MECSERVE

Energy & Sustainability Statement

For

26 Netherhall Gardens

London Borough of Camden London NW3 5TL

Prepared for

Dome Assets Ltd

Issue No:	02
Issue Date:	July 2017
Reference:	P17-117

ISSUE

lssue No.	Date of issue	Purpose of issue	Prepared by	Checked by	Changes
01	16.06.2017	Draft report for comments	A Kazantzis/ P Dalapas	N Dabidian	
02	13.07.2017 Final issue		A Kazantzis/ P Dalapas	N Dabidian	

CONTENTS

EXEC	CUTIVE SUMMARY
1.	INTRODUCTION
1.1	PROPOSED DEVELOPMENT8
2.	OVERVIEW OF ENVIRONMENTAL STANDARDS, TARGETS AND POLICIES
2.1	NATIONAL POLICIES
2.2	REGIONAL POLICY
2.3	LOCAL POLICIES12
3.	CLIMATE CHANGE MITIGATION AND ADAPTATION STRATEGY
3.1	CLIMATE CHANGE MITIGATION14
3.2	CLIMATE CHANGE MITIGATION – REVIEW AND MEASURES IMPLEMENTED15
3.3	CLIMATE CHANGE ADAPTATION23
3.4	CLIMATE CHANGE ADAPTATION – POLICY REVIEW AND MEASURES IMPLEMENTED
4.	BUILDING REGULATION COMPLIANCE
4.1	BUILDING ENERGY MODEL
4.2	BASELINE CARBON EMISSION RATE
5.	LONDON PLAN ENERGY HIERARCHY
6.	BE LEAN – DEMAND REDUCTION
6.1	PASSIVE DESIGN
6.2	ACTIVE DESIGN
6.3	SAVINGS FROM BE LEAN MEASURES
7.	BE CLEAN – SUPPLYING LOW CARBON ENERGY
7.1	DISTRICT ENERGY NETWORK
7.2	COMBINED HEAT AND POWER (CHP)
8.	BE GREEN- RENEWABLE ENERGY TECHNOLOGIES
8.1	BIOMASS BOILER
8.2	WIND TURBINES
8.3	GROUND SOURCE HEAT PUMP
8.4	AIR SOURCE HEAT PUMP
8.5	PHOTOVOLTAIC (PV) PANELS SOLAR HOT WATER HEATING
8.6	SOLAR HOT WATER HEATING
9.	CONCLUSION

APPENDIX 1.	TER WORKSHEET OF TYPICAL APARTMENT	. 42
APPENDIX 2.	TFEE WORKSHEET OF TYPICAL APARTMENT	. 43
APPENDIX 3.	DER WORKSHEET OF TYPICAL APARTMENT	. 44
APPENDIX 4.	DFEE WORKSHEET OF TYPICAL APARTMENT	. 45
APPENDIX 5.	SUSTAINABLE USE OF MATERIALS	. 46

EXECUTIVE SUMMARY

Mecserve Ltd has been appointed by Atlas Property Lettings & Service Ltd to prepare an Energy and Sustainability Statement to support the planning application for the proposed scheme at 26 Netherhall Gardens in the London Borough of Camden. Building works on the site include the erection of a five-storey block of five residential units.

This Energy Statement, prepared in line with the Greater London Authority guidance on preparing energy assessments (March 2016), outlines the key features and strategies adopted by the development team to enhance the energy performance of the proposed redevelopment of 26 Netherhall Gardens. The scheme complies with all relevant policies in regard to Energy set by London Borough of Camden Local Plan. Sections 2 and 3 review these policies and demonstrate how design meets planning targets and requirements in terms of energy and carbon emissions.

The strategy for reducing energy use and associated carbon emissions through the design of the scheme follows the London Plan energy hierarchy, namely:

- Be Lean Reduce energy demand through passive design strategies and best practice design of building services, lighting and controls;
- Be Clean Reduce energy consumption further by connecting to an existing district heating system and exploit provision of Combined Heat and Power (CHP) systems;
- Be Green Generate power on site through Renewable Energy Technologies.

The following passive and active energy efficiency features have been considered in the proposed strategy for 26 Netherhall Gardens:

- High performance building fabric of low U-values that exceed Part L minimum standards;
- BFRC-accredited double-glazed windows of low U-values will help reduce the heating demand further;
- All junctions will conform to Accredited Construction Details thus eliminating thermal bridging;
- Individual gas-fired condensing boilers of high efficiency with well insulated hot water cylinders will provide heating and domestic hot water to the newly built apartments;
- All apartments will feature Mechanical Ventilation with Heat Recovery to make use of wasted heat of exhaust air by preheat incoming air;
- Light fittings will be of low energy types.
- An instantaneous waste water heat recovery system will be installed in each bathroom to recover heat from waste warm water as it flows through the waste plumbing system to preheat the cold-water feed of a shower.

Following the proposed energy strategy, the new flats achieve significant carbon savings that exceed both the Target Emission Rate (TER) set by Part L of current Building Regulations and the Code for Sustainable Homes (CSH) Level 4 Target in terms of CO₂ emissions i.e. 20% reduction over 2013 TER.

The following sections present the CO_2 savings for the new erected block of flats at 26 Netherhall Gardens.

Table 1 demonstrates the overall reduction in the regulated carbon emission of the development after each stage of the London Plan Energy Hierarchy.

Table 1 Total CO₂ emissions reduction for the development

		Carbon dioxide emissions (Tonnes CO ₂ per annum)
Baseline Emissions		14.44
Be Lean	After energy demand reduction	11.13
Be Clean	After CHP	11.13
Be Green	After renewable energy	11.13

Table 2 demonstrates the total regulated CO₂ savings from each stage of the Energy Hierarchy. As demonstrated below, an overall 22.9% reduction in carbon emissions can be achieved over Part L 2013 TER when applying the proposed strategy, which exceeds the 20% reduction required for CSH Level 4.

Table 2 Total regulated carbon dioxide savings from each stage of the Energy Hierarchy

	Regulated carbon dioxide savings			
	(Tonnes CO2 per annum)	(%)		
Savings from energy demand reduction	3.31	22.9		
Savings from CHP	0.00	0.0		
Savings from renewable energy	0.00	0.0		
Total Cumulative Savings	3.31	22.9		
Total Target Savings	2.89	20.0		
Annual Surplus	0.42			

Figure 1 below illustrates the total carbon savings achieved at each stage of the London Plan Energy Hierarchy for 26 Netherhall Gardens. Overall, the scheme exceeds the carbon reduction required for a CSH Level 4 rating.

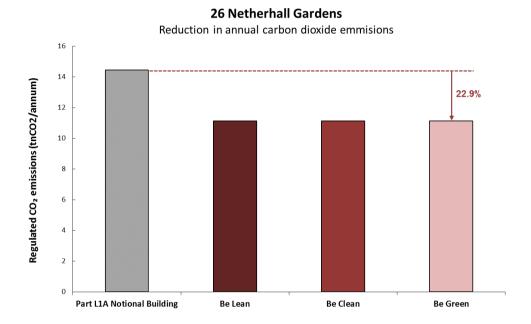


Figure 1 Total carbon savings achieved over Baseline Emissions

1. INTRODUCTION

Over recent years, global public opinion has been increasingly concerned with the state of the environment and the impact of climate change. Buildings are responsible for a significant proportion of the world's energy consumption. In the United Kingdom, domestic, commercial buildings and industry contribute 43%¹ of the total CO2 emissions. These figures highlight the need for building owners, developers and designers to design environmentally sustainable buildings.

This report provides a review of the sustainability and efficiency benchmarks for the scheme and sets out targets for the development in terms of both sustainability and energy. An overview of different sustainability and energy-efficiency technologies that are likely to be appropriate for the development are also included in this statement.

As the design progresses, the strategies outlined in this report will be further developed and subjected to detailed financial feasibility studies. The environmental strategies and options outlined in this report are based on the current information available and are likely to evolve with the design.

The energy calculations presented in this report will need to be continually updated through the detailed design stages to reflect any changes. The energy analysis presented here should be treated as preliminary information based on the currently available data.

1.1 **PROPOSED DEVELOPMENT**

The proposed development is located at 26 Netherhall Gardens in London Borough of Camden, within the Fitzjohns / Netherhall conservation area. The development proposed is the demolition of the existing property and redevelopment of the site to provide a five storeys detached property comprising five self-contained residential units (4 x 2 bedroom and 1 x 3 bedroom); the proposals also include hard and soft landscaping, new boundary treatment and the provision of off-street car parking.

For a detailed description of the proposed design, please refer to the Design and Access Statement prepared by Squire & Partners Architects.

¹ Department for Environment, Food and Rural Affairs, http://www.defra.gov.uk/, 2008

Figure 2 Bird's eye view of existing Building

Figure 3 Proposed scheme – 26 Netherhall Gardens Road view

2. OVERVIEW OF ENVIRONMENTAL STANDARDS, TARGETS AND POLICIES

2.1 NATIONAL POLICIES

ENERGY WHITE PAPER

The Energy White Paper: Our Energy Future – Creating a Low Carbon Economy² is an energy policy in response to the increasing challenges faced by the UK, including climate change, decreasing domestic supplies of fossil fuel and escalating energy prices. The Energy White Paper sets four priorities:

- Cutting the UK's carbon dioxide emissions the main contributor to global warming by some 60% by about 2050, with real progress by 2020;
- Security of supply;
- A competitive market for the benefit of businesses, industries and households;
- Affordable energy for the poor.

CLIMATE CHANGE ACT 2008

Published in 2008 by the UK Government, Climate Change Act³ is the world's first long-term legally binding framework to mitigate against climate change. The Act sets legally binding targets to increase greenhouse gas emission reductions through action in the UK and abroad from the 60% target to 80% by 2050.

In addition to the standards, targets and policies discussed above, the relevant British Standards and CIBSE Guidelines were used to assist in determining the most appropriate Ecologically Sustainable Design (ESD) initiatives for the development.

² Dti, (2003); Energy White Paper Our Energy Future - Creating a Low Carbon Economy. TSO.

³ OPSI, (2008); Climate Change Act. HMSO.

NATIONAL PLANNING POLICY FRAMEWORK (NPPF) (MARCH 2012)

The Government has developed the National Planning Policy Framework (NPPF) which plays a key role in delivering the Government's objectives on sustainable development. The framework encourages ownership at the local level and provides guidance to promote effective environmental protection, economic growth and ensuring a better quality of life for all, both now and in future generations. Some of the main objectives of the Governments planning framework in relation to sustainability are:

- Build prosperous communities with opportunities for employment and economic growth across all areas of society;
- Reduce the need for car dependency and provide easy access to public transport;
- Maintain, and enhance or restore biodiversity and geological interests;
- Protect the condition of land, its use, and its development from potential hazards;
- Ensure that all new developments contribute to the Governments targets of carbon emission reductions.

2.2 REGIONAL POLICY

THE LONDON PLAN (MARCH 2016)

The London Plan, prepared by the Mayor of London's office, deals with matters that are of strategic importance to Greater London. The London Plan is the overall strategic plan setting out an integrated social, economic and environmental framework for the future development of London, looking forward until 2036.

Chapter 5 of the London Plan deals with matters related to climate change.

Supplementary Planning Guidance, Sustainable Design and Construction (April 2014) provides framework for implementing the London policies.

2.3 LOCAL POLICIES

CAMDEN CORE STRATEGY (NOVEMBER 2010)

Camden's Core Strategy sets out the key elements of the Council's planning vision and strategy of the borough. Along with other Local Development Framework documents and Mayor's London Plan for the statutory 'development plan' for Camden.

The following is the review of the London Plan and Camden Planning Policies for Climate Change mitigation and Climate Change Adaptation followed by measures implemented in the proposed development to meet the applicable policy requirements.

	Camden Core Strategy 2010-2025
	Local Development Framework
	Camden
(
	MANN

3. CLIMATE CHANGE MITIGATION AND ADAPTATION STRATEGY

Climate Change is the rise in average global temperature due to increasing levels of greenhouse gases in the earth's atmosphere (primarily CO2) that prevent the radiation of heat into space.

Buildings and spaces built today should respond to climate change issues and adapt to mitigation and adaptation measures. The London Plan through its policies addresses these issues and will require London Boroughs to consider how their developments will function in the future in the context of changing climate.

Through various policies, Camden Council encourages developments to meet the highest feasible environmental standards, where feasible and possible, in order to minimise the effects of and adapt to climate change. The climate change risks for the London Borough of Camden are summarised below:

- Hotter, drier summers;
- Milder, wetter winters;
- More frequent extreme high temperatures;
- More frequent heavy downpours of rain;
- Significant decreases in soil moisture content in summer;
- Sea level rise and increases in storm surge height;
- Possible higher wind speeds.

3.1 CLIMATE CHANGE MITIGATION

As per the definition of United Nations Environment Programme (UNEP), Climate Change Mitigation refers to efforts to reduce or prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment more energy efficient, or changing management practices or consumer behaviour.

The following policies from the London Plan and London Borough of Camden local policies relate to Climate Change Mitigation, in the context of this proposed development.

LONDON PLAN 2016 CLIMATE CHANGE MITIGATION POLICIES

- Policy 5.1 Climate change mitigation;
- Policy 5.2 Minimising carbon dioxide emissions;
- Policy 5.3 Sustainable design and construction;
- Policy 5.5 Decentralised Energy Networks;
- Policy 5.6 Decentralised energy in development proposals;
- Policy 5.7 Renewable energy;

CAMDEN CORE STRATEGY 2010-2025 CLIMATE CHANGE MITIGATION POLICIES

• Policy CS13 Tackling climate change through promoting higher environmental standards;

CAMDEN DEVELOPMENT POLICIES 2010-2025 CLIMATE CHANGE MITIGATION POLICIES

• Policy DP22 Promoting sustainable design and construction.

The policies above are explained and reviewed in detail below providing a response on measures implemented for this proposed development.

3.2 CLIMATE CHANGE MITIGATION – REVIEW AND MEASURES IMPLEMENTED

Policy 5.1 Climate Change Mitigation

A. The Mayor seeks to achieve an overall reduction in London's carbon dioxide emissions of 60 per cent (below 1990 levels) by 2025. It is expected that the GLA Group, London boroughs and other organisations will contribute to meeting this strategic reduction target, and the GLA will monitor progress towards its achievement annually.

B. Within LDFs boroughs should develop detailed policies and proposals that promote and are consistent with the achievement of the Mayor's strategic carbon dioxide emissions reduction target for London.

Measures being considered in the project to meet the above policy requirements

The strategy for minimising carbon dioxide emissions is outlined in this Energy Statement, prepared in accordance with GLA Guidance on reporting energy assessments. The Energy sections of the report has taken into consideration both the requirements of London Plan Policy 5.2 and also Camden's Development Policy DP22 and demonstrates that the development exceeds the carbon dioxide target reduction by achieving a reduction of more than 20% over 2013 TER, equivalent to Code for Sustainable Homes Level 4 rating.

Policy 5.2 Minimising Carbon Dioxide Emissions

A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

- Be lean: use less energy;
- Be clean: supply energy efficiently;
- Be green: use renewable energy.

Measures being considered in the project to meet the above policy requirements

The proposed scheme, comprising 5 No. new built dwellings, is not classified as a major development according to London Plan. Therefore, Policy 5.2 is not applicable to the proposed development. The energy strategy proposed, however, follows London Plan Energy Hierarchy and this report is written in line with GLA guidance on reporting energy assessments.

In order to design an energy efficient, low carbon development, the design team has followed the London Plan Energy Hierarchy i.e.

- The development is designed to have highly efficient envelope and passive strategies, e.g. BFRC-rated windows and following Accredited Construction Details to minimise thermal bridging, have been incorporated in the design where possible. Efficient building services including MVHR, low energy lighting and instantaneous waste water heat recovery system are proposed to reduce energy consumption;
- The design team has carried out a feasibility study to assess the potential of connecting the scheme to a district heating network or provide a Combined Heat and Power to meet heating demand;
- A feasibility study to identify the most suitable renewable energy technologies has been carried out and presented in this report.

As a result of the proposed strategy, the scheme achieves an overall reduction of 22.9% over 2013 TER, exceeding the CSH Level 4 target set by the Camden Council.

Policy 5.3 Sustainable Design and Construction

A. The highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.

B. Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.

Measures being considered in the project to meet the above policy requirements

The strategy for minimising carbon dioxide emissions is outlined in the following sections of the Energy and Sustainability Statement, prepared in accordance with GLA guidance on assessing the energy performance. Due to Sustainable design features integrated in the design of the new 26 Netherhall Gardens units, the development exceeds the carbon dioxide target reduction set by Code for Sustainable Homes Level 4 thus achieving a reduction more than 20% over 2013 TER.

Passive design measures such as enhanced thermal performance of well insulated thermal elements, BFRC-rated windows and use of Accredited Construction Details as well as condensing boilers of high efficiency and Mechanical Ventilation with Heat Recovery (MVHR) will help reduce heating demand first and then energy consumption. During summer windows can be fully opened to allow for fresh air to remove excessive heat gains and reduce the risk of overheating. Low water use fittings will be installed to minimise water consumption on site targeting a daily consumption less than 105 litres/person. Materials of low environmental impact, which will be responsibly resourced, will be also specified for the scheme. More information can be found on the Design and Access Statement prepared by Squire & Partners Architects.

Policy 5.5 Decentralised Energy Networks

A. The highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.

B. Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.

A. The Mayor expects 25 per cent of the heat and power used in London to be generated through the use of localised decentralised energy systems by 2025. In order to achieve this target, the Mayor prioritises the development of decentralised heating and cooling networks at the development and area wide levels, including larger scale heat transmission networks.

B. Within LDFs boroughs should develop policies and proposals to identify and establish decentralised energy network opportunities. Boroughs may choose to develop this as a supplementary planning document and work jointly with neighbouring boroughs to realise wider decentralised energy network opportunities. As a minimum, boroughs should:

a. identify and safeguard existing heating and cooling networks

- b. identify opportunities for expanding existing networks and establishing new networks. Boroughs should use the London Heat Map tool and consider any new developments, planned major infrastructure works and energy supply opportunities which may arise
- c. develop energy master plans for specific decentralised energy opportunities which identify:
- major heat loads (including anchor heat loads, with particular reference to sites such as universities, hospitals and social housing)
- major heat supply plant
- possible opportunities to utilise energy from waste
- possible heating and cooling network routes
- implementation options for delivering feasible projects, considering issues of procurement, funding and risk and the role of the public sector
- d.require developers to prioritise connection to existing or planned decentralised energy networks where feasible.

Measures being considered in the project to meet the above policy requirements

The scheme, comprising of 5 new residential units, will have constant heating demand, mainly due to hot water usage, throughout the year. However, due to high performance building fabric performance proposed, BFRC-rated double-glazed windows and low water use fittings to be specified, this is expected to be low. According to the London Heat Map (Figure 4), the site is not within a district heating opportunity area and there is no existing network in close proximity or one to become available in the future.

Therefore, given the small scale of the scheme and currently no availability in close proximity, it is not feasible or viable to connect to a district heat network.

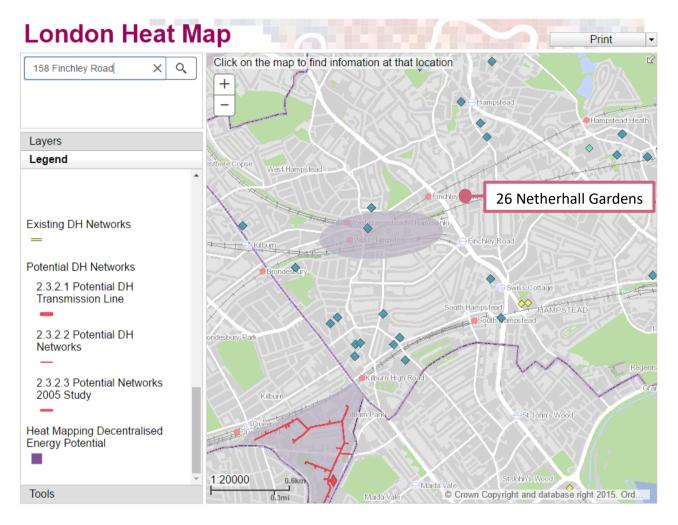


Figure 4 Image of London Heat Map (www.londonheatmap.org.uk)

Policy 5.6 Decentralised Energy in Development Proposals

A. Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and where a new CHP system is appropriate also examine opportunities to extend the system beyond the site boundary to adjacent sites.

B. Major development proposals should select energy systems in accordance with the following hierarchy:

- Connection to existing heating or cooling networks;
- Site wide CHP network;
- Communal heating and cooling.

C. Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.

