Land Contamination Assessment

of

St Giles Circus (Southern side of Denmark Street)

for

Consolidated Developments

LBH4059b Ver. 1.1

October 2017

LBH WEMBLEY
ENGINEERING

Site: St Giles Circus, Southern side of Denmark Street

Client: Consolidated Developments

LBH4059b Page 2 of 24

Project No: LBH4059b

Report Ref: LBH4059b Ver 1.1

Date: 13th October 2017

Report prepared by:

Ronnie Lancaster

BSc (Hons) MSc DIC FGS

Report approved by:

Darcy Kitson-Boyce

MEng (Hons) GMICE FGS FRGS

Report approved by:

Seamus R Lefroy-Brooks

BSc (Hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC RoGEP UK Registered Ground Engineering Adviser

LBH WEMBLEY ENGINEERING

12 Little Balmer

Buckingham Industrial Park

Buckingham

MK18 1TF

Tel: 01280 812310

email: enquiry@lbhgeo.co.uk website: www.lbhgeo.co.uk

LBH Wembley (2003) Limited. Unit 12 Little Balmer, Buckingham Industrial Park, Buckingham, MK18 1TF. Registered in England No. 4922494

Site: St Giles Circus, Southern side of Denmark Street

Client: Consolidated Developments

LBH4059b

Page 3 of 24

Contents

Co	ntents		3
Fo	reword-	Guidance Notes	5
1.	Introdu	ction	6
	1.1	Background	6
	1.2	Brief	7
	1.3	Report Structure	7
	1.4	Previous Reports	7
2.	The Sit	e	9
	2.1	Site Location	9
	2.2	Topographical Setting	9
	2.3	Site Description	9
	2.4	Proposed Development	10
3.	Desk S	tudy	12
	3.1	Site History	12
	3.2	Geological Information	12
	3.3	Hydrogeological / Hydrological Information	12
	3.4	Other Environmental Information	13
4.	Site Inv	restigation	14
	4.1	Ground Conditions	15
	4.1.1	Made Ground	15
	4.1.2	River Terrace Deposits	16
	4.1.3	London Clay Formation	16
	4.2	Groundwater	16
5.	Land C	ontamination Risk Assessment	17
	5.1	Hazard Identification	17
	5.2	Potential Sources of Contamination	17
	5.3	Actual Contamination Encountered	18
	5.3.1	Soil	18
	5.3.2	Groundwater	18
	5.3.3	Soil Gas	19
	5.4	Sensitive Receptors	19
	5.5	Potential Pathways	19

Site: Client:	Consolidated Developments	Page 4 of 24		
5.6	Conceptual Model	19		
5.7	Risk Estimation	19		
5.8	Risk Evaluation	21		
6. Ren	nediation Scheme	22		
6.1	Investigation of unexplored areas	22		
6.2	Construction Workers and General Public	22		
6.3	Groundwater Protection	23		
6.4	Unexpected contamination	23		
6.5	Verification Plan	23		
APPEN	IDIX	24		
CUI	RRENT & HISTORICAL BUILDING USAGE	24		
201	7 CONCEPT FACTUAL SITE INVESTIGATION REPORT	24		
201	5 CONCEPT FACTUAL SITE INVESTIGATION INFORMATION (extract only)	24		
2012 GEA FACTURAL GROUND INVESTIGATION INFORMATION (extract only)				

St Giles Circus, Southern side of Denmark Street

LBH4059b Client: Consolidated Developments Page 5 of 24

Foreword-Guidance Notes

GENERAL

This report has been prepared for a specific client and to meet a specific brief. The preparation of this report may have been affected by limitations of scope, resources or time scale required by the client. Should any part of this report be relied on by a third party, that party does so wholly at its own risk and LBH Wembley Engineering disclaims any liability to such parties.

The observations and conclusions described in this report are based solely upon the agreed scope of work. LBH Wembley Engineering has not performed any observations, investigations, studies or testing not specifically set out in the agreed scope of work and cannot accept any liability for the existence of any condition, the discovery of which would require performance of services beyond the agreed scope of work.

VALIDITY

Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances shall be at the client's sole and own risk. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should therefore not be relied upon in the future and any such reliance on the report in the future shall again be at the client's own and sole risk. LBH Wembley Engineering should in all such altered circumstances be commissioned to review and update this report accordingly.

THIRD PARTY INFORMATION

The report may present an opinion based upon information received from third parties. However, no liability can be accepted for any inaccuracies or omissions in that information.

Site: St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 6 of 24

1. Introduction

1.1 Background

It is proposed to redevelop properties at St Giles Circus comprising Denmark Place, Denmark Street, Flitcroft Street, Charing Cross Road, St Giles High Street and Andrew Borde Street.

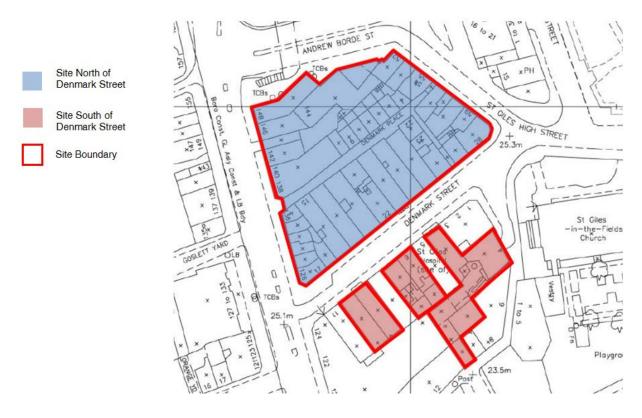
The proposed redevelopment includes three new buildings and refurbishment and conversion of existing buildings comprising retail, office, food and drink, hotel, leisure and residential uses, open space and related ancillary activities and works. Part of which will include a large basement, with mezzanine level extending to approximately 15m below ground level.

Planning approval was granted for this development by London Borough of Camden Council on 31st March 2015 under reference 2012/6858/P subject to the following contaminated land conditions:

Condition 3 - At least 28 days before the development hereby permitted commences a written detailed scheme of assessment consisting of site reconnaissance, conceptual model, risk assessment and proposed schedule of investigation must be submitted to the planning authority. The scheme of assessment must be sufficient to assess the scale and nature of potential contamination risks on the site and shall include details of the number of sample points, the sampling methodology and the type and quantity of analyses proposed. The scheme of assessment must be approved by the LPA and the documentation submitted must comply with the standards of the Environment Agency's Model Procedures for the Management of Contamination (CLR11).

Condition 4 - Before development commences, a site investigation shall be undertaken in accordance with the approved scheme of assessment and the written results provided to the planning authority for their approval. Laboratory results must be provided as numeric values in a formatted electronic spread sheet. Before development commences a remediation scheme shall be agreed in writing with the planning authority and the scheme as approved shall be implemented before any part of the development hereby permitted is occupied.

Condition 5 - Additional significant contamination discovered during development shall be fully assessed and any necessary modifications made to the remediation scheme shall be submitted to the Local Planning Authority for written approval. Before any part of the development hereby permitted is occupied the developer shall provide written confirmation that all works were completed in accordance with the revised remediation scheme.


A Scheme of Assessment was issued in March 2015 to address Condition 3, which was subsequently discharged in September 2015.

A Land Contamination Assessment was submitted in May 2015 for the northern side of Denmark Street only. Condition 4 was in part, subsequently discharged in September 2015.

Agreement was obtained from the planning authority to discharge the above conditions on an area by area basis in a phased manner, and that a Land Contamination Assessment covering the southern side of Denmark Street would be completed in due course in order to fully discharge Condition 4.

Site: St Giles Circus, Southern side of Denmark Street

Client: Consolidated Developments

Site plan showing the site areas north and south of Denmark Street

1.2 Brief

LBH WEMBLEY have been appointed to prepare a new Land Contamination Assessment of the southern side of Denmark Street, in order to discharge the outstanding parts to Condition 4.

1.3 Report Structure

This report initially describes the findings of desk study searches and site reconnaissance, following which, the findings of the investigations are reported. Finally a land contamination risk assessment is presented together with a remediation scheme for the mitigation of the identified land contamination risks that could potentially affect the development.

1.4 Previous Reports

The information contained within the following previous reports has been taken into account:

2017 Sept Site Investigation Report

by Concept (Ref: 17/3014 – FR 00)

2015 May Land Contamination Assessment of St Giles Circus

(Initial Phase – Northern side of Denmark Street)

by LBH WEMBLEY Geotechnical & Environmental (Ref: LBH4059 Ver1.3)

Site: St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 8 of 24

2015 May Scheme of Assessment of Land Contamination

by LBH WEMBLEY Geotechnical & Environmental (Ref: LBH4059 Ver1.3)

2015 Feb Site Investigation Report of St Giles Circus

by Concept (Ref 14/2669 FR 01)

2012 Dec Ground Investigation of 4 Flitcroft Street

by GEA (Ref: J12236)

2012 Oct Land Contamination Environmental Statement Chapter 16

by LBH WEMBLEY Geotechnical & Environmental (Ref LBH4059)

2012 March EIA Scoping

by Buro Happold (Ref: 028676)

2008 June Ground Investigation of Denmark Place

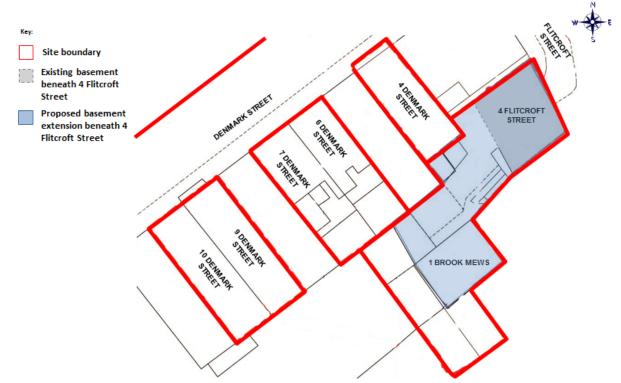
by STATS (Ref: 36237-001)

Site: St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 9 of 24

2. The Site

2.1 Site Location

The site is located across several properties north and south of Denmark Street and may be located by National Grid Reference 529880, 181290.


2.2 Topographical Setting

The site falls steadily south from Denmark Street, lying at approximately +25m above Ordnance Datum (OD), to approximately +23.5m OD at the junction of Flitcroft Street and Stacey Street.

2.3 Site Description

The site is situated in the densely urbanised area of St Giles Circus, within the London Borough of Camden. The site comprises various properties to the north and south of Denmark Street.

For the purpose of this assessment, only the South of Denmark Street will be addressed.

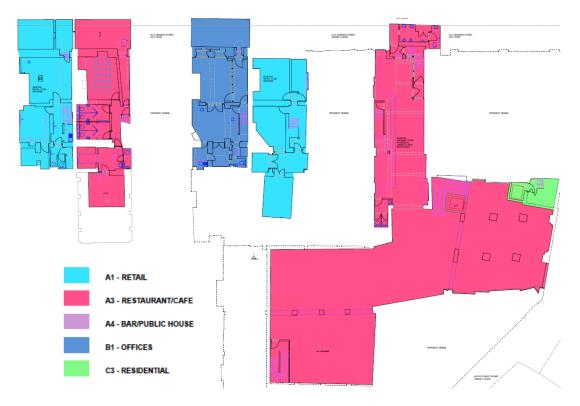
Site plan showing the southern side of Denmark Street

South of Denmark Street

This area is currently occupied by four to five storey Victorian buildings, currently comprising a mix of uses including offices, retail, bars/public houses, restaurants and residences.

The properties in this area front on to Denmark Street to the north and Flitcroft Street to the east. The site is covered entirely in hard-surfacing.

Site: St Giles Circus, Southern side of Denmark Street
Client: Consolidated Developments


LBH4059b Page 10 of 24

Between 4 Flitcroft Street and 1 Brook Mews is a street level courtyard aligned with the ground floor of 1 Brook Mews, steps are currently present on the southeast side of the courtyard leading up to the elevated ground floor of 4 Flitcroft Street.

Several of the buildings are listed or are of cultural significance (list of current and historical usage of properties are appended to this report).

Nos. 4, 6-7 and 9-10 Denmark each have a single level basement, while 4 Flitcroft Street also has a single level basement, albeit only beneath the building footprint.

2.4 Proposed Development

Site plan showing the proposed basement floor plans on the southern side of Denmark Street

The proposed development for the southern side of Denmark Street includes the following:

No. 4 Flitcroft Street

The existing basement is set at approximately +23.1m OD and will be deepened to approximately +20m OD and laterally extended to occupy the footprint beneath No. 4 Flitcroft Street, the southwest adjoining courtyard and No. 1 Brook Mews.

As the external ground level at the courtyard and the ground floor level at No. 1 Brook Mews are set at approximately +24.5m OD and +24m OD respectively, the depth of excavation will vary between 3m and 4.5m.

The ground floor level will be reduced from approximately +26.2m OD to approximately +24.5m OD to align with the street level, where the basement and ground floor will be occupied by a restaurant and the upper floors occupied by residential space.

Site: St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 11 of 24

onorm Concomunica Dovolopmon

No. 4 Denmark Street

The basement and ground floor of No. 4 Denmark Street will remain in restaurant and retail use respectively, while the first floor and above will be occupied by flats. The existing roof access stairwell will be demolished in order to construct a new storey to create a fifth floor.

Nos. 6 & 7 Denmark Street

The basements to Nos. 6 & 7 Demark Street will remain in retail and office use respectively, and the ground floors remain as a retail space and public house respectively. The first floors and above will be occupied by flats, where new access is proposed to the rear courtyards of the properties.

Nos. 9 & 10 Denmark Street

The basements and ground floors of Nos. 9 & 10 Demark Street will remain in restaurant and retail use respectively, while first floors and above will be occupied by flats. There will be extensions to each property to increase the footprints of the third floor flats.

St Giles Circus, Southern side of Denmark Street

LBH4059b Client: Consolidated Developments Page 12 of 24

3. Desk Study

3.1 **Site History**

It would appear that St Giles developed as a village set in fields to the west of the City walls, centred upon a religious establishment that was destroyed in the Dissolution. Although there are some 18th and 19th Century properties, Denmark Street is understood to be one of the few roads in London to retain some 17th Century terraced facades on both sides and thus several of the buildings are Grade II listed.

By the late 17th Century, residential development started to occur at Denmark Street which was built around the 1680s. The existing St Giles church adjacent to the site was also built in the early 18th Century.

By the 19th Century, many and varied trades were carried out within and adjacent to the site. Music publishers appear to have first set up businesses around Denmark Street from the late 19th Century and are still widely in use around Denmark Street.

The development of Centre Point in the mid-20th Century led to the demolition of the buildings immediately to the north of Denmark Street and the reconfiguration of the surrounding road system. The site remained largely unchanged until the demolition of 138-148 Charing Cross Road due to Crossrail / Tottenham Court Road station construction works. Other buildings on the site are still in use as restaurants, offices or shops.

A site reconnaissance visit was undertaken on the 24.08.17. Subsequently, a detailed summary of current and historical details associated with the properties on and immediately adjacent to the site is appended to this report.

3.2 **Geological Information**

British Geological Survey (BGS) records of the area suggest that beneath any made ground, the site is underlain by the Lynch Hill Gravel Member, which comprises sand and gravel. These superficial deposits are anticipated to overlie the London Clay Formation. At depth, the London Clay Formation appears to overlie in descending order; Lambeth Group, Thanet Sand Formation and the White Chalk Subgroup.

3.3 Hydrogeological / Hydrological Information

The site lies midway between the now-culverted Tyburn and the Fleet watercourses that both flow southeastwards to meet the River Thames some 900m to the southeast of Denmark Street.

The Environment Agency (EA) classifies the Lynch Hill Gravel Member as a 'Secondary A Aquifer', while the underlying London Clay Formation is recognised as 'Unproductive Strata'.

Previous investigations have recorded a high-level groundwater table at the base of the Lynch Hill Gravel Member, at approximately +20m OD. The 2008 investigation noted a maximum groundwater level of +20.4m OD to the north of Denmark Street. Subsequently, the 2012 investigation recorded a groundwater level of approximately +20.2m OD to the South of Denmark Street, consistent with a groundwater flow from north to south.

It should be noted that one borehole during the 2012 investigation encountered groundwater within the made ground at approximately +24.45m OD.

The site is not located within a Groundwater Source Protection Zone.

Site: St Giles Circus, Southern side of Denmark Street

LBH4059b
Client: Consolidated Developments

Page 13 of 24

The site is not located within a groundwater abstraction source protection zone, but there are ten or more registered abstractions within 1km of the site, all apparently from the White Chalk Subgroup. There are four discharge consents also within 1km of the site.

The site does not lie in an area identified by the EA as being liable to flooding from rivers or the sea.

3.4 Other Environmental Information

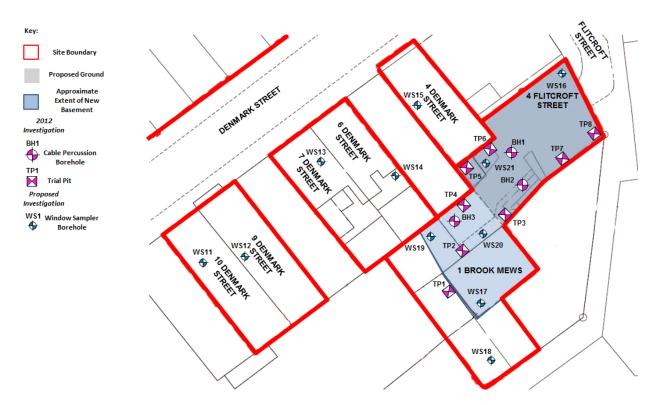
The searches have indicated that there is one Historical Landfill Site and one Registered Waste Treatment or Disposal Site within approximately 750m of the site.

The site has not been the subject of any Local Authority Pollution Prevention / Control permits and two are present within 150m of the site.

Information provided by the British Geological Survey (BGS) and National Geoscience Information Service, indicates that the site is located in a 'lower probability radon area', as less than 1% of homes are above the 'action level'. It is understood that under current government policy, no radon protection measures are required for new dwellings or extensions in these circumstances.

