

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-64062

Project / Site name: St Giles Circus Samples received on: 02/12/2014

Your job number: 14-2669 Samples instructed on: 04/12/2014

Your order number: CL230 Analysis completed by: 15/12/2014

Report Issue Number: 1 Report issued on: 15/12/2014

Samples Analysed: 14 soil samples

Signed:

Neil Donovan Environmental Forensics Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Your Order No: CL230

Lab Sample Number				398143	398144	398145	398146	398147
Sample Reference				WS06	WS06	WS06	WS06	WS09
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			D					
		Limit of detection	Accreditation Status					
Analytical Parameter	Units	ec mi	edi					
(Soil Analysis)	ß	ti of	us					
		3	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.8	2.9	13	11	9.8
Total mass of sample received		0.001	NONE	0.35	0.46	0.44	0.49	0.45
Total mass of sample received	kg	0.001	NONE	0.33	0.40	0.44	0.49	0.45
Asbestos in Soil	Time	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
ASDESIOS III SOII	Type	N/A	150 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Conoral Inorganics								
General Inorganics	m1111-3	N1/A	MCERTC	0.0	0.0	0.0	0 F	10.2
pH Tatal Conside	pH Units	N/A	MCERTS	8.6	8.8	8.6	8.5	10.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN Total Sulphate as SO ₄	mg/kg	5 50	NONE ISO 17025	< 5.0 < 50	< 5.0 < 50	< 5.0 120	< 5.0 58	< 5.0 1100
	mg/kg							
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Organic Matter	%	0.1	MCERTS	0.3	0.4	0.3	0.5	0.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.2	0.2	0.3	0.2
Total Phenois								ı
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.97
	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	0.97 < 0.10
Naphthalene								
Naphthalene Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1 0.1	MCERTS MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)pyrene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthylene Hluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(b)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthylene Huorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene Benzo(ghi) perylene Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kq mg/kq mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.83
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(pi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kq mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10	 < 0.10 < 1.60 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	 < 0.10 < 1.60 	 < 0.10 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 < 1.10 <
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 1.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.4 < 0.05
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)ayrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.2 < 4.0 	 < 0.10 < 0.2 < 0.2 < 4.0 	 < 0.10 < 0.2 < 0.2 < 4.0 	 < 0.10 < 0.2 < 0.2 < 0.2 < 4.0 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.4 < 0.25
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.2 < 0.2 < 4.0 < 0.2 < 4.0 < 17 	 < 0.10 < 0.2 < 0.2 < 4.0 12 	 < 0.10 < 0.2 < 0.2 < 4.0 11 	 < 0.10 < 0.05 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.010 < 0.10 < 0.10 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010 < 1.010
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Plyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.2 < 4.0 < 1.7 9.8 	 < 0.10 < 0.2 < 4.0 < 0.2 < 4.0 < 12 < 6.9 	 < 0.10 < 0.2 < 0.2 < 4.0 11 11 	 < 0.10 < 0.2 < 0.2 < 4.0 < 1.2 < 5.2 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.20
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.10 < 0.2 < 0.2<td> < 0.10 < 0.2 < 0.2 < 4.0 < 0.2 < 6.9 4.9 </td><td> < 0.10 < 0.2 < 0.2 < 4.0 11 < 0.2 < 4.0 11 < 3.7 </td><td> < 0.10 < 0.2 < 0.10 < 0.5 < 0.5<</td><td>< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.4 0.20 1.83</td>	 < 0.10 < 0.2 < 0.2 < 4.0 < 0.2 < 6.9 4.9 	 < 0.10 < 0.2 < 0.2 < 4.0 11 < 0.2 < 4.0 11 < 3.7 	 < 0.10 < 0.2 < 0.10 < 0.5 < 0.5<	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.4 0.20 1.83
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)apyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 4.0 17 9.8 4.8 < 0.3 	 < 0.10 < 0.2 < 0.3 	 < 0.10 < 0.2 < 0.3 	 < 0.10 < 0.5 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.10 < 0.10 < 1.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Nickel (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.10 < 0.20 < 0.20	 < 0.10 < 0.2 < 0.2 < 4.0 12 6.9 < 0.3 14 	 < 0.10 < 0.2 < 0.3 < 0.3 < 0.4 < 0.2 < 0.2<td> < 0.10 < 0.2 < 0.2 < 4.0 12 5.2 < 0.3 < 0.3 < 15 </td><td>< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.183 16 0.4 < 0.2 < 4.0 21 14 210 < 0.3 24</td>	 < 0.10 < 0.2 < 0.2 < 4.0 12 5.2 < 0.3 < 0.3 < 15 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.183 16 0.4 < 0.2 < 4.0 21 14 210 < 0.3 24
Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MCERTS	 < 0.10 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 4.0 17 9.8 4.8 < 0.3 	 < 0.10 < 0.2 < 0.3 	 < 0.10 < 0.2 < 0.3 	 < 0.10 < 0.5 	< 0.10 < 0.10 < 0.10 0.23 < 0.10 0.34 0.29 < 0.10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.10 < 0.20

Your Order No: CL230

Lab Sample Number				398143	398144	398145	398146	398147
Sample Reference				WS06	WS06	WS06	WS06	WS09
Sample Number				ES01	ES02	ES03	ES04	ES01
epth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled		28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014		
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	2.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	24	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	9.6	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	24	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	34	< 10

Miscel	laneous	Organics

Miscerialieous Organics								
Toluene Extractable Matter	ma/ka	100	NONE	< 100	< 100	< 100	< 100	< 100

Your Order No: CL230

Lab Sample Number				398148	398149	398150	398151	398152
Sample Reference				WS09	WS10	WS10	WS10	WS10
Sample Number				ES02	ES01	ES02	ES03	ES04
Depth (m)				1.00	0.50	1.00	2.00	2.70
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	4.3	1.8	8.2	14	10
Total mass of sample received	kg	0.001	NONE	0.45	0.41	0.44	0.43	0.55
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-		-					
pH	pH Units	N/A	MCERTS	9.4	8.5	8.4	8.5	8.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	900	92	480	160	97
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	21
Organic Matter	%	0.1	MCERTS	0.3	0.8	0.9	0.5	0.7
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.5	0.5	0.3	0.4
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	ma/lea	0.05	MCERTS	1.5	2.3	2.3	< 0.05	< 0.05
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.05
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.31	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	0.36	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	0.33	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.14	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	0.12	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	ma n	1.0	MCEDIC	274	2 22	2 22	z 1.00	× 1.00
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	2.74	2.32	2.33	< 1.60	< 1.60
Heavy Metals / Metalloids	,							2 -
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	13	14	6.3	8.6
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.8	0.4	< 0.2	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	24	22	18	20
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	31	44	18	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	88	160	29	18
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3 22	< 0.3	< 0.3	< 0.3 23
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	22 < 1.0	< 1.0	18 < 1.0	13 < 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	32	< 1.0 59	< 1.0 72	39	< 1.0 41
zine (aqua regia extractable)	mg/kg		PICENTS	JŁ	33	12	33	71

