REPORT N^O 700342223

EDITH NEVILLE PRIMARY SCHOOL

ADDENDUM GROUND INVESTIGATION REPORT

CONFIDENTIAL

JUNE 2017

EDITH NEVILLE PRIMARY SCHOOL ADDENDUM GROUND INVESTIGATION REPORT

London Borough of Camden

Confidential

Project no: 70034223 Date: June 2017

WSP Unit 9, The Chase, John Tate Road, Hertford, SG13 7NN

Tel: +44 (0) 1992 526 000 Fax: +44 (0) 1992 526 001 www.wsp.com

wsp

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks	Final			
Date	22/06/2017			
Prepared by	Ella Niehorster			
Signature				
Checked by	Alex Mann			
Signature				
Authorised by	Andy O'Dea			
Signature				
Project number	70034223			
Report number	v1.3			
File reference	\\uk.wspgroup.com\central data\Projects\700342xx\70034223 - Edith Nevill Primary School\02 WIP\report			

TABLE OF CONTENTS

1	INTRODUCTION AND OBJECTIVES1
1.1	AUTHORISATION1
1.2	SITE INFORMATION1
1.3	OBJECTIVES 1
1.4	SCOPE OF WORKS1
1.5	REGULATORY CONTEXT AND GUIDANCE2
1.6	CONFIDENTIALITY STATEMENT AND LIMITATIONS2
2	SITE INFORMATION
2.1	SITE SUMMARY
2.2	GEOLOGY AND HYDROGEOLOGY3
2.3	HYDROLOGY
2.4	PREVIOUS INVESTIGATION
3	SITE INVESTIGATION AND ASSESSMENT RATIONALE
3.1	FIELDWORKS5
3.2	SAMPLING AND LABORATORY CHEMICAL ANALYSIS
4	GROUND CONDITIONS
4.1	GROUND CONDITIONS ENCOUNTERED6
4.2	GROUNDWATER6
4.3	OBSERVATIONS OF CONTAMINATION6
4.4	UTILITIES6
4.5	BOUNDARY WALL FOUNDATIONS7
5	CHEMICAL RESULTS8
5.1	GENERIC QUANTITATIVE RISK ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS......11

TABLES

6

TABLE 3.1 SUMMARY OF GROUND INVESTIGATION WORKS	5
TABLE 4.1 SUMMARY OF STRATA ENCOUNTERED IN MAY/JUNE 2017 INVESTIGATION	6
TABLE 4.2 DETAILS OF UTILITIES IDENTIFIED	7
TABLE 4.3 WALL DIMENSIONS	7
TABLE 5.1 EXCEEDANCES AGAINST RESIDENTIAL WITHOUT PLANT UPTAKE CRITERIA	8
TABLE 5.2 SUMMARY OF ASBESTOS RESULTS	9

FIGURES

FIGURE 1 – SITE LOCATION PLAN FIGURE 2 – EXPLORATORY HOLE PLAN FIGURE 3 – SECTION A-A

APPENDICES

APPENDIX A FIGURES **APPENDIX A-1 FIGURE 1 APPENDIX A-2 FIGURE 2 APPENDIX A-3 FIGURE 3** APPENDIX B **GENERAL LIMITATIONS** APPENDIX С **EXPLORATORY HOLE LOGS** LABORATORY CERTIFICATES APPENDIX D APPENDIX Е HAZWASTE ONLINE CLASSIFICATION

1 INTRODUCTION AND OBJECTIVES

1.1 AUTHORISATION

WSP was instructed by the London Borough of Camden ('the client') to undertake a supplementary Ground Investigation Report for Edith Neville School, Kings Cross, London NW1 1DN ('the site'). The site location is illustrated on **Figure 1**.

1.2 SITE INFORMATION

The site comprises the eastern portion of Edith Neville School which includes a playground area, areas of landscaping and an existing single story building. The site is bound by Purchese Street to the east, residential housing to the north and by the remainder of Edith Neville School to the south and west.

A number of previous reports have been prepared concerning geo-environmental and geotechnical risks at the site:

- → Pell Frischmann. Phase 1 Geo-Environmental Desk Study. Edith Neville Primary School and Children's Centre. May 2013. Ref: R12794/G001A
- → ESG. Factual and Interpretative Report on Ground Investigation (Volumes 1 and 2). Central Somers Town, London. September 2016. Ref: D5061-15/1

This report should be read in conjunction with the above reports, and is provided as an addendum to the Factual and Interpretative Report prepared by ESG.

It is understood that the site will be redeveloped to comprise a new school building following the demolition of existing buildings and removal of playground.

1.3 OBJECTIVES

The scope of the investigation was provided by the client, and was understood to be required as part of a pre-commencement planning condition and to provide further information in the northeast of the site where limited investigation had previously been undertaken.

1.4 SCOPE OF WORKS

The scope of works carried out comprised:

- \rightarrow Five window sample boreholes to a maximum depth of 2m bgl;
- → Three hand pits to locate utilities;
- → Three trial pits to investigate boundary wall footings;
- Chemical laboratory analysis of eight samples comprising metals, hexavalent chromium, pH, total petroleum hydrocarbons (TPH), poly-aromatic hydrocarbons (PAH), soil organic matter (SOM), volatile and semi-volatile organic compounds (VOCs and SVOCs) and waste assessment criteria (WAC) testing; and;
- → Production of an addendum report.

June 2017

1.5 REGULATORY CONTEXT AND GUIDANCE

This supplementary Ground Investigation Report has been prepared with due regard to Contaminated Land Guidance documents issued by the Department for Environment, Food and Rural Affairs (and its predecessors) including Contaminated Land Report 11 (CLR 11), and in general accordance with the British Standard "Investigation of potentially contaminated sites - Code of practice" BS EN 10175 and the British Standard "Code of practice for ground investigations" BS5930:2015. The methods used follow a risk-based approach, with the potential environmental risk assessed qualitatively using the 'source-pathway-receptor contaminant linkage' concept to assess risk as introduced in the Environmental Protection Act 1990 (EPA, 1990).

1.6 CONFIDENTIALITY STATEMENT AND LIMITATIONS

This report is addressed to and may be relied upon by the following parties:

London Borough of Camden

This assessment has been prepared for the sole use and reliance of the above named party as outlined in the previously issued WSP standard terms and conditions. This report needs to be read and used in full.

This report has been prepared in line with the WSP proposal and associated notes. This report shall not be relied upon or transferred to any other parties without the express written authorisation of WSP. No responsibility will be accepted where this report is used, either in its entirety or in part, by any other party.

This report is not intended to comprise a full assessment of the contamination risk at the site and solely provides additional information to be used in conjunction with the "Factual and Interpretative Report on Ground Investigation. Central Somers Town, London" Produced by ESG in September 2016 (Ref: D5061-15/2).

The results of the asbestos testing is factually reported and interpretation is given as to how this relates to the previous use of the site, the types of ground encountered and site conceptualisation. This does not however constitute a formal asbestos assessment.

No geotechnical information has been gathered during this assessment and no geotechnical interpretation is provided.

General limitations of the assessment are included in Appendix B.

2 SITE INFORMATION

2.1 SITE SUMMARY

Site Address	Edith Neville School, Kings Cross, London NW1 1DN
Site Location	The site comprises the eastern portion of Edith Neville School, which includes a playground area, areas of landscaping and an existing single story building. The site is bound by Purchese Street to the east, residential housing to the north and by the remainder of Edith Neville School to the south and west.
Current Site Use	The site is currently used as part of a school including a playground and single storey building.
Site History	Prior to development to a school in the late 1800s the site comprised residential properties. The footprint of the school has been altered a number of times since.

2.2 GEOLOGY AND HYDROGEOLOGY

BGS Map Sheet 256 – North London (1:50,000, 2006) indicates that the geology at the site comprises Made Ground overlying the London Clay Formation.

The aquifer status of the London Clay Formation is designated as an Unproductive Stratum. Groundwater may be present in granular pockets of Made Ground.

2.3 HYDROLOGY

Regents Canal is located to the west of the site, and is culverted beneath Charrington Street and Ossulston Street.

2.4 PREVIOUS INVESTIGATION

The previous investigation undertaken by ESG in September 2016 comprised 11 boreholes to a maximum depth of 30.3m bgl, four trial pits to a maximum depth of 2.2m bgl and 46 window sampler boreholes to a maximum depth of 7.65m bgl. The ESG investigation was undertaken over a larger area than the current investigation.

The ground investigation undertaken by ESG in September 2016 identified Made Ground overlying Alluvium, the London Clay Formation and the Lambeth Group. The Alluvium was only encountered in the west of the site.

ESG encountered groundwater in six of the ten boreholes advanced, at depths between 1.1m and 25.3m within all of the geological units encountered.

Observations of contamination in the exploratory holes advanced historically included potentially asbestos containing materials in a number of the window sampler boreholes (WS7, WS7B, WS9, WS10, WS11A, WS12, WS12A, WS13 WS15, WS17 and WS17A). These exploratory holes were

located in the east of the school area, i.e. the current site, and in the central area. The potentially asbestos containing samples were not submitted for laboratory analysis.

Fifteen soils samples, predominantly from the Made Ground, were submitted for laboratory testing comprising metals, cyanide, phenols, sulphates, total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and asbestos.

The samples were screened against Generic Assessment Criteria (GAC) for a residential without plant uptake end-use.

Exceedances of the GAC were recorded for lead, dibenzo(a,h)anthracene, benzo(a)anthracene and TPH (C21-C36) in one sample each. The GAC for benzo(a)pyrene was exceeded in five samples from various locations across the site at depths up to 2.6m bgl.

Asbestos was detected in three of the samples analysed, and were quantified at a maximum of 0.047% by weight.

Indicative waste classification undertaken indicated that the majority of samples analysed would be classified as non-hazardous, apart from one sample which would be classified as hazardous based on elevated TPH concentrations. As asbestos detected was all quantified at <0.1%, the soils would be classified as non-hazardous due to asbestos

However, it was noted that due to the visual evidence of asbestos on-site any asbestos containing materials (ACM) noted on site during earthworks would be likely to be classified as hazardous waste.

3.1 FIELDWORKS

The ground investigation works were completed by WSP from 31 May to 01 June 2017 and comprised the scope of works detailed in **Section 1.4**.

Figure 2 illustrates the locations of the exploratory holes advanced, and the exploratory hole logs are attached in Appendix C.

The ground investigation was undertaken in general accordance with techniques outlined in BS5930:2015 "Code of Practice for Site Investigations" and BS10175:2011 "Investigation of Potentially Contaminated Sites". The investigation was carried out under the supervision of a qualified and experienced engineer from WSP.

Prior to works commencing, utility service clearance was undertaken by a specialist subcontractor. Each location was hand pitted in accordance with underground utilities avoidance procedure.

A summary of the ground investigation works are presented in **Table 3.1**.

Метнор	NUMBER	Locations	Area	RATIONALE	Depth (m bgl)
Window sample boreholes	5	SS1-SS5	Playground area	To collect samples for chemical analysis.	1.60 to 2.00
Hand pits	3	TP1-TP3	Northern boundary wall	To investigate the depth of boundary wall footings.	0.75 to1.00
Hand pits	3	UT1-UT3	Playground area	To investigate the location of unknown utilities.	0.85 to1.00

Table 3.1 Summary of Ground Investigation Works

All hand pits and boreholes were reinstated using cold lay tarmac prior to leaving site.

3.2 SAMPLING AND LABORATORY CHEMICAL ANALYSIS

All analysis was undertaken at the UKAS and MCERTS accredited laboratory of ALS and field sampling was undertaken in accordance with industry guidance (BS ISO 10381-2). The results and analysis are presented within **Section 5**.

The sampling was undertaken to provide lateral coverage of the playground area, with samples collected from ground level to 2m bgl. All samples were taken from the Made Ground.

4 GROUND CONDITIONS

4.1 GROUND CONDITIONS ENCOUNTERED

The ground conditions encountered in this investigation are summarised in Table 4.1.

Table 4.1	Summary of	strata encountered	in May/June	2017 investigation
-----------	------------	--------------------	-------------	--------------------

STRATUM NAME	DEPTH TO BASE OF STRATA (MBGL)*	Elevation of Base of Strata (maod)*	THICKNESS (M)*	
Topsoil	0.10	20.14	0.10	SS4 only
Made Ground	1.8 to >2.0	18.28 to <18.08	1.8 to >2.0	Observed in all locations advanced
London Clay Formation	>2.0	<18.08	>0.20	Observed in SS1 only

MADE GROUND

The Made Ground encountered was of variable composition, but generally comprised tarmac at the surface underlain by gravelly sand and gravels of concrete, tarmac, flint and brick. This layer was generally underlain by potential reworked natural material of brown gravelly clay where the gravel is flint.

LONDON CLAY FORMATION

The London Clay Formation was only encountered in one borehole, SS1, and comprised firm brown mottled grey clay. However, the Made Ground noted as potentially reworked material is likely to comprise London Clay.

4.2 **GROUNDWATER**

No groundwater was encountered during the May/June 2017 investigation.

4.3 OBSERVATIONS OF CONTAMINATION

Although Made Ground was observed in all locations advanced, comprising man-made materials, no visual or olfactory evidence of contamination was noted.

4.4 UTILITIES

Three pits were advanced along service traces identified on-site by remote methods. Two of which were along services identified on drawing 12681UG-01 produced by Survey Solutions and provided by the client. The third service trace investigated was not shown on drawing 12681UG-01 and was identified during site works.

The location of the service traces and utility pits are illustrated on **Figure 2**. Details of the utilities identified are shown in **Table 4.2**.

EXPLORATORY HOLE	DEPTH TO CONCRETE (M BGL)	APPROXIMATE CASEMENT WIDTH (MM)
UT1	0.85	150
UT2	0.95	200
UT3	0.75	150

Photographs of the utilities pits are attached to the exploratory hole logs in **Appendix C**. No identification of the utilities could be undertaken due to the concrete surround. It appeared that the three services investigated were disconnected; however, this would require confirmation from the utility providers.

The utility trace associated with UT1 appeared to cross the playground and enter the existing building via a pipe up the wall into the school building.

Live services appear to come into the building from the north-west as shown in drawing 12681UG-01. It is thought these services have replaced the three service lines detected running across the playground.

4.5 BOUNDARY WALL FOUNDATIONS

Three pits were undertaken along the northern boundary wall as shown in **Figure 2**. Photographs of the trial pits are attached to the exploratory hole logs in **Appendix C**. Details of the wall height and base are provided in **Table 4.3** and illustrated in **Figure 3**.

EXPLORATORY HOLE	BASE OF WALL (M BGL)	TOP OF WALL (M ABOVE GROUND LEVEL)	TOTAL HEIGHT OF WALL (M)
TP1	0.94	1.89	2.83
TP2	0.56	1.82	2.32
TP3	0.70	1.83	2.63

Table 4.3 Wall dimensions

5 CHEMICAL RESULTS

GENERIC QUANTITATIVE RISK ASSESSMENT

HUMAN HEALTH GQRA

5.1

In order to undertake a GQRA (Stage 2), contaminant concentrations need to be compared to appropriate generic assessment criteria. Current UK industry practice is to use, as first preference, UK SGVs which are generic assessment criteria published by the Environment Agency and derived using the Contaminated Land Exposure Assessment model (CLEA). Where these are not available and in order to provide a consistent methodology for the assessment of various contaminants, a series of Generic Assessment Criteria (GAC) screening values have been calculated by WSP using CLEA V1.071, a computer modelling tool designed to assess human health related risks posed by contaminated soil.

The contaminant concentrations have also been screened against Category 4 Screening Levels (C4SL) as outlined by Defra. The C4SLs provide a less conservative toxicological/exposure assumption. The impact assessment was agreed during the revision of the Part 2A Statutory Guidance and was developed on the basis that C4SLs could be used under the planning regime as well as within Part 2A.

COMPLIANCE CRITERIA

The proposed development comprises a new school building. Based on the proposed future use, and the criteria used in previous reporting, soil contaminant concentrations have been compared against a SGV/GAC/C4SL value for a residential without plant uptake scenario.

Two samples were tested for soil organic matter (SOM). The SOM contents were 1.53% and 6.02% in the two samples tested. Therefore, the samples from this site have been compared to the values relating to a conservative SOM of 1%.

It should be noted that the GAC used in this supplementary investigation differ slightly to those used by ESG in September 2016.

ANALYSIS OF DATA

The ground investigation comprised the excavation of window sample exploratory holes across the playground area. A direct comparison of the GAC/SGV/C4SLs to the analytical results of selected soil samples has been undertaken. Laboratory certificates for the recent investigation are attached in **Appendix D**.

The exceedances are shown in Table 5.1.

 Table 5.1 Exceedances against residential without plant uptake criteria

ANALYTE	POINT ID	Depth	Result (mg/kg)	GAC C4SL (MG/KG) (MG/KG)		Units	STRATUM	
	SS2	0.5 - 0.5	6.97	-	5.3	mg/kg	Made Ground Granular	
Delizo (a) pyrelie	SS3	0.5 - 0.5	13.1	-	5.3	mg/kg	Made Ground Granular	
Beryllium	SS3	0.5 - 0.5	3.76	1.7	N/A	mg/kg	Made Ground Granular	
Lead	SS2	0.5 - 0.5	725	-	310	mg/kg	Made Ground Granular	
	SS2	1.2 - 1.2	313	-	310	mg/kg	Made Ground Cohesive	

ASBESTOS

Eight soil samples were screened for asbestos during the investigation. Two samples of Made Ground tested positive for asbestos. The results are presented in **Table 5.2**.

EXPLORATORY HOLE	Depth (m bgl)	Stratum	FIBRE TYPE	RESULTS OF ASBESTOS QUANTIFICATION
SS1	0.40	Made Ground	Amosite (Brown)	Gravimetric % - <0.001 PCM % - <0.001 Total % - <0.001
SS3	0.50	Made Ground	Amosite (Brown)	Gravimetric % - <0.001 PCM % - <0.001 Total % - <0.001

Table 5.2 Summary of Asbestos Results

5.2 PRELIMINARY WASTE CLASSIFICATION

HAZARDOUS WASTE ASSESSMENT

Dry soil test results have been entered into HazWasteOnline in order to complete a hazardous properties assessment. The output sheets are presented in **Appendix E**.

Due to chromium VI being below the limit of detection (LOD) and, based on the current and previous site uses, the species of zinc chromate has been altered to zinc sulphate, which reduces SS2 from hazardous to non-hazardous waste.

It has been assumed that the old/weathered hydrocarbons in a soil matrix are unlikely to be flammable and have therefore increased the threshold of TPH to 1,000mg/kg, which changes all samples from potentially hazardous to non-hazardous.

It should be noted that asbestos was detected in two of the samples, with a quantification result less than 0.001%.

If there is intent to discard the soil (i.e. remove the soil from site) then the material would be classified as non-hazardous on the basis of asbestos, although liaison with a waste broker / receiving landfill regarding acceptance criteria will be required.

In summary, the eight samples tested and analysed on HazWasteOnline were all returned as non-hazardous.

WASTE ASSESSMENT CRITERIA (WAC) ANALYSIS

An initial WAC analysis has been completed on two samples as part of this assessment to provide a preliminary classification of soils destined for off-site disposal to a suitably licensed landfill. The results are presented within the chemical laboratory certificates in **Appendix D**. Based on the WAC analysis for SS4 at 0.5m bgl the soil would likely be accepted to an inert landfill. WAC analysis for sample SS2 at 0.5m bgl could not be designated as inert due to elevated total organic carbon, antimony, sulphate and total dissolved solids. This material is therefore likely to be designated to a non-hazardous landfill.

WASTE CLASSIFICATION CONCLUSIONS

All samples have been classified as non-hazardous waste using HazWasteOnline. WAC analysis has indicated that should the soil be disposed of off-site soil from sample SS4 is likely to be accepted to an inert landfill and soil from sample SS4 is likely to be designated to a non-hazardous landfill.

This information should be used in conjunction with that gathered and report during the ESG Factual and Interpretative Ground Investigation Report.

Disposing of these soils off-site as non-hazardous waste is at the Landfill Operator's discretion based on the above soil classification data and Waste Assessment Criteria (WAC) data.