Site: St Giles Circus, Southern side of Denmark Street

LBH4059b


Client: Consolidated Developments

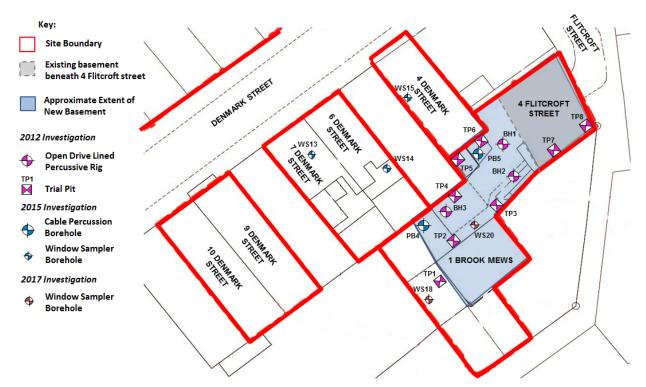
Page 14 of 24

4. Site Investigation

There was a ground investigation undertaken in the area to the south of Denmark Street in 2012 (Ground Investigation Report by GEA - ref: J12236). This included cable percussion boreholes and window sampler boreholes to assess the ground conditions and hand-dug trial pits to investigate the foundations to the perimeter walls.

The scope of additional geoenvironmental required was agreed with Camden Council as shown in the site plan below.

Site plan showing exploratory positions as outlined in the scheme of assessment.


It should be noted that due to access constraints the following widow sampler boreholes have not been completed:

- WS11
- WS12
- WS16
- WS17
- WS19
- WS21

It should be further noted that WS18 was relocated to avoid an existing basement that lies outside of the site.

Site: LBH4059b Client: Consolidated Developments Page 15 of 24

The exploratory logs together with chemical laboratory test results are appended. A plan of the exploratory positions undertaken to date is shown below.

Site plan showing exploratory positions undertaken as part of the investigation.

Ground Conditions 4.1

The ground investigations have confirmed that beneath a variable thickness of made ground, river terrace deposits are present, which are in turn underlain by the London Clay Formation.

4.1.1 **Made Ground**

There generally appears be less than 1m of made ground (approx. between +21m OD and +22m OD) present beneath the existing basements to the properties that front onto Denmark Street. The material generally comprises dirty brown clayey sandy flint gravel with extraneous fragments of brick and concrete.

However, up to around 4.5m of made ground (approx. +19.5m OD) appears to be present beneath No. 4 Flitcroft Street and No. 1 Brook Mews, which consists of dirty brown clayey sandy brick fill with extraneous fragments including ash, concrete, clinker, charcoal, plastic and tiles. This material likely corresponds to demolition material from former buildings.

Approximately 0.40m section of the core between 1.2m and 2.0m depth from WS18.

St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 16 of 24

4.1.2 **River Terrace Deposits**

Site:

River terrace deposits lie directly beneath the made ground and appear to typically comprise medium dense orange-brown sand and gravel with some interbedded seams of sand and/or silt.

Approximately 0.35m section of the core between 4.0m-5.0m depth from WS20.

4.1.3 **London Clay Formation**

The upper surface of the London Clay Formation appears to be present at between approximately +18m OD and +19m OD. The material comprises typical firm becoming stiff grey silty fissured clay, weathered to a brown colouration in the uppermost levels.

The London Clay Formation is proven to a depth of 30m within this investigation.

Approximately 0.3m section of the core between 5.0m-6.0m depth from WS20.

4.2 Groundwater

A groundwater table is presently lying within the lower levels of the river terrace deposits, at approximately +19.5m OD to +20m OD.

Site: St Giles Circus, Southern side of Denmark Street

LBH4059b
Client: Consolidated Developments

Page 17 of 24

5. Land Contamination Risk Assessment

5.1 Hazard Identification

The site and its immediate surroundings have had a history of potentially contaminative usage by virtue of their industrial past.

5.2 Potential Sources of Contamination

Following the findings of the desk study searches and site reconnaissance visits, it is apparent that due to the variety of industrial usages on site, there are potentially a wide range of contaminants associated with this site. The potential contaminative historical businesses identified at the site have been identified:

South of Denmark Street

The manufacture of:

- Iron Bedstead
- Tin Boxes

Metal working including:

- Silver Smithing
- Brass Chasing

Other potentially contaminative uses including:

- Printing Works
- Photo Laboratories
- Film Laboratories
- Ironmongery

A detailed summary relating the historic potentially contaminative usages to individual properties on and immediately adjacent to the site is appended to this report.

The Department of Environment (DoE) have published Industry Profiles providing information on the processes; materials and wastes associated with different industries and the following profiles are considered to be relevant to this site:

- Engineering works: Electrical and electronic equipment manufacturing works including works manufacturing equipment containing PCBs
- Metal manufacturing: Refining and finishing works: electroplating and other metal finishing works
- Metal manufacturing: Refining and finishing works: non-ferrous metals (excluding lead works)
- Miscellaneous Industries: Photographic processing industry
- Miscellaneous Industries: Printing and bookbinding works
- Timber products manufacturing works

Site: St Giles Circus, Southern side of Denmark Street

LBH4059b Client: Consolidated Developments Page 18 of 24

In order to access the underlying soils the following testing has been undertaken, in accordance with the LBH Wembley Scheme of Assessment submitted to Camden Borough Council:

Soil Testing

- Alcontrol Soils Midi suite (As, Cd, Cr, Hex. Cr, Cu, Ni, Zn, Pb, Hg, Se, B, Sn, Be, Al, Mg, Total and Free Cyanide, thiocyanate, S, SO4, sulphide, pH, phenol)
- Poly-cyclic Aromatic Hydrocarbons [PAH] Speciation (EPA16 by GC-FID)
- Total Petroleum Hydrocarbons [TPH] Criteria Working Group [CWG] full speciation by GC-FID (including Aliphatics / Aromatics split, BTEX, MTBE, RBCA banding)
- Asbestos 'Screening' (including identification if anything found)
- Waste Acceptance Criteria Testing

Groundwater Testing

- Water "Midi" suite (As, Cd, Cr, Hex. Cr, Cu, Ni, Zn, Pb, Hg, Se, B, Cyanide, SO4, S, pH, phenol)
- Poly-cyclic Aromatic Hydrocarbons [PAH] Speciation (EPA16 by GC-FID)
- Total Petroleum Hydrocarbons [TPH] Criteria Working Group [CWG] full speciation by GC-FID (including Aliphatics / Aromatics split, BTEX, MTBE, RBCA banding)
- VOC by headspace GC-MS list includes BTEX + MTBE + TICs on 10 Prominent peaks
- SVOC by GC-MS list includes PAHs + Phenols + TICs on 10 Prominent peaks
- Poly-Chlorinated Biphenyl (PCB) detection

5.3 **Actual Contamination Encountered**

The actual contamination that has been identified is as follows:

5.3.1 Soil

The investigations found evidence of ash, clinker and charcoal within the made ground.

A total of sixteen samples of the made ground and underlying river terrace deposits have been analysed for contaminants and screened for asbestos fibres.

The contamination test results from have been compared to C4SL screening levels where these are available, and otherwise to "suitable for use" screening concentrations produced by Land Quality Management Limited (LQM) and the Chartered Institute of Environmental Health (CIEH, LQM/CIEH S4ULs for Human Health Risk Assessment 2015), and Environment Agency (EA) Soil Guideline Values (SGVs). The results have also been compared to a Human Health Risk Site Usage Class of Commercial / Industrial.

The measured concentrations of contaminants are not considered to be a cause of concern. The asbestos screening did not detect any fibres to be present within the samples examined.

5.3.2 Groundwater

Groundwater test results have been compared to Environment Agency Environmental Quality Standards (EQS) for Fresh Water figures and where EQS figures are not available, to Drinking Water Standards (DWS).

As part of the 2015 investigation, two groundwater samples beneath were collected from the groundwater table within the river terrace deposits beneath No. 4 Flitcroft Street and were not found to contain any contaminants that are considered to be a cause for concern.

Site: St Giles Circus, Southern side of Denmark Street
Client: Consolidated Developments

5.3.3 Soil Gas

A soil gas investigation was undertaken in 2008 on the northern side of Denmark Street, which comprised four rounds of gas monitoring. The gas monitoring did not record any significant flows of harmful gas, suggesting a Gas Characteristic Situation 1.

There are no recorded landfills within the vicinity and landfill gas migration has been discounted as a potential issue at this site.

No volatiles have been measured in the groundwater and the borehole records for PBH4 and PBH5 of the 2015 investigation indicate that site screening for Volatile Organic Compounds (VOCs) was undertaken without any encounter >1ppm. The likelihood of any undetected soil vapour source being present is assessed as very low.

5.4 Sensitive Receptors

A number of potential sensitive receptors can be identified for proposed development and include:

- Construction and ground workers
- General public
- End-users
- Buried services / foundations
- Controlled groundwater

5.5 Potential Pathways

A direct pathway to any near-surface soil contamination would be present for construction workers when the soils are exposed during excavation.

The redevelopment will involve 100% hard-surfacing with no soft landscaping, which will break any potential direct pollutant linkage to end users.

High-level groundwater within the gravel aquifer could potentially be affected by the percolation of any liquid contamination and the leaching of the more mobile constituents of any soil contamination, and by the migration of groundwater contamination from adjacent sites.

Buried services and foundations could be potentially directly affected by the presence of contaminated soils.

5.6 Conceptual Model

A conceptual model of the envisaged possible contamination has been developed in the form of a source-pathway-receptor pollutant linkage concept.

A pollution linkage requires there to be a source of contamination, a sensitive target that can be adversely affected by the contamination and a pathway via which contamination can reach the target.

5.7 Risk Estimation

In order to evaluate the perceived contamination risks at this site the severity of the risk in terms of the magnitude of the potential consequence of the linkage occurring has been compared with the likelihood of the linkage existing.

LBH4059b

Page 19 of 24

Site: St Giles Circus, Southern side of Denmark Street

LBH4059b
Client: Consolidated Developments

Page 20 of 24

The likelihood and consequence of a problem involving each particular pollutant linkage has been attributed a risk rating as shown in the table below:

RATING	1	2	3	4	5
LIKELIHOOD	Very unlikely	Unlikely	Evens	Probable	Highly probable
		Minor	Mild /	Medium	Severe
CONSEQUENCE	Negligible	minor injury / minimum cost / minor health risk	appreciable	isk / risk of injury / costs to meet y standards	Death / major injury / explosion / maximum cost

On the basis of this qualitative rating system the various potential pollutant linkages have been attributed a risk ranking on the basis of the value of the product of the likelihood and consequence ratings, where a value of less than five is low, between five and ten is medium and above ten is high. Tables estimating the risk associated with the envisaged possible pollutant linkages for the site, with regard to the proposed end use, are presented below.

SOURCE	RECEPTOR	PATHWAY	LIKELIHOOD	CONSEQUENCE	RISK RANKING
Possible undetected contamination within the near- surface soils	Construction workers and general public	Oral ingestion of soil or dust, skin contact or inhalation where soil is exposed during groundworks	2	3	6 (MEDIUM)
	High-level groundwater	Leaching and migration of mobile contamination	1	3	3 (LOW)
	Buried services	Direct contact	2	2	4 (LOW)
	Foundation Concrete	Direct contact	2	2	4 (LOW)
Possible undetected	End users	Inhalation of vapours	1	3	3 (LOW)
harmful gas or vapours beneath the site	Buildings	Migration of gases into buildings	1	3	3 (LOW)

Site: St Giles Circus, Southern side of Denmark Street

Client: Consolidated Developments

LBH4059b

Page 21 of 24

5.8 Risk Evaluation

There are inevitable residual uncertainties associated with the above assessment. However, it can be said that normally only pollutant linkages that have been assessed as being of a medium or high risk ranking require some degree of further investigation and assessment. The following section sets out a proposed remediation scheme to deal with these potential pollutant linkages of concern.

St Giles Circus, Southern side of Denmark Street Site:

LBH4059b Client: Consolidated Developments Page 22 of 24

6. Remediation Scheme

The investigation has not found any unacceptably elevated concentrations of contamination within the soils beneath the site.

The proposed development to the south of Denmark Street primarily relates to the change of use of the buildings in addition to a proposed basement excavation beneath No. 4 Flitcroft Street and No. 1 Brook Mews. The current basements below Denmark Street are to be retained and used for commercial use.

The entire development will be 100% hard surfaced, with no areas of soft landscaping. Therefore it is envisaged that once the construction has taken place, there will be no potential direct pollutant linkages, and therefore no direct pollutant risk to end users.

There are three main ways to reduce or control unacceptable risks in land contamination applications:

- Remove or treat the (source) of pollutant(s)
- Remove or modify the pathway(s)
- Remove or modify the behaviour of receptor(s)

This section sets out a scheme to address the pollutant linkages of concern at this site. This report must be submitted to the local authority contaminated land team to obtain their approval to the scheme that has been set out.

6.1 Investigation of unexplored areas

It is accepted that several exploratory positions could not be undertaken due to restricted access to some of the properties during the time of investigations.

However, in accordance with CRL11, further targeted investigation conducted on the site can itself be considered as remedial action. Further investigations of those parts of the site that have not yet been explored will thus be undertaken as and when those areas are vacated by existing occupiers / tenants and works are planned in order to verify the applicability of the present assessment. The records of these investigations, together with subsequent assessments and verification of any additional remediation required will need to be presented within the verification report referred to in section 6.5 below.

6.2 **Construction Workers and General Public**

In the absence of appropriate mitigation and the use of Personal Protective Equipment (PPE), any contamination present in the soil would present a risk to construction workers. However, worker safety will be the subject of the mandatory requirements of the Control of Substances Hazardous to Health (COSHH) Regulations 2003 and the Construction (Design and Management) Regulations 2015 (CDM). These regulations set out the requirements for the protection of the workforce including the importance of appropriate procedures in the event of the workforce encountering any previously undiscovered contamination. Adherence to these regulatory requirements and good site hygiene practices should significantly reduce the health and safety risk posed to construction site workers and result in a negligible effect on health.

Such precautions may include some or all of the following:

- Effective site security
- Personal hygiene, washing and changing procedures

Site: St Giles Circus, Southern side of Denmark Street LBH4059b Client: Consolidated Developments Page 23 of 24

- Dust suppression methods, e.g. water spraying
- Odour control
- Positive collection and disposal of water to avoid any site runoff
- Wheel washing of wagons leaving the site and regular cleaning of the public road adjacent to the site.
- Personal protective equipment, including disposable overalls, gloves and particulate filter masks to be worn

The above measures will be carried out in accordance with the Health and Safety Executive publication 'Protection of workers and the general public during the development of contaminated land', CIRIA Report 132, 'A guide for safe working on contaminated sites' and the Best Practice Guidance 'The control of dust and emissions from construction and demolition' produced in partnership by the London Councils and the Greater London Authority.

6.3 Groundwater Protection

No evidence of significant contamination has been found within the soils or within the high level groundwater and hence no remedial actions are required and a specific Foundation Works Risk Assessment (FWRA) to address the piling methodology is not envisaged.

6.4 Unexpected contamination

Care will need to be taken to identify any unexpected problematic materials that may be revealed during the groundworks phase of the proposed redevelopment. Should any suspicious materials or unexpected contamination be revealed during the course of the redevelopment, then work must be halted and the situation investigated and assessed by a geoenvironmental specialist and notified to the Local Authority environmental health department. To this end a watching brief should be maintained and the soils exposed in all excavations should be inspected for any visible signs of contamination.

6.5 Verification Plan

The assessments of the findings of the investigations reported for the southern side of Denmark Street do not themselves merit any specific remedial measures and hence do not themselves merit the production of a summary verification report upon completion of the groundworks associated with the project.

However, as set out in section 6.1 above the findings of any additional investigations undertaken as well as any excavation inspections undertaken by a geoenvironmental specialist as per section 6.4 above, should be collated into a completion report at the end of the groundworks phase of the development.