Your Order No: CL230

Lab Sample Number				398148	398149	398150	398151	398152
Sample Reference				WS09	WS10	WS10	WS10	WS10
Sample Number				ES02	ES01	ES02	ES03	ES04
epth (m)				1.00	0.50	1.00	2.00	2.70
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	28/11/2014
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	5.0	4.8	5.2	1.1	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Miscel	laneous	Organics

Miscerialieous Organics								
Toluene Extractable Matter	ma/ka	100	NONE	< 100	< 100	< 100	< 100	< 100

Your Order No: CL230

Lab Sample Number				398153	398154	398155	398156	
Sample Reference				WS10	WS13	WS13	WS13	
Sample Number				ES05	ES01	ES02	ES03	
Depth (m)				3.80	0.50	1.00	2.00	
Date Sampled				28/11/2014	28/11/2014	28/11/2014	28/11/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			Α					
Analytical Danamatan	_	de	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edii					
(Soil Analysis)	S	할 역	us					
		_	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	12	13	12	9.9	
Total mass of sample received	kg	0.001	NONE	0.46	0.41	0.43	0.44	
Total mass of sample received	g	0.001	HOHE	01.10	0.11	01.13	0111	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
respected in con	1,700	.,,,,	100 17025	THOC GOLOGICA	Hot detected	Hot detected	Hot detected	
General Inorganics								
pH	pH Units	N/A	MCERTS	8.4	8.9	8.5	8.4	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	İ
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	ì
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	ì
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	390	9700	240	260	ì
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	1
Organic Matter	%	0.1	MCERTS	0.2	0.9	0.1	0.1	İ
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.1	0.5	< 0.1	< 0.1	
Total organic carbon (100)	,,,	0.1	HOLITIO	0.1	0.5	1 0.12	10.1	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Total Friends (mononyane)	mg/kg	-	FIGERIE	V 1.0	11.0	11.0	V 1.0	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.21	< 0.05	0.17	
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	1.4	< 0.10	0.37	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.22	< 0.10	0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.3	< 0.10	0.60	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	1.1	< 0.10	0.50	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	0.55	< 0.10	0.29	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.47	< 0.05	0.21	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	0.42	< 0.10	0.24	Î
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	0.38	< 0.10	0.11	ì
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	0.35	< 0.10	0.17	Î
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	0.22	< 0.10	< 0.10	Ì
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	Î
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	< 0.05	Î
W // /								-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	6.95	< 1.60	2.76	
	31 ***3			2.00	2.30	2.00		
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.2	19	9.0	12	
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.7	< 0.2	< 0.2	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.7	< 0.2	< 0.2	Î
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	ì
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.9	19	24	23	İ
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.9	180	15	14	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	9.6	1100	26	27	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	12	< 0.3	< 0.3	1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	16	18	18	I
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	I
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	19	750	41	35	
Ee (aqua regia extractable)	mg/kg		I-ICENTO	1.7	, 50	11	JJ	

Your Order No: CL230

Lab Sample Number				398153	398154	398155	398156	
Sample Reference				WS10	WS13	WS13	WS13	
Sample Number	ole Number			ES05	ES01	ES02	ES03	
Depth (m)	(m)			3.80	0.50	1.00	2.00	
Date Sampled					28/11/2014	28/11/2014	28/11/2014	
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	2.8	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	12	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	11	< 10	< 10	· ·
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	26	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	26	< 10	< 10	

Miscol	langous	Organics
MISCEL	ianeous	Organics

Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	i

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
398143	WS06	ES01	0.50	Light brown sand.
398144	WS06	ES02	1.00	Light brown sand.
398145	WS06	ES03	2.00	Light brown sand.
398146	WS06	ES04	3.00	Light brown sand.
398147	WS09	ES01	0.50	Light brown sand.
398148	WS09	ES02	1.00	Light brown sand.
398149	WS10	ES01	0.50	Light brown sand.
398150	WS10	ES02	1.00	Light brown sand.
398151	WS10	ES03	2.00	Light brown sand.
398152	WS10	ES04	2.70	Light brown sand.
398153	WS10	ES05	3.80	Light brown sand.
398154	WS13	ES01	0.50	Brown sand with rubble and brick.
398155	WS13	ES02	1.00	Light brown sand.
398156	WS13	ES03	2.00	Light brown sand.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Page 9 of 10

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	nuce mater (em) i etable mater (i m) ereama m				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-64069

Project / Site name: St Giles Circus Samples received on: 02/12/2014

Your job number: 14-2669 Samples instructed on: 04/12/2014

Your order number: CL230 Analysis completed by: 16/12/2014

Report Issue Number: 1 Report issued on: 16/12/2014

Samples Analysed: 2 wac multi samples

Signed: Wate

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager
For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		14-64069					
				Client:	CONCEPT		
Location		St Giles Circu	IS				
Lab Reference (Sample Number)		398172		Landfill	Waste Acceptance	ce Criteria	
Sampling Date		01/12/2014			Limits Stable Non-	1	
Sample ID		WS06 ES03			reactive	Hazardous Waste Landfill	
Depth (m)		2.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill		
Solid Waste Analysis							
TOC (%)**	0.2			3%	5%	6%	
Loss on Ignition (%) **	-					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 1.6			100			
pH (units)**	-				>6		
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance le		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS EN 12457-3 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.017	< 0.010	< 0.050	0.5	2	25	
Barium *	0.042	0.0054	0.10	20	100	300	
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium *	0.018	0.0014	0.035	0.5	10	70	
Copper *	0.011	< 0.0030	0.023	2	50	100	
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum *	0.0096	< 0.0030	0.030	0.5	10	30	
Nickel *	0.019	0.0016	0.038	0.4	10	40	
Lead *	0.0066	< 0.0050	0.023	0.5	10	50	
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc *	0.028	0.0030	0.062	4	50	200	
Chloride *	8.9	< 4.0	< 15	800	4000	25000	
Fluoride	0.65	0.20	2.6	10	150	500	
Sulphate *	18	1.4	35	1000	20000	50000	
TDS	80	20	280	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	14	2.0	35	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1				†		
Sample Mass (kg)	0.44				1		
Dry Matter (%)	87				1		
Moisture (%)	13				1		
Stage 1					1		
Volume Eluate L2 (litres)	0.33						
Filtered Eluate VE1 (litres)	0.22				1		
					1		
		t	1		1		

