

APPENDIX F

Factual Report

Site 26 Westhill Park Camden London N6 6ND Client Tatiana Konopleva Date 17.02.17 & 02.03.17 Our Ref FACT/8522

Chelmer Site Investigation Laboratories Ltd

Unit 15 East Hanningfield Industrial Estate, Old Church Road, East Hanningfield, Essex CM3 8AB Essex: 01245 400930 | London: 0203 640 9136 | info@siteinvestigations.co.uk | www.siteinvestigations.com

FACTUAL REPORT CONTENT

- 1.0 SITE PLAN
- 2.0 TRIAL PIT SECTION DRAWINGS / BOREHOLE LOGS
- 3.0 TRIAL PIT PHOTOGRAPHS
- 4.0 LANDBORNE GAS ASSESSMENT
- 5.0 GEOTECHNICAL SOIL TESTING RESULTS
- 6.0 CHEMICAL SOIL TESTING RESULTS
- 7.0 REPORT NOTES

^	ha		Site:					Client:				Borehole ID):		
Sit	te Inve 'Gro	stigations undbreaking Services'	26 West H	ill Park, H	ighgate, l	ondon, N6 6	5ND	Tatiana I	Konopleva			BH	11		
			Contract	Number	: Date:		Logged B	y:	Checked by:	Weather:					
			8522		17/02/1	17	L.J.S.		J.H.	Dry		Sheet 1 of 1			
Bo	oreho	le Log	Easting:		Northi	ng:	Ground L	evel:	Plant Used:			Scale:			
Samn	loc & In Si	tu Testing	IN.D.		N.D.		N.D.	taile	1000 CFA Second	aman		N.	1.5. Indura	tor	
Depth	Sample	Test Result	Depth	Thickness	Legend		Strata De	Strat	a Description		Root	ts Information	Gw	Inst	tall
(m) - GL			(m) GL	(m)							Roc	ots of live and	(m)	1-1	-
0.25	D				$\mid > > >$	with rare bri	ck fragments	. Sand is fi	ne. Gravel is sub-rour	ided of fine chalk.	dea of 1	d appearance mmØ to 2.0m.		-	-
- - 0.50	D			0.90	$\left \right\rangle$	1								-	-
[$\left \right\rangle$	ź									Ē.
- 1.00	D	V 70	0.90		<u>+</u> +	Firm orange	brown sandy	silty CLAY	. Sand is fine.					2	Ę
-		72			+ + +										
1.50	D				וּייי, יוּדי, דיייייייייייייייייייייייייייייייייי	-									1
- -					+ + + +	a									
2.00	D	V 94			÷						No r b	oots observed elow 2.0m.			
-		94			**										Ś
2.50	D					· - -									
-				3.60	f, +										8
- 3.00	D	V 114 116			<u>+</u> + + +	becoming	g stiff from 3.0	Om.							
-					+ - + + ⊢ ++										k
- 3.50	D				++ ++										Ł
						-									
- 4.00	D	V 120+ 120+			+ + +										
	_				<u>+</u>	-									
- 4.50	D		4.50		+ ++	Stiff brown s	lightly sandy	silty CLAY	with occasional pock	ets of fine brown silt					8
		1/ 120			++ 		sanu.								1
- 5.00	D	V 120+ 120+		1.50	F + +										8
-				1.50	Harris Arriente Arriente Arriente Arr	-									8
-					+ + +										
6.00	D	V 120+	6.00		╞╺╌╌┾ ┶╼╋╧══╋	- 									
-	5	120+	0.00		++ ++	Stiff moist d	ark grey sligh sand.	tly sandy s	ilty CLAY with occasic	onal pockets of brown					100
-					F + + +	-									
2					+: . + : ± ±_										
- 7.00	D	V 120+			+ + +								7.0		K
		120+			È										Ł
-					++ ++	4									1
						3 T									
- 8.00	D	V 120 ·		4.00	₩, + +++	rare shell	fragments at	8.0m							ł
-		120+			14 (1 14 (114) 14 (114)		in uginents ut	0.0111.							
					++++	- -									
-					+ <u></u> + `.+ `∕.+										1
9.00	D	V 120+				-									K.
-		120+			+ +										E E
					t <u>+</u>	-									8
E					+ + - ⁻ ++	5									Ż
- 10.00	D	V 120+ 120+	10.10		1 - Angel - A			Borehole t	erminated at 10.10m						
Remark Groundwa	s: ater 'strike	' at 7.0m.					CFA	y: Continu	ous Flight Auger						
Borehole Standpipe	wet and op installed	oen on completion to 10.0m, slotted	n. pipe: 9.0m, p	lain pipe: 1	1.0m, shina	gle and cover.	D GL	Small D Ground	isturbed Sample Level						
					-		v	Pilcon V	'ane (kPa)						

