
Transformation of the Ugly Brown Building

GD Partnership LTD Flood Risk Assessment and SUDS Strategy August 2017

Registered Office: Greytown House, 221 -227 High Street, Orpington, Kent, BR6 0NZ

Registration No: 4917723 [England]

TRANSFORMATION OF THE UGLY BROWN BUILDING, CAMDEN FLOOD RISK ASSESSMENT AND SUDS STRATEGY

REF: WE/17015

Revision	Description	Date
-	Draft Report Issue	11/05/2017
Rev A	Draft Issue	18/07/2017
Rev B	Final Issue	31/08/2017

Prepared by: Gabriel Eve

MEng (Civil) GMICE

Reviewed and Tony Clothier

Approved by: PhD BScEng (Civil)

CEng CEnv C.WEM MCIWEM

for and on behalf of Water Environment Limited

Reviewed and Rudy Djajasaputra

Approved by: Director

for and on behalf of GD Partnership

Copyright © 2017 Water Environment Limited

This Flood Risk Assessment Report was prepared for GD Partnership by Water Environment Limited. All rights reserved. No part of this document may be distributed, copied, adapted or transmitted in any form, without prior permission from Water Environment Limited.

Reference: WE/17015 Page: i

CONTENTS

Exe	ecutive Summary	v
1.	Introduction	
	General Information	1
	Scope of Study	1
2.	Site Description	3
	Location	3
	Existing Development	3
	Topographic Survey and Site History	4
	Proposed Development	5
3.	National and Local Planning Policy	7
	National Planning Policy Framework	7
	The London Plan	7
	Local Planning Policy	7
	Camden Local Plan (2017)	8
	Camden Strategic Flood Risk Assessment	9
	Sequential Test	9
4.	Potential Flooding On Site	10
	Flooding from Rivers and the Sea	10
	Flooding from Surface Water	10
	Flooding from Sewers	11
	Flooding from Groundwater	12
	Flooding from Artificial Sources	13
	Flood Warning and Emergency Access/Egress	14
	Climate Change	14
5.	Surface Water Management	15
	Existing Site Runoff	15
	Greenfield Runoff	16
	Existing Site Drainage	16
	Proposed Surface Water Drainage System	16
	Sustainable Drainage Systems (SuDS)	19
	SuDS Management and Maintenance	21

Reference: WE/17015

6.	Summary of Flood Risk Assessment	. 22
7.	Conclusions	. 26
Арр	pendix A - Drawings	. 27
Арр	oendix B - Thames Water Asset Search	. 28
Арр	endix C - Calculation Sheets	. 29
Арр	pendix D - Camden SuDS Pro-Forma	. 30
<u>LIS</u>	T OF FIGURES	
Figu	ıre 1 - Location of proposed development site	3
Figu	re 2 - Aerial photograph of site	4
Figu	re 3 - Environment Agency online surface water flood map	. 11
Figu	re 4 - Environment Agency Reservoir Inundation Map	. 13
Figu	ıre 5 - SuDS Hierarch	. 20
<u>LIS</u>	T OF TABLES	
Tab	le 1: Proposed discharge rates for the 100-year event + 40% climate change	. 18
Tab	le 2: Proposed attenuation storage volumes	. 19

Reference: WE/17015

GLOSSARY OF TERMS

AOD Above Ordnance Datum
CDA Critical Drainage Area
FFL Finished Floor Level
FRA Flood Risk Assessment

LBC London Borough of Camden

LLFA Lead Local Flood Authority

LPA Local Planning Authority

NPPF National Planning Policy Framework

PPG Planning Practise Guidance

SFRA Strategic Flood Risk Assessment
SuDS Sustainable Drainage Systems
TWUL Thames Water Utilities Limited

Reference: WE/17015 Page: iv

Flood Risk Assessment and SuDS Strategy

EXECUTIVE SUMMARY

The proposed development is located on the site named the 'The Ugly Brown Building' north of St Pancras International rail station in the London Borough of Camden (LBC). Proposals for the site are the erection of 6 new buildings, ranging in height from 2 storeys to 12 storeys above ground, and 2 basement levels comprising a mixed-use business, residential, hotel, retail and storage development with associated landscaping work. The site lies in Flood Zone 1 and is therefore considered to be at 'very low' risk of flooding from rivers or the sea. A full flood risk assessment (FRA) is required for developments in Flood Zone 1 which are more than 1 hectare or in an area with critical drainage problems, both of which apply to the site.

Potential flooding from rivers and the sea, surface water, sewers, groundwater and artificial sources have been assessed within the report. The development is considered to be at low risk from all sources of flooding, with the greatest risk from surface water/sewer flooding due to pressure on the Thames Water sewer network within the local area.

A surface water management plan has been designed to contain the 1% annual probability +40% climate change event, therefore reducing the risk of surface water flooding on the site and elsewhere.

The drainage strategy includes Sustainable Drainage System (SuDS) elements in order to reduce the rate of runoff by 50% from the pre-development rates in line with London Plan Policy 5.13. Part of the site will drain by gravity to the adjacent Regent's Canal and the remaining areas will drain to the combined sewer. This combination is deemed necessary to avoid including a pumped system as the water level of the canal is relatively high compared to site levels.

Attenuation storage is provided in the form of blue roofs and combination biodiverse/blue roofs on all buildings wherever possible and drained at controlled rates directly to the canal. Some roof areas are reserved for plant and will therefore drain to below ground storage on each plot. The remaining external areas will also drain to the underground storage before discharging at a controlled rate via a flow control device to the Thames Water combined sewer on St Pancras Way.

Reference: WE/17015 Page: v

1. INTRODUCTION

General Information

- 1.1. The proposed development is located on the site named the 'Ugly Brown Building' north of St Pancras International rail station in the London Borough of Camden. The site boundary encloses an area of approximately 1.14 ha.
- 1.2. The application is for demolition of the existing building and erection of 6 new buildings, ranging in height from 2 storeys to 12 storeys above ground, and 2 basement levels comprising a mixed-use business, residential, hotel, retail and storage development with associated landscaping work.
- 1.3. The latest online Environment Agency Flood Zone maps indicate that the site lies in Flood Zone 1 and is therefore considered to be at 'very low' risk of flooding from rivers or the sea. A full flood risk assessment (FRA) is required for developments in Flood Zone 1 of more than 1 hectare in size or which are located in an area with critical drainage problems as notified by the Environment Agency. A flood risk assessment has therefore been prepared to accompany the planning application. As well as considering the risk of flooding to the site, the impact the development may have on flooding elsewhere has been assessed, with particular reference to surface water run-off.
- 1.4. This assessment has been compiled to meet the requirements of the National Planning Policy Framework (NPPF)¹.

Scope of Study

- 1.5. The main objectives of this study are to:
 - assess the risk and implications of flooding on the site from all possible flood sources, including the future risk as a result of projected climate change over the lifetime of the development;
 - assess the impact of the proposed development on flood risk elsewhere, with particular consideration of surface water management on the site;
 - provide a flood risk assessment of the site, compliant with the guidelines set out in the NPPF and associated Planning Practice Guidance (PPG)², to accompany any application for planning permission;

Reference: WE/17015 Page: 1

Date: 31/08/17

_

¹ Department for Communities and Local Government (2012), National Planning Policy Framework.

Flood Risk Assessment and SuDS Strategy

- outline a drainage strategy for the new development by incorporating SUDS;
 and,
- provide advice on the site layout and design that will ensure safe operation of the site in an extreme flood or rainfall event, and avoid causing an unacceptable impact on the risk of flooding elsewhere.

Reference: WE/17015 Page: 2

² Department for Communities and Local Government (2014), *Planning Practice Guidance: Flood risk and coastal change.* www.gov.uk/guidance/flood-risk-and-coastal-change. Accessed 22/03/2017.

2. SITE DESCRIPTION

Location

2.1. The site address is 2-6 St Pancras Way, London, NW1 OTB and is located on land between St Pancras Way and Regent's Canal, approximately 500 m north of St Pancras International train station within the London Borough of Camden. Regent's Canal runs along the north eastern boundary of the site but this is not designated an Environment Agency 'Main River'. The site location is shown in Figure 1.

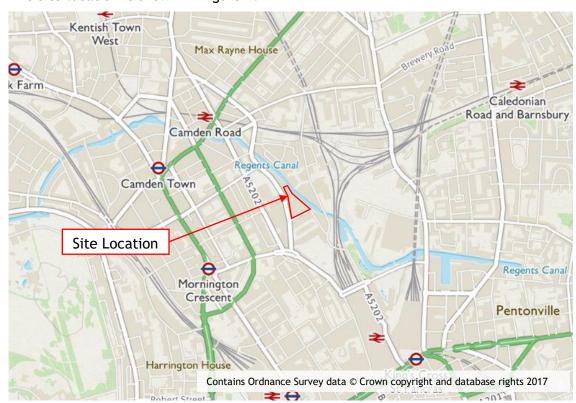


Figure 1 - Location of proposed development site

2.2. The site is bounded by Regent's Canal to the north east, by St Pancras Hospital to the south, by St Pancras Way to the west and by residential developments to the north.

Existing Development

2.3. The site covers a total area of approximately 1.14 ha and comprises a large four-storey building divided into three plots - A, B and C - each independently occupied. Plots A and B are currently office space, the latter occupied by Ted Baker Headquarters, and plot C is a data centre. The area along St Pancras Way is mostly hard-paved with a small grassy bed with shrubs and small trees to the south. The canal-side area is made up of a gravel fill.

Reference: WE/17015 Page: 3

Topographic Survey and Site History

- 2.4. A topographic survey of the site was carried out in February 2016 by Clugston Construction Limited, and is presented in Drawing 1 in Appendix A. The survey has been orientated to the Ordnance Survey National Grid and survey levels have also been GPS verified.
- 2.5. The ground levels range between 20.4 m AOD at the southernmost corner of the site and 23.6 m AOD along the edge of the canal at the north eastern boundary. The ground level increases north along St Pancras Way ranging from 20.4 m to 21.9 m AOD, and more steeply east along Granary Street from 20.4 m to 23.6 m AOD along the southern site boundary.
- 2.6. The retaining wall along the edge of the canal has a ground level along the top of 23.6 m AOD with the level in the canal measured at 23.13 m AOD (as at 22/01/2016). A drained walkway runs along the canal-facing side of the building at a level of 21.6 m AOD, with steps and a ramp leading up to the top of the retaining wall.

Figure 2 - Aerial photograph of site

Reference: WE/17015 Page: 4

Proposed Development

- 2.7. The proposed development comprises of demolition of the existing building and erection of 6 new buildings, ranging in height from 2 storeys to 12 storeys above ground, and 2 basement levels comprising a mixed-use business, residential, hotel, retail and storage development with associated landscaping work. The site is divided into three plots; A, B and C, and architect's drawings of the proposed development are included in Appendix A.
- 2.8. The proposals are for the demolition of the existing building and redevelopment to provide accommodation arranged around publicly accessible spaces. The proposed development comprises:
 - an extended HQ for Ted Baker and boutique own brand hotel;
 - business floorspace;
 - residential dwellings;
 - public open space along the canal edge and St Pancras Way, and within a central courtyard;
 - retail units at ground floor creating a central public place;
 - basements on each plot to provide centralised servicing and further commercial lettings.
- 2.9. The vulnerability classification of the development, as set out in Table 2 of the PPG, is 'more vulnerable' for the residential units and hotels and 'less vulnerable' for the commercial elements of the development.
- 2.10. Plot A and B have one basement level and Plot C has two basement levels proposed. The basement (Level -1) on Plot A has floor levels ranging between 17.5 m and 18.0 m AOD and comprises cycle storage, commercial units and plant. On Plot B, the split-level basement includes car parking for 30 cars with a Finished Floor Level (FFL) of 19.1 m AOD, and plant and multi-purpose space at 16.3 m AOD. Plot C upper basement includes retail space, gym facilities and cycle storage with a FFL from 16.1 m to 17.5m AOD. The lower basement (Level -2) is located solely within Plot C, and is to be used as storage with a FFL of 13.4 m AOD.
- 2.11. Vehicular access to the site is via an entrance from St Pancras Way to Plot B car park approximately halfway along the western boundary.

Reference: WE/17015 Page: 5

Flood Risk Assessment and SuDS Strategy

2.12. The ground floor level is 21.7 m AOD in Plot A, varies between 21.4 m and 23.6 m AOD in Plot B, and between 20.2 m and 23.6 m AOD on Plot C.

Reference: WE/17015 Page: 6

Page: 7

3. NATIONAL AND LOCAL PLANNING POLICY

National Planning Policy Framework

3.1. The National Planning Policy Framework (NPPF) was published in March 2012 and sets out the Governments' planning policies for England and how these are expected to be applied. The NPPF states that:

"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where development is necessary, making it safe without increasing flood risk elsewhere."

3.2. In addition to the NPPF, the Planning Practice Guidance was released to clarify planning aspects of flood risk management. The Planning Practice Guidance clarifies which development types are considered appropriate within each Flood Zone.

The London Plan

- 3.3. The London Plan³ is the overarching spatial strategy for the Greater London Area, and provides the basic foundation for planning policy in London. Flood risk and drainage are considered in the London Plan under Chapter 5 "London's response to Climate Change", within the Climate change adaptation section, Policies 5.11 through to 5.15.
- 3.4. Policy 5.12 sets out detailed policy regarding flood risk management, and requires compliance with the NPPF and associated Planning Practice Guidance. The policy includes additional emergency provision for any development required to pass the Exception Test, and a requirement for protection of flood defences and watercourses. Policy 5.13 covers Sustainable Drainage, and requires implementation of the 7-stage drainage hierarchy, as well as a consideration of "water use efficiency, water quality, biodiversity, amenity and recreation".

Local Planning Policy

3.5. The site lies within the London Borough of Camden, which also acts as the Lead Local Flood Authority (LLFA). Below are a list of the policies relevant to flood risk within the recently adopted Camden Local Plan.

Date: 31/08/17

Reference: WE/17015

³ Mayor of London, Further Alterations to the London Plan 2015, March 2016

Camden Local Plan (2017)

3.6. Camden has recently adopted the new Local Plan, and below are the relevant policies regarding flooding and SuDS.

Policy CC2 Adapting to climate change

- 3.7. The Council will require development to be resilient to climate change. All development should adopt appropriate climate change adaptation measures such as:
 - a. the protection of existing green spaces and promoting new appropriate green infrastructure;
 - b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;
 - c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and
 - d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Policy CC3 Water and flooding

- 3.8. The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible. We will require development to:
 - a. incorporate water efficiency measures;
 - b. avoid harm to the water environment and improve water quality;
 - c. consider the impact of development in areas at risk of flooding (including drainage);
 - d. incorporate flood resilient measures in areas prone to flooding;
 - e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy, unless inappropriate, to achieve a greenfield run-off rate where feasible; and
 - f. not locate vulnerable development (such as basement dwellings) in floodprone areas.

Reference: WE/17015 Page: 8

Camden Strategic Flood Risk Assessment

3.9. URS prepared a Strategic Flood Risk Assessment⁴ (SFRA) for the London Borough of Camden in July 2014. The SFRA is used to inform this site-specific flood risk assessment.

Sequential Test

- 3.10. The site lies entirely within Flood Zone 1 and the vulnerability classification for the development is *Less Vulnerable* for the retail and business use, and *More Vulnerable* for the residential units and hotel.
- 3.11. The sequential test is not normally required for development within Flood Zone 1 unless "the Strategic Flood Risk Assessment for the area, or other more recent information, indicates there may be flooding issues now or in the future" (PPG). The dominant risk of flooding in the borough is from surface water as a result of sewer overloading, however the risk is shown to be low for the application site, and therefore the sequential test is not required for this development.
- 3.12. Additionally, Table 3 of the PPG for Flood Risk and Coastal Change deems all development to be appropriate within Flood Zone 1.

Reference: WE/17015 Page: 9

Date: 31/08/17

_

⁴ London Borough of Camden (July 2014) Strategic Flood Risk Assessment

4. POTENTIAL FLOODING ON SITE

Flooding from Rivers and the Sea

- 4.1. As stated in the Camden SFRA, all Main Rivers historically located within the Borough are now culverted and incorporated into the Thames Water Utilities Limited (TWUL) sewer network and therefore there is no fluvial flood risk to the site. The site is also shown to be in Flood Zone 1 according to the Environment Agency flood map for planning, which is defined as land having a less than 0.1% annual probability of river or sea flooding. Therefore the risk of flooding from rivers or the sea is very low.
- 4.2. The site is located approximately 20 m above sea level and consequently there is considered to be no risk of flooding from the sea.

Flooding from Surface Water

- 4.3. Flooding can occur during periods of intense rainfall from runoff flowing overland before entering a watercourse or sewer. In an urban environment, the risk of flooding from surface water and from overloaded sewers is closely related, and both are included in the relevant surface water flooding datasets. Flooding events are typically of short duration (unless there is a drainage system blockage), but can be severe.
- 4.4. The Environment Agency has published a surface water flood map available online, as shown in Figure 3. The information on this map is suitable for identifying approximate areas which would flood and the likely depth of this flooding. It is unlikely to be reliable for identifying individual properties at risk.
- 4.5. Appendix B Figure 6 of the SFRA shows the majority of Camden has been identified as being within a Critical Drainage Area (CDA) "A discrete geographic area (usually a hydrological catchment) where multiple and interlinked sources of flood risk (surface water, groundwater, sewer, main river and/or tidal) cause flooding in one or more Local Flood Risk Zones during severe weather thereby affecting people, property or local infrastructure."
- 4.6. The site is predominantly shown to have a *very low* risk of surface water flooding as shown as 'clear' on the flood map, equivalent to less than 0.1% annual probability of flooding. The northern part of the site is shown to be at *low* risk (between 0.1% and 1% annual probability). The thin strips of *medium* risk areas along the canal are due to the existing walkway along that side of the building, currently set 2 m below the top of bank. This walkway will no longer exist in the proposed development.

Reference: WE/17015 Page: 10

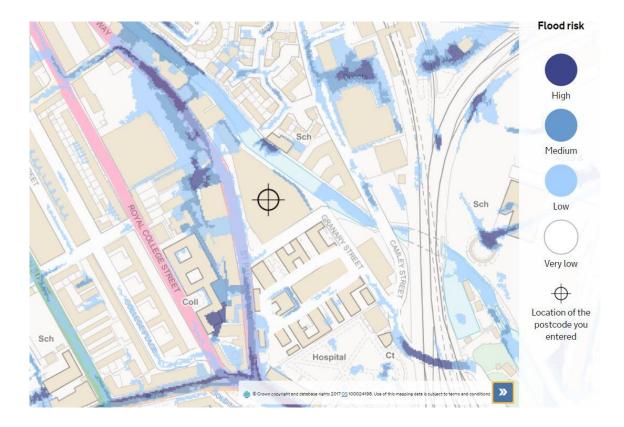


Figure 3 - Environment Agency online surface water flood map

- 4.7. The surface water drainage strategy for the development (refer to Section 5 of this report) will ensure that overland flow is appropriately managed on the site, by use of green/blue roofs and underground attenuation storage. The surface water management system will ensure no flooding for the 1% annual probability plus climate change event will occur on the site.
- 4.8. If an extreme rainfall event occurred causing surface water flooding in the wider area, it is expected that flood water would be contained within St Pancras Way since ground levels within the road are lower than on site. The risk of surface water flooding to the site is therefore considered to be low, on the condition that an adequate maintenance programme is adopted for the onsite surface water system.