[|] Stated limits are for guidance only and 12 cannot be neu responsible to any use.
| *= UKAS accredited (liquid eluate analysis only)
| ** = MCERTS accredited

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	14-640	69	1				
Toport 1101								
				Client:	CONCEPT			
Location		St Giles C	ircus	1				
				Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)		39817	3					
Sampling Date		01/12/2			Stable Non-			
Sample ID Depth (m)		WS10 E	505	Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis					Editoriii			
TOC (%)**	0.1			3%	5%	6%		
Loss on Ignition (%) **	1					10%		
BTEX (μg/kg) **	< 10	<u> </u>		6000				
Sum of PCBs (mg/kg)	< 0.30			1				
Mineral Oil (mg/kg)	< 10			500				
Total PAH (WAC-17) (mg/kg)	< 1.6			100				
pH (units)**	-				>6			
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate		
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance le			
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS EN 12457-3 at L/S 10 l/kg (mg/kg)				
Arsenic *	0.017	< 0.010	0.085	0.5	2	25		
Barium *	0.026	0.012	0.14	20	100	300		
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5		
Chromium *	0.010	0.0042	0.050	0.5	10	70		
Copper *	0.011	< 0.0030	0.034	2	50	100		
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Molybdenum *	0.0051	< 0.0030	< 0.020	0.5	10	30		
Nickel *	0.014	0.0051	0.062	0.4	10	40		
Lead *	0.0059	< 0.0050	0.030	0.5	10	50		
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5		
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7		
Zinc *	0.020	0.0077	0.092	4	50	200		
Chloride *	12	< 4.0	20	800	4000	25000		
Fluoride	0.40	0.12	1.5	10	150	500		
Sulphate *	13	1.4	29	1000	20000	50000		
TDS	80	20	280	4000	60000	100000		
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-		
DOC	7.7	3.2	37	500	800	1000		
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	0.41							
Dry Matter (%)	92			İ				
Moisture (%)	8.2							
Stage 1								
Volume Eluate L2 (litres)	0.34			İ				
Filtered Eluate VE1 (litres)	0.23							
	where applicable	1		1	1			

^{*=} UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
398172	WS06	ES03	2.00	Light brown sand.
398173	WS10	ES05	3.80	Light brown sand.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in eachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification. In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.		L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-64297

Project / Site name: St Giles Circus Samples received on: 05/12/2014

Your job number: 14-2669 Samples instructed on: 05/12/2014

Your order number: **Analysis completed by:** 16/12/2014

Report Issue Number: Report issued on: 16/12/2014

Samples Analysed: 1 soil sample

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager

Signed:

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting

asbestos - 6 months from reporting

Lab Sample Number				399845			
Sample Reference				WS13			
Sample Number				ES04			
Depth (m)				3.00			
Date Sampled				02/12/2014			
Time Taken				None Supplied			
		g L	Accreditation Status				
Analytical Parameter	Units	Limit of detection	creditat Status				
(Soil Analysis)	Ŗ	tio o	tus itat				
		5 5	ğ				
Stone Content	%	0.1	NONE	< 0.1			
Moisture Content	%	N/A	NONE	12			
Total mass of sample received	kg	0.001	NONE	0.40			
					1		1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected			
General Inorganics				•		Π	
рН	pH Units	N/A	MCERTS	6.8			
Total Cyanide	mg/kg	1	MCERTS	< 1			
Free Cyanide	mg/kg	1	NONE	< 1			
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0			
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	330			
Elemental Sulphur	mg/kg	20	NONE	< 20			
Organic Matter	%	0.1	MCERTS	0.1			
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1			
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0			
					-		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05			
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10			
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10			
Fluorene	mg/kg	0.1	MCERTS	< 0.10			
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10			
Anthracene	mg/kg	0.1	MCERTS	< 0.10			
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10			
Pyrene	mg/kg	0.1	MCERTS	< 0.10			
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10			
Chrysene	mg/kg	0.05	MCERTS	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.03	MCERTS	< 0.10	ì	Ì	ì
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	I		I
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	I		I
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10			
Dibenz(a,h)anthracene	mg/kg mg/kg	0.1	MCERTS	< 0.10			
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	< 0.10	 	 	
penzo(Gui)hei Aiene	my/ky	0.05	MICERIS	< 0.05		1	
Total DAU							
Total PAH		1.0	MCEDIC	. 1.00	I		1
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	<u> </u>	<u> </u>	<u> </u>
Harris Markelle / Markelle /							
Heavy Metals / Metalloids				7.5	1		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5			
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.5			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	5.6			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	3.9			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.5			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	21			

Lab Sample Number				399845			
Sample Reference				WS13			
Sample Number				ES04			
Depth (m)				3.00			
Date Sampled				02/12/2014			
Time Taken			None Supplied				
Analytical Parameter (Soil Analysis) Accreditation Status							
Monoaromatics	•	-			-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0			
Toluene	μg/kg	1	MCERTS	< 1.0			
Ethylbenzene	μg/kg	1	MCERTS	< 1.0			
p & m-xylene	μg/kg	1	MCERTS	< 1.0			
o-xylene	μg/kg	1	MCERTS	< 1.0			
MTBE (Methyl Tertiary Butyl Ether) µg/kg 1 MCERTS				< 1.0			

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0				
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0				
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0				
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0				
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4				
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10				
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10				
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1				
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0				
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0				
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10				
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10				
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4				
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10				
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10				
				-	-	-		
Miscellaneous Organics	_						-	
Toluene Extractable Matter	ma/ka	100	NONE	< 100				

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
399845	WS13	ES04	3.00	Brown sand.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPH C6- C12	In-house method	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-64298