If there is a requirement to re-use the material on site then its suitability and certainty of use become key factors due to the asbestos detections. Attention is drawn to the publication The Definition of Waste: Development Industry Code of Practice, Contaminated Land: Applications in Real Environments (CL:AIRE), Version 2, March 2011. Should soils be retained on site in their current condition and position then the site owner has a duty of care under CAR to implement an asbestos management plan.

CONCLUSIONS AND RECOMMENDATIONS

GROUND INVESTIGATION

The ground conditions encountered in the exploratory holes advanced were consistent both with the expected geological sequence from BGS mapping and with the previous investigation undertaken by ESG in September 2016.

The ground conditions encountered in this investigation comprised Made Ground overlying the London Clay Formation. Although man-made materials were noted in Made Ground no visual or olfactory evidence of contamination was identified.

No groundwater was identified during the investigation.

HUMAN HEALTH RISK ASSESSMENT

Exceedances of residential without plant uptake Generic Assessment Criteria (GAC) and Category 4 Screening Levels (C4SLs) were recorded for benzo(a)pyrene, beryllium and lead. Asbestos was detected in two of the eight samples analysed, and was identified as amosite. Quantification determined that the samples contained less than 0.001% asbestos.

The human health risk assessment results are similar to those reported by ESG, it is considered that the recommendations made in the ESG September 2016 Interpretative Ground Investigation Report remain valid. Primarily, the risk to human health and controlled waters was thought to be mitigated by the installation of hardstanding over the majority of the site. ESG recommended:

- → Use of a clean cover layer and geotextile membrane in areas of soft landscaping;
- → Further assessment of asbestos containing materials and asbestos quantities is likely to be required in order to establish appropriate methods of management/mitigation during the construction phase. An asbestos in soils management plan may be required to detail how groundworks should be carried out;
- Short term risks to construction workers should be managed by appropriate PPE, hygiene measures and risk assessment. These measures should account for the presence of asbestos at the site;
- → An asbestos management plan should be put in place for the construction phase as a minimum precaution; and
- → The potential presence of carbon dioxide in the ground associated with Made Ground should be taken into account when planning potential work in enclosed spaces including excavations.

PRELIMINARY WASTE CLASSIFICATION

Generally, the samples analysed during this investigation were classified as non-hazardous based on both the HazWasteOnline assessment, and laboratory WAC testing. However, as noted by ESG during their investigation potentially asbestos containing materials were observed on site and not submitted for laboratory testing. If asbestos containing materials are noted during earthworks it is likely that the material would be classified as hazardous.

Regarding asbestos, if there is a requirement to re-use the material on site then its suitability and certainty of use become key factors. Attention is drawn to the publication The Definition of Waste:

Development Industry Code of Practice, Contaminated Land: Applications in Real Environments (CL:AIRE), Version 2, March 2011.

Disposing of these soils off-site as non-hazardous waste is at the Landfill Operator's discretion based on the above soil classification data and Waste Assessment Criteria (WAC) data.

Appendix A

FIGURES

APPENDIX A-1

FIGURE 1

File:\\uk.wspgroup.com/central data\Projects\700342xx\70034223 - Edith Nevill Primary Schoo\\00 Prospects\07 Drawings\Figure 1 SLP.mxd

APPENDIX A-2

FIGURE 2

File name \\UK.WSPGROUP.COM\CENTRAL DATA\PROJECTS\70034223 - EDITH NEVILL PRIMARY SCHOOL\02 WIP\07 DRAWINGS\FIGURE 2 - PROPOSED EXPLORATORY HOLE PLAN.DWG

APPENDIX A-3

FIGURE 3

File name \\UK.WSPGROUP.COM\CENTRAL DATA\PROJECTS\700342XX\70034223 - EDITH NEVILL PRIMARY SCHOOL\02 WIP\07 DRAWINGS\FIGURE 3 - SECTION A-A.DWG , printed on 15 June 2017 14:52:16, by Allen, Andrea

Appendix B

GENERAL LIMITATIONS

GENERAL

- 1. WSP UK Limited has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed and outlined in the body of the report.
- 2. Unless explicitly agreed otherwise, in writing, this report has been prepared under WSP UK Limited standard Terms and Conditions as included within our proposal to the Client.
- 3. Project specific appointment documents may be agreed at our discretion and a charge may be levied for both the time to review and finalise appointments documents and also for associated changes to the appointment terms. WSP UK Limited reserves the right to amend the fee should any changes to the appointment terms create an increase risk to WSP UK Limited.
- 4. The report needs to be considered in the light of the WSP UK Limited proposal and associated limitations of scope. The report needs to be read in full and isolated sections cannot be used without full reference to other elements of the report and any previous works referenced within the report.

PHASE 1 GEO ENVIRONMENTAL AND PRELIMINARY RISK ASSESSMENTS

Coverage: This section covers reports with the following titles or combination of titles: phase 1; desk top study; geo environmental assessment; development appraisal; preliminary environmental risk assessment; constraints report; due diligence report; geotechnical development review; environmental statement; environmental chapter; project scope summary report (PSSR), program environmental impact report (PEIR), geotechnical development risk register; and, baseline environmental assessment.

- 5. The works undertaken to prepare this report comprised a study of available and easily documented information from a variety of sources (including the Client), together with (where appropriate) a brief walk over inspection of the Site and correspondence with relevant authorities and other interested parties. Due to the short timescales associated with these projects responses may not have been received from all parties. WSP UK Limited cannot be held responsible for any disclosures that are provided post production of our report and will not automatically update our report.
- 6. The opinions given in this report have been dictated by the finite data on which they are based and are relevant only for the purpose for which the report was commissioned. The information reviewed should not be considered exhaustive and has been accepted in good faith as providing true and representative data pertaining to site conditions. Should additional information become available which may affect the opinions expressed in this report, WSP UK Limited reserves the right to review such information and, if warranted, to modify the opinions accordingly.
- It should be noted that any risks identified in this report are perceived risks based on the information reviewed. Actual risks can only be assessed following intrusive investigations of the site.
- 8. WSP UK Limited does not warrant work / data undertaken / provided by others.

INTRUSIVE INVESTIGATION REPORTS

Coverage: The following report titles (or combination) may cover this category of work: geo environmental site investigation; geotechnical assessment; GIR (Ground Investigation reports); preliminary environmental and geotechnical risk assessment; and, geotechnical risk register.

- 9. The investigation has been undertaken to provide information concerning either:
 - i. The type and degree of contamination present at the site in order to allow a generic quantitative risk assessment to be undertaken; or
 - ii. Information on the soil properties present at the site to allow for geotechnical development constraints to be considered.
- **10.** The scope of the investigation was selected on the basis of the specific development and land use scenario proposed by the Client and may be inappropriate to another form of development or scheme. If the development layout was not known at the time of the investigation the report findings may need revisiting once the development layout is confirmed.
- 11. For contamination purposes, the objectives of the investigation are limited to establishing the risks associated with potential contamination sources with the potential to cause harm to human health, building materials, the environment (including adjacent land), or controlled waters.
- **12.** For geotechnical investigations the purpose is to broadly consider potential development constraints associated with the physical property of the soils underlying the site within the context of the proposed future or continued use of the site, as stated within the report.
- 13. The amount of exploratory work, soil property testing and chemical testing undertaken has necessarily been restricted by various factors which may include accessibility, the presence of services; existing buildings; current site usage or short timescales. The exploratory holes completed assess only a small percentage of the area in relation to the overall size of the Site, and as such can only provide a general indication of conditions.
- 14. The number of sampling points and the methods of sampling and testing do not preclude the possible existence of contamination where concentrations may be significantly higher than those actually encountered or ground conditions that vary from those identified. In addition, there may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this report.
- **15.** The inspection, testing and monitoring records relate specifically to the investigation points and the timeframe that the works were undertaken. They will also be limited by the techniques employed. As part of this assessment, WSP UK Limited has used reasonable skill and care to extrapolate conditions between these points based upon assumptions to develop our interpretation and conclusions. The assumption made in forming our conclusions is that the ground and groundwater conditions (both chemically and physically) are the same as have been encountered during the works undertaken at the specific points of investigation. Conditions can change between investigation points and these interpretations should be considered indicative.
- 16. The risk assessment and opinions provided are based on currently available guidance relating to acceptable contamination concentrations; no liability can be accepted for the retrospective effects of any future changes or amendments to these values. Specific assumptions associated with the WSP UK Limited risk assessment process have been outlined within the body or associated appendix of the report.
- **17.** Additional investigations may be required in order to satisfy relevant planning conditions or to resolve any engineering and environmental issues.

- 18. Where soil contamination concentrations recorded as part of this investigation are used for commentary on potential waste classification of soils for disposal purposes, these should be classed as indicative only. Due consideration should be given to the variability of contaminant concentrations taken from targeted samples versus bulk excavated soils and the potential variability of contaminant concentrations between sampling locations. Where major waste disposal operations are considered, targeted waste classification investigations should be designed.
- 19. The results of the asbestos testing are factually reported and interpretation given as to how this relates to the previous use of the site, the types of ground encountered and site conceptualisation. This does not however constitute a formal asbestos assessment. These results should be treated cautiously and should not be relied upon to provide detailed and representative information on the delineation, type and extent of bulk ACMs and / or trace loose asbestos fibres within the soil matrix at the site.
- 20. If costs have been included in relation to additional site works, and / or site remediation works these must be considered as indicative only and must be confirmed by a qualified quantity surveyor.

EUROCODE 7: GEOTECHNICAL DESIGN

- 21. On 1st April 2010, BS EN 1997-1:2004 (Eurocode 7: Geotechnical Design Part 1) became the mandatory baseline standard for geotechnical ground investigations.
- 22. In terms of geotechnical design for foundations, slopes, retaining walls and earthworks, EC7 sets guidance on design procedures including specific guidance on the numbers and spacings of boreholes for geotechnical design, there are limits to methods of ground investigation and the quality of data obtained and there are also prescriptive methods of assessing soil strengths and methods of design. Unless otherwise explicitly stated, the work has not been undertaken in accordance with EC7. A standard geotechnical interpretative report will not meet the requirements of the Geotechnical Design Report (GDR) under Eurocode 7. The GDR can only be prepared following confirmation of all structural loads and serviceability requirements. The report is likely to represent a Ground Investigation Report (GIR) under the Eurocode 7 guidance.

DETAILED QUANTITATIVE RISK ASSESSMENTS AND REMEDIAL STRATEGY REPORTS

- 23. These reports build upon previous report versions and associated notes. The scope of the investigation, further testing and monitoring and associated risk assessments were selected on the basis of the specific development and land use scenario proposed by the Client and may not be appropriate to another form of development or scheme layout. The risk assessment and opinions provided are based on currently available approaches in the generation of Site Specific Assessment Criteria relating to contamination concentrations and are not considered to represent a risk in a specific land use scenario to a specific receptor. No liability can be accepted for the retrospective effects of any future changes or amendments to these values, associated models or associated guidance.
- 24. The outputs of the Detailed Quantitative Risk Assessments are based upon WSP UK Limited manipulation of standard risk assessment models. These are our interpretation of the risk assessment criteria.
- 25. Prior to adoption on site they will need discussing and agreeing with the Regulatory Authorities prior to adoption on site. The regulatory discussion and engagement process may result in an alternative interpretation being determined and agreed. The process and timescales associated with the Regulatory Authority engagement are not within the control of WSP UK Limited. All

costs and programmes presented as a result of this process should be validated by a quantity surveyor and should be presumed to be indicative.

GEOTECHNICAL DESIGN REPORT (GDR)

26. The GDR can only be prepared following confirmation of all structural loads and serviceability requirements. All the relevant information needs to be provided to allow for a GDR to be produced.

MONITORING (INCLUDING REMEDIATION MONITORING REPORTS)

- 27. These reports are factual in nature and comprise monitoring, normally groundwater and ground gas and data provided by contractors as part of an earthworks or remedial works.
- 28. The data is presented and will be compared with assessment criteria.

Appendix C

EXPLORATORY HOLE LOGS

ل ♦ WSP	VSP Parso	PARSONS BRINCKE	RHOFF kerhof	f				WIN	DC	ow sa	AMPLE	LOG	i	Hole	e No.	SS	1	
Worr	Tele	phone: Fax:	Kernor		Proje	Project Edith Neville							She	Sheet 1 of 1				
Job No	700	34223		1	Clier	ient London Borough of Camden							Dat	te (01-06- 01-06-	17 17		
Contract	or / D	iller	P	Vet	hod/	d/Plant Used Logged By Co-Ordinates (NGR)							Groun	d Level	(m AC	DD)		
	CJ	A				Te	errier			AE	М	N	183251.788			20.0	081	
S	AMPL	ES & TE	STS	_				Donth				STRAT	A					Install Backfil
Depth	Туре	Test Result	(Amqq)	(kN/m2)	P.Pen (kN/m2	Water	Elev. (mAOD)	(Thick -ness)			De	scription				Legend	Geology	Dia.
							19.98	(0.10) 0.10	MADI	E GROUND.	Hard red/grey	TARMAC.					TARMA	
-							19.93	0.15	MAD	E GROUND. ac.	Dark brown gr	avelly SAND	. Coarse grave	l of ceme	ent and	\bigotimes	GMG	
- - - 0.40-0.40 -	ES						19.38	- (0.55) - 0.70	MAD	E GROUND.	Brown sandy (GRAVEL of fi	int, brick and c	xoncrete.			GMG	
- - - - - - - - - - - - - - - - - - -	ES						18.28	- (1.10)	MADI	E GROUND. se gravel of	Firm brown/gre brick and flint. (ey slighty sar (Possible rew	ndy slightly grav	,	Υ.		СМС	
Ē							10.20	1.00	WEA	THERED LC	NDON CLAY.	Firm brown r	nottled grey CL	_AY.				
-								-(0.20)									LC	
	Hole	e Diameter	r			I	18.08	Recove	ery				Water	Strikes		·	l	16441
Depth	Dia	meter (mm)) Rei	mark	IS I	Core ⁻	Fop (m)	Core Base	e (m)	% Recovery	Date	Time	Strike	Minutes	is (Standing	C	asing
Sc	ale 1:1	2.5	Notes	s: Al	II dim dentif	ensic	ons in me	etres. Log	gs sho	ould be read i	General Remain Hole terminate No groundwate No visual of olf	arks d at 2.0m bgl. er encountered actory contam with the provi	ination identified. ded Key. Desc	criptions a	are base	d on visu	ual and	

WSPIE	SP Parson	PARSONS BRINCKE	ff				WIN	Hol	Hole No.											
WOF F	Telej F	ohone: ax:	xemoi	"	Proje	ect			She	Sheet 1 of 1										
Job No	7003	34223			Client London Borough of Camden											Date 01-06-17 01-06-17				
Contracto	or / Dri	iller	1	Met	hod/	Plan	Used		L	ogged By		Co-Ordina F	ates (NGR) 529739 634	I	Ground Level (m AOD)					
	CJA	4				Te	errier			AE	M	N		20.148						
SA	MPLE	ES & TE	STS	2)	- C	5	Floy	Depth							Backfill Dia.					
Depth	Туре	Result	DIA DIA	(kN/m	P.Pe (kN/m	Wate	(mAOD)	(Thick -ness)				Legend	Geology	mm						
_	20.0								MAI	DE GROUND.	TARMAC.	-					TARMAG			
							19.95	(0.10) 0.20	MAI	DE GROUND.	Brick GRAVE	L.					GMG			
- - - - - -	ES						19.25	- (0.70) - - 0.90	MAI slag MAI flint	DE GROUND. J. DE GROUND. :. (Possible rew	Brown clayey Soft grey gree orked natural)	gravelly SAN	D. Coarse grav	arse grav	rel of		GMG			
- - - -	ES						18.65	- -(0.60) - - 1.50						CMG						
							18.15	- (0.50) - 2.00	MAI Coa	DE GROUND. arse gravel of fl	Soft brown mo int. (Possible r	avelly CL/	ΑΥ.		СМС					
Denth	Hole	Diameter	r) Re	emark	s	Core ⁻	Fop (m)	Recov	e (m)	% Recovery	Date	Time	Water Strike	Strikes Minute	es	Standing	0	asina		
			Neta	ac. 1			ne in m	stree		hould be read i	General Rem Hole terminate No groundwate No visual of of	arks d at 2.0m bgl. er encountered factory contam	ination identified.							
Sca	le 1:12	2.5	man	s: A ual i	denti	ficatio	ns in me n.	eues. Lo	iys sl	noulu de read i	n accordance	with the provi	ueu ney. Desc	Inpuons a	are base	u on Visl	iai and			

WSP Parso	PARSONS BRINCKER	RHOFF kerhof	f				WINI	Ho	Hole No. SS3								
Tele	phone: Fax:	Kernor		Proj€	ect			Sh	Sheet 1 of 1								
Job No 700	34223		1	Clier	nt		L	Da	Date 01-06-17 01-06-17								
Contractor / Di	iller A	٩	Meth	hod/l	Plant Te	Used		Logged By AE	M	Co-Ordina E N	ates (NGR) 529751.649 183225.953	Ground	Ground Level (m AOD) 20.084				
SAMPL	ES & TE	STS								STRAT	A				Install /		
Depth Type	Test Result	UIA (Judd)	HSV (kN/m2)	P.Pen (kN/m2)	Water	Elev. (mAOD)	Depth (Thick		De		Legend	Geology	Dia.				
						19.98	(0.10) 0.10	Mad Ground. 1	TARMAC.				TARMAC				
-						19.78	-(0.20) 0.30	MADE GROUND. gravel of concrete	Brown / yellow	ND. Coa	irse		GMG				
-						19.58	-(0.20) 0.50	MADE GROUND.	Tarmac and ro		<		GMG				
0.50-0.50 ES						18.98	- (0.60)	VADE GROUND.	Brown gravelly			GMG					
						18.08	- - - - - - - - - - - - - - - - - - -	VADE GROUND gravel of flint. (Po	Stiff brown slig ssible reworked	htly gravelly i 1 natural).	CLAY. Mediun	n to coar	se		CMG		
Hole Depth Dia	Hole Diameter Depth Diameter (mm) Remark				Core T	Top (m)	Recove	ry (m) % Recovery	Date	Water Strikes Date Time Strike Minutes						asing	
Scale 1:1	2.5	Notes	s: Al	ll dim	ensio	ns in me	etres. Log	s should be read	General Rema Hole terminate No groundwate No visual of olf	arks d at 2.0m bgl. er encountered. factory contami with the provi	nation identified ded Key. Desc	riptions	are based	I on visu	al and		

WSP F	/SP Parso	BRINCKE ns Brincl					WIN	Hol	Hole No.										
	Tele	phone: ax:		Ρ	Proje	ect			She	Sheet 1 of 1									
Job No	7003	34223		C	Clien	nt		L	_on	don Borou	gh of Cam	Iden		Da	Date 01-06-17 01-06-17				
Contracto	or / Dr	iller	M	leth	od/F	Plant	Used		L	ogged By		Co-Ordina F	ates (NGR) 529761 009		Ground	Level	(m AC	D)	
CJA						Te	errier			AE	М	N	183205.127			242	1		
SA	SAMPLES & TESTS					er	Flov	Depth				STRAT	A					Backfill Dia.	
Depth	Туре	Result		L L N N N	RN/m RN/m	Wate	(mAOD)	(Thick -ness)			D	escription			L	egend	Geology	mm	
							20.14	(0.10)	TOF	PSOIL.					<u>×</u>		TS		
	ES						19.54	- - -(0.60) - - - - - - - - - - - - - - - - - - -	MAI	DE GROUND. crete and flint	Brown slightly with occasiona	r clayey SANE al tiles.). Coarse grav	el of brick			CMG		
							18.64	1.60	Ret	fusal at 1 6m						\bigotimes			
								-											
Depth	Hole Diameter				s (Core 1	Гор (m)	Recov Core Base	ery e (m)	% Recovery	Date	Time	Water Strike	Strikes Minute	es Sta	anding	Ca	asing	
							-r \7				General Rem Hole terminate No groundwate	narks ed at 1.6m bgl d ier encountered	ue to refusal.						
Sca	ale 1:12	2.5	: All al ide	dime	ensio icatio	ns in me	etres. Lo	gs sł	hould be read i	No visual of o	rractory contami	nation identified. ded Key. Desc	criptions a	are based	on visu	al and			