Site: St Giles Circus, Southern side of Denmark Street

Client: Consolidated Developments

LBH4059b Page 24 of 24

APPENDIX

CURRENT & HISTORICAL BUILDING USAGE

2017 CONCEPT FACTUAL SITE INVESTIGATION REPORT

2015 CONCEPT FACTUAL SITE INVESTIGATION INFORMATION (extract only)

2012 GEA FACTURAL GROUND INVESTIGATION INFORMATION (extract only)

Summary of Current & Historical Building Usage

(Bold entries are on-site, remainder are adjacent premises)

Charing Cross Road

- 116 Chipolte Mexican Restaurant, 2009 Turnkey, 1900 Swan electrical engraving
- 118 Chipolte Mexican Restaurant, 2009 Turnkey, 1900-1970 Sun Electrical Co. Stores
- 120 T-K Max, 2014 Offices, 1900-1970 Sun Electrical Co. Stores
- 120/124 T-K Max, 2009 Borders Book Shop, 1970 Halifax Chambers / PH, 1964 restaurant, 1900 Electrical Engineers, 1888 Vacant
- 126 Chris Bryant Musical Instruments, 1970 Books/Stationery, 1942 Printers, 1888 Vacant
- 128 Rock Shop, 1970 Drugs, 1900 Sign Writer, 1888 Vacant
- 130 Sajway, 2015 NUNU Kebab, 2009 Kiera News Coffee Snacks, 1970 Restaurant, 1900 Chemist, 1888 Vacant
- 132 Shaldon Mansions, 1900 Estate Office, 1888 Vacant
- 134 NUNU Café Brasserie, 1970 Music Instruments, 1888 Vacant
- 136 Bar, Backpacker, 2009 Discount Clothes, 1970 Hosiery, 1888 Vacant
- 138 Demolished, 2009 Internet Café, 1970 Music publisher & Instruments, 1900 Alderman Johnson invalid carriage, couch & chair & perambulator manufacturers, 1888 Perambulator Factory under construction
- 140 Demolished, 2009 Internet Lounge, 1970 Music publisher & Instruments, 1900 mica & Talc merchant, 1888 Perambulator Factory under construction
- 142 Demolished, 2009 Master Fried Chicken, 1970 Offices, 1900 music publisher, 1888 Under Construction
- 144 Demolished, Sin Club 1970 Printers, 1942 G W Scott Suitcase & Basket Factory, 1900 Scott basket manufacturers, 1888 Under Construction
- 146 Demolished, 2009 Café Laguna Restaurant, 1970 Sound Equipment, 1900 photographic apparatus manufacturer, 1888 Under Construction
- 148 Demolished, 2009 Mr Toppers Hairdresser, 1970 Offices, 1942 Music Publisher, 1888-1900 Hinks Lamp Manufacturers

Denmark Street

1 Fernandez and Wells, 2014 Vacant, 2009 Springboard Careers Centre, 1970 Labour Exchange, 1900 Grocer, 1888 Shop

- 2 Fernandez and Wells, 2014 Vacant, 2009 Springboard Careers Centre, 1970 Labour Exchange, 1900 Laundry, 1888 Shop
- 3 Fernandez and Wells, 2014 Vacant, 2009 Springboard Careers Centre, 1970 Labour Exchange, 1900 Frame Maker / Lock Maker, 1888 Residence
- 4 Regent Sounds Studio / Alley Cat Bar B1 1970 Photo Lab B1 1900 Builder 1888 Residence
- 5 Relentless No. 5, 2014 Rockers Guitar & Bass Centre / Black Rock Oil & Gas Plc (inactive) 1970 Musical Instruments, 1942 Vacant, 1900 Military Ornament Maker, 1888 Sword Cutler (house with later shop. c1686-89 as part of an estate development by Samuel Fortrey and Jacques Wiseman)
- 6 Vintage & Rare Guitars The Lab (Qe6) Ltd photographic/The Lynx Lab.Com/ Devtank photographic labs (inactive) Bresh Printers (Soho)/ L & P J Litho Ltd (inactive), 1970 Books, 1942 Vacant, 1900 church furnisher / tailor, 1888 Silversmith (house with later shop. c1686-9 as part of estate development by Samuel Fortrey and Jacques Wiseman)
- 7 Smoking Goat, 2014 Tin Pan Alley Bar 1970 Club B1, 1900 brass chaser/founder / tailor / chaise saddler, 1888 (house with later shop. c1686-9 as part of estate development by Samuel Fortrey and Jacques Wiseman)
- 8 Rose Morris, 1970 Music Publisher, 1900 cabinet maker, 1888 Invalid Chair Factory
- 9 Flat Iron, 2014 The Giconda Dining Room, 2009 Indian Cowboy restaurant, 1958 Hairdressers Sundries, 1900 billiard table maker, 1888 Portmanteau Factory (house with later shop. c1686-9 as part of estate development by Samuel Fortrey and Jacques Wiseman)
- 10 Rose Morris, 2009 Rose Morris, 1970 Music publisher, 1888 Gun Stock Factory (house with later shop. c1686-9 as part of estate development by Samuel Fortrey and Jacques Wiseman)
- 11 Music Room /The Early Music Shop, 2009 Rose Morris, 1970 restaurant, 1942 Vacant, 1900 bell hanger / shirt maker / coach plater, 1888 Bell Hanger
- 17 Chris Bryant Musical Instruments, 1970 Books, 1888 Residence
- 18 Music Room 2009, Constantinou Brothers Hair Salon, 1970 Chambers Music, 1888 Residence
- 19 Wunjo Guitars, 1970 Offices, 1942 Music Shop, 1900 credit draper, 1888 Residence
- 20 Gary O'Toole School of Music, 1970 Music publisher, 1942 Restaurant, 1900 coffee rooms, 1888 Restaurant (Terraced house with later shop, and former warehouse (known as No.16 Denmark Place) attached at ground floor level to rear. c1686-89 as part of an estate development by Samuel Fortrey and Jacques Wiseman, early C19 warehouse)
- 21 Sax.co.uk, 2009 Rhodes Music, 1970 Music warehouse, 1888 Residence
- 22 Punja, 2009 The Bass Cellar, 1970 Flats, 1942 Vacant, 1900 gilder / builder, 1888 Residence
- 23 London Pro Audio Centre, 1970 Toys, 1942 Musical Instruments, 1900 silver caster / brass finisher / coach plater, 1888 Residence
- 24 Westside Music, 2009 Hanks Guitar, 1970 Film studio cutting room, 1942 Music Publishers, 1900 metal embosser / dressing case maker / book edge gilder, 1888 Residence

- 25 Macaris (Paint Workshop in Basement), 2009 Music Ground Nightingale Guitars/Vocal Point/ Philipp Dubreuille Guitars manufacturers, 1970 Offices, 1942 Tobacco Office, 1900 engraver, 1888 Residence
- 26 12 Bar Club (vault underneath Denmark St), 1970 Restaurant, 1888 Residence, Forge (Terraced house with later shop Early C18)
- 27 Hanks Guitar, 2009 Music Ground, 1964 Dairy, 1900 Beer Retailer, 1888 PH (Terraced house with later shop. Late C17, refronted late C18 and 3rd floor added)
- 28 Jubilee Hair Salon / Omec Distributions Ltd, 1970 Offices, 1900 Greengrocer

Denmark Place

- 1 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio/ Earache Records, 1942 Shop, 1888 Residence
- 2 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio/ Earache Records, 1942 Residence, 1888 Residence
- 3 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio/ Earache Records, 1942 Residence, 1888 Residence
- 4 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio/ Earache Records, 1942 Residence, 1888 Residence
- 5 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio/ Earache Records, 1942 Residence, 1888 Residence
- 6 Enterprise Band Rehearsal Studios / A True Love Tattoo Studio / Earache Records, 1942 Shop, 1900 Apartments
- 15 1900 lining frame maker / carpenter
- 16 1942 Publishers, 1900 bag frame maker(former warehouse attached at ground floor level to 20 Denmark Street. c1686-89 as part of an estate development by Samuel Fortrey and Jacques Wiseman, early C19 warehouse)
- 17 1888 Goldsmith & Jewellers
- 18 New York Entertainment Group (Music Management), 1942 Residence
- 19 1888 Silver Caster
- 20 1888 Carpenter
- 21 1900 brass founder
- 22 12 Bar Club, 1900 coach spring maker
- 23 12 Bar Club, 1900 coach spring maker

Flitcroft Street (Little Denmark Street)

- 4 Offices, 1970 Printers, 1942 Despatch Warehouse, 1888-1900 Barrel Shed for Crosse & Blackwell / Italian Warehouse
- 6 Offices 1970 Printers, 1900 tin box makers / drysalters, 1942 Vacant, 1888 Tin Box Factory (Warehouse. Built c1850)
- 8 ? 1970 Printers, 1942 Metal Workers Warehouse, 1900 tin box makers / drysalters, 1888 Vacant
- 10 (Book Mews) 1970 Printers, 1942 Film Laboratories, 1888 Iron Bedstead Factory
- 12 ? 2009 Media, 1970 Stores, 1950s Crosse and Blackwell warehouse 1942 Film Laboratories,1888 Iron Bedstead Factory (Warehouse, built 1878 for William Addis, wholesale ironmongers.

St Giles High Street

- 52 Yorimichi 2012 First Out Café Bar, 1970 Restaurant, 1888 Carpenter
- 53 2009 Assa Restaurant, 1970 Restaurant
- 54 Clifton Mansions (Residential), 1888 Shop
- 55 2009 Seoul Bakery/ Azito Hair Salon, 1942 Residence, 1888 Shop
- 56 Po Chung Ma Cha Restaurant, 2009 The Polo Korean Restaurant, 1970 Restaurant, 1942 Residence, 1888 Shop
- 57 York Mansions (Residential), 1888 Shop
- 58 Central Food & News newsagent, 1942 Restaurant, 1888 Shop
- 59 Woo Jung Korean restaurant, 1970 Restaurant, 1942 Vacant, Early 19th Century house & shop
- 60 1888 Oil & Colour Store

Endell Street

- 61 Ventana Court, 1966 Timber Store
- 63 2009 Da Mario Restaurant, 1966 Restaurant
- 65 Beauty Treatment, 2009 Sam Walker, 1966 Vacant
- 67 Hairdressing Salon, 1928 Shop
- 69 Hairdressing Salon, 2009 The Covent Garden Salon, 1966 Restaurant

71 Zone Models, 1970 Cleaners, 1928 Warehouse

73 Scott Brownrigg Offices, 1966 Offices

Neal Street

68 2009 Filofax

70 2009 Birkenstock

72 2009 Birkenstock

74 office/residential

76 2009 Mr Shoes

SITE INVESTIGATION REPORT

St. Giles Development

CONCEPT

CONCERT

CONCEPT

CONCEPT

CONCEPT

CONCEPT

ISSUE 00

C-NCEPT

CONCEPT

CONCEPT

CONCEPT

CONCEPT

SITE INVESTIGATION REPORT

St. Giles Development

Prepared for: Cord Contracting Co Ltd

Concept: 17/3014 - FR 00 05/09/2017

Unit 8, Warple Mews, Warple Way London W3 ORF Tel: 020 8811 2880 Fax: 020 8811 2881

e-mail: si@conceptconsultants.co.uk www.conceptconsultants.co.uk

Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

DOCUMENT ISSUE REGISTER				
Project Name: St. Giles Development				
Project Number:	17/3014			
Document Reference:	17/3014 - FR 00 Current Issue Issue 00			
Document Type:	Site Investigation Report			

Development	Name	Signature	Date
Prepared by:	B Milne	Bandan	05/09/2017
Checked by:	O Savvidou	Own Jan	05/09/2017
Approved by:	D Seeley		05/09/2017

Issued to:

Date	Issue	Amendment Details/ Reason for issue	Issued to
05/09/2017	Issue 00		LBH / Cord

Notes:

CONTENTS

1.	PROJECT PARTICULARS

- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Inspection Pits
- 4.2 Dynamic Sampling Boreholes
- 4.2.1 Sampling and Testing during Dynamic Sampling
- 4.3 Logging / Laboratory Testing
- 4.4 Setting Out
- 5. GEOLOGICAL GROUND PROFILE
- 6. SITE LOCATION PLAN
- 7. EXPLORATORY HOLE LOCATION PLAN
- 8. DYNAMIC SAMPLING BOREHOLE LOGS
- 9. CHEMICAL TEST RESULTS
- 10. PHOTOGRAPHS

17/2971 - Issue 00 Page 1 of 10

1. PROJECT PARTICULARS

Site Location: 8 Flitcroft Street,

London, WC2H 8DL

Client: Cord Contracting Co Ltd

Investigation Supervisor: LBH Wembley Geotechnical & Environmental

Fieldwork: 24/08/2017

Laboratory Work: 30/08/2017 – 05/09/2017

2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to understand the ground and groundwater conditions at the site, to determine the nature and extent of any ground and groundwater contamination.

The scope of the works comprised the following:

- 2 No. Dynamic Sampling Boreholes to a depth of 6.00m;
- Logging and Photographing;
- Chemical Laboratory Testing.

Table 1 – Exploratory Hole List

Hole ID	Hole Type	Depth (m)
WS18	DS	5.00
WS20	DS	6.00

Key

DS – Dynamic Sampling Borehole

3. DESCRIPTION OF WORKS

The works were carried out as per e-mail instruction by Bernard Higgins from Cord, dated 15/08/2017 and with the Concept Method Statement (17/3014 MS Rev 0, 22/08/2017).

The site is located at 8 Flitcroft Street, London, WC2H 8DL.

The approximate OS grid reference for the site is 529929E, 181233N.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

17/2971 - Issue 00 Page 2 of 10

4. INVESTIGATION METHODS

4.1 Inspection Pits

Inspection pits were hand excavated to a maximum depth of 1.20m at all sampling borehole locations prior to boring commencing.

4.2 Dynamic Sampling Boreholes

2 No. Dynamic Sampling Boreholes (WS18 & WS20) were carried out to a maximum depth of 6.00m. The boreholes were drilled using a tracked Geo drive-tube sampling rig.

The liners retrieved from all the borehole locations were split, logged and photographed.

4.2.1 Sampling and Testing during Dynamic Sampling

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor . All samples taken for chemical analysis were screened for volatiles using a Phocheck Tiger photoionization detector.

The dynamic sampling borehole logs are presented in Section 9 of this report.

4.3 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2015.

All chemical testing was carried out by i2 Analytical Ltd in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in Section 10 of this report.

4.4 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

The locations of the boreholes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

17/2971 - Issue 00 Page 3 of 10

5. GEOLOGICAL GROUND PROFILE

The geological strata encountered during the investigation are summarised in the table below. The Top and Bottom of the strata noted in the table indicates the highest and lowest boundaries encountered in all exploratory holes.

Table 2 - Geological Ground Profile

STRATUM	TOP (mbgl)	BASE (mbgl)	DESCRIPTION
MADE GROUND	0.00	3.70	Concrete over loose, yellowish brown and dark grey clayey sandy GRAVEL with high cobble content. Gravel comprises subangular to subrounded fine to coarse flint, brick and concrete fragments. Cobbles are brick and concrete. Sand is fine to coarse. Light brown slightly clayey very gravelly fine to coarse SAND with high cobble content, frequent plastic and tile fragments. Gravel comprises subangular to subrounded fine to coarse flint, brick and concrete fragments.
RIVER TERRACE DEPOSITS	2.10	5.10	Dense, yellowish to reddish brown slightly silty very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint.
LONDON CLAY FORMATION	4.35	EXTENT NOT PROVEN	Firm to stiff, closely to very closely fissured brown to orangish brown slightly gravelly slightly micaceous sandy CLAY with occasional pockets of orangish brown fine sand and rare pockets of dark grey silty sand (<20mm).). Fissures are subhorizontal, planar, smooth, unpolished. Gravel is subangular to subrounded fine to coarse flint.

17/2971 - Issue 00 Page 4 of 10

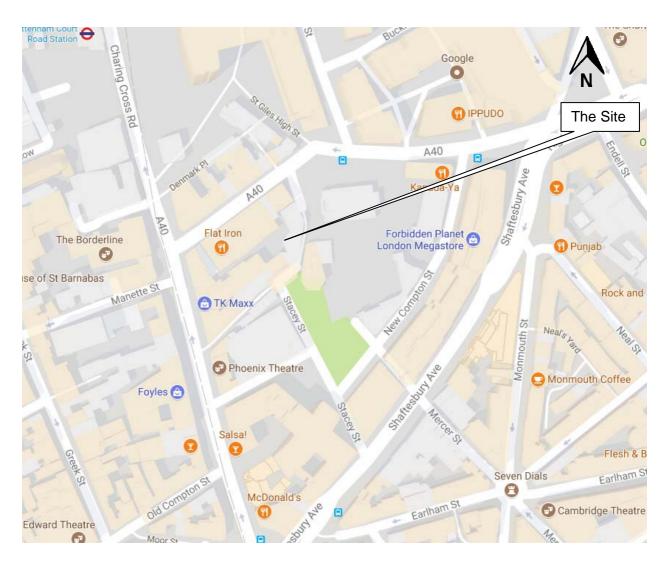
REFERENCES

British Standards Institution, (2015) Code of practice for ground investigations, British Standard BS5930: 2015, BSI, London

British Standards Institution, (2011) Investigation of potentially contaminated sites, British Standard BS10175: 2011, BSI, London.

UK Specification for Ground Investigation, (2011) Site Investigation Steering Group, Thomas Telford, London

British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.


British Standards Institution BS EN ISO 22475-1, (2006) Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

British Standards Institution BS EN 1997:1 (2004) EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

British Standards Institution BS EN 1997:2 (2007) EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

17/2971 - Issue 00 Page 5 of 10

6. SITE LOCATION PLAN

Not to Scale © Crown Copyright reserved

17/2971 - Issue 00 Page 6 of 10

7. EXPLORATORY HOLE LOCATION PLAN

17/2971 - Issue 00 Page 7 of 10

NOTES

I. This drawing should not be scaled.

No	Revision	Drawn	Checked	Passed	Date

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way London W3 0RF Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: concept@conceptconsultants.co.uk

www.conceptconsultants.co.uk

Client:	Cord	Cord Contracting Co Ltd					
Ollonia		Contracting	9 00 2.0				
Project	St. C	St. Giles Development					
Title: Exploratory Hole Location Plan							
		uoni lan					
Dwg. No	: 17/30	014					
Status:	Issue	9					
Scale:	NTS						
Drawn OS	Checked AB	Passed MD	Date August 2017				

8. DYNAMIC SAMPLING BOREHOLE LOGS

17/2971 - Issue 00 Page 8 of 10

Borehole No

WS18

Project

St. Giles Development

Job No Date Started 24/08/17 Ground Level (mOD) Co-Ordinates				Final Depth		
17/3014	Date Completed	24/08/17			5.00m	
Client Cord Co	ntracting Co L	ıtd		Method/ Plant Used Dynamic Sampling	Sheet 1 of 2	

PRO	OGRESS STRATA		SAMPL	ES & T	ESTS		ent/				
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/08/17		Dry			- (0.20) 0.20 0.30 - (0.20) 0.50	Concrete paving over yellowish brown gravelly coarse SAND. (MADE GROUND) CONCRETE. Loose, yellowish brown very sandy GRAVEL with high cobble content. Gravel comprises subangular to	0.30-0.50 0.30 0.50-1.00	B01 ES02 B03		VOC 0.4ppm	
					-	subrounded fine to coarse flint, brick and concrete fragments. Cobbles are brick and concrete. Sand is fine to coarse. (MADE GROUND) Loose, brown slightly clayey very gravelly fine to coarse SAND with high cobble content. Gravel comprises	0.80	ES04 B05		VOC 0.5ppm	
24/08/17		Dry			(1.10)	subangular to subrounded fine to coarse flint, brick and concrete fragments. (MADE GROUND)	1.10	ES06		VOC 0.4ppm	
מנה כ כפלאנפון					(0.50)		-				
				X0	(2.25)	(MADE GROUND) Dense, light yellowish brown slightly silty very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	2.60	ES07		VOC 0.6ppm	
24/08/17	4.00	Dry		× × · · · · · · · · · · · · · · · · · ·	- - - -		- - - -				

DYNAMIC SAMPLING RECOVERY										
From	То	Diameter (mm)	Recovery (%)							
1.20	2.00	87	100							
2.00	3.00	87	100							
3.00	4.00	87	100							
4.00	5.00	75	100							

GENERAL REMARKS

- An inspection pit was hand excavated to 1.20m depth prior to boring commencing.
 Ø128mm casing used from ground level to 4.00m depth.
 Water level at 3.50m depth upon completion.
 Borehole was backfilled with bentonite pellets between 5.00m and ground level.