Measures being considered in the project to meet the above policy requirements

According to the London Heat Map, there is no available district heating in close proximity currently or in the future. Given the scale of the proposed scheme, consisting of 5 new flats, installation of Combined Heat and Power (CHP) is not considered to be feasible, as there is not high heating and hot water demand throughout the year to enable the CHP unit to run continuously for long period thus ensuring maximum carbon and cost savings. As per GLA guidance on energy assessments, a higher number of residential units is required to justify installation of a CHP unit.

Policy 5.7 Renewable Energy

A. The Mayor seeks to increase the proportion of energy generated from renewable sources, and expects that the projections for installed renewable energy capacity outlined in the Climate Change Mitigation and Energy Strategy and in supplementary planning guidance will be achieved in London.

B. Within the framework of the energy hierarchy (see Policy 5.2), major development proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible.

C. Within LDFs boroughs should, and other agencies may wish to, develop more detailed policies and proposals to support the development of renewable energy in London – in particular, to identify broad areas where specific renewable energy technologies, including large scale systems and the large-scale deployment of small scale systems, are appropriate. The identification of areas should be consistent with any guidelines and criteria outlined by the Mayor.

D. All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets, and to avoid any adverse impacts on air quality.

Measures being considered in the project to meet the above policy requirements

A feasibility study has been carried out to assess renewable energy technologies that could be appropriate for the proposed development (please refer to Appendix 1). The most suitable technologies have been identified and the reason for not including these in our strategy is explained.

An instantaneous waste water heat recovery system designed to retrieve thermal energy from hot water used in a shower before it disappears down the drain is proposed for the scheme. This system will be installed in each shower and bath to recover heat from the waste water. Even though this system is not considered as a renewable energy system, it helps reducing energy consumption for hot water significantly.

Policy CS13 Tackling climate change through promoting higher environmental standards

Reducing the effects of and adapting to climate change

The Council will require all development to take measures to minimise the effects of, and adapt to, climate change and encourage all development to meet the highest feasible environmental standards that are financially viable during construction and occupation by:

- a. ensuring patterns of land use that minimise the need to travel by car and help support local energy networks;
- b. promoting the efficient use of land and buildings;
- c. minimising carbon emissions from the redevelopment, construction and occupation of buildings by implementing, in order, all of the elements of the following energy hierarchy:
- 1. ensuring developments use less energy,
- 2. making use of energy from efficient sources, such as the King's Cross, Gower Street, Bloomsbury and proposed Euston Road decentralised energy networks;
- 3. generating renewable energy on-site; and
- d.ensuring buildings and spaces are designed to cope with, and minimise the effects of, climate change.

The Council will have regard to the cost of installing measures to tackle climate change as well as the cumulative future costs of delaying reductions in carbon dioxide emissions.

Local energy generation

The Council will promote local energy generation and networks by:

- e. working with our partners and developers to implement local energy networks in the parts of Camden most likely to support them, i.e. in the vicinity of:
- housing estates with community heating or the potential for community heating and other uses with large heating loads;
- the growth areas of King's Cross; Euston; Tottenham Court Road; West Hampstead Interchange and Holborn;
- schools to be redeveloped as part of Building Schools for the Future programme;
- existing or approved combined heat and power/local energy networks (see Map 4); and other locations where land ownership would facilitate their implementation.
- f. protecting existing local energy networks where possible (e.g. at Gower Street and Bloomsbury) and safeguarding potential network routes (e.g. Euston Road);

Water and surface water flooding

We will make Camden a water efficient borough and minimise the potential for surface water flooding by:

- g. protecting our existing drinking water and foul water infrastructure, including Barrow Hill Reservoir, Hampstead Heath Reservoir, Highgate Reservoir and Kidderpore Reservoir;
- h.making sure development incorporates efficient water and foul water infrastructure;
- requiring development to avoid harm to the water environment, water quality or drainage systems and prevents or mitigates local surface water and downstream flooding, especially in areas up-hill from, and in, areas known to be at risk from surface water flooding such as South and West Hampstead, Gospel Oak and King's Cross.

Measures being considered in the project to meet the above policy requirements

The development makes efficient use of land within the borough by providing additional residential units within the footprint of the existing site. The site is well served by public transportation links thus reducing car usage. More information can be found in the Design and Access Statement prepared by Squire & Partners Architects.

The development is designed to reduce carbon emission by more than 20% overall in line with Code for Sustainable Homes Level 4. The energy section of this report outlines the proposed energy strategy developed for the scheme including enhanced building fabric performance, BFRC-rated windows, energy efficiency building services systems and instantaneous waste water heat recovery system thus reducing carbon emissions by 20%.

The scheme has been designed to have mechanical ventilation and the façade has been carefully developed to balance between adequate daylighting, passive solar heat gains and risk of overheating in summer. The development incorporates water-efficient sanitary ware to reduce the use of potable water.

Policy DP22 Promoting Sustainable Design and Construction

The Council will require development to incorporate sustainable design and construction measures. Schemes must:

- a. demonstrate how sustainable development principles, including the relevant measures set out in paragraph 22.5 below, have been incorporated into the design and proposed implementation; and
- b.incorporate green or brown roofs and green walls wherever suitable.

The Council will promote and measure sustainable design and construction by:

- c. expecting new build housing to meet Code for Sustainable Homes Level 3 by 2010 and Code Level 4 by 2013 and encouraging Code Level 6 (zero carbon) by 2016.;
- d.expecting developments (except new build) of 500 sqm of residential floorspace or above or 5 or more dwellings to achieve "very good" in EcoHomes assessments prior to 2013 and encouraging "excellent" from 2013;
- e. expecting non-domestic developments of 500sqm of floorspace or above to achieve "very good" in BREEAM assessments and "excellent" from 2016 and encouraging zero carbon from 2019.

The Council will require development to be resilient to climate change by ensuring schemes include appropriate climate change adaptation measures, such as:

- f. summer shading and planting;
- g. limiting run-off;
- h.reducing water consumption;
- i. reducing air pollution; and
- j. not locating vulnerable uses in basements in flood prone areas.

Measures being considered in the project to meet the above policy requirements

The scheme is designed to reduce annual carbon emissions by more than 20% over the Target Emission Rate set by Part L 2013 thus complying with CSH Level 4 target in terms of carbon emissions. Code for Sustainable Homes scheme is now scrapped by the government; however, the following sections outline all the sustainable features integrated in the design of the new 26 Netherhall Gardens flats. Low water use will be specified to reduce daily water consumption beyond 105 litres per person. BFRC-rated windows of low U-value and mechanical ventilation is introduced to tackle overheating and provide occupants with a comfort indoor environment.

In regard to waste reduction, at least 10% of the total value of materials used for the construction of the new development will derive from recycled and reused sources. Appendix 5 provides more information on sustainable use of materials.

3.3 CLIMATE CHANGE ADAPTATION

For a long time, the main focus of climate change has been on mitigation, making sure we minimise our impact on the environment. Adaptation strategies are those that take into account climate change and ensure that the building is capable of dealing with future change in climate. Given the time lag associated with climate change, even if we change the way we live, there is likely to be noticeable change in the climate during the life of the building.

To ensure that buildings maintain their relevance, it is essential that adaptation strategies are addressed during the design phase. Adoption of these strategies will mean that, even as we undergo climate change, the buildings can still function as required.

The following policies from the London Plan and London Borough of Camden local policies relate to Climate Change Adaptation, in the context of this proposed development.

LONDON PLAN 2016 CLIMATE CHANGE ADAPTATION POLICIES

- Policy 5.9 Overheating and cooling;
- Policy 5.10 Urban greening;
- Policy 5.11 Green roofs and development site environs;
- Policy 5.12 Flood risk management;
- Policy 5.13 Sustainable drainage;
- Policy 5.15 Water use and supplies

CAMDEN DEVELOPMENT POLICIES 2010-2025 CLIMATE CHANGE ADAPTATION POLICIES

• Policy DP23 Water

Above policies are described and reviewed in detail below providing a response on measures implemented for this proposed development.

3.4 CLIMATE CHANGE ADAPTATION – POLICY REVIEW AND MEASURES IMPLEMENTED

Policy 5.9 Overheating and Cooling

A. The Mayor seeks to reduce the impact of the urban heat island effect in London and encourages the design of places and spaces to avoid overheating and excessive heat generation, and to reduce overheating due to the impacts of climate change and the urban heat island effect on an area wide basis.

B. Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- minimise internal heat generation through energy efficient design;
- reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls;
- manage the heat within the building through exposed internal thermal mass and high ceilings;
- passive ventilation;
- mechanical ventilation;
- active cooling systems (ensuring they are the lowest carbon options).

C. Major development proposals should demonstrate how the design, materials, construction and operation of the development would minimise overheating and also meet its cooling needs. New development in London should also be designed to avoid the need for energy intensive air conditioning systems as much as possible. Further details and guidance regarding overheating and cooling are outlined in the London Climate Change Adaptation Strategy.

D. Within LDFs boroughs should develop more detailed policies and proposals to support the avoidance of overheating and to support the cooling hierarchy.

Measures being considered in the project to meet the above policy requirements:

Even though the scheme is not classified as a major development, measures to eliminate the risk of overheating have been considered and integrated in the design of the new flats. The following will be applied to ensure comfort during summer within the main living areas of the units:

- well insulated fabric elements and high airtightness to prevent heat transfer from the external environment.
- Openable windows to allow for natural cross ventilation. Windows will be of low g-value to avoid heat transmittance during summer but allow for passive heating in the winter.
- When required, additional flow rates can be provided through whole house mechanical ventilation, bypassing heat recovery.
- Tenants will be advised to purchase A-rated appliances of low energy consumption to reduce internal heat gains. Energy efficiency light fittings that emit less heat than standard types thus reducing overheating will be also specified.

Policy 5.10 Urban Greening

A. The Mayor will promote and support urban greening, such as new planting in the public realm (including streets, squares and plazas) and multifunctional green infrastructure, to contribute to the adaptation to, and reduction of, the effects of climate change.

B. The Mayor seeks to increase the amount of surface area greened in the Central Activities Zone by at least five per cent by 2030, and a further five per cent by 2050,

C. Development proposals should integrate green infrastructure from the beginning of the design process to contribute to urban greening, including the public realm. Elements that can contribute to this include tree planting, green roofs and walls, and soft landscaping. Major development proposals within the Central Activities Zone should demonstrate how green infrastructure has been incorporated.

Measures being considered in the project to meet the above policy requirements:

The use of appropriate vegetation in the communal and private gardens and balconies aspires to enhance the ecological value of the site thus reducing urban island heat effect.

Further information can be found in the Design and Access Statement prepared by Squire & Partners Architects.

Policy 5.13 Sustainable Drainage

A. Development should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

MECSERVE

- 1. store rainwater for later use;
- 2. use infiltration techniques, such as porous surfaces in non-clay areas;
- 3. attenuate rainwater in ponds or open water features for gradual release;
- 4. attenuate rainwater;
- 5. discharge rainwater direct to a watercourse;
- 6. discharge rainwater to a surface water sewer/drain;
- 7. discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

B. Within LDFs boroughs should, in line with the Flood and Water Management Act 2010, utilise Surface Water Management Plans to identify areas where there are particular surface water management issues and develop actions and policy approaches aimed at reducing these risks.

Measures being considered in the project to meet the above policy requirements:

As a result of the proposed building works, the impermeable area of the development will not be increased thus reducing surface water run-off.

Policy 5.12 Flood Risk Management

A. The Mayor will work with all relevant agencies including the Environment Agency to address current and future flood issues and minimise risks in a sustainable and cost effective way.

B. Development proposals must comply with the flood risk assessment and management requirements set out in the NPPF and the associated technical Guidance on flood risk [1] over the lifetime of the development and have regard to measures proposed in Thames Estuary 2100 (TE2100 – see paragraph 5.55) and Catchment Flood Management Plans.

C. Developments which are required to pass the Exceptions Test set out in the NPPF and the Technical Guidance will need to address flood resilient design and emergency planning by demonstrating that:

- the development will remain safe and operational under flood conditions;
- strategy of either safe evacuation and/or safely remaining in the building is followed under flood conditions;
- key services including electricity, water etc. will continue to be provided under flood conditions;
- buildings are designed for quick recovery following a flood.

D. Development adjacent to flood defences will be required to protect the integrity of existing flood defences and wherever possible should aim to be set back from the banks of watercourses

and those defences to allow their management, maintenance and upgrading to be undertaken in a sustainable and cost effective way.

E. In line with the NPPF and the Technical Guidance, boroughs should, when preparing LDFs, utilise Strategic Flood Risk Assessments to identify areas where particular flood risk issues exist and develop actions and policy approaches aimed at reducing these risks, particularly through redevelopment of sites at risk of flooding and identifying specific opportunities for flood risk management measures.

Measures being considered in the project to meet the above policy requirements

The site is in a low flood risk zone according to the Environmental Agency Flood Map (Figure 5). Based on Map 5 of the Core Strategy, the site is close to those parts that have experienced significant sewer or surface water flooding and therefore considered to have the potential to be at risk of surface water flooding. As explained previously, however, the proposed development does not increase the impermeable area of the building.

26 Netherhall Gardens ENERGY AND SUSTAINABILITY STATEMENT

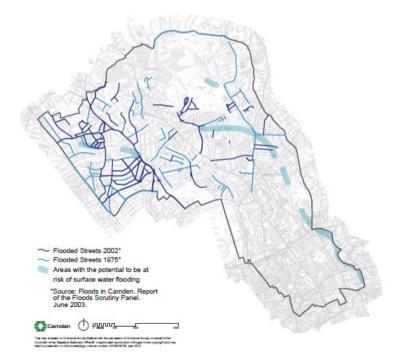


Figure 5 Environment Agency Flood Map & Map 5 of Camden's Core Strategy

Policy 5.15 Water Use Supplies

A. The Mayor will work in partnership with appropriate agencies within London and adjoining regional and local planning authorities to protect and conserve water supplies and resources in order to secure London's needs in a sustainable manner by:

- minimising use of mains water;
- reaching cost-effective minimum leakage levels;
- in conjunction with demand side measures, promoting the provision of additional sustainable water resources in a timely and efficient manner, reducing the water supply deficit and achieving security of supply in London;
- minimising the amount of energy consumed in water supply;
- promoting the use of rainwater harvesting and using dual potable and grey water recycling systems, where they are energy and cost-effective;
- maintaining and upgrading water supply infrastructure;
- ensuring the water supplied will not give rise to likely significant adverse effects to the environment particularly designated sites of European importance for nature conservation.
- B. Development should minimise the use of mains water by:
 - incorporating water saving measures and equipment;
 - designing residential development so that mains water consumption would meet a target of 105 litres or less per head per day.

C. New development for sustainable water supply infrastructure, which has been selected within water companies' Water Resource Management Plans, will be supported.

Policy DP23. Water

The Council will require developments to reduce their water consumption, the pressure on the combined sewer network and the risk of flooding by:

- a. incorporating water efficient features and equipment and capturing, retaining and re-using surface water and grey water on-site;
- b.limiting the amount and rate of run-off and waste water entering the combined storm water and sewer network through the methods outlined in part a) and other sustainable urban drainage methods to reduce the risk of flooding;
- c. reducing the pressure placed in the combined storm water and sewer network from foul water and surface water run-off and ensuring developments in the areas identified by the North London Strategic Flood Risk Assessment and shown on Map 2 as being at risk of surface water flooding are designed to cope with the potential flooding;
- d.ensuring that developments are assessed for upstream and downstream groundwater flood risks in areas where historic underground streams are known to have been present; and
- e.encouraging the provision of attractive and efficient water features.

Measures being considered in the project to meet the above policy requirements

As required for CSH Level 4, all new apartments will have low water use fittings to reduce the water consumption and the energy consumption on site. Installation of low flow rate showers, taps and dual flush toilets, together with smaller baths (where applicable) will mean that all apartments will achieve a maximum internal water use of 105 litres per person/day, with an additional 5 litres person/day for external water use.

4. **BUILDING REGULATION COMPLIANCE**

The Building Regulations Part L (Conservation of Fuel and Power) applies to all components of the development. The most recent version of the regulations came into effect on the 6th April 2014. In order to meet the performance requirements of Part L, the design of the building must comply with the prescriptive provisions laid out in the Compliance Checklist. The development falls under the Building Regulations Part L category of L1A. The criteria of Part L are outlined in the table below.

Table 3: Part L1A 2013 Criteria

	Part L Requirements							
A	 Limiting heat gains and losses i. through thermal elements and other parts of the building fabric; and ii. from pipes, ducts and vessels used for space heating, space cooling and hot water services 							
В	 Providing fixed building services which i. are energy efficient; ii. have effective controls; and iii. are commissioned by testing and adjusting as necessary to ensure they use no more fuel and power than is reasonable in the circumstances 							
С	Providing to the owner sufficient information about the building, the fixed building services and their maintenance requirements so that the building can be operated in such a way as to use no more fuel than is reasonable in the circumstances.							

The development will comply with all the design limits on building fabric, heating, cooling, hot water and lighting efficiencies where feasible and practicable. Detailed energy calculations have been completed to assess the energy impact of this development.

4.1 BUILDING ENERGY MODEL

STROMA FSAP 2012 software (version 1.0.3.13), approved by BRE for full implementation of the Standard Assessment Procedure (SAP 2012) has been used to assess the energy performance and annual carbon emissions of the scheme after energy efficient measures have been applied. The energy assessment has been completed by Mecserve's energy modelling team who are accredited On Construction Dwelling Energy Assessors.

4.2 BASELINE CARBON EMISSION RATE

The building comprises five new-build flats. According to the GLA Guidance on preparing energy assessments (March 2016), the new build elements will be assessed against Part L1A standards. Therefore, the L1A Target Emission Rate (TER) will be used to determine the baseline CO2 emissions.

The following table (Table 4) presents the baseline CO2 emissions for the proposed scheme.

From 6 April 2014, Approved Document L1A has introduced a fabric energy efficiency standard (FEES). This is the maximum space heating and cooling energy demand for a new home. It is measured as the amount of energy which would normally be needed to maintain comfortable internal temperatures in a home and is measured in kWh per m² per annum. Table 4 also presents the Target Fabric Energy Efficiency (TFEE) calculated by FSAP 2012 software.

Table 4 Baseline Carbon Dioxide emissions

Regulated Carbon dioxide emissions	26 Netherhall Gardens
Baseline Carbon Emission Rate (Part L1A 2013 TER)	14.44 tnCO ₂ /annum
Part L1A 2013 Target Fabric Energy Efficiency Rate (TFEE)	59.90 kWh/sqm/annum

5. LONDON PLAN ENERGY HIERARCHY

To meet the requirements of Policy 5.2 Minimising Carbon Dioxide Emissions development proposals should minimise carbon dioxide emissions in accordance with the following energy hierarchy:

- Be lean: use less energy;
- Be clean: supply energy efficiently;
- Be green: use renewable energy.

The hierarchy provides the mechanism through which the carbon dioxide (CO₂) emission reduction targets in Policy 5.2 of the London Plan are achieved. It also contributes to the implementation of strategic energy policies relating to decentralised networks and ensures opportunities for building occupants to receive efficient, secure and affordable energy.

GLA guidance of preparing Energy assessments (March 2016) states that the energy assessment must clearly identify the carbon footprint of the development after each stage of the energy hierarchy. Regulated emissions must be provided and, separately, those emissions associated with uses not covered by Building Regulations i.e. unregulated energy uses.

Considering that the proposed development is a minor scheme, the following sections indicate the performance of the scheme in relation to the Code for Sustainable Homes Level 4 reduction target. The Code Level 4 equivalent reduction target in carbon dioxide emissions is 20% over Part L1A 2013 TER. New residential dwellings are required to demonstrate how this has been met by following the London Plan Energy Hierarchy described above.

6. BE LEAN – DEMAND REDUCTION

Be Lean measures is the first stage of the Energy Hierarchy where energy demand of the building is reduced through architectural and building fabric measures (passive design) and energy efficient services (active design). Be lean Measures should demonstrate the extent to which the energy demand meets or exceeds Building Regulations. The following sections demonstrates how the prosed development will achieve energy and CO₂ emissions reduction over the baseline emissions.

6.1 **PASSIVE DESIGN**

Passive design measures, including optimising orientation and site layout, natural ventilation and lighting, thermal mass and solar shading.

This will be achieved through:

- Building Orientation: The building's orientation is largely dictated by the shape of the site. The main façade is facing West. The internal layout of the dwelling has been set out to maximise the number of habitable rooms that can take advantage of solar gain and natural light;
- Passive Solar Design and Daylight: The make-up of the proposed façade has balanced proportion of solid wall to glazing, thus providing optimum amount of daylight and winter solar heating, without excessive solar gains during the summer;
- Thermal performance of the fabric: the proposed building fabric exceeds the requirements set in the Part L regulations;
- BFRC-rated windows: Glass of low g-value will be selected to reduce solar gains during summer;
- Thermal bridges: Accredited Construction Details will be used to minimise the impact of thermal bridges thus reducing heat losses;
- Air-tightness: Using enhanced construction skills and rigorous detailing to reduce the air permeability of the building and therefore eliminate heat losses through infiltration.

