Hall School

Structural Calculations

Basement – Preliminary

Job number.2150206Revision:P1Status:PlanningDate:March 2017

Document Control

		remarks:	Preliminary				
revision:	P1	prepared by:	Paul Stuart Davies BEng (Hons), MSc	checked by:	David Dempster MEng (Hons) (Cantab)	approved by:	James Souter MEng CEng MIStructE
date:	03/03/17	signature:		signature:		signature:	

Design Philosophy

The basement construction consists of two techniques:

1) New double height basement:

Construction, contiguous piled wall retaining wall, waterproof concrete liner wall - 200 to 250mm.

Design location; in all areas of new basement there will be a new intermediate slab, pile restrained by slabs at Ground, Basement 1 and Basement 2.

Design method: analysis of retaining wall as continuous member with pinned connections at slabs. Design of maximum moment for 450mm diameter RC column.

2) Underpinning of existing basement.

Reinforced concrete underpinning, width to match existing basement plus 250mm liner wall. Total width 625mm.

Design location; worst case is full double height basement restrained by slabs at Ground and Basement 2.

Design method: analysis of retaining wall propped at top and bottom. Design is conservative as it assumes full height clay and that the dead load surcharge acts at the top of the retained level.

Design Aids

Design Codes

Eurocode 1: BS EN 1991-1-1:2002	Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings
Eurocode 2: BS EN 1992-1-1:2004	Design of concrete structures - Part 1-1: General rules and rules for buildings

Project	name [.]
110,000	name.

Project number:

	elli
Revision:	

ottwood

Date [,]	
Dale.	

Engineer:

HALL SCHOOL

Checked:

BASEMENT - OUTLINE (ALCS.
1) LOAD FROM NEIGHEOURING STRUCTURES. - 24 (ROSSFIELDKO.
2) ANALYSIS OF CONTIG RETAINING WALL - LATERAL RESTRAINT QMODBINITROM FLOOR SLAB.
3) DESIGN CHECK OF CONTIG AS CIRCULAR COLUMN
4) ANALYSIS & DESIGN OF RETAINING WALL. - FUL HEIGHT TO JUSTIFY THE UNDER PINNING. 1) NEW HOOVENUL STRUCTURE - 1ST LOCATION OF NEUHBOUR FROM ARCHIVE: BASED ON ARCHIVE DRAWINGS; FRANK & LEWIN 8559/03 \$ 06.

FROM SECTION B-B ON 8559/06 55.919 (556). \overline{P} \overline{P}

FROM 5-50N 8559/03.

SEEENCLOSED DRAWINGS.

Project number:	Sheet:	Revision:
Date:	Engineer:	Checked:

IF WE TAKE EXTERNAL = FFL = 55.9

4

800

WIDTH.

800

53.387 V

(FFL)

49.57

Allan 200 · 🛆

WIDTH = 2.8m

LOAD FROM GARAGE FOUNDATION.

ALLOW DEAD LOAD ONLY AS IOKN/MZ SURCHARGE WILL BE INCLUDED IN CALCS.

ROOF ALLOW

$$1 \times N/m^2 \times \frac{4m}{2} = 2 \times N/m$$

WALL

54.187

 Δ

X

19 KN/m3 × 0:225×3 = 12.8 KN/m

GROUND

ASSUME GROUND BEARING SLA B ,' NO REQUIREMENT AS & SOIL & NOTON' FOUNDS

TOTAL DL =
$$14.8 \times 10^{10}$$

AS PRESSURE = $14.8 \times 5.3 \times 10^{2}$
 $\overline{2.8}$
DL ON WALL = $5.3 \times 0.42 \times 2.7 \times 10^{10}$
STARTING & 200 BELOW TOP

Y F

Project name: MALL SCHOOL. elliottwood Sheet: Revision: Project number: Checked: Date: Engineer: CHECK PILE AS CIRCULAR COLUMN. SoiL: $\frac{1}{8} \frac{1}{1+5 \ln 24} = 0.42$ $\frac{1}{8} \frac{1}{1+5 \ln 24} = 0.42$ $\frac{1}{8} \frac{1}{1+5 \ln 24} = 0.42$ DEAD WATER SOUL SUR = 10 × 0.42 = 4.2 KN/m (PERM) Soil = 19.8 × 0.42 × 7.7 = 64 KN/m (MAX), (PERM) WATER = 10x 6.7 = 67KN/m (MAX) (PERM) DEAD = 5.3 x 0.42 = 2.23 KN/m (PERHM) FOS ! SUR=1.5 Soil = 1.40 WATER = 1.35 DEAD = 1.35 SEE ANALYSIS OVER FOR IM WIDTH. ASSUME RILES@ 550mm . ANALISIS Mx 0.55. SEE 450 \$ PILE DESILN IN TEDDS.