	/SP	PARSONS	RHOFF					WIN	Hol	Hole No. SS5											
WSP I	Parso Tele F	ns Brincł phone: ax:	kerhof	f _	Proje	ect			She	Sheet 1 of 1											
Job No	7003	34223		(Client London Borough of Camden											Date 01-06-17 01-06-17					
Contracto	or / Dr CJ/	iller A	N	Meth	nod/l	Plant Te	t Used errier		L	ogged By AE	M	Co-Ordina E N	Groun	round Level (m AOD)							
SA	AMPLI	ES & TE	STS									STRAT	A				Install /				
Depth	Туре	Test Result	(Judd)	HSV (kN/m2)	P.Pen (kN/m2)	Water	Elev. (mAOD)	Depth (Thick -ness)				Legend	Geology	Dia.							
- - - 0.50-0.50	ES							0.05	MAI Felt MAI con	DE GROUND. liner at 0.05m DE GROUND, crete and occa	Grey sandstor Brown sandy usional tiles.	e GRAVEL.	I frequent cobb	les of bri	ck and		GMG				
-									MAI of b	DE GROUND. rick and flint w	ravel		CMG								
- 1.50-1.50 - -	ES							- - (0.70) - - 2.00	MAI flint.	DE GROUND. (possible rew	of		CMG								
	Hole	Diameter	· · ·					Recov	/ery			KXXX1 (AAX)									
Depth	Dia	neter (mm)	Rei	mark	is (Core ⁻	Гор (m)	Core Bas	e (m)	% Recovery	Date General Rem Hole terminate No groundwat No visual of ol	Time arks d at 2.0m bgl. er encountered factory contami	Strike	Minute	<u>es</u>	Standing	Cá	asing			
Sca	ale 1:12	2.5	Note: manu	s: Al ual ic	I dim dentif	ensic icatic	ons in mo	etres. Lo	ogs sl	hould be read i	n accordance	with the provi	ded Key. Desc	riptions a	are base	d on visı	ial and				

				() 12) 12)	ал (2)	ъ ғ	-lev	Depth		STRATA						
		epth	Type 🖁	(kN/n KN/n	P.P.	m) Kat	AOD)	Thick		Descripti	on	Legend	Geolog	Install / Backfill		
Project Job No							-	11655)	MADE GROU	IND. Brown slightly gravelly sligh	tly clayey SAND. Coarse gravel of					
Edith Neville 70034223							E			k and flint.						
	-						F		0.25 - 0.25 m	bgi Step of wall at 0.25m]			
	14						Ę	(1.00)					GMG	R S S A		
and a state of the	-						-						>	6837		
	-						10 70	1 00					>	668		
							10.73	1.00	0.94 - 0.94 m	bgl Base of wall at 0.94		$-\gamma^{\times}$				
	1						ŀ									
	-						F									
							Ę									
	1						+									
							Ę									
	5						E	-								
	-						ŀ									
							Ę									
							E									
	at a						F									
							Ę									
	47						-	-								
	-						F									
B.							È									
	-						-									
	-						Ę									
	-						ŀ									
	-						F	-								
	-						E									
O'SO	-						-									
	-						Ę									
EVILL 1	E						E									
	-						ŀ									
	-							-								
C General Remarks	Leng	gth			Log	ged By				Client		Sheet				
☐ 0.94m. GL to top of wall was 1.89m. ← No groundwater encountered.	►	C).30m					AEM		London Boro	ugh of Camden	10				
의 No visual of olfactory contamination identified. A	Widi	th			Gro	und Le	vel (m	AOD)		Co-Ordinates (NGR)	Date 01-06-17	Trial U				
G Shoring/Support: None D -+- z	В 0.3	().30m			1	9.733		E 529749 N 183258 01-06-17			I rial Hole N				
⊢ Stability: Stable Q Notes: All dimensions in metres. Logs should be read in C	🛓 Orie	Orientation				hod/Pla	ant Use	ed		Contractor	Scale	т	D1			
Baccordance with the provided Key. Descriptions are based on visual and manual identification. C		90 degre	ees from r				None		CJA	I						
				<u> </u>		er	Elev.	Depth	n	STRATA						
--	--------------------	----------------------	----------------	----------	-----------	--------	----------	------------------	---	--	--	-----------	------------	-------------		
Telephone	TRIAL PIT LOG	Depth	Туре		NA A'A	Wat	(mAOD)	(Thick		Description	n	Legend	Geolog	Install /		
Project Edith Neville	Job No 70034223	-						- (0.80)	MADE GROUN occasional who 0.03 - 0.03 m b	ND. Brown gravelly SAND. Coars ole bricks and pockets of light bro bgl Step of wall at 0.03m bgl	e gravel of brick, cement and flint wi wn fine medium sand.	th	GMG			
		-					19.39	- - 0.80	0.56 - 0.56 m b	bgl Base of wall at 0.56m bgl			> > 			
EDITH NELLE LOGS OF VIENE LIAIS 19/17																
General Remarks Total height of wall 2.32m. GL to base of wall was 0.56m. GL to top of wall was 1.82m. No groundwater encountered.		Length	0.30m		Lc	ogged	Ву	AEM		Client London Borou	gh of Camden	neet 1	of 1			
In visual of olfactory contamination identified. Image: Shoring/Support: None		Width	0.30m		G	round	Level (m	1 AOD) 20.185		Co-Ordinates (NGR) E 529734 N 183249	Date 01-06-17 01-06-17	Trial H	lole l	١ ٥.		
Example: Stable Stable Stability: Stable Notes: All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual and manual identification.	C	Orientatio 90 deç	n grees fro	om north	M	ethod/	Plant Us	ed None		Contractor CJA	Scale 1:33.3	Т	Ρ2			

WSP Parsons Brinckerhoff				<u>_</u> 2;	n2) en	n2) er	Ele	ev.	Depth	h	STRATA				
		Depth	Туре		RNA P P P	(kN/r	(mA	OD) (T	hick		Descriptio	n	Legend	Geolog	Install / Backfill
Project Edith Neville	Job No 70034223								0.75) 0.75	MADE GROUI gravel of brick 0.00 - 0.10 m l 0.35 - 0.35 m l 0.70 - 0.70 m l	ND. Brown clayey gravelly SAND , cement and flint. bgl Step of wall at 0.1m bgl bgl Base of wall at 0.35m bgl bgl Base of concrete footing at 0	becoming clayey with depth. Coars	e	GMG	
□ General Remarks □ Total height of wall was 2.63m. GL to base of wall ↓ was 0.7m. GL to top of wall was 1.83m.	3►	Length	0.30m			Logge	ed By	AE	EM		Client	igh of Camden	Sheet 1	of 1	
No groundwater encountered. A Mo visual of olfactory contamination identified. A	_	Width				Grour	nd Leve	el (m A	AOD)		Co-Ordinates (NGR)	Date 01-06-17	Trial		
Shoring/Support: None Stability: Stable	- ≠ B 0.3	Orientatio	0.30m			Metho	od/Plan	20. nt Usec	.281 d		E 529725 N 183243 Contractor	01-06-17 Scale	i i lai F	iole I	NU.
g Notes: All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual and manual identification. C		90 deg	grees fror	m north	h			N	one		CJA	1:33.3	T	P 3	

MSP Parsons Brinc	kerhoff				5,)2) 12)	er (2)	Flev	Dept	h	STRATA				
The state	TRIA	L PIT LOG	Depth	Туре	DIG HSH	kN/m P.Pe	Wate Wate	(mAC	D) (Thick		Descriptio	n	Leaend	Geology	Install /
Project		Joh No	-				—	20	-ness)					TARMA(
Edith Neville		70034223								MADE GROU	IND. CONCRETE.				6036
			-						(0.35)				A A A A	CONC	6636
			-					19	86 0.40		IND Brown gravelly slightly claves	SAND Coarse gravel of brick and			RYSA
			-						-	concrete.	SND. DIOWIT gravelly slightly clayey	SAND. Coarse graver of blick and	' 📉		
									- (0.40)					GMG	
			-					19	46 0.80	0			-	0140	19833
			-					19	36 0.90	0.85 - 0.85 m	bol Pipe encased in concrete at	AY. Coarse gravel of brick and the 0.85m. Casement approx 150mm	in /	CIVIG	incen
									-	diameter.					
			[[_		
			-						-						
the second of the second	a second	Las and the	-						-						
The second second	the state of the s	State of the							Ľ						
and and the second	fairs why	and the same	-						_						
the state is a		and the set	-						-						
LEN Frence	- And And	The second second	-						F						
and the second s	A A A	Charles							E						
DI T	Sel all rit	and the second	-						-						
the second second	South They	The second	-						-						
The lot of the second	1 1 1 1 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1	M. Andrew	-						F						
	1 and the second	A CAR	[Ę						
· · · · · · · · · · · · · · · · · · ·	- A-1-5		-						-						
A State	to the sold with	11	-						-						
	主にして、	tint y the	-						-						
States Street	111	4010 500	-						F						
and the second	Tobal Parts	· ·	-						-						
the second se	No the State	A at 1 a	-						-						
Y	大学学校の	A MARKER							Ľ						
			[Ę						
			-						-						
			-						-						
			_						L						
			-						F						
			-						-						
			-						-						
									Ē						
			[Ę						
			-						-						
			-						-						
			L						Ĺ						
General Remarks			Lenath	•			Logae	ed By		•	Client		Sheet	•	
Pipe encased in concrete at 0.85m. Casement	🛏 0	.3 ———		0.30m			- 55-	,	AEM		London Borou	gh of Camden	1	of 1	
No groundwater encountered.		Δ		0.0011											
No visual of olfactory contamination identified.	/ // //	₮	Width				Grour	nd Level	(m AOD)	Co-Ordinates (NGR)	Date 01-06-17	- · · ·		
Shoring/Support: None	D =+			0.30m					20.257		E 529745 N 183216	01-06-17	I rial H	Iole N	10.
Stability: Stable			Orientatio	n			Methr	nd/Plant	llsed		Contractor	Scale			
Notes: All dimensions in metres. Logs should be read in		±	Onentatio				weuld	Jur Idill	USEU					T1	
on visual and manual identification.		-	90 deg	grees fro	m north				None		CJA	1:33.3	J	• •	

WSP Parsons Brinckerhoff				<u>_</u> 2>	n2) en	er	Elev.	Depth	ו	STRATA				
	AL PIT LOG	Depth	Туре		P.P.	Wat	(mAOD)	(Thick		Descriptio	'n	Legend	Geolog	Install /
Project	Job No	-					20.08	-ness) 0.10					TARMA	BACKIII
F dith Neville	70034223	F					19.98	0.20		ND Brick GRAVEL		$-\nabla$	GMG	16621
	10004220	£					19.93	0.25					TARMA	
		[10.73	- 0.45					CONC	
		-					15.75	- 0.45		ND. Soft brown slightly sandy gra	velly CLAX. Coarse gravel of brick		×	1993
		-						(0.55)	and concrete.	TYD. Son brown signify sandy gra	velly CLAT. Coarse graver of blick		CMG	
		-					19.18	1.00	0.95 - 1.00 m diameter.	bgl Pipe encased in concrete at	0.95m. Casement approx 200mm	in		
Ceneral Remarks Pipe encased in concrete at 0.95m. Casement).3 ───►	Length	0.30m		L	ogged	Ву	AEM		Client	igh of Camden	Sheet 1	of 1	
No groundwater encountered. No visual of olfactory contamination identified.	<u>A</u>	Width	0.0011		G	iround	Level (n			Co-Ordinates (NGR)				
Shoring/Support: None			0.30m					20.175		E 529745 N 183219	01-06-17	Trial H	lole N	lo.
Stability: Stable Notes: All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual data manual identification	C *	Orientatio 90 deg	on grees from	n north	N	lethod	/Plant Us	sed None		Contractor CJA	Scale 1:33.3	U	T2	

WSP Parsons Brinckerhoff				<u>_</u> 2>	en ()	n2) er	Elev.	Dept	h	STRATA				
		Depth	Туре		P.P.	(kN/n Wat	(mAOD	(Thick		Descriptio	n	Legend	Geolog	Install /
Project	Joh No					-	20.01	-ness) 0.10	MADE GROU	ND. TARMAC.		-	FARMA	BOOR
Edith Neville	70034223						19.56	(0.45)	MADE GROU limestone	ND. Black ashy gravelly SAND. (Coarse gravel of brick, concrete ar	d	GMG	
	-							-	MADE GROU	ND. Orange brown sandy gravel	y CLAY. Coarse gravel of brick, flin	nt 🐹	×	
	-						19.26	- (0.30) - 0.85 -	and tile. 0.75 - 0.85 m diameter.	bgl Pipe encased in concrete at	0.75m. Casement approx 150mm	in 🔆	× CMG	
O General Remarks	-	Length	1 1		<u> </u>	Logged	l By	<u> </u>		Client		Sheet	<u> </u>	<u> </u>
approx 150mm in diameter.	3		0.30m					AEM		London Borou	igh of Camden	1	of 1	
တ္ No visual of olfactory contamination identified.	<u> </u>	Width				Ground	Level (r	n AOD))	Co-Ordinates (NGR)	Date 01-06-17	Trial		
Shoring/Support: None D	- z B 0.3	Orientatio	0.30m			Method	I/Plant II	20.105		E 529742 N 183224	01-06-17	i nai f	iole l	۹ 0 .
Notes: All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual and manual identification. C	; 1	90 deg	rees fron	n north	וו	Methou		None		CJA	1:33.3	U	IT3	

Appendix D

LABORATORY CERTIFICATES

WSP PB LBH WSP PB 4th Floor 6 Devonshire Square London EC2M 4YE

Attention: Alex Mann

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 19 June 2017 H_WSP_LON 170603-8 Edith Neville Edith Neville 412932

We received 8 samples on Saturday June 03, 2017 and 8 of these samples were scheduled for analysis which was completed on Monday June 19, 2017. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

	SDG:	170603-8	Client Reference:	Edith Neville	Report Number:	412932	
(ALS)	Location:	Edith Neville	Order Number:	70034223-S01	Superseded Report:		

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
15625353	SS1	ESSS	0.40 - 0.40	03/05/2017
15625360	SS1	ESSS	1.50 - 1.50	03/05/2017
15625365	SS2	ESSS	0.50 - 0.50	03/05/2017
15625370	SS2	ESSS	1.20 - 1.20	03/05/2017
15625376	SS3	ESSS	0.50 - 0.50	03/05/2017
15625381	SS4	ESSS	0.50 - 0.50	03/05/2017
15625386	SS5	ESSS	0.50 - 0.50	03/05/2017
15625393	SS5	ES	1.50 - 1.50	03/05/2017

Maximum Sample/Coolbox Temperature (°C) :

12.8

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

ISO5667-3 Water quality - Sampling - Part3 -During Transportation samples shall be stored in a cooling device capable of maintaining

a temperature of (5±3)°C. Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

_

CERTIFICATE OF ANALYSIS

ALS	SDG: Location:	170603-8 Edith Neville		Clien Orde	it Refe r Num	rence: ber:	: E 7(dith Ne 00342	eville 23-S0	1		Rep Sup	ort Ni ersede	umber d Repo	: ort:	412	932			
Results Legend X Test N No Deter Possible	rmination	Lab Sample	No(s)			15625353			15625360			15625365			15625370			15625376		15625381
Sample Types -		Custom Sample Refe	er rence			SS1			SS1			SS2			SS2			SS3		SS4
S - Soil/Solid UNS - Unspecified S GW - Ground Water SW - Surface Water LE - Land Leachate	Solid	AGS Refer	ence			ESSS			ESSS			ESSS			ESSS			ESSS		ESSS
PL - Prepared Leacr PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewag US - Untreated Sew		Depth (n	n)			0.40 - 0.40			1.50 - 1.50			0.50 - 0.50			1.20 - 1.20			0.50 - 0.50		0.50 - 0.50
RE - Recreational W DW - Drinking Water N UNL - Unspecified L SL - Sludge G - Gas OTH - Other	Vater Jon-regulatory .iquid	Containe	ər	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)
		Sample Ty	/pe	S	ა	ა	ა	ა	ა	S	ა	ა	ა	ა	ა	ა	ა	S	S	S
ANC at pH4 and ANC at p	pH 6	All	NDPs: 0 Tests: 2								x									x
Anions by Kone (w)		All	NDPs: 0 Tests: 2							X									x	
Asbestos ID in Solid Sam	ples	All	NDPs: 0 Tests: 8	x			X			X			X			X			x	
Asbestos Quantification -	Full	All	NDPs: 0 Tests: 2	x												X				
Boron Water Soluble		All	NDPs: 0 Tests: 8		x			x			x			X			X			
CEN Readings		All	NDPs: 0 Tests: 2							X										
Cyanide Comp/Free/Tota	I/Thiocyanate	All	NDPs: 0 Tests: 8		X			x			x			X			X			
Dissolved Metals by ICP-	MS	All	NDPs: 0 Tests: 2							X									x	
Dissolved Organic/Inorga	nic Carbon	All	NDPs: 0 Tests: 2							x									x	
EPH CWG (Aliphatic) GC	; (S)	All	NDPs: 0 Tests: 8		x			x			x			x			x			x
EPH CWG (Aromatic) GC	C (S)	All	NDPs: 0 Tests: 8		x			x			x			X			X			x
Fluoride		All	NDPs: 0 Tests: 2							x									x	
GRO by GC-FID (S)		All	NDPs: 0 Tests: 8			x			x			x			x			x		
Hexavalent Chromium (s))	All	NDPs: 0 Tests: 8		x			x			x			x			x			
Loss on Ignition in soils		All	NDPs: 0 Tests: 2								x									x

15625381			15625386			15625393
SS4			SS5			SS5
ESSS			ESSS			ES
0.50 - 0.50			0.50 - 0.50			1.50 - 1.50
60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)
ა	ა	S	ა	ა	ა	ა
	x			x		
		x			x	
		X			X	
		~				
		x			x	
		X			x	
Y			Y			Y
^			×			×
		x			x	

_

SDG: Location:	170603-8 Edith Neville		Clien Orde	t Refe r Num	rence: ber:	E0 7(dith Ne 003422	eville 23-S01			Rep Sup	ort Nu ersede	umber d Repo	: ort:	412	932			
Results Legend X Test N No Determination Describits	Lab Sample N	lo(s)			15625353			15625360			15625365			15625370			15625376		15625381
	Customer Sample Refer	ence			SS1			SS1			SS2			SS2			SS3		SS4
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce			ESSS			ESSS			ESSS			ESSS			ESSS		ESSS
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m))			0.40 - 0.40			1.50 - 1.50			0.50 - 0.50			1.20 - 1.20			0.50 - 0.50		0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container		1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB	250g Amber Jar (ALE210)
	Sample Typ	De	ν	S	S	S	S	ა	S	S	S	S	ა	S	ა	S	S	N	S
Mercury Dissolved	All	NDPs: 0 Tests: 2							x									x	
Metals in solid samples by OES	All	NDPs: 0 Tests: 8		X			X			X			x			X			
Mineral Oil	All	NDPs: 0 Tests: 2								x									×
PAH by GCMS	All	NDPs: 0 Tests: 8		X			X			x			X			X			x
PCBs by GCMS	All	NDPs: 0 Tests: 2								x									x
pH	All	NDPs: 0 Tests: 8		X			X			x			x			X			x
Phenols by HPLC (W)	All	NDPs: 0 Tests: 2							X										
Sample description	All	NDPs: 0 Tests: 8		X			X			X			X			X			
Semi Volatile Organic Compounds	All	NDPs: 0 Tests: 2								X									x
Total Dissolved Solids	All	NDPs: 0 Tests: 2							x										
Total Organic Carbon	All	NDPs: 0 Tests: 4		X						X						X			
TPH CWG GC (S)	All	NDPs: 0 Tests: 8		X			X			X			x			X			x
VOC MS (S)	All	NDPs: 0 Tests: 8			x			x			x			x			x		

Image: series of the series	x							S	60g VOC (ALE215)	0.50 - 0.50	ESSS	SS4	15625381
								S	1kg TUB				
SS Control Con		X	x	X	x	~	Y	S	250g Amber Jar (ALE210)				
	x							S	60g VOC (ALE215)	0.50 - 0.50	ESSS	SS5	15625386
								S	1kg TUB				
250g Amber Jar (ALE210) S X X X X		X	x	X	x	~	Y	S	250g Amber Jar (ALE210)				
	x							S	60g VOC (ALE215)	1.50 - 1.50	ES	SS5	15625393