Table 5 below shows initial assumptions on building fabric specifications including air permeability. These will be thoroughly reviewed by the design team at later stage.

Building Fabric	ric U-value Wall [W/m ² K] Floor		0.18		
			0.15		
Roof Window		Roof	0.15		
		Window	1.40 – Double-glazed (BFRC-rated)		
	Air permeability Thermal Bridging		5 m³/m²hr @50Pa		
			All junctions need to conform with Accredited Construction Details		

 Table 5 Proposed building fabric specifications

Achieving the above values will reduce the energy demand of the development in advance of adding any active energy efficiency measures or renewable energy systems to the development.

6.2 ACTIVE DESIGN

After reducing the energy demand of the development, the next stage would be to use energy efficient building services, lighting and controls throughout the scheme to reduce fuel consumption. Our proposed energy strategy includes the following:

- Heating: Individual gas-fired condensing boilers with automatic ignition of high efficiency are proposed for each flat to provide heating to ancillary areas;
- Ventilation: Fresh air will be provided to the occupants via Mechanical Ventilation with Heat Recovery;
- Domestic Hot Water: A well-insulated hot water cylinder will be provided to every apartment with minimum storage losses fed by individual gas-fired boilers;
- Lighting: All light fittings will be dedicated low energy types i.e. either LED or fluorescent.
- An instantaneous waste water heat recovery system to recover heat from waste warm water as it flows through the waste plumbing system to pre-heat the cold-water feed of a shower.

HVAC Systems	Primary Heating	Individual gas-fired condensing boilers with automatic ignition of 89.7%					
ŕ	System	efficiency					0
	Heating Controls	Time and temper	Time and temperature zone control by suitable arrangement of plumbing				
		and electrical se	ervices	including	boile	er interlock an	d a delayed start
		thermostat					
	Ventilation	Whole house balanced mechanical ventilation with heat recovery as per			eat recovery as per		
		below table (Approved installation scheme)					
		Number of wet ro	oms	SFP (W/I/	/s)	Heat exchange	er efficiency (%)
		3 + kitchen		0.53			94
		4 + kitchen		0.65			93
	Comfort Cooling	Not provided					
DHW	Hot Water System	All units will be provided with 145lt hot water cylinder of 1.18kWh/c				er of 1.18kWh/day	
		standing heat loss		-			
		Design will incorp					em (WWHRS).
		Product Name: Sh			· ·		
				rooms		nber of mixer	Number of mixer
		Apartment		hower		wers in rooms	showers in rooms
			and/c	or bath	with	n a bath	without a bath
		1		2		1	1
		2		3		1	2
		3-5		2		0	2
	DHW Controls				te timer for DHW.		
		Primary pipework is fully insulated.					
Lighting	Installed Light	All light fittings are dedicated low energy types i.e. either LED or fluorescent.					
	fittings						

 Table 6 Proposed building services systems

6.3 SAVINGS FROM BE LEAN MEASURES

After implementing all the passive and active energy efficiency measures listed in sections 6.1-6.2, the carbon dioxide emissions of the proposed scheme are reduced from 14.44 tnCO2 to 11.13 tnCO2 per year. Therefore, the reduction in Carbon Emission of the building at this stage is 22.9%, as the following table demonstrates.

Table 7 Carbon Dioxide emissions reduction for the development

Regu	llated Carbon dioxide emissions (Tonnes CO ₂ per annum)	26 Netherhall Gardens			
Baseline Emis	ssions	14.44			
Be Lean	After energy demand reduction	11.13			
Carbon Savin	gs over Baseline	3.31			
Carbon Redu	ction over Baseline	22.9%			

Subsequently, the reduction in Fabric Energy Efficiency of the building is 18.9%, as the following table demonstrates.

Table 8 Fabric Energy Efficiency Rate reduction for the development

Fabric Energy Efficiency (kWh per m ² per annum)	26 Netherhall Gardens
Part L1A Target Fabric Energy Efficiency (TFEE) Rate	59.90
Dwelling Fabric Energy Efficiency (DFEE) Rate	48.57
Reduction over 2013 TFEE	18.9%

7. BE CLEAN – SUPPLYING LOW CARBON ENERGY

In accordance with the Energy Hierarchy of London Plan 2016, connection to existing district heat networks, site wide Combined Heat and Power (CHP) and incorporation of CHP in the buildings has been considered for the scheme.

7.1 DISTRICT ENERGY NETWORK

In response to the second tier of the Energy Hierarchy and the GLA's requirement that developments seek to connect to optimise energy supply, a preliminary investigation into the adjacent heat loads and infrastructure has been undertaken. According to the London Heat Map, there is no district heating network in close proximity available currently or in the future. Therefore, given also the size and scale of the proposed scheme, connection to a district energy network is not considered feasible.

7.2 COMBINED HEAT AND POWER (CHP)

As there is not a viable source of heat that the development could connect to, the appropriateness of installing a Combined Heat and Power (CHP) engine within a communal heating system for the proposed development has been considered.

As CHP usually has significantly higher capital cost compared to conventional gas fired boilers, to maximise its efficiency it is it is important that the CHP plant operates for as many hours as possible and matches closely the base heat so that the generated heat is not wasted. Due to the number of flats been added to the existing block, the annual demand for space heating and domestic hot water for the scheme is expected to be low throughout the year.

There are Micro CHP units available in the market that can serve development of this scale but their numbers are very limited. Also, the on-site performance of such Micro CHP units is not considered as reliable as that of larger CHP units and they are generally less efficient. According to GLA guidance, a higher number of flats is required to justify installation of a CHP unit in a residential building. For these reasons, a CHP led heating and hot water system is not recommended for the development. Instead, individual gas-fired condensing boilers of high efficiency are proposed for the residential units.

8. **BE GREEN- RENEWABLE ENERGY TECHNOLOGIES**

In order to further reduce emissions from the development in accordance with the local authority policies and London Plan Energy Hierarchy, it is necessary to consider the introduction of renewable energy systems on site.

A high-level assessment of the following renewable technologies was carried out as part of the feasibility study.

- Biomass Boilers;
- Wind Turbines;
- Heat Pumps (Ground/Water/Air);
- Solar Hot Water Heating (SHWH);
- Photovoltaics.

8.1 **BIOMASS BOILER**

A biomass boiler works effectively against a consistent heating load, however, adequate space dedicated for storing the fuel is required. Within inner London areas, there are concerns about the effect of small scale biomass systems on air-quality particularly with respect to particulates released through the boiler flue. For this reason, we would not recommend a biomass boiler for this development.

8.2 WIND TURBINES

Wind turbines' performance in urban areas is normally not very good and unpredictable due to turbulences on air movement caused by the surrounding built environment. Wind turbines may also raise issues due to noise disturbance and their visual impact. Therefore, this technology is not suitable for this site.

8.3 GROUND SOURCE HEAT PUMP

Ground source heat pumps have been considered for the development. With a closed loop borehole system, it would be possible to drop loops beneath the basement of the buildings. However, given that the heating demand for this development is low, the cost of installing a ground source heat pump would not make this system financially viable. Therefore, given that a ground source system would be complex, technically risky, costly and deliver limited carbon emissions savings, we would therefore not recommend this approach for the development.

8.4 AIR SOURCE HEAT PUMP

Air-source or aerothermal heat-pumps work on the same principals as a ground-source heating system but extract heat or coolth from the air. ASHPs perform better when connected to an underfloor heating system that requires lower water temperature. ASHPs have low maintenance costs and they are simple to install compared to a GSHP. ASHPs, however, tend to drop their efficiencies when ambient air temperature is low during wintertime as there is no heat to absorb. Even though they are considered as Low carbon Technologies they run on electricity which is a carbon intensive fuel. For this reason, we would not recommend ASHPs for this development.

8.5 PHOTOVOLTAIC (PV) PANELS SOLAR HOT WATER HEATING

The design team has reviewed the building roof space for the development. Photovoltaic panels work efficiently on flat or south facing roof areas. Given that the SE/SW facing parts of the roof are facing the main road, installation of PV panels would have a negative impact on the surroundings and the aesthetics of the neighbourhood where the building sits. Therefore, we would not recommend photovoltaic panels for this scheme.

8.6 SOLAR HOT WATER HEATING

Solar thermal hot water systems can work well on residential developments. However, compared to PV panels, they require higher maintenance and more space inside the apartments for risers and hot water storage. In order to increase their efficiency these should be located on the SE/SW facing part of the roof. However, as explained above, this would have a negative impact on the aesthetics of the neighbourhood where the building sits. Therefore, we would not recommend this technology for the scheme.

9. CONCLUSION

This Energy Statement outlines the key features and strategies adopted by the development team to reduce energy use and carbon emissions for the scheme and demonstrate compliance with London Plan 2016 and London Borough of Camden Climate Change Mitigation and Adaptation Policies.

The strategy for reducing energy use and associated carbon emissions through the design of the scheme follows a three-step approach in line with the London Plan Energy Hierarchy.

- Reducing the energy demand through passive design strategies and provision of high quality building envelope;
- Reducing the energy consumption through best practice design of building services, lighting and control; and,
- Installation of on-site Low and Zero carbon technologies.

Passive and active energy efficiency features include:

- Building fabric of high thermal performance, in terms of U-values and air tightness, and use of Accredited Construction Details;
- BFRC-rated windows;
- Building services systems of high efficiency, including condensing boilers and MVHR units, and light fitting of low energy types;
- An instantaneous waste water heat recovery system (WWHRS) to recover heat from waste warm water as it flows through the waste plumbing system to pre-heat the cold-water feed of a shower.

This energy performance statement has demonstrated that the new development has achieved a carbon emission reduction in excess of 20% compared to the Code for Sustainable Home Level 4 Baseline Emission Rate. The following table (Table 9) provides a summary of the carbon savings achieved at each stage of the London Plan Energy Hierarchy as a result of the proposed energy strategy described in the report.

-	ated Carbon dioxide emissions (Tonnes CO2 per annum)	26 Netherhall Gardens					
Baseline Em	issions	14.44					
Be Lean	After energy demand reduction	11.13					
Be Clean	After CHP	11.13					
Be Green	After renewable energy	11.13					
Carbon Savi	ngs over Baseline Emissions	3.31					
Carbon Red	uction over Baseline Emissions	22.9%					

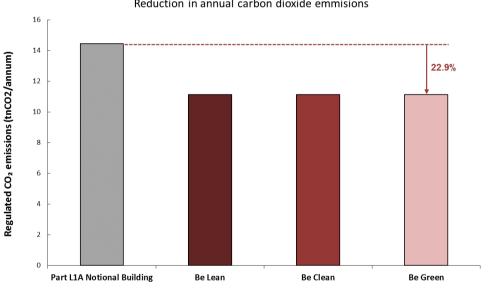

Table 9 Carbon Dioxide emissions reduction for the development

Table 10 demonstrates the total regulated CO₂ savings from each stage of the Energy Hierarchy. As demonstrated below overall 22.9% reduction in carbon emission can be achieved applying the proposed strategies.

 Table 10 Regulated carbon dioxide savings from each stage of the Energy Hierarchy

	Regulated carbo	n dioxide savings
	(Tonnes CO2 per annum)	(%)
Savings from energy demand reduction	3.31	22.9
Savings from CHP	0.00	0.0
Savings from renewable energy	0.00	0.0
Total Cumulative Savings	3.31	22.9
Total Target Savings	2.89	20.0
Annual Surplus	0.42	

Figure 6 below illustrate the total carbon savings and the total reduction achieved at each stage of the proposed Energy Hierarchy respectively.

26 Netherhall Gardens Reduction in annual carbon dioxide emmisions

Figure 6 Total carbon savings achieved at each stage over Baseline Emissions

APPENDIX 1. TER WORKSHEET OF TYPICAL APARTMENT

Assessor Name: Alexandros Kazantzis Stroma Number: STR0030219 Software Name: Stroma FSAP 2012 Software Version: Version: 1.0.4.7 Property Address: Apt 2 - Be Lean	
Proparty Addrass: Apt 2 Ro Loop	
Property Address. Apr 2 - De Lean	
Address : Flat 2, 26 Netherhall Gardens, LONDON, NW3 5TL	
1. Overall dwelling dimensions:	
Area(m ²) Av. Height(m) Volume(m ³)	
Basement 113 (1a) x 2.7 (2a) = 305.1 (3a)	a)
Ground floor 161.4 (1b) x 3.8 (2b) = 613.32 (3b)	b)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 274.4 (4)	
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 918.42$ (5))
2. Ventilation rate:	
main secondary other total m ³ per hour heating heating	
Number of chimneys $0 + 0 + 0 = 0$ $x 40 = 0$ (6a)	a)
Number of open flues $0 + 0 + 0 = 0 \times 20 = 0$ (6b)	b)
Number of intermittent fans $4 \times 10 = 40$ (7a)	a)
Number of passive vents $0 \times 10 = 0 (7b)$	b)
Number of flueless gas fires $0 \times 40 = 0 (7c)$	c)
Air changes per hour	
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c) = 40$ \div (5) = 0.04 (8))
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)	
Number of storeys in the dwelling (ns)0(9)Additional infiltration $[(9)-1]\times 0.1 =$ 0(10)	
	÷
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction	1)
deducting areas of openings); if equal user 0.35	
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	2)
If no draught lobby, enter 0.05, else enter 0	3)
Percentage of windows and doors draught stripped	4)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)	5)
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)	6)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 5 (17)	7)
If based on air permeability value, then $(18) = [(17) \div 20]+(8)$, otherwise $(18) = (16)$	8)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered 4 (19	0)
Number of sides sheltered 4 (19) Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.7 (20)	
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.21$ (21)	
Infiltration rate modified for monthly wind speed	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Monthly average wind speed from Table 7	
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7	

Wind F	actor (22	2a)m = ((22)m ÷	4											
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]		
Adjuste	ed infiltra	tion rate	e (allowi	ng for sh	nelter ar	nd wind s	speed) =	= (21a) x	(22a)m						
	0.26	0.26	0.25	0.23	0.22	0.2	0.2	0.19	0.21	0.22	0.23	0.24]		
	ate effect		•	rate for t	he appli	cable ca	ise								
	echanical			andix NL (2	(2h) = (22)		austion	(N5)) , othei	nuico (22h	v) - (22o)				0	(23a)
			• • •		, ,	, ,	•	m Table 4h)) = (23a)				0	(23b)
			-	-	-			'HR) (24a		2b)m + (23b) x [′	1 – (23c)) ÷ 1001	0	(23c)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24a)
b) If	balanced	d mecha	anical ve	entilation	without	heat rec	covery (MV) (24b)m = (22	1 2b)m + (1	23b)		1		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24b)
,					•			on from c 4c) = (22t		.5 × (23b)		3		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24c)
,					•			ion from l 0.5 + [(2		0.5]			3		
(24d)m=	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53]		(24d)
Effe	ctive air o	change i	rate - er	nter (24a) or (24l	b) or (24	c) or (24	4d) in box	(25)				-		
(25)m=	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53]		(25)
3. He	at losses	and he	at loss p	paramete	ər:								_		
ELEN	IENT	Gros area		Openin m	-	Net Ar A ,r		U-valı W/m2		A X U (W/I	K)	k-valu kJ/m²•		A X kJ/	
	IENT ws Type	area		•	-		m²		K		K)				
Windov		area 1		•	-	A ,r	m²	W/m2	K 0.04] =	(W/	K)				ΊK
Windov Windov	ws Type	area (1 2		•	-	A ,r 9.1	m² x x	W/m2 1/[1/(1.4)+	K 0.04] = 0.04] =	(W/ 12.06	K)				′K (27)
Windov Windov Windov	ws Type ws Type	area (1 2 3		•	-	A ,r 9.1 9.1	m ² x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+	K 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06	K)				′K (27) (27)
Windov Windov Windov Windov	ws Type ws Type ws Type	area (1 2 3 4		•	-	A ,r 9.1 9.1 13.3	m ² x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63	K)				′K (27) (27) (27)
Windov Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type	area (1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1	m ² x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04	<)				/K (27) (27) (27) (27)
Windov Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type ws Type	area (1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1 9.6	m ² x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/l 12.06 12.06 17.63 16.04 12.73	<>				(27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type ws Type Type 1	area (1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1 9.6 2.4	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18	<pre></pre>				rK (27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov Floor T	ws Type ws Type ws Type ws Type ws Type ⁻ ype 1 -	area (1 2 3 4 5	(m²)	•	<u></u>	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113	m ² x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69	<pre></pre>				 (27) (28)
Windov Windov Windov Windov Windov Floor T	ws Type ws Type ws Type ws Type ws Type ⁻ ype 1 - ype 2 Type1	area (1 2 3 4 5 6	(m²)	. m	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15	m ² x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95					 'K (27) (27) (27) (27) (27) (27) (27) (28) (28)
Windov Windov Windov Windov Floor T Floor T Walls T	ws Type ws Type ws Type ws Type ws Type ⁻ ype 1 ⁻ ype 2 Type1 Type2	area (1 2 3 4 5 6	(m²) 13	27.8	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17					 'K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29)
Window Window Window Window Floor T Floor T Walls T Walls T	ws Type ws Type ws Type ws Type ws Type ⁻ ype 1 ⁻ ype 2 Type1 Type2 Type1	area (1 2 3 4 5 6 (112.4)	(m²) 1 2	27.8	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 = 1 = 1 = 1 = 1 =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17					 'K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29)
Windov Windov Windov Windov Floor T Floor T Walls T Roof T Roof T	ws Type ws Type ws Type ws Type ws Type ⁻ ype 1 ⁻ ype 2 Type1 Type2 Type1	area (1 2 3 4 5 6 (112.7 184.3 36.2 25.8	(m²) 1 3 3	27.8 27.8 0	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18 0.18 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 = 1 = 1 = 1 = 1 = 1 =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71					 'K (27) (27) (27) (27) (27) (27) (27) (27) (28) (28) (28) (29) (30)
Windov Windov Windov Windov Floor T Floor T Walls T Roof T Roof T Roof T Total a	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 Type2 Type2 Type2	area (1 2 3 4 5 6 (112. ⁻) 184. ⁻ 184. ⁻ 36.2 25.8 ements, roof windo	(m ²) 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.8 27.8 27.8 0 0	12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18 0.18 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35		kJ/m²-	к 		 'K (27) (28) (28) (29) (29)
Window Window Window Window Floor T Floor T Walls T Roof T Roof T Roof T Total a * for winw ** includ	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 Type2 urea of ele dows and r	area (1 2 3 4 5 6 112. ⁻ 184. ⁻ 36.2 25.8 ements, roof windo s on both s	(m ²) 1 3 3 m ² ows, use e sides of in	27.8 27.8 0 0 effective wi aternal walk	12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.18 0.13 0.13 0.13	K 0.04] = 0.04] =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35		kJ/m²-	K		 'K (27) (28) (28) (29) (29)
Windov Windov Windov Windov Floor T Floor T Roof T Roof T Roof T Total a * for win ** includ Fabric	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type 2 Type1 Type2 Type2 urea of elu dows and r le the areas	area (1 2 3 4 5 6 112. ⁻ 184. ⁻ 184. ⁻ 25.8 ements, roof windo s on both s s, W/K =	(m ²) 1 3 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.8 27.8 0 0 effective wi aternal walk	12 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35	s given in	kJ/m²-	K	kJ/	<pre>/K (27) (27) (27) (27) (27) (27) (27) (27)</pre>
Window Window Window Window Floor T Floor T Walls T Walls T Roof T Roof T Total a * for win ** includ Fabric Heat ca	ws Type ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type 2 Type1 Type2 Type2 urea of ele dows and r le the areas heat loss	area (1 2 3 4 5 6 $112.^{-1}$ 184^{-1} 36.2 25.8 ements, roof windo s on both s s, W/K = Cm = S(h	(m ²) 1 3 m ² wws, use e sides of in sides of in a S (A x A x k)	The second secon	ndow U-v.	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul titions	m ² x x x x x x x x x x x x x x x x x x x	W/m2 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 1/[1/(1.4)+ 0.13 0.13 0.13 0.13 0.13 0.13 0.13	K 0.04] = 0.04] =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35		kJ/m²-	K	kJ/	 'K (27) (28) (29) (29)

can be u	ised inste	ad of a de	tailed calcu	ulation.										
											23.76	(36)		
if details of thermal bridging are not known $(36) = 0.15 \times (31)$ Total fabric heat loss $(33) + (36) =$														
Total fa	abric he	at loss							(33) +	(36) =			165.51	(37)
Ventila	tion hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	161.94	161.54	161.14	159.28	158.93	157.31	157.31	157.01	157.94	158.93	159.64	160.37		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	327.45	327.05	326.65	324.79	324.45	322.83	322.83	322.53	323.45	324.45	325.15	325.89		
Heat Ic	oss para	meter (F	HLP), W/	m²K						Average = = (39)m ÷	Sum(39) ₁ .	.12 /12=	324.79	(39)
(40)m=	1.19	1.19	1.19	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.19		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1.18	(40)	
Average = Sum(40) ₁₁₂ /12=												1.10	(40)	
											Dec			
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	tina ener	gy requi	rement:								kWh/ye	ear:	
if TF	A > 13.9			[1 - exp	(-0.0003	49 x (TF	FA -13.9))2)] + 0.0)013 x (1	ΓFA -13.	3 9)	.1		(42)
	A £ 13.9 I averad	,	ater usad	ae in litre	es per da	v Vd.av	erade =	(25 x N)	+ 36		107	7.79		(43)
Reduce	the annua	al average	hot water	usage by $\$$	5% if the d	welling is	designed t			se target o				()
not more	e that 125	litres per j	person per	day (all w	ater use, h	not and co	ld)				-			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	118.57	114.26	109.95	105.64	101.33	97.01	97.01	101.33	105.64	109.95	114.26	118.57		
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,n	n x nm x D)Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1293.52	(44)
(45)m=	175.84	153.79	158.7	138.36	132.76	114.56	106.16	121.81	123.27	143.66	156.81	170.29		
(,											m(45) ₁₁₂ =		1696	(45)
lf instant	aneous w	vater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46						
(46)m=	26.38	23.07	23.8	20.75	19.91	17.18	15.92	18.27	18.49	21.55	23.52	25.54		(46)
	storage e volum		includin	a anv so	olar or W	WHRS	storage	within sa	ame ves	sel		150		(47)
0		, ,		0,	velling, e		0					100		()
	•	-			cludes i			• •	ers) ente	er '0' in (47)			
	storage			,					,	,	,			
	-		eclared l	oss facto	or is kno	wn (kWł	n/day):				1.	37		(48)
Tempe	rature f	actor fro	m Table	2b							0.	54		(49)
Energy	v lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =		0.	74		(50)
,				-	oss facto									
		-			e 2 (kWl	n/litre/da	ıy)					0		(51)
	•	from Ta	ee sectio	JII 4.3									l	(50)
			m Table	2b))		(52) (53)
											L'			(00)