Flooding from Sewers

4.9. Thames Water asset location plans have been acquired for the site and surrounding area, included in Appendix B. These show a 2134 mm diameter trunk combined sewer passing beneath the site with an invert level of 13.6 m AOD, approximately 2 m below the proposed basement on plot A (17.5 m AOD). In addition, there is a 1093 x 762 mm combined sewer along St Pancras Way flowing in a north-south direction, with a contributing 152 mm diameter sewer along Granary Street.

Reference: WE/17015 Page: 11

- 4.10. A Thames Water sewer flooding history enquiry at 6a St Pancras Way indicates that there have been no incidents of flooding in the requested area as a result of surcharging public sewers. It is therefore unlikely that the sewers in the vicinity will surcharge onto the site unless linked to a surface water flood event. In the unlikely event of sewer flooding from the sewer in St Pancras Way, flood water is likely to be contained within the road flowing south past the site.
- 4.11. Figure 5a in Appendix B of the SFRA displays information from the DG5 internal sewer flooding register and the site is shown to be in a postcode district that has no recorded incidents of flooding.
- 4.12. A drainage CCTV survey of the existing site was carried out by Drainage Technical Services Ltd on 2nd April 2017. This confirmed that all surface water drainage, including from the canal-side, discharges to the combined sewer network on St Pancras Way.
- 4.13. The proposed scheme will include entirely new sewer infrastructure, only retaining the existing connection to the public sewer network. The surface water network onsite will be designed and sized based on expected discharges for the 1% annual probability event including an allowance for climate change for the lifetime of the development. On the basis of this information, the risk of flooding from sewers is considered to be low.

Flooding from Groundwater

- 4.14. The bedrock geology underlying the site shown on the British Geological Survey online map consists of London Clay Formation (clay, silt and sand). No superficial deposits are shown in the area. The geology is confirmed by two boreholes (TQ28SE314 and TQ28SE1564) adjacent to the site. London Clay forms an impermeable layer lowering the risk of groundwater emergence at the surface, and at the site's location, the absence of a superficial aquifer results in a low risk of perched groundwater.
- 4.15. Figure 4e in Appendix B of the SFRA displays areas at increased susceptibility to elevated groundwater along with historic records of groundwater flooding held by LBC and the Environment Agency. The site is not shown to be at increased susceptibility to elevated groundwater and there are no records of groundwater flooding incidents within a 500 m radius of the site.
- 4.16. The SFRA refers to the Camden Geological, Hydrogeological and Hydrological Study, stating that, within Camden, groundwater can be encountered within river terrace deposits, isolated perched water bodies within sandy layers of the London Clay and a more significant water table within the Bagshot Beds. Based on available below-ground information, there is

Reference: WE/17015 Page: 12

no indication of any substantial sandy layers underlying the site or presence of shallow groundwater. Therefore the risk of groundwater flooding to the site is considered to be low.

4.17. Despite the expected low risk, groundwater levels can fluctuate throughout the year and therefore, it is recommended that consideration should be given to flood resistant design for the basement units as a preventative measure against future ingress of groundwater or damp.

Flooding from Artificial Sources

4.18. Flooding can occur as a result of the failure of infrastructure that impounds water, such as reservoirs, lakes and canals. The site is not shown to be within the maximum extent of possible flooding from reservoirs on the Environment Agency Reservoir Inundation Map (as shown in Figure 4).

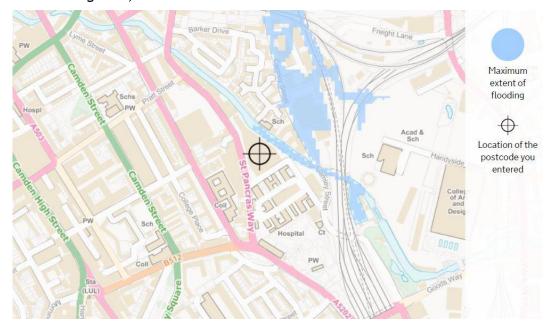


Figure 4 - Environment Agency Reservoir Inundation Map

4.19. The Reservoirs Act 1975⁵ (as amended by the Flood and Water Management Act 2010⁶) requires asset owners to maintain their reservoirs such that the annual probability of a breach of the reservoir is less than 1 in 50,000. It is therefore considered that the risk of flooding from reservoirs is extremely low.

Reference: WE/17015 Page: 13

⁵ Reservoirs Act 1975 (c.23). London, Her Majesty's Stationery Office.

 $^{^6}$ Flood and Water Management Act 2010 (c.29). London, Her Majesty's Stationery Office.

Page: 14

4.20. The Regent's Canal is managed by the Canals & Rivers Trust. The Canals & Rivers Trust ensures that the canal does not overtop its banks by controlling the water levels in the canal via the lock systems on the Regent's Canal. High water levels within canals can be managed by moving the water through the locks down to unaffected lock reaches.

4.21. No further artificial sources of flooding have been identified within the vicinity of the site.

Flood Warning and Emergency Access/Egress

4.22. The flood risk to the site is considered to be low from all sources, however there is a residual risk from surface water flooding in the event of an extreme rainfall event (e.g. > 0.1% annual probability) which exceeds the designed capacity of the onsite surface water drainage system. The proposals include commercial uses in the basement levels and the following information has been identified on the LBC website⁷:

Businesses and residents in basements are advised to:

- Take note of weather forecasts for heavy rainfall identified as red alert,
- Sign up for emergency text alerts on Camden's alert system this will endeavour to relay high risk warnings when Camden are made aware of them, but this will not be a 24/7 service,
- Have an emergency plan for taking you and your family or colleagues out of harm's way to a higher floor so that you are not at risk.
- 4.23. This information should be supplied to any future owners and occupants of the basement units, and they should be encouraged to sign up for the emergency text alerts described in the previous paragraph.

Climate Change

4.24. The predicted increase in frequency and severity of rainfall events as a result of climate change will increase the likelihood of flooding from rivers, land, sewers and artificial bodies as storage becomes overwhelmed. In line with the latest guidance⁸, a climate change factor of +40% has been applied to the 1% annual probability rainfall event in the design of the surface water management system.

Reference: WE/17015

⁷ www.camden.gov.uk/ccm/content/policing-and-public-safety/emergencies/flooding/ Accessed 21/04/2017

⁸ www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances Accessed 24/04/2017

Page: 15

5. SURFACE WATER MANAGEMENT

- 5.1. In accordance with the NPPF, as a minimum requirement, run-off rates and volumes should not increase from any site following development, to prevent an increase in flood risk elsewhere as a result of the development.
- 5.2. The proposed development falls under the classification of 'major development', therefore, under The Town and Country Planning (Development Management Procedure) (England) Order 2015, the site must adopt a sustainable drainage approach, through the use of SuDS.
- 5.3. Additional guidance to the requirements of London Plan Policy 5.13 are presented in the Sustainable Design and Construction Supplementary Planning Guidance (SPG)⁹, which states that a 50% attenuation of pre-development runoff rate is "the minimum expectation from development proposals".

Existing Site Runoff

- 5.4. The site is considered to be entirely impermeable, predominantly consisting of a large flat roof with hard paving around the site boundary. There is a small raised bed of shrubs to the south west of the site, however, due the nature of its design, it is expected to have negligible effects on the site runoff.
- 5.5. Source Control (Microdrainage 2017) was used to calculate design rainfall intensities and resulting runoff rates with input rainfall ratio, R of 0.41 and expected rainfall M5-60 of 20.6 mm/h from FSR based on the site location. Calculation sheets are provided in Appendix C.
- 5.6. The existing peak runoff rates for the 1-year, 30-year and 100-year return period rainfall events are as follows:

Return Period (year)	1	30	100
Discharge rate (l/s)	101	247	322

Reference: WE/17015

⁹ Mayor of London, Sustainable Design and Construction SPG, April 2014

Greenfield Runoff

5.7. The greenfield runoff rates for the site were calculated using IoH124 methodology and the online tools provided by HR Wallingford on the UK SuDS website¹⁰, and are as follows (calculation sheet provided in Appendix C):

Return Period (year)	Qbar	1	30	100
Discharge rate (l/s)	4.77	4.05	10.96	15.21

Existing Site Drainage

- 5.8. A site visit undertaken by Water Environment Ltd on 16th March 2017 confirmed the existing roof drains by gravity through gutters along the front and rear of the building and several downpipes before joining the underground drainage network.
- 5.9. A CCTV survey of the existing site drainage was undertaken by Drainage Technical Services Ltd on 2nd April 2017. Based on the survey, all surface water drainage from the site, including on the canal-side, is assumed to flow into the public combined sewer under St Pancras Way via a connection between plot A and B.
- 5.10. The TWUL asset location plans show three existing lateral connections to the combined sewer under St Pancras Way. There are no existing surface water outfalls to Regent's Canal from the site, and from visual inspection during a site visit, no other developments in the area appear to have outfalls to the canal.

Proposed Surface Water Drainage System

- 5.11. Surface water will be managed on site through the provision of Sustainable Drainage Systems (SuDS) where possible in line with national policy. No attenuation of surface water exists on the site, and currently all runoff discharges directly to the public sewer network.
- 5.12. The site is entirely hardstanding and the underlying London Clay geology is unlikely to be appropriate for direct infiltration of surface water. Surface water can therefore only discharge from the site via Regent's Canal or the Thames Water combined sewer network. Both Thames Water and the Canal & River Trust have been consulted in order to agree discharge rates into each respective network.

Reference: WE/17015 Page: 16

Date: 31/08/17

_

¹⁰ www.uksuds.com/drainage-calculation-tools/greenfield-runoff-rate-estimation Accessed 24/04/2017

- 5.13. Regent's Canal runs to the northeast of the site with an approximate water level of 23.13 m AOD, which is at a higher level than the majority of external areas on the proposed site. Underground attenuation storage is therefore unable to discharge directly to the canal by gravity. Surface water runoff from all external areas would therefore require pumping in order to discharge to the canal. Pumped systems are considered the least sustainable of systems with the highest maintenance liability and the highest chance of failure, and should therefore be avoided in so far as possible.
- 5.14. The following guiding principles were used in developing the proposed drainage strategy:
 - attenuating surface water using SuDS wherever possible;
 - reducing the peak surface water runoff by a minimum 50% of the existing rate including an allowance for future climate change;
 - ensuring the peak runoff requirement is met by plots A, B and C independently to accommodate phased construction and independent future ownership;
 - maximising the proportion of surface water runoff discharging to the canal, alleviating the pressure on the local public sewer network;
 - avoiding a pumped system.
- 5.15. The proposed development consists of approximately 69% roof area and 31% hard landscaping. Only the roof areas are high enough to drain to the canal by gravity and due to spatial restrictions at ground level, attenuation storage is proposed in the form of paved-over blue roofs and combination biodiverse/blue roofs. The term combination biodiverse/blue roof is used here to describe a biodiverse roof with additional attenuation storage beneath it.
- 5.16. Paved-over blue roofs and combination biodiverse/blue roofs have been included on all buildings across the site wherever possible (refer to SuDS drawing in Appendix A). Some roof areas are reserved for plant and have to be drained to the public combined sewer. Since it is not possible to provide attenuation storage beneath the plant at roof level, it will therefore drain to below-ground attenuation storage before discharging to the public sewer at a reduced rate. Similarly, some roof terraces cannot accommodate the blue roof build-up depth whilst maintaining a level threshold with the internal finished floor level and therefore will also drain to below ground attenuation storage.
- 5.17. All external areas at ground level will also drain to below-ground attenuation storage.

- 5.18. Due to the high relative water level of the canal and the spatial restrictions adjacent to it, below-ground attenuation storage discharging to the canal is not possible unless a pumped system is installed. In order to avoid this, all below-ground attenuation storage will discharge to the combined sewer, while all biodiverse/blue roofs will discharge to the canal.
- 5.19. In order to satisfy the 50% reduction in pre-development runoff rates during phased construction, each plot will have separate attenuation storage for runoff discharging to the combined sewer. Plot A will have underground cellular crate storage beneath the basement cycle store; Plot B will have underground cellular crate storage beneath the basement car parking; and Plot C will have a 150 mm depth cellular crate storage beneath the external paved areas, above the basement level. All design proposals are subject to review at the detailed design stage, however the principles of the drainage strategy will remain unchanged.
- 5.20. The proposed discharge rates for the 100-year rainfall event including an allowance for future climate change are shown for each plot in Table 1. The proposed discharge rates represent a reduction of 50% from the existing 100-year rainfall event (no climate change) and are subject to agreement with Thames Water and the Canal & River Trust.

Table 1: Proposed discharge rates for the 100-year event + 40% climate change

	Plot A	Plot B	Plot C	Total
Area (as % of site)	15%	22%	63%	100%
Discharge to canal (I/s)	4.4	13.1	17.3	35
Discharge to sewer (l/s)	19.8	22.6	83.8	126
Total discharge (l/s)	24.2	35.7	101.1	161

5.21. The proposed discharge rate for the 100-year event +40% allowance for climate change for the whole site is 161 l/s, which complies with the 50% of existing runoff rate requirement of the London Plan. The system will be designed such that runoff from the 100-year event +40% for future climate change is fully retained on the site within attenuation storage and discharged at a controlled rate. Runoff rates will be controlled by flow control devices for every outfall from the site and are to be designed to reduce runoff rates for the 1, 30 and 100 year return periods by a minimum 50% of existing rates.

Reference: WE/17015 Page: 18

5.22. ABG have provided specifications for the proposed blue roofs and combination biodiverse/blue roofs including storage volumes and discharge rates. MicroDrainage (Source Control) has been used to calculate the volumes of below-ground attenuation storage required. A summary of the attenuation storage volumes is presented in Table 2. Calculation sheets are included in Appendix C.

Table 2: Proposed attenuation storage volumes

	Plot A	Plot B	Plot C	Total
Blue roof volume (m³)	13.9	41.7	55.0	111
Below ground storage volume (m³)	34.2	34.2	150	218
Total attenuation volume (m³)	48.1	75.9	205	329

- 5.23. For extreme events greater than the 100-year event +40%, the below ground storage may reach full capacity, in which case surface water would backup and overflow onto the site before flowing overland into the drainage system in St Pancras Way.
- 5.24. The site will remain 100% hard standing post-development, however, the proposed array of biodiverse roofs will result in a significant reduction of hard roof area and will reduce the volume of surface water discharging from the site.

Sustainable Drainage Systems (SuDS)

- 5.25. The London Plan sets out a SuDS multi-functional benefits hierarchy, outlining solutions from the most sustainable drainage methods to the least sustainable methods as shown in Figure 5. The objective of the SuDS hierarchy is to ensure that surface water run-off is managed as close to its source as possible.
- 5.26. The aim of Sustainable Urban Drainage Systems (SuDS) is to emulate natural processes with the result that watercourses and storage areas receive the hydrological profiles under which they evolved, and that water quality in local ecosystems is protected or improved. The best practice guide states that a sustainable drainage system will¹¹:
 - reduce the impact of additional urbanisation on the frequency and size of floods;
 - protect or enhance river and groundwater quality;

Reference: WE/17015 Page: 19

¹¹ CIRIA C523 - Sustainable Urban Drainage Systems - Best Practice Manual

- be sympathetic to the needs of the local environment and community; and
- encourage natural groundwater recharge.
- 5.27. A large proportion of the site area is occupied by roof space and, and following the SuDS hierarchy shown in Figure 5, biodiverse roofs are included wherever possible on all the major buildings.

Most Sustainable	SUDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
	Living roofs	✓	~	~
	Basins and ponds - Constructed wetlands - Balancing ponds - Detention basins - Retention ponds	V	•	V
	Filter strips and swales	~	~	~
	Infiltration devices - soakaways - infiltration trenches and basins	•	,	•
V	Permeable surfaces and filter drains - gravelled areas - solid paving blocks - porous paviors	V	•	
Least Sustainable	Tanked systems - over-sized pipes/tanks - storms cells	•		

Figure 5 - SuDS Hierarch

- 5.28. Green roofs are considered amongst the most sustainable of all the SuDS techniques, providing similar benefits as greenfield land such as:
 - reduced rainwater runoff;
 - enhanced roof insulation properties;
 - attractive visual appearance;
 - reduction in urban heat island effect;
 - enhanced roof lifespan by protecting underlying waterproofing system; and,
 - provision of green space in urban areas and encouragement of biodiversity.
- 5.29. It should be noted that green roofs are suitable for use in combination with photovoltaics. The presence of a green roof beneath photovoltaic cells has been shown to cool the ambient air temperature around the photovoltaic cells making them more efficient.
- 5.30. Due to the constrained nature of the site, there is very limited space for the provision of basins or ponds and it is not feasible to include these SuDS elements into the design.

Additionally, the geology beneath the site is not suited to the use of infiltration devices as a means of discharging surface water directly to the ground. Figure 4c in Appendix B of the SFRA shows the site is "not within a zone of high or probable compatibility for infiltration SuDS; however bespoke solutions may be applicable".

- 5.31. The first basement level extends beneath most of the site. The strip of land along the side of the canal is not capable of supporting any SuDS elements and is reserved for the ongoing maintenance and support of the canal. The remaining external areas change in elevation by approximately 2m from the canal to the road, which makes the use of permeable surfaces with a granular sub-base unsuitable.
- 5.32. The remaining choice for storage attenuation is within an underground storage structure, which is proposed to attenuate any surface water not captured by the blue roofs, discharging to the TWUL sewer network.

SuDS Management and Maintenance

- 5.33. Management and maintenance of the drainage network, including the biodiverse roof areas and underground storage tank, will be the responsibility of the freeholder of the site. Management and maintenance agreements and plans will be arranged prior to completion of development.
- 5.34. Management and maintenance of the SuDS elements should be carried out in accordance with the supplier's guidance and specification.