Project / Site name: St Giles Circus Samples received on: 05/12/2014

Your job number: 14-2669 Samples instructed on: 05/12/2014

Your order number: **CL230 Analysis completed by:** 17/12/2014

Report Issue Number: 1 Report issued on: 17/12/2014

Samples Analysed: 1 wac multi sample

Signed: (

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		14-64298				
		. ===				
				Client:	CONCEPT	
		0.01.0				
Location		St Giles Circus	i	Landfill	Waste Acceptanc	o Critoria
Lab Reference (Sample Number)		399846	ŀ	Landrill	Limits	e Criteria
Sampling Date		02/12/2014			Stable Non-	1
Sample ID		WS13 ES04			reactive	
Depth (m)		3.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-			-		10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			500		
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10 < 1.6			100		
pH (units)**	- 1.0				>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance le	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	using 65 EN	I 12457-3 at L/S 10	i/kg (mg/kg)	
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium *	0.023	0.012	0.14	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.0096	0.0040	0.048	0.5	10	70
Copper *	0.044	0.0054	0.11	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.010	0.0032	0.042	0.5	10	30
Nickel *	0.010	0.0037	0.046	0.4	10	40
Lead *	0.0082	< 0.0050	0.040	0.5	10	50
Antimony *	< 0.0050 < 0.010	< 0.0050 < 0.010	< 0.020	0.06	0.7 0.5	5 7
Selenium * Zinc *	0.027	0.0069	< 0.040 0.098	4	50	200
Chloride *	4.7	< 4.0	< 15	800	4000	25000
Fluoride	0.36	0.13	1.6	10	150	500
Sulphate *	20	2.6	51	1000	20000	50000
TDS	60	30	340	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	8.6	4.7	53	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.40					
Dry Matter (%)	88				ļ	
Moisture (%)	12					
Stage 1	0.77					
Volume Eluate L2 (litres)	0.33				1	
Filtered Eluate VE1 (litres)	0.25				 	
		l l				l

viesuits are expressed on a ony weight basis, after correction for mosture content where applicable Stated limits are for guidance only and 12 cannot be held responsible for any discrepencies with current legislation *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
399846	WS13 ES04	None Supplied	3.00	Brown sand.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	te water (3W) Potable water (PW) Ground W				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
			_		

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-64295

Project / Site name: St Giles Circus Samples received on: 05/12/2014

Your job number: 14/2669 Samples instructed on: 09/12/2014

Your order number: CL241 Analysis completed by: 17/12/2014

Report Issue Number: 1 Report issued on: 17/12/2014

Samples Analysed: 14 soil samples

Signed: (State

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Thurstan Plummer Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 14-64295 Project / Site name: St Giles Circus Your Order No: CL241

			Т					
Lab Sample Number				399804	399805	399806	399807	399808
Sample Reference				WS15	WS15	WS15	WS15	WS15
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)				0.50	1.00	2.00	3.00	4.00
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	3.0	4.1	10	10	19
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.4	1.4	0.99
Total Mass of Sample received	9	0.001						0.55
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		B1 1 -	T 1	0 =	0.2	0.0	0.0	7.2
pH	pH Units	N/A	MCERTS	8.7	8.0	8.0	8.3	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	8.9	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1900	85	220	< 50	560
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.1
Total Phenois			MOEDTO	. 1.0	. 1.0	. 10	. 1.0	. 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
		0.05	MOEDES	< 0.05	< 0.05	. 0.05	. 0.05	. 0.05
Naphthalene	mg/kg	0.05	MCERTS			< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids		1	, .					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5	7.7	4.6	4.9	17
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.3	0.2	0.3	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	9.8	4.6	8.7	45
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	5.2	4.1	4.7	37
Lead (aqua regia extractable)	mg/kg	1	MCERTS	55	3.4	2.0	3.1	17
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.2	11	6.2	9.1	46
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	18	15	11	12	87

Your Order No: CL241

Lab Sample Number				399804	399805	399806	399807	399808
Sample Reference				WS15	WS15	WS15	WS15	WS15
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)	0.50	1.00	2.00	3.00	4.00			
Date Sampled	03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

				,				1
TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Analytical Report Number: 14-64295 Project / Site name: St Giles Circus Your Order No: CL241

Lab Sample Number				399809	399810	399811	399812	399813
Sample Reference				WS22	WS22	WS22	WS22	WS22
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)				0.50	1.00	1.50	2.50	3.00
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	2.9	4.7	11	12	20
Total mass of sample received	kg	0.001	NONE	0.79	2.0	2.0	2.0	0.97
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	8.0	8.0	8.1	7.7	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	130	100	260	1100	210
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phenois		1						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	11	11	16	19
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.3	1.7	1.0	2.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	14	17	17	43
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	6.9	45	23	35
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.4	5.5	91	22	17
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	12	16	26	53
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	26	20	50	35	77

Analytical Report Number: 14-64295 Project / Site name: St Giles Circus Your Order No: CL241

Lab Sample Number				399809	399810	399811	399812	399813
Sample Reference				WS22	WS22	WS22	WS22	WS22
Sample Number				ES01	ES02	ES03	ES04	ES05
Depth (m)				0.50	1.00	1.50	2.50	3.00
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	03/12/2014
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-			
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Miscellaneous Organics								
Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

	Your	Order	No:	CL241
--	------	-------	-----	-------

								1
Lab Sample Number				399814	399815	399816	399817	
Sample Reference				WS23	WS23	WS23	WS23	
Sample Number				ES01	ES02	ES03	ES04	
Depth (m)				0.50	1.00	2.00	2.80	
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	3.6	21	2.1	20	
Total mass of sample received	kg	0.001	NONE	2.0	0.90	2.0	0.85	
	-	-	-			-	-	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
pH	pH Units	N/A	MCERTS	8.9	8.1	7.9	8.2	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	2000	390	53	1300	
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	
Total Organic Carbon (TOC)	//////////////////////////////////////	0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.1	
Total Organic Carbon (TOC)	70	0.1	PICEIXIS	V 0.1	₹ 0.1	V 0.1	0.1	
Total Phenois					r			T
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs	1 .		T					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	17	9.0	13	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.7	0.3	0.4	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	52	10	50	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	44	6.8	41	
Lead (agua regia extractable)	mg/kg	1	MCERTS	79	18	3.9	15	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	56	10	50	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	27	110	46	90	