(`ho	Imor	Site:					Client:					Borehole II	D:	
S i	te Inve	e s t i g a t i o n s coundbreaking Services'	26 West H	lill Park, H	ighgate, I	ondon N6 6	ND	Tatiana I	Conopleva				Bł	12	
		-	Contract	Number	: Date:		Logged By	/:	Checked b	y:	Weather:		-		
			8522		02/03/2	17	L.J.S.		J.H.		Dry		Sheet 1 of 1		
В	oreho	le Log	Easting:		Northi	ng:	Ground Le	evel:	Plant Used	:			Scale:		
			N.D.		N.D.		N.D.		CFA Second	man			N.:	T.S.	
Depth	Sample	tu Testing	Depth	Thicknes	S Legend		Strata Det	ails Strat:	Description			Pool	Roots and Grou	undwa Gw	Install
(m) - GI	Jampie	Test Result	(m)	(m)				50100	Description			Roc	ots of live and	(m)	
			0.10	0.10		Block paving						dea of 1	d appearance mmØ to 0.5m.		
- 0.40 - 0.50	D D		0.40	0.50		MADE GROU	IND: Brown slig	ghtly sand	ly gravelly silty	clay with	occasional brick	Nor	oots observed		
			0.80	0.40		flint.	e fragments. Sa	and is tine	e to medium. Gr	ravel is sui	o-angular of fine	u u	elow 0.5111.		
- - 1.00	D	V 78				Stiff orange-	brown sandy s	ilty CLAY	with occasional	l grey vein	ing. Sand is fine.				<u> </u>
		80				-									
1.50	D			1.20	}- +	-									
-					+ + +	5									
2.00	D	V 92 90	2.00		+	Stiff brown s	andy silty CLA	Y. Sand is	fine.						
-					**										
- 2.50	D														
-		V 120+				-									
- 3.00	D	120+			#*** <u>+</u> +****	5									
	_			2.80											
- 3.50	D														
4 00	D	V 120+				becoming	g darker from 3	8.8m.							
- 4.00 -	D	120+				-									
- 150	р				111 <u>年</u> ~1月 11日(大学)										
4.50					+ ^{−−} + ^{−−} +										
- 5.00	D	V 120+	4.80			Very stiff dar	rk grey sandy s	ilty CLAY	with rare pocke	ets of brow	vn silt and fine				
-		120+													
-						5 2									
-															
6.00	D	V 120+ 120+													
-		1201													
-															
-		V 120.												6.8	
- 7.00	D	v 120+ 120+													
				5 20	+++++++++++++++++++++++++++++++++++++++										
-				5.20											
-		V 120+													
- 8.00	D	120+													
-						-									
-					-+ -+ + -+										
0.00	D	V 120+			+ +	2									
- 9.00	U	120+			Ì∓ ⊬ ⊬										
-						-									
-						-									
- - 10.00	D	V 120+ 120+	10.10			-		Borehold	terminated at	10 10m					
Remark	s:		1	1	•	•	Key	:		10.10111					<u> </u>
Groundwi Borehole	ater 'seepa moist and	ige' at 6.8m. open on complet	ion.				CFA D	Continu Small Di	ous Flight Auge sturbed Sample	er e					
Plastic sta shingle: 1	ndpipe ins .0m and g	stalled to 10.0m, s as value installed	slotted pipe: 	9.0m, plair	n pipe: 1.0r	n, bentonite: 9	9.0m, GL V	Ground Pilcon V	Level ane (kPa)						

Tatiana Konopleva 26 West Hill Park, Camden, N6 6ND 02.03.17 TRIAL PIT 1 PHOTOGRAPH

No photograph

Tatiana Konopleva 26 West Hill Park, Camden, N6 6ND 02.03.17 **TRIAL PIT 2 PHOTOGRAPH**

Chelmer Site Investigation Laboratories Ltd Unit 15 East Hanningfield Industrial Estate, Old Church Road, East Hanningfield, Essex CM3 8AB Essex: 01245 400930 | London: 0203 67409136 | info@siteinvestigations.co.uk | www.siteinvestigations.com

Groundwater/Ground Gas Monitoring Record Sheet

Site Ref:8522Site Name:26 West Hill Park, Highgate, London N6 6ND

Well	Date	Methane Peak	Methane Steady	Methane GSV	Carbon Dioxide Peak	Carbon Dioxide Steady	Carbon Dioxide GSV	Oxygen	Atmos.	Flow	Response Zone	Depth to Water	со	H2S	voc
		%v/v	%v/v	l/hr	%v/v	%v/v	l/hr	%v/v	mbar	l/hr	m bgl	m bgl	ppm	ppm	ppm
	15.03.17	0.2	0.2	0.0000	4.5	4.5	0.0000	16.6	1024	0.0		3.40	0	0	0.0
BH1	22.03.17	0.2	0.2	0.0002	6.2	6.1	0.0062	15.3	994	0.1		3.40	0	0	0.1
	12.04.17	0.2	0.2	0.0000	5.6	5.6	0.0000	14.7	1009	0.0		3.44	0	0	0.1
	15.03.17	0.2	0.1	0.0000	0.5	0.4	0.0000	20.0	1024	0.0		1.74	1	0	0.2
BH2	22.03.17	0.2	0.2	0.0000	1.0	0.8	0.0000	19.9	994	0.0		1.72	0	0	0.1
	12.04.17	0.2	0.2	0.0002	1.8	1.8	0.0018	17.9	1009	0.1		1.80	0	0	0.2