Reference: WE/17015 Page: 21

6. SUMMARY OF FLOOD RISK ASSESSMENT

_				
1. Development site and location				
a. Where is the development site located?	2 - 6 St Pancras Way, London, NW1 0TB			
b. What is the current use of the site?	Office space, Ted Baker HQ, data centre			
c. Which Flood Zone (for river or sea flooding) is the site within?	Flood Zone 1			
2. Development proposals				
a. What are the development proposal(s) for this site? Will this involve a change of use of the site and, if so, what will that change be?	Following demolition of the Ugly Brown Building, proposals to erect multiple mixed use buildings comprising of business floorspace, hotel, retail units, and residential accommodation.			
b. In terms of vulnerability to flooding, what is the vulnerability classification of the proposed development?	More vulnerable due to residential component			
c. What is the expected or estimated lifetime of the proposed development likely to be?	100 years			
3. Sequential test				
a. What other locations with a lower risk of flooding have you considered for the proposed development?	N/A			
b. If you have not considered any other locations, what are the reasons for this?	N/A			
c. Explain why you consider the development cannot reasonably be located within an area with the lowest probability of flooding (Flood Zone 1); and, if your chosen site is within Flood Zone 3, explain why you consider the development cannot reasonably be located in Flood Zone 2.	N/A			
d. As well as flood risk from rivers or the sea, have you taken account of the risk from any other sources of flooding in selecting the location for the development?	N/A			
4. Climate Change				
How is flood risk at the site likely to be affected by climate change?	Extreme rainfall events will become more frequent and more intense. An increase in rainfall of 40% has been used in the assessment in line with national guidance.			

Reference: WE/17015 Page: 22

5. Site specific flood risk	
a. What is/ are the main source(s) of flood risk to the site?	Surface water flooding
b. What is the probability of the site flooding, taking account of the maps of flood risk available from the Environment Agency, the local planning authority's Strategic Flood Risk Assessment and any further flood risk information?	Less than 0.1% annual probability of flooding from rivers or the sea. EA online map indicates the site is at very low risk from surface water, however St Pancras Way adjacent to the site is at low to medium risk. The site is also within a critical drainage area. The risk of flooding from all other sources is considered to be very low
c. Are you aware of any other sources of flooding that may affect the site?	No
d. What is the expected depth and level for the design flood?	No flooding expected for the 1% annual probability event including climate change due to the proposed surface water management plan
e. Are properties expected to flood internally in the design flood and to what depth?	No
f. How will the development be made safe from flooding and the impacts of climate change, for its lifetime?	The surface water management system will be maintained for its lifetime to ensure the development is safe from flooding.
g. How will you ensure that the development and any measures to protect the site from flooding will not cause any increase in flood risk off-site and elsewhere? Have you taken into account the impacts of climate change, over the expected lifetime of the development?	Surface water will be attenuated significantly reducing the pre-development peak runoff rate using flow control devices.
h. Are there any opportunities offered by the development to reduce the causes and impacts of flooding?	The site currently has no surface water attenuation measures and is 100% hardstanding. The proposals will include significant surface water attenuation.
6. Surface water management	
a. What are the existing surface water drainage arrangements for the site?	The existing site drains entirely to the TWUL combined sewer network
b. If known, what (approximately) are the existing rates and volumes of surface water run-off generated by the site?	The peak storm runoff for the 100 year event is estimated at 322 l/s
c. What are the proposals for managing and discharging surface water from the site, including any measures for restricting discharge rates?	Runoff from roofs will be attenuated and stored on using combination biodiverse/blue roof systems and flow control devices into the canal. Runoff from remaining areas will be attenuated in below ground attenuation storage with a flow control devices limiting discharge into the public sewer network.

d. How will you prevent run-off from the completed development causing an impact elsewhere?	The surface water management system has been designed to the 100-year rainfall event including an allowance for climate change and provides a significant reduction on pre-development runoff rates.
e. Where applicable, what are the plans for the ongoing operation and/or maintenance of the surface water drainage systems?	An appropriate maintenance plan will be provided prior to construction
7. Occupants and users of the developme	ent
a. Will the development proposals increase the overall number of occupants and/or people using the building or land, compared with the current use? If this is the case, by approximately how many will the number(s) increase?	The number of occupants will increase post development due to the new residential units and increased density. However, the flood risk to the site is considered to be very low, and therefore no increase to occupants is anticipated.
b. Will the proposals change the nature or times of occupation or use, such that it may affect the degree of flood risk to these people?	The flood risk is considered very low and therefore the proposals do not have an effect on flood risk
c. Where appropriate, are you able to demonstrate how the occupants and users that may be more vulnerable to the impact of flooding (e.g., residents who will sleep in the building; people with health or mobility issues; etc.,) will be located primarily in the parts of the building and site that are at lowest risk of flooding? If not, are there any overriding reasons why this approach is not being followed?	N/A
8. Exception test	
a. Would the proposed development provide wider sustainability benefits to the community? If so, could these benefits be considered to outweigh the flood risk to and from the proposed development?	N/A
b. How can it be demonstrated that the proposed development will remain safe over its lifetime without increasing flood risk elsewhere?	N/A
c. Will it be possible for the development to reduce flood risk overall (e.g. through the provision of improved drainage)?	N/A

9. Residual risk	
a. What flood related risks will remain after the flood risk management and mitigation measures have been implemented?	There remains a residual risk to parts of the site from surface water/sewer flooding in extreme rainfall events of greater than 0.1% annual probability.
b. How, and by whom, will these risks be managed over the lifetime of the development?	Maintenance of the SuDS elements will be managed by an appropriate management group for the lifetime of the development.
10. Flood risk assessment credentials	
a. Who has undertaken the flood risk assessment?	Water Environment Ltd on behalf of GD Partnership
b. When was the flood risk assessment completed?	July 2017

7. **CONCLUSIONS**

- 7.1. The risk of flooding to the site has been considered from all sources and is assessed to be low. The greatest risk is from surface water flooding as a result of exceedance of the onsite drainage system, however the surface water management plan is designed to contain the 1% annual probability +40% climate change event within SuDS elements.
- 7.2. A reduction in runoff rates from the existing site of 50% will be achieved by attenuating the 1% annual probability +40% event using paved-over blue roofs, combination biodiverse/blue roof systems and below ground storage. The site has very limited space and options for the use of SuDS, however the reduction in runoff rates achieved on the proposed development is in line with the London Plan Policy 5.13 and significantly decreases the risk of flooding elsewhere. Discharge to the canal will also help alleviate pressure on the TWUL sewer network within the local area.
- 7.3. A suitable management and maintenance plan will be necessary in order to guarantee the effectiveness of the SuDS elements and ensure that a low risk of flooding to the site, and surrounding third-party land, is maintained.
- 7.4. Future owners and occupants of the basement units should be encouraged to sign up for the emergency text alerts provided by the London Borough of Camden.

Reference: WE/17015 Page: 26

APPENDIX A - DRAWINGS

Drawing 1- Topographic Survey

Clugston Survey Services Drawing Nos. 3948/10/001 and 3948/10/002

Topographic survey of the site showing existing levels, buildings and infrastructure.

Drawing 2 - Proposed Basement Plan B2

Bennetts Associates Architects Drawing No. 1603_P_098 Rev C

Proposed level 2 basement layout plan

Drawing 3 - Proposed Basement Plan B1

Bennetts Associates Architects Drawing No. 1603_P_099 Rev F

Proposed level 1 basement layout plan

Drawing 4 - Proposed Level 00

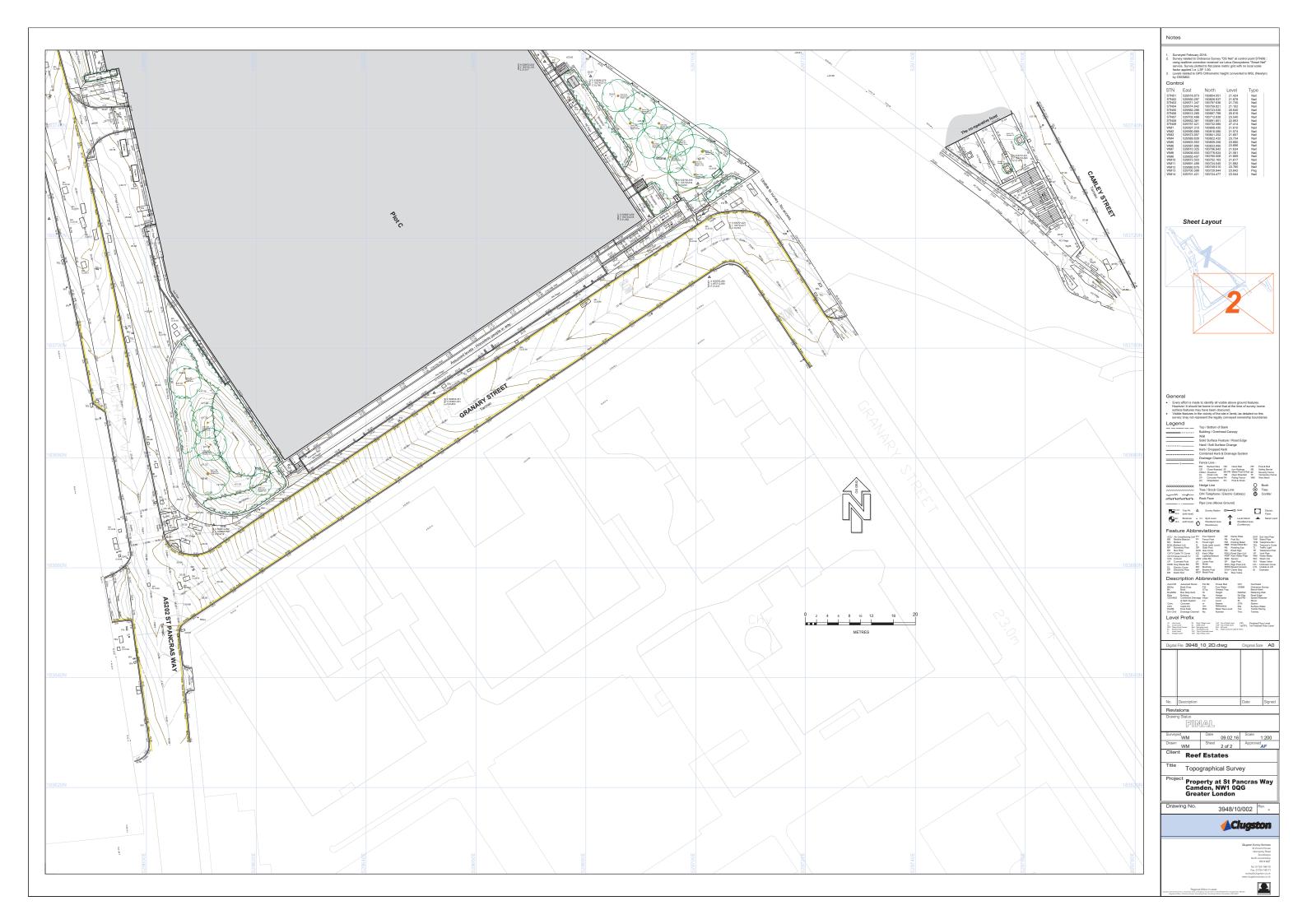
Bennetts Associates Architects Drawing No. 1603_P_100 Rev H

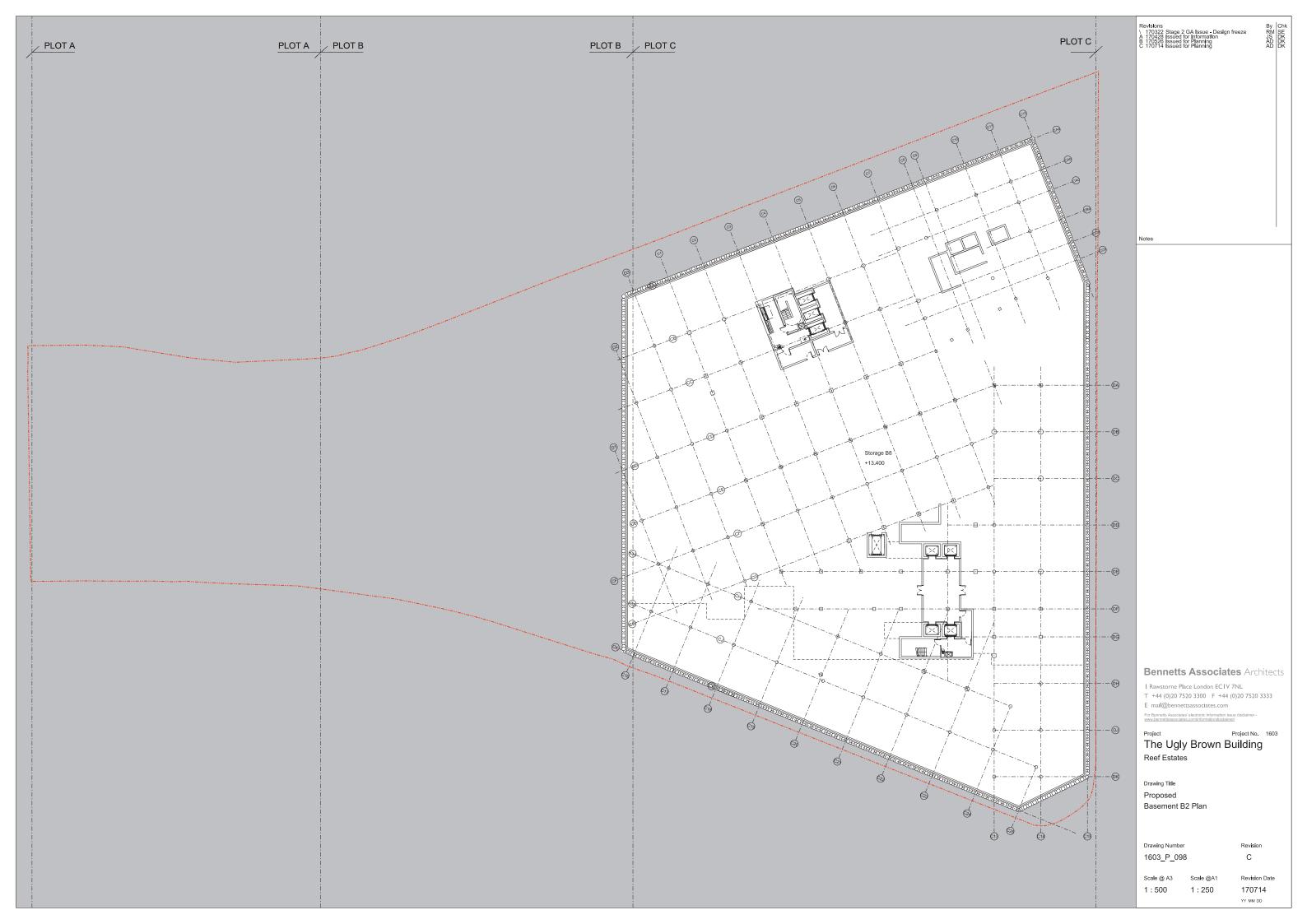
Proposed ground floor level and landscaping