Energy lost from water storage, kWh/year Enter (50) or (54) in (55)					(47) x (51) x (52) x (53) =					0		(54)		
	. ,	. , .									0.	74	ł	(55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)ı	m 				
(56)m=	22.87	20.66	22.87	22.14	22.87	22.14	22.87	22.87	22.14	22.87	22.14	22.87		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	22.87	20.66	22.87	22.14	22.87	22.14	22.87	22.87	22.14	22.87	22.14	22.87		(57)
Primar	y circuit	loss (an	inual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	5 × (41)	m					
(mod	dified by	factor fi	rom Tab	le H5 if t	here is s	solar wat	er heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eacl	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	221.98	195.46	204.83	183.01	178.89	159.21	152.29	167.95	167.92	189.8	201.46	216.43		(62)
Solar DH	-IW input of	calculated	using App	endix G or	Appendix	H (negativ	ve quantity	/) (enter '0	if no sola	r contributi	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix C	S)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
WWHR	5 0	0	0	0	0	0	0	0	0	0	0	0		(63) (G10)
Output	from w	ater hea	ter											
(64)m=	221.98	195.46	204.83	183.01	178.89	159.21	152.29	167.95	167.92	189.8	201.46	216.43		
								Outp	out from wa	ater heate	r (annual)₁	12	2239.23	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	« [(46)m	+ (57)m	+ (59)m]	
(65)m=	95.38	84.47	89.68	81.72	81.05	73.81	72.21	77.41	76.71	84.68	87.86	93.53	_	(65)
inclu	ude (57)	m in calc	culation	of (65)m	only if c	ylinder is	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	
	. ,	ains (see		. ,	-	•		U U					, in the second s	
		s (Table			/									
Melab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93		(66)
						ion L9 oi							1	
(67)m=	39.7	35.26	28.68	21.71	16.23	13.7	14.8	19.24	25.83	32.8	38.28	40.81	1	(67)
						uation L'					00.20	10101	I	
Appilai (68)m=		441.72	430.29	405.95	375.23	346.36	327.07	322.53	333.96	358.3	389.02	417.9	1	(68)
											309.02	417.9	1	(00)
	<u> </u>	·		-		ion L15	,				00.40	00.40	l	(60)
(69)m=	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	l	(69)
•		ns gains	·	, 			-	-		<u> </u>	-	_	I	(70)
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	l	(70)
		aporatio	· •		, <u>,</u>	, 				i			ı.	
(71)m=	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95		(71)
Water	heating	gains (T	able 5)	i	i	i i				i			L	
(72)m=	128.19	125.7	120.53	113.5	108.94	102.51	97.05	104.05	106.54	113.81	122.03	125.71		(72)
Total i	nternal	gains =				(66)	m + (67)m	ı + (68)m +	- (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	677.56	675.17	651.98	613.65	572.88	535.05	511.4	518.31	538.81	577.39	621.81	656.9		(73)

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-		Access Facto Table 6d		Area m ²	a anu	Flux Table 6a	lions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.54	x	9.1	×	10.63	x	0.63	x	0.7	=	20.74	(74)
North	0.9x	0.54	x	9.1	x	20.32	x	0.63	x	0.7	=	39.63	(74)
North	0.9x	0.54	x	9.1	x	34.53	x	0.63	x	0.7	=	67.35	(74)
North	0.9x	0.54	x	9.1	x	55.46	x	0.63	x	0.7	=	108.18	(74)
North	0.9x	0.54	x	9.1	x	74.72	x	0.63	x	0.7	=	145.72	(74)
North	0.9x	0.54	x	9.1	x	79.99	x	0.63	x	0.7	=	156	(74)
North	0.9x	0.54	x	9.1	x	74.68	x	0.63	x	0.7	=	145.65	(74)
North	0.9x	0.54	x	9.1	x	59.25	x	0.63	x	0.7	=	115.55	(74)
North	0.9x	0.54	x	9.1	x	41.52	x	0.63	x	0.7	=	80.97	(74)
North	0.9x	0.54	x	9.1	x	24.19	x	0.63	x	0.7	=	47.18	(74)
North	0.9x	0.54	x	9.1	x	13.12	x	0.63	x	0.7	=	25.58	(74)
North	0.9x	0.54	x	9.1	x	8.86	x	0.63	x	0.7	=	17.29	(74)
East	0.9x	1	x	12.1	x	19.64	x	0.63	x	0.7	=	72.63	(76)
East	0.9x	1	x	12.1	x	38.42	x	0.63	x	0.7	=	142.08	(76)
East	0.9x	1	x	12.1	x	63.27	x	0.63	x	0.7	=	233.98	(76)
East	0.9x	1	x	12.1	x	92.28	x	0.63	x	0.7	=	341.24	(76)
East	0.9x	1	x	12.1	x	113.09	x	0.63	x	0.7	=	418.21	(76)
East	0.9x	1	x	12.1	x	115.77	x	0.63	x	0.7	=	428.11	(76)
East	0.9x	1	x	12.1	x	110.22	x	0.63	x	0.7	=	407.58	(76)
East	0.9x	1	x	12.1	x	94.68	x	0.63	x	0.7	=	350.1	(76)
East	0.9x	1	x	12.1	x	73.59	x	0.63	x	0.7	=	272.13	(76)
East	0.9x	1	x	12.1	x	45.59	x	0.63	x	0.7	=	168.59	(76)
East	0.9x	1	x	12.1	x	24.49	x	0.63	x	0.7	=	90.56	(76)
East	0.9x	1	x	12.1	x	16.15	x	0.63	x	0.7	=	59.73	(76)
South	0.9x	0.54	x	9.6	x	46.75	x	0.63	x	0.7	=	96.19	(78)
South	0.9x	0.77	x	2.4	x	46.75	x	0.63	x	0.7	=	34.29	(78)
South	0.9x	0.54	x	9.6	x	76.57	x	0.63	x	0.7	=	157.54	(78)
South	0.9x	0.77	x	2.4	x	76.57	x	0.63	x	0.7	=	56.16	(78)
South	0.9x	0.54	x	9.6	x	97.53	x	0.63	x	0.7	=	200.68	(78)
South	0.9x	0.77	x	2.4	x	97.53	x	0.63	x	0.7	=	71.54	(78)
South	0.9x	0.54	x	9.6	x	110.23	x	0.63	x	0.7	=	226.81	(78)
South	0.9x	0.77	x	2.4	x	110.23	x	0.63	x	0.7	=	80.85	(78)
South	0.9x	0.54	x	9.6	×	114.87	x	0.63	x	0.7	=	236.35	(78)
South	0.9x	0.77	x	2.4	x	114.87	x	0.63	x	0.7	=	84.25	(78)
South	0.9x	0.54	x	9.6	×	110.55	x	0.63	x	0.7	=	227.46	(78)
South	0.9x	0.77	x	2.4	×	110.55	x	0.63	×	0.7	=	81.08	(78)

	F		1		1								-
South	0.9x	0.54	x	9.6	x	108.01	×	0.63	x	0.7	=	222.24	(78)
South	0.9x	0.77	x	2.4	x	108.01	x	0.63	x	0.7	=	79.22	(78)
South	0.9x	0.54	x	9.6	x	104.89	x	0.63	x	0.7	=	215.82	(78)
South	0.9x	0.77	x	2.4	x	104.89	x	0.63	x	0.7	=	76.94	(78)
South	0.9x	0.54	x	9.6	x	101.89	x	0.63	x	0.7	=	209.63	(78)
South	0.9x	0.77	x	2.4	x	101.89	x	0.63	x	0.7	=	74.73	(78)
South	0.9x	0.54	x	9.6	x	82.59	x	0.63	x	0.7	=	169.92	(78)
South	0.9x	0.77	x	2.4	x	82.59	x	0.63	x	0.7	=	60.57	(78)
South	0.9x	0.54	x	9.6	x	55.42	x	0.63	x	0.7	=	114.02	(78)
South	0.9x	0.77	x	2.4	x	55.42	x	0.63	x	0.7	=	40.65	(78)
South	0.9x	0.54	x	9.6	x	40.4	x	0.63	x	0.7	=	83.12	(78)
South	0.9x	0.77	x	2.4	x	40.4	x	0.63	x	0.7] =	29.63	(78)
West	0.9x	0.54	x	9.1	x	19.64	x	0.63	x	0.7	=	38.31	(80)
West	0.9x	0.77	x	13.3	x	19.64	x	0.63	x	0.7	=	79.83	(80)
West	0.9x	0.54	x	9.1	x	38.42	x	0.63	x	0.7	=	74.93	(80)
West	0.9x	0.77	x	13.3	x	38.42	x	0.63	x	0.7	=	156.17	(80)
West	0.9x	0.54	x	9.1	x	63.27	x	0.63	x	0.7	=	123.41	(80)
West	0.9x	0.77	x	13.3	x	63.27	x	0.63	x	0.7	=	257.18	(80)
West	0.9x	0.54	x	9.1	x	92.28	x	0.63	x	0.7	=	179.98	(80)
West	0.9x	0.77	x	13.3	x	92.28	x	0.63	x	0.7	=	375.09	(80)
West	0.9x	0.54	x	9.1	x	113.09	x	0.63	x	0.7	=	220.57	(80)
West	0.9x	0.77	x	13.3	x	113.09	x	0.63	x	0.7	=	459.68	(80)
West	0.9x	0.54	x	9.1	x	115.77	x	0.63	x	0.7	=	225.79	(80)
West	0.9x	0.77	x	13.3	x	115.77	x	0.63	x	0.7	=	470.57	(80)
West	0.9x	0.54	x	9.1	x	110.22	x	0.63	x	0.7	=	214.97	(80)
West	0.9x	0.77	x	13.3	x	110.22	x	0.63	x	0.7	=	448	(80)
West	0.9x	0.54	x	9.1	x	94.68	x	0.63	x	0.7	=	184.65	(80)
West	0.9x	0.77	x	13.3	x	94.68	x	0.63	x	0.7	=	384.82	(80)
West	0.9x	0.54	x	9.1	x	73.59	x	0.63	x	0.7	=	143.53	(80)
West	0.9x	0.77	x	13.3	x	73.59	x	0.63	x	0.7	=	299.11	(80)
West	0.9x	0.54	x	9.1	x	45.59	x	0.63	x	0.7	=	88.92	(80)
West	0.9x	0.77	x	13.3	x	45.59	x	0.63	x	0.7	=	185.3	(80)
West	0.9x	0.54	×	9.1	×	24.49	×	0.63	x	0.7] =	47.76	(80)
West	0.9x	0.77	×	13.3	×	24.49	x	0.63	x	0.7] =	99.54	(80)
West	0.9x	0.54	×	9.1	×	16.15	×	0.63	x	0.7] =	31.5	(80)
West	0.9x	0.77	×	13.3	×	16.15	×	0.63	x	0.7] =	65.65	(80)

Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m														
(83)m=														(83)
Total g	Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=														(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisation factor for gains for living area, h1,m (see Table 9a)														
Stroma FSAP2012 VERSION 1.0.4.4.7 (SAP 392) http://www.stroma.com/Jul Aug Sep Oct Nov Dec												Pag	e 6 of 8	

(86)m=	1	1	1	0.98	0.94	0.82	0.66	0.73	0.93	0.99	1	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Table	e 9c)					
(87)m=	19.49	19.65	19.93	20.31	20.66	20.89	20.97	20.95	20.75	20.29	19.82	19.46		(87)
Temp	erature	during h	neating p	beriods ir	n rest of	dwelling	from Ta	able 9, Ti	h2 (°C)					
(88)m=	19.93	19.93	19.93	19.93	19.93	19.94	19.94	19.94	19.94	19.93	19.93	19.93		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	1	1	0.98	0.91	0.73	0.52	0.6	0.89	0.99	1	1	1	(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 7	7 in Tabl	le 9c)				
(90)m=	17.89	18.13	18.54	19.09	19.57	19.86	19.93	19.92	19.71	19.07	18.37	17.85		(90)
									f	fLA = Livin	g area ÷ (4	4) =	0.55	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	18.77	18.97	19.31	19.76	20.17	20.43	20.5	20.49	20.29	19.74	19.17	18.74	l	(92)
Apply	adjustn	nent to th	he mear	n interna	temper	ature fro	m Table	e 4e, whe	ere appro	opriate				
(93)m=	18.77	18.97	19.31	19.76	20.17	20.43	20.5	20.49	20.29	19.74	19.17	18.74	L	(93)
8. Sp	ace hea	ting requ	uirement	t										
						ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut			<u> </u>	using Ta	i	ı .							l	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		tor for g		r		0.70		0.07					l	(04)
(94)m=	1	1	0.99	0.98	0.92	0.78	0.6	0.67	0.91	0.99	1	1		(94)
			· · · ·	4)m x (84	· <u> </u>	4054.40	4044.04	4000.07	1 400 00	4005.00	4000 70	0.40 50	l	(05)
(95)m=		1299.72				1651.16	1211.91	1236.27	1466.89	1285.22	1038.79	943.53		(95)
	· ·	-	1	perature	1	-	40.0	40.4	444	40.0	74	4.0	l	(96)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(90)
	4738.85		an interr 4184.51	· · ·	r	1		x [(93)m	– (96)m 2001.52	r –	2024.2	4707.00	l	(97)
(97)m=		4601.7			2748.05			1319.1			3924.3	4737.62		(97)
•		<u> </u>			· · · ·	r	i	24 x [(97)	í Ó	í - `	1)m 2077.56	2022.0	l	
(98)m=	2767.49	2218.93	1925.17	1186.33	586.96	0	0	0	0			2822.8		
								lota	l per year	(kWh/year) = Sum(9	8)15,912 =	14835.88	(98)
Space	e heatin	g require	ement in	kWh/m ²	²/year								54.07	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	j micro-C	CHP)					
Spac	e heatir	ng:												_
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1							·	93.5	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	ז, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	∟ ar
Space				alculate	· ·		•••							
		<u> </u>	· · · · ·	1186.33	586.96	0	0	0	0	1250.65	2077.56	2822.8	1	
(211)m	n = {[(98)m x (20	u4)]}x1	00 ÷ (20										(211)
、— · · //·		2373.19	· · · ·	1268.8	627.76	0	0	0	0	1337.59	2221.99	3019.04	1	· · · /
			I	1	I	1	I	Tota	l I (kWh/yea		211) _{15,1012}		15867.25	(211)

Space heating fuel (secondary), kWh/month

$= \{[(98)m x (2)]$	•			monun									
$= \{[(90)] 1 \times (2)$ (215)m= 0		00 ÷ (20	0	0	0	0	0	0	0	0	0		
	Ļ	L	L		L		-		ar) =Sum(2	-		0	(215)
Water heating	g										I		
Output from w	vater hea	ter (calc	ulated a	bove)				-					
221.98	195.46	204.83	183.01	178.89	159.21	152.29	167.95	167.92	189.8	201.46	216.43		_
Efficiency of v	vater hea	ater		_		_	-	-				79.8	(216)
<mark>(217)m=</mark> 89.61	89.53	89.35	88.91	87.75	79.8	79.8	79.8	79.8	88.93	89.44	89.64		(217)
Fuel for water (219)m = (64													
(219)m = (04) (219)m = 247.72		229.26	205.84	203.86	199.51	190.84	210.47	210.42	213.42	225.25	241.43		
		I					Tota	I = Sum(2	19a) ₁₁₂ =			2596.35	(219)
	Annual totals kWh/year												
Space heating	g fuel use	ed, main	system	1								15867.25	
Water heating	g fuel use	ed										2596.35	
Electricity for	pumps, f	ans and	electric	keep-ho	t								
central heating	ng pump	:									30		(230c)
boiler with a	fan-assis	sted flue									45		(230e)
Total electricit	ty for the	above, l	kWh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electricity for	lighting											701.16	(232)
12a. CO2 en	nissions ·	– Individ	ual heat	ing syste	ems inclu	uding mi	cro-CHP)					
					Fn	ergy			Fmiss	ion fac	tor	Emissions	
						/h/year			kg CO2			kg CO2/yea	
Space heating	g (main s	system 1)		(21	l) x			0.2	16	=	3427.33	(261)
Space heating	g (secono	dary)			(21	5) x			0.5	19	=	0	(263)
Water heating)				(219	9) x			0.2	16	=	560.81	(264)
Space and wa	ater heati	ing			(26	I) + (262) -	+ (263) + (264) =				3988.14	(265)
Electricity for	pumps, f	ans and	electric	keep-ho	t (23 ⁻	l) x			0.5	19	=	38.93	(267)
Electricity for	lighting				(232	2) x			0.5	19	=	363.9	(268)
Total CO2, kg	j/year							sum o	of (265)(2	271) =		4390.96	(272)
													_

TER =

16 (273)