Tekla [®] Tedds Cal			roject Hall School						Job no. 2150206 Start page no./Revision 3	
			lcs for Retaining Wall - 1m width Analysis							
			^{by} PSD	Calcs date 28/02/201	7 Check	ed by	Checked date	Appro	wed by	Approved date
Element	Load case			Position		Lo	bad	Orientat	ion	
			Туре	Start	End	Start (kN/m)	End (kN/m)			
2	soil		Ratio	0	1	30.75	0	Global	Z	
1	water		Ratio	0	1	67	27	Global	Z	
2	water		Absolute	0 m	2.7 m	27	0	Global	Z	
Results Forces Elemen Envelop	s nt résults pe - Strength comb	inations								
Results Forces Elemen Envelop Element	s ht results pe - Strength comb Shear force	inations	- - -	Ň	Noment]		
Results Forces Elemen Envelop Element	5 ht results pe - Strength comb Shear force Pos Max	inations	Pos	N Max	/loment	los	Min			
Results Forces Elemen Envelog Element	5 nt results pe - Strength comb Shear force Pos Max (m) (k	inations abs N)	Pos (m)	Max (kNm)	/loment F	os m)	Min (kNm)			
Results Forces Elemen Envelop Element	s ht results pe - Strength comb Shear force Pos Max (m) (k 4 -28	inations abs N) 8.6	Pos (m) 1.579	Max (kNm) 202.9	1oment F ('os m) 4	Min (kNm) -176.2			

Element results

Element	nt Shear force		Moment					
	Pos (m)	Max abs (kN)	Pos (m)	Max (kNm)	Pos (m)	Min (kNm)		
1	4	-288.6	1.579	202.9	4	-176.2		
2	0	155.1	3.077	2.7	0	-176.2		

Tekla [®] Tedds	Project	Hall	School		Job no. 21	50206
	Calcs for	Retaining Wall	- Pile as Colu	mn	Start page no./	Revision 1
	Calcs by PSD	Calcs date 20/02/2017	Checked by	Checked date	Approved by	Approved date

RC COLUMN DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum January 2008 and the UK national annex Tedds calculation version 1.2.14

y y v	450 ×	8 no. 20 mm diameter longitudinal b 12 mm diameter links Max link spacing 400 mm generally, 450 mm above and below slab/bear	oars , 240 mm for m and at laps
Column geometry Overall diameter	h= 450 mm		
Concrete details Cylinder strength of concrete Coefficient α_{cc} Maximum aggregate size	f _{ck} = 40 MPa α _{cc} = 0.85 d _g = 20 mm	Safety factor for concrete	γc = 1.50
Reinforcement details			
Nominal cover to links	c _{nom} = 60 mm	Longitudinal bar diameter	φ = 20 mm
Link diameter	φ _v = 12 mm	Total no. of longitudinal bars	N = 8
Area of longitudinal reinft Modulus of elasticity of reinft	A _s = 2513 mm ² E _s = 200000 MPa	Safety factor for reinforcement	γs = 1.15
Fire resistance details Fire resistance period Ratio of fire design axial load to	R = 60 min o design resistance	Exposure to fire μ _{fi} = 0.70	More than one side
Check nominal cover for fire	and bond requirements		
Min cover to links for bond	c _{min,b} = 12 mm	Min axis distance for fire	a _{fi} = 40 mm
Allowance for deviations	Δc_{dev} = 10 mm	Min allowable nominal cover	c _{nom_min} = 22.0 mm
	PAS	S - the nominal cover is greater t	than the minimum required
Key points on interaction dia	gram for bending about y a	xis	
Axial load capacity no mt	N _{Rd0} = 4073 kN		
Axial no strain in tension reinft	N _{Rdy1} = 2733 kN	Mt no strain in tension reinft	M _{Rdy1} = 180.1 kNm
Axial conc/tension steel at yield	ł	N _{Rdy2} = 1115 kN	Mt conc/tension steel at
yield	M _{Rdy2} = 223.4 kNm		
		Mt capacity no axial load	$W_{Rdy3} = 151.2 \text{ kNm}$
Axial at additional location	NRdy4 = 3507 KN	ivit at additional location	WiRdy4 = 112.5 KINM
Key points on interaction dia	gram for bending about z a	xis	
Axial load capacity no mt	N _{Rd0} = 4073 kN		
Axial no strain in tension reinft	N _{Rdz1} = 2848 kN	Mt no strain in tension reinft	M _{Rdz1} = 173.2 kNm

	Project	Project Hall School				
	Calcs for	Potoining M/-	Dile as Calu	mn	Start page no./	Revision
	Calcs by PSD	Calcs date 20/02/2017	Checked by	Checked date	Approved by	Approved da
Axial conc/tension steel at y	yield	kNm	N _{Rdz2} = 1219	kN	Mt conc/tens	sion steel at
Axial at additional location	N _{Rdz4} = 3587	kN	Mt capacity n Mt at addition	o axial load al location	M _{Rdz3} = 154. M _{Rdz4} = 99.6	7 kNm kNm

Interaction diagram for bending about y axis

450 mm diameter column, 8 no. 20 mm longitudinal bars

	N _{Rd0} = 4073 kN
M _{Rdy1} = 180 kNm	N _{Rdy1} = 2733 kN
M _{Rdy2} = 223 kNm	N _{Rdy2} = 1115 kN
M _{Rdy3} = 151 kNm	N _{Rdy3} = 0kN
M _{Rdv4} = 113 kNm	N _{Rdv4} = 3507 kN

Interaction diagram for bending about z axis

	N _{Rd0} = 4073 kN
M _{Rdz1} = 173 kNm	N _{Rdz1} = 2848 kN
M _{Rdz2} = 223 kNm	N _{Rdz2} = 1219 kN
M _{Rdz3} = 155 kNm	N _{Rdz3} = 0kN
M _{Rdz4} = 100 kNm	N _{Rdz4} = 3587 kN

 $M = 202.9 \times 0.55$ M = 111.6 kNm

SEE TEODS OVER FOR DESIGN & ANALYSIS. OUTLINE CALCULATION SUBJECT TO DETAILED DESIGN.