170603-8 Client Reference: Edith Neville

Edith Neville

Client Reference: Edith Neville Order Number: 70034223-S01 Report Number: Superseded Report: Validated

412932

Sample Descriptions

Grain Sizes							
very fine <0.0	063mm fine 0.0	063mm - 0.1mm	medium 0.1mm	ı - 2mm c	oarse 2mm - 1	0mm very coar	se >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
15625353	SS1	0.40 - 0.40	Dark Brown	Sandy Loam	Stones	Vegetation	
15625360	SS1	1.50 - 1.50	Dark Brown	Sandy Clay	Brick	Vegetation	
15625365	SS2	0.50 - 0.50	Dark Brown	Loamy Sand	Brick	Stones	
15625370	SS2	1.20 - 1.20	Dark Brown	Loamy Sand	Stones	Vegetation	
15625376	SS3	0.50 - 0.50	Dark Brown	Sandy Loam	Brick	Stones	
15625381	SS4	0.50 - 0.50	Dark Brown	Sandy Loam	Brick	Stones	
15625386	SS5	0.50 - 0.50	Dark Brown	Sandy Loam	Stones	Vegetation	
15625393	SS5	1.50 - 1.50	Dark Brown	Clay	Tar	Vegetation	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

SDG: Location:		170603-8 Edith Neville	Clien Orde	it Reference: r Number:	Edi 700	th Neville)34223-S01		Report Numb Superseded Re	er: 412932 port:	
Paculte Logand		Customer Sample Ref	004	001		000		000	600	004
# ISO17025 accredited. M mCERTS accredited.		oustomer oumpie net.	551	551		552		552	555	554
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.40 - 0.40 Soil/Solid (S)	1.50 - 1.50 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)		1.20 - 1.20 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)
* Subcontracted test. ** % recovery of the surrogate stand check the efficiency of the method	lard to d. The	Date Sampled Sample Time	03/05/2017	03/05/2017		03/05/2017		03/05/2017	03/05/2017	03/05/2017
results of individual compounds v samples aren't corrected for the re	within ecovery	SDG Ref	170603-8	170603-8		170603-8		170603-8 15025270	170603-8 15625276	03/06/2017 170603-8 15625281
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	ESSS	15625360 ESSS		15625365 ESSS		15625370 ESSS	15625376 ESSS	15625381 ESSS
Component Moisture Content Ratio (% of as	LOD/Units	Method PM024	11	19		18		30	14	93
received sample)	<0.7%	TM018				5 15				3.26
	~0.1 // ₀	TIMOTO				5.15	#			5.20 #
Mineral oil >C10-C40	<1 mg/kg	TM061				63.2	@			35.5 @
Mineral Oil Surrogate % recovery**	%	TM061				85.2	@			84.8 @
Organic Carbon, Total	<0.2 %	TM132				7.32	@#			1.42
Soil Organic Matter (SOM)	<0.35 %	TM132	1.53						6.02	<u>e</u> "
рН	1 pH Units	TM133	8.43	8.61	0 "	8.22	0 "	8.51	8.96	9
Chromium, Hexavalent	<0.6 mg/kg	TM151	@# <0.6	<0.6	@#	<0.6	@#	@# <0.6	@ # <0.6	@# <0.6
Cyanide, Free	<1 mg/kg	TM153	@#	<1	@#	<1	@#	@# <1	@ # <1	@#
PCB congener 28	<0.003	TM168	@#		@#	0.00795	@#	@#	@#	@# <0.003
PCP congoner 52	mg/kg	TM168				0.00355	@#			@#
	<0.003 mg/kg	TW100				0.00555	@#			<0.003 @#
PCB congener 101	<0.003 mg/kg	IM168				<0.003	@#			<0.003
PCB congener 118	<0.003 mg/kg	TM168				<0.003	@#			<0.003 @#
PCB congener 138	<0.003 mg/kg	TM168				<0.003	@#			<0.003 @#
PCB congener 153	<0.003 ma/ka	TM168				<0.003	@#			<0.003
PCB congener 180	<0.003	TM168				<0.003	@#			<0.003
Sum of detected PCB 7	<0.021	TM168				<0.021	<u>@</u> #			<0.021
Arsenic	mg/kg <0.6 mg/kg	TM181	13.4	15.4	_	14.1		11	13.2	15
Barium	<0.6 mg/kg	TM181	# 124	126	#	289	#	# 127	# 322	# 69.9
Bervllium	<0.01 ma/ka	a TM181	# 0.469	0.849	#	1.05	#	# 0.973	# 3.76	# 0.491
Cadmium	<0.02 mg/kg	TM181	#	<0.02	#	0.09	#	#	#	#
	<0.02 mg/kg		#	45.0	#	0.03	#	×0.02 #	<0.02 #	4
Chromium	<0.9 mg/kg	11/11/01	12.5	10.0	#	17.1	#	10.0	22.2 #	9.88
Copper	<1.4 mg/kg	TM181	40.7 #	63.7	#	76.7	#	61.3 #	31.8 #	16.8 #
Lead	<0.7 mg/kg	TM181	213 #	261	#	725	#	313 #	220 #	84 #
Mercury	<0.14 mg/kg	g TM181	0.848 @#	2.03	@#	1.43	@#	2.11 @#	0.573 @#	0.602 @#
Nickel	<0.2 mg/kg	TM181	15.8	21.4	#	22.9	#	20.7 #	16 #	22.2
Selenium	<1 mg/kg	TM181	<1	<1	π	<1	#	# <1		<1
Vanadium	<0.2 mg/kg	TM181	# 38.9	55.5	#	60.2	#	# 62.1	# 62.5	# 31.9
Zinc	<1.9 mg/kg	TM181	# 129	99.1	#	461	#	# 97.1	# 104	# 68.1
ANC @ pH 4	<0.03	TM182	#		#	0.621	#	#	#	# 0.16
ANC @ pH 6	mol/kg <0.03	TM182				0 0993				0.0543
Poron water soluble	mol/kg	TM222	~1			1 56		7.07	~1	-1
	<1 mg/kg	I WIZZZ	@#	<1	@#	06.1	@#	(.0) @#	<r @#</r 	×۱ @#
Asbestos Quantification - Gravimetric - %	<0.001 %	TM304	<0.001 #						<0.001 #	

12:41:54 19/06/2017

CERTIFICATE OF ANALYSIS

	SDG:		170603-8	Clien	t Reference:	Edith Neville	Report Numbe	r: 412932	
(ALS)	Location:	E	Edith Neville	Orde	r Number:	70034223-S01	Superseded Rep	ort:	
Res # ISO17025 acc	sults Legend redited.	Ci	ustomer Sample Ref.	SS1	SS1	SS2	SS2	SS3	SS4
M mCERTS accr aq Aqueous / set	redited. ttled sample.		Denth (m)	0.40, 0.40	4.50, 4.50	0.50, 0.50	400,400	0.50, 0.50	0.50 0.50
diss.filt Dissolved / fil tot.unfilt Total / unfilter	tered sample. red sample.		Sample Type	0.40 - 0.40 Soil/Solid (S)	Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	Soil/Solid (S)
* Subcontracter	d test. f the surrogate standa	ard to	Date Sampled Sample Time	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017
check the effi results of indi	ciency of the method.	. The ithin	Date Received	03/06/2017	03/06/2017	03/06/2017	03/06/2017	03/06/2017	03/06/2017
samples aren (E) Trigger bread	't corrected for the re-	covery	SDG Ref Lab Sample No.(s)	170603-8 15625353	170603-8 15625360	170603-8 15625365	170603-8 15625370	170603-8 15625376	170603-8 15625381
1-5&+§@ Sample devia	tion (see appendix)		AGS Reference	ESSS	ESSS	ESSS	ESSS	ESSS	ESSS
Asbestos Quantifica	tion - PCOM	<0.001 %	TM304	<0.001				<0.001	
Evaluation - %				#				#	
Additional Asbestos		-	TM304	None				None	
Components (Using	TM048)			#				#	
Analysts Comments	i	-	TM304	N/C				N/C	
Ashestos Quantifica	tion - Total -	<0.001 %	TM304	<0.001				<0.001	
%	111011 - 10101 -	<0.001 /0	1101504	~0.001 #				<0.001 #	
							ļ ļ		

SDG:

170603-8

CERTIFICATE OF ANALYSIS

Client Reference:

Edith Neville

Validated

_

Report Number:

(ALS) Location:		Edith Neville	Orde	r Number:	700	J34223-S01	Superseded Re	eport:	
Results Legend		Customer Sample Ref.	SS5	SS5					
# ISO17025 accredited.			000						
aq Aqueous / settled sample.		Depth (m)	0.50 - 0.50	1.50 - 1.50					
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)				
* Subcontracted test.	rd to	Date Sampled	03/05/2017	03/05/2017					
check the efficiency of the method.	The	Date Received	03/06/2017	03/06/2017					
results of individual compounds wir samples aren't corrected for the rec	thin covery	SDG Ref	170603-8	170603-8					
(F) Trigger breach confirmed		Lab Sample No.(s)	15625386 FSSS	15625393 FS					
Component	LOD/Units	Method	2000	20					
Moisture Content Ratio (% of as	%	PM024	9.9	16					
received sample)									
pH	1 pH Units	TM133	8.3	7.64					
	·		@#		@#				
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	-				
			@#		@#				
Cyanide, Free	<1 mg/kg	TM153	<1	<1					
			@#		@#				
Arsenic	<0.6 mg/kg	j TM181	12.8	13.6					
			#		#				
Barium	<0.6 mg/kg	1 TM181	175	96.2					
			#		#				
Beryllium	<0.01 mg/k	g TM181	1.03	1.45					
			#		#				
Cadmium	<0.02 mg/kg	g TM181	0.112	<0.02					
			#		#				
Chromium	<0.9 mg/kg	1 TM181	19.9	28.7					
			#		#				
Copper	<1.4 mg/kg) TM181	40.5	30.8					
			#		#				
Lead	<0.7 mg/kg) TM181	143	32.1					
			#		#				
Mercury	<0.14 mg/kę	g TM181	1.36	0.552					
			@#		@#				
Nickel	<0.2 mg/kg	j IM181	22.2	57.5					
			#		#				
Selenium	<1 mg/kg	IM181	<1 "	<1	щ				
Mana dium	10.0	TN404	#	02.4	#				
vanadium	<0.2 mg/kg	11/11/01	43.4 #	83.1	#				
Zino	<1.0 mg/kg	TM191	150	76	#				
	<1.5 mg/kg		150 #	10	#				
Boron water soluble	<1 ma/ka	TM222	<1 "	2 4 1	"				
			. @#		@#				
			<u>e</u> "						

CERTIFICATE OF ANALYSIS

SDG:	1	70603-8		Clien	t Reference:	Edit	h Neville		Report N	lumber:	412932		
(ALS) Location:	E	Edith Neville		Orde	r Number:	7003	34223-S01		Supersed	ed Repor	rt:		
PAH by GCMS													
Results Legend	Cu	istomer Sample Ref.	SS1		SS1		SS2		SS2		SS3	SS4	
M mCERTS accredited.													
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.40 - 0.40		1.50 - 1.50		0.50 - 0.50		1.20 - 1.20		0.50 - 0.50	0.50 - 0.50	
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/05/2017		03/05/2017		03/05/2017		03/05/2017		03/05/2017	03/05/2017	
** % recovery of the surrogate stands check the efficiency of the method	ard to	Sample Time											
results of individual compounds w	rithin	SDG Ref	170603-8		170603-8		170603-8		170603-8		170603-8	170603-8	
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	15625353		15625360		15625365		15625370		15625376	15625381	
1-5&+§@ Sample deviation (see appendix)	LOD/Units	AGS Reference	E555		E555		E222		E999		E222	E555	
Naphthalene-d8 % recovery**	%	TM218	117		123		116		122		101	100	
Acanaphthene_d10 %	%	TM218	11/		121	-	115		122		08.0	00 /	_
recovery**	70	11112-10	117		121		110		122		50.5	55.4	
Phenanthrene-d10 % recovery**	%	TM218	114		120		115		121		102	100	
Chrysene-d12 % recovery**	%	TM218	112		119		113	_	113	+	98.7	97.5	
Perylene-d12 % recovery**	%	TM218	118		124		112	_	114	+	98.1	98.5	
Naphthalene	<0.009	TM218	0.055	6	0.0314		0.291	C "	0.0299		0.773	0.0898	
Acenanbthylene	mg/kg	TM218	በ በፍንፖ	@#	<0.010	@#	በ 1ንን	@#	<u><</u> 0.010	@#	@# 0212	0	@#
лоепарпатутепе	<0.012 ma/ka	I IVI∠ Ið	0.0527	@ #	×0.012 ۱	@#	U. 122	@#	SU.U12	@#	v.∠i∠ @#	0.0708	@#
Acenaphthene	<0.008	TM218	0.0598	<u></u> <i>ωπ</i>	<0.008	ω π	0.706	ω π	<0.008	<u></u> <i>ωπ</i>	2.88	0.0443	<i>ω π</i>
	mg/kg			@#	(@#		@#		@#	@#		@#
Fluorene	<0.01 mg/kg	TM218	0.0463	@#	<0.01	@ #	1.45	@#	<0.01	@#	2.85 @ #	0.0483	@#
Phenanthrene	<0.015	TM218	0.652		0.147	<u> </u>	16.8		0.163	<u></u> "	32.4	0.875	
Anthracene	mg/kg <0.016	TM218	0 19/	@#	0.0378	@#	3.67	@#	0 159	@#	@#	0.223	@#
Anumaterie	<0.010 mg/kg	11012-10	0.194	@#	0.0576	@#	5.07	@#	0.135	@#	@#	0.225	@#
Fluoranthene	<0.017	TM218	1.26	⊚#	0.142	@#	23.5	@#	0.15	@#	48.5	2.05	@#
Pyrene	< 0.015	TM218	1.12	W #	0.122	<i>w</i> #	16.5	<i>w</i> #	0.137	<u>w</u> #	33.9	1.75	<i>w</i> #
-	mg/kg			@#	(@#		@#		@#	@#		@#
Benz(a)anthracene	<0.014 ma/ka	TM218	0.761	@#	0.215	@#	8.1	@#	0.132	@#	15.2 @#	0.975	@#
Chrysene	<0.01 mg/kg	TM218	0.544		0.157	<u>, "</u>	7.44		0.11	<u>e</u> "	14.2	0.872	<u> </u>
				@#	(@#		@#		@#	@#		@#
Benzo(b)fluoranthene	<0.015 ma/ka	TM218	0.983	⊚#	0.421	@#	9.45	@#	0.206	@#	16.2 @#	1.22	@#
Benzo(k)fluoranthene	< 0.014	TM218	0.394	<u></u> <i>ωπ</i>	0.138	<i>ω π</i>	3.85	<i>ω π</i>	0.0751	<u>w</u> #	7.46	0.611	<i>wπ</i>
	mg/kg			@#	(@#		@#		@#	@#		@#
Benzo(a)pyrene	<0.015	TM218	0.792	@ #	0.311	@#	6.97	@ #	0.152	@#	13.1	1.13	@#
Indeno(1.2.3-cd)pyrene	<0.018	TM218	0.485	@#	0.21	@#	5.02	@#	0.0943	@#	9.2	0.723	@#
	mg/kg			@#	(@#		@#		@#	@#		@#
Dibenzo(a,h)anthracene	<0.023	TM218	0.151	⊚#	0.0764	@#	1.45	@#	0.0416	@#	2.71	0.22	@#
Benzo(a.h.i)pervlene	<0.024	TM218	0.638	<i>w</i> #	0.282	<u>w</u> #	5.15	<u>w</u> #	0.135	<u>w</u> #	9.86	0.832	<i>w</i> #
- \\$/_////	mg/kg			@#	(@#		@#		@#	@#		@#
PAH, Total Detected USEPA 16	<0.118	TM218	8.19		2.29	-	111	-	1.59	-	220	11.7	-
PAH total 17 (inclusive of	тд/кд <10 mg/kg	TM218					112					11.7	-+
Coronene)								@					@
													-
						-+							
						+							
						+							-
												1	

ALS

CERTIFICATE OF ANALYSIS

Validated

_

SDG: Location:	Ē	170603-8 Edith Neville		Clien Orde	t Reference: r Number:	Edith Neville 70034223-S01	Report Numb Superseded Re	ber: 412932	
	-								
Results Legend	C	ustomer Sample Ref.	\$\$5		\$\$5	_		1	
# ISO17025 accredited. M mCERTS accredited			000		000				
aq Aqueous / settled sample.		Depth (m)	0.50 - 0.50		1 50 - 1 50				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)		Soil/Solid (S)				
* Subcontracted test.		Date Sampled	03/05/2017		03/05/2017				
** % recovery of the surrogate stands check the efficiency of the method	ard to I. The	Sample Time			. 02/06/2017				
results of individual compounds w	vithin	SDG Ref	170603-8		170603-8				
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	15625386		15625393				
1-5&+§@ Sample deviation (see appendix)		AGS Reference	ESSS		ES				
Component	LOD/Units	Method							
Naphthalene-d8 % recovery**	%	TM218	120		118				
Acenaphthene-d10 %	%	TM218	118		116				
recovery**	70	1111210	110		110				
Phenanthrene-d10 % recovery**	%	TM218	117		114				
	0/	TM010	115		112				
Chrysene-d12 % recovery	70	111/12/10	115		115				
Perylene-d12 % recovery**	%	TM218	119		117				
Naphthalene	<0.009	TM218	0.053	-	<0.009				
	mg/kg			@#		a) #			
Acenaphthylene	<0.012	TM218	0.149		<0.012				
	mg/kg			@#		<u>a</u> #			
Acenaphthene	<0.008	TM218	0.0306	@ #	0.0296	a #			
Fluorene	<0.01 mg/kg	TM218	N N370	w#	<0.01	<u>ய</u> ரா			
		11112-10	0.0013	@#	-0.01	<u>a</u> #			
Phenanthrene	<0.015	TM218	0.748		<0.015				
	mg/kg			@#		a) #			
Anthracene	<0.016	TM218	0.246		<0.016				
-	mg/kg	T1/040	0.75	@#	0.047	a) #			
Fluoranthene	<0.017 ma/ka	TM218	2.75	@#	<0.017	a #			
Pyrene	<0.015	TM218	2 30	W#	<0.015	<i>y</i> #			
i yiciic	<0.013 ma/ka	11012-10	2.55	@#	-0.010	n#			
Benz(a)anthracene	<0.014	TM218	1 78		<0.014	<u> </u>			
2012(0)010	mg/kg			@#	0.011	a, #			
Chrysene	<0.01 mg/kg	TM218	1.29		<0.01				
				@#		@#			
Benzo(b)fluoranthene	<0.015	TM218	2.52		<0.015				
	mg/kg			@#	(@#			
Benzo(k)fluoranthene	<0.014	TM218	0.948	o "	<0.014				
	mg/kg			@#	(g #			
Benzo(a)pyrene	<0.015	TM218	2	~ "	<0.015				
	mg/kg			@#	(<u>a)</u> #			
Indeno(1,2,3-cd)pyrene	<0.018 "	TM218	1.16	с "	<0.018				
	mg/kg	THOUS	A	@#		uj #			
Dibenzo(a,h)anthracene	<0.023	TM218	0.354	с "	<0.023				
	mg/kg			@#		ມ #			
Benzo(g,h,i)perylene	< 0.024	IM218	1.32	~ "	<0.024				
	mg/kg	THORE	47.0	@#	.0.440	ற் ச			
PAH, Total Detected USEPA 16	<0.118 ma/ka	1M218	17.8		<0.118				
	iiig/kg								
								ļ	
		1 1						1	1