Analytical Report Number: 14-64295

Project / Site name: St Giles	Circ
Your Order No: CL241	

Lab Sample Number				399814	399815	399816	399817	
Sample Reference				WS23	WS23	WS23	WS23	
Sample Number		ES01	ES02	ES03	ES04			
Depth (m)				0.50	1.00	2.00	2.80	
Date Sampled				03/12/2014	03/12/2014	03/12/2014	03/12/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-	3		
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH1 (C6 - C12)	mg/kg	0.1	ISO 17025	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	3.5	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.2	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	

Miscellaneous Organics		

Miscellaneous Organics								
Toluene Extractable Matter	ma/ka	100	NONE	< 100	< 100	< 100	< 100	

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
399804	WS15	ES01	0.50	Light brown sand with gravel and rubble.
399805	WS15	ES02	1.00	Light brown sand with gravel.
399806	WS15	ES03	2.00	Light brown sand with gravel.
399807	WS15	ES04	3.00	Light brown sand with gravel.
399808	WS15	ES05	4.00	Brown clay.
399809	WS22	ES01	0.50	Brown clay.
399810	WS22	ES02	1.00	Light brown sandy topsoil with gravel and rubble.
399811	WS22	ES03	1.50	Light brown sandy topsoil with gravel.
399812	WS22	ES04	2.50	Light brown sandy topsoil with gravel.
399813	WS22	ES05	3.00	Light brown sandy clay with gravel.
399814	WS23	ES01	0.50	Light brown sandy topsoil with gravel.
399815	WS23	ES02	1.00	Brown clay.
399816	WS23	ES03	2.00	Light brown sand.
399817	WS23	ES04	2.80	Grey clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

			Method	Wet / Dry	Accreditation
Analytical Test Name	Analytical Method Description	Analytical Method Reference	number	Analysis	Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Toluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
				Iss No 14	-64295-1

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH C6- C12	In-house method	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

e: kasia@conceptconsultants.co.uk e: reception@i2analytical.com

Analytical Report Number: 15-65272

Project / Site name: St Giles Circus Samples received on: 07/01/2015

Your job number: 14-2669 Samples instructed on: 07/01/2015

Your order number: CL268 Analysis completed by: 16/01/2015

Report Issue Number: 1 Report issued on: 16/01/2015

Samples Analysed: 3 water samples

Signed: (Colotte

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Dee Theis Operations Director

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Your	Order	No:	CL268

Your Order No: CL268								
Lab Sample Number				405637	405638	405639		
Sample Reference				PB5	PB4	PB2		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				07/01/2015	07/01/2015	07/01/2015		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.8	7.6	7.3		
Total Cyanide	μg/l	10	ISO 17025	< 10	48	< 10		
Free Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	< 1	< 1	< 1		
Thiocyanate as SCN	μg/l	200	ISO 17025	< 200	230	200		
Sulphate as SO ₄	μg/l	45	ISO 17025	154000	194000	290000		
Sulphide	μg/l	5	NONE	< 5.0	< 5.0	< 5.0		
Total Phenois								
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10		
Speciated PAHs								
Naphthalene	μq/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Acenaphthene	μq/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Fluorene	μq/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Total PAH								
Total EPA-16 PAHs	μg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20		
Heavy Metals / Metalloids			_		_			
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.48	9.65	2.15		
Boron (dissolved)	μg/l	10	ISO 17025	150	300	280		<u> </u>
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	0.03		
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0		ļ
Chromium (dissolved)	μg/l "	0.2	ISO 17025	< 0.2	0.3	< 0.2	ļ	
Copper (dissolved)	μg/l "	0.5	ISO 17025	12	14	12	ļ	
Lead (dissolved)	μg/l	0.2	ISO 17025	0.2	0.5	0.2		
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05		
Nickel (dissolved) Selenium (dissolved)	μg/l	0.5 0.6	ISO 17025 ISO 17025	7.1 14	16 4.4	11 6.2		
Zinc (dissolved)	μg/l	0.5	ISO 17025	0.9	0.8	3.0	 	
ZITE (UISSUIVEU)	μg/l	0.5	130 1/025	0.9	0.0	٥.0	I	

Your Order No: CL268							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics			5				
			T	4.0			
Benzene 	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
<u>Ethylbenzene</u>	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons Petroleum Range Organics (C6 - C10)	μg/l	10	NONE	< 10.0	< 10.0	< 10.0	
TPH-CWG - Aliphatic >C5 - C6	µq/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic > C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic > C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	1
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	1
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	1
TPH-CWG - Aliphatic > C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	1
TPH-CWG - Aliphatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	1
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aliphatic (C5 - C44)	mg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic > C5 - C7		10	NONE	< 10	< 10	- 10	
TPH-CWG - Aromatic >C5 - C7 TPH-CWG - Aromatic >C7 - C8	μg/l	10 10	NONE	< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aromatic >C7 - C8 TPH-CWG - Aromatic >C8 - C10	μg/l	10	NONE NONE	< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aromatic > C8 - C10 TPH-CWG - Aromatic > C10 - C12	μg/l	10		< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10 < 10	< 10 < 10	< 10 < 10	
	μg/l		NONE				
TPH-CWG - Aromatic > C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >C21 - C35 TPH-CWG - Aromatic >C35 - C44	μg/l	10 10	NONE NONE	< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10 < 10	< 10 < 10	< 10 < 10	
TPH-CWG - Aromatic (C5 - C44)	μg/l mg/l	10	NONE	< 10	< 10	< 10	+ +
TFTI-CHIG - Albillatic (C5 - C44)	IIIg/I	10	NONE	< 10	V 10	< 10	
TPH (C35 - C44)	μg/l	10	NONE	< 10	< 10	< 10	
,	F-3/			. = -			

Your Order No: CL268

Your Order No: CL268							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken		ı		None Supplied	None Supplied	None Supplied	
		<u> </u>	Accreditation Status				
Analytical Parameter	Units	Limit of detection	Sta				
(Water Analysis)	its	Ct o	tus				
		ă →	tion				
VOCs		<u> </u>					
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Vinyl Chloride	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethane 2,2-Dichloropropane	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	
Z,Z-Dichioropropane Trichloromethane	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1.1.1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trichloroethene	μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	
Dibromomethane Bromodichloromethane	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dibromoethane Chlorobenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0	< 1.0	
1,1,1,2-Tetrachloroethane	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	-
o-Xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
<u>Isopropylbenzene</u>	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Bromobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
n-Propylbenzene 2-Chlorotoluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
4-Chlorotoluene	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,4-Dichlorobenzene Butylbenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,2-Dibromo-3-chloropropane	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	