Issue No: 00 Drilled By: ST Logged By: DF

Approved By: OS

Log Print Date & Time:

2.00 3.00 4.00

5.00

Borehole No

WS18

Project

St. Giles Development

	1			
Job No	= ", 00, 1,		Final Depth	
17/3014	Date Completed	24/08/17		5.00m
Client			Method/	Sheet
Cord Co	ntracting Co L	td	Plant Used Dynamic Sampling	2 of 2

PRO	OGRESS STRATA		SAMPLI	ES & T	ESTS		nt/				
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/08/17	4.00	3.50			- 4.35 - (0.50) - 4.85 - 5.00	Firm, brown to orangish brown sandy CLAY with occasional pockets of orangish brown fine sand. (THAMES GROUP: WEATHERED LONDON CLAY FORMATION) Stiff, closely to very closely fissured grey slightly micaceous CLAY with rare pockets of dark grey silty sand (<20mm). Fissures are subhorizontal, planar, smooth, unpolished. (THAMES GROUP: LONDON CLAY FORMATION - A3ii) End of Borehole	4.60	ES08 ES09		VOC 1.4ppm	

DYN	DYNAMIC SAMPLING RECOVERY			GENERAL REMARKS
From	То	Diameter (mm)	Recovery (%)	

Issue No: 00

Drilled By: ST

Logged By: DF

Checked By: OS

Approved By: OS

Log Print Date & Time:

06/09/2017 09:36

Borehole No

WS20

Project

St. Giles Development

Job No	Date Started	24/08/17	Ground Level (mOD)	Co-Ordinates	Final Depth
17/3014	Date Completed	24/08/17			6.00m
Client				Method/	Sheet
Cord Co	ntracting Co L	td		Plant Used Dynamic Sampling	1 of 2

PRO	PROGRESS		STRATA					ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/08/17		Dry			- (0.20) 0.20 0.30 - (0.20) 0.50	Concrete paving over yellowish brown gravelly coarse SAND. (MADE GROUND) CONCRETE. Loose, light yellowish brown very sandy GRAVEL. Gravel comprises subangular to subrounded fine to coarse flint, brick and concrete fragments. Sand is fine to	0.30-0.50	B01 ES02 B03		VOC 0.1ppm	
					0.90	coarse. (MADE GROUND) Loose, light brown slightly clayey very gravelly fine to coarse SAND with frequent plastic and tile fragments.	0.80	ES04 B05		VOC 0.4ppm	
24/08/17		Dry			- (1.65) - (1.65) 	Gravel comprises subangular to subrounded fine to coarse flint, brick and concrete fragments. (MADE GROUND) Loose to medium dense, dark grey and brown sandy very clayey GRAVEL with frequent plastic fragments. Gravel comprises subangular to subrounded fine to coarse flint, brick and concrete fragments. Sand is fine to coarse. (MADE GROUND)	1.10	ES06		VOC 0.4ppm	
					- (0.90) - (3.45	Dense, yellowish brown slightly silty very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. (REWORKED - MADE GROUND)	3.20	ES08		VOC 0.6ppm	
				**************************************	(0.25)	Light brown and off-white silty sandy GRAVEL. Gravel comprises subangular to subrounded fine to coarse flint and weak off-white chalk fragments. (REWORKED - MADE GROUND) Dense, yellowish to reddish brown slightly silty very gravelly fine to coarse	3.60	ES09		VOC 0.2ppm	

DYNAMIC SAMPLING RECOVERY From

Diameter (mm)

To

GENERAL REMARKS

1.	An inspection	i pit was ha	nd excavated	to 1.2	20m de	epth j	prior to	boring cor	nmencing.

Recovery (%)

Ø128mm easing used from ground level to 5.00m depth.
 Water level at 4.50m depth upon completion.
 Borehole was backfilled with bentonite pellets between 6.00m and ground level.

Issue No: 00 Drilled By: ST Logged By: DF

Log Print Date & Time: Approved By: OS

CONCEPT - DYMAMIC SAMPLER || Project: 173014 - ST. GILES.GPJ || Library: CONCEPT LIBRARY - 2017.GLB || Date: 6 September 2017

WS20

Borehole No

Project

St. Giles Development

Job No	Date Started	24/08/17	Ground Level (mOD)	Co-Ordinates	Final Depth
17/3014	Date Completed	24/08/17			6.00m
Client Cord Co	ntracting Co L	td		Method/ Plant Used Dynamic Sampling	Sheet 2 of 2

PRO	OGRI	ESS			Sī	TRATA	SAMPLI	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
24/09/17		D		x	- (1.40)	SAND. Gravel is subangular to subrounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	4.60	ES10		VOC 0.4ppm	
24/08/17	5.00	Dry		× 0	5.10	Firm, brown to orangish brown slightly gravelly sandy CLAY with occasional pockets of orangish brown fine sand. Gravel is subangular to subrounded fine to coarse flint. (THAMES GROUP: WEATHERED LONDON CLAY FORMATION)	5.30	ES11		VOC 1.2ppm	
24/08/17	5.00	4.50			- _ (0.45) - 	Stiff, closely to very closely fissured slightly micaceous CLAY with rare pockets of dark grey silty sand (<20mm). Fissures are subhorizontal, planar, smooth, unpolished. (THAMES GROUP: LONDON CLAY FORMATION - A3ii) End of Borehole	5.80	ES12		VOC 0.7ppm	
					- - -	End of Borelloic	- - - -				
					- - -		_ _ _ _				
					- - - -		- - - -				
:					-		_				

[DYNAMIC SAMPLING RECOVERY		OVERY	GENERAL REMARKS	
<u> </u>	From	То	Diameter (mm)	Recovery (%)	
3					

Issue No: 00 Drilled By: ST Logged By: DF

Checked By: OS

Approved By: OS Log Print Date & Time:

9. CHEMICAL TEST RESULTS

17/2971 - Issue 00 Page 9 of 10

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: evangelos@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-58888

Project / Site name: St Giles Samples received on: 30/08/2017

Your job number: 17-3014 Samples instructed on: 30/08/2017

Your order number: CL1180 Analysis completed by: 06/09/2017

Report Issue Number: 1 **Report issued on:** 06/09/2017

Samples Analysed: 2 wac multi samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		17-58888					
				Client: CONCEPT			
Location		St Giles					
		51 5.1.55		Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		808268			Limits		
Sampling Date		24/08/2017			Stable Non-		
Sample ID Depth (m)		WS20 1.80	Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil		
Solid Waste Analysis							
FOC (%)**	1.6			3%	5%	6%	
Loss on Ignition (%) **	7.6					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.30			1			
Mineral Oil (mg/kg) #	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 1.6			100			
pH (units)**	7.9				>6		
Acid Neutralisation Capacity (mol / kg)	11				To be evaluated	To be evaluate	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg (mg/k			
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	doing bo En	12.07 5 40 2,6 10	, i, i.g (i.i.g, i.g)	
Arsenic *	0.029	0.020	0.21	0.5	2	25	
Barium *	0.0076	< 0.0050	0.044	20	100	300	
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium *	< 0.0010	< 0.0010	< 0.0050	0.5	10	70	
Copper *	0.014	0.0054	0.065	2	50	100	
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum *	0.011	< 0.0030	0.027	0.5	10	30	
Nickel *	0.0020	< 0.0010	0.011	0.4	10	40	
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50	
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5	
Selenium *	< 0.010	< 0.010	< 0.040	0.1 4	0.5 50	7	
Zinc * Chloride *	0.0010 < 4.0	< 0.0010 < 4.0	< 0.020 < 15	800	4000	200 25000	
Fluoride	< 0.050	0.15	1.4	10	150	500	
Sulphate *	9.3	2.1	30	1000	20000	50000	
TDS	130	69	770	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	4.7	3.2	34	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.40						
Ory Matter (%)	80						
Moisture (%)	20						
Stage 1							
Volume Eluate L2 (litres)	0.31						
iltered Eluate VE1 (litres)	0.23						
Results are expressed on a dry weight basis, after correction for mo	isture content who	re annlicable		*= TIKAS accredit	l ed (liquid eluate and	alvsis only)	
.coa.co and expressed on a dry meight basis, after correction for the	Scare content WHE	с аррисавіс.		orona accredit	ca (iiquia ciuate di k	, 313 OI 11y)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		17-58888					
				Client:	CONCEPT		
Location		St Giles					
Lab Reference (Sample Number)		808269		Landfill	Waste Acceptano Limits	e Criteria	
Sampling Date		24/08/2017			Stable Non-		
Sample ID		WS20			reactive		
Depth (m)		3.20	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil		
Solid Waste Analysis							
TOC (%)**	0.1			3%	5%	6%	
Loss on Ignition (%) **	2.1					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.30			1			
Mineral Oil (mg/kg) #	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 1.6			100			
pH (units)**	7.9				>6		
Acid Neutralisation Capacity (mol / kg)	3.2				To be evaluated	To be evaluate	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS EN 12457-3 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.010	< 0.010	0.052	0.5	2	25	
Barium *	< 0.0050	< 0.0050	< 0.020	20	100	300	
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium *	0.0014	< 0.0010	< 0.0050	0.5	10	70	
Copper *	0.0014	< 0.0030	< 0.020	2	50	100	
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum *	0.011	< 0.0030	0.021	0.5	10	30	
Nickel *	0.0010	< 0.0010	< 0.0050	0.4	10	40	
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50	
Antimony *	< 0.0050	< 0.0050	0.021	0.06	0.7	5	
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc *	< 0.0010	< 0.0010	< 0.020	4	50	200	
Chloride *	< 4.0	< 4.0	< 15	800	4000	25000	
Fluoride	< 0.050	< 0.050	0.31	10	150	500	
Sulphate *	3.8	1.5	19	1000	20000	50000	
TDS	52	20	240	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	3.5	4.3	42	500	800	1000	
Leach Test Information							
Character (a)							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.9						
Ory Matter (%)	92						
Moisture (%)	8.3						
Stage 1	0.22						
Volume Eluate L2 (litres)	0.33						
Filtered Eluate VE1 (litres)	0.25	 					
		 					
		1		*= UKAS accredit	1		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

Project / Site name: St Giles

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

 $Stone \ content \ of \ a \ sample \ is \ calculated \ as \ the \ \% \ weight \ of \ the \ stones \ not \ passing \ a \ 10 \ mm \ sieve. \ Results \ are \ not \ corrected \ for \ stone \ content.$

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
808268	WS20	None Supplied	1.80	Brown sandy clay with gravel and chalk.
808269	WS20	None Supplied	3.20	Light brown sand with gravel.

Project / Site name: St Giles

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046-PL	W	NONE
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil C10 - C40	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L031-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
	 	i sh Uis d Ki d			

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: evangelos@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-58887

Project / Site name: St Giles Samples received on: 30/08/2017

Your job number: 17-3014 Samples instructed on: 30/08/2017

Your order number: CL1180 Analysis completed by: 06/09/2017

Report Issue Number: 1 **Report issued on:** 06/09/2017

Samples Analysed: 4 soil samples

Signed:

Emma Winter

Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: St Giles Your Order No: CL1180

Lab Sample Number				808262	808263	808264	808265	
-								
Sample Reference				WS18	WS18	WS20	WS20	
Sample Number				None Supplied 0.30	None Supplied 1.10	None Supplied 0.80	None Supplied 1.80	
Depth (m) Date Sampled				29/08/2017	29/08/2017	29/08/2017	29/08/2017	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Time raken				None Supplied	None Supplied	None Supplied	попе заррнеа	
Analytical Parameter	Q,	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	it of	itati					
		3 "	<u>o</u>					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	11	15	13	20	
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.2	0.40	
Γ							ı	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
Consul Incompanies								
General Inorganics pH - Automated	pH Units	N/A	MCERTS	10.8	9.5	9.0	7.9	
Total Cyanide	mg/kg	1 1	MCERTS	2	9.5	9.0 < 1	7.9 < 1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	3400	1500	1200	770	
Sulphide	mg/kg	1	MCERTS	3.3	3.2	1.6	2.4	
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	29	
Total Phenois			1	1	1		I	1
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.9	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	_
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
			<u> </u>					
Total PAH	,							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	
Heavy Metals / Metalloids								
Heavy Metals / Metalloids Aluminium (aqua regia extractable)	mg/kg	30	ISO 17025	9300	9000	6500	7600	
Arsenic (aqua regia extractable) Arsenic (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	9300	7.1	< 1.0	18	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.44	0.73	0.50	0.54	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	3.0	1.0	1.1	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	12	13	12	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	50	68	43	72	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190	490	140	520	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.3	6.3	1.1	3.7	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	17	16	19	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0 12	< 1.0 31	< 1.0 8.3	< 1.0 34	
Tin (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	93	68	8.3 52	76	
Enric (aqua regia extractable)	mg/kg		PICENTS	,,,	VO	<i>3</i> 2	,,,	
Magnesium (agua regia extractable)	mg/kg	20	ISO 17025	2700	2100	1600	1500	

Project / Site name: St Giles Your Order No: CL1180

TPH-CWG - Aromatic >EC5 - EC7

TPH-CWG - Aromatic >EC7 - EC8

TPH-CWG - Aromatic >EC8 - EC10

TPH-CWG - Aromatic >EC10 - EC12

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

ab Sample Number Sample Reference Sample Number Depth (m) Date Sampled Time Taken Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	808262 WS18 None Supplied 0.30 29/08/2017 None Supplied	808263 WS18 None Supplied 1.10 29/08/2017 None Supplied	808264 WS20 None Supplied 0.80 29/08/2017 None Supplied	808265 WS20 None Supplied 1.80 29/08/2017 None Supplied	
Sample Number Depth (m) Date Sampled Time Taken Analytical Parameter	Units	Limit of detection	Accreditation Status	None Supplied 0.30 29/08/2017	None Supplied 1.10 29/08/2017	None Supplied 0.80 29/08/2017	None Supplied 1.80 29/08/2017	
Depth (m) Date Sampled Time Taken Analytical Parameter	Units	Limit of detection	Accreditation Status	None Supplied 0.30 29/08/2017	None Supplied 1.10 29/08/2017	None Supplied 0.80 29/08/2017	None Supplied 1.80 29/08/2017	
Oate Sampled Time Taken Analytical Parameter	Units	Limit of detection	Accreditation Status	29/08/2017	29/08/2017	29/08/2017	29/08/2017	
ime Taken Analytical Parameter	Units	Limit of detection	Accreditation Status		-11	-,,	-,, -	
Analytical Parameter	Units	Limit of detection	Accreditation Status	None Supplied	None Supplied	None Supplied	None Supplied	
•	Units	Limit of detection	Accreditation Status					
Monoaromatics Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
oluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
thylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
0 & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
n-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons		0.004		0.004	0.004	0.001	0.004	
PH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
PH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
PH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
PH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
PH-CWG - Aliphatic >EC12 - EC16 PH-CWG - Aliphatic >EC16 - EC21	mg/kg	2 8	MCERTS MCERTS	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	
	mg/kg							
PH-CWG - Aliphatic >EC21 - EC35 PH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg	8 10	MCERTS MCERTS	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	

Tee No	17-58887-1	St Gilac	17-3014

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

ma/ka

mg/kg

mg/kg

0.001

0.001

0.001

2

10

10

10

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

< 0.001

< 0.001

< 0.001

< 1.0

< 2.0

< 10

< 10

< 10

< 0.001

< 0.001

< 0.001

< 1.0

< 2.0

< 10

< 10

< 10

< 0.001

< 0.001

< 0.001

< 1.0

< 2.0

< 10

< 10

< 10

< 0.001

< 0.001

< 0.001

< 1.0

< 2.0

< 10

< 10

< 10

Project / Site name: St Giles

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
808262	WS18	None Supplied	0.30	Light brown gravelly sand with brick and rubble.
808263	WS18	None Supplied	1.10	Brown gravelly clay with brick and rubble.
808264	WS20	None Supplied	0.80	Brown gravelly clay with brick and rubble.
808265	WS20	None Supplied	1.80	Brown sandy clay with gravel and chalk.