APPENDIX 2. TFEE WORKSHEET OF TYPICAL APARTMENT

						User I	Details:						
	or Name: e Name:		exandros roma FS					a Num are Vei				030219 on: 1.0.4.7	
							Address		Be Lear	۱			
Address				etherha	ll Garder	is, LON	IDON, N	W3 5TL					
1. Overal	ll dwelling o	limensior	IS:			۸rc	ea(m²)		Av. Hei	iaht(m)		Volume(m ³	\ \
Basement							113	(1a) x		2.7	(2a) =	305.1	/ (3a)
Ground flo	or						161.4	(1b) x		3.8	(2b) =	613.32	`´´ (3b)
	area TFA	= (1a)+(1	b)+(1c)+((1d)+(1e	e)+ (1r		274.4	(4)]()	010.02	
Dwelling v		- (10)1(1	5)1(10)1((14)1(1	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		274.4	J)+(3c)+(3d	l)+(3e)+	.(3n) =	918.42	(5)
									, , , , ,	, , ,	· ·	510.42	
2. Ventila	ation rate:		main		econdar	у	other		total			m ³ per hou	r
Number o	f chimneys	_	heating 0	ו + ר	neating 0] + [0	7 = Г	0	x 4	40 =	0	(6a)
Number o	f open flue:	s [0	 _ + [0] + [0	L = [0	x 2	20 =	0	(6b)
Number o	f intermitte	L nt fans		L		_J L			4	x 1	10 =	40	(7a)
Number o	f passive v	ents						L L	0	x 1	10 =	0	(7b)
Number o	f flueless g	as fires						Г	0	x 4	40 =	0	(7c)
								L					
								_			Air ch	hanges per ho	ur
	due to chir urisation test	•						continuo fr	40		÷ (5) =	0.04	(8)
	of storeys				ea, proceed	10(17),	otherwise	conunue ir	0111 (9) 10 (10)		0	(9)
	al infiltratio		olling (inc	-)						[(9)-	-1]x0.1 =	0	(10)
Structur	al infiltratio	n: 0.25 fo	r steel or	timber	frame or	0.35 fc	or mason	ry constr	uction			0	(11)
	types of wall a ing areas of c	•			sponding to	the grea	ater wall are	ea (after					
	nded wood				led) or 0.	1 (seal	ed), else	enter 0				0	(12)
If no dra	aught lobby	, enter 0.	05, else e	enter 0								0	(13)
Percent	age of wind	dows and	doors dr	aught s	tripped							0	(14)
Window	infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltratio	on rate						(8) + (10)	+ (11) + (1	12) + (13) -	+ (15) =		0	(16)
•	neability va		•			•	•	•	etre of e	nvelope	area	5	(17)
	n air perme	•										0.29	(18)
	ability value a		ressurisatio	on test ha	s been don	e or a de	egree air pe	ermeability	is being us	sed			
Shelter fac	f sides she ctor	llered					(20) = 1 -	[0.075 x (1	[9]] =			4 0.7	(19) (20)
Infiltration	rate incorp	orating sl	nelter fac	tor			(21) = (18	3) x (20) =				0.21	(21)
Infiltration rate modified for monthly wind speed													
IJ	an Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly a	verage win	d speed f	rom Tabl	e 7									
(22)m= 5	5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	2a)m =	(22)m ÷	4											
(22a)m=	r Ì	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18			
Adjust	ed infiltra	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	: (21a) x	(22a)m						
-	0.26	0.26	0.25	0.23	0.22	0.2	0.2	0.19	0.21	0.22	0.23	0.24			
			-	rate for t	he appli	cable ca	se								٦
	echanica			and a NL (O	ol.) (00-) (00-)			()	(23a)
								N5)), other) = (23a))	(23b)
			-	-	-			n Table 4h)		,)	(23c)
	i		r	i			<u> </u>	HR) (24a	, <u>,</u>	r <u> </u>		r <u>, </u>	÷100]		(0.1a)
(24a)m=		0	0	0	0	0	0	0	0	0	0	0			(24a)
	i		· · · · ·	1			r	MV) (24b	, , ,	r í	,		1		(24b)
(24b)m=		0	0	0	0	0	0	0	0	0	0	0			(24b)
,					•	•		on from o ·c) = (22b		.5 × (23b)				
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24c)
,						•		on from l 0.5 + [(2:		0.5]					
(24d)m=	r í í	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53			(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (240	c) or (24	ld) in box	(25)						
(25)m=	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53			(25)
2 40	ot loopo	o ond he		paramete	~r.					1		1	I		
0.110	ai 10330.														
ELEN		Gros	SS	Openin m	gs	Net Ar		U-valı W/m2		A X U (W/	{)	k-value kJ/m²·l		A X kJ/ł	
	IENT	Gros area	SS	Openin	gs	Net Ar A ,r 9.1	n²	U-valı W/m2 /[1/(1.4)+	к.	(W/	<)	k-value kJ/m²∙I		A X kJ/ł	<
Windo	IENT ws Type	Gros area 1	SS	Openin	gs	A ,r 9.1	m²	W/m2 /[1/(1.4)+	K 0.04] = [(W/I 12.06	<) 				〈 (27)
Windo Windo	IENT ws Type ws Type	Gros area 1 2	SS	Openin	gs	A ,r 9.1 9.1	m ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+	K 0.04] = [0.04] = [(W/I 12.06 12.06	<) 				<(27) (27)
Windo Windo Windo	IENT ws Type	Gros area 1 2 3	SS	Openin	gs	A ,r 9.1	m ² x1 x1 x1	W/m2 /[1/(1.4)+		(W/I 12.06					〈 (27)
Windo Windo Windo Windo	IENT ws Type ws Type ws Type	Gros area 1 2 3 4	SS	Openin	gs	A ,r 9.1 9.1 13.3	n ² x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W/ 12.06 12.06 17.63					< (27) (27) (27) (27)
Windo Windo Windo Windo Windo	IENT ws Type ws Type ws Type ws Type	Gros area 1 2 3 4 5	SS	Openin	gs	A ,r 9.1 9.1 13.3 12.1	n ² x1 x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W/I 12.06 12.06 17.63 16.04					< (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo	MENT ws Type ws Type ws Type ws Type ws Type ws Type	Gros area 1 2 3 4 5	SS	Openin	gs	A ,r 9.1 9.1 13.3 12.1 9.6	n ² x1 x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W/I 12.06 12.06 17.63 16.04 12.73 3.18					 (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor	MENT ws Type ws Type ws Type ws Type ws Type Type 1	Gros area 1 2 3 4 5	SS	Openin	gs	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69					 (27) (27) (27) (27) (27) (27) (27) (27) (28)
Windo Windo Windo Windo Windo Floor T	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2	Gros area 1 2 3 4 5	ss (m²)	Openin	gs ²	A ,r 9.1 9.1 13.3 12.1 9.6 2.4	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W/I 12.06 12.06 17.63 16.04 12.73 3.18					 (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1	Gros area 1 2 3 4 5 6	ss (m²)	Openin rr	gs 2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15	n ² x ¹	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.13		(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95					 (27) (27) (27) (27) (27) (27) (27) (28) (28)
Windo Windo Windo Windo Floor 1 Floor 1 Walls 1 Walls 1	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2	Gros area 2 3 4 5 6 112	.1 .3	Openin m	gs 2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.13 0.13 0.18	$ \begin{array}{c} K \\ 0.04] = \begin{bmatrix} \\ \\ 0.04] = \end{bmatrix} \\ 0.04] = \begin{bmatrix} \\ \\ 0.04] = \end{bmatrix} \\ 0.04] = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W/l 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17					 (27) (27) (27) (27) (27) (27) (27) (27) (28) (28) (29)
Windo Windo Windo Windo Floor 7 Floor 7 Walls 7 Walls 7 Roof 7	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1	Gros area 1 2 3 4 5 6 112 112 184	2	Openin m 27.8 27.8	gs 2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ [0.13] 0.13 0.18 0.18	$ \begin{array}{c} K \\ 0.04] = \begin{bmatrix} \\ \\ 0.04] = \end{bmatrix} \\ 0.04] = \begin{bmatrix} \\ \\ 0.04] = \end{bmatrix} \\ 0.04] = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17					 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls 1 Roof 1 Roof 1	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2	Gros area 2 3 4 5 6 112 184 36 25.1	.1 3 2 8	Openin m 27.8 27.8 0	gs 2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+		(W/l 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71					(27)(27)(27)(27)(27)(27)(28)(28)(29)(29)(30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls Roof 1 Roof 1 Total a * for win	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 Type2 area of e dows and	Gros area 2 2 3 4 4 5 5 6 112 184 36 25 Iements roof wind	.1 .3 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Openin m 27.8 27.8 0 0	gs 2 mdow U-ve	A , n 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcula	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+	K 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35		kJ/m²-I			 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30)
Windo Windo Windo Windo Floor 7 Floor 7 Floor 7 Walls 7 Roof 7 Roof 7 Total a * for win	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 Type2 area of e dows and	Gros area 2 3 4 5 6 112 184 36. 25. Iements roof wind as on both	1 (m ²)	Openin m 27.8 27.8 0 0 effective wi internal wal	gs 2 mdow U-ve	A , n 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcula	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+	K 0.04] = [0.04] = [(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35		kJ/m²-I	<		(27)(27)(27)(27)(27)(27)(28)(28)(29)(29)(30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls Roof Roof Total a * for win ** incluc Fabric	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 urea of e dows and le the area	Gros area 4 2 3 4 4 5 6 6 112 184 36.1 25.1 Iements roof wind as on both ss, W/K =	.1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	Openin m 27.8 27.8 0 0 effective wi internal wal	gs 2 mdow U-ve	A , n 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcula	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+/[1/(1.4)+/[1/(K 0.04] = [0.04] = [(W/I 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35	s given in	kJ/m²-I	<	kJ/ł	 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30) (30) (31)
Windo Windo Windo Windo Floor 1 Floor 1 Floor 2 Roof 2 Roof 2 Total a * for win ** incluc Fabric Heat c	MENT ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 area of e dows and le the area heat los apacity 0	Gros area 1 2 3 4 5 6 112 184 36.3 lements roof wind s on both is, W/K = Cm = S(1 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Openin m 27.8 27.8 0 0 effective wi internal wal	gs 2 ndow U-va ds and pan	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcula	n ² x1 x1 x1 x1 x1 x1 x1 x2 x x x x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+)/[1/(1.4)+/[1/(1.4)+/[1/(1.4)+/[1/(K 0.04] = [0.04] = [(W// 12.06 12.06 17.63 16.04 12.73 3.18 14.69 1.95 15.17 28.17 4.71 3.35 re)+0.04] c	[]]	kJ/m²-I	<	kJ/ł	 (27) (27) (27) (27) (27) (27) (28) (28) (28) (29) (29) (30) (30) (31)

can be i	used inste	ad of a dei	tailed calc	ulation.										
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix l	<						23.76	(36)
if details	of therma	al bridging	are not kn	nown (36) =	= 0.15 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			165.51	(37)
Ventila	ation hea	at loss ca	alculated	monthl	Ý				(38)m	= 0.33 × (25)m x (5)	-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	161.94	161.54	161.14	159.28	158.93	157.31	157.31	157.01	157.94	158.93	159.64	160.37		(38)
Heat t	ransfer o	coefficier	nt. W/K						(39)m	= (37) + (3	- 38)m			
(39)m=	327.45	327.05	326.65	324.79	324.45	322.83	322.83	322.53	323.45	324.45	325.15	325.89		
()										Average =			324.79	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K						= (39)m ÷				
(40)m=	1.19	1.19	1.19	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.19		
							1			Average =	Sum(40)1	12 /12=	1.18	(40)
Numb	er of day	/s in mor	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													1	
1 \\/	ator boot	ting one		irement:								kWh/ye	oor	
4. 000	aler nea	ing ener	gy requ	nement.								KVV1/98	.	
		ipancy, I										.1		(42)
			+ 1.76 x	: [1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.0	0013 x (⁻	TFA -13.	9)			
	A £ 13.9	,	ator usa	ao in litre	e nor da	w Vd av	orado -	(25 x N)	+ 36		10	7 70	1	(42)
								to achieve		se target o		7.79	l	(43)
not mor	e that 125	litres per p	person pe	r day (all w	ater use, l	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)					1	
(44)m=	118.57	114.26	109.95	105.64	101.33	97.01	97.01	101.33	105.64	109.95	114.26	118.57		
							1	1	-	I Total = Su	I m(44) ₁₁₂ =	=	1293.52	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	0Tm / 3600	kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)	L	
(45)m=	175.84	153.79	158.7	138.36	132.76	114.56	106.16	121.81	123.27	143.66	156.81	170.29		
									-	Total = Su	m(45) ₁₁₂ =	=	1696	(45)
lf instan	taneous w	ater heatii	ng at point	t of use (no	hot water	[.] storage),	enter 0 in	boxes (46) to (61)					
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
Water	storage	loss:												
Storag	je volum	e (litres)	includir	ng any so	plar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If com	munity h	eating a	nd no ta	ank in dw	velling, e	nter 110	litres in	(47)						
			hot wate	er (this ir	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage			. .		<i></i>	<i></i> 、						1	
,				oss facto	or is kno	wn (kvvr	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
-			-	e, kWh/ye				(48) x (49)	=			0		(50)
,				cylinder l									1	/= · ·
		-		rom Tabl	e 2 (KW	n/litre/da	iy)					0		(51)
	•	leating s from Tal		011 4.3								0	1	(52)
		actor fro		2b								0		(52)
.1.											L	-	1	()

		om water (54) in (5	-	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54) (55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	v circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
	•	loss cal	,			59)m = ((58) ÷ 36	5 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	149.46	130.72	134.89	117.6	112.84	97.37	90.23	103.54	104.78	122.11	133.29	144.75		(62)
Solar Dł	W input	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix C	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
WWHR	5 0	0	0	0	0	0	0	0	0	0	0	0		(63) (G10)
Output	from w	ater hea	ter											
(64)m=	149.46	130.72	134.89	117.6	112.84	97.37	90.23	103.54	104.78	122.11	133.29	144.75		_
							-	Outp	out from wa	ater heate	r (annual)₁	12	1441.6	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	« [(46)m	+ (57)m	+ (59)m]	
(65)m=	37.37	32.68	33.72	29.4	28.21	24.34	22.56	25.89	26.19	30.53	33.32	36.19		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal ga	ains (see	e Table 5	and 5a):									
Metab	olic gain	is (Table	e 5), Wat	ts										
	Jan	Feb		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93		(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	39.7	35.26	28.68	21.71	16.23	13.7	14.8	19.24	25.83	32.8	38.28	40.81		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1:	3a), alsc	see Ta	ble 5				
(68)m=	437.19	441.72	430.29	405.95	375.23	346.36	327.07	322.53	333.96	358.3	389.02	417.9		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5				
(69)m=	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49		(69)
Pumps	and fai	ns gains	(Table 5											
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	se.g. ev	, aporatio	n (nega	tive valu	es) (Tab	le 5)								
		-123.95	· · ·	-123.95	-123.95	, 	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95		(71)
Water	heating	ı gains (T	able 5)			1	1			1			i -	
(72)m=	50.22	48.63	45.33	40.83	37.92	33.81	30.32	34.79	36.38	41.03	46.28	48.64		(72)
		gains =	l		L	(66)	l m + (67)m	L I + (68)m +	L + (69)m + (I (70)m + (7	L 1)m + (72)	m	i .	
(73)m=	596.59	595.1	573.78	537.98	498.86	463.35	441.67	446.05	465.65	501.61	543.06	576.82		(73)
· · · · · ·													1	

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-		Access Facto Table 6d		Area m ²	a anu	Flux Table 6a	lions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.54	×	9.1	x	10.63	x	0.63	x	0.7	=	20.74	(74)
North	0.9x	0.54	x	9.1	x	20.32	x	0.63	x	0.7	=	39.63	(74)
North	0.9x	0.54	x	9.1	x	34.53	x	0.63	x	0.7	=	67.35	(74)
North	0.9x	0.54	x	9.1	x	55.46	x	0.63	x	0.7	=	108.18	(74)
North	0.9x	0.54	×	9.1	x	74.72	x	0.63	x	0.7	=	145.72	(74)
North	0.9x	0.54	x	9.1	x	79.99	x	0.63	x	0.7	=	156	(74)
North	0.9x	0.54	×	9.1	x	74.68	x	0.63	x	0.7	=	145.65	(74)
North	0.9x	0.54	x	9.1	x	59.25	x	0.63	x	0.7	=	115.55	(74)
North	0.9x	0.54	x	9.1	x	41.52	x	0.63	x	0.7	=	80.97	(74)
North	0.9x	0.54	×	9.1	x	24.19	x	0.63	x	0.7	=	47.18	(74)
North	0.9x	0.54	x	9.1	x	13.12	x	0.63	x	0.7	=	25.58	(74)
North	0.9x	0.54	×	9.1	x	8.86	x	0.63	x	0.7	=	17.29	(74)
East	0.9x	1	×	12.1	x	19.64	x	0.63	x	0.7	=	72.63	(76)
East	0.9x	1	x	12.1	x	38.42	x	0.63	x	0.7	=	142.08	(76)
East	0.9x	1	×	12.1	x	63.27	x	0.63	x	0.7	=	233.98	(76)
East	0.9x	1	x	12.1	x	92.28	x	0.63	x	0.7	=	341.24	(76)
East	0.9x	1	x	12.1	x	113.09	x	0.63	x	0.7	=	418.21	(76)
East	0.9x	1	x	12.1	x	115.77	x	0.63	x	0.7	=	428.11	(76)
East	0.9x	1	x	12.1	x	110.22	x	0.63	x	0.7	=	407.58	(76)
East	0.9x	1	x	12.1	x	94.68	x	0.63	x	0.7	=	350.1	(76)
East	0.9x	1	x	12.1	x	73.59	x	0.63	x	0.7	=	272.13	(76)
East	0.9x	1	×	12.1	x	45.59	x	0.63	x	0.7	=	168.59	(76)
East	0.9x	1	×	12.1	x	24.49	x	0.63	x	0.7	=	90.56	(76)
East	0.9x	1	x	12.1	x	16.15	x	0.63	x	0.7	=	59.73	(76)
South	0.9x	0.54	x	9.6	x	46.75	x	0.63	x	0.7	=	96.19	(78)
South	0.9x	0.77	x	2.4	x	46.75	x	0.63	x	0.7	=	34.29	(78)
South	0.9x	0.54	×	9.6	x	76.57	x	0.63	x	0.7	=	157.54	(78)
South	0.9x	0.77	x	2.4	x	76.57	x	0.63	x	0.7	=	56.16	(78)
South	0.9x	0.54	×	9.6	x	97.53	x	0.63	x	0.7	=	200.68	(78)
South	0.9x	0.77	×	2.4	x	97.53	x	0.63	x	0.7	=	71.54	(78)
South	0.9x	0.54	x	9.6	x	110.23	x	0.63	x	0.7	=	226.81	(78)
South	0.9x	0.77	x	2.4	x	110.23	x	0.63	x	0.7	=	80.85	(78)
South	0.9x	0.54	×	9.6	x	114.87	x	0.63	x	0.7	=	236.35	(78)
South	0.9x	-	×	2.4	x	114.87	x	0.63	x	0.7	=	84.25	(78)
South	0.9x	0.54	×	9.6	x	110.55	x	0.63	x	0.7	=	227.46	(78)
South	0.9x	0.77	x	2.4	x	110.55	x	0.63	x	0.7	=	81.08	(78)

South	0.9x	0.54	x	9.6	x	108.01	×	0.63	x	0.7	=	222.24	(78)
South	0.9x	0.77	x	2.4	x	108.01] x	0.63	x	0.7	=	79.22](78)
South	0.9x	0.54	x	9.6	x	104.89	l x	0.63	x	0.7	=	215.82	(78)
South	0.9x	0.77	x	2.4	l x	104.89] x	0.63	x	0.7	=	76.94](78)
South	0.9x	0.54	x	9.6	x	101.89] x	0.63	x	0.7	=	209.63](78)
South	0.9x	0.77	x	2.4	x	101.89	l x	0.63	x	0.7	=	74.73	(78)
South	0.9x	0.54	x	9.6	x	82.59	x	0.63	x	0.7	=	169.92](78)
South	0.9x	0.77	x	2.4	x	82.59	x	0.63	x	0.7	=	60.57	(78)
South	0.9x	0.54	x	9.6	x	55.42	x	0.63	x	0.7	=	114.02	(78)
South	0.9x	0.77	x	2.4	x	55.42	×	0.63	x	0.7	=	40.65	(78)
South	0.9x	0.54	x	9.6	x	40.4	x	0.63	x	0.7	=	83.12	(78)
South	0.9x	0.77	x	2.4	x	40.4	×	0.63	x	0.7	=	29.63	(78)
West	0.9x	0.54	x	9.1	x	19.64	×	0.63	x	0.7	=	38.31	(80)
West	0.9x	0.77	x	13.3	x	19.64	×	0.63	x	0.7	=	79.83	(80)
West	0.9x	0.54	x	9.1	x	38.42	×	0.63	x	0.7	=	74.93	(80)
West	0.9x	0.77	x	13.3	x	38.42	×	0.63	x	0.7	=	156.17	(80)
West	0.9x	0.54	x	9.1	x	63.27	×	0.63	x	0.7	=	123.41	(80)
West	0.9x	0.77	x	13.3	x	63.27	x	0.63	x	0.7	=	257.18	(80)
West	0.9x	0.54	x	9.1	x	92.28	x	0.63	x	0.7	=	179.98	(80)
West	0.9x	0.77	x	13.3	x	92.28	x	0.63	x	0.7	=	375.09	(80)
West	0.9x	0.54	x	9.1	x	113.09	x	0.63	x	0.7	=	220.57	(80)
West	0.9x	0.77	x	13.3	×	113.09	×	0.63	x	0.7	=	459.68	(80)
West	0.9x	0.54	x	9.1	x	115.77	×	0.63	x	0.7	=	225.79	(80)
West	0.9x	0.77	x	13.3	x	115.77	×	0.63	x	0.7	=	470.57	(80)
West	0.9x	0.54	x	9.1	x	110.22	×	0.63	x	0.7	=	214.97	(80)
West	0.9x	0.77	x	13.3	x	110.22	×	0.63	x	0.7	=	448	(80)
West	0.9x	0.54	x	9.1	×	94.68	x	0.63	x	0.7	=	184.65	(80)
West	0.9x	0.77	x	13.3	x	94.68	x	0.63	x	0.7	=	384.82	(80)
West	0.9x	0.54	x	9.1	x	73.59	×	0.63	x	0.7	=	143.53	(80)
West	0.9x	0.77	x	13.3	x	73.59	×	0.63	x	0.7	=	299.11	(80)
West	0.9x	0.54	x	9.1	x	45.59	×	0.63	x	0.7	=	88.92	(80)
West	0.9x	0.77	x	13.3	x	45.59	×	0.63	x	0.7	=	185.3	(80)
West	0.9x	0.54	x	9.1	x	24.49	x	0.63	x	0.7	=	47.76	(80)
West	0.9x	0.77	x	13.3	×	24.49	×	0.63	x	0.7	=	99.54	(80)
West	0.9x	0.54	x	9.1	×	16.15	×	0.63	x	0.7	=	31.5	(80)
West	0.9x	0.77	x	13.3	×	16.15	×	0.63	x	0.7	=	65.65	(80)