Notes

Laboratory Report

Site	26 West Hill Park, Camden
Client	Tatiana K
Date	22-Mar-17
Our Ref	CSI8522
CGL Ref	CGL8522

Chelmer Site Investigation Laboratories Ltd

Unit 15 East Hanningfield Industrial Estate, Old Church Road, East Hanningfield, Essex CM3 8AB Essex: 01245 400930 | London: 0203 6409136 |info@siteinvestigations.co.uk | www.siteinvestigations.com

Laboratory Testing Results

Date Received : 07/03/2017

Laboratory Used : Chelmer Geotechnical, CM3 8AB

Date Testing Started : 07/03/2017

Date Testing Completed : 22/03/2017

Job Number : CGL8522

Client : Tatiana K Client Reference : CSI8522

Site Name : 26 West Hill Park, Camden

Sample Ref								1	1			1					*Sulp	hata Conto	nt (a/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	*Soil Faction > 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	*Modified Plasticity Index (%) [6]	*Soil Class [7]	Filter Paper Contact Time (h) [8]	*Soil Sample Suction (kPa)	Insitu Shear Vane Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO ₃ [12]	SO ₄ [13]	Class [14]
BH1	1.5	86159	D	23	<5	59	18	41	0.12	39	СН								
BH1	3.0	86162	D	20	<5	54	18	36	0.06	34	СН								
BH1	3.5	86163	D	21	<5	54	17	37	0.11	35	СН								
BH1	4.5	86164	D	26	<5	52	17	35	0.27	33	СН								
BH1	8.0	86166	D	31	<5	56	19	37	0.32	35	СН								
F									u										·
Notes :- "UKAS Accredited Tests										Key	!		surveyer	*					
[1] BS 1377 : Part 2 : 1990, Test No 3.2 [7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils [4					[12] BS 1377 : Part	3 : 1990, Test No 5	5.6			D - Disturbed sample	•		1	1					
[2] Estimated if <5%, otherwise measured [8] In-house method S9a adapted from BRE IP 4/93							[13] SO ₄ = 1.2 x SO ₃				E	\bigcap	NE						

Comments :-				•
[6] BRE Digest 240 : 1993	[11] BS 1377 : Part 2 : 1990, Test No 9		U/S - Underside Foundation	8284
[5] BS 1377 : Part 2 : 1990, Test No 5.4	[10] BS 1377 : Part 3 : 1990, Test No 4	sample as falling into the DS-4m or DS-5m class respectively unless water soluble magnesium testing is undertaken to prove otherwise	ENP - Essentially Non-Plastic	TESTING
[4] BS 1377 : Part 2 : 1990, Test No 5.3		Note that if the SO ₄ content falls into the DS-4 or DS-5 class, it would be prudent to consider the	W - Water sample	UKAS
[3] BS 1377 : Part 2 : 1990, Test No 4.4	[9] Values of shear strength were determined in situ by Chelmer Site Investigations using a Pilcon hand vane or Geonor vane (GV).	[14] BRE Special Digest One (Concrete in Aggressive Ground) 2005	U - 0100 (undisturbed sample)	ミンショ
[2] Estimated if <5%, otherwise measured	[8] In-house method S9a adapted from BRE IP 4/93	[13] SO ₄ = 1.2 x SO ₃	B - Buik sample	[(\$⊀)]
[1] BS 1377 : Part 2 : 1990, Test No 3.2	[7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils	[12] BS 1377 : Part 3 : 1990, Test No 5.6	P Bulk comple	
[1] DC 1277 , Dort 2 , 1000 Toot No 2 2	[7] DC 5020 (1001) Figure 21 Direction Chart for the elegoification of fine soils	[10] BC 1077 (Dort 2) 1000 Test No E C		

Checked & Authorised By:- Martyn Graham Senior Laboratory Technician Chelmer Site Investigation Laboratories Ltd

Date Checked :- 27/03/2017

Technician :- JH

Laboratory Testing Results

Date Received : 07/03/2017

Laboratory Used : Chelmer Geotechnical, CM3 8AB

Date Testing Started : 07/03/2017

Date Testing Completed : 22/03/2017

Job Number : CGL8522

Client : Tatiana K Client Reference : CSI8522

Site Name : 26 West Hill Park, Camden

5	Sample Re	f	1	1	*Sail Faction		[1	1	*Modified		Filter Deper	1	Insity Cheer Vene	T		*Sulph	ate Conte	nt (g/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO ₃ [12]	SO4 [13]	Class [14]
BH2	1.5	86169	D	19	<5	52	17	35	0.07	33	СН			91					
BH2	2.5	86170	D	27	<5	51	16	35	0.31	33	СН			120+					
BH2	3.5	86172	D	28	<5	53	17	36	0.31	34	СН			120+					
BH2	4.5	86174	D	27	<5	53	18	35	0.27	34	СН			120+					
BH2	5.5	86175	D	28	<5	55	17	38	0.29	36	СН			120+					
BH2	10.0	86178	D	30	<5	63	20	43	0.22	41	СН			120+					
Notos :	*11648 44	oraditad Ta	oto	•				•	•	•		•	•				·		
[1] BS 1377	: Part 2 : 1	1990, Test N	lo 3.2	[7] BS 5930 : 1981	: Figure 31 - Plastic	ity Chart for the clas	ssification of fine so	ils		[12] BS 1377 : Part	3 : 1990, Test No 5	5.6			Key D - Disturbed sample	<u>l</u>		C.)