Project / Site name: St Giles

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	Inface water (3W) Fotable water (FW) Ground W	I			
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	ISO 17025
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in acetonitrile followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer).	In-house method	L082-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS

Project / Site name: St Giles

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

10. PHOTOGRAPHS

17/2971 - Issue 00 Page 10 of 10

CONCEPT SITE INVESTIGATIONS

Site Name St. Giles Development		Job No.	17/3014	HOLE	WS18
Carried out for	Cord Contracting Co Ltd	Date		Photograph	01 & 02

Photograph No 01

Photograph No 02

CONCEPT SITE INVESTIGATIONS

Site Name St. Giles Development				17/3014	HOLE	WS18
	Carried out for	Cord Contracting Co Ltd	Date		Photograph	03

Photograph No 03

CONCEPT SITE INVESTIGATIONS

Site Name St. Giles Development		Job No.	17/3014	HOLE	WS18
Carried out for	Cord Contracting Co Ltd	Date		Photograph	04 & 05

Photograph No 04

Photograph No 05

CONCEPT SITE INVESTIGATIONS

Site Name St. Giles Development		Job No.	17/3014	HOLE	WS20
Carried out for	Cord Contracting Co Ltd	Date		Photograph	06 & 07

Photograph No 06

Photograph No 07

CONCEPT SITE INVESTIGATIONS

Site Name	St. Giles Development	Job No.	17/3014	HOLE	WS20
Carried out for	Cord Contracting Co Ltd	Date		Photograph	08 & 09

Photograph No 08

Photograph No 09

CONCEPT SITE INVESTIGATIONS

L			<u> </u>			
Site Name St. Giles Development				17/3014	HOLE	WS20
	Carried out for	Cord Contracting Co Ltd	Date		Photograph	10

Photograph No 10

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB04

Project

St Giles Circus

	Date Started	18/11/14	Ground Level (mOD)	Co-Ordinates	Final Depth
14/2669	Date Completed	20/11/14			30.35m

Client

Issue No

Consolidated Developments Limited

	BOREHOLE SUMMARY											
										Shoring / Support		
0.00 1.20	1.20 30.35	IP CP	18/11/2014 18/11/2014	18/11/2014 19/11/2014	AR/HB AR/HB	AN AN			Hand Excavated Cable Percussion			

WATER STRIKES				WATER ADDED CH			HISELLING			
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
					3.00	5.70				

НС	OLE	CASING			
Depth (m)	Depth (m) Diameter (mm)		Diameter (mm)		
0.00 30.35	200 200	0.00 6.00	200 200		

ROTARY FLUSH DETAIL									
From (m)	To (m)	Flush Type	Flush Return (%)	Flush Colour					

	INSTALLATION DETAILS											
Type	Diameter (mm)	Depth of Installation (m)	Top of Response Zone (m)	Bottom of Response Zone (m)	Date of Installation							
SPG/GW	50	6.00	2.00	6.00	20/11/2014							

BACKFILL DETAILS											
Top (m)	Bottom (m)	Material	Backfill Date								
0.00 0.30 2.00 6.00	0.30 2.00 6.00 30.00	Concrete / Flush Cover Bentonite Pellets Pea Shingle Bentonite Pellets	20/11/2014								

ROTARY / DYNAMIC SAMPLING										
From (m)	To (m)	Blows	Recovery (%)							

BACKI	FILL DETAILS	
Top Bottom (m)	Material	Backfill Date
0.30 2.00	Concrete / Flush Cover Bentonite Pellets Pea Shingle Bentonite Pellets	20/11/2014

Log Print Date & Time: 01 01/12/2014 11:41

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB04

Project

St Giles Circus

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
14/2669	Date Completed	20/11/14			30.35m

Client

Consolidated Developments Limited

	PROGR	ESS					SPT DETAILS	8	
Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
0.00 4.00 5.00 6.00 7.00 16.60 16.60 17.00 18.00 19.00 30.35 L REMA The procession of the control of the cont	4.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	Dry 2.00 3.00 Wet Dry Dry Dry Dry Dry Dry Dry Wet Wet Dry Dry Dry LK-Block Sample		S S C C S S S S S S S S S S S S S S S S	2.00 3.00 4.00 5.00 6.00 8.00 9.00 11.00 12.00 14.00 20.00 21.00 23.00 24.00 27.00 29.00 30.00	N0 N30 N23 N24 N14 N21 N25 N27 N30 N33 N36 N43 N35 N39 N40 N44 N45 N50 N50/0.225 N50/0.19	2, 2 / 0, 0, 0, 0 2, 3 / 5, 6, 9, 10 2, 3 / 4, 4, 7, 8 3, 4 / 6, 6, 7, 5 2, 3 / 3, 3, 4, 4 3, 3 / 4, 5, 5, 7 3, 4 / 5, 6, 7, 9 4, 6 / 6, 7, 8, 9 4, 6 / 7, 7, 10, 9 5, 6 / 8, 8, 9, 11 6, 7 / 9, 9, 11, 14 6, 7 / 7, 8, 9, 11 7, 8 / 9, 10, 10, 10 7, 9 / 9, 10, 10, 11 8, 9 / 10, 10, 11, 14 8, 9 / 11, 11, 13, 15 9, 9 / 12, 13, 16, 9 9, 11 / 14, 16, 19, 1 10, 14 / 19, 21, 10	1.70 3.00 4.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	Dry Dry 2.00 3.00 Wet Dry
	amental Sampla Diameter Una Dia	Hole epth (m) Casing Depth (m) 0.00 4.00	nmental Sample (Tub, Vial, Jar) 1 Diameter Undisturbed Sample 19.00 Dry 30.35 G.00 B.00 Dry 16.60 G.00 Dry 17.00 G.00 Dry 17.00 G.00 Wet 18.00 G.00 Wet 19.00 G.00 Dry 30.35 G.00 Dry 30.35 G.00 Dry Try Trianeter Thin Wall Undisturbed Sample Diameter Undisturbed Sample Brancher Thin Color Dry 30.35 G.00 Dry Try Try Try Try Try Try Try Try Try	Hole epth (m)	Hole epth (m) Casing Depth (m) Depth (m) Remarks	Hole epth (m)	Hole epth (m) Casing Depth (m) Depth (m) Popth (m) Cabing Depth (m) Value	Hole epth (m)	Hole cpth (m)

Note: All depths are in metres, all diameters in millimetres, water strike rise time in minutes. For details of abbreviations see Key

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No PB04

Project

St Giles Circus

Job No Date Started 18/11/14 Ground Level (mOD				Co-Ordinate	es	Final Depth
14/2669	Date Completed	20/11/14				30.35m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used	Cable Percussion	Sheet 1 of 3

PRO	OGRE	ESS			ST	TRATA	SAMPLE	SAMPLES & TESTS			ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
18/11/14		Dry		6 h 9 6	- 0.20 0.30 0.40 - (1.60)		0.40-1.00 0.40-1.00 0.50 0.50 1.00 - 1.00 - 2.00 - 2.00	B1 D2 ES3 ES4	N0	VOC 0.2ppm VOC 0.1ppm 2, 2 / 0, 0, 0, 0 VOC 0.1ppm	
18/11/14	4.00	2.00			3.00	(MADE GROUND) becoming very clayey and very sandy with occasional cobble sized brick fragments and rare pockets of soft brown sandy clay (<20mm) below 1.00m. Very loose, brown and reddish brown occasionally mottled grey clayey very sandy subangular to subrounded fine to coarse GRAVEL comprising brick, concrete and sandstone fragments and cobble sized brick fragments. Sand is fine to coarse. (MADE GROUND) Medium dense, brown very sandy subangular to subrounded fine to coarse flint GRAVEL.	2.00 2.00-2.45 2.00-2.50 2.00-2.50 3.00 3.00 3.00-3.45 3.00 3.50-4.00 3.50-4.00 4.00-4.50	ES5 D6 B7 D8 D10 ES9 B11 D12	N30	2, 3 / 5, 6, 9, 10 VOC 0.0ppm	
18/11/14	4.50	3.00			(1.70)	Sand is fine to coarse. (RIVER TERRACE DEPOSITS) Medium dense, brown very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	5.00		N24	3, 4 / 6, 6, 7, 5	
18/11/14	6.00	Wet			5.70	Firm, brown mottled orangish brown slightly gravelly CLAY with occasional pockets of orangish brown fine sand (<25mm) and occasional dark grey flecks. Gravel is subangular to subrounded fine to coarse flint. (THAMES GROUP: WEATHERED LONDON CLAY FORMATION)	5.70 - 6.00 - 6.00 - 6.00-6.45	D14 D15 D16	N14	2, 3 / 3, 3, 4, 4	
18/11/14	6.00	Dry			-	Firm, extremely closely to very closely fissured greyish brown slightly micaceous CLAY with occasional bioturbation and rare off-white fine to medium sand sized shell fragments. Fissures are generally subhorizontal and 20°-45°, planar, smooth, unpolished.	7.00-7.45	UT17	20 blows	100% Recovery	
						(THAMES GROUP: LONDON CLAY FORMATION - A3ii) becoming slightly sandy with rare partings and occasional pockets of light brown fine sand (<55mm) and rare pockets of dark grey sandy silt (<35mm) below 7.60m becoming stiff with occasional off-white fine to coarse sand sized shell fragments below 8.00m.	8.00 8.00-8.45 9.00 9.00-9.45	D19	N21	3, 3 / 4, 5, 5, 7	
						with rare pyrite nodules (<7mm) at 10.60m.	10.00-10.45	UT21	23 blows	100% Recovery 3, 4 / 5, 6, 7, 9	

Issue No. 01

Log Print Date & Time

01/12/2014 11:41

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB04

Project

St Giles Circus

Job No	Date Started	18/11/14	Ground Level (mOD)	Co-Ordinates		Final Depth
14/2669	Date Completed	20/11/14	, ,			30.35m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used	Cable Percussion	Sheet 2 of 3

PRO	OGRE	ESS			S	TRATA	SAMPLES & TESTS		ESTS		hue/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
					(10.00)	becoming very stiff below 12.00m.	12.00 12.00-12.45	D23	N30	4, 6 / 6, 7, 8, 9	
					- - - - -		13.00-13.45	UT25	26 blows	100% Recovery	
					- - - - - - - - -	with occasional pockets of dark grey sandy silt (<55mm) at 13.60m.	13.60 14.00 14.00-14.45	D26	N33	4,6/7,7,10,9	
					- - - - - - -		15.00 -15.00-15.45	D28	N36	5, 6 / 8, 8, 9, 11	
					16.00	Very stiff, very closely to closely fissured greyish brown slightly micaceous CLAY with	16.00-16.45	UT29	31 blows	100% Recovery	
18/11/14 19/11/14 19/11/14	6.00 6.00 6.00	Dry Dry Wet			- - - - - - - - -	occasional bioturbation and rare off-white fine to coarse sand sized shell fragments. Fissures are generally subhorizontal and 40°-60°, planar, smooth, polished. (THAMES GROUP: LONDON CLAY FORMATION - A3i)	16.60 - 17.00 - 17.00-17.45	D30	N43	6, 7 / 9, 9, 11, 14	
19/11/14	6.00	Wet			(3.60)	with rare pockets of light brown fine sand (<25mm) below 18.00m.	18.00 18.00-18.45	D32	N35	6, 7 / 7, 8, 9, 11	
19/11/14	6.00	Dry			- - - - - - -		19.00-19.45	UT33	37 blows	100% Recovery	
					19.60	Very stiff, extremely closely to very closely fissured greyish brown to brownish grey slightly sandy slightly micaceous CLAY with occasional pockets of dark grey sandy silt (<45mm), occasional pockets of light brown fine sand (<15mm), occasional bioturbation and rare foraminifera. Fissures are generally	19.60 20.00 20.00-20.45	D34	N39	7, 8 / 9, 10, 10, 10	
					- - - - - - - - -	subhorizontal and subvertical, planar, smooth, polished. (THAMES GROUP: LONDON CLAY FORMATION - A2) with occasional partings of light brown fine sand at 21.00m with occasional off-white fine to coarse sand sized shell fragments below 21.00m.	21.00	D36	N40	7, 9 / 9, 10, 10, 11	
					-		- 22.00	UT37	40 blows	No Recovery	

Issue No. 01 Log Print Date & Time 01/12/2014 11:41

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB04

Project

St Giles Circus

Job No	Date Started	18/11/14	Ground Level (mOD)	Co-Ordinate	S	Final Depth
14/2669	Date Completed	20/11/14	, ,			30.35m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used	Cable Percussion	Sheet 3 of 3

PRO	OGRE	ESS			S	ΓRATA	SAMPLE	ES & T	ESTS		:nt/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrume Backfill
			Level (mOD)	Legend	Depth		Depth	Type	Test	Field Records 8, 9 / 9, 10, 12, 13 8, 9 / 10, 10, 11, 14 90% Recovery 8, 9 / 11, 11, 13, 15 9, 9 / 12, 13, 16, 9	Instrument/ Backfill
					- - - - - - - - - - - - - - - - - - -		28.60 29.00 29.00-29.40 30.00	D46	N50/ 0.225 N50/ 0.19	9, 11 / 14, 16, 19, 1	
19/11/14	6.00	Dry			30.35	End of Borehole	30.00-30.35	D48			

Issue No. 01

Log Print Date & Time

01/12/2014 11:41

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB05

Project

St Giles Circus

Job No	Date Started	11/11/14	Ground Level (mOD)	Co-Ordinates	Final Depth
14/2669	Date Completed	17/11/14			30.00m

Client

Issue No

01

Consolidated Developments Limited

	BOREHOLE SUMMARY									
Top (m)	Base (m)	Туре	Date Started	Date Ended	Crew	Logged By	Core Barrel (mm)	Core Bit	Plant Used/ Method	Shoring / Support
0.00 1.20	1.20 30.00	IP CP	11/11/2014 13/11/2014	11/11/2014 14/11/2014	AR/HB AR/HB	RV RV			Hand Excavated Cable Percussion	

	WATER STRIKES				WATER ADDED CHISELLING					
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
					2.70	5.50				

HO	DLE	CASING			
Depth (m)	Diameter (mm)	Depth (m)	Diameter (mm)		
0.00 30.00	200 200	0.00 6.00	200 200		

ROTARY FLUSH DETAIL								
From (m)	To (m)	Flush Type	Flush Return (%)	Flush Colour				

	INSTALLATION DETAILS											
Type	Diameter (mm)		Top of Response Zone (m)	Bottom of Response Zone (m)	Date of Installation							
SPG/GW	50	6.00	2.00	6.00	17/11/2014							

BACKFILL DETAILS							
Top (m)	Bottom (m)	Material	Backfill Date				
0.00 0.30 2.00 6.00	0.30 2.00 6.00 30.00	Concrete / Flush Cover Bentonite Pellets Pea Shingle Bentonite Pellets	17/11/2014				

Log Print Date & Time:

ROTAI	ROTARY / DYNAMIC SAMPLING									
From (m)	To (m)	Blows	Recovery (%)							

BACKFILL DETAILS	BACKFILL DETAILS						
Top Bottom Material (m)	Backfill Date						
0.00 0.30 Concrete / Flush Cover 0.30 2.00 Bentonite Pellets 2.00 6.00 Pea Shingle Bentonite Pellets	17/11/2014						

01/12/2014 11:15

8 Warple Way London W3 0RF

Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB05

Project

St Giles Circus

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
14/2669	Date Completed	17/11/14			30.00m

Client

Consolidated Developments Limited

Coils	Jiluateu 1	Jevelopin	ents Lim							
		PROGR	ESS					SPT DETAILS	S	
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
11/11/14 11/11/14 13/11/14 13/11/14 13/11/14 13/11/14 13/11/14 13/11/14 13/11/14 14/11/14 14/11/14 14/11/14 14/11/16 100 UT = 100 UT	ironmental Sampm Diameter Unm Diameter Unm Diameter Unturbed Sample, Eeston Pit, TP-Tiek Percussion, R. Vereschen Pit, Pit, Pit, Pit, Pit, Pit, Pit, Pit,	1.70 3.00 4.00 4.50 6.00 6.00 6.00 6.00 6.00 6.00 8.00 6.00 8.00 8	Depth (m) Dry Dry Dry Dry 2.50 2.00 2.50 Wet Dry Dry Dry Dry Dry R/S-Rotary/Son	Slop	S C C C S S S S S S S S S S S S S S S S		N Value N10 N22 N21 N15 N17 N20 N25 N32 N33 N37 N32 N38 N37 N41 N47 N46 N46 N47			
INSTALLAT SPIE - S SPGW - G SPG/GW - G VWP - V INC - Ir	ibrating Wire Pic clinometer	eter itor Standpipe Monitor Standpi ezometer	•	neter, M-Mackintosh Probe						

Note: All depths are in metres, all diameters in millimetres, water strike rise time in minutes. For details of abbreviations see Key

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB05

Project

St Giles Circus

Job No	Date Started	11/11/14	Ground Level (mOD)	Co-Ordinate	s	Final Depth
14/2669	Date Completed	17/11/14				30.00m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used	Cable Percussion	Sheet 1 of 3

PRO	OGRE	ESS			ST	TRATA	SAMPLE	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
11/11/14		Dry			0.10	\(MAĎE GROUND)	0.30-0.60 0.30-0.60 0.50 0.50 0.60-1.20	B01 D02 ES03 B04		VOC 0.2ppm	
11/11/14 13/11/14		Dry Dry			(1.60)	Loose, brown sandy subangular to subrounded fine to coarse GRAVEL comprising flint, brick and concrete fragments. Sand is fine to coarse. (MADE GROUND) becoming grey and clayey below 0.60m.	1.00 1.00	D05 ES06		VOC 0.2ppm	
13/11/14	1.70	Dry			1.90	Loose to medium dense, reddish brown sandy angular to subrounded fine to coarse GRAVEL and COBBLES of brick fragments. Sand is fine to coarse. (MADE GROUND)	2.00 2.00 2.00 2.00-2.45 2.00-2.50 2.70-3.00	ES07 D08 B09 B10	N10	3, 2 / 2, 1, 3, 4 VOC 0.0ppm	
13/11/14	3.00	2.50		0000	(1.30)	Medium dense, greyish brown slightly sandy subangular to subrounded fine to coarse GRAVEL comprising flint and sandstone fragments. Sand is fine to coarse. (RIVER TERRACE DEPOSITS)	3.00	ES11	N22	2, 3 / 3, 4, 7, 8 VOC 0.0ppm	
13/11/14	4.00	2.00			4.00	Medium dense, brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	4.00 4.00-4.50 4.00	B12 D13	N21	2, 3 / 3, 4, 6, 8	
13/11/14	4.50	2.50		0000	5.00	Medium dense, brown fine to coarse SAND and angular to subrounded fine to coarse GRAVEL comprising flint and sandstone fragments. Sand is fine to coarse. (RIVER TERRACE DEPOSITS)	5.00 5.00 5.00	B14 D15	N15	4, 4 / 7, 5, 2, 1	
13/11/14	6.00	Wet			6.00	Firm to stiff, reddish brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse flint. (THAMES GROUP: WEATHERED LONDON CLAY FORMATION)	- 6.00 - 6.00 - 6.00-6.45	D16 D17	N15	3, 3 / 3, 3, 4, 5	
13/11/14	6.00	Dry			-	Stiff, very closely to closely fissured grey CLAY. (THAMES GROUP: LONDON CLAY FORMATION)	7.00 7.00-7.45	D18	N17	3, 3 / 3, 4, 4, 6	
					-		8.00-8.45	UT19	24 blows	100% Recovery	
					-	with occasional pockets of light brown fine sand at 8.60m.	9.00 9.00-9.45	D20	N20	3, 3 / 4, 5, 5, 6	
					-		10.00	D22	N25	3, 4 / 5, 6, 6, 8	
					-		11.00-11.45	UT23	27 blows	100% Recovery	