Solar g	ains in	watts, ca	alculated	for eacl	n month			(83)m = S	um(74)m .	(82)m				
(83)m=	341.99	626.51	954.13	1312.15	1564.79	1589.01	1517.65	1327.89	1080.1	720.48	418.11	286.92		(83)
Total g	ains – ii	nternal a	ind solar	(84)m =	= (73)m -	+ (83)m	, watts							
(84)m=	938.58	1221.61	1527.91	1850.13	2063.65	2052.36	1959.32	1773.94	1545.76	1222.09	961.18	863.74		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
Stroma I	SAP 201	2 v Ersio n:	1.0.4.9r(s	AP 995)		w.stroffia.o	_{om} Jul	Aug	Sep	Oct	Nov	Dec	Page	e 6 of 8

(86)m=	1	1	1	0.99	0.95	0.83	0.68	0.75	0.94	1	1	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	19.46	19.63	19.91	20.28	20.64	20.88	20.97	20.95	20.74	20.27	19.79	19.43		(87)
Tomp	oraturo	during h	L Leating r	L Doriode in	n rest of	dwelling	from Ta		L					
(88)m=	19.93	19.93	19.93	19.93	19.93	19.94	19.94	19.94	19.94	19.93	19.93	19.93		(88)
									10101	10100		10100		()
			I	1	welling, l		i	<u>, </u>		0.00				(00)
(89)m=	1	1	1	0.98	0.92	0.75	0.54	0.62	0.9	0.99	1	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.51	18.67	18.95	19.33	19.67	19.88	19.93	19.92	19.77	19.32	18.84	18.48		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.55	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwel	ling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	19.03	19.2	19.48	19.86	20.2	20.43	20.5	20.49	20.3	19.84	19.36	19.01		(92)
Apply	adjustn	nent to th	he mear	n interna	l tempera	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.03	19.2	19.48	19.86	20.2	20.43	20.5	20.49	20.3	19.84	19.36	19.01		(93)
8. Sp	ace hea	ting requ	uirement	t										
				mperatu using Ta	re obtain	ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(7	76)m an	d re-calc	ulate	
ine ui	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
l Itilisa		tor for g		· ·	Iviay	Juli	501	Aug	Oep	001	TNOV	Dec		
(94)m=	1		1	0.98	0.93	0.79	0.62	0.69	0.92	0.99	1	1		(94)
	-			4)m x (8-		0.1.0	0.01	0.00	0.02	0.00				
(95)m=	938.33	1220.33	1521.24	<u> </u>	1911.59	1628.81	1205.13	1224.24	1421.04	1213.26	960.5	863.58		(95)
``					e from Ta		-200110				000.0	000.00		()
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
					erature,									
(97)m=	4824.67	4676.4	4240.38	1		1882.28		- · ·		2998.13	3987.72	4825.18		(97)
					nonth, k									
(98)m=		2322.48	i	i i	630.53	0	0.02	0	0	1327.95	2179.6	2947.43		
()							-			(kWh/year			15579.08	(98)
~								1014		(kwn/year) = Oum(5)	0)15,912 -		
Space	e heatin	g require	ement in	ı kWh/m²	/year								56.78	(99)
8c. S	bace co	oling req	luiremer	nt										
Calcu				August.	See Tab	ole 10b								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		i è i	1	1	5°C inter		1	1		· ·		r í		
(100)m=	0	0	0	0	0	3034.58	2388.92	2451.21	0	0	0	0		(100)
		tor for lo	1	r			r	r				· · · · · ·		
(101)m=	0	0	0	0	0	0.77	0.85	0.8	0	0	0	0		(101)
		<u>``</u>	, <u> </u>	ì	(101)m									
(102)m=	0	0	0	0	0	2332.37		1971.36	0	0	0	0		(102)
	<u> </u>	í –	i	1	cable we			i				·		
(103)m=		0	0	0	0		2522.33		0	0	0	0		(103)
					whole a	lwelling,	continuo	ous (kW	(h) = 0.0	24 x [(10)3)m – (*	102)m]>	x (41)m	
set (1 (104)m=			104)m <	< 3 × (98)m o	220.5	360.04	245.11	0	0	0	0		
(104)[[]=	U	U	U	0	U	220.3	300.04	240.11		= Sum(005.00	
									roldi	– Sum(i ⊖ +)	=	825.66	(104)

Cooled	fractior	า							f C =	cooled	area ÷ (4) =	1	(105)
Intermit	tency fa	actor (Ta	able 10b)										_
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		
-	Total = Sum(1.0.4) = e cooling requirement for month = (104)m × (105) × (106)m													
Space of	cooling	requirer	nent for	month =	(104)m	× (105)	× (106)r	n						_
(107)m=	0	0	0	0	0	55.13	90.01	61.28	0	0	0	0		
	-								Total	= Sum(107)	=	206.41	(107)
Space of	cooling	requirer	nent in k	Wh/m²/y	/ear				(107)) ÷ (4) =			0.75	(108)
8f. Fabr	ic Ener	gy Effici	ency (ca	alculated	only un	der spec	cial cond	litions, se	ee sectio	on 11)				
Fabric	Energy	/ Efficier	псу						(99) -	+ (108) =	=		57.53	(109)
Targe	t Fabrio	c Energ	y Efficie	ency (TF	EE)								66.16	(109)

APPENDIX 3. DER WORKSHEET OF TYPICAL APARTMENT

APPENDIX P17-117/Issue 02/13 July 2017

				User D	Details:						
Assessor Name: Software Name:	Alexandros Stroma FS		2			are Vei	sion:			030219 vn: 1.0.4.7	
					Address		Be Lean				
Address :	Flat 2, 26 N	etherhal	l Garden	s, LON	DON, N\	N3 5TL					
1. Overall dwelling dime	ensions:			_							
Deservent					a(m²)		Av. Hei	,	1	Volume(m ³)	٦
Basement					113	(1a) x	2	.7	(2a) =	305.1	(3a)
Ground floor					161.4	(1b) x	3	.8	(2b) =	613.32	(3b)
Total floor area TFA = (1	a)+(1b)+(1c)+	(1d)+(1e	e)+(1n)	274.4	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	918.42	(5)
2. Ventilation rate:											
	main heating		econdary neating	y	other		total			m ³ per hour	
Number of chimneys	0	+	0] + [0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	- - +	0] + [0	- - - -	0	x 2	20 =	0	(6b)
Number of intermittent fa	ns					- L	0	x ^	0 =	0	(7a)
Number of passive vents	i					L L	0	x ^	0 =	0	_](7b)
Number of flueless gas fi	res					Г	0	x 4	40 =	0	_](7c)
, C						L				-	
									Air ch	anges per ho	ır
Infiltration due to chimne	ys, flues and f	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Г	0		÷ (5) =	0	(8)
If a pressurisation test has b	een carried out o	r is intende	ed, proceed	l to (17),	otherwise o	continue fr	om (9) to (16)			_
Number of storeys in the store of store	ne dwelling (n	s)								0	(9)
Additional infiltration								[(9)	1]x0.1 =	0	(10)
Structural infiltration: 0						•	uction			0	(11)
if both types of wall are p deducting areas of openii			ponding to	the grea	ter wall are	a (after					
If suspended wooden f	0 // 1		ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
lf no draught lobby, en	ter 0.05, else	enter 0								0	(13)
Percentage of windows	s and doors di	raught st	ripped							0	(14)
Window infiltration					0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate					(8) + (10)	+ (11) + (1	2) + (13) +	- (15) =		0	(16)
Air permeability value,				•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeabil	ity value, then	(18) = [(1	7) ÷ 20]+(8), otherw	rise (18) = ((16)				0.25	(18)
Air permeability value applie		on test has	s been don	e or a de	gree air pe	rmeability	is being us	sed			-
Number of sides sheltere Shelter factor	ed				(20) - 1 - 1	[0.075 x (1	Q)] —			4	(19)
	ing chalter for	tor					5)] –			0.7	(20)
Infiltration rate incorporat	•		J		(21) = (18	,				0.18	(21)
Infiltration rate modified f		i .		11	A ~	Sec.	Oct	Nevi	Dee		
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp						i .				I	
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (22	2a)m =	(22)m ÷	4											
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]		
Adjust	ed infiltra	tion rat	e (allowi	ng for sł	nelter an	d wind s	speed) =	: (21a) x	(22a)m						
-	0.22	0.22	0.21	0.19	0.19	0.17	0.17	0.16	0.18	0.19	0.2	0.21]		
	ate effect		-	ate for t	he appli	cable ca	ise						- 		
	echanical naust air hea			ndix N (2	3h) - (23a	a) v Emv (e	aquation (N5)) other	rwise (23h) - (23a)).5	(23a)
	anced with) – (200)).5	(23b)
	balanced		-	-	-					2h)m + (23b) v [[,]	1 – (23c)		9.05	(23c)
(24a)m=		0.32	0.32	0.3	0.29	0.27	0.27	0.27	0.28	0.29	0.3	0.31]		(24a)
	balanced										23b)]		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24b)
c) If	whole ho	ouse ex	tract ven	tilation of	or positiv	input v	ventilatio	on from c	utside	1		Į	1		
,	if (22b)m				•	•				5 × (23b))		_		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24c)
,	natural v if (22b)m				•					0.5]					
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24d)
Effe	ctive air c	change	rate - en	ter (24a) or (24t	o) or (24	c) or (24	ld) in boy	x (25)			-			
(25)m=	0.33	0.32	0.32	0.3	0.29	0.27	0.27	0.27	0.28	0.29	0.3	0.31]		(25)
3. He	at losses	and he	eat loss p	aramete	ər:										
ELEN	IENT	Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/		k-valu kJ/m²•		A > kJ/	
	MENT ws Type	area					m²		K						
Windo		area 1				A ,r	m²	W/m2	K 0.04] =	(W/					K
Windo Windo	ws Type	area 1 2				A ,r 9.1	m ² x1	W/m2 /[1/(1.4)+	K 0.04] = 0.04] =	(W/					K (27)
Windo Windo Windo	ws Type ws Type	area 1 2 3				A ,r 9.1 9.1	m ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] =	(W/ 12.06					K (27) (27)
Windo Windo Windo Windo	ws Type ws Type ws Type	area 1 2 3 4				A ,r 9.1 9.1 13.3	m ² x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63					K (27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type	area 1 2 3 4 5				A ,r 9.1 9.1 13.3 12.1	m ² x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04					K (27) (27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type	area 1 2 3 4 5				A ,r 9.1 9.1 13.3 12.1 9.6	m ² x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04 12.73					K (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type Type 1	area 1 2 3 4 5				A ,r 9.1 9.1 13.3 12.1 9.6 2.4	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18					K (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor	ws Type ws Type ws Type ws Type ws Type ws Type Type 1 Type 2	area 1 2 3 4 5	(m²)			A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95					K (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor T	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1	area 1 2 3 4 5 6	(m ²)	. m	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25					K (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor T Floor T Walls	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2	area 1 2 3 4 5 6	.(m²)	27.8	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17					K (27) (27) (27) (27) (27) (27) (27) (28) (28) (28) (29)
Windo Windo Windo Windo Floor T Floor T Walls	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1	area 1 2 3 4 5 6	(m ²) 1 3 2	27.8	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17					K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29)
Windo Windo Windo Windo Windo Floor T Floor T Walls T Roof T Roof T	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1	area 1 2 3 4 5 6 112 184 36.3 25.4	(m²) 1 3 2 8	27.8 27.8 0	2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2	m ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43					K (27) (27) (27) (27) (27) (27) (27) (28) (28) (28) (29) (29) (30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls 1 Roof 1 Roof 1 Total a * for win	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type1 Type1	area 1 2 3 4 5 6 (112) 184, 36, 25, ements	(m ²) <u>1</u> <u>3</u> <u>2</u> <u>8</u> , m ² pows, use e	27.8 27.8 0 10 10	ndow U-va	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18 0.15 0.15	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = = = = =	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87	K)	kJ/m²-	к 		K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30) (30)
Windo Windo Windo Windo Floor T Floor T Walls T Roof T Roof T Total a * for win	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 area of ele	area 1 2 3 4 5 6 112 184 184 36.2 25.3 ements roof winders on both	(m ²) 1 3 2 3 3 3 , m ² cows, use e sides of in	27.8 27.8 0 ffective wi ternal wal	ndow U-va	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18 0.15 0.15	$\begin{array}{c} 0.04] = \\$	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87	K)	kJ/m²-	K		K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30) (30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Roof 1 Roof 1 Roof 1 Total a * for win ** incluc Fabric	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 area of ele	area 1 2 3 4 5 6 6 112 184 184 36.3 25.3 ements roof windes s on both	(m ²) <u>1</u> <u>3</u> <u>2</u> <u>3</u> <u>2</u> <u>3</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>	27.8 27.8 0 ffective wi ternal wal	ndow U-va	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ = \\ 0.04] = \\ = \\ 0.04] = \\ 0$	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87 we)+0.04] a	K)	kJ/m²-	К h 3.2	kJ/	K (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Floor T Floor T Walls T Roof T Roof T Total a * for win ** incluc Fabric Heat c	ws Type ws Type ws Type ws Type ws Type rype 1 Type 2 Type 1 Type2 Type1 Type2 area of ele adows and r de the areas heat loss	area 1 2 3 4 5 6 112 184 36.3 ements roof winder s on both s, W/K = Cm = S((m ²) <u>1</u> <u>3</u> <u>2</u> <u>3</u> <u>2</u> <u>3</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>	rr 27.8 27.8 0 ffective wi ternal walk	ndow U-va	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul titions	m ² x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)/[1/(1.4)+)	$\begin{array}{c} \text{K} \\ \text{0.04]} = \\ 0.$	(W/ 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87 we)+0.04] a	K)	kJ/m²-	К 	kJ/	K (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30) (30) (31) (33)

can be ı	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						30.44	(36)
			are not kn	own (36) =	= 0.15 x (3	1)								_
Total f	abric he	at loss							(33) +	(36) =			176	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	99.37	98.05	96.72	90.09	88.76	82.13	82.13	80.81	84.79	88.76	91.42	94.07		(38)
Heat ti	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	275.37	274.05	272.72	266.09	264.76	258.13	258.13	256.81	260.79	264.76	267.42	270.07		
Heat lo	oss para	imeter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39)₁. · (4)	12 /12=	265.76	(39)
(40)m=	1	1	0.99	0.97	0.96	0.94	0.94	0.94	0.95	0.96	0.97	0.98		
		1	1	1	I		I	1	·	Average =	Sum(40)1.	12 /12=	0.97	(40)
Numbe	er of day	/s in mo	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
Accur		ipancy,	N										1	(42)
if TF		9, N = 1		[1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.(0013 x (⁻	TFA -13		.1		(42)
Annua	l averag	je hot wa		ge in litre usage by						o targat a		7.79		(43)
		-		r day (all w		-	-	o acilieve	a waler ut	se largel o	"			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat				ach month	,				000	000	1101	200		
(44)m=	118.57	114.26	109.95	105.64	101.33	97.01	97.01	101.33	105.64	109.95	114.26	118.57		
										l Total = Su	I m(44) ₁₁₂ =		1293.52	(44)
Energy	content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	175.84	153.79	158.7	138.36	132.76	114.56	106.16	121.81	123.27	143.66	156.81	170.29		
										Total = Su	m(45) ₁₁₂ =	-	1696	(45)
lf instan	taneous v	ater heati	ng at point	of use (no	hot water	· storage),	enter 0 in	boxes (46) to (61)					
(46)m=	26.38 storage	23.07	23.8	20.75	19.91	17.18	15.92	18.27	18.49	21.55	23.52	25.54		(46)
	-		includir	ng any so	olar or M	/WHRS	storage	within sa	ame ves	sel		145		(47)
-		. ,		ink in dw			-					140		()
	•	-		er (this in	-			. ,	ers) ente	er '0' in (47)			
	storage			,					,	,				
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				1.	18		(48)
Tempe	erature f	actor fro	m Table	2b							0.	54		(49)
Energy	y lost fro	m water	· storage	, kWh/ye	ear			(48) x (49)	=		0.	64		(50)
				cylinder l										
		age loss neating s		om Tabl	e 2 (KW	n/litre/da	iy)					0		(51)
	-	from Ta		011 4.0								0		(52)
		actor fro		2b								0		(53)
											-			

•••		om water (54) in (5	-	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0 64		(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m	L			
(56)m=	19.75	17.84	19.75	19.12	19.75	19.12	19.75	19.75	19.12	19.75	19.12	19.75		(56)
· · ·			l d solar sto	l orage, (57)i		x [(50) – (0), else (5	7)m = (56)	l m where (L H11) is fro	m Append	l lix H	
(57)m=	19.75	17.84	19.75	19.12	19.75	19.12	19.75	19.75	19.12	19.75	19.12	19.75		(57)
Primar	v circuit	loss (ar	nual) fro	om Table	3							0		(58)
	•	•	,	for each		59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor fi	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	, (59)m + (61)m	
(62)m=	218.85	192.64	201.71	179.98	175.77	156.19	149.17	164.83	164.9	186.67	198.44	213.31		(62)
Solar Dł	-IW input	calculated	using App	endix G or	· Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	ion to wate	r heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
WWHR	64.9	-57.11	-58.29	-47.93	-44.49	-36.69	-31.04	-37.59	-38.69	-47.85	-55.45	-62.74		(63) (G10)
Output	from w	ater hea	ter											
(64)m=	153.95	135.53	143.43	132.05	131.28	119.49	118.13	127.24	126.21	138.83	142.99	150.57		_
					-			Outp	out from wa	ater heate	r (annual)₁	12	1619.71	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	92.88	82.22	87.18	79.31	78.55	71.39	69.71	74.92	74.29	82.18	85.44	91.03		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gain	ns (Table	e 5), Wat	ts										
	Jan	1	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	39.7	35.26	28.68	21.71	16.23	13.7	14.8	19.24	25.83	32.8	38.28	40.81		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5				
(68)m=	437.19	441.72	430.29	405.95	375.23	346.36	327.07	322.53	333.96	358.3	389.02	417.9		(68)
Cookir	ng gains	(calcula	Ited in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m=	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49		(69)
Pumps	and fai	ns gains	(Table §	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	, aporatio	n (nega	tive valu	es) (Tab	le 5)								
		-123.95	· · ·	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95		(71)
Water	heatina	gains (T	able 5)	1	1		1			1			I	
(72)m=	124.84	122.35	117.18	110.15	105.58	99.16	93.7	100.69	103.18	110.46	118.67	122.36		(72)
Total i	nternal	gains =	:	I	<u>I</u>	(66)	m + (67)m	ı + (68)m +	- (69)m + (<u>.</u> (70)m + (7	1)m + (72)	m	I	
(73)m=	674.21	671.82	648.63	610.29	569.53	531.7	508.05	514.95	535.45	574.03	618.45	653.54		(73)
		I	I				I			I	I		I	