Your Order No: CL268

Your Order No: CL268							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
VOCs TICs							
VOCs TICs Compound Name		10	NONE	None Detected	None Detected	None Detected	
VOC % Match	%	10	NONE	0	0	0	1

Your Order No: CL268								
Lab Sample Number				405637	405638	405639		
Sample Reference				PB5	PB4	PB2		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied	None Supplied		
Date Sampled				07/01/2015	07/01/2015	07/01/2015		
Time Taken	T			None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs			_					
Aniline	μq/l	0.05	NONE	< 0.05	< 0.05	< 0.05	I	
Phenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
2-Chlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
1,3-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
1,4-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Bis(2-chloroisopropyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		ļ
2-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		<u> </u>
Hexachloroethane Nitrohenzene	μg/l	0.05	NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		
Nitrobenzene 4-Methylphenol	μg/l μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05 < 0.05		
Isophorone	μg/I μg/I	0.05	NONE	< 0.05	< 0.05	< 0.05		
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	μg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		
2,4,5-Trichlorophenol	μg/l μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
2,6-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		ļ
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Diethyl phthalate 4-Nitroaniline	μg/l	0.05	NONE NONE	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05		
Fluorene	μg/l μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05		
Azobenzene	μg/l	0.01	NONE	< 0.05	< 0.05	< 0.05		1
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Hexachlorobenzene	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02		
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		<u> </u>
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05		
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Pyrene Butyl benzyl phthalate	μg/l	0.01	ISO 17025 NONE	< 0.01 < 0.05	< 0.01 < 0.05	< 0.01 < 0.05		
Benzo(a)anthracene	μg/l μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05		
Chrysene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		<u> </u>
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01		<u> </u>

Your Order No: CL268

Tour Grace No. CEEGG							
Lab Sample Number				405637	405638	405639	
Sample Reference				PB5	PB4	PB2	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				None Supplied	None Supplied	None Supplied	
Date Sampled				07/01/2015	07/01/2015	07/01/2015	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs TICs							
SVOCs TICs Compound Name		N/A	NONE	None Detected	None Detected	None Detected	
SVOC % Match	%	N/A	NONE	0	0	0	