Tekla Tedds	Project	Hall	School		Job no. 215	0206
	Calcs for	Retain	ing Wall		Start page no./Re	evision 1
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.09

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 7400 mm
Prop height	h _{prop} = 7400 mm
Stem thickness	t _{stem} = 625 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ_{stem} = 25 kN/m ³
Toe length	I _{toe} = 1500 mm
Base thickness	t _{base} = 500 mm
Base density	γ_{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 7400 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 6400 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Stiff clay
Moist density	γ _{mr} = 19.6 kN/m ³
Saturated density	γ _{sr} = 19.6 kN/m ³
Characteristic effective shear resistance angle	φ' _{r.k} = 24 deg
Characteristic wall friction angle	$\delta_{r.k}$ = 12 deg
Base soil properties	
Soil density	γ _b = 19.6 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 24 deg
Characteristic wall friction angle	δ _{b.k} = 12 deg
Characteristic base friction angle	$\delta_{bb.k}$ = 12 deg
Presumed bearing capacity	P _{bearing} = 200 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 5 kN/m ²
Variable surcharge load	Surcharge _Q = 10 kN/m ²

Tekla Tedds	Project	Hall	School		Job no.	50206
	Calcs for	Retain	ing Wall		Start page no./F	Revision 2
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date

Base length	
Saturated soil height	
Moist soil height	
Length of surcharge load	
- Distance to vertical component	
Effective height of wall	
- Distance to horizontal component	
Area of wall stem	
- Distance to vertical component	
Area of wall base	
- Distance to vertical component	
Using Coulomb theory	
Active pressure coefficient	
Passive pressure coefficient	
Bearing pressure check	
Vertical forces on wall	
Wall stem	
Wall base	

$$\begin{split} &|_{base} = |_{toe} + t_{stem} = 2125 \text{ mm} \\ &h_{sat} = h_{water} + d_{cover} = 6400 \text{ mm} \\ &h_{moist} = h_{ret} - h_{water} = 1000 \text{ mm} \\ &|_{sur} = |_{heel} = 0 \text{ mm} \\ &x_{sur_v} = |_{base} - |_{heel} / 2 = 2125 \text{ mm} \\ &h_{eff} = h_{base} + d_{cover} + h_{ret} = 7900 \text{ mm} \\ &x_{sur_h} = h_{eff} / 2 = 3950 \text{ mm} \\ &A_{stem} = h_{stem} \times t_{stem} = 4.625 \text{ m}^2 \\ &x_{stem} = h_{oe} + t_{stem} / 2 = 1813 \text{ mm} \\ &A_{base} = |_{base} \times t_{base} = 1.063 \text{ m}^2 \\ &x_{base} = |_{base} / 2 = 1063 \text{ mm} \\ \\ &K_A = sin(\alpha + \varphi'_{r,k})^2 / (sin(\alpha)^2 \times sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{[sin(\varphi'_{r,k} + \delta_{r,k}) \times sin(\varphi'_{r,k} - \beta) / (sin(\alpha - \delta_{r,k}) \times sin(\alpha + \beta))]]^2) = 0.382 \\ &K_P = sin(90 - \varphi'_{b,k})^2 / (sin(90 + \delta_{b,k}) \times [1 - \sqrt{[sin(\varphi'_{b,k} + \delta_{b,k}) \times sin(\varphi'_{b,k}) / (sin(90 + \delta_{b,k}))]]^2) = 3.337 \end{split}$$

 $F_{stem} = A_{stem} \times \gamma_{stem} = 115.6 \text{ kN/m}$ $F_{base} = A_{base} \times \gamma_{base} = 26.6 \text{ kN/m}$

	Project	Halls	School		Job no. 215	60206
	Calcs for	Retain	ing Wall		Start page no./F	evision 3
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date
Total		F _{total_v} = F _{st}	em + F _{base} + F _{wa}	_{ater_v} = 142.2 kN/r	n	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	$\times \cos(\delta_{r.d}) \times (S$	urcharge _G + Suro	$harge_Q) imes h_{eff}$	- 44.3 kN/m
Saturated retained soil		F _{sat_h} = K _A :	$ imes$ cos($\delta_{r.d}$) $ imes$ (γ_{s}	r' - γ_w') $ imes$ (h _{sat} + h _t	_{base}) ² / 2 = 87.3	kN/m
Water		F _{water_h} = γ _w	$1 \times (h_{water} + d_{cov})$	$(h_{er} + h_{base})^2 / 2 = 2$	233.5 kN/m	
Moist retained soil		F _{moist_h} = K	$\mathbf{A} imes \mathbf{COS}(\delta_{r.d}) imes \gamma$	mr' $ imes$ ((h _{eff} - h _{sat} - ł	$n_{base})^2 / 2 + (h_{eff})^2$	- h_{sat} - h_{base}) $ imes$
		(h _{sat} + h _{base})) = 54.3 kN/m			
Base soil		F _{pass_h} = -K	$_{P} imes cos(\delta_{b.d}) imes \mathbf{v}$	$\gamma_b' imes (d_{cover} + h_{base})$	a)² / 2 = -8 kN/n	า
Total		$F_{total_h} = F_{sa}$	_{it_h} + F _{moist_h} + I	F _{pass_h} + F _{water_h} +	F _{sur_h} = 411.3	kN/m
Moments on wall						
Wall stem		M _{stem} = F _{ste}	m × x _{stem} = 209	.6 kNm/m		
Wall base		M _{base} = F _{bas}	$x_{base} = 28.2$	2 kNm/m		
Surcharge load		M _{sur} = -F _{sur}	_h × x _{sur_h} = -17	4.9 kNm/m		
Saturated retained soil		M _{sat} = -F _{sat}	_h × Xsat_h = -20	0.7 kNm/m		
Water		M _{water} = -F _w	ater_h $ imes$ Xwater_h =	= -537.1 kNm/m		
Moist retained soil		M _{moist} = -F _m	ioist_h × Xmoist_h =	-201.1 kNm/m		
Total		M _{total} = M _{ste}	m + M _{base} + M _{sa}	at + M _{moist} + M _{water}	+ M _{sur} = -876 k	Nm/m
Check bearing pressure						
Propping force to stem		F _{prop} stem =	$(F_{total v} \times I_{base})$	2 - M _{total}) / (h _{prop} +	⊦ t _{base}) = 130 kN	l/m
Propping force to base		F _{prop_base} =	、 F _{total_h} - F _{prop_ste}	em = 281.3 kN/m	,	
Moment from propping force		$M_{prop} = F_{pro}$	p_stem × (hprop +	t _{base}) = 1027.1 ki	Nm/m	
Distance to reaction		$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}})$	+ M _{prop}) / F _{total_v}	/ = 1063 mm		
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	_e / 2 = 0 mm			
Loaded length of base		I _{load} = I _{base} =	2125 mm			
Bearing pressure at toe		$q_{toe} = F_{total}$	v / I _{base} × (1 - 6	× e / I _{base}) = 66.9	kN/m²	
Bearing pressure at heel		q _{heel} = F _{total}	_v / I _{base} × (1 + 6	6 × e / I _{base}) = 66.	9 kN/m²	
Factor of safety		$FoS_{bp} = P_{bp}$	_{earing} / max(q _{toe} ,	q _{heel}) = 2.989		
	PASS -	Allowable bearin	g pressure ex	ceeds maximul	m applied bea	ring pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.6.09