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-		Access Facto		Area m ²	a and	Flux Table 6a	tions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.54	x	9.1	×	10.63	x	0.7	x	1.11	=	36.58	(74)
North	0.9x	0.54	x	9.1	x	20.32	x	0.7	x	1.11	=	69.9	(74)
North	0.9x	0.54	x	9.1	x	34.53	x	0.7	x	1.11	=	118.78	(74)
North	0.9x	0.54	x	9.1	x	55.46	x	0.7	x	1.11	=	190.79	(74)
North	0.9x	0.54	x	9.1	x	74.72	x	0.7	x	1.11	=	257.01	(74)
North	0.9x	0.54	x	9.1	x	79.99	x	0.7	x	1.11	=	275.13	(74)
North	0.9x	0.54	x	9.1	x	74.68	x	0.7	x	1.11	=	256.87	(74)
North	0.9x	0.54	x	9.1	x	59.25	x	0.7	x	1.11	=	203.8	(74)
North	0.9x	0.54	x	9.1	×	41.52	x	0.7	x	1.11	=	142.81	(74)
North	0.9x	0.54	x	9.1	×	24.19	x	0.7	x	1.11	=	83.21	(74)
North	0.9x	0.54	x	9.1	x	13.12	x	0.7	x	1.11	=	45.12	(74)
North	0.9x	0.54	x	9.1	x	8.86	x	0.7	x	1.11	=	30.49	(74)
East	0.9x	1	x	12.1	x	19.64	x	0.7	x	1.11	=	128.09	(76)
East	0.9x	1	x	12.1	x	38.42	x	0.7	x	1.11	=	250.57	(76)
East	0.9x	1	x	12.1	x	63.27	x	0.7	x	1.11	=	412.66	(76)
East	0.9x	1	x	12.1	x	92.28	x	0.7	x	1.11	=	601.84	(76)
East	0.9x	1	x	12.1	x	113.09	x	0.7	x	1.11	=	737.58	(76)
East	0.9x	1	x	12.1	x	115.77	x	0.7	x	1.11	=	755.04	(76)
East	0.9x	1	x	12.1	x	110.22	x	0.7	x	1.11	=	718.83	(76)
East	0.9x	1	x	12.1	x	94.68	x	0.7	x	1.11	=	617.47	(76)
East	0.9x	1	x	12.1	x	73.59	x	0.7	x	1.11	=	479.94	(76)
East	0.9x	1	x	12.1	x	45.59	x	0.7	x	1.11	=	297.33	(76)
East	0.9x	1	x	12.1	x	24.49	x	0.7	x	1.11	=	159.72	(76)
East	0.9x	1	x	12.1	×	16.15	x	0.7	x	1.11	=	105.34	(76)
South	0.9x		x	9.6	x	46.75	x	0.7	x	1.11	=	169.65	(78)
South	0.9x	-	x	2.4	x	46.75	x	0.7	x	1.11	=	60.48	(78)
South	0.9x	0.54	x	9.6	x	76.57	x	0.7	x	1.11	=	277.85	(78)
South	0.9x		x	2.4	x	76.57	x	0.7	x	1.11	=	99.05	(78)
South	0.9x		x	9.6	x	97.53	x	0.7	x	1.11	=	353.93	(78)
South	0.9x		x	2.4	x	97.53	x	0.7	x	1.11	=	126.17	(78)
South	0.9x		x	9.6	x	110.23	x	0.7	x	1.11	=	400.02	(78)
South	0.9x		x	2.4	x	110.23	x	0.7	x	1.11	=	142.6	(78)
South	0.9x		x	9.6	×	114.87	x	0.7	x	1.11	=	416.84	(78)
South	0.9x		x	2.4	×	114.87	x	0.7	x	1.11	=	148.6	(78)
South	0.9x		x	9.6	x	110.55	x	0.7	x	1.11	=	401.16	(78)
South	0.9x	0.77	x	2.4	x	110.55	x	0.7	x	1.11	=	143	(78)

South	0.9x	0.54	1.,		1.,	400.04	1 .	0.7	.		1	004.05	(78)
South	L L	0.54	X	9.6	X	108.01	×	0.7	x	1.11	=	391.95	=
	0.9x	0.77	X	2.4	X 1	108.01	X	0.7	X	1.11	=	139.72	(78)
South	0.9x	0.54	X	9.6	X	104.89	X	0.7	x	1.11	=	380.64	(78)
South	0.9x	0.77	X	2.4	X	104.89	X	0.7	X	1.11	=	135.69	(78)
South	0.9x	0.54	X	9.6	×	101.89	X	0.7	X	1.11	=	369.72	(78)
South	0.9x	0.77	X	2.4	X	101.89	×	0.7	x	1.11	=	131.8	(78)
South	0.9x	0.54	x	9.6	x	82.59	x	0.7	x	1.11	=	299.69	(78)
South	0.9x	0.77	x	2.4	x	82.59	x	0.7	x	1.11	=	106.83	(78)
South	0.9x	0.54	x	9.6	x	55.42	x	0.7	x	1.11	=	201.1	(78)
South	0.9x	0.77	x	2.4	x	55.42	x	0.7	x	1.11	=	71.69	(78)
South	0.9x	0.54	x	9.6	x	40.4	x	0.7	x	1.11	=	146.6	(78)
South	0.9x	0.77	x	2.4	x	40.4	x	0.7	x	1.11	=	52.26	(78)
West	0.9x	0.54	x	9.1	x	19.64	x	0.7	x	1.11	=	67.56	(80)
West	0.9x	0.77	x	13.3	x	19.64	x	0.7	x	1.11	=	140.8	(80)
West	0.9x	0.54	x	9.1	x	38.42	x	0.7	x	1.11	=	132.16	(80)
West	0.9x	0.77	x	13.3	x	38.42	x	0.7	x	1.11	=	275.43	(80)
West	0.9x	0.54	x	9.1	x	63.27	x	0.7	x	1.11	=	217.65	(80)
West	0.9x	0.77	x	13.3	x	63.27	x	0.7	x	1.11	=	453.59	(80)
West	0.9x	0.54	x	9.1	x	92.28	x	0.7	x	1.11	=	317.43	(80)
West	0.9x	0.77	x	13.3	x	92.28	x	0.7	x	1.11	=	661.53	(80)
West	0.9x	0.54	x	9.1	x	113.09	x	0.7	x	1.11	=	389.02	(80)
West	0.9x	0.77	x	13.3	x	113.09	x	0.7	x	1.11	=	810.73	(80)
West	0.9x	0.54	x	9.1	x	115.77	x	0.7	x	1.11	=	398.23	(80)
West	0.9x	0.77	x	13.3	x	115.77	x	0.7	x	1.11	=	829.92	(80)
West	0.9x	0.54	x	9.1	x	110.22	x	0.7	x	1.11	=	379.13	(80)
West	0.9x	0.77	x	13.3	x	110.22	x	0.7	x	1.11	=	790.12	(80)
West	0.9x	0.54	x	9.1	x	94.68	×	0.7	x	1.11	=	325.67	(80)
West	0.9x	0.77	×	13.3	x	94.68	×	0.7	x	1.11	=	678.7	(80)
West	0.9x	0.54	x	9.1	x	73.59	x	0.7	x	1.11	=	253.13	(80)
West	0.9x	0.77	x	13.3	x	73.59	x	0.7	x	1.11	=	527.54	(80)
West	0.9x	0.54	x	9.1	x	45.59	x	0.7	x	1.11	=	156.82	(80)
West	0.9x	0.77	×	13.3	×	45.59	×	0.7	x	1.11	=	326.82	(80)
West	0.9x	0.54	×	9.1	×	24.49	×	0.7	x	1.11	=	84.24	(80)
West	0.9x	0.77	x	13.3	x	24.49	×	0.7	x	1.11	=	175.56	(80)
West	0.9x	0.54	x	9.1	x	16.15	×	0.7	x	1.11	=	55.56	(80)
West	0.9x	0.77	×	13.3	x	16.15	×	0.7	x	1.11	=	115.78	(80)
	L				-	·				•		•	

Solar g	ains in	watts, ca	alculated	l for eacl	n month			(83)m = S	um(74)m .	(82)m				
(83)m=	603.15	1104.96	1682.77	2314.2	2759.77	2802.49	2676.63	2341.96	1904.94	1270.69	737.42	506.02		(83)
Total g	ains – ii	nternal a	nd solar	(84)m =	= (73)m -	⊦ (83)m	, watts							
(84)m=	1277.36	1776.77	2331.4	2924.49	3329.3	3334.19	3184.68	2856.91	2440.4	1844.72	1355.87	1159.57		(84)
(84)m= 1277.36 1776.77 2331.4 2924.49 3329.3 3334.19 3184.68 2856.91 2440.4 1844.72 1355.87 1159.57 (84) 7. Mean internal temperature (heating season) (84) (84) (84) (84) (84)														
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
Stroma I	SAP 201	2 version:	1.0.4.ar	AP 9 B2)		w.stroffia.o	_{om} Jul	Aug	Sep	Oct	Nov	Dec	Page	6 of 8

(86)m=	1	1	0.98	0.89	0.7	0.49	0.36	0.41	0.7	0.97	1	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Table	e 9c)					
(87)m=	19.83	20.07	20.41	20.78	20.95	21	21	21	20.97	20.66	20.16	19.81		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, Ti	h2 (°C)					
(88)m=	20.08	20.08	20.09	20.11	20.11	20.13	20.13	20.14	20.12	20.11	20.1	20.1		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)		-				
(89)m=	1	1	0.97	0.86	0.65	0.43	0.29	0.34	0.63	0.95	1	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.5	18.85	19.35	19.87	20.07	20.13	20.13	20.14	20.1	, 19.72	19	18.48		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.55	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	19.24	19.52	19.93	20.37	20.56	20.61	20.61	20.61	20.58	20.23	19.64	19.21		(92)
Apply	adjustn	nent to t	he mear	interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.09	19.37	19.78	20.22	20.41	20.46	20.46	20.46	20.43	20.08	19.49	19.06		(93)
		ting requ												
				mperatui using Ta		ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa		tor for g			Indy	Udit	Uui	, tug	000	000	1101			
(94)m=	1	0.99	0.97	0.86	0.67	0.45	0.31	0.36	0.65	0.95	1	1		(94)
Usefu	I gains,	hmGm ,	, W = (9	4)m x (84	4)m									
(95)m=	1276.05	1766.1	2258.91	2528.94	2214.17	1504.43	996.02	1041.65	1593.04	1751.36	1351.16	1158.87		(95)
Month	-	-	1	perature	1	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			r	· ·	r	r	<u> </u>	x [(93)m	· /					(07)
(97)m=		3966.57	3622.7	3012.73			996.73	1043.3		2511.12		4013.64		(97)
•		g require 1478.71			оопtn, к 68.34		n = 0.02	24 x [(97) 0)m – (95 0)mj x (4 565.26	·	2123.95		
(50)11-	2013.10	1470.71	1014.00	040.00	00.04	Ū	0		-) = Sum(9		9092.61	(98)
Casa	- heatin	~ ~ ~ ~ ~		L() / /b //m (h in an			1014		(KWII/year) = 0011(0	0)15,912 -		
				kWh/m²									33.14	(99)
			nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
	e heatir on of sr	-	at from s	econdar	v/supple	mentary	svstem					[0	(201)
	-			nain syst		, normally	-	(202) = 1 -	- (201) =				1	(202)
				main syst	. ,			(204) = (204)		(203)] =			1	(204)
			•	ing syste				(201) - (2	02) X [1	(200)] -		l		(204)
	-	-		• •		aovotom	- 0/						93.7	
EIIICIE			· · ·	ementar	- I				_				0	(208)
0	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space		g require 1478.71	· · ·	alculate 348.33	68.34) 0	0	0	0	565.26	1413.61	2123.95		
(014)									Ŭ	505.20	10.01	2120.00		(044)
(211)m	$1 = \{[(98) \\ 2219.6 \}$	<u> </u>	4)] } X 1 1082.88	00 ÷ (20 371.75	72.94	0	0	0	0	603.26	1508.65	2266.75		(211)
	0.0	1070.14	1.002.00		1 2.04	l	l		-		211) _{15,1012}		9703.96	(211)
									1 - C		+ 10,1012		51 00.00	- P - 27

Space heating fuel (secondary), kWh/month

Space fielding fuel (Secondary), kwil/monut							
= {[(98)m x (201)] } x 100 ÷ (208)		· · ·	-			L	
(215)m= 0 0 0 0 0	0 0	0 0	0	0	0		_
		Total (kWh/y	ear) =Sum(2 15) _{15,101}	2	0	(215)
Water heating							
Output from water heater (calculated above)	119.49 118.13	127.24 126.21	138.83	142.99	150.57	l	
Efficiency of water heater	119.49 118.13	127.24 126.21	138.83	142.99	150.57	80	(216)
(217)m= 89.87 89.69 89.22 87.48 83.37	80 80	80 80	88.37	89.6	89.9	00	(217)
Fuel for water heating, kWh/month		00 00	00.01	00.0	00.0		(,
$(219)m = (64)m \times 100 \div (217)m$							
(219)m= 171.3 151.11 160.75 150.95 157.47	149.37 147.66	159.05 157.76		159.59	167.48		_
		Total = Sum(219a) ₁₁₂ =			1889.6	(219)
Annual totals			k	Wh/yea	r	kWh/yea	r -
Space heating fuel used, main system 1						9703.96	
Water heating fuel used						1889.6	
Electricity for pumps, fans and electric keep-ho	t						
mechanical ventilation - balanced, extract or p	ositive input fro	m outside			910.38		(230a
central heating pump:					30		(230c
boiler with a fan-assisted flue					45		(230e
Total electricity for the above, kWh/year		sum of (230a)(230g) =			985.38	(231)
Electricity for lighting						701.16	(232)
12a. CO2 emissions – Individual heating syste	ems including m	icro-CHP					
	Energy		Emiss	ion fac	tor	Emissions	6
	kWh/year		kg CO			kg CO2/ye	ar
Space heating (main system 1)	(211) x		0.2	16	=	2096.06	(261)
Space heating (secondary)	(215) x		0.5	19	=	0	(263)
Water heating	(219) x		0.2	16	=	408.15	(264)
Space and water heating	(261) + (262)	+ (263) + (264) =				2504.21	(265)
Electricity for pumps, fans and electric keep-ho	t (231) x		0.5	19	=	511.41	(267)
Electricity for lighting	(232) x		0.5	19	=	363.9	(268)
Total CO2, kg/year		sum	of (265)(271) =		3379.52	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =			12.32	(273)
El roting (agotion 14)							

El rating (section 14)

(274)

86

APPENDIX 4. DFEE WORKSHEET OF TYPICAL APARTMENT

APPENDIX P17-117/Issue 02/13 July 2017

				User D	etails:						
Assessor Name: Software Name:		ros Kazar FSAP 201			Strom Softwa	a Num are Ver				030219 n: 1.0.4.7	
			Р	roperty .	Address	: Apt 2 -	Be Lear	ו			
Address :		Netherha	ll Garder	ns, LON	DON, N\	N3 5TL					
1. Overall dwelling dim	ensions:										
Decement					a(m²)		Av. Hei		1	Volume(m ³)	
Basement					113	(1a) x	2	2.7	(2a) =	305.1	(3a)
Ground floor				1	61.4	(1b) x	3	3.8	(2b) =	613.32	(3b)
Total floor area TFA = (*	1a)+(1b)+(1d	:)+(1d)+(1e	e)+(1r	1) 2	274.4	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	918.42	(5)
2. Ventilation rate:											_]
2. Ventilation rate.	main		econdar	у	other		total			m ³ per hour	
Number of chimneys	heatir	<u>ig</u> r	neating 0] + [0	7 = Г	0	x 4	40 =	0	(6a)
Number of open flues	0		0		0	」	0	x 2	20 =	0	_`´´](6b)
Number of intermittent f			0		0		-		0 =		
						Ļ	4			40	(7a)
Number of passive vent						Ļ	0		0 =	0	(7b)
Number of flueless gas	fires						0	x 4	40 =	0	(7c)
									Air ch	anges per ho	ır
Infiltration due to obimp	ava fluca an	d fana - (6	a)+(6b)+(7	²>)⊥(7b)⊥(7c) -	Г			1		-
Infiltration due to chimne If a pressurisation test has						continue fr	40 om (9) to (÷ (5) =	0.04	(8)
Number of storeys in			<i>bu, procoo</i>	u to (11), t				10)		0	(9)
Additional infiltration	Ū	. ,						[(9)-	1]x0.1 =	0	(10)
Structural infiltration:	0.25 for stee	l or timber	frame or	0.35 fo	r masoni	ry constr	uction			0	(11)
if both types of wall are	-		ponding to	o the great	er wall are	a (after					
deducting areas of open If suspended wooden	U //		led) or 0	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ei			,	,	,,					0	(13)
Percentage of window	vs and doors	draught st	tripped							0	(14)
Window infiltration					0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate					(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value				•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeab	-									0.29	(18)
Air permeability value appli Number of sides shelter		ation test ha	s been dor	ie or a deg	gree air pe	rmeability	is being us	sed		4	(19)
Shelter factor	cu				(20) = 1 -	[0.075 x (1	9)] =			4	(13)
Infiltration rate incorpora	ating shelter	factor			(21) = (18) x (20) =				0.21	(21)
Infiltration rate modified	for monthly	wind speed	t								_
Jan Feb	Mar Ap	r May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	peed from T	able 7									
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	2a)m =	(22)m ÷	4											
(22a)m=	r i	, 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18			
Adiust	ed infiltra	ation rat	e (allowi	na for sł	helter an	d wind s	; ;peed) =	: (21a) x	(22a)m	1					
.,	0.26	0.26	0.25	0.23	0.22	0.2	0.2	0.19	0.21	0.22	0.23	0.24]		
	ate effec		-	rate for t	he appli	cable ca	se						J r		-
	echanica					/								0	(23a)
								N5)) , othei) = (23a)				0	(23b)
			•	•	•			n Table 4h						0	(23c)
	i		1		1	i	<u> </u>	HR) (24a	ŕ	r <u> </u>	r <u> </u>	r <u>`</u>) ÷ 100] I		$(0,1,\cdot)$
(24a)m=		0	0	0	0	0	0	0	0	0	0	0			(24a)
	r r				1	1	r	MV) (24b	ŕ	r í	, 		1		(24b)
(24b)m=		0	0	0	0	0	0	0	0	0	0	0	J		(24b)
,					•	-		on from c c) = (22b		5 v (22h					
(24c)m=	r í r	0	(230), t		(231) = (231)			c = (22c)	0		0	0	1		(24c)
		•	÷	÷	÷	÷	Ť	on from l	÷	Ů	Ů	Ů	J		()
,					•			0.5 + [(2		0.5]					
(24d)m=	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53			(24d)
Effe	ctive air o	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	ld) in box	(25)						
(25)m=	0.53	0.53	0.53	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.53	0.53			(25)
3. He	at losses	s and he	eat loss r	paramet	er:								4		
ELEN	IENT	Gros area		Openin rr	-	Net Ar A ,r		U-valı W/m2		A X U (W/I	K)	k-value kJ/m²⋅l		A X kJ/ł	
	IENT ws Type	area		•	-		n²		K		K)				
Windo		area 1		•	-	A ,r	m² x1	W/m2	K 0.04] =	(W/	K)				<
Windo Windo	ws Type	area 1 2		•	-	A ,r 9.1	m ² x1	W/m2 /[1/(1.4)+	K 0.04] = 0.04] =	(W/ 12.06	K)				〈 (27)
Windo Windo Windo	ws Type ws Type	area 1 2 3		•	-	A ,r 9.1 9.1	m ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06	K)				<(27) (27)
Windo Windo Windo Windo	ws Type ws Type ws Type	area 1 2 3 4		•	-	A ,r 9.1 9.1 13.3	m ² x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06 17.63	<)				< (27) (27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type	area 1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1	m ² x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06 17.63 16.04	<pre>k)</pre>				< (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type ws Type	area 1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1 9.6	m ² x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73	<pre>k)</pre>				< (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo Floor 1	ws Type ws Type ws Type ws Type ws Type ws Type Type 1	area 1 2 3 4 5		•	-	A ,r 9.1 9.1 13.3 12.1 9.6 2.4	m ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18	<pre> </pre> </td <td></td> <td></td> <td></td> <td> (27) (27) (27) (27) (27) (27) (27) (27) </td>				 (27) (27) (27) (27) (27) (27) (27) (27)
Windo Windo Windo Windo Windo	ws Type ws Type ws Type ws Type ws Type Fype 1 Fype 2	area 1 2 3 4 5 6	(m²)	. m	J2	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25					 (27) (27) (27) (27) (27) (27) (27) (28) (28)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1	area 1 2 3 4 5 6	.1	27.8	3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17					 (27) (27) (27) (27) (27) (27) (27) (27) (28) (28) (29)
Windo Windo Windo Windo Floor 1 Floor 1 Walls ⁻ Walls ⁻	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2	area 1 2 3 4 5 6	.1 .3	27.8	3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 = 1 = 1 =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17					 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29)
Windo Windo Windo Windo Floor 1 Floor 1 Walls ⁻ Walls ⁻ Roof ⁻	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1	area 1 2 3 4 5 6 (112) 184 36	.1 3 2	27.8 27.8 0	3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2	m ² x1 x2 x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43					 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30)
Windo Windo Windo Windo Floor 1 Floor 1 Walls ⁻ Roof ⁻	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type1 Type1 Type1 Type1	area 1 2 3 4 5 6 (112 184 36 25	.1 .3 .2 .8	27.8	3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8	m ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 1 = 1 = 1 = 1 = 1 =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17					(27)(27)(27)(27)(27)(27)(28)(28)(29)(29)(30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Walls ⁻ Roof ⁻ Roof ⁻ Total a * for win	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 Type2 trea of el	area 1 2 3 4 5 6 112 184 36 125 lements roof wind	.1 .3 .2 , m ² ows, use e	27.8 27.8 27.8 0 ffective wi	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.15 0.15 0.18 0.18	K 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87		kJ/m²-I	K		 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30)
Windo Windo Windo Windo Floor 1 Floor 1 Valls 1 Roof 1 Roof 1 Total a * for win	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type2 Type2 area of el dows and	area 1 2 3 4 5 6 112 184 36.1 25.1 lements roof windus s on both	(m ²) .1 .3 2 , m ² ows, use e sides of in	rr 27.8 27.8 0 ffective wi aternal wal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.5)+/[1/(1.5)+ /[1/(1.5)+/[1/(1.5	K 0.04] = 0.04] =	(W/I 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87		kJ/m²-I	K		(27)(27)(27)(27)(27)(27)(28)(28)(29)(29)(30)
Windo Windo Windo Windo Windo Floor 1 Floor 1 Roof ⁻ Roof ⁻ Roof ⁻ Total a * for win ** inclua Fabric	ws Type ws Type ws Type ws Type ws Type Type 1 Type 2 Type1 Type2 Type1 Type2 area of el dows and a le the area	area 1 2 3 4 5 6 112 184 36 125 lements roof windles s on both s, W/K =	(m ²) <u>1</u> <u>3</u> <u>2</u> <u>8</u> <u>7</u> <u>8</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u>	rr 27.8 27.8 0 ffective wi aternal wal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calcul	n ² x1	W/m2 /[1/(1.4)+ /[1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)	K 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87 we)+0.04] a		kJ/m²+l	K	kJ/ł	 (27) (27) (27) (27) (27) (27) (27) (28) (28) (29) (29) (30) (30) (31)
Windo Windo Windo Windo Floor 1 Floor 1 Roof 7 Roof 7 Roof 7 Total a * for win ** inclua Fabric Heat c	ws Type ws Type ws Type ws Type ws Type rype 1 Type 2 Type 2 Type1 Type2 rype2 area of el dows and le the area heat los	area 1 2 3 4 5 6 112 184 36 lements roof wind s on both s, W/K = Cm = S(.1 .3 .2 ., m ²	rr 27.8 27.8 0 0 ffective wi aternal wal U)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A ,r 9.1 9.1 13.3 12.1 9.6 2.4 113 15 84.3 156.5 36.2 25.8 486.4 alue calculations	n ² x1 x1 x1 x1 x1 x1 x1 x1 x1 x2 x x x x x	W/m2 /[1/(1.4)+ /[1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)/(1/(1.4)+)	K 0.04] = 0.04] =	(W// 12.06 12.06 17.63 16.04 12.73 3.18 16.95 2.25 15.17 28.17 5.43 3.87 we)+0.04] a	 	kJ/m²+l	K	kJ/ł	 (27) (27) (27) (27) (27) (27) (28) (28) (28) (29) (29) (30) (30) (31)