Issue No. 01

Log Print Date & Time

01/12/2014 11:16

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB05

Project

St Giles Circus

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Job No	Date Started	11/11/14	Ground Level (mOD)	Co-Ordinates		Final Depth
14/2669	Date Completed	17/11/14				30.00m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used (Cable Percussion	Sheet 2 of 3

PR	OGRI	ESS			S	ΓRATA	SAMPLES & TESTS			ent/	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrume Backfill
	Casing		Level (mOD)	Legend	Depth		Depth		Test	Field Records 4, 4 / 6, 8, 8, 10 4, 5 / 6, 7, 9, 11 100% Recovery	Instrument/ Backfill
13/11/14 14/11/14	6.00	Dry Dry			- (24.00)	with occasional pockets of light brown fine sand between 20.90m and 23.00m.	16.00 16.00-16.45 17.00-17.40 17.60 18.00 18.00-18.45 19.00 19.00-19.45 20.30 21.00 21.00-21.45	D30 UT31 D32 D33 D34 UT35 D36	N32 34 blows N32 N38 37 blows N37	4, 4 / 7, 8, 8, 9 90% Recovery 4, 6 / 6, 7, 9, 10 5, 7 / 7, 9, 10, 12 30% Recovery 5, 6 / 8, 9, 10, 10 4, 6 / 9, 9, 10, 13	

Issue No. 01 Log Print Date & Time 01/12/2014 11:16

8 Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

PB05

Project

St Giles Circus

Job No	Date Started	11/11/14	Ground Level (mOD)	Co-Ordinates		Final Depth
14/2669	Date Completed		` ′			30.00m
Client Consolid	ated Developme	ents Limi	ted	Method/ Plant Used Ca	able Percussion	Sheet 3 of 3

PRO	OGRE	ESS			S	ГКАТА	SAMPLI	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness,	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
							22.00-22.45 - 23.00-23.35 23.50 - 24.00 - 24.00-24.45	D38 UT39 D40 D41	40 blows	80% Recovery 6, 8 / 10, 10, 13, 14	
					- - - - - - - -		25.00 -25.00-25.45	D42	N46	6, 8 / 9, 11, 12, 14	
					- - - - - - -		26.00-26.40	UT43	44 blows	90% Recovery	
					- - - - - - - -		27.00 -27.00-27.45	D45	N46	7, 8 / 10, 10, 13, 13	
					- - - - - - -		28.00 -28.00-28.45	D46	N47	8, 8 / 9, 11, 13, 14	
					- - - - - - -	becoming sandy with shell fragments below 29.00m. Sand is fine to medium.	29.00-29.35	UT47	50 blows	80% Recovery	
14/11/14	6.00	Dry			30.00	End of Borehole	29.00	D+0			
						LIK OF BOTOLOGO					

Issue No. 01

Log Print Date & Time

01/12/2014 11:16

Unit 8, Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

WS13

Borehole No

Project

St Giles Circus

Job No	Date Started 02/12/14 Ground Level (mOD) Co-Ordinates				Final Depth	
14/2669	Date Completed	02/12/14	, , ,			3.70m
Client				Method/	D ' C 1	Sheet
Consolid	ated Developm	ients Lin	nited	Plant Used	Dynamic Sampler	1 of 1

Date Date Depth (mOD) Level (mOD) Legend Depth (Thickness) Strata Description Depth (m) Type No Test Result	H III
	Instrument/ Backfill
Dry	

C	Chiselling (m)		Water Added (m)		GENERAL REMARKS
From	То	Hours	From	То	1. An inspection pit was hand excavated to 1.20m depth prior to boring commencing. 2. Borehole aborted at 3.70m depth due to refusal.
					Borehole backfilled with bentonite pellets and made good upon completion.

Issue No. 01	Driller DS	Logged By MP	AGS менесителя от инстителеся.
, - · · · · · · · · · · · · · · · · · ·			

Unit 8, Warple Mews, Warple Way London W3 ORF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

WS14

Project

St Giles Circus

Job No	Date Started	27/11/14	Ground Level (mOD)	Co-Ordinat	es	Final Depth
14/2669	Date Completed	27/11/14				6.00m
Client				Method/		Sheet
Consolid	lated Developm	ents Lin	nited	Plant Used	Dynamic Sampler	1 of 1

PRO	OGRI	ESS			Sī	TRATA	SAMPLI	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
27/11/14		Dry		0000	0.15 (0.45) 0.60	Flag stone. (MADE GROUND) Dark brown very sandy very gravelly CLAY. Gravel is angular to rounded fine to coarse flint and brick fragments. Sand is fine to coarse. (MADE GROUND) Orangish brown very sandy subrounded fine	0.50	ES01			
					1.50	Orangish brown very sandy subrounded fine to medium flint GRAVEL. Sand is fine to coarse. (RIVER TERRACE DEPOSITS) Orangish brown gravelly fine to medium SAND. Gravel is subrounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	1.20 - 2.00 - 2.00	ES03		50% Recovery between 1.20m and 2.00m 50% Recovery between 2.00m and 3.00m.	
27/11/14		3.5			(3.00)		3.00	ES04		70% Recovery between 3.00m and 4.00m.	
				0	4.50	Stiff, dark greyish brown silty CLAY. (THAMES GROUP: LONDON CLAY	4.00	ES05		100% Recovery between 4.00m and 5.00m.	
				X X X X X X X X X X X X X X X X X X X	(1.50)	(THAMES GROUP: LONDON CLAY FORMATION)	5.00	ES06		50% Recovery between 5.00m and 6.00m.	
27/11/14				X	6.00	End of Borehole	5.80	ES07			

Chiselling (m)		Water Added (m)		GENERAL REMARKS	
From	То	Hours	From	То	An inspection pit was hand excavated to 1.20m depth prior to boring commencing. Water seepage encountered at 3.50m depth, rising to 3.00m (20min).
					Borehole backfilled with bentonite pellets and made good upon completion.

Unit 8, Warple Mews, Warple Way London W3 ORF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

WS15

Borehole No

Project

St Giles Circus

Job No	Date Started	03/12/14	Ground Level (mOD)	Co-Ordinate	es	Final Depth	
14/2669	Date Completed	03/12/14				4.50m	
Client Consolid	ated Developm	ents Lin	nited	Method/ Plant Used	Dynamic Sampler	Sheet 1 of 1	

PRO	OGRE	ESS			ST	TRATA	SAMPLI	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
03/12/14		Dry			0.20	Wooden floor boards over CONCRETE.	-				
					(0.60)	Orangish brown sandy angular to rounded fine to coarse GRAVEL comprising flint and brick fragments. Sand is fine to coarse. (MADE GROUND)	0.50	ES01			
				0	-	Orangish brown silty slightly gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint. (RIVER TERRACE DEPOSITS)	1.00	ES02		100% Recovery between 1.20m and 2.20m.	
					- - - -		2.00	ES03		100% Recovery	
02/12/14		<u>‡</u>		· · · · · · · · · · · · · · · · · · ·	(3.35)		- 2.20 			between 2.20m and 3.20m.	
03/12/14		2.80		a .	-		3.00	ES04			
					-		3.20	2501		100% Recovery between 3.20m and 4.20m.	
				· · · · · · · · · · · · · · · · · · ·	- - - 4.15	Dark grey silty CLAY.	4.00 - 4.20	ES05		No Recovery between 4.20m and	
03/12/14				- <u>x</u> -x-x	4.50	(THAMES GROUP: LONDON CLAY FORMATION) End of Borehole	-			4.50m. Borehole aborted at 4.50m depth. (see Remarks)	
					-		-				
					-						
					-						
					- - - - - - - - - - - -		- - - -				
					- - - - -						

C	hiselling (r	n)	Water Added (m)		GENERAL REMARKS
From	То	Hours	From	То	An inspection pit was hand excavated to 1.20m depth prior to boring commencing. Water seepage encountered at 2.80m depth, rising to 2.50m (20min).
					Borehole aborted at 4.50m depth due to refusal. Borehole backfilled with bentonite pellets and made good upon completion.

Borehole	Depth of Installation (mbgl)	Date of Installation	Туре	Top (mbgl)	Bottom (mbgl)	Date & Time	Water Level (mbgl)	Water Level (mOD)	Remarks
PB02	8.00	02/12/2014	SPGW	2.00	8.00	06/01/2015 13:15:00	5.30		
	8.00	02/12/2014	SPGW	2.00	8.00	22/01/2015 11:40:00	5.27		
	8.00	02/12/2014	SPGW	2.00	8.00	29/01/2015 12:50:00	5.29		
	8.00	02/12/2014	SPGW	2.00	8.00	05/02/2015 13:45:00	4.79		
	8.00	02/12/2014	SPGW	2.00	8.00	19/02/2015 08:55:00	5.46		
PB04	6.00	20/11/2014	SPG/GW	2.00	6.00	06/01/2015 14:55:00	3.90		
	6.00	20/11/2014	SPG/GW	2.00	6.00	22/01/2015 11:15:00	3.86		
	6.00	20/11/2014	SPG/GW	2.00	6.00	29/01/2015 11:44:00	3.86		
	6.00	20/11/2014	SPG/GW	2.00	6.00	05/02/2015 13:50:00	3.92		
	6.00	20/11/2014	SPG/GW	2.00	6.00	19/02/2015 09:00:00	3.91		
PB05	6.00	17/11/2014	SPG/GW	2.00	6.00	06/01/2015 14:30:00	4.35		
	6.00	17/11/2014	SPG/GW	2.00	6.00	22/01/2015 10:55:00	4.32		
	6.00	17/11/2014	SPG/GW	2.00	6.00	29/01/2015 04:33:00	4.33		
	6.00	17/11/2014	SPG/GW	2.00	6.00	05/02/2015 13:55:00	4.35		
	6.00	17/11/2014	SPG/GW	2.00	6.00	19/02/2015 09:15:00	4.42		

<u>KEY</u>

SPIE - Standpipe Piezometer

SPGW - Groundwater Monitor Standpipe SPG/GW - Gas / Groundwater Monitor Standpipe

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews, Warple Way London W3 0RF

Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

GROUNDWATER MONITORING

Project: St Giles Circus

Client: Consolidated Developments Limited

Job No: 14/2669

						CON	CEPT						
				GROUN	IDWATER	- IN SIT	U ANALY	SIS & S	AMPLIN	G			
Site:						St	Giles Circ	us					
Job No	.:						14/2669						
Date:							06/01/2015						
Technic							RM						
Sampli	ng metho		Impeller pur	Impeller pump (purging) and disposable bailer sampling									
	Boreh	ole Detail						Sampling	g and Test	ing			
BH No.	Base of well (mbgl)	Top of slotted response zone (mbgl)	Depth to GW (mbgl)	Purge Volume (I)	Time	Temp (°C)	EC (ms/cm)	Do (mg/l)	рН	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity		
											Very turbid / Dark grey		
PB04	6.00		3.90	4	14:55:00	14.42	1.718	2.63	8.38	305.7			
				8		14.31	1.725	1.63	8.46	300.2	Slightly turbid		
				12		14.21	1.725	1.46	8.48	298.0	Slightly turbid		

CONCEPT GROUNDWATER - IN SITU ANALYSIS & SAMPLING Site: **St Giles Circus** Job No.: 14/2669 Date: 06/01/2015 Technician: RMSampling method: Impeller pump (purging) and disposable bailer sampling Borehole Detail Sampling and Testing BH No. Base of Depth to Purge Time EC Sample Detail (Colour/Odour/ Temp Redox Top of Do рΗ GW (mbgl) Volume (ms/cm) Potential Turbidity well slotted (°C) (mg/l) (mbgl) response (l) (mV) zone (mbgl) Very turbid / Dark grey 6.00 4.35 14:30:00 0.296 3.44 PB05 14.84 8.45 303.0 Slightly turbid 14.69 0.291 2.90 8.52 300.0 Slightly turbid 14.54 0.285 2.65 8.55 298.6 8

						CON	CEPT						
				GROUN	IDWATER	- IN SIT	U ANALY	SIS & S	AMPLIN	G			
Site:						St	Giles Circ	us					
Job No							14/2669						
Date:							22/01/2015						
Technic							RM						
Sampli	ng metho		Impeller pur	Impeller pump (purging) and disposable bailer sampling									
	Boreh	ole Detail						Sampling	g and Test	ing			
BH No.	Base of well (mbgl)	Top of slotted response zone (mbgl)	Depth to GW (mbgl)	Purge Volume (I)	Time	Temp (°C)	EC (ms/cm)	Do (mg/l)	рН	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity		
											Very turbid / Dark brownish grey		
PB04	6.00		3.86	4	11:15:00	13.82	1.379	5.72	7.74	3.8			
				8		13.52	1.410	4.01	7.77	2.5	Very turbid / Dark brownish grey		
				12		13.23	1.432	2.50	7.80	0.5	Slightly turbid		

						CON	CEPT				_			
				GROUN	IDWATER	- IN SIT	U ANALY	SIS & S	AMPLIN	G				
Site:						St	Giles Circ	us						
Job No	.:			14/2669										
Date:							22/01/2015							
Technic							RM							
Sampli	ng metho		Impeller pur	mpeller pump (purging) and disposable bailer sampling										
	Boreh	ole Detail						Sampling	g and Test	ing				
BH No.	Base of well (mbgl)	Top of slotted response zone (mbgl)	Depth to GW (mbgl)	Purge Volume (I)	Time	Temp (°C)	EC (ms/cm)	Do (mg/l)	рН	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity			
											Very turbid / Dark brown			
PB05	6.00		4.32	3	10:55:00	13.82	0.597	6.85	7.18	33.5				
				5		13.63	0.599	4.56	7.43	20.3	Very turbid / Dark brown			
				8		13.43	0.596	2.57	7.75	4.4	Slightly turbid			

						CON	CEPT						
				GROUN	IDWATER	- IN SIT	U ANALY	SIS & S	AMPLIN	G			
Site:						St	Giles Circ	us					
Job No	.:						14/2669						
Date:							29/01/2015						
Technic							RM						
Sampli	ng metho		Impeller pur	Impeller pump (purging) and disposable bailer sampling									
	Boreh	ole Detail						Sampling	g and Test	ing			
BH No.	Base of well (mbgl)	Top of slotted response zone (mbgl)	Depth to GW (mbgl)	Purge Volume (I)	Time	Temp (°C)	EC (ms/cm)	Do (mg/l)	рН	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity		
											Very turbid / Dark brownish grey		
PB04	6.00		3.86	4	11:44:00	11.87	1.139	4.74	7.72	-19.3			
				8		11.82	1.131	2.94	7.72	-20.2	Very turbid / Dark brownish grey		
				12		11.78	1.127	2.15	7.71	-23.2	Slightly turbid		

						CON	CEPT							
				GROUN	IDWATER	- IN SIT	U ANALY	SIS & S	AMPLIN	G				
Site:						St	Giles Circ	us						
Job No				14/2669										
Date:							29/01/2015							
Technic							RM							
Sampli	ng metho		Impeller pur	mpeller pump (purging) and disposable bailer sampling										
	Boreh	ole Detail		Sampling and Testing										
BH No.	Base of well (mbgl)	Top of slotted response zone (mbgl)	Depth to GW (mbgl)	Purge Volume (I)	Time	Temp (°C)	EC (ms/cm)	Do (mg/l)	рН	Redox Potential (mV)	Sample Detail (Colour/Odour/ Turbidity			
											Very turbid / Dark brown			
PB05	6.00		4.33	3	11:35:00	13.85	0.550	6.23	7.02	18.7				
				5		13.48	0.565	4.51	7.24	7.0	Very turbid / Dark brown			
				8		12.73	0.558	3.78	7.58	-11.3	Slightly turbid			

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63271

Replaces Analytical Report Number: 14-63271, issue no. 1

Project / Site name: St Giles Circus Samples received on: 19/11/2014

Your job number: 14-2669 Samples instructed on: 20/11/2014

Your order number: CL206 Analysis completed by: 28/11/2014

Report Issue Number: 2 **Report issued on:** 28/11/2014

Samples Analysed: 8 soil samples

Signed:

Thurstan Plummer Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

Neil Donovan

Signed:

Environmental Forensics Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Your Order No: CL206

Lab Sample Number				393566	393567	393568	393569	393570
Sample Reference				PB05	PB05	PB05	PB05	PB04
Sample Number				ES	ES	ES	ES	ES
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				19/11/2014	19/11/2014	19/11/2014	19/11/2014	14/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	18	22	2.9	11
Total mass of sample received	kg	0.001	NONE	1.4	1.3	1.6	1.6	1.4
	<u>-</u>							
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-	='	-	-	-		-	-
рН	pH Units	N/A	MCERTS	8.6	8.7	8.6	8.9	8.6
Total Cyanide	mg/kg	1	MCERTS	1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1200	1600	2100	160	830
Sulphide	mg/kg	1	MCERTS	5.0	1.4	2.8	< 1.0	3.9
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.1	< 0.1	< 0.1	0.7
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	, J. J.							
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids					.			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	12	11	5.6	11
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.6	0.8	< 0.2	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	15	16	13	14
Copper (aqua regia extractable)	mg/kg	1	MCERTS	72	57	63	9.0	65
Lead (aqua regia extractable)	mg/kg	11	MCERTS	500	390	440	15	320
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.4	1.1	1.4	< 0.3	1.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	26	17	16	11	16
Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	1	MCERTS	130	57	65	13	48

Your Order No: CL206

Lab Sample Number				393566	393567	393568	393569	393570
Sample Reference				PB05	PB05	PB05	PB05	PB04
Sample Number				ES	ES	ES	ES	ES
Depth (m)				0.50	1.00	2.00	3.00	0.50
Date Sampled				19/11/2014	19/11/2014	19/11/2014	19/11/2014	14/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics			-					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

Petroleum Hydrocarbons								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Your Order No: CL206

Lab Sample Number				393571	393572	393573		
Sample Reference				PB04	PB04	PB04		
Sample Number				ES	ES	ES		
Depth (m)				1.00	2.00	3.00		
Date Sampled				14/11/2014	14/11/2014	14/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied		
			>					
		de L	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edi					
(Soil Analysis)	ş	ti o	ius tat					
		3 "	ġ					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
	%	N/A				12		
Moisture Content			NONE	15	16 1.7			
Total mass of sample received	kg	0.001	NONE	1.5	1./	1.6		
			T					1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected		<u> </u>
Company Incompanies								
General Inorganics		N1/A	MOEDT-	0.5	0.5	0.7		 -
pH	pH Units	N/A	MCERTS	8.5	8.5	8.7		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1		
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1		
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0		
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	920	870	150		
Sulphide	mg/kg	1	MCERTS	1.4	2.9	4.0		
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20		
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1		
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
- 10 /F /	. Ji ··· 9						•	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60		
	9/109	0		. 2.00	. 2.00	. 1.00		
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	14	14		I I
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.9	1.2		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0		
						17		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14 72	16 97	25		
Copper (aqua regia extractable)	mg/kg		MCERTS					
Lead (aqua regia extractable)	mg/kg	1	MCERTS	310	260	98		-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	4.0	2.2	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	17	16		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	58	67	39		

Your Order No: CL206

Lab Sample Number				393571	393572	393573	
Sample Reference				PB04	PB04	PB04	
Sample Number				ES	ES	ES	
Depth (m)	1.00	2.00	3.00				
Date Sampled	14/11/2014	14/11/2014	14/11/2014				
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	`
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

<u>-</u>							
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
393566	PB05	ES	0.50	Brown sandy topsoil with gravel and brick.
393567	PB05	ES	1.00	Brown sandy topsoil with gravel and brick.
393568	PB05	ES	2.00	Brown sandy topsoil with gravel and brick.
393569	PB05	ES	3.00	Light brown sandy gravel.
393570	PB04	ES	0.50	Brown sandy topsoil with gravel and brick.
393571	PB04	ES	1.00	Brown sandy topsoil with gravel and brick.
393572	PB04	ES	2.00	Brown sandy topsoil with gravel and brick.
393573	PB04	ES	3.00	Light brown sandy clay with gravel and brick.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
STEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
ree cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
oH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Gulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.		L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

i2 Analytical Ltd.