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C40/50
Characteristic compressive cylinder strength	f _{ck} = 40 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 50 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 48 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.5 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.5 N/mm ²
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 35220 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 22.7 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm

Tekla [®] Tedds	Project	Hall	School		Job no. 215	0206
	Calcs for	Retain	ing Wall		Start page no./R	evision 4
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date

Reinforcement details

Characteristic yield strength of reinforcement Modulus of elasticity of reinforcement Partial factor for reinforcing steel - Table 2.1N Design yield strength of reinforcement

$f_{yk} = 500 \text{ N/mm}^2$ $E_s = 200000 \text{ N/mm}^2$ $\gamma_S = 1.15$ $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Cover to reinforcement

Front face of stem Rear face of stem Top face of base Bottom face of base $c_{sf} = 40 \text{ mm}$ $c_{sr} = 50 \text{ mm}$ $c_{bt} = 50 \text{ mm}$ $c_{bb} = 75 \text{ mm}$

Loading details - Combination No.2 - kN/m 2Shear force - Combination No.2 - kN/m Bending moment - Combination No.2 - kNn/m

Check stem design at 4094 mm Depth of section

h = **625** mm

	Project	Hall	School		Job no.	50206
icidus	Calcs for				Start page no./I	Revision
		Retain	ing Wall			5
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	PSD	03/03/2017				
Rectangular section in flex	ure - Section 6.1					
Design bending moment corr	bination 1	M = 219.6	kNm/m			
Depth to tension reinforceme	ent	d = h - c _{sf} -	φ _{sx} - φ _{sfM} / 2 =	555 mm		
		$K = M / (d^2)$	× f _{ck}) = 0.018			
		K' = 0.207				
			K' > K -	No compressio	n reinforceme	ent is required
Lever arm		z = min(0.5	+ 0.5 × (1 - 3	.53 × K) ^{0.5} , 0.95)	× d = 527 mm	
Depth of neutral axis		$x = 2.5 \times (d$	l – z) = 69 mm			
Area of tension reinforcemen	it required	A _{sfM.req} = M	/ (f _{yd} × z) = 95	8 mm²/m		
Tension reinforcement provid	led	20 dia.bars	@ 150 c/c			
Area of tension reinforcemen	It provided	$A_{sfM.prov} = \pi$	$ imes \phi_{sfM}^2$ / (4 $ imes$ s	_{sfM}) = 2094 mm²/ı	n	
Minimum area of reinforceme	ent - exp.9.1N	A _{sfM.min} = m	ax(0.26 $ imes$ f _{ctm} /	f _{vk} , 0.0013) × d =	= 1013 mm²/m	
Maximum area of reinforcem	ent - cl.9.2.1.1(3)	$A_{sfMmax} = 0$	$.04 \times h = 2500$	0 mm ² /m		
	0.0.2.1.1(0)	max(AsfM rec	AsfM min) / AsfM	1 prov = 0.484		
	PASS - Area o	f reinforcement	provided is g	greater than area	a of reinforce	ment required
Deflection control - Sectior	ז 7.4					
Reference reinforcement rati	0	$ ho_0$ = $\sqrt{f_{ck}}$ / 2	1 N/mm²) / 100	00 = 0.006		
Required tension reinforceme	ent ratio	$\rho = A_{sfM.req}$	/ d = 0.002			
Required compression reinfo	rcement ratio	$\rho' = A_{sfM.2.re}$	_g / d ₂ = 0.000			
Structural system factor - Tal	ble 7.4N	K _b = 1				
Reinforcement factor - exp.7	.17	K₅ = min(50	00 N/mm² / (f _{vk}	$\times A_{sfM,reg} / A_{sfM,prg}$	v), 1.5) = 1.5	
Limiting span to depth ratio -	exp.7.16.a	$K_s \times K_b \times [1]$	1 + 1.5 × √(f _{ck}	$(1 \text{ N/mm}^2) \times \rho_0$	ρ + 3.2 × $\sqrt{f_{ck}}$	$(1 \text{ N/mm}^2) \times$
	·	$(\rho_0 / \rho - 1)^{3/2}$	²] = 200.6	<i>,</i> ,	, ,	,
Actual span to depth ratio		$h_{\text{prop}} / d = 1$	3.3			
		PASS	- Span to dep	oth ratio is less t	han deflectio	n control limit
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3 i	mm			
Variable load factor - EN1990	0 – Table A1.1	ψ2 = 0.6				
Serviceability bending mome	nt	M _{sls} = 155.0	6 kNm/m			
Tensile stress in reinforceme	nt	σ_{s} = M _{sls} / ($A_{sfM.prov} \times z) = $	140.9 N/mm²		
Load duration		Long term				
Load duration factor		k _t = 0.4				
Effective area of concrete in	tension	A _{c.eff} = min(2.5 imes (h - d), (h – x) / 3, h / 2) =	175000 mm ² /	'n
Mean value of concrete tensi	le strength	$f_{ct.eff} = f_{ctm} =$	3.5 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{sfM,p}$	orov / A _{c.eff} = 0.0	12		
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 5.679			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - ex	p.7.11	$s_{r.max} = k_3 \times$	$c_{sf} + k_1 \times k_2 \times$	$k_4 imes \phi_{sfM}$ / $\rho_{p.eff}$ =	420 mm	
Maximum crack width - exp.7	. .8	w _k = s _{r.max} >	\propto max(σ_{s} – k _t \times	(f _{ct.eff} / $\rho_{p.eff}$) × (1	+ $\alpha_{e} \times \rho_{p.eff}$), 0	.6 $ imes$ σ_s) / E _s
		w _k = 0.178	mm	•		
		w _k / w _{max} =	0.592			
		DVCC	Maximuma	rack width is los	o than limitir	a araak width