can be ι	ised inste	ad of a de	tailed calc	ulation.										
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix I	K						30.44	(36)
			are not kn	own (36) =	= 0.15 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			176	(37)
Ventila	tion hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	161.94	161.54	161.14	159.28	158.93	157.31	157.31	157.01	157.94	158.93	159.64	160.37		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	337.94	337.54	337.14	335.28	334.93	333.31	333.31	333.01	333.94	334.93	335.64	336.37		
							1			-	Sum(39)1.	12 /12=	335.28	(39)
Heat lo		· · ·	HLP), W/	/m²K					(40)m	= (39)m ÷	• (4)		I	
(40)m=	1.23	1.23	1.23	1.22	1.22	1.21	1.21	1.21	1.22	1.22	1.22	1.23		
Numbe	er of day	vs in moi	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 /12=	1.22	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	tina ener	rgy requi	irement:								kWh/ye	ear:	
			37											
if TF	A > 13.9			[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.0	0013 x (⁻	ΓFA -13.		.1		(42)
	A £ 13.9 I averag	,	ater usad	ae in litre	es per da	av Vd.av	erade =	(25 x N)	+ 36		10	7.79		(43)
Reduce	the annua	al average	hot water	usage by	5% if the a	lwelling is	designed			se target o				(10)
not more	e that 125	litres per j	person per	r day (all w	vater use, l	hot and co	ld)	-						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	-		_	-		
(44)m=	118.57	114.26	109.95	105.64	101.33	97.01	97.01	101.33	105.64	109.95	114.26	118.57		
_								- (222			m(44) ₁₁₂ =		1293.52	(44)
Energy	content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x L	01m / 3600) kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)	I	
(45)m=	175.84	153.79	158.7	138.36	132.76	114.56	106.16	121.81	123.27	143.66	156.81	170.29		
lf instan	taneous w	vater heatii	ng at point	of use (no	o hot water	^r storage),	enter 0 in	boxes (46		Fotal = Su	m(45) ₁₁₂ =	-	1696	(45)
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
Water	storage	loss:					1	1						
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		145		(47)
If com	nunity h	eating a	ind no ta	nk in dw	velling, e	nter 110) litres in	(47)						
			hot wate	er (this ir	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage						- (-)-						I	
					or is kno	wn (kvvi	n/day):					0		(48)
			m Table									0		(49)
			-	e, kWh/ye sylinder l	ear loss fact	or is not		(48) x (49) =			0		(50)
,				•	le 2 (kW							0		(51)
		-	ee secti		``						L		I	
		from Ta										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)

		om water (54) in (5	-	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54) (55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	er contain	s dedicate	l d solar sto	1 rage, (57)i	n = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	n where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	93	-						0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m		-		-		
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	149.46	130.72	134.89	117.6	112.84	97.37	90.23	103.54	104.78	122.11	133.29	144.75		(62)
Solar Dł	-IW input	calculated	using App	endix G oı	Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contribut	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)	-				
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
WWHR	5 -64.9	-57.11	-58.29	-47.93	-44.49	-36.69	-31.04	-37.59	-38.69	-47.85	-55.45	-62.74		(63) (G10)
Output	t from w	ater hea	ter	-	-	-								
(64)m=	84.56	73.61	76.61	69.67	68.35	60.68	59.19	65.96	66.09	74.26	77.84	82.01		,
								Outp	out from wa	ater heate	r (annual)₁	12	858.84	(64)
Heat g	r	1	· · · · ·	1	1		× (45)m	. ,	-		· ,	+ (59)m]	
(65)m=	37.37	32.68	33.72	29.4	28.21	24.34	22.56	25.89	26.19	30.53	33.32	36.19		(65)
inclu	ıde (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	and 5a):									
Metab	olic gain	s (Table	e 5), Wat	ts			-							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93	154.93		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	39.7	35.26	28.68	21.71	16.23	13.7	14.8	19.24	25.83	32.8	38.28	40.81		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	437.19	441.72	430.29	405.95	375.23	346.36	327.07	322.53	333.96	358.3	389.02	417.9		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5				
(69)m=	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49	38.49		(69)
Pumps	and fa	ns gains	(Table 5	ōa)	-	-								
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)	-			-		-		
(71)m=	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95	-123.95		(71)
Water	heating	gains (T	able 5)											
(72)m=	50.22	48.63	45.33	40.83	37.92	33.81	30.32	34.79	36.38	41.03	46.28	48.64		(72)
Total i	nternal	gains =				(66)	m + (67)m	ı + (68)m -	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	596.59	595.1	573.78	537.98	498.86	463.35	441.67	446.05	465.65	501.61	543.06	576.82		(73)

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-		Access Facto Table 6d		Area m ²	a and	Flux Flus Table 6a	tions	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.54	x	9.1	×	10.63	×	0.7	×	1.11	=	36.58	(74)
North	0.9x	0.54	x	9.1	×	20.32	×	0.7	×	1.11] =	69.9	(74)
North	0.9x	0.54	x	9.1	×	34.53	x	0.7	x	1.11	=	118.78	(74)
North	0.9x	0.54	x	9.1	×	55.46	x	0.7	x	1.11	=	190.79	(74)
North	0.9x	0.54	x	9.1	×	74.72	x	0.7	x	1.11	=	257.01	(74)
North	0.9x	0.54	x	9.1	×	79.99	×	0.7	×	1.11] =	275.13	(74)
North	0.9x	0.54	x	9.1	×	74.68	×	0.7	x	1.11	=	256.87	(74)
North	0.9x	0.54	x	9.1	×	59.25	×	0.7	x	1.11	=	203.8	(74)
North	0.9x	0.54	x	9.1	×	41.52	x	0.7	x	1.11	=	142.81	(74)
North	0.9x	0.54	x	9.1	×	24.19	×	0.7	×	1.11	=	83.21	(74)
North	0.9x	0.54	x	9.1	×	13.12	x	0.7	×	1.11	=	45.12	(74)
North	0.9x	0.54	x	9.1	×	8.86	x	0.7	x	1.11	=	30.49	(74)
East	0.9x	1	x	12.1	×	19.64	×	0.7	×	1.11	=	128.09	(76)
East	0.9x	1	x	12.1	×	38.42	x	0.7	×	1.11	=	250.57	(76)
East	0.9x	1	x	12.1	×	63.27	×	0.7	x	1.11	=	412.66	(76)
East	0.9x	1	x	12.1	x	92.28	×	0.7	x	1.11	=	601.84	(76)
East	0.9x	1	x	12.1	×	113.09	×	0.7	x	1.11	=	737.58	(76)
East	0.9x	1	x	12.1	x	115.77	x	0.7	x	1.11	=	755.04	(76)
East	0.9x	1	x	12.1	×	110.22	x	0.7	×	1.11	=	718.83	(76)
East	0.9x	1	x	12.1	×	94.68	x	0.7	x	1.11	=	617.47	(76)
East	0.9x	1	x	12.1	×	73.59	x	0.7	×	1.11	=	479.94	(76)
East	0.9x	1	x	12.1	×	45.59	x	0.7	x	1.11	=	297.33	(76)
East	0.9x	1	x	12.1	×	24.49	x	0.7	×	1.11	=	159.72	(76)
East	0.9x	1	x	12.1	×	16.15	×	0.7	×	1.11	=	105.34	(76)
South	0.9x		x	9.6	×	46.75	×	0.7	x	1.11	=	169.65	(78)
South	0.9x	-	x	2.4	×	46.75	×	0.7	×	1.11	=	60.48	(78)
South	0.9x	0.54	x	9.6	×	76.57	×	0.7	×	1.11	=	277.85	(78)
South	0.9x		x	2.4	×	76.57	x	0.7	×	1.11	=	99.05	(78)
South	0.9x		x	9.6	×	97.53	x	0.7	×	1.11	=	353.93	(78)
South	0.9x		x	2.4	×	97.53	×	0.7	×	1.11	=	126.17	(78)
South	0.9x		x	9.6	×	110.23	x	0.7	x	1.11	=	400.02	(78)
South	0.9x	0.77	x	2.4	×	110.23	×	0.7	×	1.11	=	142.6	(78)
South	0.9x		x	9.6	×	114.87	×	0.7	×	1.11	=	416.84	(78)
South	0.9x		x	2.4	×	114.87	×	0.7	×	1.11	=	148.6	(78)
South	0.9x		x	9.6	×	110.55	×	0.7	×	1.11	=	401.16	(78)
South	0.9x	0.77	x	2.4	×	110.55	×	0.7	x	1.11	=	143	(78)

South	0.9x	0.54] x	9.6	×	108.01) ×	0.7	x	1.11	=	391.95	(78)
South	0.9x	0.77	」 】 x	2.4	 x	108.01] x	0.7	x	1.11	=	139.72](78)
South	0.9x	0.54) x	9.6	x	104.89	x	0.7	x	1.11	=	380.64	(78)
South	0.9x	0.77	x	2.4	x	104.89	x	0.7	x	1.11	=	135.69](78)
South	0.9x	0.54] x	9.6	x	101.89	x	0.7	x	1.11	=	369.72	(78)
South	0.9x	0.77	x	2.4	×	101.89	×	0.7	x	1.11	=	131.8	(78)
South	0.9x	0.54	x	9.6	×	82.59	x	0.7	x	1.11	=	299.69	(78)
South	0.9x	0.77	x	2.4	×	82.59	×	0.7	x	1.11	=	106.83	(78)
South	0.9x	0.54	x	9.6	×	55.42	×	0.7	x	1.11	=	201.1	(78)
South	0.9x	0.77	x	2.4	×	55.42	×	0.7	x	1.11	=	71.69	(78)
South	0.9x	0.54	x	9.6	×	40.4	×	0.7	x	1.11	=	146.6	(78)
South	0.9x	0.77	x	2.4	x	40.4	x	0.7	x	1.11	=	52.26	(78)
West	0.9x	0.54	x	9.1	×	19.64	x	0.7	x	1.11	=	67.56	(80)
West	0.9x	0.77	x	13.3	×	19.64	x	0.7	x	1.11	=	140.8	(80)
West	0.9x	0.54	x	9.1	×	38.42	x	0.7	x	1.11	=	132.16	(80)
West	0.9x	0.77	x	13.3	×	38.42	x	0.7	x	1.11	=	275.43	(80)
West	0.9x	0.54	x	9.1	×	63.27	×	0.7	x	1.11	=	217.65	(80)
West	0.9x	0.77	x	13.3	×	63.27	×	0.7	x	1.11	=	453.59	(80)
West	0.9x	0.54	x	9.1	×	92.28	x	0.7	x	1.11	=	317.43	(80)
West	0.9x	0.77	x	13.3	×	92.28	x	0.7	x	1.11	=	661.53	(80)
West	0.9x	0.54	x	9.1	x	113.09	x	0.7	x	1.11	=	389.02	(80)
West	0.9x	0.77	x	13.3	×	113.09	x	0.7	x	1.11	=	810.73	(80)
West	0.9x	0.54	x	9.1	×	115.77	x	0.7	x	1.11	=	398.23	(80)
West	0.9x	0.77	x	13.3	×	115.77	x	0.7	x	1.11	=	829.92	(80)
West	0.9x	0.54	x	9.1	x	110.22	x	0.7	x	1.11	=	379.13	(80)
West	0.9x	0.77	x	13.3	×	110.22	×	0.7	x	1.11	=	790.12	(80)
West	0.9x	0.54	x	9.1	×	94.68	×	0.7	x	1.11	=	325.67	(80)
West	0.9x	0.77	x	13.3	×	94.68	×	0.7	x	1.11	=	678.7	(80)
West	0.9x	0.54	x	9.1	×	73.59	×	0.7	x	1.11	=	253.13	(80)
West	0.9x	0.77	x	13.3	×	73.59	×	0.7	x	1.11	=	527.54	(80)
West	0.9x	0.54	x	9.1	×	45.59	x	0.7	x	1.11	=	156.82	(80)
West	0.9x	0.77	x	13.3	×	45.59	x	0.7	x	1.11	=	326.82	(80)
West	0.9x	0.54	×	9.1	×	24.49	×	0.7	x	1.11	=	84.24	(80)
West	0.9x	0.77	x	13.3	×	24.49	x	0.7	x	1.11	=	175.56	(80)
West	0.9x	0.54	×	9.1	×	16.15	×	0.7	x	1.11	=	55.56	(80)
West	0.9x	0.77	x	13.3	×	16.15	×	0.7	x	1.11	=	115.78	(80)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m				
(83)m=	603.15	1104.96	1682.77	2314.2	2759.77	2802.49	2676.63	2341.96	1904.94	1270.69	737.42	506.02		(83)
Total g	ains – ii	nternal a	ind solar	(84)m =	= (73)m -	+ (83)m	, watts							
(84)m=	1199.75	1700.06	2256.55	2852.18	3258.63	3265.84	3118.31	2788.01	2370.6	1772.3	1280.48	1082.85		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	leating p	eriods ir	n the livir	ng area f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
Stroma I	SAP 201	2 Version:	1.0.4.9r	AP 9 B2)		w.stroffia.o	, Jul	Aug	Sep	Oct	Nov	Dec	Page	6 of 8

(86)m=	1	1	0.99	0.94	0.81	0.62	0.46	0.54	0.82	0.98	1	1		(86)
Mean	internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)													
(87)m=	19.5	19.74	20.1	20.53	20.84	20.96	20.99	20.99	20.87	20.41	19.86	19.46		(87)
				1						-				
		<u> </u>		periods in	1		r	· ·	<u> </u>	40.0	10.0	10.0		(00)
(88)m=	19.89	19.9	19.9	19.9	19.9	19.91	19.91	19.91	19.91	19.9	19.9	19.9		(88)
Utilisa	lisation factor for gains for rest of dwelling, h2,m (see Table 9a)													
(89)m=	1	1	0.98	0.91	0.75	0.53	0.35	0.42	0.74	0.97	1	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.52	18.76	19.12	19.54	19.8	19.89	19.91	19.91	19.84	19.43	18.88	18.48		(90)
	fLA = Living area ÷ (4) =												0.55	(91)
Moon	Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$													
(92)m=	19.06	19.3	19.66	20.09	20.37	20.48	20.51	+ (1 – 1L 20.5	20.41	19.97	19.42	19.02		(92)
				n interna							13.42	19.02		(02)
(93)m=	19.06	19.3	19.66	20.09	20.37	20.48	20.51	20.5	20.41	19.97	19.42	19.02		(93)
		ting requ			20.07	20.40	20.01	20.0	20.41	10.07	13.42	13.02		(00)
					ro obtair	od at st	on 11 of		a co tha	t Ti m_('	76)m an	d ro, colo	ulato	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa		tor for g												
(94)m=	1	1	0.98	0.92	0.78	0.58	0.41	0.48	0.78	0.97	1	1		(94)
Usefu	l gains,	hmGm	, W = (9	4)m x (8-	4)m									
(95)m=	1198.71	1692.62	2211.52	2620.66	2530.92	1890.45	1290.64	1343.33	1838.95	1720.57	1277.24	1082.27		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8	1							
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	loss rate	e for mea	an interr	nal tempe	erature,	Lm , W =	- =[(39)m :	x [(93)m	– (96)m	1				
(97)m=		4860.64	4437.47		2904.97	r	<u>, ,</u>	1366.16		-	4134.97	4985.29		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Nh/mon	th = 0.02	24 x [(97)m – (95)m] x (4′	1)m			
· ·		2128.91	i	1	278.29	0	0	0	0	<u> </u>	, 2057.57	2903.84		
				1	1		1	Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	13713.47	(98)
Snace	a hoatin	a requir	omont in	n kWh/m²	2/voor								49.98	(99)
•					/year							l	49.90	
		oling rec												
Calcu				August.										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		, i	1	using 2	1	· · · ·	1		i			,		(100)
(100)m=	0	0	0	0	0	3133.15	2466.53	2530.91	0	0	0	0		(100)
1		tor for lo	i i i i i i i i i i i i i i i i i i i			0.00	0.00	0.00		0	0	0		(101)
(101)m=	0	0	0	0	0	0.92	0.96	0.93	0	0	0	0		(101)
1		r `	, <u> </u>	(100)m >	r`´´	i	0000.00	0000.40		0	0	0		(102)
(102)m=	0	0	0	0	0	2880.03		2363.18	0	0	0	0		(102)
		í –	1	for appli	1	1		1		0	0	0		(102)
(103)m=	0	0	0	0	0		3933.72			0	0	0	(()	(103)
Space cooling requirement for month, whole dwelling, continuous (kWh) = 0.024 x [(103)m - (102)m] x (41)m set (104)m to zero if (104)m < 3 x (98)m														
(104)m=	0	0	0		0	890.1	1169.18	872.82	0	0	0	0		
· /···	-		-		-		L	L	-	= Sum(=	2932.1	(104)
										cann(-0**0 • /		2002.1	

Cooled fraction Intermittency factor (Table 10b)										cooled	area ÷ (1	(105)	
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0]	
L	Total = Sum(104) =											=	0	(106)
Space cooling requirement for month = $(104)m \times (105) \times (106)m$														_1
(107)m=	0	0	0	0	0	222.52	292.3	218.2	0	0	0	0	7	
•	Total = Sum(1.0.7) =													
Space	cooling	requirer	nent in k	(Wh/m²/y	/ear	(107) ÷ (4) =				2.67	(108)			
8f. Fab	ric Enei	rgy Effici	ency (ca	alculated	l only un	der spec	cial cond	litions, s	ee sectio	on 11)				
Fabric Energy Efficiency										+ (108) =	=	52.65	(109)	

APPENDIX 5. SUSTAINABLE USE OF MATERIALS

More than 10% of the total value of materials used on site will be derived from recycled and reused sources. Following strategies will ensure that this target will be achieved:

- 1. High recycled content will be used in the main building elements including blockwork, plasterboard, chipboard and slabs. The project target for recycled content in each of these items is as below:
 - a. Blockwork: 40%
 - b. Plasterboard: 80%
 - c. Chipboard: 50%
 - d. Slabs: 10%

This strategy will ensure that the target set by the council is achieved.

- 2. Take Back Schemes: the contractor will be required to use take back schemes to ensure the best use of the left-over materials
- 3. During the design, the architects will implement modular design to ensure less off cut will be created on site from various materials
- 4. The materials will be stored in secure place on site to avoid any weather damage to the materials. The materials will also be handled properly to avoid any breakage and damage and to reduce the waste.