[1] BS 1377 : Part 2 : 1990, Test No 3.2	[7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils	[12] BS 1377 : Part 3 : 1990, Test No 5.6	D - Disturbed sample		(ATAC)	25-11
[2] Estimated if <5%, otherwise measured	[8] In-house method S9a adapted from BRE IP 4/93	[13] SO ₄ = 1.2 x SO ₃	B - Bulk sample		1	Ē
[3] BS 1377 : Part 2 : 1990, Test No 4.4	[9] Values of shear strength were determined in situ by Chelmer Site Investigations using a Pilcon hand vane or	[14] BRE Special Digest One (Concrete in Aggressive Ground) 2005	U - U100 (undisturbed sample)	E (PS)	
[4] BS 1377 : Part 2 : 1990, Test No 5.3	Geonor vane (GV).	Note that if the SO, content falls into the DS 4 or DS 5 class, it would be prudent to consider the	W - Water sample	E È Ì	KAS	-
[5] BS 1377 : Part 2 : 1990, Test No 5.4	[10] BS 1377 : Part 3 : 1990, Test No 4	sample as falling into the DS-4m or DS-5m class respectively unless water soluble magnesium tacting is undertaken to prove otherwise.	ENP - Essentially Non-Plastic		ESTING	
[6] BRE Digest 240 : 1993	[11] BS 1377 : Part 2 : 1990, Test No 9	testing is undertaken to prove unerwise	U/S - Underside Foundation		8284	
Comments :-						

Checked & Authorised By:- Martyn Graham Senior Laboratory Technician Chelmer Site Investigation Laboratories Ltd

Date Checked :- 27/03/2017

Technician :- JH

Laboratory Testing Results

Date Received : 07/03/2017

Laboratory Used : Chelmer Geotechnical, CM3 8AB

Date Testing Started : 07/03/2017

Date Testing Completed : 22/03/2017

Job Number : CGL8522 Client : Tatiana K Client Reference : CSI8522

Site Name : 26 West Hill Park, Camden

	Sample Re	ef			*Soil Eaction					*Modified		Filter Paper		Incitu Shoor Vana			*Sulph	hate Conte	ent (g/l)
BH/TP/WS	Depth (m)	UID	Sample Type	*Moisture Content (%) [1]	> 0.425mm (%) [2]	*Liquid Limit (%) [3]	*Plastic Limit (%) [4]	*Plasticity Index (%) [5]	*Liquidity Index (%) [5]	Plasticity Index (%) [6]	*Soil Class [7]	Contact Time (h) [8]	*Soil Sample Suction (kPa)	Strength (kPa) [9]	Organic Content (%) [10]	*pH Value [11]	SO3 [12]	SO ₄ [13]	Class [14]
TP1	0.4	86179	D	34	<5	65	20	45	0.31	43	СН			66					

T	Fechnician :- JH	Checked & Authorised By:-	Martyn Graham Senior Laboratory Technician	Date Checked :-	27/03/2017	
	Comments :-					
	[6] BRE Digest 240 : 1993	[11] BS 1377 : Part 2 : 1990, Test No 9		U/S - Underside Foundation	8284	
	[5] BS 1377 : Part 2 : 1990, Test No 5.4	[10] BS 1377 : Part 3 : 1990, Test No 4	sample as falling into the DS-4m or DS-5m class respectively unless water soluble magnesium testing is undertaken to prove otherwise	ENP - Essentially Non-Plastic	TESTING	26
	[4] BS 1377 : Part 2 : 1990, Test No 5.3		Note that if the SO4 content falls into the DS-4 or DS-5 class, it would be prudent to consider the	W - Water sample	UKAS	
	[3] BS 1377 : Part 2 : 1990, Test No 4.4	[9] Values of shear strength were determined in situ by Chelmer Site Investigations using a Pilcon hand vane or Genory vane (GV)	[14] BRE Special Digest One (Concrete in Aggressive Ground) 2005	U - U100 (undisturbed sample)		
	[2] Estimated if <5%, otherwise measured	[8] In-house method S9a adapted from BRE IP 4/93	[13] SO ₄ = 1.2 x SO ₃	B - Bulk sample	E(++)	-
	[1] BS 1377 : Part 2 : 1990, Test No 3.2	[7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils	[12] BS 1377 : Part 3 : 1990, Test No 5.6			
	Notes :- "UKAS Accredited Tests			Key D - Disturbed sample	cto	
	Notoc : *IIKAS Accredited Tects			14		