	Project	Hall S	School		Job no. 215	0206
ieuus	Calcs for				Start page no./R	evision
		Retaini	ng Wall	1		6
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date
Check stem design at base	of stem					
Depth of section		h = 625 mm	ı			
Rectangular section in flexu	re - Section 6.1					
Design bending moment com	pination 1	M = 491 kN	m/m			
Depth to tension reinforcement	nt	d = h - c _{sr} -	φ _{sr} / 2 = 559 mm	ו		
		K = M / (d ²	× f _{ck}) = 0.039			
		K = 0.207	K' > K - N	o compression	reinforceme	nt is required
l ever arm		z = min(0.5)	$+ 0.5 \times (1 - 3.5)$	$3 \times K^{0.5} = 0.95 \times K^{0.5}$	d = 531 mm	int is required
Depth of neutral axis		$x = 2.5 \times (d)$	(-7) = 70 mm	, 0.00) ×		
Area of tension reinforcement	required	$A = 2.0 \times (d$	$(f_{vel} \times 7) = 2127$	mm²/m		
Tension reinforcement provide	ed an ed	32 dia bars	$(1)(3 \times 2) = 2121$			
Area of tension reinforcement	provided	$A_{\text{sr prov}} = \pi \times$	$\Phi_{\rm sr}^2 / (4 \times S_{\rm sr}) =$	8042 mm²/m		
Minimum area of reinforcemer	nt - exp.9.1N	$A_{sr,min} = mai$	$\times (0.26 \times f_{ctm} / f_{vk})$	0.0013) × d = 1	020 mm²/m	
Maximum area of reinforceme	rt - cl 9 2 1 1(3)	$A_{\rm srmax} = 0.0$	$4 \times h = 25000 n$	m^2/m	•=•	
		max(Asr reg.	$A_{sr min}$ / $A_{sr prov} =$	0.264		
	PASS - Area or	f reinforcement	provided is gro	eater than area	of reinforcen	nent required
Deflection control - Section	7.4					
Reference reinforcement ratio		ρ₀ = √(f _{ck} / 1	N/mm ²) / 1000	= 0.006		
Required tension reinforceme	nt ratio	$\rho = A_{sr.req} / c$	d = 0.004			
Required compression reinfor	cement ratio	$\rho' = A_{sr.2.req}$	/ d ₂ = 0.000			
Structural system factor - Tabl	le 7.4N	K _b = 1				
Reinforcement factor - exp.7.1	17	K _s = min(50	0 N/mm² / (f _{yk} \times	Asr.req / Asr.prov), *	1.5) = 1.5	
Limiting span to depth ratio - e	exp.7.16.a	$K_s imes K_b imes$ [1	1 + 1.5 $\times \sqrt{(f_{ck} / f_{ck})}$	1 N/mm ²) $ imes$ $ ho_0$ / $ ho$	$r + 3.2 \times \sqrt{f_{ck}}$	/ 1 N/mm²) ×
		(ρ₀ / ρ - 1) ^{3/2}	²] = 56.5			
Actual span to depth ratio		$h_{prop} / d = 1$	3.2			
		PASS	Span to depth	n ratio is less th	an deflectior	n control limit
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3 r	nm			
Variable load factor - EN1990	– Table A1.1	ψ2 = 0.6				
Serviceability bending momen	it	M _{sls} = 350.6	kNm/m			
l ensile stress in reinforcemen	it	$\sigma_{\rm s} = M_{\rm sis} / (A$	$A_{sr.prov} \times Z$) = 82.	1 N/mm²		
Effective area of concrete in te	ansion	$A_{1} = 0.4$	$2.5 \times (h - d) (h - d)$	-x)/3 h/2 = 2	165000 mm ² /r	n
Mean value of concrete tensile	e strength	$A_{c.eff} = f_{otm} =$	2.3 × (II - 0), (II - 3 5 N/mm²	- x) / 3, 11 / 2) -		11
Reinforcement ratio	sucigui	$O_{\rm D} {\rm off} = {\rm A}_{\rm ST} {\rm pr}$	= 0.049			
Modular ratio		$\alpha_{e} = F_{e} / F_{e}$	m = 5.679			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp	.7.11	$s_{r.max} = k_3 \times$	$c_{sr} + k_1 \times k_2 \times k_4$	$_{4} \times \phi_{sr}$ / $\rho_{p.eff}$ = 28	2 mm	
			·····	$(1 - 1) \times (1 - 1)$		
Maximum crack width - exp.7.	8	$W_k = S_{r.max} \times$	$max(\sigma_s - \kappa_t \times (r))$	ct.eff / ρ p.eff) × (1 +	$\alpha e \times \mu p.eff$, 0.0	O×Os)/⊏s