CERTIFICATE OF ANALYSIS

SDG:		170603-8	Clien	t Reference:	Edith Neville	Report Number:	412932
ALS Location:		Edith Neville	Orde	r Number:	70034223-S01	Superseded Report:	
Semi Volatile Organic C	ompound	ds					
Results Legond # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand. check the afficiency of the method	ard to	Customer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time	SS2 0.50 - 0.50 Soil/Solid (S) 03/05/2017	SS4 0.50 - 0.50 Soii/Solid (S) 03/05/2017			
results of individual compounds w samples aren't corrected for the re	vithin ecovery	Date Received SDG Ref	03/06/2017 170603-8	03/06/2017 170603-8			
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	15625365 ESSS	15625381 ESSS			
Component	LOD/Units	Method	-0.1	<0.1			
r nenoi	<0.1 mg/kg	J 1101137	~0.1	~0.1			
Pentachlorophenol	<0.1 mg/kg	3 TM157	<0.1	<0.1			
n-Nitroso-n-dipropylamine	<0.1 mg/kg	TM157	<0.1	<0.1			
	<0.1 mg/kg	TM157	<0.1	<0.1			
	<0.1 mg/kg	TM157	<0.1	<0.1			
	<0.1 mg/kg	TM157	<0.1	<0.1			
	<0.1 mg/kg	TM157	<0.1	<0.1			
Hexachiorobutadiene	<0.1 mg/kg	J IM157	<0.1	<0.1			
Hexachlorobenzene	<0.1 mg/kg) TM157	<0.1	<0.1			
n-Dioctyl phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
Dimethyl phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
Diethyl phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
n-Dibutyl phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
Dibenzofuran	<0.1 mg/kg	g TM157	0.256	<0.1			
Carbazole	<0.1 mg/kg	g TM157	0.695	<0.1			
Butylbenzyl phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
bis(2-Ethylhexyl) phthalate	<0.1 mg/kg	g TM157	<0.1	<0.1			
bis(2-Chloroethoxy)methane	<0.1 mg/kg	g TM157	<0.1	<0.1			
bis(2-Chloroethyl)ether	<0.1 mg/kg	g TM157	<0.1	<0.1			
Azobenzene	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Nitrophenol	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Nitroaniline	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Methylphenol	<0.1 mg/kg	TM157	<0.1	<0.1			
4-Chlorophenylphenylether	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Chloroaniline	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Chloro-3-methylphenol	<0.1 mg/kg	g TM157	<0.1	<0.1			
4-Bromophenylphenylether	<0.1 mg/kg	g TM157	<0.1	<0.1			
3-Nitroaniline	<0.1 mg/kg	g TM157	<0.1	<0.1			
2-Nitrophenol	<0.1 mg/kg	7 TM157	<0.1	<0.1			
2-Nitroaniline	<0.1 mg/kg	TM157	<0.1	<0.1			
2-Methylphenol	<0.1 mg/kg	7 TM157	<0.1	<0.1			
1,2,4-Trichlorobenzene	<0.1 mg/kg	7 TM157	<0.1	<0.1			
2-Chlorophenol	<0.1 mg/kg	7 TM157	<0.1	<0.1			

12:41:54 19/06/2017

SDG: Location	:	170603-8 Edith Neville	Clien Orde	nt Reference: er Number:	Edith Neville 70034223-S01	Report Number: Superseded Report:	412932	
Semi Volatile Organic	Compound	ds				· · ·		
Results Legend # ISO17025 accredited.		Customer Sample Ref.	SS2	SS4				
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.50	0.50 - 0.50				
tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate star	ndard to	Sample Type Date Sampled Sample Time	Soil/Solid (S) 03/05/2017	Soil/Solid (S) 03/05/2017				
check the efficiency of the meth results of individual compounds	od. The s within	Date Received SDG Ref	03/06/2017 170603-8	03/06/2017 170603-8				
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	Lab Sample No.(s) AGS Reference	15625365 ESSS	15625381 ESSS				
2 6-Dinitrotoluene	LOD/Units	s Method g TM157	<0.1	<0.1				
2.4 Dinitrotokono	<0.1 mg///	~ TM167	<0.1	-0.1				
2,4-Dinitrotoluene	<0.1 mg/kį	g 111157	<0.1	<0.1				
2,4-Dimethylphenol	<0.1 mg/kg	g TM157	<0.1	<0.1				
2,4-Dichlorophenol	<0.1 mg/kg	g TM157	<0.1	<0.1				
2,4,6-Trichlorophenol	<0.1 mg/kg	g TM157	<0.1	<0.1				
2,4,5-Trichlorophenol	<0.1 mg/k	g TM157	<0.1	<0.1				
1,4-Dichlorobenzene	<0.1 mg/kg	g TM157	<0.1	<0.1				
1,3-Dichlorobenzene	<0.1 mg/kg	g TM157	<0.1	<0.1		+ +		
1,2-Dichlorobenzene	<0.1 mg/kg	g TM157	<0.1	<0.1				
2-Chloronaphthalene	<0.1 mg/kg	g TM157	<0.1	<0.1				
2-Methylnaphthalene	<0.1 mg/kg	g TM157	0.134	<0.1				
Acenaphthylene	<0.1 mg/kg	g TM157	<0.1	<0.1				
Acenaphthene	<0.1 mg/kg	g TM157	0.232	<0.1				
Anthracene	<0.1 mg/kg	g TM157	1.79	0.121				
Benzo(a)anthracene	<0.1 ma/ki	a TM157	3 34	0.583				
Benzo(b)fluoranthene	<0.1 mg/k	g TM157	2 71	0.484				
Ponzo(k)fluoranthono	<0.1 mg/kg	g TM157	2.71	0.420				
	<0.1 mg/kg	g 1101137	2.20	0.429		_		
Benzo(a)pyrene	<0.1 mg/k	g 1M157	2.73	0.594				
Benzo(g,h,i)perylene	<0.1 mg/kg	g TM157	1.95	0.385				
Chrysene	<0.1 mg/kg	g TM157	3.36	0.528				
Fluoranthene	<0.1 mg/kg	g TM157	8.24	1.13				
Fluorene	<0.1 mg/kg	g TM157	0.464	<0.1				
Indeno(1,2,3-cd)pyrene	<0.1 mg/k	g TM157	2.56	0.451				
Phenanthrene	<0.1 mg/kg	g TM157	5.1	0.418				
Pyrene	<0.1 mg/kg	g TM157	6.67	1.06				
Naphthalene	<0.1 mg/k	g TM157	0.134	<0.1				
Dibenzo(a,h)anthracene	<0.1 mg/kg	g TM157	0.403	<0.1		+ +		
Bis(2-chloroisopropyl) ether	<0.1 mg/kg	g TM157	<0.1	<0.1		+ +		
	+							

CERTIFICATE OF ANALYSIS

-

Validated

......

Location:	E	dith Neville	Orde	r Number:	E0 70(034223-S01		Superseded R	ber: 412932	
Results Legend	Cu	stomer Sample Ref.	SS1	SS1		SS2		SS2	SS3	SS4
# ISO17025 accredited. M mCERTS accredited.						002		002		001
aq Aqueous / settled sample.		Depth (m)	0.40 - 0.40	1.50 - 1.50		0.50 - 0.50		1.20 - 1.20	0.50 - 0.50	0.50 - 0.50
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)		Soil/Solid (S)		Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
* Subcontracted test. ** % recovery of the surrogate stand	dard to	Date Sampled Sample Time	03/05/2017	03/05/2017		03/05/2017		03/05/2017	03/05/2017	03/05/2017
check the efficiency of the metho results of individual compounds	d. The within	Date Received	03/06/2017	03/06/2017		03/06/2017		03/06/2017	03/06/2017	03/06/2017
samples aren't corrected for the r	ecovery	SDG Ref	170603-8 15625353	170603-8 15625360		170603-8 15625365		170603-8 15625370	170603-8 15625376	170603-8 15625381
1-5&+§@ Sample deviation (see appendix)		AGS Reference	ESSS	ESSS		ESSS		ESSS	ESSS	ESSS
Component	LOD/Units	Method								
GRO Surrogate % recovery**	%	TM089	49	47	~	40	~	27	46	81
	-0.044	TM000	@ +0.044	-0.014	æ	0.005	æ	<u>@</u>	0.449	0.044
GRU TUT (Moisture Corrected)	<0.044 ma/ka	110089	<0.044	<0.044	@#	0.205	@#	<0.044	0.148	<0.044
Mothyl tortiany butyl othor	<0.005	TM080	<u>@</u> #		<u>@</u> #	<0.005	<u>w</u> #	<u>@</u> #	@ #	ري 0.00 د0.005
(MTBE)	ma/ka	110000				40.000	@#			-0.000 @#
Benzene	<0.01 ma/ka	TM089				0.0659				<0.01
							@,#			@.#
Toluene	<0.002	TM089				0.00976	<u> </u>			<0.002
	mg/kg						@#			@,#
Ethylbenzene	< 0.003	TM089				< 0.003				< 0.003
	mg/kg						@#			@#
m,p-Xylene	<0.006	TM089				0.00732				<0.006
	mg/kg						@#			@#
o-Xylene	<0.003	TM089				<0.003				<0.003
	mg/kg						@#			@#
sum of detected mpo xylene by	<0.009	TM089				<0.009				<0.009
GC	mg/kg						@			@
sum of detected BTEX by GC	<0.024	TM089				0.0757				<0.024
	mg/kg						@			@
Aliphatics >C5-C6	<0.01 mg/kg	TM089	<0.01	<0.01		<0.01		<0.01	<0.01	<0.01
			@		@		@	@	@	@
Aliphatics >C6-C8	<0.01 mg/kg	TM089	<0.01	<0.01	_	0.0195	_	<0.01	0.0151	<0.01
			@		@		@	@	@	@
Aliphatics >C8-C10	<0.01 mg/kg	TM089	<0.01	<0.01	~	0.0268	~	<0.01	0.0186	<0.01
	0.01 //	T1 40 00	@	0.01	@	0.0000	0	@	<u>@</u>	@
Aliphatics >C10-C12	<0.01 mg/kg	TM089	<0.01	<0.01	0	0.0268	0	<0.01	0.0476	<0.01
	10.1	TN4470	@	0.010	@	0.420	<u>a</u>		<u>@</u>	
Aliphalics >012-010	<0.1 mg/kg	111173	1.92	0.013		0.430		<0.1	2.00	4.27
Aliphatics >C16-C21	<0.1 mg/kg	TM173	21.6	64		0.18		<0.1	11 1	13
	<0.1 mg/kg	1111175	21.0	0.4		5.10		-0.1	11.1	15
Aliphatics >C21-C35	<0.1 ma/ka	TM173	120	11.6		34.3		3.37	82.9	20
	io. r ingrig	initio	120	11.0		01.0		0.01	02.0	20
Aliphatics >C35-C44	<0.1 ma/ka	TM173	93.6	1.16		15.1		<0.1	88.7	9.34
F						-				
Total Aliphatics >C12-C44	<0.1 mg/kg	TM173	237	20		59		3.37	185	46.6
Aromatics >EC5-EC7	<0.01 mg/kg	TM089	<0.01	<0.01		0.0659		<0.01	0.0174	<0.01
			@		@		@	@	@	@
Aromatics >EC7-EC8	<0.01 mg/kg	TM089	<0.01	<0.01		<0.01		<0.01	<0.01	<0.01
			@		@		@	@	@	@
Aromatics >EC8-EC10	<0.01 mg/kg	TM089	<0.01	<0.01		0.0293		<0.01	0.0128	<0.01
			@		@		@	@	@	@
Aromatics >EC10-EC12	<0.01 mg/kg	TM089	<0.01	<0.01		0.0171		<0.01	0.0313	<0.01
			@		@		@	@	@	@
Aromatics >EC12-EC16	<0.1 mg/kg	TM173	<0.1	0.511		2.36		0.376	14.5	1.61
Aromatics >EC16-EC21	<0.1 mg/kg	TM173	9.14	0.662		51.5		0.126	166	17
Aromatics >EC21-EC35	<0.1 mg/kg	TM173	148	15.5		131		15.1	382	52.7
A	.0.4 //	T1470	470	0.01		54.7		7.00	000	00.7
Aromatics >EU35-EU44	<0.1 mg/kg	TM173	1/8	8.91		54./		7.62	206	38.1
Aromatics >EC40 EC44	<0.1 mailie	TM170	0C E	0.74		10 E		0.06	01.1	16.6
ATOMALICS PEC40-EC44	SULI mg/kg	111173	C.00	2./1		19.5		2.00	ŏ1.1	0.01
Total Aromatica >EC12 EC14	<0.1 mailie	TM170	20E	0E C		040		<u></u>	760	110
rotal Alomatics 2E012-E044	So. i ing/kg	111173	333	25.0		240		۷۵.۷	/00	110
Total Alinhatics & Aromatics	<0.1 ma/ka	TM173	573	45.6		200		26.6	953	157
>C5-C44	-0.1 mg/kg	1111173	515	+0.0		233		20.0	000	107
Aromatics >EC16-EC35	<0.1 ma/ka	TM173	158	16.2		183		15.2	547	69.7
2010 2000	2ignig					100			· · · ·	

CERTIFICATE OF ANALYSIS

	SDG:		170603-8	Clier	nt Reference:	Ed	ith Neville	Report Numb	er: 41293	32
(ALS)	Location:	E	Edith Neville	Orde	er Number:	700	034223-S01	Superseded Re	port:	
TPH CWG (S)			1						1	
# ISO17025 accre	Its Legend dited.	Ci	ustomer Sample Ref.	SS5	SS5					
aq Aqueous / settle	dited. ed sample.		Depth (m)	0.50 - 0.50	1 50 - 1 50					
tot.unfilt Total / unfiltered	red sample. I sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)					
* Subcontracted t ** % recovery of th	test. he surrogate standa	ird to	Date Sampled Sample Time	03/05/2017	03/05/2017					
check the efficie results of indivi	ency of the method. dual compounds wi	. The ithin	Date Received	03/06/2017	03/06/2017					
samples aren't o (F) Trigger breach o	corrected for the rec confirmed	covery	Lab Sample No.(s)	15625386	15625393					
1-5&+§@ Sample deviatio	on (see appendix)		AGS Reference	ESSS	ES					
GRO Surrogate % rec	coverv**	%	TM089	73	70					
	,			0		@				
GRO TOT (Moisture C	Corrected)	<0.044	TM089	<0.044	<0.044					
		mg/kg	TM000	@#	10.01	@#				
Aliphalics >C5-C6		<0.01 mg/kg	1 10009	<0.01	<0.01	0				
Aliphatics >C6-C8		<0.01 mg/kg	TM089	<0.01	< 0.01	œ				
		0.0		@		@				
Aliphatics >C8-C10		<0.01 mg/kg	TM089	<0.01	<0.01					
				@		@				
Alipnatics >C10-C12		<0.01 mg/kg	1 M089	<0.01	<0.01	0				
Aliphatics >C12-C16		<0.1 ma/ka	TM173	2.78	3.45	W				
,										
Aliphatics >C16-C21		<0.1 mg/kg	TM173	1.93	0.467					
Aliphatics >C21-C35		<u.1 kg<="" mg="" td=""><td>IM173</td><td>20.8</td><td>0.38</td><td></td><td></td><td></td><td></td><td></td></u.1>	IM173	20.8	0.38					
Aliphatics >C35-C44		<0.1 ma/ka	TM173	5.43	<0.1					
		o		0.10						
Total Aliphatics >C12-	-C44	<0.1 mg/kg	TM173	31	4.3					
Aromatics >EC5-EC7		<0.01 mg/kg	TM089	<0.01	<0.01	0				
Aromatics > FC7-FC8		<0.01 ma/ka	TM089	<0.01	<0.01	w				
		olo i nignig		@	0.01	@				
Aromatics >EC8-EC1	0	<0.01 mg/kg	TM089	<0.01	<0.01					
				@		@				
Aromatics >EC10-EC	12	<0.01 mg/kg	TM089	<0.01	<0.01	0				
Aromatics >EC12-EC	16	<0.1 ma/ka	TM173	2.03	2.43	<u>a</u>				
	10	-o. i mgrig	111170	2.00	2.40					
Aromatics >EC16-EC	21	<0.1 mg/kg	TM173	11.1	1.23					
Aromatics >EC21-EC3	35	<0.1 mg/kg	TM173	54.2	2.26					
Aromatics >EC35_EC	11	<0.1 ma/ka	TM173	24.4	0.834					
		·v. i iliy/ily	- INITIO	27.7	0.004					
Aromatics >EC40-EC4	44	<0.1 mg/kg	TM173	9.17	<0.1					
I otal Aromatics >EC1	2-EC44	<0.1 mg/kg	I'M173	91.8	6.75					
Total Aliphatics & Aro	matics	<0.1 ma/ka	TM173	123	11					
>C5-C44										
Aromatics >EC16-EC	35	<0.1 mg/kg	TM173	65.4	3.49					

Validated

_

SDG: Location:	ŕ	170603-8 Edith Neville	Clie Orde	nt Reference: er Number:	Edith Neville 70034223-S01	Report Numb Superseded Re	oer: 412932 eport:	
							-	
Results Legend	Ci	ustomer Sample Ref.	SS1	SS1	SS2	SS2	SS3	SS4
# ISO17025 accredited. M mCERTS accredited			001		002	002		
aq Aqueous / settled sample.		Depth (m)	0 40 - 0 40	1 50 - 1 50	0.50 - 0.50	1 20 - 1 20	0.50 - 0.50	0.50 - 0.50
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
* Subcontracted test.		Date Sampled	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017
check the efficiency of the method	ard to 1. The	Sample Time	03/06/2017	03/06/2017	03/06/2017	03/06/2017	03/06/2017	03/06/2017
results of individual compounds v samples aren't corrected for the re	vithin	SDG Ref	170603-8	170603-8	170603-8	170603-8	170603-8	170603-8
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	15625353	15625360	15625365	15625370	15625376	15625381
1-5&+§@ Sample deviation (see appendix)		AGS Reference	ESSS	ESSS	ESSS	ESSS	ESSS	ESSS
Component	LOD/Units	Method						
Dibromofluoromethane**	%	TM116			103			109
Toluene-d8**	%	TM116			100			103
4-Bromofluorobenzene**	%	TM116			99.6	2		@ 89.4
Dichlorodifluoromethane	<0.006	TM116			(2		@ <0.06
	mg/kg				@	#		@#
Chioromethane	<0.007 mg/kg	TM116			<0.07	#		<0.07
Vinyl Chloride	<0.006 mg/kg	TM116			<0.06	#		<0.06 @.#
Bromomethane	<0.01 mg/kg	TM116			<0.1	#		<0.1
Chloroethane	<0.01 mg/kg	TM116			<0.1	π 		w ##
Trichlorofluorormethane	<0.006	TM116			@ <0.06	#		@# <0.06
1.1-Dichloroethene	mg/kg <0.01 mg/kg	TM116			@ <0.1	#		@# <01
		Th// 10			@	#		@#
Carbon Disulphide	<0.007 mg/kg	IM116			<0.07	#		<0.07 @#
Dichloromethane	<0.01 mg/kg	TM116			<0.1	#		<0.1 @#
Methyl Tertiary Butyl Ether	<0.01 mg/kg	TM116	<0.1	<0.1	<0.1	<0.1 # @#	<0.1 @#	<0.1
trans-1,2-Dichloroethene	<0.01 mg/kg	TM116			<0.1	#		<0.1
1,1-Dichloroethane	<0.008	TM116			<0.08	<i>π</i>		<0.08
cis-1,2-Dichloroethene	<0.006	TM116			<0.06	#		@# <0.06
2,2-Dichloropropane	mg/kg <0.01 mg/kg	TM116			<0.1	#		@# <0.1
Bromochloromethane	<0.01 mg/kg	TM116			<0.1	2		<u>@</u> <0.1
Chloroform	<0.008	TM116			@ <0.08	#		@#
	mg/kg				@	#		<0.00 @#
1,1,1-I richloroethane	<0.007 mg/kg	TM116			<0.07	#		<0.07 @#
1,1-Dichloropropene	<0.01 mg/kg	TM116			<0.1	#		<0.1 @.#
Carbontetrachloride	<0.01 mg/kg	TM116			<0.1	#		<0.1 @#
1,2-Dichloroethane	<0.005	TM116			<0.05	и		<0.05
Benzene	mg/kg <0.009	TM116	<0.09	<0.09	<0.09	# <0.09	<0.09	@# <0.09
Trichloroethene	mg/kg <0.009	TM116	@#	· (0	0 # @ <0.09	# @#	@#	@#
12 Disbloron	mg/kg	TM440			@	#		@#
r,z-Dichloropropane	∨.∪ i mg/кg	111110			×u.1 @	#		×۰.۱ @#
Dibromomethane	<0.009 mg/kg	TM116			<0.09	#		<0.09 @#
Bromodichloromethane	<0.007 mg/kq	TM116			<0.07	#		<0.07 @#
cis-1,3-Dichloropropene	<0.01 mg/kg	TM116			<0.1	#		<0.1
Toluene	<0.007	TM116	<0.07	<0.07	<0.07	π <0.07	<0.07	# <0.07
trans-1,3-Dichloropropene	mg/kg <0.01 mg/kg	TM116	@#	· (0	9,# @ <0.1	# @#	@#	@# <0.1
1,1,2-Trichloroethane	<0.01 mg/ka	TM116			<0.1	2		@ <0.1
13 Dichloroproses	<0.007	TM146			@	#		@#
г,о-ыспюторторапе	<0.007 mg/kg	111110			<0.07 @	#		×0.07 @,#