Laboratory Testing Results Moisture Content/Shear Strength Profile Job Number : CGL8522 Date Received : 07/03/2017 Client : Tatiana K Date Testing Started : 07/03/2017 Client Reference : CSI8522 Date Testing Completed : 22/03/2017 Site Name : 26 West Hill Park, Camden Laboratory : Chelmer Geotechnical Laboratories, CM3 8AB Soil Moisture Content (%) In Situ Shear Strength (kPa) 12 16 20 24 28 32 36 40 48 44 0 20 40 60 0.0 0.0 TP1 × * TP1 BH2 BH1

Chelmer

Chelmer Site Investigations Unit 15 East Hanningfield Industrial Estate CM3 8AB

Analytical Test Repo	rt: L17,	/0622/	CSI/001

Your Project Reference:	CGL8522	Samples Received on:	13.03.2017
Your Order Number:	7801	Testing Instruction Received:	13.03.2017
Report Issue Number:	1	Sample Tested:	13 to 17.03.2017
Samples Analysed:	7 Soils	Report issued:	17.03.2017

Signed

James Gane

Commercial Manager Nicholls Colton Group

Notes:					
General					
Please refer to Methodologies tab for details pertaining to the analytical methods undertaken.					
Samples will be retained for 14 days after issue of this report unless otherwise requested.					
Samples were supplied by customer, results are representative of the material provided					
Deviating Samples					
Samples were received in suitable containers	Yes				
A date and time of sampling was provided	Yes				
Sample holding times were exceeded prior to analysis of determinants	No				
Where samples do not meet one or more of the above criteria they will be classed as deviating, this means of may be compromised.	lata may not be representative of the sample at the time of sampling and it is possible that results provided				
Accreditation Key					
UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited					
Data of Ircus 24 01 2017					

Owned by finite Notices Supervisor Authorised by James Gane - Commercial Manager G:\LE1 Production\Commercial\Current Reports\2017\L17\CSi - Chelmer\L17-0622-CSi\L17-0622-CSi 001.xisx\Sample Descriptions

L17/0622/CSI/001

Project Reference - CGL8522

Analytical Test Results - BRE Suite

		17-8216	17-8217	17-8218	17-8219	17-8220	17-8221
		86158	86160	86164	86167	86168	86171
		BH1	BH1	BH1	BH1	BH2	BH2
		0.50	2.00	4.50	10.0	0.50	3.00
		06.03.2017	06.03.2017	06.03.2017	06.03.2017	06.03.2017	06.03.2017
		AM	AM	AM	AM	AM	AM
		Clay	Clay	Clay	Clay	Clay	Clay
Units	Accreditation						
(mg/l)	u	93	150	160	990	190	83
(%)	u	0.04	0.05	0.14	0.33	0.09	0.04
(%)	u	0.02	0.02	0.05	0.78	0.04	0.01
pH Units	MCERTS	8.4	7.7	7.6	7.6	10.8	9.6
	Units (mg/l) (%) (%) pH Units	Units Accreditation (mg/l) u (%) u (%) u pH Units MCERTS	17-8216 86158 BH1 0.50 06.03.2017 AM Clay Units Accreditation (mg/l) u 93 (%) u 0.04 (%) u 0.02 pH Units MCERTS 8.4	17-8216 17-8217 86158 86160 BH1 BH1 0.50 2.00 06.03.2017 06.03.2017 AM AM Clay Clay (mg/l) u 93 150 (%) u 0.02 0.02 pH Units MCERTS 8.4 7.7	17-8216 17-8217 17-8218 86158 86160 86164 BH1 BH1 BH1 0.50 2.00 4.50 06.03.2017 06.03.2017 06.03.2017 AM AM AM Clay Clay Clay (mg/l) u 93 150 160 (%) u 0.04 0.05 0.14 (%) u 0.02 0.02 0.05 pH Units MCERTS 8.4 7.7 7.6	17-8216 17-8217 17-8218 17-8219 86158 86160 86164 86167 BH1 BH1 BH1 BH1 0.50 2.00 4.50 10.0 06.03.2017 06.03.2017 06.03.2017 06.03.2017 AM AM AM AM Clay Clay Clay Clay (mg/l) u 93 150 160 990 (%) u 0.04 0.05 0.14 0.33 (%) u 0.02 0.02 0.05 0.78 pH Units MCERTS 8.4 7.7 7.6 7.6	17-8216 17-8217 17-8218 17-8219 17-8220 86158 86160 86164 86167 86168 BH1 BH1 BH1 BH1 BH2 0.50 2.00 4.50 10.0 0.50 06.03.2017 06.03.2017 06.03.2017 06.03.2017 06.03.2017 AM AM AM AM AM AM Clay Clay Clay Clay Clay Clay (mg/l) u 93 150 160 990 190 (%) u 0.04 0.05 0.14 0.33 0.09 (%) u 0.02 0.02 0.05 0.78 0.04 pH Units MCERTS 8.4 7.7 7.6 7.6 10.8