Tekla	Project	Hall S	School		Job no. 21	50206
IEuus	Cales for				Start nage no //	Revision
		Retain	ing Wall			7
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date
		w _k / w _{max} =	0.231 <i>- Maximum</i> c	crack width is le	ss than limitir	ng crack width
Rectangular section in she	ear - Section 6.2					.g ••.
Design shear force		V = 398 kN	/m			
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120			
		k = min(1 +	√(200 mm / d	d), 2) = 1.598		
Longitudinal reinforcement r	atio	ρι = min(A _{sr}		= 0.014		
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	^{//2} × f _{ck} ^{0.5} = 0.447	N/mm²	
Design shear resistance - ex	xp.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (1))$	00 N ² /mm ⁴ \times ρ_{l} \times	f_{ck}) ^{1/3} , V_{min}) $ imes$ d	
		V _{Rd.c} = 413	.9 kN/m			
		$V / V_{Rd.c} = 0$).962			
		PAS	S - Design sh	hear resistance	exceeds desig	gn shear force
Check stem design at prop Depth of section	p	h = 625 mn	n			
Rectangular section in she	ear - Section 6.2					
Design shear force		V = 103 kN	/m			
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120			
		k = min(1 +	· √(200 mm / c	d), 2) = 1.598		
Longitudinal reinforcement r	atio	ρι = min(A _{sr}	1.prov / d, 0.02)	= 0.001		
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	^{//2} × f _{ck} ^{0.5} = 0.447	N/mm ²	
Design shear resistance - ex	xp.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (1))$	00 N ² /mm ⁴ \times ρ_{l} \times	f_{ck}) ^{1/3} , V _{min}) × d	
		V _{Rd.c} = 250	kN/m			
		$V / V_{Rd.c} = 0$).412			
		PAS	S - Design sh	hear resistance	exceeds desig	gn shear force
Horizontal reinforcement	parallel to face of s	tem - Section 9	9.6			
Minimum area of reinforcem	ient – cl.9.6.3(1)	A _{sx.req} = ma	$x(0.25 \times A_{sr.pro})$	ov, $0.001 \times t_{stem}$) =	2011 mm²/m	
International States of St	cement – cl.9.6.3(2) rovidod	$S_{sx_max} = 40$	Umm @ 150 c/c			
Area of transverse reinforcement p) = 2004 - 210		
Area of transverse reinforce	PASS - Area of	$A_{sx.prov} = \pi$	× φ _{sx} - / (4 × S _{sx} • provided ie 4	;) = 2094 mm²/m greater than are	a of reinforce	ment required
Chack hass desire at to -	, AUG - Alea Ul	, child centeril	Piovided is (yrculor linair ale		equileu
Depth of section		h = 500 mr	n			
		n – 500 mm				
Rectangular section in flex	xure - Section 6.1	M - 00 6 M	Nm/m			
Design benaing moment col	ent	ivi = 82.6 Kl	NIII/III	mm		
	CIIL	u — II - Cbb - K — M / (~?	$(\psi_{DD}) \ge - 4 (17)$			
		K' = 0 207	\wedge ICK) - U.U12			
		IX - 0.207	K' > K -	No compressio	n reinforceme	ent is reauired
Lever arm		z = min(0.5)	+ 0.5 × (1 - 3	$.53 \times \text{K}^{0.5}$. 0.95)	× d = 396 mm	
Depth of neutral axis		$x = 2.5 \times (d)$	(– z) = 52 mm	, , <u>, , , , , , , , , , , , , , , , , </u>		
Area of tension reinforceme	nt required	$A_{bb,reg} = M/$	(f _{vd} × z) = 480	0 mm²/m		
Tension reinforcement provi	ided	16 dia.bars	@ 150 c/c			
Area of tension reinforceme	nt provided	$A_{bb,prov} = \pi$	$-$ × ϕ_{bb}^2 / (4 × S _{bb}	_b) = 1340 mm²/m		
Minimum area of reinforcem	ient - exp.9.1N	A _{bb.min} = ma	$x(0.26 \times f_{ctm})$	f _{yk} , 0.0013) × d =	• 761 mm²/m	
Maximum area of reinforcen	nent - cl.9.2.1.1(3)	$A_{bb,max} = 0.0$	04 × h = 2000	0 mm²/m		