12:41:54 19/06/2017

CERTIFICATE OF ANALYSIS

SDG:		170603-8 Edith Neville	Clien	t Reference:	Edith Neville	Report Numbe	er: 412932	
			Orde	i Nullibel.	10034223-301			
Results Legend	C	ustomer Sample Ref.	SS1	SS1	SS2	SS2	SS3	SS4
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.40 - 0.40 Soil/Solid (S)	1.50 - 1.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	1.20 - 1.20 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)
* Subcontracted test. ** % recovery of the surrogate standar check the efficiency of the method	ard to	Date Sampled Sample Time	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017	03/05/2017
results of individual compounds w samples aren't corrected for the re	ithin covery	Date Received SDG Ref	03/06/2017 170603-8	03/06/2017 170603-8	03/06/2017 170603-8	03/06/2017 170603-8	03/06/2017 170603-8	03/06/2017 170603-8
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	ESSS	15625360 ESSS	ESSS	ESSS	ESSS	ESSS
Component Tetrachloroethene	LOD/Units <0.005	Method TM116			<0.05			<0.05
Dibramashlaramathana	mg/kg	TM116			@	#		@#
Dibromocnioromethane	<0.01 mg/kg	TIVITIO			<0.1	#		<0.1
1,2-Dibromoethane	<0.01 mg/kg	TM116			<0.1	#		<0.1 @ #
Chlorobenzene	<0.005 mg/kg	TM116			<0.05	#		<0.05 @ #
1,1,1,2-Tetrachloroethane	<0.01 mg/kg	TM116			<0.1	#		<0.1 @#
Ethylbenzene	<0.004 mg/kg	TM116	<0.04 @ #	<0.04	<0.04	<0.04	<0.04	<0.04 @#
p/m-Xylene	<0.01 mg/kg	TM116	<0.1	<0.1	<0.1 2# @	<0.1	<0.1	<0.1
o-Xylene	<0.01 mg/kg	TM116	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Styrene	<0.01 mg/kg	TM116			<0.1	#		<0.1
Bromoform	<0.01 mg/kg	TM116			<0.1	#		<0.1
Isopropylbenzene	<0.005 ma/ka	TM116			<0.05	#		<0.05
1,1,2,2-Tetrachloroethane	<0.01 mg/kg	TM116			<0.1	#		<0.1
1,2,3-Trichloropropane	<0.016	TM116			<0.16	#		<0.16
Bromobenzene	<0.01 mg/kg	TM116			<0.1	#		<0.1
Propylbenzene	<0.01 mg/kg	TM116			<0.1	#		<0.1 @#
2-Chlorotoluene	<0.009 ma/ka	TM116			<0.09	#		<0.09
1,3,5-Trimethylbenzene	<0.008 ma/ka	TM116			<0.08	#		<0.08
4-Chlorotoluene	<0.01 mg/kg	TM116			<0.1	#		<0.1
tert-Butylbenzene	<0.014 ma/ka	TM116			<0.14	#		<0.14 @ #
1,2,4-Trimethylbenzene	<0.009 ma/ka	TM116			<0.09	#		<0.09
sec-Butylbenzene	<0.01 mg/kg	TM116			<0.1)		<0.1
4-Isopropyltoluene	<0.01 mg/kg	TM116			<0.1	#		<0.1
1,3-Dichlorobenzene	<0.008 mg/kg	TM116			<0.08	#		<0.08
1,4-Dichlorobenzene	<0.005 ma/ka	TM116			<0.05	#		<0.05
n-Butylbenzene	<0.011 mg/kg	TM116			<0.11)		<0.11
1,2-Dichlorobenzene	<0.01 mg/kg	TM116			<0.1	#		<0.1 @#
1,2-Dibromo-3-chloropropane	<0.014 mg/ka	TM116			<0.14	#		<0.14 @ #
Tert-amyl methyl ether	<0.01 mg/kg	TM116	<0.1 @#	<0.1	<pre></pre>	<0.1 # @#	<0.1	<0.1 @#
1,2,4-Trichlorobenzene	<0.02 mg/kg	TM116			<0.2		6	<0.2
Hexachlorobutadiene	<0.02 mg/kg	TM116			<0.2	2		<0.2 Ø
Naphthalene	<0.013 mg/kg	TM116			<0.13	#		<0.13 @.#
1,2,3-Trichlorobenzene	<0.02 mg/kg	TM116			<0.2	#		<0.2

Validated

_

SDG:	1	70603-8	Clien	t Reference:	Edith Neville	Report Numbe	er: 412932	
(ALS) Location	n: E	Edith Neville	Orde	r Number:	70034223-S01	Superseded Re	port:	
VOC MS (S)								
Results Legend	Cu	istomer Sample Ref.	SS5	SS5				
M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sampla Tuna	0.50 - 0.50	1.50 - 1.50				
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/05/2017	03/05/2017				
** % recovery of the surrogate st check the efficiency of the met	andard to thod. The	Sample Time						
results of individual compound	ds within	SDG Ref	170603-8	170603-8				
(F) Trigger breach confirmed	le recovery	Lab Sample No.(s)	15625386	15625393				
1-5&+§@ Sample deviation (see appendi	I OD/Units	AGS Reference Method	E555	ES				
Methyl Tertiary Butyl Ether	<0.01 mg/kg	TM116	<0.1	<0.1	o "			
Benzene	<0.009	TM116	<0.09	<0.09	@#			
Tabaaa	mg/kg	TN440	@#	-0.07	@#	_		
louene	<0.007 mg/kg	TMITO	<0.07 @#	<0.07	@#			
Ethylbenzene	<0.004	TM116	<0.04	<0.04	@#			
p/m-Xylene	<0.01 mg/kg	TM116	<0.1	<0.1	<u>w</u> #			
o-Xvlene	<0.01 ma/ka	TM116	@# <0.1	<0.1	@#			
	-0.01 mg/kg	- INTIO	@#	-v.1	@#			
Tert-amyl methyl ether	<0.01 mg/kg	TM116	<0.1 @#	<0.1	@#			
			<u>0</u> "		-			

412932

170603-8 Edith Neville Edith Neville 70034223-S01 SDG: Client Reference: Order Number: Report Number: Superseded Report: Location:

Asbestos Identification - Solid Samples

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS1 ES SS 0.40 - 0.40 SOLID 03/05/2017 00:00:00 03/06/2017 13:10:55 170603-8 15625353 TM048	07/06/17	Kevin Bowron	Loose fibres in soil	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS1 ES SS 1.50 - 1.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:02:25 170603-8 15625360 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS2 ES SS 0.50 0.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:38:03 170603-8 15625365 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	SS2 ES SS 1.20 - 1.20 SOLID 03/05/2017 00:00:00 03/06/2017 13:36:46 170603-8 15625370 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS3 ES SS 0.50 - 0.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:14:19 170603-8 15625376 TM048	07/06/17	Kevin Bowron	Loose fibres in soil	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS4 ES SS 0.50 - 0.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:12:35 170603-8 15625381 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

ALS	SDG: Location:	170603 Edith N	8-8 leville	Clie Orde	nt Reference er Number:	e: Edith N 700342	eville 23-S01	Rep Supe	ort Number: erseded Repor	4129 t:	32
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS5 ES SS 0.50 - 0.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:15:41 170603-8 15625386 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS5 ES 1.50 - 1.50 SOLID 03/05/2017 00:00:00 03/06/2017 13:00:23 170603-8 15625393 TM048	07/06/17	Kevin Bowron	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Asbestos Quantification - Full

		Additional Asbestos Components (Using TM048)	Analysts Comments	Asbestos Quantification - Gravimetric - %	Asbestos Quantification - PCOM Evaluation - %	Asbestos Quantification - Total - %
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS1 ES SS 0.40 - 0.40 SOLID 03/05/2017 00:00:00 09/06/2017 09:12:03 170603-8 15625353 TM304	None (#)	N/C	<0.001 (#)	<0.001 (#)	<0.001 (#)
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SS3 ES SS 0.50 - 0.50 SOLID 03/05/2017 00:00:00 09/06/2017 09:10:04 170603-8 15625376 TM304	None (#)	N/C	<0.001 (#)	<0.001 (#)	<0.001 (#)

		CERTIFICA	TE OF ANAL	YSIS		Va	alidated
SDG: Location:	170603-8 Edith Neville	Client Refer Order Numb	ence: Edith Nevi per: 70034223-	lle Re -S01 Su	eport Number:	412932	
	CEN	10:1 SINGLE	STAGE LEAG	CHATE TEST			
NAC ANALYTICAL RESI	ULTS					REF : BS	EN 12457/
Client Reference			Site Location		Edith	Neville	
Mass Sample taken (kg)	0.110		Natural Moistur	e Content (%)	22		
Mass of dry sample (kg)	0.090		Drv Matter Cont	tent (%)	82		
Particle Size <4mm	>95%						
Case					Land	fill Waste Acce	ptance
SDG	170603-8					Criteria Limits	1
Lab Sample Number(s)	15625365						
Sampled Date	03-May-2017					Stable	
Customer Semple Bof	60 May 20 M				Inert Waste	Non-reactive	Hazardous
	0.50 0.50				Landfill	in Non-	Waste Landfill
Depth (m)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result		I				
Total Organic Carbon (%)	7.32				3	5	6
Loss on Ignition (%)	5.15				-	-	10
Sum of BTEX (mg/kg)	0.0757				6	-	-
Sum of 7 PCBs (mg/kg)	<0.021				500	-	-
PAH Sum of 17 (mg/kg)	112				100	-	-
oH (pH Units)	8.22				-	>6	-
ANC to pH 6 (mol/kg)	0.0993				-	-	-
ANC to pH 4 (mol/kg)	0.621		1		-	-	-
Eluate Analysis	Eluate Analysis C2 Conc ⁿ in 10:1 eluate (mg/l) A2 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg				
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.00404	< 0.0005	0.0404	<0.005	0.5	2	25
Barium	0.0458	<0.0002	0.458	<0.002	20	100	300
	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	< 0.001	<0.001	<0.01	<0.01	0.5	10	70
	0.0043	<0.0003	0.043	< 0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Nickel	0.0212	<0.0005	0.212	<0.005	0.5	10	30
	0.000627	<0.0004	0.00627	<0.004	0.4	10	40
	0.00161	<0.0002	0.0161	<0.002	0.5	10	50
Antimony	0.0193	<0.0001	0.193	<0.001	0.06	0.7	5
Zino	0.00187	<0.0005	0.0187	<0.005	0.1	0.5	200
	0.00668	<0.001	0.0008	<0.01	4	50	200
Elucrido	4.4	<2	44 5.67	<20	10	15000	23000
	0.007	<0.5	5.07	<3	1000	20000	50000
	413	<2	4130	<20	4000	60000	10000
	<0.016	<0.016	<0.16	<0.16	4000	00000	100000
Dissolved Organic Carbon	<3	<0.010	<0.10	<0.10	500	800	1000
Leach Test Information							
Date Prepared	07-Jun-2017						
OH (pH Units)	8.34						
Temperature (°C)	10.00						
	19.00						

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

0.880

19/06/2017 12:42:03

Volume Leachant (Litres)

		CERTIFICA	TE OF ANAL	YSIS		V	alidated
SDG: Location:	170603-8 Edith Neville	Client Refer Order Numb	ence: Edith Nev	ille Re -S01 Su	port Number: perseded Report:	412932	
	CEN	10:1 SINGLE	STAGE LEA	CHATE TEST	· · · ·		
WAC ANALYTICAL RESU	ULTS					REF : BS	EN 12457/
Client Reference			Site Location		Edith	Neville	
Mass Sample taken (kg)	0.099		Natural Moistu	re Content (%)	10.3		
Mass of dry sample (kg)	0.090		Drv Matter Con	tent (%)	90.7		
Particle Size <4mm	>95%						
Case					Land	fill Waste Acce	ptance
SDG	170603-8					Criteria Limits	i
Lab Sample Number(s)	15625381						
Sampled Date	03-May-2017					Stable	
Customor Sample Pof	SS4 ESSS				Inert Waste	Non-reactive Hazardous Waste	Hazardous
	0.50 0.50				Landfill	in Non-	Waste Landfill
Depth (m)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result		I				
Total Organic Carbon (%)	1.42				3	5	6
Loss on Ignition (%)	3.26				-	-	10
Sum of BTEX (mg/kg)	<0.024				6	•	-
Mineral Oil (mg/kg)	35.5				500	-	-
PAH Sum of 17 (mg/kg)	11.7				100	-	-
pH (pH Units)	9				-	>6	-
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)	0.0543				-	-	-
				81 I I <i>Z</i> (I)			
Eluate Analysis		0:1 eluate (mg/l)	A2 10:1 con	c" leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		iching test i 10 l/kg
Arsenic	0.0226	< 0.0005	0.226	< 0.005	0.5	2	25
Barium	0.00707	< 0.0002	0.0707	< 0.002	20	100	300
Cadmium	<0.0008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	< 0.001	<0.001	< 0.01	< 0.01	0.5	10	70
Copper	0.0186	< 0.0003	0.186	< 0.003	2	50	100
Mercury Dissolved (CVAF)	0.0000944	< 0.00001	0.000944	< 0.0001	0.01	0.2	2
Molybdenum	0.00567	< 0.0005	0.0567	< 0.005	0.5	10	30
Nickel	0.00183	<0.0004	0.0183	< 0.004	0.4	10	40
Lead	0.000971	< 0.0002	0.00971	< 0.002	0.5	10	50
Antimony	0.00395	<0.0001	0.0395	<0.001	0.06	0.7	5
Selenium	0.00197	<0.0005	0.0197	<0.005	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.663	<0.5	6.63	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	88.6	<5	886	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	8	<3	80	<30	500	800	1000
Leach Test Information		I		I			
Date Prepared	07-Jun-2017						
pH (pH Units)	9.80						
Temperature (°C)	107.00						
	19.80						

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

0.891

19/06/2017 12:42:03

Volume Leachant (Litres)

SDG:

Location:

Edith Neville

CERTIFICATE OF ANALYSIS
Client Reference: Edith Neville
Order Number: 70034223-S01

Report Number: Superseded Report: Validated

412932

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
ASB_PREP				
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM157	HP 6890 Gas Chromatograph (GC) system and HP 5973 Mass Selective Detector (MSD).	Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM218	Determination of PAH by GCMS Microwave extraction	The determination of PAH in soil samples by microwave extraction and GC-MS		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		
TM304	HSE Contract research Report no 83/1996	Asbestos Quantification in Soil: Fibres identified by morphology only		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

 SDG:
 170603-8
 Client Reference:
 Edith Neville
 Report Number:

 Location:
 Edith Neville
 Order Number:
 70034223-S01
 Superseded Report:

412932

Test	Comp	letion	Dates
------	------	--------	-------

			• - •	P		-		
Lab Sample No(s)	15625353	15625360	15625365	15625370	15625376	15625381	15625386	15625393
Customer Sample Ref	SS1	SS1	SS2	SS2	SS3	SS4	SS5	SS5
AGS Ref.	ESSS	ESSS	ESSS	ESSS	ESSS	ESSS	ESSS	ES
Depth	0.40 - 0.40	1.50 - 1.50	0.50 - 0.50	1.20 - 1.20	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	1.50 - 1.50
Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)					
	301/3011d (3)	3011/3011d (3)	00. km 2017	3011/30110 (3)	3011/30110 (3)	00. km 2017	301/30110 (3)	301/3011d (3)
			12 Jun 2017			12 Jun 2017		
Achestes ID is Solid Samples	07 Jun 2017	07 Jun 2017	07 Jun 2017					
Asbestos Duantification Eull	10 Jun 2017	07-5011-2017	07-5011-2017	07-5011-2017	10 Jun 2017	07-5011-2017	07-5011-2017	07-5011-2017
Aspesios Quantification - Full	08- Jun-2017	08- lup-2017	08- lun-2017					
CEN 10:1 Leachate (1 Stage)	00-0011-2017	00-0011-2017	07- Jun-2017	00-0011-2017	00-0011-2017	07- Jun-2017	00-0011-2017	00-001-2017
CEN Readings			08-Jun-2017			07-001-2017 08-1un-2017		
Cvanide Comp/Free/Total/Thiocvanate	12- lun-2017	08-Jun-2017	08-Jun-2017	08- Jun-2017	08- Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017
Dissolved Metals by ICP-MS	12 0011 2011	00 0011 2011	13-Jun-2017	00 0011 2011	00 0011 2011	13-Jun-2017	00 0011 2011	00 001 2011
Dissolved Organic/Inorganic Carbon			09-Jun-2017			09-Jun-2017		
EPH CWG (Aliphatic) GC (S)	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017
EPH CWG (Aromatic) GC (S)	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017
Fluoride			12-Jun-2017			12-Jun-2017		
GRO by GC-FID (S)	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017
Hexavalent Chromium (s)	08-Jun-2017	09-Jun-2017	09-Jun-2017	09-Jun-2017	06-Jun-2017	09-Jun-2017	09-Jun-2017	09-Jun-2017
Loss on Ignition in soils			08-Jun-2017			08-Jun-2017		
Mercury Dissolved			13-Jun-2017			13-Jun-2017		
Metals in solid samples by OES	08-Jun-2017	08-Jun-2017	09-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017
Mineral Oil			08-Jun-2017			08-Jun-2017		
PAH by GCMS	07-Jun-2017	07-Jun-2017	07-Jun-2017	09-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017	07-Jun-2017
PCBs by GCMS			09-Jun-2017			09-Jun-2017		
рН	09-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017	09-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017
Phenols by HPLC (W)			12-Jun-2017			12-Jun-2017		
Sample description	03-Jun-2017	03-Jun-2017	03-Jun-2017	03-Jun-2017	03-Jun-2017	03-Jun-2017	03-Jun-2017	03-Jun-2017
Semi Volatile Organic Compounds			07-Jun-2017			07-Jun-2017		
Total Dissolved Solids			12-Jun-2017			12-Jun-2017		
Total Organic Carbon	09-Jun-2017		08-Jun-2017		09-Jun-2017	08-Jun-2017		
TPH CWG GC (S)	07-Jun-2017	07-Jun-2017	07-Jun-2017	08-Jun-2017	08-Jun-2017	07-Jun-2017	07-Jun-2017	08-Jun-2017
VOC MS (S)	08-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017	06-Jun-2017	08-Jun-2017	08-Jun-2017	08-Jun-2017

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 25 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
Ş	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix E

HAZWASTE ONLINE CLASSIFICATION

Waste Classification Report

Job name

Edith Neville Primary School

Description/Comments

Project

Edith Neville Primary School / 70034223

Site

Waste Stream Template

Contaminated Soil and Asbestos GRR Template

Classified by

Name: Alice Waylett Date: 21/06/2017 13:04:51 UTC Telephone: 01992 526 000 Company: WSP | Parsons Brinckerhoff Unit 9, The Chase John Tate Road, Foxholes Business Park Hertford SG13 7NN

Report

Created by: Alice Waylett Created date: 21/06/2017 13:04 UTC

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	SS1	0.40-0.40	Non Hazardous		2
2	SS1[1]	1.50-1.50	Non Hazardous		4
3	SS2	0.50-0.50	Non Hazardous		6
4	SS2[1]	1.20-1.20	Non Hazardous		9
5	SS3	0.50-0.50	Non Hazardous		11
6	SS4	0.50-0.50	Non Hazardous		13
7	SS5	0.50-0.50	Non Hazardous		16
8	SS5[1]	1.50-1.50	Non Hazardous		18