L17/0622/CSI/001

Project Reference - CGL8522

Analytical Test Results - BRE Suite

NC Reference			17-8222
Client Sample Reference			86177
Client Sample Location			BH2
Depth (m)			8.00
Date of Sampling			06.03.2017
Time of Sampling			AM
Sample Matrix			Clay
Determinant	Units	Accreditation	
Water soluble sulphate	(mg/l)	u	390
Acid Soluble Sulphate	(%)	u	0.18
Total Sulphur	(%)	u	0.42
pH Value	pH Units	MCERTS	8.6

L17/0622/CSI/001

Project Reference - CGL8522

Sample Descriptions

NC Reference	Client Sample Reference	Sample Location	Description	% Passing 2mm BS test sieve
17-8216	86158	BH1	Brown/orange silty sandy clay.	100
17-8217	86160	BH1	Brown/orange silty sandy clay.	100
17-8218	86164	BH1	Brown silty sandy clay.	100
17-8219	86167	BH1	Grey silty sandy clay.	100
17-8220	86168	BH2	Brown/orange silty sandy clay.	100
17-8221	86171	BH2	Brown/orange silty sandy gravelly clay.	100
17-8222	86177	BH2	Grey silty sandy clay.	100

L17/0622/CSI/001

Project Reference - CGL8522

Analysis Methodologies

Matrix	Determinant	Sample condition for analysis	Test Method used
Soil	рН	As Received	In house method statement - MS - CL - pH in soils (using a 1:3 soil to water extraction)
Soil	Sulphate (w/s)	Oven Dried	In house method statement - MS - CL - Anions by Aquakem
Soil	Acid Sulphate	Oven Dried	In house method statement - MS - CL - BRE Analysis
Soil	Total Sulphur	Oven Dried	In house method statement - MS - CL - BRE Analysis

This report is personal to the client, confidential and non assignable. It is issued with no admission of liability to any third party.

This report shall not be reproduced, except in full, without the written approval of Chelmer Site Investigations Laboratories Ltd.

Where our involvement consists exclusively of testing samples, the results and comments (if provided) relate only to the samples tested.

Any samples that are deemed to be subject to deviation will be recorded as such within the test summary.

Chelmer Site Investigations Unit 15 Hanningfield Industrial Estate CM3 8AB

Analytical Test Report: L17/0620/CSI/001

Your Project Reference:	CGL8522-C	Samples Received on:	13.03.2017
Your Order Number:	7799	Testing Instruction Received:	13.03.2017
Report Issue Number:	1	Sample Tested:	13 to 21.03.2017
Samples Analysed:	3 Soils	Report issued:	21.03.2017

Signed

Han.

James Gane Commercial Manager Nicholls Colton Group

Notes:						
General						
Please refer to Methodologies tab for details pertaining to the analytical methods undertaken.						
Samples will be retained for 14 days after issue of this report unless otherwise requested.						
Moisture Content was determined in accordance with NC method statement MS - CL - Sample Prep, oven dr	ied at <30°C.					
Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with B	S1377, Part 2, 1990, Clause 3.2					
Stone Content was determined in accordance with NC method statement MS - CL - Sample Prep and refers to	o the percentage of stones retained on a 10mm BS test sieve.					
With the exception of Sulphate, Sulphur and LoI which are crushed over the 2mm test sieve, concentrations are reported as a percentage mass of the dry soil passing the 10mm BS test sieve. As received samples have been corrected for moisture content but not stone content.						
Samples were supplied by customer, results are representative of the material provided						
Deviating Samples						
Samples were received in suitable containers	Yes					
A date and time of sampling was provided	Yes					
Sample holding times were exceeded prior to analysis of determinants	Yes					
Where samples do not meet one or more of the above criteria they will be classed as deviating, this means d may be compromised.	ata may not be representative of the sample at the time of sampling and it is possible that results provided					
WAC Testing						
Samples were leached in accordance with BS EN 12457-2: 2002.						
Eluate Results are reported as L/S 10. These results have been calculated in accordance with BS EN 12457-2:	2002.					
Comparative values are taken from the Environment Agency document "Guidance for waste destined for dis	posal in landfills", Version 2, June 2006.					
Accreditation Key						
UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited						
Date of Issue 24.01.2017						
Owned by Emily Blissett - Customer Services Supervisor						
Authorised by James Gane - Commercial Manager						
G:\LE1 Production\Commercial\Current Reports\2017\L17\CSI - Chelmer\L17-0620-CSI\[L17-0620-CSI 001.xlsx]Cover Sheet						

L17/0620/CSI/001

Project Reference - CGL8522-C

Analytical Test Results - Env Suite 1

NC Reference			17-8198	17-8200
Client Sample Reference			86144	86146
Client Sample Location			BH1	BH2
Depth (m)			0.25	0.50
Date of Sampling			06.03.2017	06.03.2017
Time of Sampling			AM	AM
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation		
Arsenic	(mg/kg)	MCERTS	32.3	< 10
Cadmium	(mg/kg)	MCERTS	1.2	0.7
Chromium (Total)	(mg/kg)	UKAS	30.8	28.6
Copper	(mg/kg)	MCERTS	22.5	11.2
Lead	(mg/kg)	MCERTS	66.9	29.4
Mercury	(mg/kg)	UKAS	< 2.5	< 2.5
Nickel	(mg/kg)	MCERTS	13.1	18.1
Selenium	(mg/kg)	u	< 8	< 8
Zinc	(mg/kg)	MCERTS	67.2	44.9
Total Phenols	(mg/kg)	MCERTS	< 1	< 1
Cyanide (Total)	(mg/kg)	MCERTS	<1	< 1
рН	pH Units	MCERTS	8.5	10.3
Sulphate	(mg/l)	u	61	110
Sulphur	(%)	u	0.02	0.02
Sulphide	(mg/kg)	u	4.0	4.0
Acenaphthene	(mg/kg)	MCERTS	<0.02	0.05
Acenaphthylene	(mg/kg)	UKAS	0.03	<0.02
Anthracene	(mg/kg)	UKAS	0.07	0.10
Benzo (a) anthracene	(mg/kg)	MCERTS	0.25	0.27
Benzo (a) pyrene	(mg/kg)	MCERTS	0.24	0.22
Benzo (b) fluoranthene	(mg/kg)	MCERTS	0.29	0.26
Benzo (g, h, i) perylene	(mg/kg)	MCERTS	0.15	0.13
Benzo (k) fluoranthene	(mg/kg)	MCERTS	0.12	0.12
Chrysene	(mg/kg)	MCERTS	0.29	0.30
Dibenzo (a,h) anthracene	(mg/kg)	MCERTS	0.04	0.03
Fluoranthene	(mg/kg)	MCERTS	0.50	0.50
Fluorene	(mg/kg)	MCERTS	<0.02	0.04
Indeno (1, 2, 3,-cd) pyrene	(mg/kg)	MCERTS	0.16	0.14
Naphthalene	(mg/kg)	MCERTS	<0.02	0.03
Phenanthrene	(mg/kg)	MCERTS	0.15	0.31
Pyrene	(mg/kg)	MCERTS	0.43	0.43
Total PAH (Sum of USEPA 16)	(mg/kg)	UKAS	2.76	2.93

L17/0620/CSI/001

Project Reference - CGL8522-C

Analytical Test Results - TPH CWG

NC Reference			17-8198	17-8200
Client Sample Reference			86144	86146
Client Sample Location			BH1	BH2
Depth (m)			0.25	0.50
Date of Sampling			06.03.2017	06.03.2017
Time of Sampling			AM	AM
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation		
Aliphatics				
>C ₅ to C ₆	(mg/kg)	u	<0.03	< 0.03
>C ₆ to C ₈	(mg/kg)	u	0.09	0.03
>C ₈ to C ₁₀	(mg/kg)	u	<0.03	<0.03
>C ₁₀ to C ₁₂	(mg/kg)	u	<12	<12
>C ₁₂ to C ₁₆	(mg/kg)	u	<12	<12
>C ₁₆ to C ₂₁	(mg/kg)	u	<12	<12
>C ₂₁ to C ₃₅	(mg/kg)	u	12	13
Aromatics				
>C ₅ to C ₇	(mg/kg)	u	<0.03	<0.03
>C ₇ to C ₈	(mg/kg)	u	<0.03	<0.03
>C ₈ to C ₁₀	(mg/kg)	u	<0.03	<0.03
>C ₁₀ to C ₁₂	(mg/kg)	u	<12	<12
>C ₁₂ to C ₁₆	(mg/kg)	u	<12	<12
>C ₁₆ to C ₂₁	(mg/kg)	u	<12	<12
>C ₂₁ to C ₃₅	(mg/kg)	u	12	<12

Hazardous Waste

Landfill

Stable non reactive

hazardous waste in a

Inert Waste Landfill

Nicholls Colton Group 7 - 11 Harding Street Leicester LE1 4DH

L17/0620/CSI/001

Project Reference - CGL8522-C

Certificate Of Analysis - WAC Suite

NC Reference	17-8199
Client Sample Reference	86145, BH1
Sample Description	Brown/orange silty sandy clay with calcerous matter and root fragments.
Depth (m)	0.5
Date of Sampling	06.03.2017
Time of Sampling	AM
Sample Matrix	Clay
Moisture Content (%)	22
Stone content (%)	0