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Prec cyanide in water Determination of free cyanide by distillation followed by colormetry. Determination of free cyanide by distillation followed by colormetry. Determination of free cyanide by distillation followed by colormetry. Determination of the colormetry. Determination of the colormetry. Determination of the colormetry. Determination of metals in water by continuous flow analyses. According Malfridge SW, GW, PW, PW except B = SW, GW, Hgs = SW, PW, M. = SW, PW. Determination of phenois in water by continuous flow analyses. According Malfridge SW, GW, PW except B = SW, GW, Hgs = SW, PW, M. = SW, PW. Determination of phenois in water by continuous flow analyses. According Malfridge SW, GW, PW except B = SW, GW, Hgs = SW, PW, M. = SW, PW. Determination of phenois in water by continuous flow analyses. According Malfridge SW, GW, PW except B = SW, GW, Hgs = SW, PW, M. = SW, PW. Determination of phenois in water by continuous flow analyses. According Malfridge SW, GW, PW except B = SW, GW, Hgs = SW, PW, GW, PW except B = SW, GW, Hgs = SW, PW, W. = SW, PW, PW except B = SW, GW, Hgs = SW, PW, W. = SW, PW, PW except B = SW, GW, Hgs = SW, PW, W. = SW, PW, PW except B = SW, GW, Hgs = SW, PW, W. = SW, PW, PW except B = SW, GW, Hgs = SW, PW, W. = SW, PW	Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Free cyanide in water Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation with the second of the seco	Boron in water		6020 & 200.8 "for the determination of	L012-PL	w	ISO 17025
Hesavalent chromium in water Determination of hexavalent chromium in water by addification, addition of 1,5 dipenyl carbaside fallowed by colorimetry. Metals in water by ICP-MS (dissolved) Determination of metals in water by addification followed by ICP-MS (dissolved) Determination of metals in water by addification followed by ICP-MS (accredited Matrices: SW, GW, PW. for MS) Monohydric phenois in water Determination of phenois in water by addification followed by ICP-MS. Accredited Matrices: SW, GW, PW. for MS (200 & 20.08 for the determination of ICP-MS) Monohydric phenois in water Determination of phenois in water by continuous flow analyses. Accredited matrices: SW PW GW Determination of phenois in water by continuous flow analyses. Accredited matrices: SW PW GW Determination of phenois in water by electrometric measurement. Accredited matrices: SW PW GW FRO (Waters) Determination of hydrocarbons C6-C10 by headspace CC-MS. Semi-volatile organic compounds in leachable by extraction in dichloromethane followed by CC-MS. Accredited fractions with headspace CG-MS. Semi-volatile organic compounds in leachable by extraction in dichloromethane followed by CC-MS. Accredited matrices: SW PW GW Determination of PAH compounds in water by extraction in dichloromethane followed by CC-MS. Accredited matrices: SW PW GW Determination of semi-volatile organic compounds in leachable by extraction in dichloromethane followed by CC-MS. Accredited matrices: SW PW GW Determination of semi-volatile organic compounds to leach to the compounds of t	BTEX and MTBE in water	headspace GC-MS. Accredited matrices: SW PW	In-house method based on USEPA8260	L073W-PL	W	ISO 17025
acidification, addition of 1,5 diphenylcarbacide biolowed by colorimetry. Metals in water by ICP-MS (dissolved) Determination of metals in water by addification followed by ICP-MS. Accredited Matrices: SW, GW, PW. Metals in water by ICP-MS (dissolved) Determination of metals in water by addification followed by ICP-MS. Accredited Matrices: SW, PW, MS-MS-PW, MS-M	Free cyanide in water		Water and Wastewater 20th Edition:	L080-PL	W	ISO 17025
rollowed by ICP-HS. Accredited Matrices: SW, GW, Pay-SW, PW, Al-SW, Hexavalent chromium in water	acidification, addition of 1,5 diphenylcarbazide		L080-PL	W	ISO 17025	
Row analyser. Accredited matrices: SW PW GW Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW Determination of hydrocarbons C6-C10 by headspace GC-MS. Determination of hydrocarbons C6-C10 by headspace GC-MS. Semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS. Speciated EPA-16 PAHs in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Speciated EPA-16 PAHs in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of pahs compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of sulphate in water by addification followed by GC-MS. Sulphate in water Determination of sulphate in water by addification followed by GC-MS. Sulphide in water Determination of sulphide in water by in selective electrode. Determination of sulphide in water by in selective electrode. Determination of sulphide in water by in selective followed by GC-MS followed by GC	Metals in water by ICP-MS (dissolved)	followed by ICP-MS. Accredited Matrices: SW, GW,	6020 & 200.8 "for the determination of	L012-PL	W	ISO 17025
measurement. Accredited matrices: SW PW GW 1990, Chemical and Electrochemical Tests Determination of hydrocarbons C6-C10 by headspace GC-MS. Semi-volable organic compounds in leachate by extraction in dichloromethane followed by GC-MS. Speciated EPA-16 PAHs in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of Sulphate in water by addification followed by ICP-OES. Accredited matrices: SW PW GW Sulphate in water Determination of sulphide in water by addification followed by ICP-OES. Accredited matrices: SW PW GW Sulphide in water Determination of sulphide in water by ion selective electrode. Determination of sulphide in water by ion selective followed by GC-MS followed by a full library scan. Tentatively identified compounds followed by GC-MS followed by a full library scan. Determination of volatile organic compounds followed by a full library scan. Determination of volatile organic compounds followed by a full library scan. Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW EVER Examples (Cerebry & Edition: Classer). Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW EVER Examples (Cerebry & Edition: Classer). Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW Core PW Examples (Cerebry & Edition: Classer). Determination of total cyanide by distillation followed by colorimetry. Accredit	Monohydric phenols in water		Water and Wastewater 20th Edition:	L080-PL	W	ISO 17025
headspace GC-MS. Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS. Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS. Sulphate in water Determination of sulphate in water by addification followed by ICP-OES. Accredited matrices: SW PW Methods for the Determination of Metals in GW Sulphide in water Determination of sulphide in water by ion selective electrode. Determination of sulphide in water by ion selective followed by GC-MS followed by GC-MS followed by GC-MS followed by GC-MS followed by a full library scan. Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of velatile organic compounds to ion count in water by detaile organic compounds to ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW, GW, PW, GW, PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	pH in water			L005-PL	W	ISO 17025
in leachate by extraction in dichloromethane followed by GC-MS. Speciated EPA-16 PAHs in water Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW Sulphate in water Determination of sulphate in water by acdiffication followed by ICP-OES. Accredited matrices: SW PW GW Sulphide in water Determination of sulphide in water by lon selective electrode. Determination of sulphide in water by ion selective electrode. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method L010-PL W NONE Tentatively identified compounds (SVOC) in water Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thiocyanate in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW PW GW In-house method based on USEPA8270 L073W-PL W ISO 17025 NONE L082-PL W ISO 17025 W 15O 17025	PRO (Waters)		In-house method based on USEPA8260	L073W-PL	W	NONE
extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW Sulphate in water Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on USEPA 8270 L010-PL W NONE Tentatively identified compounds (SVOC) in water Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thouse method based on USEPA 8270 L070-UK W NONE In-house method based on USEPA 8270 L070-UK W NONE Thiocyanate in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thouse method based on USEPA8260 L073W-PL W NONE In-house method based on USEPA8260 L073W-PL W ISO 17025 Thiocyanate in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Iso 17025		in leachate by extraction in dichloromethane	In-house method based on USEPA 8270	L070-UK	W	NONE
followed by ICP-OES. Accredited matrices: SW PW Methods for the Determination of Metals in Soil. Sulphide in water Determination of sulphide in water by ion selective electrode. In-house method In-house method L010-PL W NONE Tentatively identified compounds (SVOC) in water Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thiocyanate in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW PW GW PW GW NONE In-house method based on USEPA8260 L073W-PL W NONE NONE NONE In-house method based on SMWW 4500-CN-M. Accredited matrices: SW, PW, GW. CN-M. Accredited matrices: SW, PW, GW. W ISO 17025 W ISO 17025 W ISO 17025	Speciated EPA-16 PAHs in water	extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-UK	w	ISO 17025
electrode. Tentatively identified compounds (SVOC) in water Determination of semi-volatile organic compounds total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thiocyanate in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW W NONE In-house method based on USEPA8260 L073W-PL W NONE CN-M. Accredited matrices: SW, PW, GW. CN-M. Accredited matrices: SW, PW, GW. CN-M. Accredited matrices: SW, PW, GW. CN-M. Accredited matrices: SW, PW, GW. Clesceri, Greenberg & Eaton (Skalar)	Sulphate in water	followed by ICP-OES. Accredited matrices: SW PW	Methods for the Determination of Metals in	L039-PL	W	ISO 17025
total ion count in water by extraction with hexane followed by GC-MS followed by a full library scan. Tentatively identified compounds (VOC) in water Determination of volatile organic compounds total ion count in water by headspace GC-MS followed by a full library scan. Thiocyanate in water Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Total cyanide in water Determination of total cyanide by a full library scan. In-house method based on USEPA8260 L073W-PL W IN-house method based on SMWW 4500- CN-M. Accredited matrices: SW, PW, GW. W ISO 17025 W ISO 17025	Sulphide in water		In-house method	L010-PL	W	NONE
(VOC) in water ion count in water by headspace GC-MS followed by a full library scan. Determination of thiocyanate in water by discreet analyser (colorimetry). Accredited matrices SW, GW, PW. Total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	,	total ion count in water by extraction with hexane	In-house method based on USEPA 8270	L070-UK	w	NONE
analyser (colorimetry). Accredited matrices SW, GW, PW. CN-M. Accredited matrices: SW, PW, GW. CN-M. Accredited matrices: SW, PW, GW. In-house method based on Examination of based on Examination of followed by colorimetry. Accredited matrices: SW Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)		ion count in water by headspace GC-MS followed	In-house method based on USEPA8260	L073W-PL	W	NONE
followed by colorimetry. Accredited matrices: SW Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	Thiocyanate in water	analyser (colorimetry). Accredited matrices SW,		L082-PL	w	ISO 17025
TPH in (Water) In-house method L070-UK NONE	Total cyanide in water	followed by colorimetry. Accredited matrices: SW	Water and Wastewater 20th Edition:	L080-PL	w	ISO 17025
	TPH in (Water)		In-house method	L070-UK		NONE