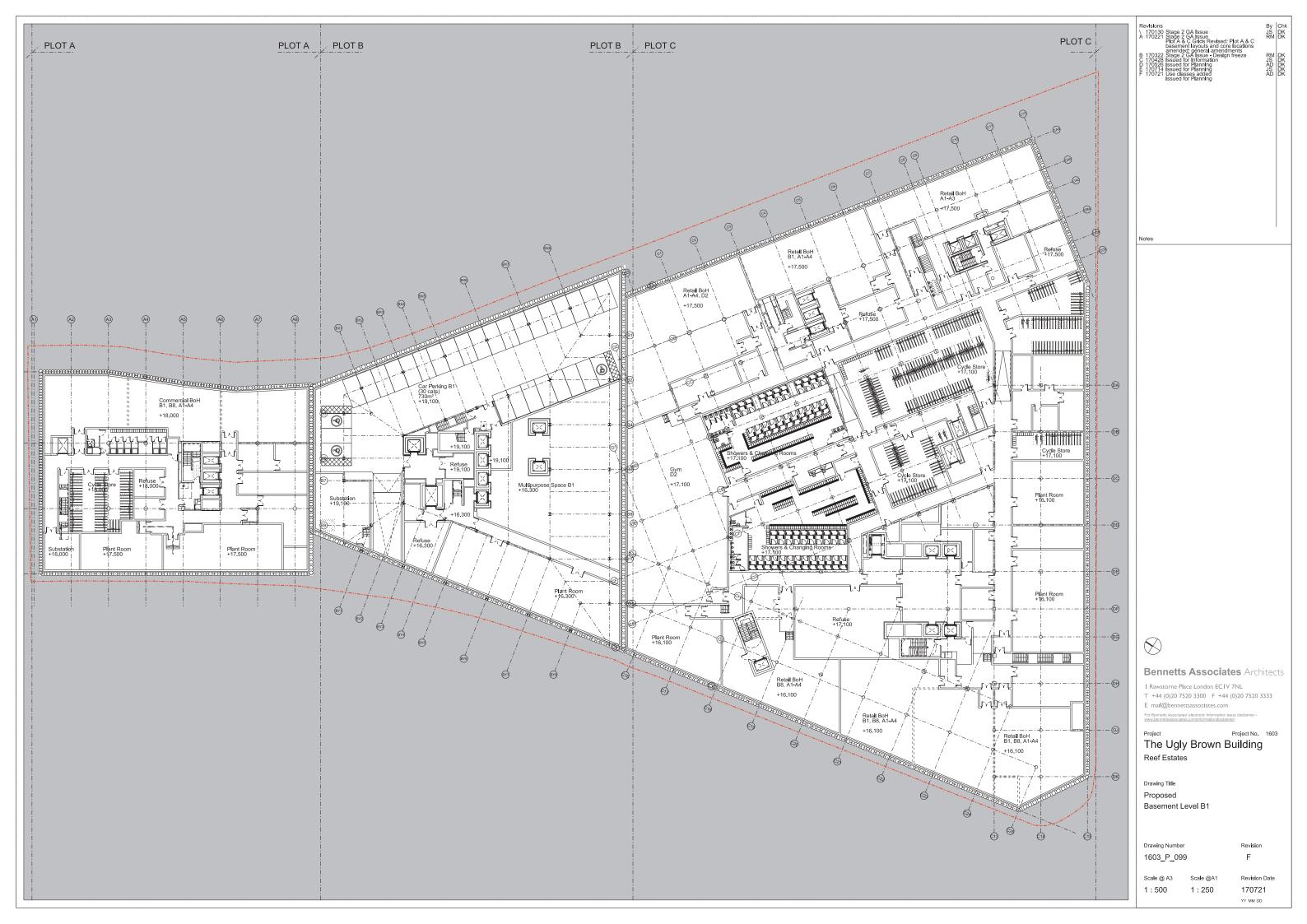
Drawing 5 - Proposed Roof Plan

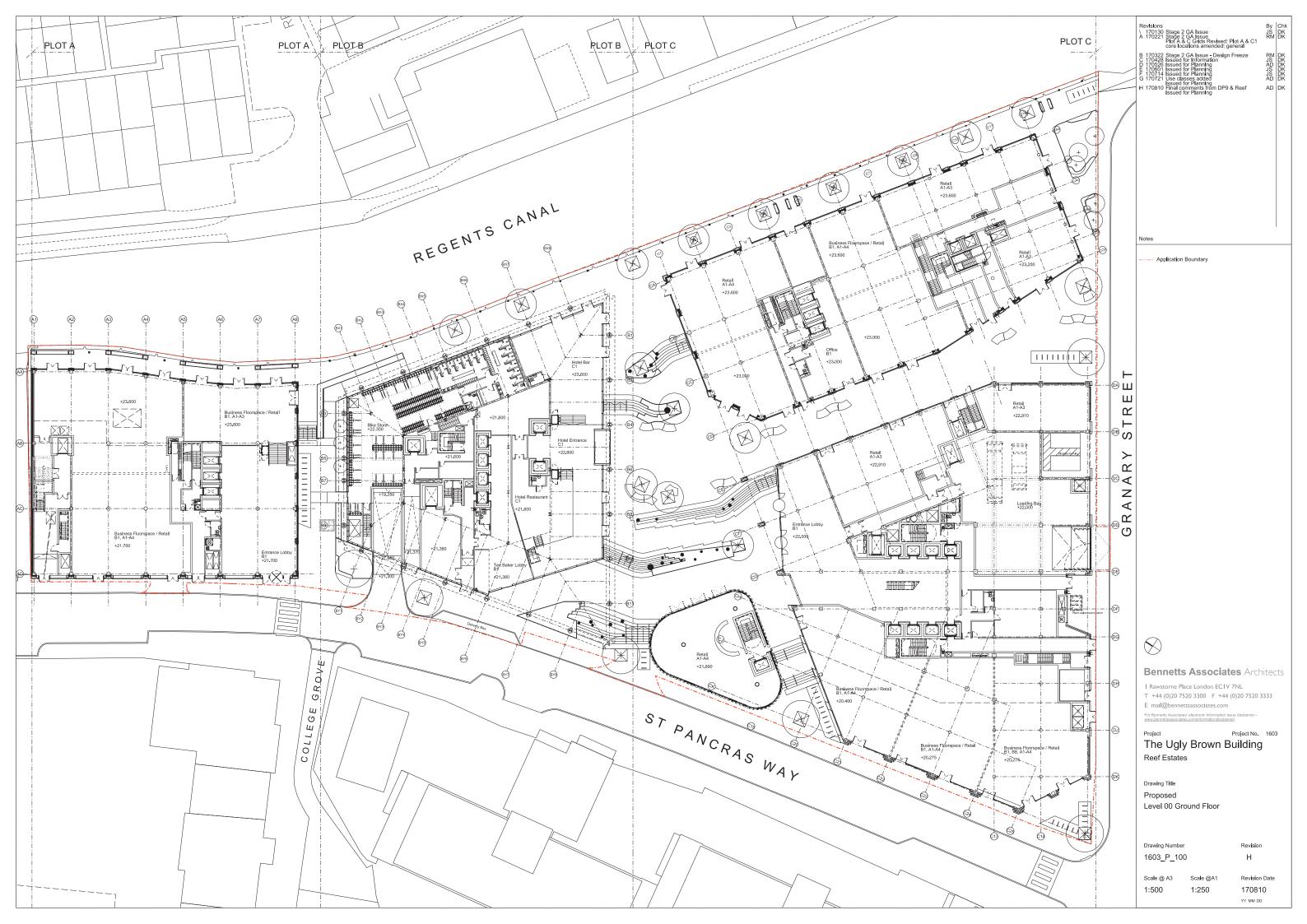
Bennetts Associates Architects Drawing No. 1603_P_RP Rev C

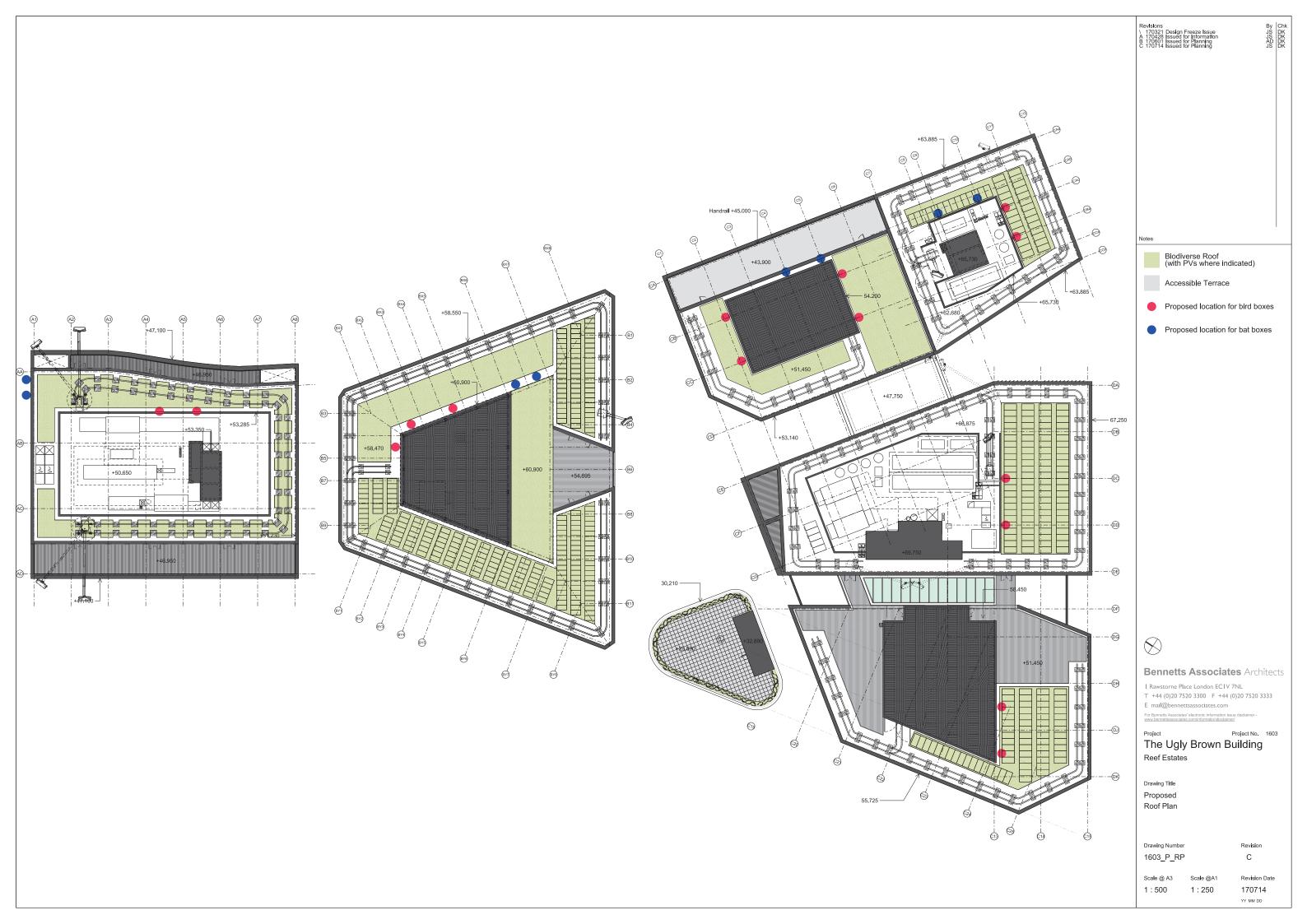
Proposed roof layout plan

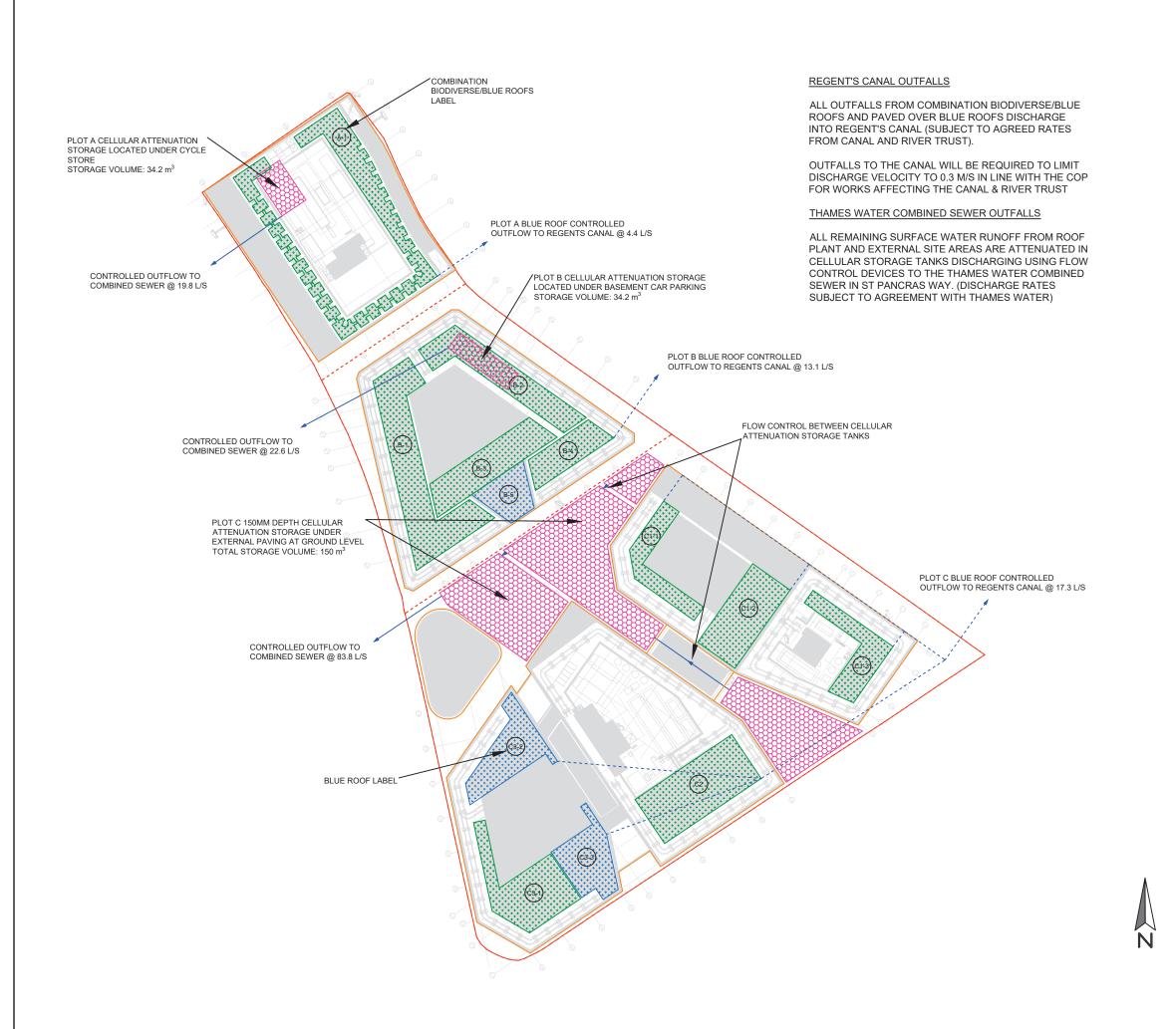

Drawing 6 - Proposed Drainage Strategy

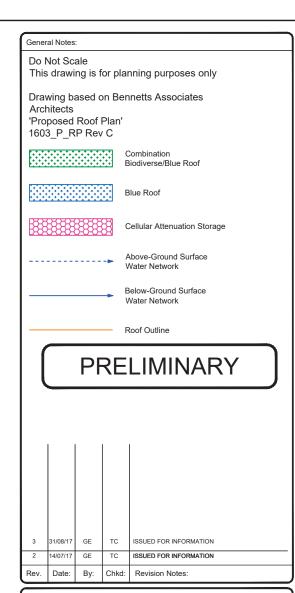

GDP Drawing No. 16-017-SK01 Rev 3


Layout of the proposed SuDS elements


Reference: WE/17015 Page: 27







The Cart Lodge, Lullingstone Lane, Eynsford, Kent. DA40HZ Tel: 01322 868622 Fax: 01322 861050 Email: contact@gdteam.co.uk

Client:

REEF ESTATES LTD

Project:

THE UGLY BROWN BUILDING

Drawing:

Job No:

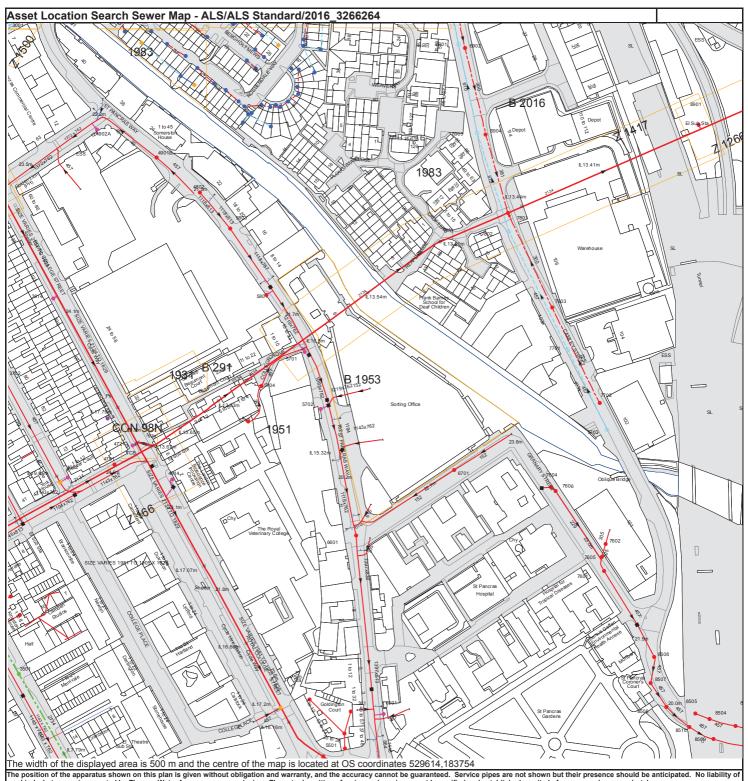
SUSTAINABLE DRAINAGE **STRATEGY**

Scale: NTS at A3 Drawn: GE Checked: TC Date:Jul'17

Drawing No

16-017-SK01

Rev:


Flood Risk Assessment and SuDS Strategy

APPENDIX B - THAMES WATER ASSET SEARCH

Reference: WE/17015 Page: 28

Date: 31/08/17

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
36DI	n/a	n/a
3501	22.84	8.17
36EB 4602	n/a n/a	n/a n/a
471A	n/a	n/a
4701	23.71	13.66
4721	23.86	n/a
4614	n/a	n/a
5718	20.05	17.31
5704	19.71	16.96
5701	21.24	14.4
55AE 5702	n/a n/a	n/a n/a
55AJ	n/a	n/a
6601	19.88	14.88
6501	n/a	n/a
6701	n/a	n/a
7604	23.2	22.52
7803	26.85	23.93
7606	n/a	n/a
7701	27.5	24.8
7702 7605	27.5 n/a	25 n/a
7601	23.22	22.53
7602	n/a	n/a
7703	27.5	25.4
8507	n/a	n/a
8508	n/a	n/a
8506	19.98	19.05
8505	20.03	19.46
8901 8504	27.36 20.07	13.72 19.31
8503	20.07	19.28
5501	18.95	15.59
55AI	n/a	n/a
55AF	n/a	n/a
8510	n/a	n/a
8509	n/a	n/a
59DH	n/a	n/a
59DI	n/a	n/a
59FH 59FI	n/a n/a	n/a n/a
59AF	n/a	n/a
59FD	n/a	n/a
59FG	n/a	n/a
5801	n/a	n/a
59AE	n/a	n/a
59DG	n/a	n/a
59AJ 59AD	n/a	n/a
59BA	n/a n/a	n/a n/a
59BC	n/a	n/a
59BB	n/a	n/a
59AC	n/a	n/a
59AB	n/a	n/a
59EG	n/a	n/a
59FC	n/a	n/a
59EF 59EH	n/a n/a	n/a n/a
6901	n/a 27.2	23.25
6902	27.75	22.6
6903	26.5	23.55
6904	26.5	22
7801	26.5	21.44
7802	26.5	23.9
49DF	n/a	n/a
50EC 3814	n/a 23.94	n/a n/a
4902A	n/a	n/a n/a
49DI	n/a	n/a
4901B	21.24	19.17
49CC	n/a	n/a
49DG	n/a	n/a
49CD	n/a	n/a
49AJ	n/a	n/a
4802 49CB	21.26	17.29
59EC	n/a n/a	n/a n/a
59AH	n/a n/a	n/a n/a
5803	21.36	16.99
59DJ	n/a	n/a
59EB	n/a	n/a
59AG	n/a	n/a
59FJ	n/a	n/a
3001	25.29	12.67
The position of the apparatus shown on this	alan is given without obligation and warrants on	d the accuracy cannot be guaranteed. Service pipes are not
	Dian is given without obligation and warranty, an	

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

ALS Sewer Map Key

Public Sewer Types (Operated & Maintained by Thames Water)

Foul: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.

Surface Water: A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses. þ

Combined: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.

Trunk Foul ļ Trunk Surface Water Storm Relief i

Proposed Thames Water Foul Sewer Bio-solids (Sludge) Trunk Combined Proposed Thames Surface Vent Pipe ۵ þ 4

Water Sewer Gallery † †

Foul Rising Main

End Items

Combined Rising Main Rising

Water

Surface

Main

Proposed Thames Water Rising Main 4

Sludge Rising Main

Vacuum

ÅŤ

Undefined End

Outfall

 $\dot{}$

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

4) Most private pipes are not shown on our plans, as in the past, this information has

5) 'na' or '0' on a manhole level indicates that data is unavailable.

not been recorded

Other Symbols

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Sewer Fittings

Symbols used on maps which do not fall under other general categories

Public/Private Pumping Station

Change of characteristic indicator (C.O.C.I.)

Invert Level Ø

Summit ∇

Areas

Lines denoting areas of underground surveys, etc.