Determined Result

						non hazardous landfill	Landfill
Solid Analysis							
Total Organic Carbon	%	MCERTS	<1.0]	3.0	5.0	6.0
Loss on Ignition	%	UKAS	4.4		-	-	10.0
BTEX	mg/kg	MCERTS	<0.4		6.00	-	-
PCB's (7 Congeners)	mg/kg	u	<0.03		1.00	-	-
Mineral Oil (> C_{10} to C_{40})	mg/kg	u	39		500	-	-
РАН	mg/kg	u	1.3		100	-	-
рН	units	MCERTS	8.3		-	> 6	-
Eluate Analysis							
Arsenic	mg/kg	u	< 0.03]	0.50	2	25
Barium	mg/kg	u	< 0.05		20	100	300
Cadmium	mg/kg	u	< 0.03		0.04	1	5
Chromium (total)	mg/kg	u	< 0.03		0.5	10	70
Copper	mg/kg	u	< 0.10		2.0	50	100
Mercury	mg/kg	u	< 0.01		0.01	0.2	2
Molybdenum	mg/kg	u	0.04		0.5	10.0	30
Nickel	mg/kg	u	< 0.03		0.4	10.0	40
Lead	mg/kg	u	< 0.10		0.5	10.0	50
Antimony	mg/kg	u	< 0.01		0.06	0.7	5
Selenium	mg/kg	u	0.01		0.1	0.5	7
Zinc	mg/kg	u	< 0.10		4	50	200
Chloride	mg/kg	u	12		800	15000	25000
Fluoride	mg/kg	u	6.4		10	150	500
Sulphate (as SO₄)	mg/kg	u	120		1000	20000	50000
Phenol Index	mg/kg	u	< 1.0		1	-	-
Dissolved Organic Carbon	mg/kg	u	210		500	800	1000

L17/0620/CSI/001

Project Reference - CGL8522-C

Sample Descriptions

NC Reference	Client Sample Reference	Sample Location	Description	Moisture Content (%)	Stone Content (%)
17-8198	86144	BH1	Brown/orange silty sandy gravelly clay with calcerous matter.	22	0.9
17-8200	86146	BH2	Brown/orange silty sandy clay.	25	1.4

L17/0620/CSI/001

Project Reference - CGL8522-C

Analysis Methodologies

Matrix	Determinant	Sample condition for analysis	Test Method used
Soil	Metals	Air Dried	In house method statement - MS - CL - ICP metals
Soil	РАН	As Received	In house method statement - MS - CL - PAH (As received)
Soil	Phenols	As Received	In house method statement - MS - CL - Phenols by Skalar
Soil	Cyanide	As Received	In house method statement - MS - CL - Cyanide by Skalar
Soil	рН	As Received	In house method statement - MS - CL - pH in soils (using a 1:3 soil to water extraction)
Soil	Sulphate (w/s)	Oven Dried	In house method statement - MS - CL - Anions by Aquakem
Soil	Total Sulphur	Oven Dried	In house method statement - MS - CL - BRE Analysis
Soil	Sulphide	Air Dried	In house method statement - MS - CL - Sulphide
Soil	CWG	As Received	In house method statements - MS - CL - EPH in soil and MS - CL - VPH

REPORT NOTES

Equipment Used

Hand tools, Mechanical Concrete Breaker and Spade, Hand Augers, 100mm/150mm diameter Mechanical Flight Auger Rig, GEO205 Flight Auger Rig, Window Sampling Rig, and Large or Limited Access Shell & Auger Rig upon request and/or access permitting.

On Site Tests

By Pilcon Shear-Vane Tester (kN/m²) in clay soils, and/or Mackintosh Probe in granular soils or made ground and/or upon request Continuous Dynamic Probe Testing and Standard Penetration Testing.

<u>Note</u>:

Details reported in trial-pits and boreholes relate to positions investigated only as instructed by the client or engineer on the date shown.

We are therefore unable to accept any responsibility for changes in soil conditions not investigated i.e. variations due to climate, season, vegetation and varying ground water levels.

Full terms and conditions are available upon request.

APPENDIX G

Net bearing pressure for PDISP							
ZONE	e in vertical pressure (kPa)						
#	Stage 1	Stages 2 and 3					
U1	-2.70	7.30					
U2	11.30	16.30					
U3	-22.20	-2.20					
U4	-7.20	17.80					
U5	46.30	56.30					
U6	26.30	36.30					
U7	7.30	17.30					
U8	-3.70	6.30					
U9	-3.70	6.30					
U10	-32.20	12.80					
U11	-47.20	-32.20					
U12	7.30	22.30					
U13	-7.70	2.30					
U14	7.30	22.30					
U15	-7.70	2.30					
S1	0.00	-43.70					
S2	0.00	-62.70					
S3	0.00	-62.70					
S4	0.00	-72.20					
S5	0.00	-43.70					
S6	0.00	-43.70					
S7	0.00	-62.70					

APPENDIX H

Classification of visible damage to walls (after Burland et al, 1977, Boscardin and Cording, 1989; and Burland, 2001)

Category of damage		Description of typical damage (ease of repair is underlined)	Approximate crack width (mm)	Limiting tensile strain ɛ _{lim} (per cent)
0	Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible.	< 0.1	0.0-0.05
1	Very slight	<u>Fine cracks that can easily be treated during</u> <u>normal decoration.</u> Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection.	< 1	0.05-0.075
2	Slight	<u>Cracks easily filled. Redecoration probably</u> <u>required.</u> Several slight fractures showing inside of building. Cracks are visible externally and <u>some repointing may be required externally</u> to ensure weathertightness. Doors and windows may stick slightly.	< 5	0.075–0.15
3	Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5–15 or a number of cracks > 3	0.15–0.3
4	Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 but also depends on number of cracks	> 0.3
5	Very severe	<u>This requires a major repair involving partial or</u> <u>complete rebuilding.</u> Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion. Danger of instability.	usually > 25 but depends on number of cracks.	