Iss No 15-65272-1

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073W-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

GEA Geotech Environ Associat	nental			Coursers Road St Albans AL4 0PG	Denmark Street South, 4 Flitcroft Street, London, WC2H 8DJ	Number BH 1
Excavation Method Open-drive sampler	Dimen	sions	Ground	Level (mOD)	Client Consolidated Developments Limited	Job Number J12236
	Location	on	Dates 05	5/10/2012	Engineer Engenuiti	Sheet 1/1
Depth (m) Sample / To	water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.00-1.45 CPT N=7 .40 D1 .00-2.45 CPT N=8 .40 D2 .00-3.31 CPT 54/160 .00 D5 .00-4.45 CPT N=44 .00 D6 .50 D7 .00 D8 .50 D9 .00 D10		2,2/2,2,1,2 3,3/1,3,3,1 10,15/24,26,4 5,7/10,10,11,13 Water strike(1) at 4.75m.		(0.07) (0.16) (0.23) (0.77) (0.60) (0.60) (0.50) (0.20)	Paving slab Concrete MADE GROUND (bricks with rare fragments of chalk and charcoal) MADE GROUND (greyish brown sand with rare gravel and occasional fragments of ash, brick, charcoal, chalk and concrete) MADE GROUND (bricks including whole bricks and fragments of brick) MADE GROUND (greyish brown sand with abundant fragments of brick, charcoal and concrete) Brown gravelly SAND. Gravel is fine to coarse subangular to subrounded and sand is medium Very dense brown SAND and GRAVEL. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded Brown gravelly SAND. Gravel is fine to medium angular and sand is medium to coarse subangular to subrounded Brown gravelly SAND. Gravel is fine to medium angular and sand is medium to coarse Dense light orange-brown medium SAND with very rare fine angular gravel Light orange-brown gravelly SAND. Gravel is fine to coarse subangular and sand is fine to coarse Stiff brown mottled grey fissured silty CLAY with occasiona partings of orange-brown fine sand and silt with rare carbonaceous material Complete at 6.00m	
Remarks					Scale (approx	Logged By
ased to 3.0 m tandpipe installed to a de iroundwater measured at	oth of 5.2 m a depth of 4.4	m on 16/10/2012 and 4.35 m	on 08/11/20	012	1:50	HD

	Associates	T			St Albans AL4 0PG	Denmark Street South, 4 Flitcroft Street, London, WC2H 8DJ	Number BH 2
Excavation Open-drive s		Dimens	ions	Ground	Level (mOD)	Client Consolidated Developments Limited	Job Number J12236
		Locatio	n :	Dates 05	5/10/2012	Engineer Engenuiti	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.90 1.50 2.50 3.30 3.70 4.00 4.40 4.50 4.80 5.00-5.45 5.50 5.90	D1 D2 D3 D4 D5 D6 D7 D8 D9 CPT N=40 D10 D11		Water strike(1) at 4.80m. 3,7/10,10,10,10		(0.07) (0.20) (0.27) (0.73) 1.00 (1.10) 2.10 (1.30) (0.50) 3.40 (0.50) 3.90 (0.35) (0.25) 4.65 (0.30) 6.00	Paving slab Concrete MADE GROUND (greyish brown clayey slity fine sand with rare gravel, abundant fragments of brick and charcoal and rare glass) Poor recovery to 1.0 m MADE GROUND (brickwork) MADE GROUND (brickwork) MADE GROUND (light orange-brown mottled grey sand with abundant brick and rare fragments of charcoal, glass and claypipes) MADE GROUND (bricks including whole bricks and fragments of brick) Light orange-brown fine to medium SAND with very rare fine angular gravel Light orange-brown gravelly SAND. Sand is fine to coarse and gravel is fine to coarse subangular Dense light orange-brown SAND and GRAVEL with rare cobbles. Sand is fine to coarse and gravel is fine to coarse subangular Stiff brown mottled grey fissured slity CLAY with occasional partings of orange-brown fine sand and slit and rare carbonaceous material Complete at 6.00m	
Remarks Cased to 4.8 Standpipe in	stalled to a depth of	5.85 m		<u>. I</u>	 	Scale (approx) Logged By
Groundwater	measured at a dept	th of 4.21	m on 16/10/2012 and 4.20 m	on 08/11/2	2012	1:50 Figure	HD

Geotechnical & Environmental Associates			· · · · · · · · · · · · · · · · · · ·	Coursers Road St Albans AL4 0PG	Denmark Street South, 4 Flitcroft Street, London, WC2H 8DJ	Number BH 3	
Excavation Method Open-drive sampler		Dimensions Location		Dates 05/10/2012		Client Consolidated Developments Limited	Job Number J12236
						Engineer Engenuiti	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
50 95 00-2.45 50 50 60 75 85 95 20 80	D2 CPT N=5 D3 D4 D5 D6 D7 D8 D9 D10		1,2/1,1,2,1 Water strike(1) at 3.90m.		(0.07) (0.07) (0.07) (0.06) (0.13) (0.09) (0.22) (0.15) (0.15) (0.15) (0.15) (0.15) (1.20)	Paving slab Concrete Granite cobbles Concrete Sub-base (sand and gravel) MADE GROUND (greyish brown slightly clayey silty sand with rare gravel and occasional fragments of brick and charcoal) MADE GROUND (bricks including whole bricks and fragments of brick) MADE GROUND (grey sandy silt with occasional partings of white fine sand with occasional fragments of brick, wood and charcoal. Layer of brick between a depth of 2.7 m and 2.8 m) MADE GROUND (dark grey silt with occasional fragments of fine brick) Organic odour noted Light greenish grey SAND and GRAVEL. Sand is fine to coarse and gravel is fine to coarse subangular to subrounded Soft dark grey mottled black and greenish grey sandy SILT Variably soft to stiff orange-brown silty CLAY. Claystone encountered at a depth of 5.2 m Stiff dark grey fissured silty CLAY Complete at 6.00m	
Remarks ased to 5.0 m						Scale (approx	Logged By
roundwater	measured at a dept	b.0 m th of 3.72	m on 16/10/2012 and 3.66 m	on 08/11/2	2012	1:50	HD
						Figure	No.