Agreement

Operational Site

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

([[]]

Weir

Operational Controls

Vent Column

Dam Chase

Fitting

Meter

M 0

Air Valve

Tunnel

Chamber

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Surface Water Sewer Proposed Gulley Culverted Watercourse Combined Sewer Foul Sewer End symbols appear at the start or end of a sewer pipe. Examples: an Ondefined End at the start of a sewer indicates that Thannes Water has no knowledge of the position of the sewer upstream of that symbol. Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Abandoned Sewer

Inlet 6 6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL14W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Sewer Flooding History Enquiry

GD Partnership Ltd

Search address supplied Ted Baker Ltd

6a

St. Pancras Way

London NW1 0TB

Your reference 6a StPancrass Way

Our reference SFH/SFH Standard/2016_3265554

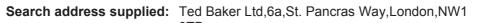
Received date 24 February 2016

Search date 24 February 2016

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13


T 0118 925 1504

E searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Sewer Flooding

History Enquiry

This search is recommended to check for any sewer flooding in a specific address or area

TWUL, trading as Property Searches, are responsible in respect of the following:-

- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

E searches@thameswater.co.uk
I www.thameswaterpropertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Sewer Flooding

History Enquiry

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter).
 Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters
 a building or passes below a suspended floor. For reporting purposes,
 buildings are restricted to those normally occupied and used for
 residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to
 include in the Regulatory Register that is presented annually to the
 Director General of Water Services. These are defined as properties that
 have suffered, or are likely to suffer, internal flooding from public foul,
 combined or surface water sewers due to overloading of the sewerage
 system more frequently than the relevant reference period (either once or
 twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

E searches@thameswater.co.uk
I www.thameswaterpropertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

APPENDIX C - CALCULATION SHEETS

- UK SuDS Greenfield Calculator greenfield runoff
- MicroDrainage Existing runoff
- MicroDrainage Proposed discharge to TW sewer and attenuation storage
- ABG Proposed combination biodiverse/blue roof discharge rates to Regent's Canal and attenuation storage

Reference: WE/17015 Page: 29

Date: 31/08/17

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Water Environment

Site name: Ugly Brown Building

NW1 0TB Site location:

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site coordinates

Latitude: 51.53783° N

Longitude: 0.13244° W

Reference: 5906391

2017-03-16T10:22:42 Date:

Methodology	IH124
-------------	-------

Site characteristics

Methodology

Qbar estimation method	om SPR and SAAR			
SPR estimation method	Calculate from SOIL type			
	Default	Edited		
SOIL type	4	4		
HOST class				
SPR/SPRHOST	0.47	0.47		

Hydrological characteristics	Default	Edited
SAAR (mm)	620	620
Hydrological region	6	6
Growth curve factor: 1 year	0.85	0.85
Growth curve factor: 30 year	2.3	2.3
Growth curve factor: 100 year	3.19	3.19

Notes:

(1) Is $Q_{RAR} < 2.0 \text{ l/s/ha}$?

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3?

Greenfield runoff rates	Default	Edited
Qbar (l/s)	4.77	4.77
1 in 1 year (I/s)	4.05	4.05
1 in 30 years (l/s)	10.96	10.96
1 in 100 years (I/s)	15.21	15.21

GD Partnership Ltd	Page 1	
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		_ Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_1y_FSR.srcx	Checked by	Dialilage
Micro Drainage	Source Control 2017.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	20.258	0.258	88.9	4.0	0 K
30	min	Summer	20.262	0.262	91.9	4.1	0 K
60	min	Summer	20.252	0.252	84.4	3.8	0 K
120	min	Summer	20.217	0.217	63.7	2.8	0 K
180	min	Summer	20.193	0.193	51.2	2.2	0 K
240	min	Summer	20.178	0.178	43.3	1.8	0 K
360	min	Summer	20.156	0.156	33.3	1.3	0 K
480	min	Summer	20.141	0.141	27.6	1.1	0 K
600	min	Summer	20.131	0.131	23.8	0.9	0 K
720	min	Summer	20.123	0.123	20.9	0.8	0 K
960	min	Summer	20.107	0.107	16.8	0.6	0 K
1440	min	Summer	20.089	0.089	12.5	0.4	0 K
2160	min	Summer	20.075	0.075	9.3	0.3	0 K
2880	min	Summer	20.067	0.067	7.6	0.2	0 K
4320	min	Summer	20.059	0.059	5.6	0.2	0 K
5760	min	Summer	20.055	0.055	4.8	0.2	0 K
7200	min	Summer	20.052	0.052	4.0	0.1	0 K
8640	min	Summer	20.050	0.050	3.5	0.1	0 K
10080	min	Summer	20.047	0.047	3.1	0.1	0 K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	32.223	0.0	68.9	14
30	min	Summer	20.981	0.0	89.7	22
60	min	Summer	13.233	0.0	113.2	36
120	min	Summer	8.176	0.0	139.8	66
180	min	Summer	6.139	0.0	157.5	96
240	min	Summer	5.003	0.0	171.1	126
360	min	Summer	3.720	0.0	190.8	188
480	min	Summer	3.010	0.0	205.9	246
600	min	Summer	2.553	0.0	218.3	306
720	min	Summer	2.233	0.0	229.1	366
960	min	Summer	1.806	0.0	247.1	488
1440	min	Summer	1.340	0.0	275.0	726
2160	min	Summer	0.995	0.0	306.3	1080
2880	min	Summer	0.805	0.0	330.2	1460
4320	min	Summer	0.597	0.0	367.3	2184
5760	min	Summer	0.483	0.0	396.3	2928
7200	min	Summer	0.410	0.0	420.5	3640
8640	min	Summer	0.359	0.0	441.5	4400
10080	min	Summer	0.320	0.0	460.1	5120

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		_ Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_1y_FSR.srcx	Checked by	brairiage
Micro Drainage	Source Control 2017.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Winter	20.274	0.274	100.5	4.5	ОК
30	min	Winter	20.273	0.273	99.7	4.5	0 K
60	min	Winter	20.244	0.244	78.4	3.6	0 K
120	min	Winter	20.196	0.196	52.8	2.2	0 K
180	min	Winter	20.173	0.173	40.6	1.7	0 K
240	min	Winter	20.156	0.156	33.3	1.3	0 K
360	min	Winter	20.134	0.134	24.9	1.0	0 K
480	min	Winter	20.122	0.122	20.3	0.8	0 K
600	min	Winter	20.109	0.109	17.3	0.6	0 K
720	min	Winter	20.100	0.100	15.1	0.5	0 K
960	min	Winter	20.087	0.087	12.2	0.4	0 K
1440	min	Winter	20.074	0.074	9.1	0.3	0 K
2160	min	Winter	20.064	0.064	6.9	0.2	0 K
2880	min	Winter	20.058	0.058	5.5	0.2	0 K
4320	min	Winter	20.052	0.052	4.1	0.1	0 K
5760	min	Winter	20.049	0.049	3.3	0.1	0 K
7200	min	Winter	20.045	0.045	2.8	0.1	0 K
8640	min	Winter	20.041	0.041	2.5	0.1	0 K
10080	min	Winter	20.038	0.038	2.2	0.1	0 K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Winter	32.223	0.0	77.1	14
30	min	Winter	20.981	0.0	100.5	22
60	min	Winter	13.233	0.0	126.7	36
120	min	Winter	8.176	0.0	156.6	68
180	min	Winter	6.139	0.0	176.3	96
240	min	Winter	5.003	0.0	191.6	126
360	min	Winter	3.720	0.0	213.7	184
480	min	Winter	3.010	0.0	230.6	246
600	min	Winter	2.553	0.0	244.5	306
720	min	Winter	2.233	0.0	256.5	366
960	min	Winter	1.806	0.0	276.7	484
1440	min	Winter	1.340	0.0	308.0	712
2160	min	Winter	0.995	0.0	343.1	1092
2880	min	Winter	0.805	0.0	369.9	1432
4320	min	Winter	0.597	0.0	411.4	2168
5760	min	Winter	0.483	0.0	443.9	2832
7200	min	Winter	0.410	0.0	471.0	3576
8640	min	Winter	0.359	0.0	494.4	4400
10080	min	Winter	0.320	0.0	515.3	5040

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_1y_FSR.srcx	Checked by	Didinage
Micro Drainage	Source Control 2017.1	

Rainfall Details

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.600 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 1.140

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.380	4	8	0.380	8	12	0.380

GD Partnership Ltd		Page 1
The Cart Lodge		
Lullingstone Lane		٧.
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_30y_FSR.srcx	Checked by	Drainage
Micro Drainage	Source Control 2017.1	

Summary of Results for 30 year Return Period

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	20.406	0.406	218.9	8.5	0 K
30	min	Summer	20.412	0.412	225.9	8.6	0 K
60	min	Summer	20.393	0.393	202.3	8.1	0 K
120	min	Summer	20.339	0.339	149.0	6.5	0 K
180	min	Summer	20.296	0.296	116.9	5.2	0 K
240	min	Summer	20.269	0.269	97.1	4.4	0 K
360	min	Summer	20.235	0.235	73.3	3.3	0 K
480	min	Summer	20.209	0.209	59.5	2.6	0 K
600	min	Summer	20.192	0.192	50.7	2.1	0 K
720	min	Summer	20.180	0.180	44.3	1.8	0 K
960	min	Summer	20.161	0.161	35.3	1.4	0 K
1440	min	Summer	20.136	0.136	25.7	1.0	0 K
2160	min	Summer	20.115	0.115	18.7	0.7	0 K
2880	min	Summer	20.099	0.099	14.8	0.5	0 K
4320	min	Summer	20.081	0.081	10.8	0.3	0 K
5760	min	Summer	20.072	0.072	8.7	0.3	0 K
7200	min	Summer	20.066	0.066	7.3	0.2	0 K
8640	min	Summer	20.062	0.062	6.3	0.2	0 K
10080	min	Summer	20.059	0.059	5.6	0.2	0 K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	79.107	0.0	169.1	13
30	min	Summer	51.269	0.0	219.2	21
60	min	Summer	31.749	0.0	271.5	36
120	min	Summer	19.074	0.0	326.2	66
180	min	Summer	14.006	0.0	359.3	96
240	min	Summer	11.200	0.0	383.1	126
360	min	Summer	8.170	0.0	419.1	188
480	min	Summer	6.525	0.0	446.3	248
600	min	Summer	5.477	0.0	468.3	306
720	min	Summer	4.746	0.0	487.0	368
960	min	Summer	3.783	0.0	517.6	486
1440	min	Summer	2.746	0.0	563.4	720
2160	min	Summer	1.990	0.0	612.7	1088
2880	min	Summer	1.583	0.0	649.8	1444
4320	min	Summer	1.146	0.0	705.3	2176
5760	min	Summer	0.910	0.0	747.1	2856
7200	min	Summer	0.761	0.0	781.0	3568
8640	min	Summer	0.658	0.0	809.6	4400
10080	min	Summer	0.581	0.0	834.5	5136

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_30y_FSR.srcx	Checked by	Didiriage
Micro Drainage	Source Control 2017.1	

Summary of Results for 30 year Return Period

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Winter	20.429	0.429	247.6	9.0	ОК
30	min	Winter	20.426	0.426	244.4	9.0	0 K
60	min	Winter	20.383	0.383	189.5	7.9	0 K
120	min	Winter	20.304	0.304	123.2	5.4	0 K
180	min	Winter	20.263	0.263	92.2	4.2	0 K
240	min	Winter	20.237	0.237	74.4	3.4	0 K
360	min	Winter	20.200	0.200	54.7	2.3	0 K
480	min	Winter	20.180	0.180	44.1	1.8	0 K
600	min	Winter	20.165	0.165	37.0	1.5	0 K
720	min	Winter	20.152	0.152	32.0	1.3	0 K
960	min	Winter	20.135	0.135	25.5	1.0	0 K
1440	min	Winter	20.115	0.115	18.5	0.7	0 K
2160	min	Winter	20.093	0.093	13.5	0.4	0 K
2880	min	Winter	20.081	0.081	10.7	0.3	0 K
4320	min	Winter	20.068	0.068	7.8	0.2	0 K
5760	min	Winter	20.061	0.061	6.2	0.2	0 K
7200	min	Winter	20.057	0.057	5.3	0.2	0 K
8640	min	Winter	20.054	0.054	4.6	0.2	0 K
10080	min	Winter	20.052	0.052	4.1	0.1	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Winter	79.107	0.0	189.4	14
30	min	Winter	51.269	0.0	245.5	21
60	min	Winter	31.749	0.0	304.0	36
120	min	Winter	19.074	0.0	365.3	66
180	min	Winter	14.006	0.0	402.4	96
240	min	Winter	11.200	0.0	429.0	126
360	min	Winter	8.170	0.0	469.4	186
480	min	Winter	6.525	0.0	499.8	244
600	min	Winter	5.477	0.0	524.5	306
720	min	Winter	4.746	0.0	545.4	362
960	min	Winter	3.783	0.0	579.7	484
1440	min	Winter	2.746	0.0	631.0	726
2160	min	Winter	1.990	0.0	686.2	1104
2880	min	Winter	1.583	0.0	727.7	1464
4320	min	Winter	1.146	0.0	789.9	2148
5760	min	Winter	0.910	0.0	836.8	2848
7200	min	Winter	0.761	0.0	874.7	3640
8640	min	Winter	0.658	0.0	906.7	4208
0080	min	Winter	0.581	0.0	934.6	5208

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:53	Designed by WaterEnvironment	Drainage
File 17015_existing_30y_FSR.srcx	Checked by	Drainage
Micro Drainage	Source Control 2017.1	·

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.600 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 1.140

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.380	4	8	0.380	8	12	0.380

GD Partnership Ltd		Page 1
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:37	Designed by WaterEnvironment	Drainage
File 17015_existing_100y_FSR.srcx	Checked by	Didiriage
Micro Drainage	Source Control 2017.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	20.458	0.458	284.7	9.6	0 K
30	min	Summer	20.466	0.466	295.6	9.7	0 K
60	min	Summer	20.444	0.444	267.5	9.3	0 K
120	min	Summer	20.388	0.388	195.9	8.0	0 K
180	min	Summer	20.344	0.344	153.1	6.7	0 K
240	min	Summer	20.308	0.308	126.2	5.6	0 K
360	min	Summer	20.267	0.267	95.2	4.3	0 K
480	min	Summer	20.241	0.241	76.8	3.5	0 K
600	min	Summer	20.220	0.220	65.3	2.9	0 K
720	min	Summer	20.203	0.203	56.6	2.4	0 K
960	min	Summer	20.182	0.182	45.1	1.9	0 K
1440	min	Summer	20.154	0.154	32.6	1.3	0 K
2160	min	Summer	20.130	0.130	23.4	0.9	0 K
2880	min	Summer	20.115	0.115	18.5	0.7	0 K
4320	min	Summer	20.092	0.092	13.3	0.4	0 K
5760	min	Summer	20.080	0.080	10.6	0.3	0 K
7200	min	Summer	20.073	0.073	9.0	0.3	0 K
8640	min	Summer	20.068	0.068	7.7	0.2	0 K
10080	min	Summer	20.063	0.063	6.7	0.2	0 K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	102.810	0.0	219.8	13
30	min	Summer	67.170	0.0	287.2	22
60	min	Summer	41.754	0.0	357.0	36
120	min	Summer	25.051	0.0	428.4	66
180	min	Summer	18.324	0.0	470.0	96
240	min	Summer	14.589	0.0	498.9	126
360	min	Summer	10.583	0.0	542.9	186
480	min	Summer	8.418	0.0	575.8	246
600	min	Summer	7.044	0.0	602.3	306
720	min	Summer	6.087	0.0	624.6	366
960	min	Summer	4.831	0.0	660.9	484
1440	min	Summer	3.483	0.0	714.7	726
2160	min	Summer	2.507	0.0	771.6	1088
2880	min	Summer	1.983	0.0	813.8	1464
4320	min	Summer	1.423	0.0	876.3	2184
5760	min	Summer	1.124	0.0	922.6	2920
7200	min	Summer	0.935	0.0	959.7	3552
8640	min	Summer	0.805	0.0	990.8	4392
10080	min	Summer	0.708	0.0	1017.6	4960

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:37	Designed by WaterEnvironment	Drainage
File 17015_existing_100y_FSR.srcx	Checked by	brainage
Micro Drainage	Source Control 2017.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Winter	20.492	0.492	321.2	10.1	0 K
30	min	Winter	20.492	0.492	321.7	10.1	0 K
60	min	Winter	20.430	0.430	249.6	9.1	0 K
120	min	Winter	20.356	0.356	161.7	7.1	0 K
180	min	Winter	20.301	0.301	121.0	5.4	0 K
240	min	Winter	20.269	0.269	97.1	4.4	0 K
360	min	Winter	20.230	0.230	70.7	3.2	0 K
480	min	Winter	20.203	0.203	56.6	2.4	0 K
600	min	Winter	20.186	0.186	47.2	2.0	0 K
720	min	Winter	20.174	0.174	41.1	1.7	0 K
960	min	Winter	20.154	0.154	32.6	1.3	0 K
1440	min	Winter	20.130	0.130	23.6	0.9	0 K
2160	min	Winter	20.108	0.108	16.9	0.6	0 K
2880	min	Winter	20.093	0.093	13.5	0.4	0 K
4320	min	Winter	20.076	0.076	9.7	0.3	0 K
5760	min	Winter	20.068	0.068	7.8	0.2	0 K
7200	min	Winter	20.063	0.063	6.5	0.2	0 K
8640	min	Winter	20.059	0.059	5.6	0.2	0 K
10080	min	Winter	20.056	0.056	4.9	0.2	0 K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Winter	102.810	0.0	246.1	14
30	min	Winter	67.170	0.0	321.6	21
60	min	Winter	41.754	0.0	399.9	36
120	min	Winter	25.051	0.0	479.8	66
180	min	Winter	18.324	0.0	526.4	96
240	min	Winter	14.589	0.0	558.8	126
360	min	Winter	10.583	0.0	608.0	188
480	min	Winter	8.418	0.0	644.9	248
600	min	Winter	7.044	0.0	674.6	308
720	min	Winter	6.087	0.0	699.5	364
960	min	Winter	4.831	0.0	740.2	488
1440	min	Winter	3.483	0.0	800.4	728
2160	min	Winter	2.507	0.0	864.1	1108
2880	min	Winter	1.983	0.0	911.5	1468
4320	min	Winter	1.423	0.0	981.4	2128
5760	min	Winter	1.124	0.0	1033.3	2896
7200	min	Winter	0.935	0.0	1074.9	3600
8640	min	Winter	0.805	0.0	1109.7	4264
10080	min	Winter	0.708	0.0	1139.7	5000

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 11/05/2017 19:37	Designed by WaterEnvironment	Drainage
File 17015_existing_100y_FSR.srcx	Checked by	brairiage
Micro Drainage	Source Control 2017.1	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.600 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 1.140

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.380	4	8	0.380	8	12	0.380

GD Partnership Ltd		Page 1
The Cart Lodge		
Lullingstone Lane		
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	brairiage
Micro Drainage	Source Control 2017.1	

Half Drain Time : 14 minutes.