	Project	Hall S	School		Job no.	50206
	Calcs for	Retain	ing Wall		Start page no./Revision 8	
	Calcs by C	alcs date	Checked by	Checked date	Approved by	Approved da
	PSD	03/03/2017				
		max(A _{bb.req} ,	, Abb.min) / Abb.pro	v = 0.568		
	PASS - Area of re	einforcement	t provided is g	reater than area	a of reinforce	ment requir
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3 ı	mm			
Variable load factor - EN1990) – Table A1.1	ψ2 = 0.6				
Serviceability bending mome	nt	M _{sls} = 61.2	kNm/m			
Tensile stress in reinforceme	nt	$\sigma_{\rm s}$ = M _{sls} / ($A_{bb.prov} \times z) = 1$	15.3 N/mm ²		
Load duration		Long term				
Load duration factor		k _t = 0.4				
Effective area of concrete in t	ension	A _{c.eff} = min((2.5 imes (h - d), (h	n – x) / 3, h / 2) =	149292 mm ² /	m
Mean value of concrete tensi	le strength	$f_{ct.eff} = f_{ctm} =$	3.5 N/mm ²			
Reinforcement ratio	-	$\rho_{p.eff} = A_{bb.p}$	_{rov} / A _{c.eff} = 0.00	9		
Modular ratio		$\alpha_e = E_s / E_c$	m = 5.679			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp	o.7.11	$s_{r.max} = k_3 \times$	$c_{bb} + k_1 \times k_2 \times$	$k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 4	558 mm	
Maximum crack width - exp.7	.8	Wk = Sr.max >	$< \max(\sigma_s - k_t \times$	(f _{ct.eff} / $\rho_{p.eff}$) × (1	+ $\alpha_{e} \times \rho_{p.eff}$), 0.	$.6 imes \sigma_s$) / Es
		w _k = 0.193	mm			
		w _k / w _{max} =	0.643			
		PASS	- Maximum cı	ack width is les	ss than limitin	na crack wi
				aon main io icc		ig cruck wh
Rectangular section in shea	ar - Section 6.2					
Rectangular section in shea	ar - Section 6.2	V = 110.2 k	۸/m			ig cruck m
Rectangular section in shea Design shear force	ar - Section 6.2	V = 110.2 k C _{Rd,c} = 0.18	κN/m 3 / γc = 0.120			ig cruck w
Rectangular section in shea Design shear force	ar - Section 6.2	V = 110.2 k C _{Rd,c} = 0.18 k = min(1 +	kN/m 3 / γc = 0.120 · √(200 mm / d)), 2) = 1.693		ig cruck m
Rectangular section in shea Design shear force Longitudinal reinforcement ra	ar - Section 6.2	V = 110.2 k C _{Rd,c} = 0.18 k = min(1 + _{Pl} = min(A _{bt}	«N/m 3 / γc = 0.120 · √(200 mm / d) _{b.prov} / d. 0.02) =), 2) = 1.693 = 0.003		
Rectangular section in shea Design shear force Longitudinal reinforcement ra	ar - Section 6.2 tio	V = 110.2 k $C_{Rd,c} = 0.18$ k = min(1 + $\rho_I = min(A_{bl}$ $v_{min} = 0.038$	KN/m 3 / γ _C = 0.120 - √(200 mm / d) _{b.prov} / d, 0.02) = 5 N ^{1/2} /mm × k ^{3/2}), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 f	N/mm²	
Rectangular section in she Design shear force Longitudinal reinforcement ra	ar - Section 6.2 tio	$V = 110.2 k$ $C_{Rd,c} = 0.18$ $k = min(1 + \rho_{I} = min(A_{bi} + \rho_{I}) = 0.038$ $V_{Rd,c} = max$	KN/m 3 / γ _C = 0.120 · √(200 mm / d) b.prov / d, 0.02) = 5 N ^{1/2} /mm × k ^{3/2} ((CRdc × k × (10), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 №	V/mm^2	
Rectangular section in she Design shear force Longitudinal reinforcement ra Design shear resistance - exp	ar - Section 6.2 tio 5.6.2a & 6.2b	$V = 110.2 k$ $C_{Rd,c} = 0.18$ $k = min(1 + \rho_{I} = min(A_{bit} + \sigma_{I}) = 0.038$ $V_{Rd,c} = max$ $V_{Rd,c} = 203$	$\frac{(N/m)}{(200 \text{ mm / d})} + \sqrt{(200 \text{ mm / d})} + (200 \text{ mm $), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν ¹⁰ N ² /mm ⁴ × ρ _l ×	V/mm² f _{ck}) ^{1/3} , v _{min}) × d	
Rectangular section in she Design shear force Longitudinal reinforcement ra Design shear resistance - exp	ar - Section 6.2 tio p.6.2a & 6.2b	$V = 110.2 + C_{Rd,c} = 0.18$ k = min(1 + ρ_I = min(Abb vmin = 0.035 V_{Rd,c} = max V_{Rd,c} = 203 . V / V_{Rd,c} = 0	KN/m 3 / γ _C = 0.120 · √(200 mm / d) b.prov / d, 0.02) = 5 N ^{1/2} /mm × k ^{3/2} K(C _{Rd.c} × k × (10 .3 kN/m 0.542), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν 10 Ν ² /mm ⁴ × ρι ×	V/mm² f _{ck}) ^{1/3} , v _{min}) × d	