Croxlev Green

Business Park,

Watford,

Herts, WD18 8YS

7 Woodshots Meadow,

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

e: kasia@conceptconsultants.co.uk e: reception@i2analytical.com

Analytical Report Number: 14-63841

Project / Site name: St Giles Circus Samples received on: 28/11/2014

Your job number: 14-2669 Samples instructed on: 28/11/2014

Your order number: CL215 Analysis completed by: 09/12/2014

Report Issue Number: 1 Report issued on: 09/12/2014

Samples Analysed: 4 soil samples

Signed: (Colotte

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Signed:

Thurstan Plummer

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

Excel copies of reports are only valid when accompanied by this PDF certificate.

Your Order No: CL215

Lab Sample Number				396831	396832	396833	396834	
Sample Reference				WS02	WS02	WS02	WS02	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	1.00	2.00	3.00	
Date Sampled				26/11/2014	26/11/2014	26/11/2014	26/11/2014	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			_					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	20	9.3	9.6	16	
Total mass of sample received	kg	0.001	NONE	1.2	1.1	1.5	1.2	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
pH	pH Units	N/A	MCERTS	7.9	8.1	8.1	8.2	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	
Total Sulphate as SO₄	mg/kg	50	ISO 17025	570	250	59	89	
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.1	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
	. 5, 5							
Total PAH	man fles	1.6	MCEDIC	< 1.60	< 1.60	< 1.60	. 160	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	

Your Order No: CL215

Lab Sample Number				396831	396832	396833	396834	•
Sample Reference				WS02	WS02	WS02	WS02	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	1.00	2.00	3.00	
Date Sampled				26/11/2014	26/11/2014	26/11/2014	26/11/2014	
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		-				-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	6.6	12	14	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.7	< 0.2	0.9	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	26	6.4	36	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	7.5	3.7	28	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	66	7.9	1.9	12	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	26	12	13	32	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	53	21	18	71	
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	·
o & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	<u> </u>

Petroleum Hydrocarbons

retroleum nytrocarbons								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396831	WS02	None Supplied	0.50	Light brown clay and sand with brick.
396832	WS02	None Supplied	1.00	Green sandy clay with gravel.
396833	WS02	None Supplied	2.00	Light brown sand.
396834	WS02	None Supplied	3.00	Light brown clay and sand.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63842

Project / Site name: St Giles Circus Samples received on: 28/11/2014

Your job number: 14-2669 Samples instructed on: 28/11/2014

Your order number: CL215 **Analysis completed by:** 10/12/2014

Report Issue Number: 1 Report issued on: 10/12/2014

Samples Analysed: 1 wac multi sample

Signed: (

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		14-63842				
				Client	CONCERT	
				Client:	CONCEPT	
Location		St Giles Circus	i			
				Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		396837			Limits	
Sampling Date		26/11/2014			Stable Non-	
Sample ID		WS02		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		1.00	Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 1.6			100		
pH (units)**		 			>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluated
Eluate Analysis	2:1 8:1 Cumu			Limit values for compliance leaching test		
(BS EN 12457 - 3 preparation utilising end over end leaching	over end leaching				I 12457-3 at L/S 10	l/kg (mg/kg)
procedure)	mg/l	mg/l	mg/kg			
Arsenic *	0.010	< 0.010	0.069	0.5	2	25
Barium *	0.019	0.015	0.15	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.017	0.0079	0.090	0.5	10	70
Copper *	0.011	0.0062	0.067	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.0091	0.0033	0.040	0.5	10	30
Nickel *	0.0090	0.0062	0.066	0.4	10	40
Lead *	0.0062	< 0.0050	0.039	0.5	10	50
Antimony *	< 0.0050	< 0.0050	0.046	0.06	0.7	5
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7
Zinc *	0.015	0.0082	0.089	4	50	200
Chloride *	5.0	< 4.0	17	800	4000	25000
Fluoride	0.37	0.23	2.4	10	150	500
Sulphate *	8.8	9.4	93	1000	20000	50000
TDS	160	60	720	4000	60000	100000
Phenol Index (Monhydric Phenols) * DOC	< 0.13	< 0.13	< 0.50	500	800	1000
	1.0	5.5	33	300		1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.1					
Dry Matter (%)	91			-		
Moisture (%)	9.3					
Stage 1						
Volume Eluate L2 (litres)	0.33					
Filtered Eluate VE1 (litres)	0.21					
		i l			<u> </u>	

nesus are expressed in any weight class, and accordance in instance unition immer applicable.

*Easted limits are for guidance only and 12 cannot be held responsible for any discrepencies with current legislation

*= UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396837	WS02	None Supplied	1.00	Green sandy clay with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63672

Project / Site name: St Giles Circus Samples received on: 25/11/2014

Your job number: 14-2669 Samples instructed on: 27/11/2014

Your order number: CL215 **Analysis completed by:** 08/12/2014

Report Issue Number: 1 Report issued on: 08/12/2014

Samples Analysed: 5 soil samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Your Order No: CL215

Lab Sample Number				395875	395876	395877	395878	395879
Sample Reference		WS03	WS03	WS03	WS03	WS03		
Sample Number				None Supplied				
Depth (m)				0.50	1.00	2.00	3.00	3.80
Date Sampled	21/11/2014	21/11/2014	21/11/2014	21/11/2014	21/11/2014			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.3	6.0	5.1	13	19
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
			•	-				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH	pH Units	N/A	MCERTS	6.9	6.9	7.1	7.2	7.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	140	66	770	240	130
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.3
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs		0.05		0.05	0.05	0.05	0.05	0.05
Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05 < 0.10	< 0.05
	mg/kg	0.1						< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10 < 0.10				
Anthracene	mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.10
Benzo(b)fluoranthene	mg/kg	0.03	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	919							
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
•	mg/kg	1.0	PICERTS	₹ 1.00	₹ 1.00	₹ 1.00	₹ 1.00	V 1.00
Heavy Metals / Metalloids			MCEDEC	1.	7.1	0.3	4.0	10
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	7.1	8.2	4.8	10
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	0.3	< 0.2	< 0.2	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.7	4.6 2.9	8.2	5.0	35
,	mg/kg	1	MCERTS	3.8		3.7	2.0	29
Lead (aqua regia extractable)	mg/kg	1	MCERTS	2.1	< 1.0	2.6	1.1	14
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3 42
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	6.4 < 1.0	5.6 < 1.0	12	4.4 < 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	13	< 1.0 8.2	< 1.0 14	< 1.0 8.9	< 1.0 68
zinc (aqua regia extractable)	mg/kg		MCERIS	13	0.2	14	۵.۶	UO

Your Order No: CL215

Lab Sample Number				395875	395876	395877	395878	395879
Sample Reference				WS03	WS03	WS03	WS03	WS03
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.50	1.00	2.00	3.00	3.80		
Date Sampled		21/11/2014	21/11/2014	21/11/2014	21/11/2014	21/11/2014		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

Petroleum Hydrocarbons								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
395875	WS03	None Supplied	0.50	Light brown sand.
395876	WS03	None Supplied	1.00	Light brown sand.
395877	WS03	None Supplied	2.00	Light brown sand with gravel.
395878	WS03	None Supplied	3.00	Light brown clay and sand.
395879	WS03	None Supplied	3.80	Light brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
STEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
ree cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
oH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.		L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63673

Project / Site name: St Giles Circus Samples received on: 25/11/2014

Your job number: 14-2669 Samples instructed on: 27/11/2014

Your order number: CL215 **Analysis completed by:** 09/12/2014

Report Issue Number: 1 Report issued on: 09/12/2014

Samples Analysed: 1 wac multi sample

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager

Signed:

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting

asbestos - 6 months from reporting

Page 1 of 4

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		14-6367	3			
				Client:	CONCEPT	
Location		St Giles Cir	cus			
				Landfill	Waste Acceptan	ce Criteria
Lab Reference (Sample Number)		395880			Limits	
Sampling Date		21/11/201	4		Stable Non-	
Sample ID		WS03		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		3.80		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis						
ГОС (%)**	0.3			3%	5%	6%
oss on Ignition (%) **	-					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30	 		1		
Mineral Oil (mg/kg)	< 10	 		500		
Total PAH (WAC-17) (mg/kg) pH (units)**	< 1.6	+		100	>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance I	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS Er	l 12457-3 at L/S 10) I/Kg (mg/Kg)
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium *	0.048	< 0.0050	0.027	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.023	< 0.0010	0.011	0.5	10	70
Copper *	< 0.0010	< 0.0030	< 0.020	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.011	< 0.0030	< 0.020	0.5	10	30
Nickel *	0.0069	< 0.0010	< 0.0050	0.4	10	40
Lead *	0.0086	< 0.0050	< 0.020	0.5	10	50
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5
Selenium *	< 0.010	< 0.010	< 0.040	0.1 4	0.5 50	7 200
Zinc * Chloride *	0.015	< 0.0010 < 4.0	< 0.020 35	800	4000	25000
Fluoride	1.3	0.53	5.7	10	150	500
Sulphate *	74	0.59	48	1000	20000	50000
TDS	160	30	370	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	6.8	6.1	62	500	800	1000
Leach Test Information						
Too and major						
Stone Content (%)	< 0.1				1	
Sample Mass (kg)	2.0					
Ory Matter (%)	81		<u> </u>			
Moisture (%)	19					
Stage 1						
Volume Eluate L2 (litres)	0.32					
Filtered Eluate VE1 (litres)	0.10					
				l	1	

^{*=} UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
395880	WS03	None Supplied	3.80	Light brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	te water (3W) Potable water (PW) Ground W				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63809

Project / Site name: St Giles Circus Samples received on: 28/11/2014

Your job number: 14-2669 Samples instructed on: 01/12/2014

Your order number: CL223 **Analysis completed by:** 09/12/2014

Report Issue Number: 1 Report issued on: 09/12/2014

Samples Analysed: 23 soil samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer Organics Technical Manager

Signed:

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Lab Sample Number				396666	396667	396668	396669	396670
Sample Reference				WS01	WS01	WS04	WS04	WS04
Sample Number				ES01	ES02	ES01	ES02	ES03
Depth (m)				0.50	1.00	0.50	1.00	2.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	12	6.7	1.7	11
Total mass of sample received	kg	0.001	NONE	0.45	0.41	0.43	0.45	0.46
						1		
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-11.71.71	NI/A	MCERTS	7.0	7.0	0.3	0.1	7.0
pH Tatal Conside	pH Units	N/A	MCERTS	7.8	7.9	8.3	8.1	7.9
Total Cyanide Free Cyanide	mg/kg	1	MCERTS	< 1 < 1	< 1 < 1	< 1 < 1	< 1	< 1
Free Cyanide Thiocyanate as SCN	mg/kg	1 5	NONE NONE	< 1 < 5.0				
Total Sulphate as SO ₄	mg/kg mg/kg	50	ISO 17025	< 5.0 5400	< 5.0 93	< 5.0 330	< 5.0 180	< 5.0 72
Sulphide		1	MCERTS	8.4	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 1.0
Total Organic Carbon (TOC)	mg/kg %	0.1	MCERTS	0.5	< 0.1	< 0.1	< 0.1	< 0.1
rotal organic carson (100)	,0	0.1	HOLKIO	0.0	1 012	1 012	1 012	10.12
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene Chrysene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.10 < 0.05				
Benzo(b)fluoranthene	mg/kg	0.03	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.03
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
	_		_					·
Heavy Metals / Metalloids				1		,		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	21	43	16	14	7.9
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4	1.2	0.9	0.8	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	5.2	12	10	6.4	5.6
Copper (aqua regia extractable)	mg/kg	1	MCERTS	150	15	16	7.3	2.7
Lead (aqua regia extractable)	mg/kg	1	MCERTS	850	16	29	23	< 1.0
		0.3	MCERTS	2.5	< 0.3	< 0.3	< 0.3	< 0.3
Mercury (aqua regia extractable)	mg/kg							
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.9	13	9.5	5.2	6.8
7 () 5								

Your Order No: CL223

Lab Sample Number				396666	396667	396668	396669	396670
Sample Reference				WS01	WS01	WS04	WS04	WS04
Sample Number				ES01	ES02	ES01	ES02	ES03
Depth (m)				0.50	1.00	0.50	1.00	2.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics	-		-					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

-		_						
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	24	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	24	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	24	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscel	laneous	Organics	

Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100	

Lab Sample Number				396671	396672	396673	396674	396675
Sample Reference				WS04	WS05	WS05	WS05	WS05
Sample Number				ES04	ES01	ES02	ES03	ES04
Depth (m)				2.80	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	5.8	5.6	12	12
Total mass of sample received	kg	0.001	NONE	0.45	0.42	0.38	0.44	0.47
					•			
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics					-		-	
pH	pH Units	N/A	MCERTS	7.8	7.9	7.8	7.6	7.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	8.5	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	< 50	260	180	< 50	< 50
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg	0.05 0.1 0.1 0.1	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.10 < 0.10 < 0.10				
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.2	12	23	8.9	7.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	0.7	0.6	0.6	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	1.3	8.5	8.6	4.6	3.2
Copper (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	11	5.3	4.6	1.2
Lead (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	7.2	1.3	< 1.0	1.6
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	1.9	12	13	10	6.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	5.4	18	20	16	13

Your Order No: CL223

Lab Sample Number				396671	396672	396673	396674	396675
Sample Reference				WS04	WS05	WS05	WS05	WS05
Sample Number				ES04	ES01	ES02	ES03	ES04
Depth (m)				2.80	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Ī-								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
, 								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

|--|

Toluen	ne Extractable Matter	ma/ka	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				396676	396677	396678	396679	396680
Sample Reference				WS07	WS07	WS07	WS07	WS08
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.30
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	5.9	6.7	12	1.6
Total mass of sample received	kg	0.001	NONE	0.46	0.41	0.46	0.46	0.45
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics			<u>-</u>			•		•
pH	pH Units	N/A	MCERTS	7.8	8.0	7.8	7.7	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	1300	< 50	< 50	< 50	1400
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	240
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.6	< 0.1	< 0.1	< 0.1	0.3
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10 < 0.10				
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10 < 0.10
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	ilig/kg	0.03	MCLKIS	< 0.03	< 0.03	< 0.03	< 0.03	₹ 0.03
Total PAH				. 4.50	. 4.50	. 1.50	. 1.50	. 1.50
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	12	16	14	14
Boron (water soluble)	mg/kg	0.2	MCERTS	2.0	1.2	0.9	0.5	2.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	8.6	9.3	3.3	16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	54	8.7	5.5	4.1	44
Lead (aqua regia extractable)	mg/kg	1	MCERTS	520	3.3	< 1.0	2.2	160
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	9.8	15	10	14
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	48	17	19	16	55

Your Order No: CL223

Lab Sample Number				396676	396677	396678	396679	396680
Sample Reference				WS07	WS07	WS07	WS07	WS08
Sample Number				ES01	ES02	ES03	ES04	ES01
Depth (m)				0.50	1.00	2.00	3.00	0.30
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-			
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

