	MCERTS	0.98	< 0.1	< 0.1	0.66	0.68
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.50	< 0.1	< 0.1	0.81	0.92
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.46	< 0.1	< 0.1	0.31	0.36
Benzo(a)pyrene		< 0.1	MCERTS	0.92	< 0.1	< 0.1	0.51	0.63
Indeno(1,2,3-cd)pyrene	0 0	< 0.1	MCERTS	0.58	< 0.1	< 0.1	0.34	0.41
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene		< 0.1	MCERTS	0.35	< 0.1	< 0.1	0.31	0.39
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	11.2	< 1.6	< 1.6	6.7	6.9

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- EPH Banded (Typ	e F)				
QTS Environmental Report	t No: 17-58872		Date Sampled	09/05/17	09/05/17	
Ashdown Site Investigatio	ons Ltd		Time Sampled	None Supplied	None Supplied	
Site Reference: Camley St 12 Camley Street, London			TP / BH No	TP02	TP03	
Project / Job Ref: R17-12	131	,	Additional Refs	None Supplied	None Supplied	
Order No: P17-4817			Depth (m)	0.20	0.15	
Reporting Date: 18/05/20	017	Q	TSE Sample No	268370	268371	
Determinand	Unit	RL	Accreditation			
EPH (>C8 - C10)	mg/kg	< 1	MCERTS	< 1	< 1	
EPH (>C10 - C12)	mg/kg	< 1	MCERTS	< 1	< 1	
EPH (>C12 - C16)	mg/kg	< 1	MCERTS	< 1	< 1	
EPH (>C16 - C21)	mg/kg	< 1	MCERTS	13	8	
EPH (>C21 - C40)	mg/kg	< 6	MCERTS	242	114	
EPH (C8 - C40)	mg/kg	< 6	MCERTS	255	122	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- TPH CWG Bande	d					
QTS Environmental Report			Date Sampled	09/05/17	09/05/17	09/05/17	
Ashdown Site Investigation	ns Ltd		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Camley Sti	reet Natural Park,		TP / BH No	BH02	BH02	BH02	
12 Camley Street, London							
Project / Job Ref: R17-12	131	ŀ	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: P17-4817			Depth (m)	0.10	1.70	3.60	
Reporting Date: 18/05/20)17	Q	TSE Sample No	268367	268368	268369	
Determinand	Unit		Accreditation				
Aliphatic >C5 - C6		< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	5 5	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg		MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg		MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg		MCERTS	< 3	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg		NONE	< 21	< 21	< 21	
Aromatic >C5 - C7		< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg		MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg		MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	2	< 2	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	11	< 3	< 3	
Aromatic >C21 - C35	mg/kg			49	< 10	< 10	
Aromatic (C5 - C35)	mg/kg	< 21		62	< 21	< 21	
Total >C5 - C35	mg/kg	< 42	NONE	62	< 42	< 42	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- BTEX / MTBE						
QTS Environmental Report	t No: 17-58872		Date Sampled	09/05/17	09/05/17	09/05/17	
Ashdown Site Investigatio	ons Ltd		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Camley Si 12 Camley Street, London			TP / BH No	BH02	BH02	BH02	
Project / Job Ref: R17-12	2131	/	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: P17-4817			Depth (m)	0.10	1.70	3.60	
Reporting Date: 18/05/2	017	Q	TSE Sample No	268367	268368	268369	
Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	9	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