Rectangular section in she Design shear force Longitudinal reinforcement ra Design shear resistance - exp	ar - Section 6.2 tio 5.6.2a & 6.2b	$V = 110.2 k$ $C_{Rd,c} = 0.18$ $k = min(1 + \rho_{I} = min(A_{bl} + \rho_{I})$ $V_{min} = 0.035$ $V_{Rd,c} = max$ $V_{Rd,c} = 203$ $V / V_{Rd,c} = 0$ PAS	$\frac{(N/m)}{\sqrt{(200 mm / d)}} = 0.120$ $\frac{\sqrt{(200 mm / d)}}{\sqrt{(200 mm / d)}} = 0.002 = 0.002$ $\frac{5 N^{1/2}}{mm \times k^{3/2}} = 0.002$ $\frac{(C_{Rd.c} \times k \times (100))}{(C_{Rd.c} \times k \times (100))} = 0.542$ $(S - Design shows the set of $), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν -0 N ² /mm ⁴ × ρι × ear resistance e	N/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	gn shear fo
Rectangular section in she Design shear force Longitudinal reinforcement ra Design shear resistance - exp Secondary transverse reinfo	ar - Section 6.2 Itio 0.6.2a & 6.2b orcement to base -	$V = 110.2 k$ $C_{Rd,c} = 0.18$ $k = min(1 + p_{I} = min(A_{bI} + p_{I}))$ $V_{min} = 0.035$ $V_{Rd,c} = max$ $V_{Rd,c} = 203$ $V / V_{Rd,c} = 0$ PAS Section 9.3	$\frac{kN/m}{kN/m} = 0.120$ $\frac{1}{\sqrt{200 mm / d}} = \frac{1}{\sqrt{200 mm / d}$), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν =0 N ² /mm ⁴ × ρι × ear resistance of	V/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	gn shear fo
Rectangular section in shea Design shear force Longitudinal reinforcement ra Design shear resistance - exp Secondary transverse reinfor Minimum area of reinforceme	ar - Section 6.2 Itio 5.6.2a & 6.2b orcement to base - nt – cl.9.3.1.1(2)	$V = 110.2 + C_{Rd,c} = 0.18 + C_{Rd,c} = 0.18 + c_{Rd,c} = 0.038 + c_{Rd,c} = 0.28 + c_{Rd,c} =$	$\frac{kN/m}{3 / \gamma_{C}} = 0.120$ $\frac{1}{2} \sqrt{(200 mm / d)}$ $\frac{1}{2} \sqrt{(200 mm / d)} = \frac{1}{2} \sqrt{(1200 mm / d)}$ $\frac{1}{2} \sqrt{(1200 mm / d)} = \frac{1}{2} \sqrt{(1200 mm / d)} = \frac{1}{2} \sqrt{(1200 mm / d)}$ $\frac{1}{2} \sqrt{(1200 mm / d)} = \frac{1}{2} (1200 mm $), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν IO N ² /mm ⁴ × ρ ₁ × ear resistance e B mm ² /m	V/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	gn shear fo
Rectangular section in shead Design shear force Longitudinal reinforcement rad Design shear resistance - exp Secondary transverse reinfor Minimum area of reinforceme Maximum spacing of reinforceme	ar - Section 6.2 ttio 5.6.2a & 6.2b orcement to base - nt – cl.9.3.1.1(2) ement – cl.9.3.1.1(3)	$V = 110.2 + C_{Rd,c} = 0.18$ $k = min(1 + p_{I} = min(A_{bI} + p_{I}) = 0.038$ $V_{Rd,c} = max$ $V_{Rd,c} = 203.$ $V / V_{Rd,c} = 0.2$ Section 9.3 $A_{bx,req} = 0.2$ $S_{bx,max} = 45$	$\frac{kN/m}{kN/m} = 0.120$ $\frac{1}{\sqrt{200 mm / d}} = \sqrt{(200 mm / d)} = \frac{1}{\sqrt{200 mm \times k^{3/2}}} = \frac{1}{200 mm \times k^{3$), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν ¹⁰ N ² /mm ⁴ × ρι × ear resistance e B mm ² /m	V/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	gn shear fo
Rectangular section in shea Design shear force Longitudinal reinforcement ra Design shear resistance - exp Secondary transverse reinfor Minimum area of reinforcement Maximum spacing of reinforcement pro	ar - Section 6.2 atio b.6.2a & 6.2b orcement to base - nt - cl.9.3.1.1(2) ement - cl.9.3.1.1(3) wided	$V = 110.2 + C_{Rd,c} = 0.18$ $k = min(1 + \rho_{I} = min(A_{bl} + V_{min} = 0.038)$ $V_{Rd,c} = max$ $V_{Rd,c} = 203.$ $V / V_{Rd,c} = 0.2$ Section 9.3 $A_{bx,req} = 0.2$ $S_{bx_max} = 45$ 12 dia.bars	$\frac{1}{3} / \gamma_{C} = 0.120$ $\frac{1}{2} / \gamma_{C} = 0.120$), 2) = 1.693 = 0.003 ² × f _{ck} ^{0.5} = 0.487 Ν 10 N ² /mm ⁴ × ρι × ear resistance e 3 mm ² /m	V/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	gn shear fo

Tekla [®] Tedds	Project Hall School				Job no. 2150206	
	Calcs for Retaining Wall			Start page no./Revision 9		
	Calcs by PSD	Calcs date 03/03/2017	Checked by	Checked date	Approved by	Approved date

Reinforcement details