	Stor	rm	Max	Max	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Infiltration	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	16.429	0.429	0.0	20.0	20.0	22.4	ОК
			16.514		0.0	20.0	20.0	26.8	0 K
60	min	Summer	16.495	0.495	0.0	20.0	20.0	25.9	0 K
120	min	Summer	16.368	0.368	0.0	20.0	20.0	19.2	0 K
180	min	Summer	16.265	0.265	0.0	19.9	19.9	13.9	0 K
240	min	Summer	16.206	0.206	0.0	19.4	19.4	10.7	0 K
360	min	Summer	16.165	0.165	0.0	15.5	15.5	8.6	0 K
480	min	Summer	16.144	0.144	0.0	12.7	12.7	7.5	0 K
600	min	Summer	16.130	0.130	0.0	10.8	10.8	6.8	0 K
720	min	Summer	16.120	0.120	0.0	9.5	9.5	6.2	0 K
960	min	Summer	16.105	0.105	0.0	7.6	7.6	5.5	0 K
1440	min	Summer	16.088	0.088	0.0	5.5	5.5	4.6	0 K
2160	min	Summer	16.074	0.074	0.0	4.0	4.0	3.8	0 K
2880	min	Summer	16.065	0.065	0.0	3.2	3.2	3.4	0 K
4320	min	Summer	16.055	0.055	0.0	2.3	2.3	2.8	0 K
5760	min	Summer	16.048	0.048	0.0	1.8	1.8	2.5	0 K
7200	min	Summer	16.044	0.044	0.0	1.5	1.5	2.3	0 K
8640	min	Summer	16.041	0.041	0.0	1.3	1.3	2.1	0 K

	Stor Ever		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	143.934	0.0	37.7	20
30	min	Summer	94.038	0.0	49.3	29
60	min	Summer	58.456	0.0	61.4	46
120	min	Summer	35.072	0.0	73.6	76
180	min	Summer	25.654	0.0	80.8	104
240	min	Summer	20.424	0.0	85.8	132
360	min	Summer	14.816	0.0	93.3	192
480	min	Summer	11.786	0.0	99.0	252
600	min	Summer	9.862	0.0	103.5	312
720	min	Summer	8.522	0.0	107.4	372
960	min	Summer	6.764	0.0	113.6	492
1440	min	Summer	4.876	0.0	122.8	736
2160	min	Summer	3.509	0.0	132.6	1100
2880	min	Summer	2.776	0.0	139.9	1468
4320	min	Summer	1.993	0.0	150.6	2196
5760	min	Summer	1.574	0.0	158.6	2936
7200	min	Summer	1.310	0.0	165.0	3600
8640	min	Summer	1.127	0.0	170.3	4344

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	1

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080	min S	Summer	16.038	0.038	0.0	1.1	1.1	2.0	ОК
15	min W	Vinter	16.501	0.501	0.0	20.0	20.0	26.2	0 K
30	min W	Vinter	16.588	0.588	0.0	20.0	20.0	30.7	0 K
60	min W	Vinter	16.541	0.541	0.0	20.0	20.0	28.2	0 K
120	min W	Vinter	16.331	0.331	0.0	20.0	20.0	17.3	0 K
180	min W	Vinter	16.205	0.205	0.0	19.4	19.4	10.7	0 K
240	min W	Vinter	16.171	0.171	0.0	16.2	16.2	8.9	0 K
360	min W	Vinter	16.139	0.139	0.0	12.0	12.0	7.2	0 K
480	min W	Vinter	16.121	0.121	0.0	9.6	9.6	6.3	0 K
600	min W	Vinter	16.109	0.109	0.0	8.1	8.1	5.7	0 K
720	min W	Vinter	16.100	0.100	0.0	7.0	7.0	5.2	0 K
960	min W	Vinter	16.088	0.088	0.0	5.6	5.6	4.6	0 K
1440	min W	Vinter	16.074	0.074	0.0	4.0	4.0	3.8	0 K
2160	min W	Vinter	16.062	0.062	0.0	2.9	2.9	3.2	0 K
2880	min W	Vinter	16.055	0.055	0.0	2.3	2.3	2.8	0 K
4320	min W	Vinter	16.046	0.046	0.0	1.6	1.6	2.4	0 K
5760	min W	Vinter	16.041	0.041	0.0	1.3	1.3	2.1	0 K
7200	min W	Vinter	16.037	0.037	0.0	1.1	1.1	1.9	0 K
8640	min W	Vinter	16.034	0.034	0.0	0.9	0.9	1.8	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	0.992	0.0	174.9	5144
15	min	Winter	143.934	0.0	42.3	21
30	min	Winter	94.038	0.0	55.3	30
60	min	Winter	58.456	0.0	68.7	48
120	min	Winter	35.072	0.0	82.5	80
180	min	Winter	25.654	0.0	90.5	104
240	min	Winter	20.424	0.0	96.0	132
360	min	Winter	14.816	0.0	104.5	192
480	min	Winter	11.786	0.0	110.9	252
600	min	Winter	9.862	0.0	116.0	314
720	min	Winter	8.522	0.0	120.2	372
960	min	Winter	6.764	0.0	127.2	490
1440	min	Winter	4.876	0.0	137.6	732
2160	min	Winter	3.509	0.0	148.5	1108
2880	min	Winter	2.776	0.0	156.7	1444
4320	min	Winter	1.993	0.0	168.7	2204
5760	min	Winter	1.574	0.0	177.6	2920
7200	min	Winter	1.310	0.0	184.8	3656
8640	min	Winter	1.127	0.0	190.8	4304

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		٧
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	

Storm Event			Max Infiltration (1/s)	Control	Σ Outflow	Volume	Status
10080 min Winter	16.032	0.032	0.0	0.8	0.8	1.7	0 К

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³)

10080 min Winter 0.992 0.0 195.9 4984

GD Partnership Ltd		Page 4
The Cart Lodge		
Lullingstone Lane		٧
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.600	Shortest Storm (mins) 15
Ratio R	0.410	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.140

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.047	4	8	0.047	8	12	0.047

GD Partnership Ltd		Page 5
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	brainage
Micro Drainage	Source Control 2017.1	1

Model Details

Storage is Online Cover Level (m) 17.500

Cellular Storage Structure

Invert Level (m) 16.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 55.0 0.0 0.601 1.0 0.0

0.600 55.0 0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0203-2000-0600-2000 Design Head (m) 0.600 Design Flow (1/s) 20.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 203 Invert Level (m) 16.000 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.600 20.0 Flush-Flo™ 0.298 20.0 Kick-Flo® 0.490 18.2 Mean Flow over Head Range - 15.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	7.0	1.000	25.5	2.400	38.9	5.500	58.1
0.200	19.3	1.200	27.8	2.600	40.4	6.000	60.6
0.300	20.0	1.400	30.0	3.000	43.3	6.500	62.6
0.400	19.5	1.600	32.0	3.500	46.6	7.000	65.0
0.500	18.3	1.800	33.8	4.000	49.8	7.500	67.3
0.600	20.0	2.000	35.6	4.500	52.7	8.000	69.5
0.800	22.9	2.200	37.3	5.000	55.4	8.500	71.7

GD Partnership Ltd		Page 6
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		— Micro
Date 29/06/2017 17:43	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	·

<u>Hydro-Brake® Optimum Outflow Control</u>

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 9.000 73.8 9.500 75.8

GD Partnership Ltd		Page 1
The Cart Lodge		
Lullingstone Lane		٧
Eynsford DA4 0HZ		Mirro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	

Half Drain Time : 12 minutes.

	Storn	n	Max	Max	Max	Max		Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min S	Summer	17.949	0.449	0.0	23.0		23.0	25.6	ОК
30	min S	Summer	18.036	0.536	0.0	23.0		23.0	30.6	0 K
60	min S	Summer	18.016	0.516	0.0	22.9		22.9	29.4	0 K
120	min S	Summer	17.884	0.384	0.0	23.0		23.0	21.9	0 K
180	min S	Summer	17.777	0.277	0.0	22.9		22.9	15.8	0 K
240	min S	Summer	17.715	0.215	0.0	22.3		22.3	12.2	0 K
360	min S	Summer	17.673	0.173	0.0	17.7		17.7	9.9	0 K
480	min S	Summer	17.651	0.151	0.0	14.6		14.6	8.6	0 K
600	min S	Summer	17.636	0.136	0.0	12.4		12.4	7.8	0 K
720	min S	Summer	17.626	0.126	0.0	10.8		10.8	7.2	0 K
960	min S	Summer	17.610	0.110	0.0	8.7		8.7	6.3	0 K
1440	min S	Summer	17.592	0.092	0.0	6.3		6.3	5.3	0 K
2160	min S	Summer	17.577	0.077	0.0	4.6		4.6	4.4	0 K
2880	min S	Summer	17.568	0.068	0.0	3.6		3.6	3.9	0 K
4320	min S	Summer	17.557	0.057	0.0	2.6		2.6	3.3	0 K
5760	min S	Summer	17.551	0.051	0.0	2.1		2.1	2.9	0 K
7200	min S	Summer	17.546	0.046	0.0	1.7		1.7	2.6	0 K
8640	min S	Summer	17.543	0.043	0.0	1.5		1.5	2.4	0 K

	Stor Ever		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	143.934	0.0	43.1	20
30	min	Summer	94.038	0.0	56.4	29
60	min	Summer	58.456	0.0	70.1	46
120	min	Summer	35.072	0.0	84.1	76
180	min	Summer	25.654	0.0	92.3	104
240	min	Summer	20.424	0.0	98.0	132
360	min	Summer	14.816	0.0	106.6	192
480	min	Summer	11.786	0.0	113.1	252
600	min	Summer	9.862	0.0	118.3	312
720	min	Summer	8.522	0.0	122.7	372
960	min	Summer	6.764	0.0	129.8	492
1440	min	Summer	4.876	0.0	140.4	736
2160	min	Summer	3.509	0.0	151.6	1100
2880	min	Summer	2.776	0.0	159.9	1444
4320	min	Summer	1.993	0.0	172.1	2156
5760	min	Summer	1.574	0.0	181.3	2920
7200	min	Summer	1.310	0.0	188.5	3664
8640	min	Summer	1.127	0.0	194.7	4328

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Dialilage
Micro Drainage	Source Control 2017.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
10080	min S	Summer	17.540	0.040	0.0	1.3	1.3	2.3	ОК
15	min W	Vinter	18.023	0.523	0.0	23.0	23.0	29.8	0 K
30	min W	Vinter	18.414	0.914	0.0	28.1	28.1	34.5	0 K
60	min W	Vinter	18.061	0.561	0.0	23.0	23.0	32.0	0 K
120	min W	Vinter	17.844	0.344	0.0	23.0	23.0	19.6	0 K
180	min W	Vinter	17.714	0.214	0.0	22.3	22.3	12.2	0 K
240	min W	Vinter	17.679	0.179	0.0	18.5	18.5	10.2	0 K
360	min W	Vinter	17.646	0.146	0.0	13.7	13.7	8.3	0 K
480	min W	Vinter	17.627	0.127	0.0	11.0	11.0	7.2	0 K
600	min W	Vinter	17.615	0.115	0.0	9.3	9.3	6.5	0 K
720	min W	Vinter	17.605	0.105	0.0	8.0	8.0	6.0	0 K
960	min W	Vinter	17.593	0.093	0.0	6.4	6.4	5.3	0 K
1440	min W	Vinter	17.578	0.078	0.0	4.6	4.6	4.4	0 K
2160	min W	Vinter	17.565	0.065	0.0	3.3	3.3	3.7	0 K
2880	min W	Vinter	17.558	0.058	0.0	2.7	2.7	3.3	0 K
4320	min W	Vinter	17.548	0.048	0.0	1.9	1.9	2.7	0 K
5760	min W	Vinter	17.543	0.043	0.0	1.5	1.5	2.4	0 K
7200	min W	Vinter	17.539	0.039	0.0	1.2	1.2	2.2	0 K
8640	min W	Vinter	17.536	0.036	0.0	1.1	1.1	2.1	0 K

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	0.992	0.0	199.9	4984
15	min	Winter	143.934	0.0	48.3	21
30	min	Winter	94.038	0.0	63.1	29
60	min	Winter	58.456	0.0	78.5	48
120	min	Winter	35.072	0.0	94.2	78
180	min	Winter	25.654	0.0	103.4	104
240	min	Winter	20.424	0.0	109.8	132
360	min	Winter	14.816	0.0	119.4	192
480	min	Winter	11.786	0.0	126.7	252
600	min	Winter	9.862	0.0	132.5	312
720	min	Winter	8.522	0.0	137.4	374
960	min	Winter	6.764	0.0	145.4	490
1440	min	Winter	4.876	0.0	157.2	738
2160	min	Winter	3.509	0.0	169.8	1088
2880	min	Winter	2.776	0.0	179.1	1460
4320	min	Winter	1.993	0.0	192.8	2140
5760	min	Winter	1.574	0.0	203.0	2840
7200	min	Winter	1.310	0.0	211.2	3672
8640	min	Winter	1.127	0.0	218.0	4376

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Mirro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	-

Storm Event			Max Infiltration (1/s)		Σ Outflow	Volume	Status
10080 min Winter	17.534	0.034	0.0	0.9	0.9	1.9	ОК

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³)

10080 min Winter 0.992 0.0 223.9 5016

GD Partnership Ltd		Page 4
The Cart Lodge		
Lullingstone Lane		٧
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Drainage
Micro Drainage	Source Control 2017.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.600	Shortest Storm (mins) 15
Ratio R	0.410	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.160

							(mins) To:	
0	4	0.053	4	8	0.053	8	12	0.053

GD Partnership Ltd		Page 5
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2017.1	·

Model Details

Storage is Online Cover Level (m) 19.100

Cellular Storage Structure

Invert Level (m) 17.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 60.0 0.0 0.601 1.0 0.0

0.600 60.0 0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0216-2300-0600-2300 Design Head (m) 0.600 Design Flow (1/s) 23.0 Calculated Flush-Flo™ Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 216 Invert Level (m) 17.500 Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.600 23.0 Flush-Flo™ 0.311 23.0 Kick-Flo® 0.497 21.0 Mean Flow over Head Range - 17.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	7.3	1.000	29.4	2.400	44.7	5.500	66.9
0.200	21.1	1.200	32.0	2.600	46.5	6.000	69.8
0.300	22.9	1.400	34.5	3.000	49.8	6.500	72.1
0.400	22.5	1.600	36.8	3.500	53.7	7.000	74.8
0.500	21.1	1.800	38.9	4.000	57.3	7.500	77.5
0.600	23.0	2.000	41.0	4.500	60.7	8.000	80.1
0.800	26.4	2.200	42.9	5.000	63.9	8.500	82.6

GD Partnership Ltd		Page 6
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Mirro
Date 29/06/2017 17:48	Designed by WaterEnvironment	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2017.1	•

<u>Hydro-Brake® Optimum Outflow Control</u>

GD Partnership Ltd		Page 1
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 30/06/2017 10:42	Designed by WaterEnvironment	Drainage
File 17015_PlotC_storage_100y40	Checked by	brairiage
Micro Drainage	Source Control 2017.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	17.750	0.650	84.0	97.5	ОК
30	min	Summer	17.876	0.776	84.0	116.4	0 K
60	min	Summer	17.856	0.756	84.0	113.4	0 K
120	min	Summer	17.685	0.585	84.0	87.8	0 K
180	min	Summer	17.539	0.439	83.4	65.9	0 K
240	min	Summer	17.451	0.351	81.0	52.6	0 K
360	min	Summer	17.386	0.286	64.7	43.0	0 K
480	min	Summer	17.351	0.251	53.3	37.7	0 K
600	min	Summer	17.327	0.227	45.5	34.1	0 K
720	min	Summer	17.309	0.209	39.7	31.4	0 K
960	min	Summer	17.285	0.185	32.1	27.7	0 K
1440	min	Summer	17.255	0.155	23.4	23.2	0 K
2160	min	Summer	17.230	0.130	17.0	19.4	0 K
2880	min	Summer	17.214	0.114	13.4	17.2	0 K
4320	min	Summer	17.196	0.096	9.7	14.4	0 K
5760	min	Summer	17.185	0.085	7.6	12.7	0 K
7200	min	Summer	17.177	0.077	6.4	11.6	0 K
8640	min	Summer	17.171	0.071	5.5	10.7	0 K
10080	min	Summer	17.167	0.067	4.8	10.0	0 K

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	143.934	0.0	159.8	20
30	min	Summer	94.038	0.0	208.9	29
60	min	Summer	58.456	0.0	259.9	46
120	min	Summer	35.072	0.0	311.9	76
180	min	Summer	25.654	0.0	342.2	106
240	min	Summer	20.424	0.0	363.2	132
360	min	Summer	14.816	0.0	395.2	192
480	min	Summer	11.786	0.0	419.2	252
600	min	Summer	9.862	0.0	438.5	312
720	min	Summer	8.522	0.0	454.7	372
960	min	Summer	6.764	0.0	481.1	492
1440	min	Summer	4.876	0.0	520.2	736
2160	min	Summer	3.509	0.0	561.8	1100
2880	min	Summer	2.776	0.0	592.6	1468
4320	min	Summer	1.993	0.0	637.9	2184
5760	min	Summer	1.574	0.0	671.8	2936
7200	min	Summer	1.310	0.0	698.8	3664
8640	min	Summer	1.127	0.0	721.4	4288
10080	min	Summer	0.992	0.0	740.9	5048

GD Partnership Ltd		Page 2
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 30/06/2017 10:42	Designed by WaterEnvironment	Drainage
File 17015_PlotC_storage_100y40	Checked by	Didiriage
Micro Drainage	Source Control 2017.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Winter	17.852	0.752	84.0	112.8	ОК
30	min	Winter	17.995	0.895	84.0	134.3	0 K
60	min	Winter	17.933	0.833	84.0	124.9	0 K
120	min	Winter	17.636	0.536	84.0	80.4	0 K
180	min	Winter	17.453	0.353	81.0	52.9	0 K
240	min	Winter	17.397	0.297	68.1	44.6	0 K
360	min	Winter	17.343	0.243	50.7	36.5	0 K
480	min	Winter	17.312	0.212	40.6	31.8	0 K
600	min	Winter	17.292	0.192	34.2	28.7	0 K
720	min	Winter	17.277	0.177	29.7	26.5	0 K
960	min	Winter	17.255	0.155	23.6	23.3	0 K
1440	min	Winter	17.230	0.130	17.1	19.5	0 K
2160	min	Winter	17.209	0.109	12.3	16.3	0 K
2880	min	Winter	17.196	0.096	9.7	14.4	0 K
4320	min	Winter	17.181	0.081	7.0	12.2	0 K
5760	min	Winter	17.172	0.072	5.5	10.7	0 K
7200	min	Winter	17.165	0.065	4.6	9.8	0 K
8640	min	Winter	17.160	0.060	3.9	9.0	0 K
10080	min	Winter	17.157	0.057	3.5	8.5	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Winter	143.934	0.0	179.0	21
30	min	Winter	94.038	0.0	234.0	31
60	min	Winter	58.456	0.0	291.1	48
120	min	Winter	35.072	0.0	349.3	80
180	min	Winter	25.654	0.0	383.3	104
240	min	Winter	20.424	0.0	406.8	134
360	min	Winter	14.816	0.0	442.7	192
480	min	Winter	11.786	0.0	469.5	254
600	min	Winter	9.862	0.0	491.1	314
720	min	Winter	8.522	0.0	509.3	374
960	min	Winter	6.764	0.0	538.9	494
1440	min	Winter	4.876	0.0	582.7	736
2160	min	Winter	3.509	0.0	629.2	1100
2880	min	Winter	2.776	0.0	663.7	1468
4320	min	Winter	1.993	0.0	714.5	2188
5760	min	Winter	1.574	0.0	752.4	2872
7200	min	Winter	1.310	0.0	782.7	3624
8640	min	Winter	1.127	0.0	808.0	4352
10080	min	Winter	0.992	0.0	829.8	5000