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	20
Appendix B: Rationale for selection of metal species	21
Appendix C: Version	22

HazWasteOnline[™] Report created by Alice Waylett on 21/06/2017

Classification of sample: SS1

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
SS1	Chapter:	17: Construction and Demolition
Sample Depth:		from contaminated sites)
0.40-0.40 m	Entry:	17 05 04 (Soil and stones other the
		03)

Wastes (including excavated soil han those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand	-P Note	User entered data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	U U	13.4 mg/kg	1.32	17.692 mg/kg	0.00177 %	M	
2	4	beryllium { beryllium oxide }		0.469 mg/kg	2.775	1.302 mg/kg	0.00013 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]		0.894 mg/kg	1.142	1.021 mg/kg	0.000102 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		12.5 mg/kg	1.462	18.269 mg/kg	0.00183 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		40.7 mg/kg	1.126	45.824 mg/kg	0.00458 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	213 mg/kg	1.56	332.241 mg/kg	0.0213 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.848 mg/kg	1.353	1.148 mg/kg	0.000115 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		15.8 mg/kg	2.976	47.025 mg/kg	0.0047 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { <mark>zinc sulphate</mark> } 030-006-00-9		129 mg/kg	2.469	318.539 mg/kg	0.0319 %		
12	0	TPH (C6 to C40) petroleum group		573 mg/kg		573 mg/kg	0.0573 %		
13	8	рНРН		8.43 pH		8.43 pH	8.43 pH		
14		naphthalene 601-052-00-2 202-049-5 91-20-3		0.055 mg/kg		0.055 mg/kg	0.0000055 %		

Page 2 of 22

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
15		acenaphthylene		0.0527 mg/k	7	0.0527 mg/kg	0 00000527 %		
10		205-917-1 208-96-8		0.0027 mg/k	9	0.0027 mg/kg	0.00000027 /0		
16		acenaphthene		0.0598 mg/k	-	0.0598 ma/ka	0 00000598 %		Í
10		201-469-6 83-32-9		0.0090 mg/k	9	0.0050 119/kg	0.0000000000000000000000000000000000000		
17		fluorene		0.0463 mg/k		0.0463 ma/ka	0.0000463.%		
11		201-695-5 86-73-7		0.0403 Hig/K	9	0.0403 119/kg	0.00000403 /8		1
10		phenanthrene		0.652 mg/k	~	0.652 ma/ka	0.0000652.9/		
10		201-581-5 85-01-8	1	0.052 Hig/K	J	0.652 Hig/kg	0.0000052 %		1
10		anthracene		0.104 mg/k	_	0.101 ma/ka	0.0000104.9/		
19		204-371-1 120-12-7		0.194 mg/k	J	0.194 Hig/kg	0.0000194 %		Í
20		fluoranthene		1.26 mg/k	~	1.26 mg/kg	0.000126.9/		
20		205-912-4 206-44-0		1.20 Hig/K	J	1.20 Hig/kg	0.000120 %		Í
04		pyrene		1.10		1.10 ma//ra	0.000112.0/		
21		204-927-3 129-00-0	-	1.12 mg/k	J	1.12 mg/kg	0.000112 %		Í
22	benzo[a]anthracene			0.761	_	0.761 mallia	0.0000761.0/		
22		601-033-00-9 200-280-6 56-55-3	-	0.761 mg/k	J	0.761 mg/kg	0.0000761 %		Í
22		chrysene		0.544	_	0.544 mailia	0 0000544 %		
23		601-048-00-0 205-923-4 218-01-9		0.544 mg/k	g	0.544 mg/kg	0.0000544 %		Í
		benzo[b]fluoranthene		0.000 //		0.000 #			
24		601-034-00-4 205-911-9 205-99-2		0.983 mg/k	g	0.983 mg/kg	0.0000983 %		Í
0.5		benzo[k]fluoranthene		0.004		0.004	0.0000394 %		
25		601-036-00-5 205-916-6 207-08-9		0.394 mg/k		0.394 mg/kg			Í
		benzo[a]pyrene; benzo[def]chrysene				0.700 //			
26		601-032-00-3 200-028-5 50-32-8		0.792 mg/k	g	0.792 mg/kg	0.0000792 %		Í
~7		indeno[123-cd]pyrene	1	0.405		0.405	0.0000.405.0/		
27		205-893-2 193-39-5	1	0.485 mg/k	9	0.485 mg/kg	0.0000485 %		
		dibenz[a,h]anthracene	1	0.454		0.454	0.0000454.00	1	
28		601-041-00-2 200-181-8 53-70-3		0.151 mg/k	g	0.151 mg/kg	0.0000151 %		Í
		benzo[ghi]perylene							
29		205-883-8 191-24-2	-	0.638 mg/k	9	0.638 mg/kg	0.0000638 %		Í
		asbestos							
30		650-013-00-6 12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		10 mg/k	9	10 mg/kg	0.001 %		
1						Total	0 126 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
æ <mark>i</mark>	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CL D: Noto 1	Only the motel concentration has been used for elegatification

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS1[1]

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
SS1[1]	Chapter:	17: Constructio
Sample Depth:		from contamina
1.50-1.50 m	Entry:	<mark>17 05 04 (Soil a</mark>
		00)

n and Demolition Wastes (including excavated soil ated sites) and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand	Note	User entered	User entered data		Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF							MC	
1	~	arsenic { arsenic trioxide }		15.4	mg/kg	1.32	20.333	mg/kg	0.00203 %		
_	æ	beryllium { beryllium oxide }		0.040		0 775	0.050		0.00000.0/		
2	~	004-003-00-8 215-133-1 1304-56-9		0.849	mg/ĸg	2.775	2.356	mg/кg	0.000236 %		
	4	cadmium {									
3		048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]		<0.02	mg/kg	1.142	<0.0228	mg/kg	<0.00000228 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds {		15.6	mg/kg	1.462	22.8	mg/kg	0.00228 %		
		215-160-9 1308-38-9									
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.6	ma/ka	1.923	<1.154	ma/ka	<0.000115 %		<lod< td=""></lod<>
-		024-001-00-0 215-607-8 1333-82-0									
6	4	copper {		63.7	mg/kg	1.126	71.719	mg/kg	0.00717 %		
	_	029-002-00-X 215-270-7 1317-39-1	-								
7	~	1ead { 1ead chromate }	1	261	mg/kg	1.56	407.112	mg/kg	0.0261 %		
	æ	mercury { mercury dichloride }					. =				
8	~	080-010-00-X 231-299-8 7487-94-7	1	2.03	mg/ĸg	1.353	2.748	mg/кg	0.000275 %		
9	4	nickel { nickel chromate }		21.4	ma/ka	2 976	63.692 ma/ka	0.00637 %			
Ŭ	-	028-035-00-7 238-766-5 14721-18-7		2	ing/kg	2.070		iiig/itg			
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	_										
11	~	2002 (2002 2009) 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		99.1	mg/kg	2.469	244.707	mg/kg	0.0245 %		
40	8	TPH (C6 to C40) petroleum group	\uparrow	45.0			45.0		0.00450.0/	H	
12		ТРН		45.6	mg/ĸg		45.6	mg/кg	0.00456 %		1
13	۲	pH		8.61	pН		8.61	pН	8.61 pH		
	_	nanhthalene	-							\vdash	
14		601-052-00-2 202-049-5 91-20-3	-	0.0314	mg/kg		0.0314	mg/kg	0.00000314 %		
			_								

HazWasteOnline[™]

Report created by Alice Waylett on 21/06/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15		acenaphthylene				<0.012	ma/ka		<0.012	ma/ka	<0.0000012 %		<lod< th=""></lod<>
			205-917-1	208-96-8									_
16	۰	acenaphthene				<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
17	Θ	fluorene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
18	0	phenanthrene				0 147	ma/ka		0 147	ma/ka	0 0000147 %		
			201-581-5	85-01-8		0.111	iiig/kg			iiig/iig			
19		anthracene				0.0378	ma/ka		0.0378	ma/ka	0 00000378 %		
10			204-371-1	120-12-7		0.0010	iiig/itg		0.0010	iiig/itg	0.00000010 /0		
20	۰	fluoranthene				0 142	ma/ka		0 142	ma/ka	0 0000142 %		
20			205-912-4	206-44-0		0.142	iiig/itg		0.142	iiig/itg	0.0000142 /0		
21		pyrene				0 1 2 2	ma/ka		0 122	ma/ka	0 0000122 %		
21			204-927-3	129-00-0		0.122	iiig/itg		0.122	iiig/itg	0.0000122 /0		
22		benzo[a]anthracen	e			0.215	ma/ka		0.215	ma/ka	0 0000215 %		
22		601-033-00-9	200-280-6	56-55-3	-	0.213	шу/ку		0.213	шу/ку	0.0000210 /0		
22		chrysene			0 157	malka		0 157	malka	0 0000157 %			
23		601-048-00-0	205-923-4	218-01-9		0.157	тід/кд		0.157	тід/кд	0.0000157 %		
24		benzo[b]fluoranthe	ene	<u>`</u>		0.404	malka		0.404		0.0000421.9/		
24		601-034-00-4	205-911-9	205-99-2		0.421	шу/ку		0.421	тту/ку	0.0000421 %		
25		benzo[k]fluoranthe	ne			0.129	malka		0 129	malka	0.0000128.0/		
25		601-036-00-5	205-916-6	207-08-9		0.136	шу/ку		0.136	тту/ку	0.0000136 %		
26		benzo[a]pyrene; be	enzo[def]chrysene	·		0.211			0.211		0.0000211.0/		
20		601-032-00-3	200-028-5	50-32-8		0.311	шу/ку		0.311	тіу/ку	0.0000311 %		
07		indeno[123-cd]pyre	ene	·		0.01			0.01		0.000021.0/		
21			205-893-2	193-39-5	-	0.21	тід/кд		0.21	тту/ку	0.000021 %		
20		dibenz[a,h]anthrac	ene	·	1	0.0704	m a // cm		0.0704		0.00000764.04		
20		601-041-00-2	200-181-8	53-70-3	-	0.0764	тід/кд		0.0764	тту/ку	0.00000764 %		
20		benzo[ghi]perylene	9		1	0.282			0.000		0.0000282.0/		
29			205-883-8	191-24-2	-	0.282	тід/кд		0.282	тд/кд	0.0000282 %		
			1							Total	0 0741 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
SS2	Chapter:	17: Construction a
Sample Depth:		from contaminated
0.50-0.50 m	Entry:	17 05 04 (Soil and
		0.01

nd Demolition Wastes (including excavated soil sites) stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		14.1 mg/kg	1.32	18.617 mg/kg	0.00186 %		
2	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9		1.05 mg/kg	2.775	2.914 mg/kg	0.000291 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]		0.09 mg/kg	1.142	0.103 mg/kg	0.0000103 %		
4	*	chromium in chromium(III) compounds { Chromium(III) oxide } 215-160-9 1308-38-9		17.1 mg/kg	1.462	24.993 mg/kg	0.0025 %		
5	4	chromium in chromium(VI) compounds {		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		76.7 mg/kg	1.126	86.356 mg/kg	0.00864 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	725 mg/kg	1.56	1130.866 mg/kg	0.0725 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		1.43 mg/kg	1.353	1.935 mg/kg	0.000194 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		22.9 mg/kg	2.976	68.156 mg/kg	0.00682 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { <mark>zinc sulphate</mark> } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		461 mg/kg	2.469	1138.346 mg/kg	0.114 %		
12	8	TPH (C6 to C40) petroleum group		299 mg/kg		299 mg/kg	0.0299 %		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 mg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>

#		CI Diaday symbol	Determinand	CAS Number	P Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	5							MO	
14		benzene	baa 750 7	E 4 40 0	_	0.0659	mg/kg		0.0659	mg/kg	0.00000659 %		
<u> </u>		601-020-00-8	200-753-7	71-43-2	-								
15		601-021-00-3	203-625-9	108-88-3	_	0.0097	mg/kg		0.0097	mg/kg	0.00000976 %		
16	۰	ethylbenzene	1			<0.003	ma/ka		<0.003	ma/ka	<0.000003 %		<1 OD
		601-023-00-4	202-849-4	100-41-4									205
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
18	8	рН	1	DU		8.22	pН		8.22	pН	8.22 pH		
40		naphthalene		ГП	-	0.001			0.001		0.0000004.0/		
19		601-052-00-2	202-049-5	91-20-3	_	0.291	mg/kg		0.291	mg/kg	0.0000291 %		
20	8	acenaphthylene				0.122	mg/kg		0.122	mg/kg	0.0000122 %		
			205-917-1	208-96-8	_								
21		acenaphthene	201-469-6	83-32-9	_	0.706	mg/kg		0.706	mg/kg	0.0000706 %		
		fluorene	201-403-0	05-52-5		4.45			4.45		0.000445.0/		
22			201-695-5	86-73-7		1.45	mg/kg		1.45	mg/kg	0.000145 %		
23		phenanthrene				16.8	mg/kg		16.8	mg/kg	0.00168 %		
		anthracana	201-581-5	85-01-8	-								
24		anunacene	204-371-1	120-12-7	-	3.67	mg/kg		3.67	mg/kg	0.000367 %		
25		fluoranthene				23.5	ma/ka		23.5	ma/ka	0.00235 %		
25			205-912-4	206-44-0		20.0	iiig/kg		20.0	iiig/kg	0.00233 /8		
26	۲	pyrene	004 007 0	400.00.0		16.5	mg/kg		16.5	mg/kg	0.00165 %		
-		benzolalanthracen	204-927-3	129-00-0	-								
27	601-033-00-9 200-280-6 56-55-3			-	8.1	mg/kg		8.1	mg/kg	0.00081 %			
28		chrysene				7.44	ma/ka		7.44	ma/ka	0.000744 %		
		601-048-00-0	205-923-4	218-01-9									
29		benzo[b]fluoranthe	205 011 0	205.00.2		9.45	mg/kg		9.45	mg/kg	0.000945 %		
		benzo[k]fluoranthe	ne	203-33-2	-								
30		601-036-00-5	205-916-6	207-08-9		3.85	mg/kg		3.85	mg/kg	0.000385 %		
31		benzo[a]pyrene; be	enzo[def]chrysene			6.97	mg/kg		6.97	mg/ka	0.000697 %		
		601-032-00-3	200-028-5	50-32-8	-								
32	8		205-893-2	193-39-5	-	5.02	mg/kg		5.02	mg/kg	0.000502 %		
33		dibenz[a,h]anthrac	ene	E2 70 2		1.45	mg/kg		1.45	mg/kg	0.000145 %		
		benzolahilpervlene	200-101-0	03-10-3	+							\vdash	
34		- 13 - 17 - 17 / 18	205-883-8	191-24-2	_	5.15	mg/kg		5.15	mg/kg	0.000515 %		
35		phenol	boo occ =	400.05.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		604-001-00-2	203-632-7	108-95-2	+-							$\left \right $	
36	9		203-458-1, 200-863-5	107-06-2, 75-34-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37		tetrachloroethylene	e	127-18-4		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
65		carbon tetrachlorid	le; tetrachlorometha	ane	+						0.00001.01	\vdash	
38		602-008-00-5	200-262-8	56-23-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
39		trichloroethylene; t	richloroethene			<0.09	mg/ka		<0.09	mg/ka	<0.000009 %		<lod< td=""></lod<>
<u> </u>		602-027-00-9	201-167-4	79-01-6	+							\vdash	
40		vinyl chloride; chloroethylene 602-023-00-7 200-831-0 75-01-4			_	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
11		hexachlorobenzen	e		1	-01	ma/ka		-01	ma/ka	<0.00001.9/		
		602-065-00-6	204-273-9	118-74-1		NO.1	ing/kg		~0.1	ing/itg	.0.00001 /0		~200

#		Determinand		o Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
	CLP index number	EC Number	CAS Number	CLF					MC	
42	polychlorobiphenyls; PCB				<0.021 ma/ka		<0.021 ma/ka	~0.000021 %		<lod< th=""></lod<>
	602-039-00-4	215-648-1	1336-36-3		50.021 mg/kg		101021	0.0000021 /0		
							Total:	0.248 %		

Key

,	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS2[1]

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name: SS2[1]	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth: 1.20-1.20 m	Entry:	from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

#		Determinand	Note	User entered	l data	Conv. Factor		Classification value	Applied	Conc. Not Used	
		CLP index number EC Number CAS Number	CLP							MC ,	
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	-	11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
2	4	beryllium { beryllium oxide }		0.973	mg/kg	2.775	2.7	mg/kg	0.00027 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]	-	<0.02	mg/kg	1.142	<0.0228	mg/kg	<0.00000228 %		<lod< th=""></lod<>
4	~	chromium in chromium(III) compounds { Chromium(III) oxide }		16.6	mg/kg	1.462	24.262	mg/kg	0.00243 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< th=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		61.3	mg/kg	1.126	69.017	mg/kg	0.0069 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	313	mg/kg	1.56	488.222	mg/kg	0.0313 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		2.11	mg/kg	1.353	2.856	mg/kg	0.000286 %		
9	4	nickel { nickel chromate }		20.7	mg/kg	2.976	61.609	mg/kg	0.00616 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
11	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		97.1	mg/kg	2.469	239.769	mg/kg	0.024 %		
12	Θ	TPH (C6 to C40) petroleum group		26.6	mg/kg		26.6	mg/kg	0.00266 %		
13	۵	рН РН		8.51	pН		8.51	pН	8.51 pH		
14		naphthalene 91-20-3		0.0299	mg/kg		0.0299	mg/kg	0.00000299 %		

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
15		acenaphthylene			<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< th=""></lod<>	
		205-917-1	208-96-8										
16	۵	acenaphthene			<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>	
		201-469-6	83-32-9										
17	۲	fluorene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>	
		201-695-5	86-73-7										
18	0	phenanthrene			0.163	mg/kg		0.163	mg/kg	0.0000163 %			
		201-581-5	85-01-8										
19	0	anthracene			0.159	mg/kg		0.159	mg/kg	0.0000159 %			
		204-371-1	120-12-7										
20	۲	fluoranthene			0.15	ma/ka		0.15	ma/ka	0.000015 %			
		205-912-4	206-44-0			5 5							
21	0	pyrene			0.137	ma/ka		0.137	ma/ka	0.0000137 %			
		204-927-3	129-00-0			5 5							
22		benzo[a]anthracene			0.132	ma/ka		0.132	ma/ka	0.0000132 %			
		601-033-00-9 200-280-6	56-55-3										
23		chrysene			0.11	ma/ka	(a	0.11	ma/ka	(a) 0.000011 %			
		601-048-00-0 205-923-4	218-01-9										
24		benzo[b]fluoranthene			0 206	ma/ka		0 206	ma/ka	0 0000206 %			
<u> </u>		601-034-00-4 205-911-9	205-99-2										
25		benzo[k]fluoranthene			0.0751	ma/ka		0.0751	ma/ka	0 00000751 %			
		601-036-00-5 205-916-6	207-08-9										
26		benzo[a]pyrene; benzo[def]chrysene			0 152	ma/ka		0 152	ma/ka	0 0000152 %			
		601-032-00-3 200-028-5	50-32-8	1	002								
27	۲	indeno[123-cd]pyrene			0 0943	ma/ka		0 0943	ma/ka	0 00000943 %			
		205-893-2	193-39-5	1									
28		dibenz[a,h]anthracene			0.0416	ma/ka		0.0416	ma/ka	0.00000416 %			
		601-041-00-2 200-181-8	53-70-3					0.0416					
29		benzo[ghi]perylene			0 135	ma/ka		0 135	ma/ka	0 0000135 %	. %		
20		205-883-8	191-24-2		0.100	0.135 mg/kg		ilig/kg					
									Total:	0.076 %			

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration <LOD Below limit of detection $\label{eq:CLP:Note 1} \ \ \mbox{Only the metal concentration has been used for classification}$

Supplementary Hazardous Property Information

Classification of sample: SS3

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
•	

Sample details

Sample Name: SS3	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50-0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand	Note	User entered da	User entered data		Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP						MC	
1	4	arsenic { arsenic trioxide }	_	13.2 m	g/kg	1.32	17.428 mg/kg	0.00174 %		
2	\$	beryllium { beryllium oxide }		3.76 m	g/kg	2.775	10.435 mg/kg	0.00104 %		
3	4	cadmium { cadmium oxide } [1304-30-3] 048-002-00-0 [231-152-8 [1]] [7440-43-9 [1]] 215-146-2 [2] [1306-19-0 [2]] [1306-19-0 [2]]	-	<0.02 m	g/kg	1.142	<0.0228 mg/kg	<0.00000228 %		<lod< th=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		22.2 m	g/kg	1.462	32.447 mg/kg	0.00324 %		
5	\$	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.6 m	g/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< th=""></lod<>
6	\$	copper {		31.8 m	g/kg	1.126	35.803 mg/kg	0.00358 %		
7	\$	lead { lead chromate })82-004-00-2 231-846-0 7758-97-6	1	220 m	g/kg	1.56	343.159 mg/kg	0.022 %		
8	4	mercury { mercury dichloride }		0.573 m	g/kg	1.353	0.776 mg/kg	0.0000776 %		
9	4	nickel { nickel chromate })28-035-00-7 238-766-5 14721-18-7		16 m	g/kg	2.976	47.62 mg/kg	0.00476 %		
10	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 m	g/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { <mark>zinc sulphate</mark> })30-006-00-9	-	104 m	g/kg	2.469	256.807 mg/kg	0.0257 %		
12	8	TPH (C6 to C40) petroleum group		953 m	g/kg		953 mg/kg	0.0953 %		
13	8	рН РН		8.96 pH	4		8.96 pH	8.96 pH		
14		naphthalene 601-052-00-2 202-049-5 91-20-3		0.773 m	g/kg		0.773 mg/kg	0.0000773 %		

www.hazwasteonline.com

#		Determinand CLP index number EC Number CAS Numb	LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used
15	8	acenaphthylene	0	0.212	ma/ka		0.212	ma/ka	0.0000212 %	2	
		205-917-1 208-96-8									
16		acenaphthene		2.88	ma/ka		2.88	ma/ka	0 000288 %		
		201-469-6 83-32-9		2100			2.00		0.000200 /0		
17		fluorene		2.85	ma/ka		2.85	ma/ka	0 000285 %		
11		201-695-5 86-73-7		2.00	шу/ку		2.00	iiig/kg	0.000203 /8		
10		phenanthrene		32.4	ma/ka		32.4	ma/ka	0.00324.94		
10		201-581-5 85-01-8		52.4	шу/ку		52.4	шу/ку	0.00324 /8		
10		anthracene		10.9			10.9	~~~//c	0.00108.0/	1	
19		204-371-1 120-12-7		10.0	тту/ку		10.0	iiig/kg	0.00106 %		
20		fluoranthene		40 E			40 E	~~~//m	0.00495.0/	1	
20		205-912-4 206-44-0		40.5	тту/ку		40.5	iiig/kg	0.00405 %		
		pyrene		22.0	malka		22.0		0.00000.0/	1	
21		204-927-3 129-00-0		33.9	тід/кд		33.9	тід/кд	0.00339 %		
00		benzo[a]anthracene		45.0			45.0		0.00450.00	Ì	
22		601-033-00-9 200-280-6 56-55-3		15.2	mg/кg		15.2	mg/кg	0.00152 %		
23		chrvsene									
		601-048-00-0 205-923-4 218-01-9		14.2	mg/kg		14.2	mg/kg	0.00142 %		
		benzolbifluoranthene									
24		601-034-00-4 205-911-9 205-99-2		16.2	mg/kg		16.2	mg/kg	0.00162 %		
		benzo[k]fluoranthene									
25		601_036_00_5 205_916_6 207_08_9		7.46	mg/kg		7.46	mg/kg	0.000746 %		
		benzo[a]pyrene: benzo[def]chrysene								+	
26		601_032_00_3 200_028_5 50_32_8		13.1	mg/kg		13.1	mg/kg	0.00131 %		
	-									+	
27	۲	205-893-2 193-39-5		9.2	mg/kg		9.2	mg/kg	0.00092 %		
<u> </u>		dibenz[a b]anthracene								+	
28		601-041-00-2 200-181-8 53-70-3		2.71	mg/kg		2.71	mg/kg	0.000271 %		
										┼─	
29	۲	bos 993 9 101 24 2		9.86	mg/kg		9.86	mg/kg	0.000986 %		
-		203-003-0 191-24-2								-	
30		650-013-00-6 12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		10	mg/kg		10	mg/kg	0.001 %		
								Total:	0.181 %		

Key User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) 4 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS4

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
•	

Sample details

Sample Name: SS4	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50-0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

#		Determinand CLP index number EC Number CAS Numb	er	CLP Note	User entered data	Conv. Facto	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }		<u> </u>	15 mg/k	1.32	19.805 mg/kg	0.00198 %		
2	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9			0.491 mg/k	2.775	1.363 mg/kg	0.000136 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]			<0.02 mg/k	1.142	<0.0228 mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { Chromium oxide } 215-160-9 1308-38-9	III)		9.88 mg/k	1.462	14.44 mg/kg	0.00144 %		
5	4	chromium in chromium(VI) compounds {)		<0.6 mg/k	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1			16.8 mg/k	1.126	18.915 mg/kg	0.00189 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6		1	84 mg/k	1.56	131.024 mg/kg	0.0084 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			0.602 mg/k	1.353	0.815 mg/kg	0.0000815 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7			22.2 mg/k	2.976	66.073 mg/kg	0.00661 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhe in this Annex } 034-002-00-8	re		<1 mg/k	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]			68.1 mg/k	2.469	168.159 mg/kg	0.0168 %		
12	0	TPH (C6 to C40) petroleum group			157 mg/k	3	157 mg/kg	0.0157 %		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4			<0.005 mg/k	9	<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	IC Applied	Conc. Not Used
14		benzene			<u></u>	<0.01	ma/ka		~0.01	ma/ka	<0.00001.%	Σ	
		601-020-00-8 2	200-753-7	71-43-2			iiig/kg				<0.000001 //		
15		toluene 601-021-00-3 2	203-625-9	108-88-3		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
16	8	ethylbenzene	202 840 4	100 11 1		<0.003	mg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
		xvlene	202-049-4	100-41-4	+								
17		601-022-00-9 2 2 2 2	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< th=""></lod<>
18	۲	pН		PH		9	рН		9	pН	9pH		
19		naphthalene	000 040 5	01.00.0		0.0898	mg/kg		0.0898	mg/kg	0.00000898 %		
		acenanhthylene	202-049-5	91-20-3	+								
20		2	205-917-1	208-96-8		0.0708	mg/kg		0.0708	mg/kg	0.00000708 %		
21		acenaphthene				0.0443	ma/ka		0 0443	ma/ka	0 00000443 %		
		2	201-469-6	83-32-9	1_	0.0110	ing/kg						
22	۲	fluorene	201-695-5	86-73-7		0.0483	mg/kg		0.0483	mg/kg	0.00000483 %		
23	0	phenanthrene	001 591 5	95.01.9		0.875	mg/kg		0.875	mg/kg	0.0000875 %		
		anthracene	201-301-3	03-01-8	+	0.000							
24		2	204-371-1	120-12-7		0.223	mg/kg		0.223	mg/kg	0.0000223 %		
25	8	fluoranthene				2.05	mg/kg		2.05	mg/kg	0.000205 %		
		2	205-912-4	206-44-0									
26	Θ	pyrene	204 027 3	120.00.0		1.75	mg/kg		1.75	mg/kg	0.000175 %		
		enzo[a]anthracene	104-927-3	129-00-0		0.075							
27		601-033-00-9 2	200-280-6	56-55-3		0.975	mg/kg		0.975	mg/kg	0.0000975 %		
28		chrysene	205 022 4	010.01.0	_	0.872	mg/kg		0.872	mg/kg	0.0000872 %		
		benzo[b]fluoranthen	e	218-01-9	-								
29		601-034-00-4 2	205-911-9	205-99-2		1.22	mg/kg		1.22	mg/kg	0.000122 %		
30		benzo[k]fluoranthen	e			0.611	ma/ka		0.611	ma/ka	0.0000611 %		
		601-036-00-5 2	205-916-6	207-08-9									
31		benzo[a]pyrene; ber	nzo[def]chrysene	50.32.8		1.13	mg/kg		1.13	mg/kg	0.000113 %		
		indeno[123-cd]pvrer	ne	p0-52-6									
32		2	205-893-2	193-39-5		0.723	mg/kg		0.723	mg/kg	0.0000723 %		
33		dibenz[a,h]anthrace	ne			0.22	ma/ka		0.22	ma/ka	0.000022 %		
		601-041-00-2 2	200-181-8	53-70-3									
34	8	benzolghijperylene	005 002 0	101 24 2		0.832	mg/kg		0.832	mg/kg	0.0000832 %		
		phenol	203-003-0	131-24-2	+								
35		604-001-00-2 2	203-632-7	108-95-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	1,1-dichloroethane a	and 1,2-dichloroeth	hane (combined)									
36		2	203-458-1, 200-863-5	107-06-2, 75-34-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37		tetrachloroethylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
-		602-028-00-4 2	204-825-9 e: tetrachlorometha	127-18-4	+							-	
38		602-008-00-5 2	200-262-8	56-23-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		trichloroethylene; tri	chloroethene	1		<0.09	ma/ka		<0.09	ma/ka	<0.00009 %		
		602-027-00-9 2	201-167-4	79-01-6	1								
40		vinyl chloride; chloro	200-831-0	75-01-4		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< th=""></lod<>
<u> </u>		hexachlorobenzene		1.001	+						0.00001.51		
41		602-065-00-6 2	204-273-9	118-74-1	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand			Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP					MC	
42	۲	polychlorobiphenyls; PCB			<0.021 ma/ka		<0.021 ma/ka	<0.000021 %		<lod< th=""></lod<>	
		602-039-00-4	215-648-1	1336-36-3					1010000021 //		
								Total:	0.0547 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS5

Non Hazardous Waste Classified as 17 05 04 in the List of Wester	
in the List of Waste	

Sample details

Sample Name: SS5	LoW Code: Chapter:	17: Construction and E
Sample Depth:		from contaminated site
0.50-0.50 m	Entry:	17 05 04 (Soil and stor
		00)

Demolition Wastes (including excavated soil es) nes other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand	-P Note	User entered da	ıta	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	Ū	12.8 mç	g/kg	1.32	16.9 mg/kg	0.00169 %	ž	
2	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9		1.03 mg	g/kg	2.775	2.859 mg/kg	0.000286 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]		0.112 mg	g/kg	1.142	0.128 mg/kg	0.0000128 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide }		19.9 mg	g/kg	1.462	29.085 mg/kg	0.00291 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.6 mỹ	g/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		40.5 mg	g/kg	1.126	45.598 mg/kg	0.00456 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	143 mg	g/kg	1.56	223.054 mg/kg	0.0143 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		1.36 mg	g/kg	1.353	1.841 mg/kg	0.000184 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		22.2 mỹ	g/kg	2.976	66.073 mg/kg	0.00661 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1 m(g/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { <mark>zinc sulphate</mark> } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		150 mg	g/kg	2.469	370.394 mg/kg	0.037 %		
12	8	TPH (C6 to C40) petroleum group		123 mg	g/kg		123 mg/kg	0.0123 %		
13	0	рН РН		8.3 pH	4		8.3 pH	8.3 pH		
14		naphthalene 601-052-00-2 202-049-5 91-20-3		0.053 mg	g/kg		0.053 mg/kg	0.0000053 %		

Page 16 of 22

HazWasteOnline[™]

Report created by Alice Waylett on 21/06/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	8	acenaphthylene				0.149	ma/ka		0.149	ma/ka	0.0000149 %		
			205-917-1	208-96-8									
16		acenaphthene				0.0306	ma/ka		0.0306	ma/ka	0.00000306 %		
			201-469-6	83-32-9									
17		fluorene			0.0379	ma/ka		0.0379	ma/ka	0.00000379 %			
			201-695-5	86-73-7									
18	0	phenanthrene				0 748	ma/ka		0.748	ma/ka	0 0000748 %		
			201-581-5	85-01-8									
19		anthracene			0 246	mg/kg		0.246	ma/ka	0.0000246 %			
			204-371-1	120-12-7									
20		fluoranthene				2 75	ma/ka		2 75	ma/ka	0 000275 %		
			205-912-4	206-44-0									
21		pyrene				2.39	ma/ka		2.39	ma/ka	0 000239 %		
			204-927-3	129-00-0									
22		benzo[a]anthracene				1.78	ma/ka		1 78	ma/ka	0 000178 %		
		601-033-00-9	200-280-6	56-55-3									
23		chrysene				1 29	ma/ka		1 29	ma/ka	0.000129 %		
20		601-048-00-0	205-923-4	218-01-9		1.29	шу/ку		1.23	iiig/kg	0.000129 /8		
24		benzo[b]fluoranthene			2.52	ma/ka		2.52	ma/ka	0 000252 %			
24		601-034-00-4 205-911-9 205-99-2		_	2.52	шу/ку		2.52	iiig/kg	0.000232 /0			
25		benzo[k]fluoranthene			0.948	ma/ka		0.948	ma/ka	0 0000948 %			
25		601-036-00-5	205-916-6	207-08-9		0.940	шу/ку		0.940	iiig/kg	0.0000340 /8		
26		benzo[a]pyrene; be	enzo[def]chrysene			2	ma/ka		2	ma/ka	0 0002 %		
20		601-032-00-3	200-028-5	50-32-8		2	шу/ку		2	iiig/kg	0.0002 /0		
27		indeno[123-cd]pyrene			1 16	ma/ka		1 16	ma/ka	0.000116.%			
21			205-893-2	193-39-5		1.10	шу/ку		1.10	iiig/kg	0.000110 /8		
28		dibenz[a,h]anthrac	ene			0.354	ma/ka		0 354	ma/ka	0 0000354 %		
20		601-041-00-2 200-181-8 53-70-3			0.354	mg/kg		0.354	тід/кд	0.0000334 /8			
29	8	benzo[ghi]perylene	9			1 32	ma/ka		1 32	malka	0 000132 %		
			205-883-8	191-24-2		1.52	шу/ку		1.52	шулу	0.000132 /0		
										Total [.]	0.082 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Classification of sample: SS5[1]

	••••
Non Hazardous Waste	- 1
Classified as 17 05 04	
in the List of Waste	
•	

Sample details

Sample Name:	LoW Code:	
SS5[1]	Chapter:	17: Construction a
Sample Depth:		from contaminated
1.50-1.50 m	Entry:	17 05 04 (Soil and
		0.0)

and Demolition Wastes (including excavated soil d sites) d stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 [1327-53-3	U I	13.6 mg/kg	1.32	17.956 mg/kg	0.0018 %	Σ	
2	~	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9		1.45 mg/kg	2.775	4.024 mg/kg	0.000402 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 231-152-8 [1] 7440-43-9 [1] 215-146-2 [2] 1306-19-0 [2]		<0.02 mg/kg	1.142	<0.0228 mg/kg	<0.00000228 %		<lod< td=""></lod<>
4	~	chromium in chromium(III) compounds { chromium(III) oxide }	_	28.7 mg/kg	1.462	41.947 mg/kg	0.00419 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		30.8 mg/kg	1.126	34.677 mg/kg	0.00347 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	32.1 mg/kg	1.56	50.07 mg/kg	0.00321 %		
8	~	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.552 mg/kg	1.353	0.747 mg/kg	0.0000747 %		
9	~	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		57.5 mg/kg	2.976	171.135 mg/kg	0.0171 %		
10	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { <mark>zinc sulphate</mark> } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		76 mg/kg	2.469	187.667 mg/kg	0.0188 %		
12	8	TPH (C6 to C40) petroleum group		11 mg/kg		11 mg/kg	0.0011 %		
13	٥	рН РН		7.64 pH		7.64 pH	7.64 pH		
14		naphthalene 91-20-3		<0.009 mg/kg		<0.009 mg/kg	<0.0000009 %		<lod< td=""></lod<>

Page 18 of 22

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
15	•	acenaphthylene			<0.012	ma/ka		<0.012	ma/ka	<0.0000012 %		<lod< td=""></lod<>
		205-917-1	208-96-8									_
16	۰	acenaphthene			0.0296	ma/ka		0.0296	ma/ka	0.00000296 %		
		201-469-6	83-32-9						5.5			
17	۰	fluorene			<0.01	ma/ka	< 0.01	<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		201-695-5	86-73-7			iiig/itg						
18	۰	phenanthrene			<0.015	ma/ka		-0.015	ma/ka	~0.000015 %		
10		201-581-5	85-01-8	1	<0.010	ing/itg		<0.010	mg/kg			LOD
10	0	anthracene			-0.016	ma/ka		<0.016	ma/ka	<0.000016.%		
19		204-371-1	120-12-7	1	<0.010	iiig/itg		<0.010	шу/ку	<0.0000010 /8		<lod< td=""></lod<>
20		fluoranthene			-0.017	malka		-0.017	malka	-0.000017.9/		
20		205-912-4	206-44-0		<0.017	шу/ку		<0.017	тту/ку	<0.0000017 %		<lod< td=""></lod<>
21		pyrene			0.045			0.045		0.0000045.0/		
		204-927-3	129-00-0		<0.015	тід/кд		<0.015	тід/кд	<0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracene			0.014			0.04.4		<0.000014.%		
22		601-033-00-9 200-280-6	56-55-3		<0.014	тд/кд		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		chrysene								0.000001.0/		
23		601-048-00-0 205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	g <0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthene										
24		601-034-00-4 205-911-9	205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
-		benzo[k]fluoranthene										
25		601-036-00-5 205-916-6	207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
<u> </u>		benzolalovrene: benzoldefichrysene		-								
26		601-032-00-3 200-028-5	50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		indeno[123-cd]pyrene										
27					<0.018	mg/kg		<0.018	mg/kg	<0.000018 %		<lod< td=""></lod<>
<u> </u>		dibenz[a b]anthracene										
28		601-041-00-2 200-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.000023 %		<lod< td=""></lod<>
<u> </u>			00,00	-								
29		205-883-8	101-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.000024 %		<lod< td=""></lod<>
\vdash		200 000 0		L			l		Total:	0.0505 %	H	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

Report created by Alice Waylett on 21/06/2017

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R20, R22, R36, R37, R38, R42, R43, R50/53, R60, R61 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 , N R50/53 >= 0.25 % Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s)/Risk Phrase(s): 10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R10, R45, R46, R51/53, R63, R65 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R22, R26, R27, R36, R37, R38 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)
 Description/Comments: Data from C&L Inventory Database
 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
 Data source date: 17/07/2015

Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, N R50/53, N R51/53 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

 ${\tt Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06/08/2015

Risk Phrases: R22 , R36 , R37 , R38 , R40 , R43 , N R50/53

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, R43, N R50/53 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410 Iluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xn R22, N R50/53 Hazard Statements: Acute Tox. 4 H302 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0) Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xi R36/37/38, N R50/53 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410 indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R40 Hazard Statements: Carc. 2 H351 benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2) Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23/07/2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410 ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4) CLP index number: 601-023-00-4 Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000 * 1,1-dichloroethane and 1,2-dichloroethane (combined) (EC Number: 203-458-1, 200-863-5, CAS Number: 107-06-2, 75-34-3) Description/Comments: Combines the hazard statements and risk phrases for 1,1-dichloroethane and 1,2-dichloroethane Data source: N/a Data source date: 14/10/2016 Risk Phrases: F R11, Xn R22, Xi R36/37/38, Carc Cat 2 R45, R52/53 Hazard Statements: Flam. Liq. 2 H225, Acute Tox. 4 H302, Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 1B H350, Aquatic Chronic 3 H412 polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3) CLP index number: 602-039-00-4 Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s)/Risk Phrase(s): 29/09/2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012 Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

HazWasteOnline[™]

Report created by Alice Waylett on 21/06/2017

beryllium {beryllium oxide}

Reasonable case CLP species based on hazard statements/molecular weight. Industrial sources include: most common (non alloy) form, used in ceramics

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Changed from Zinc Chromate as Chromium VI is not present within the sample. The previous site use comprised residential properties and the current site use comprises a school therefore, the next most conservative species has been used - Zinc Sulphate.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2017.170.3346.6744 (19 Jun 2017) HazWasteOnline Database: 2017.170.3346.6744 (19 Jun 2017)

This classification utilises the following guidance and legislation: WM3 - Waste Classification - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010