MTBE ug/kg < 5 MCERTS Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Waste Acceptance Criteria	Analytical Ce	ertificate - BS EN	12457/2				
QTS Environmental Report Nc	o: 17-58872	Date Sampled	09/05/17		Landflll Was	te Acceptance (Criteria Limit
Ashdown Site Investigations	Ltd	Time Sampled	None Supplied				
Site Reference: Camley Stree Park, 12 Camley Street, Londo		TP / BH No	BH02			Stable Non-	
Project / Job Ref: R17-12131		Additional Refs	None Supplied		Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: P17-4817		Depth (m)	0.10		Editori	hazardous Landfill	Landfill
Reporting Date: 18/05/2017		QTSE Sample No	268367				
Determinand	Unit	MDL					
TOC ^{MU}	%	< 0.1	3.4		3%	5%	6%
oss on Ignition	%	< 0.01	12.90				10%
3TEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Vineral Oil ^{MU}	mg/kg	< 10	< 10		500		
Total PAH ^{MU}	mg/kg	< 1.7	11.2		100		
рН ^{ми}	pH Units	N/a	7.3			>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	1.9			To be evaluated	To be evaluated
			10:1	Cumulative		for compliance	
Eluate Analysis			ma/l	10:1	using BS I	EN 12457-3 at l	_/S IU I/Kg
Arsenic ^u	-		mg/l	mg/kg 0.1	0.5	(mg/kg)	<u>л</u> г
	-1		0.01		20	2	25
Barium ^u	-1		0.03	0.3		100	300
Cadmium ^u	-1		< 0.0005	< 0.005	0.04	1	5
Chromium ^u	-1		< 0.005	< 0.05	0.5	10	70
Copper ^u	-1		0.02	0.2	2	50	100
Mercury ^u	-1		< 0.0005	< 0.01	0.01	0.2	2
Molybdenum ^U	-1		0.006	0.06	0.5	10	30
Nickel ^u	-1		< 0.007	< 0.07	0.4	10	40
_ead ^u	-1		0.036	0.36	0.5	10	50
Antimony ^u	-1		< 0.005	< 0.05	0.06	0.7	5
Selenium ^u	-1		< 0.005	< 0.05	0.1	0.5	7
Zinc ^u	-1		0.020	0.20	4	50	200
Chloride ^u	-1		11	108	800	15000	25000
Fluoride ^U	-1		< 0.5	< 5	10	150	500
Sulphate ^u	-1		32	322	1000	20000	50000
TDS	-1		179	1789	4000	60000	100000
Phenol Index	-1		< 0.01	< 0.1	1	-	-
DOC			18.5	185	500	800	1000
Leach Test Information							
					1		
Comple Mass (Irs)			0.11		1		
Sample Mass (kg)			0.11		-1		
Dry Matter (%)			82.9		-1		
Moisture (%)			20.6	├ ──	-1		
Stage 1 (olumo Eluato I 10 (litros)			0 00		4		
Volume Eluate L10 (litres)			0.88		4		
					1		
					1		
Results are expressed on a dry weight Stated limits are for guidance only and				n current legislation			
M Denotes MCERTS accredited test J Denotes ISO17025 accredited test							

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 17-58872	
Ashdown Site Investigations Ltd	
Site Reference: Camley Street Natural Park, 12 Camley Street, London	
Project / Job Ref: R17-12131	
Order No: P17-4817	
Reporting Date: 18/05/2017	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
268367	BH02	None Supplied	0.10	17.1	Brown sandy clay with stones and brick
268368	BH02	None Supplied	1.70	13.6	Black sandy clay with brick
268369	BH02	None Supplied	3.60	19	Brown clay
268370	TP02	None Supplied	0.20	6.2	Grey sandy gravel with stones and concrete
268371	TP03	None Supplied	0.15	7.8	Grey sandy gravel with stones and concrete

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneou QTS Environmental Report No: 17-58872	us Information	
Ashdown Site Investigations Ltd		
Site Reference: Camley Street Natural Park, 12 Camley Street, London		
Project / Job Ref: R17-12131		
Order No: P17-4817		
Reporting Date: 18/05/2017		
Matrix Analysed Determinand	Brief Method Description	Method

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Porop Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR			E012 E001
Soil			Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
JUII	U	r nuoride - water soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	LUUY
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E000
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

APPENDIX E

Classification of Probability, Consequence and Risk

Probability of risk being realised			
Classification	Definition		
High	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.		
Moderate	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.		
Low	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.		
Very Low	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term.		

Consequence of risk being realised				
Classification	Category	Definition		
Severe	Human Health	Short term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA.		
	Controlled Waters	Short term risk of pollution (note: Water Resources Act contains no scope for considering significance of pollution) of sensitive water resource.		
	Property	Catastrophic damage to buildings/property.		
	Ecological Systems	A short term risk to a particular ecosystem or organisation forming part of such ecosystem.		
	Human Health	Chronic damage to Human Health.		
Moderate	Controlled Waters	Pollution of sensitive water resources (note: Water Resources Act contains no scope for considering significance of pollution).		
	Ecological System	A significant change in a particular ecosystem or organism forming part of such ecosystem.		
	Controlled Waters	Pollution of non-sensitive water resources.		
Minor	Property	Significant damage to crops, buildings, structures and services.		
WITTO	Ecological Systems	Damage to sensitive buildings/structures/services or the environment.		
Very Minor	Human Health	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing, etc).		
	Property	Easily repairable effects of damage to buildings, structures and services.		
	Project	Harm, although not necessarily significant harm, which may result in a financial loss or expenditure to resolve.		

	Risk classification definitions			
Very High	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.			
High	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the long term.			
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.			
Low	It is possible that harm could arise to a designated receptor from an identified hazard, but there is a low likelihood of this hazard occurring and if realised, harm would at worst normally be mild.			
Very Low	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.			