©1982-2017 XP Solutions

GD Partnership Ltd		Page 3
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 30/06/2017 10:42	Designed by WaterEnvironment	Drainage
File 17015_PlotC_storage_100y40	Checked by	Didiridge
Micro Drainage	Source Control 2017.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.600 Shortest Storm (mins) 15
Ratio R 0.410 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.593

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.198	4	8	0.198	8	12	0.198

GD Partnership Ltd		Page 4
The Cart Lodge		
Lullingstone Lane		4
Eynsford DA4 0HZ		Micro
Date 30/06/2017 10:42	Designed by WaterEnvironment	Drainage
File 17015_PlotC_storage_100y40	Checked by	brain lage
Micro Drainage	Source Control 2017.1	•

Model Details

Storage is Online Cover Level (m) 18.300

Tank or Pond Structure

Invert Level (m) 17.100

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 150.0 1.000 150.0 1.001 1.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0367-8400-1000-8400 Design Head (m) 1.000 Design Flow (1/s) 84.0 Flush-Flo™ Calculated Objective Minimise upstream storage Surface Application Sump Available Yes Diameter (mm) 367 Invert Level (m) 17.100 Minimum Outlet Pipe Diameter (mm) 450 Suggested Manhole Diameter (mm) 2100

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 84.0 Flush-Flo™ 0.523 84.0 Kick-Flo® 0.831 76.8 Mean Flow over Head Range - 64.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	10.4	1.200	91.7	3.000	143.3	7.000	216.9
0.200	36.8	1.400	98.8	3.500	154.5	7.500	224.4
0.300	69.0	1.600	105.5	4.000	164.9	8.000	231.6
0.400	82.5	1.800	111.7	4.500	174.7	8.500	238.6
0.500	83.9	2.000	117.6	5.000	183.9	9.000	245.4
0.600	83.5	2.200	123.2	5.500	192.7	9.500	252.0
0.800	78.3	2.400	128.5	6.000	201.1		
1.000	84.0	2.600	133.6	6.500	209.2		

©1982-2017 XP Solutions

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

abg creative geosynthetic engineering

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 29/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - A1 Option 3. Finish: Green Roof

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for FSR data:	London (NW)	

Input Parameters - Roof Information					
Catchment area:	309 m²	As supplied by Client			
Storage area:	309 m ²	As supplied by Client			
Maximum allowable runoff:	4.4 l/s	As supplied by Client			

Output - Rainfall Calculation						
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)		
5 mins	0.0602	20	0 hours and 30 minutes	2.4		
10 mins	0.0492	31	0 hours and 40 minutes	3.3		
15 mins	0.0397	35	0 hours and 50 minutes	3.7		
30 mins	0.0260	40	0 hours and 50 minutes	4.0		
1 hour	0.0163	38	0 hours and 50 minutes	3.9		
2 hours	0.0097	28	0 hours and 40 minutes	3.1		
4 hours	0.0057	16	0 hours and 20 minutes	2.0		
6 hours	0.0041	12	0 hours and 10 minutes	1.5		
10 hours	0.0028	10	0 hours and 10 minutes	1.0		
24 hours	0.0014	9	0 hours and 0 minutes	0.5		
48 hours	0.0008	8	0 hours and 0 minutes	0.3		

Total storage required: 12.4 m³

Output - Recommended Blue Roof System					
System Name:	ABG blueroof BRG B72				
Description:	72mm deep system including 40mm reservoir layer to store water for green roof vegetation				
Total storage capacity:	13.9 m ³				
Number of Blue Roof outlets:	2				

Notes:

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

abg ltd. E7 Meltham Mills Rd, Meltham, West Yorkshire, HD9 4DS
UK t 01484 852096 e geo@abgltd.com Export t+44(0)1484 852250 e export@abgltd.com

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 29/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - B-5. Finishes: Paved

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information			
Catchment area:	90 m²	As supplied by Client	
Storage area:	90 m ²	As supplied by Client	
Maximum allowable runoff:	1.3 l/s	As supplied by Client	

Output - Rainfall Calculation				
Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)	
0.0602	20	0 hours and 40 minutes	0.6	
0.0492	31	1 hour and 0 minutes	0.8	
0.0397	36	1 hour and 10 minutes	0.9	
0.0260	42	1 hour and 20 minutes	1.0	
0.0163	41	1 hour and 20 minutes	1.0	
0.0097	32	1 hour and 10 minutes	0.8	
0.0057	18	0 hours and 40 minutes	0.6	
0.0041	12	0 hours and 20 minutes	0.4	
0.0028	8	0 hours and 10 minutes	0.3	
0.0014	5	0 hours and 0 minutes	0.1	
0.0008	5	0 hours and 0 minutes	0.1	
	Rainfall (l/s/m²) 0.0602 0.0492 0.0397 0.0260 0.0163 0.0097 0.0057 0.0041 0.0028 0.0014	Rainfall (I/s/m²) Storage Required (I/m²) 0.0602 20 0.0492 31 0.0397 36 0.0260 42 0.0163 41 0.0097 32 0.0057 18 0.0041 12 0.0028 8 0.0014 5	Rainfall (I/s/m²) Storage Required (I/m²) Time to Empty 0.0602 20 0 hours and 40 minutes 0.0492 31 1 hour and 0 minutes 0.0397 36 1 hour and 10 minutes 0.0260 42 1 hour and 20 minutes 0.0163 41 1 hour and 20 minutes 0.0097 32 1 hour and 10 minutes 0.0057 18 0 hours and 40 minutes 0.0041 12 0 hours and 20 minutes 0.0028 8 0 hours and 10 minutes 0.0014 5 0 hours and 0 minutes	

Total storage required: 3.8 m³

Output - Recommended Blue Roof System		
System Name:	ABG blueroof BRB A56	
Description:	56mm deep system	
Total storage capacity:	4.2 m ³	
Number of Blue Roof outlets:	2	

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden Prepared for: Water Environment Limited

07/06/2017 Date: ABG Project ID: 11723

MG Notes/description: Drainage Area - B1 Option 3. Finishes: Brown

Input Parameters - Rainfall Information

Prepared by:

Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information

Catchment area:	341 m²	As supplied by Client
Storage area:	341 m^2	As supplied by Client
Maximum allowable runoff:	4.8 l/s	As supplied by Client

Output - Rainfall Calculation Time to Empty Restricted Outflow (I/s) **Duration** Rainfall (l/s/m²) Storage Required (I/m2) 0.0602 20 0 hours and 30 minutes 2.4 5 mins 10 mins 0.0492 31 0 hours and 50 minutes 3.4 15 mins 0.0397 36 0 hours and 50 minutes 3.7 30 mins 0.0260 41 1 hour and 0 minutes 4.1 0.0163 41 1 hour and 0 minutes 4.0 1 hour 0.0097 31 0 hours and 50 minutes 3.3 2 hours 4 hours 0.0057 18 0 hours and 20 minutes 2.2 6 hours 0.0041 13 0 hours and 10 minutes 1.6 10 hours 0.0028 10 0 hours and 10 minutes 1.1 24 hours 0.0014 9 0 hours and 0 minutes 0.5 8 0 hours and 0 minutes 0.3 48 hours 0.0008

14.1 m³ Total storage required:

Output - Recommended Blue Roof System

ABG blueroof BRB B72 System Name: Description: 72mmdeep system

Total storage capacity: 15.3 m³ Number of Blue Roof outlets: 2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 07/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - B2 Option 3. Finishes: Green

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information			
Catchment area:	204 m²	As supplied by Client	
Storage area:	204 m ²	As supplied by Client	
Maximum allowable runoff:	2.9 l/s	As supplied by Client	

Output - Rainfall Calculation				
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	1.4
10 mins	0.0492	31	0 hours and 50 minutes	1.9
15 mins	0.0397	36	1 hour and 0 minutes	2.1
30 mins	0.0260	41	1 hour and 10 minutes	2.3
1 hour	0.0163	41	1 hour and 10 minutes	2.3
2 hours	0.0097	31	0 hours and 50 minutes	2.0
4 hours	0.0057	18	0 hours and 30 minutes	1.3
6 hours	0.0041	12	0 hours and 20 minutes	1.0
10 hours	0.0028	9	0 hours and 10 minutes	0.6
24 hours	0.0014	7	0 hours and 0 minutes	0.3
48 hours	0.0008	7	0 hours and 0 minutes	0.2

Total storage required: 8.5 m³

Output - Recommended Blue Roof System		
System Name:	ABG blueroof BRB B72	
Description:	72mmdeep system	
Total storage capacity:	9.1 m ³	
Number of Blue Roof outlets:	2	

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

Project Name: Ugly Brown Building, Camden

Prepared for: Water Environment Limited

Date: 07/06/2017 ABG Project ID: 11723

Prepared by: MG
Notes/description: Drainage Area - B3 Option 3. Finishes: Green

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Input Parameters - Rainfall Information

•		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information

The state of the s			
Catchment area:	186 m²	As supplied by Client	
Storage area:	186 m²	As supplied by Client	
Maximum allowable runoff:	2.6 l/s	As supplied by Client	

Output - Rainfall Calculation				
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	1.4
10 mins	0.0492	31	0 hours and 50 minutes	1.9
15 mins	0.0397	35	1 hour and 0 minutes	2.1
30 mins	0.0260	40	1 hour and 0 minutes	2.3
1 hour	0.0163	39	1 hour and 0 minutes	2.2
2 hours	0.0097	29	0 hours and 50 minutes	1.8
4 hours	0.0057	16	0 hours and 20 minutes	1.2
6 hours	0.0041	11	0 hours and 20 minutes	0.9
10 hours	0.0028	9	0 hours and 10 minutes	0.6
24 hours	0.0014	7	0 hours and 0 minutes	0.3
48 hours	0.0008	7	0 hours and 0 minutes	0.2

Total storage required: 7.6 m³

Output - Recommended Blue Roof System

System Name: ABG blueroof BRB B72
Description: 72mmdeep system

Total storage capacity: 8.3 m³
Number of Blue Roof outlets: 2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 07/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - B4 Option 3. Finishes: Brown

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for FSR data:	London (NW)	

Input Parameters - Roof Information			
Catchment area:	107 m ²	As supplied by Client	
Storage area:	107 m^2	As supplied by Client	
Maximum allowable runoff:	1.5 l/s	As supplied by Client	

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 40 minutes	0.8
10 mins	0.0492	31	0 hours and 50 minutes	1.1
15 mins	0.0397	35	1 hour and 0 minutes	1.2
30 mins	0.0260	41	1 hour and 10 minutes	1.3
1 hour	0.0163	40	1 hour and 10 minutes	1.3
2 hours	0.0097	29	0 hours and 50 minutes	1.0
4 hours	0.0057	16	0 hours and 30 minutes	0.7
6 hours	0.0041	11	0 hours and 20 minutes	0.5
10 hours	0.0028	8	0 hours and 10 minutes	0.3
24 hours	0.0014	6	0 hours and 0 minutes	0.2
48 hours	0.0008	6	0 hours and 0 minutes	0.1

Total storage required: 4.4 m³

Output - Recommended Blue F	oof System
System Name:	ABG blueroof BRB B72
Description:	72mmdeep system
Total storage capacity:	4.8 m ³
Number of Blue Roof outlets:	2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

oject Name: Ugly Brown Building, Camden

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camde
Prepared for: Water Environment Limited

Date: 29/06/2017 ABG Project ID: 11723

Notes/description: Drainage Area - C3-2. Finishes: Paved

MG

•

Prepared by:

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for ESP data:	London (NIM)	

Location selected for FSR data: London (NW)

Input Parameters - Roof Information		
Catchment area:	163 m²	As supplied by Client
Storage area:	163 m ²	As supplied by Client
Maximum allowable runoff:	2.3 l/s	As supplied by Client

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 40 minutes	1.1
10 mins	0.0492	31	1 hour and 0 minutes	1.4
15 mins	0.0397	36	1 hour and 10 minutes	1.6
30 mins	0.0260	42	1 hour and 20 minutes	1.7
1 hour	0.0163	42	1 hour and 20 minutes	1.7
2 hours	0.0097	33	1 hour and 0 minutes	1.5
4 hours	0.0057	19	0 hours and 40 minutes	1.0
6 hours	0.0041	13	0 hours and 20 minutes	0.8
10 hours	0.0028	9	0 hours and 10 minutes	0.5
24 hours	0.0014	7	0 hours and 0 minutes	0.3
48 hours	0.0008	6	0 hours and 0 minutes	0.1

Total storage required: 7 m³

Output - Recommended Blue Ro	of System
System Name:	ABG blueroof BRB A56
Description:	56mm deep system
Total storage capacity:	7.6 m ³
Number of Blue Roof outlets:	2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 29/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - C3-3. Finishes: Paved

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information			
Catchment area:	140 m²	As supplied by Client	
Storage area:	140 m ²	As supplied by Client	
Maximum allowable runoff:	2.0 l/s	As supplied by Client	

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	1.1
10 mins	0.0492	31	0 hours and 50 minutes	1.4
15 mins	0.0397	35	1 hour and 0 minutes	1.6
30 mins	0.0260	40	1 hour and 10 minutes	1.7
1 hour	0.0163	39	1 hour and 0 minutes	1.7
2 hours	0.0097	29	0 hours and 50 minutes	1.4
4 hours	0.0057	16	0 hours and 30 minutes	0.9
6 hours	0.0041	11	0 hours and 20 minutes	0.7
10 hours	0.0028	8	0 hours and 10 minutes	0.4
24 hours	0.0014	6	0 hours and 0 minutes	0.2
48 hours	0.0008	6	0 hours and 0 minutes	0.1

Total storage required: 5.7 m³

Output - Recommended Blue R	oof System
System Name:	ABG blueroof BRB A56
Description:	56mm deep system
Total storage capacity:	6.5 m ³
Number of Blue Roof outlets:	2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

Project Name: Ugly Brown Building, Camden

Prepared for: Water Environment Limited

 Date:
 07/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - C1-1 Option 3. Finishes: Green

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Input Parameters - Rainfall Information Return period: 100 years As supplied by Client Allowance for Climate Change: 40 % As supplied by Client Rainfall ratio, R: 0.41 From statistics based on location (FSR) M5-60 expected rainfall: 20.6 mm/h From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information		
Catchment area:	111 m²	As supplied by Client
Storage area:	111 m ²	As supplied by Client
Maximum allowable runoff:	1.6 l/s	As supplied by Client

Output - Rainfal	l Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	0.9
10 mins	0.0492	30	0 hours and 50 minutes	1.2
15 mins	0.0397	35	0 hours and 50 minutes	1.4
30 mins	0.0260	39	1 hour and 0 minutes	1.5
1 hour	0.0163	37	1 hour and 0 minutes	1.4
2 hours	0.0097	26	0 hours and 40 minutes	1.1
4 hours	0.0057	14	0 hours and 20 minutes	0.7
6 hours	0.0041	10	0 hours and 10 minutes	0.5
10 hours	0.0028	8	0 hours and 10 minutes	0.4
24 hours	0.0014	6	0 hours and 0 minutes	0.2
48 hours	0.0008	6	0 hours and 0 minutes	0.1

Total storage required: 4.4 m³

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden Prepared for: Water Environment Limited

07/06/2017 Date: ABG Project ID: 11723 Prepared by: MG

Maximum allowable runoff:

Notes/description: Drainage Area - C1-2 Option 3. Finishes: Green

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for FSR data:	London (NW)	

Input Parameters - Roof Information Catchment area: 192 m² As supplied by Client Storage area: 192 m² As supplied by Client

2.7 l/s

As supplied by Client

Output - Rainfall	l Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	1.7
10 mins	0.0492	30	0 hours and 40 minutes	2.2
15 mins	0.0397	35	0 hours and 50 minutes	2.4
30 mins	0.0260	39	0 hours and 50 minutes	2.6
1 hour	0.0163	36	0 hours and 50 minutes	2.5
2 hours	0.0097	25	0 hours and 40 minutes	2.0
4 hours	0.0057	14	0 hours and 20 minutes	1.2
6 hours	0.0041	11	0 hours and 10 minutes	0.9
10 hours	0.0028	9	0 hours and 10 minutes	0.6
24 hours	0.0014	7	0 hours and 0 minutes	0.3
48 hours	0.0008	7	0 hours and 0 minutes	0.2

Total storage required: 7.5 m³

Output - Recommended Blue Roof	System
System Name:	ABG blueroof BRB B72
Description:	72mm deep system
Total storage capacity:	8.6 m ³
Number of Blue Roof outlets:	2

Notes:

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

www.abgltd.com

of Estimate

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 07/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - C1-3 Option 3. Finishes: Brown

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for FSR data:	London (NW)	

Input Parameters - Roof Information		
Catchment area:	133 m²	As supplied by Client
Storage area:	133 m ²	As supplied by Client
Maximum allowable runoff:	1.9 l/s	As supplied by Client

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	19	0 hours and 30 minutes	1.2
10 mins	0.0492	30	0 hours and 40 minutes	1.6
15 mins	0.0397	34	0 hours and 50 minutes	1.7
30 mins	0.0260	38	0 hours and 50 minutes	1.8
1 hour	0.0163	35	0 hours and 50 minutes	1.8
2 hours	0.0097	24	0 hours and 40 minutes	1.4
4 hours	0.0057	13	0 hours and 20 minutes	0.9
6 hours	0.0041	10	0 hours and 10 minutes	0.6
10 hours	0.0028	7	0 hours and 10 minutes	0.4
24 hours	0.0014	6	0 hours and 0 minutes	0.2
48 hours	0.0008	6	0 hours and 0 minutes	0.1

Total storage required: 5.1 m³

Output - Recommended Blue R	oof System
System Name:	ABG blueroof BRG B72
Description:	72mm deep system
Total storage capacity:	5.9 m ³
Number of Blue Roof outlets:	2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden
Prepared for: Water Environment Limited