1								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

|--|

Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100	

Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 10 9.7 13 15 7.7 Boron (water soluble) mg/kg 0.2 MCERTS 1.6 1.3 0.5 0.6 0.5 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2<									
Sample Number	Lab Sample Number				396681	396682	396683	396684	396685
Depth (m) Dept	Sample Reference				WS08	WS14	WS14	WS14	WS14
Page	Sample Number				ES02	ES01	ES02	ES03	ES04
None Supplied None Supplie	Depth (m)				1.00	0.50	1.00	2.00	3.00
Analytical Parameter Soil Analysis Some Content Soil	Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Some Content	Time Taken				None Supplied				
Some Content				A					
Some Content			de L	, Q					
Some Content	-	≦.	te mi	edi					
Some Content	(Soil Analysis)	ß	ti of	us					
Mosture Content			3	on on					
Mosture Content	Stone Centent	0/	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	۰.1
Total Image of sample received Sig 0.001 None 0.47 0.45 0.45 0.45 0.42 0.44									
Principal Prin									
Post	Total mass of sample received	ку	0.001	NONE	0.47	0.43	0.45	0.42	0.44
Post	Achaetas in Cail	Time	NI/A	ICO 1702E	Not detected				
Pit Lines N/A MCERTS Z.8 Z.8 Z.6 Z.3 Z.6 Z	ASDESIOS III 30II	туре	IV/A	150 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Pit Lines N/A MCERTS Z.8 Z.8 Z.6 Z.3 Z.6 Z	Conoral Inorganics								
Total Cyanide		nH Hnit-	NI/A	MCEDIC	7.0	7.0	7.6	7.2	7.6
Free Cyanide			_						
Thiocyanetae as CN									
Total Sulphate as SO ₄	,								
MCERTS C.1.0 C.1									
Elemental Sulphur									
Total Phenois Total Phenois (monohydric) Total Phenois (monohydric)	•								
Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <									
Total Phenois (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.5	< 0.1	< 0.1	< 0.1
Total Phenois (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Total Physicals								
Speciated PAHs Naphthalene									
Naphthalene	Total Phenols (monohydric)	mg/kg	11	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene									
Acenaphthylene mg/kg 0.1 MCERTS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10									
Acenaphthene	•								
Fluorene									
Phenanthrene	·								
Anthracene mg/kg 0.1 MCERTS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10									
Fluoranthene		mg/kg							
Pyrene									
Benzo(a)anthracene	Fluoranthene								
Chrysene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 Benzo(b)fluoranthene mg/kg 0.1 MCERTS < 0.10									
Benzo(b)fluoranthene mg/kg 0.1 MCERTS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <	Benzo(a)anthracene	mg/kg	0.1	MCERTS					
Benzo(k)fluoranthene		mg/kg	0.05	MCERTS					
Benzo(a)pyrene mg/kg 0.1 MCERTS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0									
Inden(1,2,3-cd)pyrene		mg/kg							
Dibenz(a,h)anthracene mg/kg 0.1 MCERTS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.06 < 0.5 < 0.06 < 0.5 < 0.0 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 0.60 < 0.5		mg/kg		MCERTS					
Benzo(ghi)perylene		mg/kg							
Total PAH Speciated Total EPA-16 PAHs mg/kg 1.6 MCERTS < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60	(, ,	mg/kg							
Speciated Total EPA-16 PAHs mg/kg 1.6 MCERTS < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60	Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Speciated Total EPA-16 PAHs mg/kg 1.6 MCERTS < 1.60 < 1.60 < 1.60 < 1.60 < 1.60 < 1.60									
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 10 9.7 13 15 7.7 Boron (water soluble) mg/kg 0.2 MCERTS 1.6 1.3 0.5 0.6 0.5 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Total PAH								
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 10 9.7 13 15 7.7 Boron (water soluble) mg/kg 0.2 MCERTS 1.6 1.3 0.5 0.6 0.5 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 10 9.7 13 15 7.7 Boron (water soluble) mg/kg 0.2 MCERTS 1.6 1.3 0.5 0.6 0.5 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2									
Boron (water soluble) mg/kg 0.2 MCERTS 1.6 1.3 0.5 0.6 0.5 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Heavy Metals / Metalloids								
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 < 0.1 < 0.0 < 1.0 < 1.0 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	9.7	13	15	7.7
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 < 0.1 < 0.0 < 1.0 < 1.0 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3			0.2		1.6		0.5	0.6	
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 <td></td> <td></td> <td>0.2</td> <td>MCERTS</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td>			0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable) mg/kg 1 MCERTS 16 9.9 3.9 11 < 1.0 Copper (aqua regia extractable) mg/kg 1 MCERTS 16 69 4.9 6.1 < 1.0									
Copper (aqua regia extractable) mg/kg 1 MCERTS 16 69 4.9 6.1 < 1.0 Lead (aqua regia extractable) mg/kg 1 MCERTS 30 130 1.9 < 1.0	Chromium (aqua regia extractable)		1						
Lead (aqua regia extractable) mg/kg 1 MCERTS 30 130 1.9 < 1.0 < 1.0 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3									
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 0.4 < 0.3 < 0.3 < 0.3 Nickel (aqua regia extractable) mg/kg 1 MCERTS 11 9.6 5.6 11 3.2 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0									
Nickel (aqua regia extractable) mg/kg 1 MCERTS 11 9.6 5.6 11 3.2 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0									
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0									
	Zinc (agua regia extractable)	mg/kg	1	MCERTS	43	830	30	22	7.9

Your Order No: CL223

Lab Sample Number				396681	396682	396683	396684	396685
Sample Reference				WS08	WS14	WS14	WS14	WS14
Sample Number				ES02	ES01	ES02	ES03	ES04
Depth (m)				1.00	0.50	1.00	2.00	3.00
Date Sampled				27/11/2014	27/11/2014	27/11/2014	27/11/2014	27/11/2014
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								•
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

1								
TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007

Miscel	laneous	Organics	

Toluene Extractable Matter	mg/kg	100	NONE	< 100	< 100	< 100	< 100	< 100

Lab Sample Number				396686	396687	396688		
Sample Reference				WS14	WS14	WS14		
Sample Number				ES05	ES06	ES07		
Depth (m)				4.00	5.00	5.80		
Date Sampled				27/11/2014	27/11/2014	27/11/2014		
Time Taken				None Supplied	None Supplied	None Supplied		
			A					
Annalist of Bononiston	_	Limit of detection	Accreditation Status					
Analytical Parameter	Units	m it	edii					
(Soil Analysis)	S	ig 의	us					
		_	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	12	15	13		
Total mass of sample received	kg	0.001	NONE	0.44	0.42	0.38		
	9			****	****			
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected		
	- //						4	8
General Inorganics								
pH	pH Units	N/A	MCERTS	7.7	8.4	8.0		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	Î	
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1		
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	19	< 5.0		
Total Sulphate as SO ₄	mg/kg	50	ISO 17025	< 50	230	< 50	1	
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20		
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.1	0.2		

Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
· · · · · · · · · · · · · · · · · · ·								
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60		
	_		_					
Heavy Metals / Metalloids				,				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.4	17	18		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	5.2	1.4		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	50	46		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	1.8	36	36		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	14	15		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	2.9	43	43		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	8.3	77	94		
						_	_	

Your Order No: CL223

Lab Sample Number				396686	396687	396688	I	T T
Sample Reference				WS14	WS14	WS14		
Sample Number				ES05	ES06	ES07		
Depth (m)		4.00	5.00	5.80				
Date Sampled		27/11/2014	27/11/2014	27/11/2014				
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics							-	
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
& m-xylene μg/kg 1 MCERTS			< 1.0	< 1.0	< 1.0			
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		

TPH1 (C6 - C12)	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	< 0.007	

N	1iscellaneous Organics							
F	Oluene Extractable Matter	ma/ka	100	NONE	< 100	< 100	< 100	

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396666	WS01	ES01	0.50	Brown sandy topsoil with gravel and rubble.
396667	WS01	ES02	1.00	Brown sandy topsoil.
396668	WS04	ES01	0.50	Light brown sand with gravel.
396669	WS04	ES02	1.00	Light brown sand with gravel.
396670	WS04	ES03	2.00	Light brown sand.
396671	WS04	ES04	2.80	Light brown sand.
396672	WS05	ES01	0.50	Light brown sand.
396673	WS05	ES02	1.00	Brown sand with gravel.
396674	WS05	ES03	2.00	Light brown sand.
396675	WS05	ES04	3.00	Light brown sand.
396676	WS07	ES01	0.50	Brown topsoil and clay with gravel and brick.
396677	WS07	ES02	1.00	Light brown sand.
396678	WS07	ES03	2.00	Light brown sand.
396679	WS07	ES04	3.00	Light brown sand.
396680	WS08	ES01	0.30	Brown topsoil and clay with gravel and vegetation.
396681	WS08	ES02	1.00	Brown topsoil and clay with gravel and vegetation.
396682	WS14	ES01	0.50	Brown clay and topsoil with gravel and vegetation.
396683	WS14	ES02	1.00	Light brown sand.
396684	WS14	ES03	2.00	Light brown sand.
396685	WS14	ES04	3.00	Light brown sand.
396686	WS14	ES05	4.00	Light brown sand.
396687	WS14	ES06	5.00	Brown clay.
396688	WS14	ES07	5.80	Brown clay.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Polish) TPH1 (Soil)	In-house method	In-house method based on USEPA8260	L073S-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
oH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by spectrophotometer.	In-house method	L049-PL	D	NONE
Foluene Extractable Matter in soil	Gravimetrically determined through extraction with toluene.	In-house method	L013-UK	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Kasia Mazerant

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: kasia@conceptconsultants.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 14-63810

Project / Site name: St Giles Circus Samples received on: 28/11/2014

Your job number: 14-2669 Samples instructed on: 01/12/2014

Your order number: CL223 Analysis completed by: 10/12/2014

Report Issue Number: 1 Report issued on: 10/12/2014

Samples Analysed: 4 wac multi samples

Signed: Workate

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Thurstan Plummer

Signed:

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		14-63810				
-						
				Cliente	CONCERT	
				Client:	CONCEPT	
Location		St Giles Circu	s			
				Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		396689			Limits	
Sampling Date		27/11/2014			Stable Non-	
Sample ID Depth (m)		WS01 ES02		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis					Lanum	
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 1.6			100		
pH (units)**	-				>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluate
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test
(BS EN 12457 - 3 preparation utilising end over end leaching				using BS EN	1 12457-3 at L/S 10	l/kg (mg/kg)
procedure)	mg/l	mg/l	mg/kg			
Arsenic *	0.014	< 0.010	0.076	0.5	2	25
Barium *	0.014	0.019	0.21	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.0058	0.0021	0.026	0.5	10	70
Copper *	0.0039	< 0.0030	0.024	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.018	0.0078	0.090	0.5	10	30
Nickel *	0.0023	< 0.0010	< 0.0050	0.4	10	40
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50
Antimony *	0.0076	0.0072	0.072	0.06	0.7	5
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7
Zinc *	0.0025	< 0.0010	< 0.020	4	50	200
Chloride *	35	< 4.0	71	800	4000	25000
Fluoride	0.14	0.065	0.74	10	150	500
Sulphate *	99	62	670	1000	20000	50000
TDS	400	80	1200	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	4.0	1.9	22	500	800	1000
Leach Test Information					+	
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.41				1	
Dry Matter (%)	88					
Moisture (%)	12				1	
Stage 1	16					
Volume Eluate L2 (litres)	0.33					
Filtered Eluate VE1 (litres)	0.22				1	
· mereo croce (EI (mees)	0.22					
		i i	- t		1	i

nesus are expressed in any weight class, and accordance in instance unition immer applicable.

*Easted limits are for guidance only and 12 cannot be held responsible for any discrepencies with current legislation

*= UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		14-63810						
				Client:	CONCEPT			
				Cilett.	CONCEPT			
Location		St Giles Circus	i					
Lab Reference (Sample Number)		396690		Landfill Waste Acceptance Criteria				
					Limits	ı		
Sampling Date Sample ID		27/11/2014 WS07 ES04			Stable Non- reactive			
Depth (m)	3.00			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	< 0.1			3%	5%	6%		
Loss on Ignition (%) **	-					10%		
BTEX (µg/kg) **	< 10			6000				
Sum of PCBs (mg/kg)	< 0.30			1				
Mineral Oil (mg/kg)	< 10			500				
Total PAH (WAC-17) (mg/kg)	< 1.6			100				
pH (units)**	-			-	>6			
Acid Neutralisation Capacity (mol / kg)	-			-	To be evaluated	To be evaluated		
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance l			
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS E	N 12457-3 at L/S 10	l/kg (mg/kg)		
Arsenic *	0.015	0.014	0.14	0.5	2	25		
Barium *	0.059	0.0082	0.14	20	100	300		
Cadmium *	0.0006	< 0.0005	< 0.0020	0.04	1	5		
Chromium *	0.015	0.0027	0.041	0.5	10	70		
Copper *	0.011	< 0.0030	0.038	2	50	100		
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Molybdenum *	0.0059	< 0.0030	0.021	0.5	10	30		
Nickel *	0.020	0.0017	0.039	0.4	10	40		
Lead *	0.0067	< 0.0050	0.028	0.5	10	50		
Antimony *	0.0079	< 0.0050	0.030	0.06	0.7	5		
Selenium * Zinc *	< 0.010 0.024	< 0.010 0.0020	< 0.040	0.1 4	0.5 50	7 200		
Chloride *	7.1	< 4.0	0.045 17	800	4000	25000		
Fluoride	0.16	0.077	0.87	10	150	500		
Sulphate *	11	9.7	98	1000	20000	50000		
TDS	80	20	270	4000	60000	100000		
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-		
DOC	6.4	2.7	31	500	800	1000		
Leach Test Information					1			
Stone Content (%)	< 0.1				1			
Sample Mass (kg)	0.46							
Dry Matter (%)	88							
Moisture (%)	12							
Stage 1								
Volume Eluate L2 (litres)	0.33							
Filtered Eluate VE1 (litres)	0.20							
						l		

Stated limits are for ouidance only and 12 cannot be held responsible for any disc
*= UKAS accredited (liquid eluate analysis only)
** = MCERTS accrediited

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		14-6381	0			
				Client:	CONCEPT	
Location		St Giles Cir	aua			
		St diles cii	cus	Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		396691		Lundini	Limits	e criteria
Sampling Date		27/11/201	4		Stable Non-	
Sample ID		WS14 ES0	4	Inert Waste	reactive	
Depth (m)		3.00		Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	-					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30	 		1		
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10	 		500 100		
pH (units)**	< 1.6				>6	
Acid Neutralisation Capacity (mol / kg)	-				To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1	Cumulative 10:1		eaching test	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l mg/l mg/kg				N 12457-3 at L/S 10	i i/kg (mg/kg)
Arsenic *	0.018	0.011	0.12	0.5	2	25
Barium *	0.047	0.033	0.34	20	100	300
Cadmium *	< 0.0005	< 0.0005	0.0047	0.04	1	5
Chromium *	0.014	0.014	0.13	0.5	10	70
Copper *	0.013	0.0071	0.078	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.025	< 0.0030	0.030	0.5	10	30
Nickel *	0.018	0.018	0.18	0.4	10	40
Lead * Antimony *	0.0051	0.0096 < 0.0050	0.091 < 0.020	0.5 0.06	10 0.7	50 5
Selenium *	< 0.010	< 0.010	< 0.020	0.06	0.7	7
Zinc *	0.027	0.0190	0.20	4	50	200
Chloride *	< 4.0	< 4.0	28	800	4000	25000
Fluoride	0.17	0.060	0.73	10	150	500
Sulphate *	15	1.5	31	1000	20000	50000
TDS	100	20	290	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	6.2	4.8	50	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.44					
Dry Matter (%)	96	ļ			ļ	
Moisture (%)	3.9	 		ļ	ļ	
Stage 1		 		ļ	-	ļ
Volume Eluate L2 (litres)	0.33				1	
Filtered Eluate VE1 (litres)	0.20				ļ	

^{*=} UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results							
Report No:		14-63810						
				Cliente	CONCERT			
				Client:	CONCEPT			
Location		St Giles Circ	ue.					
Location		St diles circ	us	Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)		396692		Limits				
Sampling Date		27/11/2014	<u> </u>		Stable Non-	l		
Sample ID		WS14 ES06			reactive			
oumple 15				Inert Waste	HAZARDOUS	Hazardous		
Depth (m)		5.00		Landfill	waste in non- hazardous	Waste Landfill		
4. ()					Landfill			
Solid Waste Analysis								
TOC (%)**	< 0.1			3%	5%	6%		
Loss on Ignition (%) **	-			-		10%		
BTEX (μg/kg) **	< 10			6000				
Sum of PCBs (mg/kg)	< 0.30			1				
Mineral Oil (mg/kg)	< 10			500				
Total PAH (WAC-17) (mg/kg)	< 1.6			100				
pH (units)**	-			-	>6			
Acid Neutralisation Capacity (mol / kg)	_				To be evaluated	To be evaluated		
Acid Neutralisation capacity (mor / kg)					TO BE Evaluated	TO BE Evaluated		
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test		
		***		using BS FN	I 12457-3 at L/S 10	l/ka (ma/ka)		
(BS EN 12457 - 3 preparation utilising end over end leaching	mg/l	mg/l	mg/kg	doing bo En	. 12 157 5 41 2/5 10	, ,,,,g (g/,,,g/		
procedure)								
Arsenic *	0.030	0.015	0.15	0.5	2	25		
Barium *	0.050	0.032	0.33	20	100	300		
Cadmium *	0.0005	< 0.0005	0.0046	0.04	1	5		
Chromium *	0.035	0.014	0.15	0.5	10	70		
Copper *	0.046	0.0087	0.11	2	50	100		
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Molybdenum *	0.045	0.0033	0.057	0.5	10	30		
Nickel *	0.028	0.015	0.16	0.4	10	40		
Lead *	0.013	0.0092	0.094	0.5	10	50		
Antimony *	0.011	< 0.0050	< 0.020	0.06	0.7	5		
Selenium *	< 0.010	< 0.010	< 0.040	0.1	0.5	7		
Zinc *	0.038	0.0237	0.25	4	50	200		
Chloride *	30	4.6	61	800	4000	25000		
Fluoride	4.0	1.4	15	10	150	500		
Sulphate *	48	2.0	47	1000	20000	50000		
TDS	380	130	1400	4000	60000	100000		
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-		
DOC	23	6.0	70	500	800	1000		
		 						
		+ +			1	1		
I		+ +						
Leach Test Information		+ +			1	-		
		1						
Stone Content (%)	< 0.1	++			1			
Sample Mass (kg)	0.42	++			1			
	85	+ +						
Dry Matter (%) Moisture (%)	15	+			 	-		
	15	+			 	-		
Stage 1	0.22	+			 	-		
Volume Eluate L2 (litres) Filtered Eluate VE1 (litres)	0.32	++			1			
i ilici cu Liudie VEI (Ilii es)	0.10	++			1			
		+			1			
		1 1	ı		1	i		

^{*=} UKAS accredited (liquid eluate analysis only)

*= MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
396689	WS01	ES02	1.00	Brown sandy topsoil.
396690	WS07	ES04	3.00	Light brown sand.
396691	WS14	ES04	3.00	Light brown sand.
396692	WS14	ES06	5.00	Brown clay.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.