 Date:
 07/06/2017

 ABG Project ID:
 11723

 Prepared by:
 MG

Notes/description: Drainage Area - C2 Option 3. Finishes: Brown

Input Parameters - Rainfall Information		
Return period:	100 years	As supplied by Client
Allowance for Climate Change:	40 %	As supplied by Client
Rainfall ratio, R:	0.41	From statistics based on location (FSR)
M5-60 expected rainfall:	20.6 mm/h	From statistics based on location (FSR)
Location selected for FSR data:	London (NW)	

Input Parameters - Roof Information		
Catchment area:	271 m²	As supplied by Client
Storage area:	271 m²	As supplied by Client
Maximum allowable runoff:	3.8 l/s	As supplied by Client

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 40 minutes	1.7
10 mins	0.0492	31	1 hour and 0 minutes	2.3
15 mins	0.0397	36	1 hour and 10 minutes	2.5
30 mins	0.0260	43	1 hour and 20 minutes	2.8
1 hour	0.0163	44	1 hour and 20 minutes	2.8
2 hours	0.0097	35	1 hour and 0 minutes	2.5
4 hours	0.0057	21	0 hours and 40 minutes	1.7
6 hours	0.0041	14	0 hours and 20 minutes	1.3
10 hours	0.0028	10	0 hours and 10 minutes	0.9
24 hours	0.0014	8	0 hours and 0 minutes	0.4
48 hours	0.0008	7	0 hours and 0 minutes	0.2

Total storage required: 11.8 m³

Output - Recommended Blue Ro	of System	
System Name:	ABG blueroof BRG B72	
Description:	72mm deep system	
Total storage capacity:	12.1 m ³	
Number of Blue Roof outlets:	2	

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

BLUE ROOF STORAGE AND OUTFLOW ESTIMATE

Project Name: Ugly Brown Building, Camden Prepared for: Water Environment Limited

08/06/2017 Date:

ABG Project ID: Prepared by: MG

Notes/description: Drainage Area - C3 Option 3. Finishes: Brown

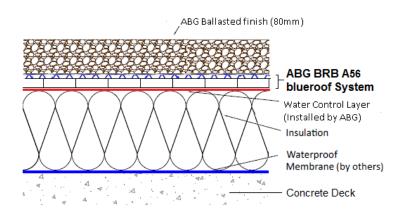
11723

Input Parameters - Rainfall Information Return period: 100 years As supplied by Client Allowance for Climate Change: 40 % As supplied by Client Rainfall ratio, R: From statistics based on location (FSR) 0.41 M5-60 expected rainfall: 20.6 mm/h From statistics based on location (FSR)

Location selected for FSR data: London (NW)

Input Parameters - Roof Information		
Catchment area:	211 m²	As supplied by Client
Storage area:	211 m ²	As supplied by Client
Maximum allowable runoff:	3.0 l/s	As supplied by Client

Output - Rain	fall Calculation			
Duration	Rainfall (l/s/m²)	Storage Required (I/m²)	Time to Empty	Restricted Outflow (I/s)
5 mins	0.0602	20	0 hours and 30 minutes	1.7
10 mins	0.0492	31	0 hours and 50 minutes	2.3
15 mins	0.0397	35	0 hours and 50 minutes	2.5
30 mins	0.0260	40	1 hour and 0 minutes	2.7
1 hour	0.0163	38	1 hour and 0 minutes	2.6
2 hours	0.0097	28	0 hours and 40 minutes	2.1
4 hours	0.0057	16	0 hours and 20 minutes	1.4
6 hours	0.0041	11	0 hours and 10 minutes	1.0
10 hours	0.0028	9	0 hours and 10 minutes	0.7
24 hours	0.0014	7	0 hours and 0 minutes	0.3
48 hours	0.0008	7	0 hours and 0 minutes	0.2

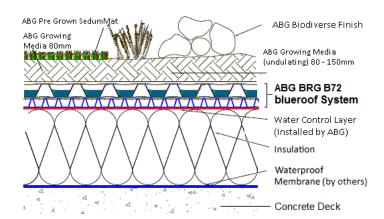

Total storage required: 8.5 m³

Output - Recommended Blue R	oof System
System Name:	ABG blueroof BRG B72
Description:	72mm deep system
Total storage capacity:	9.4 m ³
Number of Blue Roof outlets:	2

- 1. This document contains an estimate which has been prepared by ABG Ltd and is illustrative only and not a detailed design.
- 2. Further details on the theories used in this estimate are available upon request from ABG. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time.
- 3. This estimate is specific to the characteristics of ABG products and may not be applicable to other products.
- 4. The copyright in this document belongs to ABG Ltd.
- 5. The estimate given in this report is based on the stated parameters as per the brief. If these parameters are not correct or have changed, ABG should be contacted to provide a revised estimate.
- 6. No guarantee or liability can be drawn from the information in this report.
- 7. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.

blueroof System BRB A56

ABG **blueroof** systems provide temporary attenuation, filtration and controlled release of stormwater, containing key elements of a good SuDS design. The storage element of the system must be used in conjunction with ABG's **blueroof** restrictor chambers. These chambers are bespoke to each project in order to achieve the planning team's maximum outflow levels, and to suit the required build-up and final use of the podium/roof area.


ABG's blue roofs are generally used for zero falls, inverted/warm roof applications, under a mix of hard and soft landscaped finishes. Other blue roof systems and surface finishes are available. Please refer to ABG's Technical team for project/system specific advice & blue roof calculations.

System Properties				
Thickness at 2kPa	(mm)	56	±10%	EN ISO 9863-1
Maximum saturated weight	(kg/m²)	54	approx	EN ISO 9864
Stormwater attenuation volume	(I/m ²)	47		
Drainable void space	%	84		
Perpendicular Water Inflow (in non-d	esign storm event condition	ons)		
Water flow at 50mm head	(I/m ² .s)	75 (Lower drainage path)	±30%	EN ISO 11058
Resistance to weathering	Greater than 6	60% retained tensile strength		EN 12224
Resistance to chemicals	Excellent			EN 14030
Design life	120 years (ma	nufacturer's declaration)		
Upper Filter/Separator Geotextile	Properties			
Pore size 0 ₉₀	(μm)	120	±30%	EN ISO 12956
Breakthrough head	(mm)	0	nominal	BS 6906 Part 3
CBR puncture resistance	(N)	1600	-20%	EN ISO 12236
Dynamic perforation cone drop	(mm)	32	+20%	EN ISO 13433
Type and material		ched and heat-treated long stap elt of polypropylene. Min wt. of		propylene
Product Dimensions				
Standard system BRB A56	56mm deep. Width & le	ength as blue roof area.		

- 1. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time..
- 2. Any additional installations such as services, PV panels, or paved areas, must be discussed with ABG prior to their installation.
- 3. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.
- 4. Can be used in conjunction with rainwater harvesting systems. Any petrochemical pollution waste discharged from the system to be treated by others.

blueroof System BRG B72

ABG **blueroof** systems provide temporary attenuation, filtration and controlled release of stormwater, containing key elements of a good SuDS design. The storage element of the system must be used in conjunction with ABG's **blueroof** restrictor chambers. These chambers are bespoke to each project in order to achieve the planning team's maximum outflow levels, and to suit the required build-up and final use of the podium/roof area.

ABG's blue roofs are generally used for zero falls, inverted/warm roof applications, under a mix of hard and soft landscaped finishes. Other blue roof systems and surface finishes are available. Please refer to ABG's Technical team for project/system specific advice & blue roof calculations.

System Properties				
Thickness at 2kPa	(mm)	72	±10%	EN ISO 9863-1
Maximum saturated weight	(kg/m²)	50	approx.	EN ISO 9864
Stormwater attenuation volume	(I/m ²)	45		
Drainable void space	%	62		
Perpendicular Water Inflow (in non-c	lesign storm event condi	tions)		
Water flow at 50mm head	(I/m ² .s)	72 (Lower drainage path)	±30%	EN ISO 11058
Resistance to weathering	Greater than	60% retained tensile strength		EN 12224
Resistance to chemicals	Excellent			EN 14030
Design life	120 years (m	anufacturer's declaration)		
Upper Filter/Separator Geotextile	Properties			
Pore size 0 ₉₀	(μm)	70	±30%	EN ISO 12956
Breakthrough head	(mm)	0	nominal	BS 6906 Part 3
CBR puncture resistance	(N)	3 400	-20%	EN ISO 12236
Dynamic perforation cone drop	(mm)	17	+20%	EN ISO 13433
Type and material		nched and heat-treated long stap felt of polypropylene. Min wt. o		ypropylene
Product Dimensions				
Standard system BRG B72				

- 1. The values given are indicative and correspond to nominal results obtained in our laboratories and testing institutes. In line with our policy of continuous improvement the right is reserved to make changes without notice at any time..
- 2. Any additional installations such as services, PV panels, or paved areas, must be discussed with ABG prior to their installation.
- 3. Final determination of the suitability of any information is the sole responsibility of the user. ABG will be pleased to discuss the use of this or any other product but responsibility for selection of a material and its application in any specific project remains with the user.
- 4. Can be used in conjunction with rainwater harvesting systems. Any petrochemical pollution waste discharged from the system to be treated by others.

Flood Risk Assessment and SuDS Strategy

APPENDIX D - CAMDEN SUDS PRO-FORMA

Reference: WE/17015 Page: 30

Date: 31/08/17

Advice Note on contents of a Surface Water Drainage Statement

London Borough of Camden

1. Introduction

- 1.1 The Government has strengthened planning policy on the provision of sustainable drainage and new consultation arrangements for 'major' planning applications will come into force from 6 April 2015 as defined in the Written Ministerial Statement (18th Dec 2014).
- 1.2 The new requirements make Lead Local Flood Authorises statutory consultees with respect to flood risk and SuDS for all major applications. Previously the Environment Agency had that statutory responsibility for sites above 1ha in flood zone 1.
- 1.3 Therefore all 'major' planning applications submitted from 6 April 2015 are required demonstrate compliance with this policy and we'd encourage this is shown in a **Surface Water Drainage Statement**.
- 1.4 The purpose of this advice note is to set out what information should be included in such statements.

2. Requirements

- 2.1 It is essential that the type of Sustainable Drainage System (SuDS) for a site, along with **details of its extent and position**, is identified within the planning application to clearly demonstrate that the proposed SuDS can be accommodated within the development.
- 2.2 It will now not be acceptable to leave the design of SuDs to a later stage to be dealt with by planning conditions.
- 2.3 The NPPF paragraph 103 requires that developments do not increase flood risk elsewhere, and gives priority to the use of SuDS. Major developments must include SuDS for the management of run-off, unless demonstrated to be inappropriate. The proposed minimum standards of operation must be appropriate and as such, a maintenance plan should be included within the Surface Water Drainage Statement, clearly demonstrating that the SuDS have been designed to ensure that the maintenance and operation requirements are economically proportionate Planning Practice Guidance suggests that this should be considered by reference to the costs that would be incurred by consumers for the use of an effective drainage system connecting directly to a public sewer.
- 2.4 Camden Council will use planning conditions or obligations to ensure that there are clear arrangements in place for ongoing maintenance over the lifetime of the development.
- 2.5 Within Camden, SuDS systems must be designed in accordance with London Plan policy 5.13. This requires that developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

- 1 store rainwater for later use
- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.
- 2.6 The hierarchy above seeks to ensure that surface water run-off is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site, in contrast to traditional drainage approaches, which tend to pipe water off-site as quickly as possible.
- 2.7 Before disposal of surface water to the public sewer is considered all other options set out in the drainage hierarchy should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.
- 2.8 Best practice guidance within the <u>non-statutory technical standards</u> for the design, maintenance and operation of sustainable drainage systems will also need to be followed. Runoff volumes from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event.
- 2.9 Camden Development Policy 23 (Water) requires developments to reduce pressure on combined sewer network and the risk of flooding by limiting the rate of run-off through sustainable urban drainage systems. This policy also requires that developments in areas known to be at risk of surface water flooding are designed to cope with being flooded. Camden's SFRA surface water flood maps, updated SFRA figures 6 (LFRZs), and 4e (increased susceptibility to elevated groundwater), as well as the Environment Agency updated flood maps for surface water (ufmfsw), should be referred to when determining whether developments are in an area at risk of flooding.
- 2.10 Camden Planning Guidance 3 (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required. Further guidance on how to reduce the risk of flooding can be found in CPG3 paragraphs 11.4-11.8.
- 2.11 Where an application is part of a larger site which already has planning permission it is essential that the new proposal does not compromise the drainage scheme already approved.

3. Further information and guidance

- 3.1 Applicants are strongly advised to discuss their proposals with the Lead Local Flood Authority at the pre-application stage to ensure that an acceptable SuDS scheme is submitted.
- 3.2 For general clarification of these requirements please Camden's Local Planning Authority or Lead Local Flood Authority

Surface Water Drainage Pro-forma for new developments

the Defra/EA guidance on Rainfall Runoff Management and uses the storage calculator on www.UKsuds.com. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site Address & post code or LPA reference	
Grid reference	
Is the existing site developed or Greenfield?	
Is the development in a LFRZ or in an area known to	
please demonstrate how this is managed, in line with	
DP23?	
Total Site Area served by drainage system (excluding	
open space) (Ha)*	

^{*} The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	100	Notes for developers
			(Proposed-Existing)	
Impermeable area (ha)				If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method			N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)				the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Voc	2	No Evidence that this is nossible	Notes for developers
		2	Evidence mar mis is possible	ויטונים וכו מכאכוססכו מ
Existing and proposed				Please provide MicroDrainage calculations of existing and proposed run-off rates and
MicroDrainage calculations				volumes in accordance with a recognised methodology or the results of a full infiltration test
				(see line below) if infiltration is proposed.
Infiltration				e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse				e.g. Is there a watercourse nearby?
To surface water sewer				Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above				e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal				Evidence must be provided to demonstrate that the proposed Sustainable Drainage
had regard to the SuDS hierarchy?				strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
Layout plan showing where				Please provide plan reference numbers showing the details of the site layout showing
the sustainable drainage				where the sustainable drainage infrastructure will be located on the site. If the development
infrastructure will be				is to be constructed in phases this should be shown on a separate plan and confirmation
located on site.				should be provided that the sustainable drainage proposal for each phase can be
				constructed and can operate independently and is not reliant on any later phase of
				development.

4. Peak Discharge Rates - This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	% Difference difference existing x (100)
Greenfield QBAR		N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1					Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30					for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100					by 50% from the existing sites for all corresponding familial events.
1 in 100 plus	N/A				The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be
climate change					equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.
					6

the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream. 5. Calculate additional volumes for storage -The total volume of water leaving the development site. New hard surfaces potentially restrict

	Greenfield	Existing	Proposed	Difference (m³)	Notes for developers
	runoff volume Volume (m³) (m³)	Volume (m³)	Volume (m³)	(Proposed-Existing)	
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any
					increase in volume increases flood risk elsewhere. Where volumes are increased section 6
					must be filled in.
1 in 100 6 hour plus					The proposed 1 in 100 +CC discharge volume should be constrained to a value as dose as
climate change					is reasonably practicable to the greenfield runoff volume wherever practicable. As a
					minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from
					site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases
					under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

	Notes for developers
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m³)	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m³)	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a rate different from the
meet OTHER RUN OFF RATE (as close to greenfield rate as	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m³)	previously developed sites, runoff rates should not be more than three times the
	calculated greenfield rate. Can't be used where discharge volumes are
	increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m³)	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	Percentage of attenuation volume which will be held above ground in
	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an can infiltration work on site?

		Notes for developers
	State the Site's Geology and known Source	Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration	Protection Zones (SPZ)	and refer to Environment Agency website to identify and source
		protection zones (SPZ)
	Are infiltration rates suitable?	Infiltration rates should be no lower than 1x10 ⁻⁶ m/s.
	State the distance between a proposed infiltration	Need 1m (min) between the base of the infiltration device & the water
	device base and the ground water (GW) level	table to protect Groundwater quality & ensure GW doesn't enter
		infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Advice on contaminated Land in Camden can be found on our supporting documents webpage Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple - Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria. Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

Please confirm what option has been chosen and how much storage is required on site. Notes for developers The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requirement are on site and how it will be achieved.		
has been chosen and how much		Notes for developers
	Please confirm what option has been chosen and how much	The developer at this stage should have an idea of the site
are on site and how it will be achieved.	storage is required on site.	characteristics and be able to explain what the storage requirements
		are on site and how it will be achieved.

8. Please confirm

	Notes for developers
Which Drainage Systems measures have been used,	SUDS can be adapted for most situations even where infiltration
including green roofs?	isn't feasible e.g. impermeable liners beneath some SUDS devices
	allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event	This a requirement for sewers for adoption & is good practice even
without flooding	where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm	National standards require that the drainage system is designed so
event? If no please demonstrate how buildings and utility	that flooding does not occur during a 1 in 100 year rainfall event in
plants will be protected.	any part of: a building (including a basement); or in any utility plant
	susceptible to water (e.g. pumping station or electricity substation)
	within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate	Safely: not causing property flooding or posing a hazard to site
change storm events will be safely contained on site.	users i.e. no deeper than 300mm on roads/footpaths. Flood waters
	must drain away at section 6 rates. Existing rates can be used
	where runoff volumes are not increased.
How will exceedance events be catered on site without	Safely: not causing property flooding or posing a hazard to site
increasing flood risks (both on site and outside the	users i.e. no deeper than 300mm on roads/footpaths. Flood waters
development)?	must drain away at section 6 rates. Existing rates can be used
	where runoff volumes are not increased.
	Exceedance events are defined as mose larger man me i m 100
How are rates being restricted (vortex control, orifice etc)	Detail of how the flow control systems have been designed to avoid prize thought he provided
Discontinually children of the entire of the continual of	
Please confirm the owners/adopters of the entire drainage	I these are from the content and awing in the first what
systems un oughout the development. Please list all the	leatules will be within each owner's lethichias be submitted with
How is the entire drainage exetem to be maintained?	the feature as stated
now is the entire diamage system to be maintained?	If the leatures are to be maintained unectly by the owners as stated in answer to the above direction please answer ves to this direction
	and submit the relevant maintenance schedule for each feature.
	is to be maintained by the show above aloase day daths of each
	is to be intallification by others than above prease give details of each
	Clear details of the maintenance proposals of all elements of the
	proposed drainage system must be provided. Details must
	demonstrate that maintenance and operation requirements are
	economically proportionate. Poorly maintained drainage can lead to
	Increased flooding problems in the future.

UNCLASSIFIED

9. Evidence Pleas	9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide
relevant drawings t	relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance
access strips etc	
Pro-forma Section	Pro-forma Section Document reference where details quoted above are taken from

Pro-forma Section	Pro-forma Section Document reference where details quoted above are taken from	Page Number
Section 2		
Section 3		
Section 4		
Section 5		
Section 6		
Section 7		
Section 8		

The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with.

This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.

Date: