MICHAEL CHESTER & PARTNERS Consulting Civil and Structural Engineers 8 Hale Lane London NW7 3NX tel 020 8959 9119 fax 020 8959 9662 mail@michaelchester.co.uk

Our Ref: 15094

July 2016

66 FITZJOHN'S AVENUE, LONDON NW3

RESPONSE TO QUERIES RAISED IN CAMPBELL REITH'S BASEMENT IMPACT ASSESSMENT AUDIT

INTRODUCTION:

Michael Chester & Partners prepared a structural Basement Impact Assessment (BIA) to accompany a planning application for the above site by Webb Architects. The application included the demolition of an existing semi-detached property followed by the construction of a new semi-detached building with basement.

Campbell Reith act on behalf of London Borough of Camden and they have prepared an Audit Report of the BIA. The following addresses the queries raised by Campbell Reith in the Audit Tracker contained within Appendix 2 of their report. The queries are reproduced for ease of reference.

QUERIES RAISED IN AUDIT TRACKER REPORT:

1. All geotechnical data i.e laboratory testing, interpretations, derived geotechnical parameters for design etc. to be provided. Further ground monitoring to be carried out.

No laboratory testing was carried out, only the insitu testing noted on the borehole logs included within the structural BIA. This is because the engineering properties of the Claygate Beds and London Clay are well known to piling contractors who regularly work within London. Also, our experience is that, on small project like this, piling contractors prefer insitu tests to determine pile design parameters because they find they more accurately reflect the ground conditions than do laboratory tests (samples are often poorly taken) plus the fact that there are inadequate economies of scale to make the savings on pile construction that laboratory tests might allow on much larger projects.

Additional ground water monitoring has been carried out and the results are considered further in the response to the Audit Tracker by the Hydrological Engineer, SLR Consulting, contained under separate cover.

2. Are there any basements in adjacent properties and/or what are foundation types, depths etc?

There is a half depth basement at No.64 Fitzjohn's Avenue. Foundations details are not known but the building is a traditionally built Victorian structure so they have conservatively been assumed to be shallow corbelled brickwork. The next closest property is 12m distant from the site. It is not known whether this building has a basement but it is sufficiently far away that it is, in any case, not relevant to this development in purely structural terms.

3. Is there a tunnel beneath the access strip adjacent to No.64 Fitzjohn's Avenue and will it be affected by the works or trafficking?

Desk studies have revealed no evidence of a tunnel or culvert running across the strip of land adjacent to No.64 though some sources do indicate an old upper tributary of the Tyburn to the east of No.64.

Before work commences on site the contractor will be required to carry out a ground radar survey to investigate this further. They will also be required to provide a temporary road base that will span over

any anticipated soft spots. At this stage this is assumed to take the form of a thick reinforced concrete slab built off a DoT subbase.

4. Is site access road supported by the wall of No.64 Fitzjohn's Avenue? Is it structurally able to support proposed construction traffic loads?

As above, there is a half depth basement to the full footprint of No.64 Fitzjohn's Avenue so, yes, the flank wall will be required to support some traffic loads from the access road. The access road is narrow, however, being only 2.6m wide at its pinch point, so vehicular access will be limited. Material deliveries during construction will, therefore, in any case, have to be made in small loads.

The road is currently used by cars to access the properties at the rear and there is no evidence that this is having or has had a detrimental effect on the wall. The wall in question is 450mm thick at its base and it is preloaded at the very least by 13m of brickwork. MCP have carried out some preliminary calculations to assess the strength of the wall and these are contained within Appendix A. They concur with the visual evidence and show that the wall and its foundations are capable of withstanding a surcharge of 2.5kN/m² whilst maintaining reactions within the middle third of the foundation (factor of safety against overturning is, therefore, in excess of 3) and without excessive brick bearing stresses.

As above, the contractor will in any case be required to provide a road base that will span over possible soft spots. This will have the benefit of distributing wheel and axial loads more evenly along the length of the wall and across the width of the access road and will help to mitigate any adverse effects of the traffic.

5. Further review of potential ground movement/building damage assessment needed, in particular heave due to the 4.5m excavation and installation of piles in form clay.

Pile calculations have been received from Southern Geotechnical Design Ltd and a geotechnical report on the heave aspects has been received from Donaldson Associates. Both are contained within Appendices B & C below and both concur with the original BIA, confirming that if ground movements occur beyond the site boundary anticipated damage would fall within categories 0 or 1, negligible to very slight.

Southern Geotechnical Design's calculations consider temporary propping during the works at just below existing ground level to allow the capping beam to be formed along the heads of the piles and permanent props at new basement slab and ground floor slab levels. The sequence of construction assumes that the temporary prop will be in place before bulk excavation commences and that the basement slab will be formed as soon as excavation reaches the appropriate depth. The calculations predict that the maximum settlement depth will be 4mm at 3m from the face of the new piled wall, tailing off to zero at 14m distance from the piled wall. No.64 Fitzjohn's Avenue is approximately 3m from the piled wall; the possible movement gives a strain of 0.036% corresponding to a damage assessment of category 0. No.14 Arkenside Road is 10m from the piled wall; predicted settlements at this distance are in the order of 1.5mm with a similar overall strain anticipated.

Donaldson Associates have considered the above along with the heave movements due to the release of overburden following the excavation. They have predicted vertical movements of between 4mm and 7mm at the face of No.64 Fitzjohn's Avenue and horizontal movements of between 6mm and 9mm resulting in a strain of 0.05%. This corresponds to a damage assessment on the border between category 0 and category 1. They have also predicted vertical movements of between 0mm and 4mm and horizontal movements of between 1mm and 5mm for No.14 Arkenside Road resulting again in a strain of 0.005%. Because of its distance from the excavation Donaldson Associates have concluded that there is a very low risk of damage to No.14 Arkenside Road and propose no further assessment but they recommend monitoring of No.62/64 Fitzjohn's Avenue.

6. Confirmation of impact of removal of Silver Birch tree required.

Silver Birches are classed by the National House Building Council's (NHBC) guidelines for building near trees as low water demand trees. The height of the Silver Birch in question is between about 10m and 12m and it is 3.4m from the face of No.64 Fitzjohn's Avenue. Based on this, the NHBC Standards Part 4.2 Chart 1 indicates that foundations deeper than 1.35m will be beyond the zone of influence of the roots. The difference in ground levels between where the Silver Birch is growing and the basement is 1.6m. The foundations are, therefore, clearly deeper than required by the NHBC guidelines so the removal of this tree will not affect No.64 Fitzjohn's Avenue. There are no other buildings within the zone of influence of the tree.

7. A monitoring regime for adjacent buildings/infrastructure is required, including development of trigger and action levels.

Donaldson Associates have recommended monitoring of No.62/64 Fitzjohn's Avenue during the course of the works. Given the very small movements anticipated consideration is to be given to the use of an "intelligent" data logging system which will provide greater accuracy than traditional tell-tales or demountable gauges and will provide more detailed information around particular movement "events" if they occur. A green, amber, red traffic light system of trigger and action levels will be developed in conjunction with the Party Wall Surveyors.

8. Indicative structural calculations and construction sequence required showing principles of design and propping, and consideration of dewatering.

Drawing number 15094/SK02revA by MCP (Appendix D) and pile calculations by Southern Geotechnical Design Ltd (Appendix B) describe the sequence of construction and principles of the design and propping. In summary this is as follows –

- a) Erect a hoarding around the site and demolish the existing building.
- b) Install a secant piled wall around the perimeter of the proposed basement, sealed in to the London Clay.
- c) Pump ground water out from within the footprint of the proposed basement.
- d) Construct a capping beam to tie the heads of the piles and install horizontal props to restrain the head of the piled wall.
- e) Excavate within the piles to new basement level. Cast new basement slab and the new permanent retaining walls all round the excavation.
- f) Cast the ground floor level slab.
- g) Remove temporary props when ground floor level slab is fully cured.
- h) Complete construction of superstructure.

In terms of dewatering, as set out in the original BIA, it is proposed to install a secant piled wall sealed off in to the London Clay. This will prevent water entering the excavation from the side through the piled wall and from below, thus allowing the water within the basement footprint to be pumped out completely prior to excavation. As no water is able to enter the excavation during the work, no fines are lost from the soils beyond the piled perimeter of the site thus eliminating the associated effects of soil consolidation on the surrounding ground and buildings.

MICHAEL CHESTER & PARTNERS Consulting Civil and Structural Engineers 8 Hale Lane London NW7 3NX tel 020 8959 9119 fax 020 8959 9662 mail@michaelchester.co.uk

APPENDIX A

66 FITZJOHN'S AVENUE, LONDON NW3

PRELIMINARY CALCULATIONS FOR FLANK WALL OF No.64 FITZJOHN'S AVENUE

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} (11) \\ \text{MICHAEL CHESTER & PARTNERS} \\ \hline (11) \\ \text{Convilling Civil & Structural Engineers} \end{array} \\ \hline (11) \\ \text{Hall Lang Longer WW730X W 1000 3555 5119 & W 020 8555 5002} \end{array} \\ \hline (11) \\ \hline (11) \\ \text{Convertee Constructure Construct$$

MICHAEL CHESTER & PARTNERS Consulting Civil and Structural Engineers 8 Hale Lane London NW7 3NX tel 020 8959 9119 fax 020 8959 9662 mail@michaelchester.co.uk

APPENDIX B

66 FITZJOHN'S AVENUE, LONDON NW3

PILING CALCULATIONS BY SOUTHERN GEOTECHNICAL DESIGNS LTD

SOUTHERN	Client:	CP Plus Limited	Ref:	<i>C</i> 074	5 C	alc 01	Rev:	00
GEOTECHNICAL	Project :	66, Fitzjohn's Avenue, NW3 5LT	Sheet		1	of	38	
	Section:	Preliminary Design of Secant Bored Pile Wall	By:	MP	Do	ate:	21/05	6/16
			Chk:		Do	ate:		

STRUCTURAL ENGINEERING CALCULATIONS

PRELIMINARY DESIGN OF SECANT BORED PILE RETAINING WALL

AT

66, FITZJOHNS AVENUE

LONDON

NW3 5LT

ISSUE	DATE	STATUS	REVISION DESCRIPTION	PAGES
00	21 May 2016		Initial Design	

SOUTHERN		Client:	CP Plus Limited			Ref: C0745 Calc 01 Rev: 00					
	AL	Project:	66, Fitzjohn's Avenu	e, NW3 5LT		Sheet		3 of	38		
	Ī	Section:	Preliminary Design of	Secant Bored P	ile Wall	By:	MP	Date:	21/05/16		
						Chk:		Date:			
C	onte	ents									
		-						Page			
1		Introduc	tion					4			
	1.1	Reference	e Documents					4			
2	21	Ground C	onditions					6			
	2.1	Strata Pr	10†11e					6			
	2.2	Soll Para	meters					/			
2	2.3	Groundwo Degia of I	Dagion					0			
3	21	Basis of I	Jesign					9			
	3.1	Beneral Beening (anacity					9			
	3.2	Letenal	apacity					9			
	3.5	Ctructur	ol Denemetand					9			
	3.4 I	Factors	al Parameters					9			
	Г Д 1	Avial Log	of Sulery					10			
	ч.1 Д 2	Axial Loa	d Tancian					10			
	ч.с Д 3		nd Moment Loads					10			
	ч.5 ДД	Strut log	de					10			
5	т.т 5	Pacie of I	Vacion					10			
j	51	Dusis Uj I	Skin Eniction					11			
	5.1	Heave Fo						11			
	5.2	Pile Space	ino					11			
	5.5	Pile Tole	ancac					11			
6	5.4	Analysis						11			
	, 61	Wall Dec	cription					12			
	6.2	Construc	tion Sequence for wall					12			
	6.3	Surchard	non Sequence for wall					12			
	6.4	Lateral a	nd Moment Loads					13			
	65	Wallan o	itnut					13			
	6.6	Peinforce	ement					13			
	6.7	Wall Ver	tical Capacity					13			
	6.8	Defelctio	n an					13			
	0.0										
Δ	nne	ndix A	Sketches Showing Wall	Geometry				15			
				,							
A	nne	ndix B	Wallap runs				16 to	36			
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
A	ppe	ndix C	Reinforcement Sheets				37 to	38			
Southern Geotechnic	cal Des	sign Limited	Contact: Mark Pearson	Tel: 07932 374 955	e-mail: N	Nark@SGDL.co	.uk	Website ww	w.SGDL.co.uk		

SOUTHERN	Client:	CP Plus Limited	Ref:	<i>C</i> 074	5 Calc	01	Rev:	00
	Project:	66, Fitzjohn's Avenue, NW3 5LT	Sheet		4 of		38	
	Section:	Preliminary Design of Secant Bored Pile Wall	By:	MP	Date	::	21/05	i/16
			Chk:		Date	::		

Introduction

1

CP Plus Ltd has commissioned Southern Geotechnical Design Limited to carry out the preliminary design for the secant pile walls that are required for to retain the ground at 66, Fitzjohns Avenue, London NW3 5LT. The wall will be constructed as a propped bottom up excavation. Ground level is at 19.3mOD formation is at 15.0mOD (allowing for 485mm of slab construction).

1.1 Reference Documents

Specification	ICE SPERW
Site Investigation	SLR Hydrology Report For Basement Impact Assessment
Drawings	Numbered 15094/SK01 "Typical Section Through Basement"
Michael Chester	Numbered 15094/SK02 revision A "Assumed Sequence of
	Construction".
	Numbered 15094/SK03 "Section Indicating Surcharge Loading"
Web Architects	Numbered 1169.01.01(-) "Location Plan".
	Numbered 1169.01.11(-) "Proposed Front Elevation".
	Numbered 1169.01.12(-) "Proposed Basement Plan".
	Numbered 1169.01.13(-) "Proposed Ground Floor Plan".
	Numbered 1169.01.14(-) "Proposed First Floor Plan".
	Numbered 1169.01.15(-) "Proposed Second Floor Plan".
	Numbered 1169.01.14(-) "Proposed Roof Plan".
MJH Surveyors	Numbered 0160 03 "Front Elevation No 66".
	Numbered 0163 01 "Site Plan".
	Numbered 0163 01 "Roof Plan".
	Numbered 0163 04 "Rear Elevation No 66".
	Numbered 0163 05 "Side Elevation No 66".
	Numbered 0163 06 "Side Elevation No 66".
	Numbered 0163 07 "Side Elevation".
	Numbered 0163 08 "Rear Elevation No 12".
Codes, Standards & Refe	erences:
	BS EN 1997-1: 2004 Eurocode 7: Geotechnical Design - Part 1:

General Rules
UK National Annex to Eurocode 7: Geotechnical Design - Part 1:
General Rules.
CIRIA C580 London 2003 Embedded Retaining Walls - Guidance
For Economic Design
BS EN 1992-1-1: 2004 Eurocode 2: Design of Concrete Structures
- Part 1-1: General Rules and Rules for Buildings
UK National Annex to Eurocode 2: Design of Concrete Structures
Part 1-1: General Rules and Rules for Buildings
"Pile design and construction practice", M J Tomlinson, 4th ed,
1994.

SOUTHERN	Client:	CP Plu	s Limi	ted				Ref :	<i>C</i> 074	5 Calc 01	Rev: 00	
GEOTECHNICAL	Project :	66, Fitz	john's	Avenu	e, NW	'3 5LT			Sheet		5 of	38
	Section:	Prelimin	ary De	sign of	: Seca	nt Bor	ed Pil	e Wall	By:	MP	Date:	21/05/16
									Chk:		Date:	
			Charts	s for th	he desi	gn of	circulo	ır column	s to Euroco	des, Is	structE	
			Manua 2	l for th	ne desi	gn of c	oncre	te buildin	g structure	s to Eu	rocode	
			<u> </u>									
Southern Geotechnical D	esign Limited	Contact: N	Nark Pear:	son	Tel: 07	932 374	955	e-mail: /	Mark@SGDL.co	.uk	Website ww	w.SGDL.co.uk
	-											

	Client: CP Plus Limited Ref: C0745 Calc 01 Rev: 00														
GEOTECHNICAL	Proj	ect:	66, Fi	tzjol	hn's Av	venue,	NW	'3 5LT			Sheet		6 of	38	
	Sect	tion:	Prelin	ninar	y Desig	n of s	Seca	nt Bored Pil	e Wall		By:	MP	Date:	21/0	5/16
											Chk:		Date:		
	0														
2	Grou	und Co	onditi	ons											
2.	1 51	trata P	Profile											_	
	Th	ne aroui	nd inves	stigat	ion shou	vs the	folle	owing strata:							
Depth	۱	WSO	02	WS	501	Bŀ	101		D	esi	gn	Lev	el		
0.0		Ø		B	8	5	ğ			\otimes		1	9.0		
-10		×			ğ		8 1.	00		X		1	80		
		×			8		-			X			0.0		
-2.0					8		-			X		1	7.0		
-30		×		Š	2.94		-			X	3.00	1	60		
			5				-			111	(16.0)				
-4.0	-		cg	Ē	-		- - cg		cg		4.50	1	5.0		
-50		3		Ē	_ cg		- - st				(14.5)	1	40		
		- 3					3							_	
-6.0	-	ġ		-			3					1	3.0		
-7.0		3		E						111		1	2.0		
		End a	t 7.0m	End	at 7.0m		-							_	
-8.0							-					1	1.0		
-9.0						E	-					1	0.0		
						╞								_	
-10.0												9	9.0		
-11.0							-					8	3.0		
							-							_	
-12.0					En	d of B	-1 3H 15	.0m		12-	I		7.0		
						_									
	Ke	sh: 🕅	Made	Grour	nd	Ŀ	<u>-</u> St	iff slighty sai	ndy Lon	dor	n Clay			_	
	Th	ne 'desi	ign' bor	ehole	e is ther	efore	take	n as:							
		From	PPL 16.00	to to	16.00 14 50)	Made Ground	d ds - sana	-lv i	Clay			_	
		From	14.50	to	Toe	mOD)	Stiff slighty	sandy l	Lon	idon Clay				
	6											·			
	Groun 15094	nd wate 4 SKN1	r was s [.] of 16 4	rruck mOD	in BH1 is taker	at 5.0 1 as m	m de ore r	pth, however ealistic	The leve	el g	jiven on dr	rawing		-	
							F 1 - 7	1000 074 07-			LO COL				

SOUTHERN	Clie	nt:	CP Plu	ıs Li	mite	ł						Ref	:	<i>C</i> 074	15 C	Calc C	01 Re	v:	00
GEOTECHNICAL	Proj	ject:	66, Fit:	zjohn	's Ave	enue, N	1W3 i	5LT				She	et		7	of	3	8	
	Sec	tion:	Prelimi	nary [Desigr	n of Se	ecant	Bore	ed Pile	e W	all	By:		MP	D	ate:	21	1/05	/16
LIMITED												Chk	:		D	ate:			
	Ĩ																		
2.	2 5	oil Par	rameters																
	AA a da	matal.			.:				in a d		h a					- f	_		
	these	rately 2 paran	conserva neters will	l be fa	n paro ictored	dmerer d for v	arious	of th	nrea T ne ana	lvse	ne wo s as d	n caic etailea	d beli	ons. 3 ow:	ome	OT			
					C	n Su		c'		tc	ιn φ'		E						
		Fo	or SLS and	lysis		1.0		1.0			1.0		1.0						
		For	Com 2 and	lysis		1.40		1.25		1	.25		1.0						
	WAL	L FRIC	TION														_		
	For t	he bor	red pile wo	alls the	ere wi	ll be fr	riction	beti	ween 1	the s	ioil an	id the	piles	, this	acts	s to	_		
	Howe	e the Ver wh	active limi	ompre	on pre	ssure o load is	ina inc annlie	creas	e the the w	pass all i	ive. t sett	les sli	ahth	/ in th	nis c	nse			
	since	the p	oiles are r	novina	in th	e same	e dire	ction	n as t	he a	ctive	wedge	g, z, th	e acti	ive v	wall			
	fricti	on is t	aken as ze	ero. Th	ne pass	sive wa	II frict	tion ł	noweve	er re	mains	s the s	, ame.						
	The c	uctive u	wall friction	on will	not be	e set to	o zero	since	e ther	e is	no ver	rtical l	oad c	appliec	d to	the			
	piled	walls.															_		
	The i	Indraii	ned shear	strer	igth (t	riaxial	s and	hanc	l vane	e) pla	ot ver	sus de	epth	is pre	esen	ted	_		
	below	<i>ı</i> .															_		
	-		4	.5N \	Vs Level														
	í	20]			
																-			
		18			•												_		
		16																	
	_								•								_		
	-	14 🕂														-			
									• \							-			
	โก	12 🕂													_	-			
	Į															-			
	5	10 +														-	_		
	s e	_														-	_		
	د	8															_		
	_	6															-		
	_																		
		4			45 x 1							\ •			_				
					y 4.5 X I	•										-	_		
	_	2 -	—	- Clay	Clay Design Line											-	_		
	_															-	_		
		0 –														-			
	0 20					40 60						80 100				00	-		
	Undrained					r Str	rengt	th a	nd H	lanc	l Vai	nes							
Southern Geotechnical D	esign Lin	nited	Contact:	Mark Pe	earson	Te	l: 07932	2 374 9	955	e-	mail: M	ark@SG	DL.co.	uk	We	ebsite	www.SG	DL.co	.uk

SOUTHERN	Client :	Client: CP Plus Limited							Ref: C0745 Calc 01 Rev: 0					00		
	Projec	t: 66, Fitzjoł	nn's Ave	nue,	NW	3 5LT	Г				Sheet		8 (of	38	
	Sectio	n: Preliminary	/ Design	of S	ieca	nt Boi	red	Pile	Wall		By:	MP	Da	te:	21/0!	5/16
											Chk:		Da	te:		
															_	
	MAD	E GROUND / OV	ERBURDI	EN												
		Bulk density,		γb) =	18	kΝ	l/m³								
		Soil type		Co	ohesi	ionless	5									
		Angle of friction	on,	φ'	=	30	0									
		Effective cohe	sion	c'	=	0	kΝ	l/m²								
		Earth pressure	coeffici	ents,		at res	st,	ko =	0.!	50						
		Elastic Modulus	5	E	=	100	00	kN/r	n²/m							
	CLAYGA	TE BEDS														
		From 16mOD to	o 14.5mO	D - F	irm s	sandy	clay	- Clay	ygate							
		Bulk density,		γb) =	20	kΝ	l/m³								
		Soil type		Co	ohesi	ive U	ndro	ained								
		Undrained She	ar Streng	gth	Cu	= 4	40	kN/r	n²							
		allow softer	ning 20) %	Cud	= :	32	kN/r	n²							
		Elastic Modulus	s, Eu / Cu	=	80	00 ba	ised	on co	intilev	/er	and large	strain				
					Eu	= :	32	MN/	m²							
		Drained parame	eters													
		Drained Shear	Strength	1 C'	=	0 kN	J/m	2								
		Angle of frictio	on,	φ'	=	22	0									
		Earth pressure	coeffici	ents,		ko =	C	0.625								
		Elastic Modulus	s, E' =	0.7	Eu											
					F.	= 2	2.4	MN/	m²							
	LONDON			<u> </u>		1.1	L .	<i>a</i>			<i>a</i>					
		From 14.5mOD	to loe -	Stift	· slig	htly so	andy	/ Clay	- Lon	do	n Clay.					
		Bulk density,		γD) =	20	KI/	l/m ³								
		Soll type	Character and	2.2	onesi	ve U	naro 55	inea	10		401/2					
		Unarainea She	ar Streng	jtn > ⁰	Cud	- :	20	+	1.9	Z	KIN/m^2					
		Electic Modulus		J /o	Cua	- 4	44	+	1.52	z	KIN/M	atrain				
		Elastic Modulus	s, Eu / Cu	=	50		isea 11	on co	1 52	/er	ana large	strain				
		Drained parama	tone		Cu	- •	++	Ŧ.	1.52	z						
		Drained parame	Stranath	- c'	_	0 44	1/m	2								
		Anale of friction	on	ں ا س'	-	24	0							_		
		Forth pressure	coeffici	φ nts	-	ko =	C) 593								
		Elastic Modulus	s F' =	07	Fu	1.0 -										
			,	0.7	F'	= 3	0.8	+ .	1 07	7	MN/m ²			_		
						- 0	0.0		1.07	2	770 3 7 111			_		
														_		
2.	.3 Grou	ndwater														
	Ground w	vater was struck	in BH1 at	t 5.0n	n dei	oth, ho	ower	/er th	e leve	el a	iven on dr	awing				
	15094 SI	K01 of 16.4mOD	is taken d	is mo	re re	, zalistio	с									
Southern Geotechnical D	esign Limited	Contact: Mark	<pre> Pearson </pre>	T	el: 07	932 374	1 955		e-mail	: Ma	ark@SGDL.co	.uk	Web	site wwv	v.SGDL.c	o.uk

SOUTHERN		Client: CP Plus Limited						Ref	: (C074	5 Ca	lc 01	Rev	: 00						
GEOTECHN	IICAL	Pr	oject:	66, F	itzjoh	in's A	veni	le, NV	/3 5L	Т				She	et		9 (of	38	
		Se	ction:	Prelir	ninary	, Desi	gn o	f Seco	ant Bo	ored	Pile	W	all	By:	1	MP	Da	te:	21/0	05/16
														Chk	:		Da	te:		
												_								
	3	Ba	SIS OT	Desigi	n															
	3	1	General																	
		The	e design i	s based	l on th	e follo	wing	:												
		-	The soil	and pro	pertie	s used	are	correc	t for	the w	hole	sit	e.							
		-	The stra	ta used	are co	prrect	for	the wh	ole sit	e.										
		-	The reta	ined ge	ometry	y and a	cons	tructio	n sequ	ences	s are	as	given	in App	endi>	(A				
		-	Surcharg	ge on th	e reta	ined s	oil is	as det	ailed	in sec	tion	6.3	3.							
	3	2	Peanina	Canaci	+															
	5	.८	Bearing	Capaci	iy															
		The	ere are n	o vertic	al load	ls on t	he w	all, oth	er the	in tha	se e	xer	rted b	v the t	ties.					
	3	.3	Lateral	Loads																
		The	e forces induced in the piled					all and	the p	rops	will	be	calcu	lated	using	the	Wallo	ар		
		con	omputer programme.															_		
																		_		
	2	1	Church																	
	3	.4	Structu	irai Par	amete	ers														
		34	1 Wall	Piles														_		
		0.1																		
			Туре		CFA															
			Grout fc	u	35	N/m	m²	28 da	y char	ractei	ristic	c ci	ube st	rength	ı					
			fc	:k	28	N/m	m²	28 da	iy char	ractei	ristic	c cy	ylinder	r strer	igth					
			Reinforc	ement f	fy 5	500 N	J/mn	1²												
			Young's	Modulus	s of pil	e: ins	anta	ineous	Ecm =				22 × {	(fck +	8) / 1	0} / :	1.5} ^{0.3}	;		
											-	=	32.3	GN/m	2				\square	
						S	hort	term			Ēcs	=	0.7	Eci	2					
											F	=	22.6	GN/m	1 ²					
						10	ong t	erm			ECS	=	0.5	ECI	2					
			Diamata	n	350	mm						-	10.2	GIN/II	1					
			Spacino	+ + -	550	mm														
			Second A	Noment	of are	a =	πď	¹ / 64s										_		
				1	1.34E-0	03 n	,4 / r	n , c 13												
			Thus wal	lstiffn	ess is:		1													
			Short te	rm	3029	0 k	N/m	2												
			Long teri	m	21640) k	N/m	2												
																			-	

SOUTHERN	Client: CP Plus Limited									Ref: C0745 Calc 01 Rev:				
GEOTECHNICAL	Project	1: 66, Fi	itzjohn's	Avenue, I	VW3 5LT			She	et	10	0 of	38		
	Section	1: Prelin	ninary Des	sign of S	ecant Bor	ed Pile W	'all	By:	М	P	Date:	21/05	5/16	
								Chk	:		Date:			
	342 5+	aute												
	5.4.2 51	ruis												
	Strut det	ails are gi	ven below:											
	Туре	Centre	Spacing	Cross	Young's	Free	Ang	le	Pre-	Te	ension			
		Level		Section	Modulus	Length		5	Stress	All	owed?			
	Tomp	(mOD)	(m) 5	(m²)	(kN/m²)	(m) 5	(°)		(kN)	_	No			
	Perm GF	18.5	5	0.02	2.0E+08	5	0		0.0	-	No			
	Perm B1	15.2	1	0.4	2.0E+07	5	0		0.0		No			
4	Factors	s of Saf	^c ety											
	1 Avial	Load Ca	mproceio	n										
_			mpression											
	The facto	or of safet	ty for the v	vertical lo										
4.;	2 Axial	Load - Te	ension											
						2	0							
	The facto	or it satety	y for the t	ensile tie	load will be	2 3	.0							
4.3	3 Later	al and Mo	oment Loa	ds										
	The force	es within t	he piles in	the wall h	ave been c	alculated (using E	C7. An	sLS a	and a	single			
	ULS (Des	sign appro	ach 1 Com	bination	2) analyse	s have be	en car	ried o	out wit	rh th	ne soil			
	paramete	rs factore	d as detail	ed in sect	ion 2.2.	6								
	The forc	es genera f the nile	ted by th	ese analy tong ana a	ses will be c follows:	e further	facto	red to	or the	stru	ictural			
	Endrysis 0	r ULS use	factor of	1.00	5 10110103.									
	Foi	r SLS use	factor of	1.35										
	The pile s	The pile structural analysis will be carried out with the maxir								resu	lts.			
4.4	4 Strut	Loads												
	The s	trut loads	s are take	en from t	he ULS a	nd SLS v	vallap	analys	es and	l are	e then			
	factor	red for the	e strut des	sign using	the same	factors de	etailed	for st	tructur	ral ar	nalysis			
	above.											+ +		
Southern Geotechnical No	esion Limited	Conter	t: Mark Pears	son Ta	1: 07932 374	955 0	-mail· Ma	urk@<~!			Website we) uk	
Southern Geotechnical De	4 Strut The s factor above.	Loads trut loads red for the Contac	s are take e strut de: 	en from 1 sign using	he ULS a the same	nd SLS v factors de 955 e	vallap etailed -mail: Ma	analys for st	es and tructur	l are ral ar	2 then nalysis Website wy	vw.SGDL.cu	p.uk	

SOUTHERN		Cl	ient:	C	P P	lus I	Limit	ed							R	et:	С0	745	5 Ca	alc 01	Rev	: 00
GEOTECHNI	CAL	Pr	ojec	t: 6	6, F	itzjol	hn's A	venu	e, N	W3	5LT				S	hee	t	1	1	of	38	
		Se	ectio	n: Pi	relin	ninar	y Desi	gn of	Se	cant	Bor	ed P	Pile V	Vall	B	y:	MP	,	Da	te:	21/0	05/16
															C	nk:			Da	te:		
	-				ŀ																	
	5	Bo	1515 0	ot De	sigi	1																
	5.	1	Nega	tive S	ikin	Frict	ion															
		C :					• • •				-	41 4	41									
		fri	ction c	e she on the	uer piles	, ther	refore	no all	ieiy owar	uniik nce is	ery maa	de fo	or any	5011 /.	will i	nauce	e nego		e si	KIN		
	5	2	Нели	e For	205																	
	5.	2	Tieuv																			
		Th	ere is	no like	lihoo	od of	heave t	oeing	indu	ced i	n th	e wa	ll pile	s.								
																					\vdash	
	5.	3	Pile S	Spacin	9																	
				•11.1																		
		In	e piles	will b	e des	signed	d on the	e basi	IS OT	the	nomi	nal 5	50m	m spo	acing.							
	5.	4	Pile 7	olera	nces	5																
		Th	e piles	will b	e ins	tallec	l to the	e star	dara	d pilir	na ta	lera	nces.	that	is 1:7	5 ver	rticalit	tv a	nd +	-or-		
		75	mm po	sition	(No	ote th	nat the	e pos	ition	al to	lera	nce	incre	ases	if cu	t off	level	is	bel	ow		
		pla	tform	level o	at 1:7	75).																
																					\vdash	
																					+	
Southern Geotech	nnical De	esign	Limited		Contac	t: Mar	k Pearsor	1	Tel:	07932	374	955	_	e-mail:	Mark@	SGDL	.co.uk		Wel	osite w	ww.SGDL	co.uk

SOUTHERN	Cl	ient:	CP Plus	Limited	1			Ref: C0745 Calc 01 Rev: 00				
GEOTECHNICAL	Pr	roject:	66, Fitzjo	hn's Ave	nue, l	NW3 5LT	-	Sheet	12 of 38			
	S	ection:	Preliminar	y Design	of S	ecant Bor	red Pile Wall	By: N	AP Date: 21/05/16			
								Chk:	Date:			
6	A	nalysis										
	5.1	Wall De	scription									
	Th	e retainir	ng wall is req	uired to a	allow t	for the sh	ort term exco	avation and cons	truction of			
	The	e new str	carry the h	ne long t Idroctatio	erm T	nere will sures not	be a lining wo	all which will ev a this the niled	wall is also			
	de	sioned for	r these loads		. pres	501 65, 1101	-with-stunuin	g mis me plied				
	Th	e Enainee	er's sketch	indicates	that	the piled	wall will be	installed, and,	following a			
	mi	nimal exco	avation (say	1.0m) will	be tr	immed and	l a capping be	am cast. A temp	orary strut			
	wil	l be insta	lled and exc	avation co	ntinue	ed to form	nation level. T	he base slab and	l roof slabs			
	wil	l then be	cast and the	tempora	ry str	ut remove	d.					
	5.2	Constru	ction Seque	ence for	wall							
						<u>.</u>						
	Th	e constru	ction sequen	ce is deta	iled b	elow.						
		1 Prepo	ire plattorm	at 19.0mC	JD (es	stimated).						
		2 Apply	rexisting sur	ennecent	ac ic c	ituation						
		J Re Ze	a oeneral sur	charges	45 15 5	inuation.						
		5 Exca	vate 18 0mOl	D to allow	cap t	o be built						
		6 Insta	Il temporary	prop at 1	8.5mC	DD						
		7 Exca	vate to 15.0m	nOD (Allor	N 0.35	ōm unplann	ed excavatior	n in ULS Com 2)				
		8 Fill to	5.48mOD	on excava	ted si	de.						
		9 Insta	ll B1 slab to	prop wall	at 15.	2mOD						
		10 Remo	ve temporar	y prop at	18.5m	OD						
		11 Allow	soil and wall	to relax	to lon	g term par	rameters					
		12 Allow	long term fl	ood condi	tions							
	5.3	Surchar	rge Loads									
	Th	o cunchan	loos used one	datailad	balow							
	in	1 Ruildi	yes used are	allow	115	kN/m	applied at	180 mOD				
			ing dedd	over	10	m width	at 40 m	from wall				
		2 Buildi	ina live	allow	17	kN/m ²	applied at	18.0 mOD				
				over	1.0	m width	at 4.0 m	from wall				
		3 Gener	ral	allow	10	kN/m ²	applied at	19.0 mOD				
				at	0.0	m from t	he wall over	4.0 m width				
									+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
									+++++			
						1.07000						
Southern Geotechnical	Design	Limited	Contact: Mar	rk Pearson	Te	el: 07932 374	1955 e-ma	il: Mark@SGDL.co.uk	Website www.SGDL.co.uk			

SOUTHERN	THERN Client: CP Plus Limited					Ref: C0745 Calc 01 Rev: 00						
	Project	t: 66	, Fitzjoh	n's Aven	ue, NW	3 5LT	-		She	et	13 of	38
	Section	n: Pr	eliminary	Design o	of Seca	nt Bor	red Pile V	Vall	By:	MP	Date:	21/05/16
									Chk	::	Date:	
	4		AA									
0.4	4 Later	al and	Moment	Loads								
	There are	e no lat	eral or mo	ment load	ls.							
6.5	5 Walla	ıp outp	out									
	The \A/-!!		•			A 10 10 - 10						
	The Wall	ap inpu	t ana outp	ut is pres	entea in	Apper	IOIX B					
	Wall		Moment	Shear	Toe	Defl	Struts	(kN/n	1)			
			(kNm/m)	(kN/m)	(mOD)	(mm)	Temp	Pe 10	rm 72	Perm		
	_						10.5	1.	<i></i>	15.2		
	All	Com 1	50	70			40	3	35	85		
		Com 2	65 50	74 50	12.0	8	55 40		15 35	100 40		
		Des	68	95	12.0	8	55	4	47	115		
	Note	Strut	loads are	kN per m	run of v	vall at	90 degree	es to wa	ıll			
6.6	6 Reinf	orcem	ent									
	Peinforce	ment	is design	ed using	the T	Stri	ict E cir	cular	colum	n design	charts	
	conservat	tively b	ased on th	ie uncased	d pile se	ction.		cului	coram	n acoign	chairs,	
	Standard	sheets	s are used	, these ar	e preser	nted in	Appendix	C.				
6.7	7 Wall	Vertic	al Capacit	ty								
	No loade			5	470 mC							
	IND IDUUS			J	4.70 MC							
6.8	8 Defe	lction										
	The antic	ipated	maximum	deflectio	n is give	n in se	ction 6.5 a	above.				
	The antic	ipated	deflected	shape of	the wal	l is pre	sented in	graphi	al for	rmat overle	eaf.	

SOUTHERN	Client: CP Plus Limited	Ref: C07	45 Calc 01 Rev: 00
GEOTECHNICAL	Project: 66, Fitzjohn's Avenue, NW3 5LT	Sheet	15 of 38
	Section: Preliminary Design of Secant Bored Pile Wall	By: MP	Date: 21/05/16
		Chk:	Date:
APF	PENDIX A - Construction Sequences		
D	efer to Michael Chester Drawing 15094/SK02 revision A		
^	erer to Michael chester Drawing 130347 SK02 revision A		
S	itages		
1	Prepare platform at 19.0mOD (estimated).		
2	Apply existing surcharges		
3	Re zero walls to represent as is situation.		
4	Apply general surcharges. U		
5	Excavate 18.0mOD to allow cap to be built.		
7	Excavate to 15 0mOD (Allow 0.35m unplanned excavation in UL	5 Com 2)	
8	Fill to 15.48mOD on excavated side.		
9	Install B1 slab to prop wall at 15.2mOD		
10	0 Remove temporary prop at 18.5mOD		
1	1 Allow soil and wall to relax to long term parameters		
1	2 Allow long term flood conditions		
Southern Geotechnical I	Design Limited Contact: Mark Pearson Tel: 07932 374 955 e-mail: N	\ark@SGDL.co.uk	Website www.SGDL.co.uk

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sł	neet	16 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

APPENDIX B - WALLAP INPUT / OUTPUT - COM 1

SOUTHERN GEOTECHNICAL DESIGN	Sheet No.	
Program: WALLAP Version 6.05 Revision A45.B58.R49	Job No. C0745	
Licensed from GEOSOLVE	Made by : MP	
Data filename/Run ID: Com 1	1	
66 Fitzjohns Avenue, London NW3 5LT	Date:23-05-2016	
Com 1	Checked :	

INPUT DATA

Units: kN,m

SOIL PROFILE										
Stratum	Elevation of	Soil	types							
no.	top of stratum	Active side	Passive side							
1	19.00	1 Made Ground	1 Made Ground							
2	16.00	2 Claygate Undr	2 Claygate Undr							
3	15.00	2 Claygate Undr	3 Claygate To soft							
4	14.50	4 London Clay Undr	4 London Clay Undr							

SOIL PROPERTIES (Unfactored SLS soil strengths)

	Bulk	Young's	At rest	Consol	Active	Passive	
Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
Made Ground	18.00	10000	0.500	OC	0.333	4.369	
				(0.200)	(0.000)	(0.000)	
Claygate	20.00	32000	1.000	OC	1.000	1.000	32.00u
Undr				(0.490)	(2.000)	(2.000)	
Claygate To	20.00	32000	1.000	OC	1.000	1.000	32.00u
soft				(0.490)	(2.000)	(2.000)	
London Cl	20.00	44000	1.000	OC	1.000	1.000	44.00u
(14.50)		(1520)		(0.490)	(2.000)	(2.390)	(1.520)
Claygate	20.00	1	1.000	OC	1.000	1.000	1.000u
(15.00)		(64000)		(0.490)	(2.000)	(2.000)	(64.00)
Claygate Dr	20.00	22400	1.000	OC	0.455	2.198	0.0d
				(0.150)	(1.349)	(2.965)	
London Cl	20.00	30800	1.000	OC	0.422	3.077	0.0d
(14.50)		(1070)		(0.150)	(1.299)	(4.665)	
	Soil type Description Datum elev.) Made Ground Claygate Undr Claygate To soft London Cl (14.50) Claygate (15.00) Claygate Dr London Cl (14.50)	Bulk Boil type density Description kN/m3 Datum elev.) Made Ground 18.00 Claygate 20.00 Undr Claygate To 20.00 (14.50) Claygate Dr 20.00 (15.00) Claygate Dr 20.00 London Cl 20.00 (14.50)	Bulk Young's Boil type density Modulus Description kN/m3 Eh,kN/m2 Datum elev.) (dEh/dy) 18.00 10000 Claygate 20.00 32000 Undr 20.00 32000 Claygate 20.00 32000 Undr 20.00 32000 Claygate 20.00 44000 (14.50) (1520) 1 Claygate 20.00 1 (15.00) (64000) 22400 London Cl 20.00 30800 (14.50) (1070) 1070	Bulk Young's At rest Soil type density Modulus coeff. Description kN/m3 Eh,kN/m2 Ko Datum elev.) (dEh/dy) (dKo/dy) Made Ground 18.00 10000 0.500 Claygate 20.00 32000 1.000 Undr 20.00 32000 1.000 Claygate To 20.00 32000 1.000 Soft 1 1.000 1.000 London Cl 20.00 1 1.000 (15.00) (64000) 1.000 Claygate Dr 20.00 30800 1.000 London Cl 20.00 30800 1.000 London Cl 20.00 30800 1.000	Bulk Young's At rest Consol Soil type density Modulus coeff. state. Description kN/m3 Eh,kN/m2 Ko NC/OC Datum elev.) (dEh/dy) (dKo/dy) (Nu) Made Ground 18.00 10000 0.500 OC Claygate 20.00 32000 1.000 OC Undr 20.00 32000 1.000 OC Claygate To 20.00 32000 1.000 OC Soft (0.490) 1.000 OC (0.490) London Cl 20.00 44000 1.000 OC (14.50) (1520) (0.490) OC (0.490) Claygate 20.00 1 1.000 OC (0.150) Claygate Dr 20.00 22400 1.000 OC (0.150) London Cl 20.00 30800 1.000 OC (0.150)	Bulk Young's At rest Consol Active Goil type density Modulus coeff. state. limit Description kN/m3 Eh,kN/m2 Ko NC/OC Ka Datum elev.) (dEh/dy) (dKo/dy) (Nu) (Kac) Made Ground 18.00 10000 0.500 OC 0.333 (0.200) 0000 0 0.000 0 0.000 Claygate 20.00 32000 1.000 OC 1.000 Undr 20.00 32000 1.000 OC 1.000 Claygate To 20.00 32000 1.000 OC 1.000 Soft 20.00 44000 1.000 OC 1.000 London Cl 20.00 1 1.000 OC 1.000 (14.50) 20.00 22400 1.000 OC 0.4455 Undon Cl 20.00 30800 1.000 OC 0.422 (14	Bulk Young's At rest Consol Active Passive Soil type density Modulus coeff. state. limit limit Description kN/m3 Eh,kN/m2 Ko NC/OC Ka Kp Datum elev.) (dEh/dy) (dKo/dy) (Nu) (Kac) (Kpc) Made Ground 18.00 10000 0.500 OC 0.333 4.369 Olaygate 20.00 32000 1.000 OC 1.000 1.000 Undr 20.00 32000 1.000 OC 1.000 1.000 Claygate To 20.00 32000 1.000 OC 1.000 1.000 Claygate To 20.00 32000 1.000 OC 1.000 1.000 London Cl 20.00 44000 1.000 OC 1.000 1.000 (14.50) (64000) (0.490) (2.000) (2.000) 2.000 Claygate Dr 20.00 22400

Additional soil parameters associated with Ka and Kp

		param	parameters for Ka parameters for						
		Soil	Wall	Back-	Soil	Wall	Back-		
	Soil type	friction	adhesion	fill	friction	adhesion	fill		
No.	Description	angle	coeff.	angle	angle	coeff.	angle		
1	Made Ground	30.00	0.000	0.00	30.00	0.500	0.00		
2	Claygate Undr	0.00	0.000	0.00	0.00	0.000	0.00		
3	Claygate To soft	0.00	0.000	0.00	0.00	0.000	0.00		
4	London Clay Undr	0.00	0.000	0.00	0.00	0.500	0.00		
5	Claygate Soft	0.00	0.000	0.00	0.00	0.000	0.00		
6	Claygate Dr	22.00	0.000	0.00	22.00	0.000	0.00		
7	London Clay LT	24.00	0.000	0.00	24.00	0.500	0.00		

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	17 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

Active sidePassive sideInitial water table elevation16.4016.40

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side			Passiv	re side		_
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press	•
		m	m	kN/m2		m	m	kN/m2	
1	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC
					2	13.00	16.40	34.0	
2	1	16.40	16.40	0.0	1	14.65	14.65	0.0	WC
					2	12.60	16.40	38.0	
3	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC+WC
					2	14.90	16.40	15.0	
4	1	18.00	18.00	0.0	1	15.00	15.00	0.0	WC
					2	14.90	16.40	15.0	

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 12.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 2.2600E+07 kN/m2 Moment of inertia of wall I = 1.3400E-03 m4/m run E.I = 30284 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

51015	and An	CHORD						
Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	18.50	5.00	0.020000	2.000E+08	5.00	0.00	0	No
2	19.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No
3	15.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No

SURCHARGE LOADS

001101111								
Surch		Distance	Length	Width	Surch	large	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	18.00	4.00(A)	100.00	1.00	115.00	=	N/A	1.00 -
2	18.00	4.00(A)	100.00	1.00	17.00	=	N/A	1.00 -
3	19.00	0.00(A)	100.00	4.00	10.00	=	N/A	1.00 -
4	15.20	-0.00(P)	100.00	100.00	20.00	=	N/A	1.00 -
-	10.20	0.00(L)	700.00	±00.00	20.00		T N / T T	· · ·

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sł	neet	18 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Change EI of wall to 100.00 kN.m2/m run
	100.00 kN.m2/m run
	No adjustments to wall displacements
2	Apply surcharge no.1 at elevation 18.00
3	Change EI of wall to 30284 kN.m2/m run
	30284 kN.m2/m run
	Reset wall displacements to zero at this stage
4	Apply surcharge no.2 at elevation 18.00
5	Apply surcharge no.3 at elevation 19.00
6	Excavate to elevation 18.00 on PASSIVE side
7	Install strut or anchor no.1 at elevation 18.50
8	Apply water pressure profile no.2 (Worst Cred.)
9	Excavate to elevation 14.65 on PASSIVE side
10	Change properties of soil type 3 to soil type 5
	Ko pressures will not be reset
11	Fill to elevation 15.40 on PASSIVE side with soil type 1
12	Install strut or anchor no.3 at elevation 15.20
13	Install strut or anchor no.2 at elevation 19.20
14	Remove strut or anchor no.1 at elevation 18.50
15	Apply surcharge no.4 at elevation 15.20
16	Apply water pressure profile no.3 (Worst Cred.)
17	Change properties of soil type 2 to soil type 6
	Ko pressures will not be reset
18	Change properties of soil type 5 to soil type 6
	Ko pressures will not be reset
19	Change properties of soil type 4 to soil type 7
	Ko pressures will not be reset
20	Change EI of wall to 21640 kN.m2/m run
	Yield moment not defined
	Allow wall to relax with new modulus value
21	Apply water pressure profile no.4 (Worst Cred.)
	FERY and ANALYSIS ODDIONS
FACTORS OF SA	FETY and ANALISIS OFTIONS
Limit Stat	e options: ULS DAI combination I
water p	factor of the second se
Partial	factor on $C^{*} = 1.000$
Partial	factor on Phi' = 1.000
Partial	factor on $Cu = 1.000$
Partial	factor on Soll Modulus = 1.000
Partial	factor on Permanent Uniavourable loads = 1.000
Partial	factor on Permanent Variable loads = 1.000
Partiar	factor on permanent variable loads = 1.100
Design	factor on calculated Bending Moments = 1.350
Parameters	for undrained strata.
Minimum	equivalent fluid density = 5.00 kN/m^3
Maximum	depth of water filled tension crack = 0.00 m
TIAXIIII	depen of water fified tension clack - 0.00 m
Bendina mo	ment and displacement calculation:
Method	- Subgrade reaction model using Influence Coefficients
Open Te	nsion Crack analysis? - No
Non-lin	ear Modulus Parameter (L) = 0 m
Boundarv c	onditions:
Length	of wall (normal to plane of analysis) = 1000.00 m

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
GEOTECHNICAL	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	19 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Width of excavation on active side of wall = 20.00 mWidth of excavation on passive side of wall = 20.00 m Distance to rigid boundary on active side $\,$ = 20.00 m $\,$

```
Distance to rigid boundary on passive side = 20.00 m
```


Open Tension Crack analysis - No

Soil deformations are elastic until the active or passive limit is reached

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	20 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

Limit State: ULS DA1 Combination 1

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	Y	Displa	acement	I	Bending	moment			Shear	force	
no.	coord			Calcu	lated	Facto	ored	Calcul	ated	Fact	ored
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN	.m/m	kN	.m/m	kN/m	kN/m	kN/m	kN/m
1	19.20	0.005	-0.000	0	-0	0	-0	0	-31	0	-42
2	19.00	0.005	-0.000	0	-6	0	-8	0	-31	0	-42
3	18.75	0.005	-0.000	1	-13	1	-18	4	-27	6	-36
4	18.50	0.006	-0.000	2	-20	3	-27	7	-31	9	-42
5	18.25	0.006	0.000	1	-26	2	-35	4	-30	6	-40
6	18.00	0.007	0.000	3	-31	4	-42	6	-27	9	-37
7	17.60	0.008	0.000	6	-38	8	-52	7	-23	10	-31
8	17.20	0.008	0.000	8	-44	11	-60	5	-18	7	-24
9	16.80	0.008	0.000	10	-48	13	-64	3	-12	4	-16
10	16.40	0.008	0.000	11	-48	14	-65	12	-4	16	-6
11	16.00	0.008	0.000	11	-46	15	-62	26	-0	34	-0
12	15.70	0.007	0.000	11	-41	14	-55	40	-2	53	-3
13	15.40	0.007	0.000	10	-34	13	-46	55	-4	74	-5
14	15.20	0.007	0.000	9	-30	12	-40	66	-16	89	-21
15	15.00	0.007	0.000	8	-25	11	-34	36	-6	49	-8
16	14.65	0.006	0.000	7	-13	9	-17	49	-3	66	-4
17	14.50	0.006	0.000	6	-6	8	-9	46	-2	62	-3
18	14.25	0.005	0.000	11	-0	15	-0	28	-3	38	-4
19	14.00	0.005	0.000	16	-0	22	-0	16	-4	22	-5
20	13.60	0.004	0.000	17	-0	23	-0	4	-3	6	-5
21	13.20	0.004	0.000	14	-0	18	-0	0	-12	0	-16
22	12.80	0.003	0.000	8	-0	11	-0	0	-14	0	-19
23	12.40	0.003	0.000	3	-0	3	-0	0	-10	0	-13
24	12.00	0.002	0.000	0	-0	0	-0	0	-0	0	-0

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Maximum and minimum bending moment and shear force at each stage

Stage			Bendin	g momen	t				- Shear	force		
no.		Calcu	lated		Fact	ored		Calc	ulated		Fact	ored
	max.	elev.	min.	elev.	max.	min.	max.	elev.	min.	elev.	max.	min.
	kN.m/m		kN.m/m	l	kN	.m/m	kN/m		kN/m		kN/m	kN/m
1	0	13.60	-0	14.25	0	-0	0	19.20	0	19.20	0	0
2	0	14.25	-0	15.00	0	-0	0	14.50	-0	15.20	0	-0
3	No ca	lculatio	on at t	his sta	ge							
4	0	17.20	-0	14.65	0	-0	0	14.50	-0	15.20	0	-0
5	1	14.25	-0	19.00	1	-0	1	18.50	-1	13.20	1	-1
6	11	16.00	-0	19.20	15	-0	7	17.60	-4	15.20	10	-6
7	No ca	lculatio	on at t	his sta	ge							
8	11	16.00	-0	19.20	14	-0	7	17.60	-4	15.20	9	-5
9	10	13.60	-39	16.00	14	-53	43	14.65	-31	18.50	58	-42
10	11	13.60	-39	16.00	14	-53	43	14.65	-31	18.50	58	-42
11	12	13.60	-40	16.00	16	-54	45	14.65	-31	18.50	61	-42
12	No ca	lculatio	on at t	his sta	ge							
13	No ca	lculatio	on at t	his sta	ge							
14	13	13.60	-42	16.80	18	-57	40	14.65	-29	19.20	54	-39
15	16	13.60	-46	16.40	22	-62	49	14.65	-30	19.20	66	-41
16	16	13.60	-45	16.40	22	-61	47	14.65	-30	19.20	64	-40
17	17	13.60	-48	16.40	23	-65	48	14.65	-31	19.20	65	-42

Souti				CP Plus	s Limited	Ref:	C0745 Co	alc 01	Rev:	00			
Geot	ECHN	ICAL	Project:	66, Fit:	66, Fitzjohns Avenue, London NW3					Sh	eet	38	
Design			Section:	Design	of Permo	anent Borg	ed Pile \	Wall	Ву	MP	Date	22/0	5/16
Limited									Chk				
18	17	13.6	0 -48	16.40	23	-65	46	14.50	-31	19.20	6	52 -	-42
19	10	13.6	0 -44	16.80	14	-59	43	15.20	-30	19.20	5	9 -	-40
20	12	13.6	0 -39	16.80	16	-52	45	15.20	-27	19.20	6	51 -	-36
21	10	13.6	0 -43	16.80	14	-58	66	15.20	-29	19.20	8	- 99	-39

Maximum and minimum displacement at each stage

Stage		Displac	ement		Stage description
no.	maximum	elev.	minimum	elev.	
	m		m		
1	0.000	14.00	-0.000	17.60	Change EI of wall to 100.00kN.m2/m run
2	0.000	12.00	-0.000	18.25	Apply surcharge no.1 at elev. 18.00
3	Wall dis	splaceme	nts rese	t to zero	Change EI of wall to 30284kN.m2/m run
4	0.000	12.00	-0.000	19.20	Apply surcharge no.2 at elev. 18.00
5	0.001	19.20	0.000	19.20	Apply surcharge no.3 at elev. 19.00
6	0.005	19.20	0.000	19.20	Excav. to elev. 18.00 on PASSIVE side
7	No calcu	ulation	at this	stage	Install strut no.1 at elev. 18.50
8	0.005	19.20	0.000	19.20	Apply water pressure profile no.2
9	0.007	16.40	0.000	19.20	Excav. to elev. 14.65 on PASSIVE side
10	0.007	16.40	0.000	19.20	Change soil type 3 to soil type 5
11	0.007	16.40	0.000	19.20	Fill to elev. 15.40 on PASSIVE side
12	No calcu	ulation	at this	stage	Install strut no.3 at elev. 15.20
13	No calcu	ulation	at this	stage	Install strut no.2 at elev. 19.20
14	0.008	16.40	0.000	19.20	Remove strut no.1 at elev. 18.50
15	0.008	16.40	0.000	19.20	Apply surcharge no.4 at elev. 15.20
16	0.008	16.40	0.000	19.20	Apply water pressure profile no.3
17	0.008	16.40	0.000	19.20	Change soil type 2 to soil type 6
18	0.008	16.40	0.000	19.20	Change soil type 5 to soil type 6
19	0.008	16.40	0.000	19.20	Change soil type 4 to soil type 7
20	0.008	16.80	0.000	19.20	Change EI of wall to 21640kN.m2/m run
21	0.008	16.80	0.000	19.20	Apply water pressure profile no.4
C	alculated	Bending	Moments	and Strut	Forces have been multiplied by a factor

uplied by a factor of 1.35 to obtain values for structural design.

Strut forces at each stage (horizontal components)

Stage	S	trut no.	1	S	trut no.	2	S	trut no.	rut no. 3 elev. 15.20 ated Factored kN per kN per strut strut 		
no.	at	elev. 1	8.50	at	elev. 1	9.20	at	elev. 1	5.20		
	Calcu	lated	Factored	Calcu	lated	Factored	Calculated Facto				
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per		
	m run	strut	strut	m run	strut	strut	m run	strut	strut		
8	0	1	1								
9	37	187	252								
10	37	187	253								
11	38	189	255								
14				29	29	39	12	12	17		
15				30	30	41	slack	slack	slack		
16				30	30	40	slack	slack	slack		
17				31	31	42	12	12	16		
18				31	31	42	15	15	21		
19				30	30	40	35	35	47		
20				27	27	36	43	43	57		
21				29	29	39	82	82	111		

* Indicates that the total force shown is the sum of the force in the strut plus a force applied at the same elevation which may represent temperature load or other forces which are part of the strut load. Force components are listed in the detailed results for individual stages.

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	22 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Bending moment, shear force, displacement envelopes

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	23 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

APPENDIX B - WALLAP INPUT / OUTPUT - COM 2

SOUTHERN GEOTECHNICAL DESIGN | Sheet No. Program: WALLAP Version 6.05 Revision A45.B58.R49 | Job No. C0745 Licensed from GEOSOLVE | Made by : MP Data filename/Run ID: Com 2 | 66 Fitzjohns Avenue, London NW3 5LT | Date:23-05-2016 Com 2 | Checked : Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of	Soil	L types
no.	top of stratum	Active side	Passive side
1	19.00	1 Made Ground	1 Made Ground
2	16.00	2 Claygate Undr	2 Claygate Undr
3	15.00	2 Claygate Undr	3 Claygate To soft
4	14.50	4 London Clay Undr	4 London Clay Undr

SOIL PROPERTIES (Unfactored SLS soil strengths)

		Bulk	Yo	ung's	At	rest	Сс	onsol	Ac	ctive	P	assive		
1	Soil type	density	Мо	dulus	CC	oeff.	st	tate.	1 i	mit		limit	Сс	ohesion
No.	Description	kN/m3	Eh,	kN/m2	F	0	N	C/OC	F	(a		Кр]	cN/m2
(Datum elev.)		(dE	h/dy)	(dKa	o/dy)	(Nu)	(F	(ac)	(Kpc)	((dc/dy)
1	Made Ground	18.00		10000	0.	500		OC	0.	333		4.369		
							(0)	.200)	(0.	000)	(0.000)		
2	Claygate	20.00		32000	1.	.000		OC	1.	000		1.000		32.00u
	Undr						(0)	.490)	(2.	000)	(2.000)		
3	Claygate To	20.00		32000	1	.000		OC	1	.000		1.000		32.00u
	soft						(0)	.490)	(2.	000)	(2.000)		
4	London Cl	20.00		44000	1.	.000		OC	1.	000		1.000		44.00u
	(14.50)		(1520)			(0)	.490)	(2.	000)	(2.390)	(1.520)
5	Claygate	20.00		1	1.	.000		OC	1.	000		1.000		1.000u
	(15.00)		(64000)			(0)	.490)	(2.	000)	(2.000)	(64.00)
6	Claygate Dr	20.00		22400	1.	.000		OC	0.	455		2.198		0.0d
							(0)	.150)	(1.	349)	(2.965)		
7	London Cl	20.00		30800	1.	.000		OC	0.	422		3.077		0.0d
	(14.50)		(1070)			(0)	.150)	(1.	299)	(4.665)		

Additional soil parameters associated with Ka and Kp

		param	parameters for Ka			eters for	r Kp		
		Soil	Wall	Back-	Soil	Wall	Back-		
	Soil type	friction	adhesion	fill	friction	adhesion	fill		
No.	Description	angle	coeff.	angle	angle	coeff.	angle		
1	Made Ground	30.00	0.000	0.00	30.00	0.500	0.00		
2	Claygate Undr	0.00	0.000	0.00	0.00	0.000	0.00		
3	Claygate To soft	0.00	0.000	0.00	0.00	0.000	0.00		
4	London Clay Undr	0.00	0.000	0.00	0.00	0.500	0.00		
5	Claygate Soft	0.00	0.000	0.00	0.00	0.000	0.00		
6	Claygate Dr	22.00	0.000	0.00	22.00	0.000	0.00		
7	London Clay LT	24.00	0.000	0.00	24.00	0.500	0.00		

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	24 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

Active sidePassive sideInitial water table elevation16.4016.40

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side		Passive side					
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.		
		m	m	kN/m2		m	m	kN/m2		
1	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC	
					2	13.00	16.40	34.0		
2	1	16.40	16.40	0.0	1	14.65	14.65	0.0	WC	
					2	12.60	16.40	38.0		
3	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC+WC	
					2	14.90	16.40	15.0		
4	1	18.00	18.00	0.0	1	15.00	15.00	0.0	WC	
					2	14.90	16.40	15.0		

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 12.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 2.2600E+07 kN/m2 Moment of inertia of wall I = 1.3400E-03 m4/m run E.I = 30284 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

51015	and An	CHORD						
Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	18.50	5.00	0.020000	2.000E+08	5.00	0.00	0	No
2	19.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No
3	15.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No

SURCHARGE LOADS

Surch	Equiv. Partial
-arge	- soil factor/
no.	e type Category
1	N/A 1.00 -
2	N/A 1.00 -
3	N/A 1.00 -
4	N/A 1.00 -
3 4	N/A N/A

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

Southern	Client:	CP Plus Limited	Ref:	C0745 C	Calc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	25 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Change EI of wall to 100.00 kN.m2/m run
	100.00 kN.m2/m run
-	No adjustments to wall displacements
2	Apply surcharge no.1 at elevation 18.00
3	Change EI of wall to 30284 kN.m2/m run
	30284 kN.m2/m run
	Reset wall displacements to zero at this stage
4	Apply surcharge no.2 at elevation 18.00
5	Apply surcharge no.3 at elevation 19.00
6	Excavate to elevation 18.00 on PASSIVE side
7	Install strut or anchor no.1 at elevation 18.50
8	Apply water pressure profile no.2 (Worst Cred.)
9	Excavate to elevation 14.65 on PASSIVE side
10	Change properties of soil type 3 to soil type 5
	Ko pressures will not be reset
11	Fill to elevation 15.40 on PASSIVE side with soil type 1
12	Install strut or anchor no.3 at elevation 15.20
13	Install strut or anchor no.2 at elevation 19.20
14	Remove strut or anchor no.1 at elevation 18.50
15	Apply surcharge no.4 at elevation 15.20
16	Apply water pressure profile no.3 (Worst Cred.)
17	Change properties of soil type 2 to soil type 6
	Ko pressures will not be reset
18	Change properties of soil type 5 to soil type 6
	Ko pressures will not be reset
19	- Change properties of soil type 4 to soil type 7
	Ko pressures will not be reset
20	Change EI of wall to 21640 kN.m2/m run
-	Yield moment not defined
	Allow wall to relax with new modulus value
21	Apply water pressure profile no.4 (Worst Cred.)
FACTORS OF S	AFETY and ANALYSIS OPTIONS
Limit Sta	te options: ULS DA1 Combination 2
Water	pressures : Worst Credible
Partia	l factor on C' = 1.250
Partia	l factor on Phi' = 1.250
Partia	l factor on Cu = 1.400
Partia	l factor on Soil Modulus = 1.000
Partia	l factor on Permanent Unfavourable loads = 1.000
Partia	1 factor on Permanent Favourable loads = 1.000
Partia	1 factor on Permanent Variable loads = 1.300
Stability	analysis:
Method	of analysis – Strength Factor method
Overal	l factor on soil strength for calculating wall depth = 1.20
	jj
Parameter	s for undrained strata:
Minimu	m equivalent fluid density = 5.00 kN/m3
Maximu	m depth of water filled tension crack = 0.00 m
	· ···· ···· ···· ···· ····
Bending m	oment and displacement calculation:
Method	- Subgrade reaction model using Influence Coefficients
Open T	ension Crack analysis? - No
Non-li	near Modulus Parameter (L) = 0 m
Boundarv	conditions:
1	

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	26 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Length of wall (normal to plane of analysis) = 1000.00 m

Width of excavation on active side of wall = 20.00 mWidth of excavation on passive side of wall = 20.00 m

Distance to rigid boundary on active side = 20.00 mDistance to rigid boundary on passive side = 20.00 m

Summary of results

LIMIT STATE PARAMETERS Limit State: ULS DA1 Combination 2 Water pressures : Worst Credible Partial factor on C' = 1.250 Partial factor on Phi' = 1.250 Partial factor on Cu = 1.400 Partial factor on Soil Modulus = 1.000 Partial factor on Permanent Unfavourable loads = 1.000 Partial factor on Permanent Favourable loads = 1.000 Southern Geotechnical Design Limited Contact: Mark Pearson Tel: 07932 374 955 e-mail: Mark@S6DL.co.uk Website www.S6DL.co.uk

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	27 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Partial factor on Permanent Variable loads = 1.300

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				Over	all			
				FoS fo	r toe	Toe el	lev. for	
				elev. =	12.00	FoS =	= 1.200	
Stage	G.I	L :	Strut	Factor	Moment	Toe	Wall	
No.	Act.	Pass.	Elev.	of	equilib	o. elev.	Penetr	
				Safety	at elev	· .	-ation	
1	19.00	19.00	Cant.	Conditi	ons not	suitable f	for FoS cal	с.
2	19.00	19.00	Cant.	Conditi	ons not	suitable f	for FoS cal	с.
3	19.00	19.00		No anal	ysis at	this stage	9	
4	19.00	19.00	Cant.	Conditi	ons not	suitable f	for FoS cal	с.
5	19.00	19.00	Cant.	6.595	12.30	18.70	0.30	
6	19.00	18.00	Cant.	2.242	12.56	15.82	2.18	
7	19.00	18.00		No anal	ysis at	this stage	9	
8	19.00	18.00	18.50	3.691	n/a	17.43	0.57	
9	19.00	14.65	18.50	1.219	n/a	12.18	2.47	
10	19.00	14.65	18.50	1.217	n/a	12.16	2.49	
11	19.00	15.40	18.50	1.391	n/a	13.15	2.25	
12	19.00	15.40		No anal	ysis at	this stage	e	
All	remaini	ng stages	have m	ore than	one str	ut - FoS d	calculation	n/a

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall

Analysis options Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached

Open Tension Crack analysis - No Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

Limit State: ULS DA1 Combination 2

Bending moment, shear force and displacement envelopes

		,		-	-		
Node	Y	Displac	ement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	19.20	0.007	-0.000	0.0	-0.0	0.0	-40.3
2	19.00	0.007	-0.000	0.0	-8.1	0.0	-40.3
3	18.75	0.006	-0.000	1.0	-17.2	5.8	-34.9
4	18.50	0.007	-0.000	3.0	-25.4	8.8	-41.6
5	18.25	0.008	0.000	1.7	-33.2	5.1	-39.4
6	18.00	0.009	0.000	3.3	-40.3	7.8	-36.8
7	17.60	0.010	0.000	7.1	-49.9	8.9	-31.6
8	17.20	0.010	0.000	10.2	-57.6	6.9	-25.2
9	16.80	0.011	0.000	12.6	-62.4	5.3	-17.5
10	16.40	0.011	0.000	14.5	-64.0	13.9	-8.6
11	16.00	0.010	0.000	16.0	-61.8	29.1	-0.0
12	15.70	0.010	0.000	16.1	-56.8	44.7	-1.4
13	15.40	0.009	0.000	15.1	-51.3	61.8	-4.4
14	15.20	0.009	0.000	14.1	-46.9	73.8	-26.1
15	15.00	0.009	0.000	12.9	-41.2	41.6	-15.4
16	14.65	0.008	0.000	10.8	-27.2	53.1	-5.5
17	14.50	0.008	0.000	10.0	-19.8	51.6	-4.9
18	14.25	0.007	0.000	8.7	-10.4	39.6	-5.7

Sou	JTHERN	Client:	Client: CP Plus Limited						alc 01	Rev:	00
Geotechnical		Project	Project: 66, Fitzjohns Avenue, London NW3					Sh	neet	28 of	38
Design		Section	n: Design	of Perman	ent Bored Pile	e Wall	Ву	MP	Date	22/05	5/16
Limited							Chk				
19	14.00	0.006	0.000	8.9	-5.6	2	28.6	-5.9			
20	13.60	0.005	0.000	15.9	-0.0	1	11.9	-5.5			
21	13.20	0.005	0.000	15.0	-0.0		3.6	-8.1			
22	12.80	0.004	0.000	11.0	-0.0		0.0	-15.9			
23	12.40	0.003	0.000	3.9	-0.0		0.0	-13.8			
24	12.00	0.002	-0.000	0.0	-0.0		0.0	-0.0			
Maxim	um and mini	mum bend	ing moment	and she	ar force at	each s	stage				
Stage		Bending	moment			- Shear	force				
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	ele	ev.		
	kN.m/m		kN.m/m		kN/m		kN/m				
1	0.0	13.60	-0.0	14.25	0.0	19.20	0.0	19.	.20		
2	0.0	14.25	-0.0	15.00	0.2	14.50	-0.1	15.	.20		
3	No calcul	ation at	this stac	ge -							
4	0.0	17.20	-0.1	14.65	0.2	14.50	-0.1	15.	.20		
5	2.1	16.00	-0.0	19.00	1.1	18.00	-0.8	13.	.60		
6	16.1	15.70	0.0	19.20	8.9	17.60	-6.0	15.	.00		
7	No calcul	ation at	this stag	ge							
8	15.8	15.70	0.0	19.20	8.7	17.60	-5.9	15.	.00		
9	10.6	13.20	-55.9	16.00	49.4	14.50	-41.0	18	.50		
10	10.6	13.20	-56.4	16.00	50.1	14.50	-41.2	18	.50		
11	11.5	13.20	-57.0	16.00	50.9	14.50	-41.6	18	.50		
12	No calcul	ation at	this stag	je							
13	No calcul	ation at	this stag	ge							
14	12.3	13.20	-58.1	16.40	44.9	14.50	-38.3	19.	.20		
15	15.3	13.60	-62.2	16.40	53.1	14.65	-39.7	19.	.20		
16	15.6	13.60	-62.4	16.40	52.8	14.65	-39.8	19.	.20		
17	15.9	13.60	-64.0	16.40	51.8	14.65	-40.3	19.	.20		
18	15.7	13.60	-63.8	16.40	51.3	14.50	-40.3	19.	.20		
19	5.5	12.80	-54.6	16.80	50.7	15.20	-37.5	19.	.20		
20	6.0	12.80	-47.6	16.80	52.5	15.20	-33.3	19.	.20		
21	4.3	12.80	-51.6	16.80	73.8	15.20	-35.7	19.	.20		

Maximum and minimum displacement at each stage $% \left({{{\mathbf{x}}_{i}}} \right)$

Stage		Displac	cement		Stage description
no.	maximum	elev.	minimun	n elev.	
	m		m		
1	0.000	14.00	-0.000	17.60	Change EI of wall to 100.00kN.m2/m run
2	0.000	12.00	-0.000	18.25	Apply surcharge no.1 at elev. 18.00
3	Wall dis	splaceme	ents rese	et to zero	Change EI of wall to 30284kN.m2/m run
4	0.000	12.00	-0.000	19.20	Apply surcharge no.2 at elev. 18.00
5	0.001	19.20	0.000	19.20	Apply surcharge no.3 at elev. 19.00
6	0.007	19.20	0.000	19.20	Excav. to elev. 18.00 on PASSIVE side
7	No calcu	ulation	at this	stage	Install strut no.1 at elev. 18.50
8	0.007	19.20	0.000	19.20	Apply water pressure profile no.2
9	0.010	16.00	0.000	19.20	Excav. to elev. 14.65 on PASSIVE side
10	0.010	16.00	0.000	19.20	Change soil type 3 to soil type 5
11	0.010	16.40	0.000	19.20	Fill to elev. 15.40 on PASSIVE side
12	No calcu	ulation	at this	stage	Install strut no.3 at elev. 15.20
13	No calcu	ulation	at this	stage	Install strut no.2 at elev. 19.20
14	0.010	16.40	0.000	19.20	Remove strut no.1 at elev. 18.50
15	0.010	16.40	0.000	19.20	Apply surcharge no.4 at elev. 15.20
16	0.010	16.40	-0.000	12.00	Apply water pressure profile no.3
17	0.010	16.40	-0.000	12.00	Change soil type 2 to soil type 6
18	0.010	16.40	-0.000	12.00	Change soil type 5 to soil type 6
19	0.010	16.40	0.000	19.20	Change soil type 4 to soil type 7
20	0.010	16.40	0.000	19.20	Change EI of wall to 21640kN.m2/m run
21	0.011	16.80	0.000	19.20	Apply water pressure profile no.4

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	29 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Strut forces at each stage (horizontal components)

Stage	Strut	no. 1	Strut	no. 2	Strut	no. 3
no.	at elev	. 18.50	at elev	. 19.20	at elev	. 15.20
	kN/m run	kN/strut	kN/m run	kN/strut	kN/m run	kN/strut
8	0.21	1.07				
9	49.75	248.75				
10	50.02	250.09				
11	50.26	251.29				
14			38.29	38.29	16.66	16.66
15			39.72	39.72	1.99	1.99
16			39.78	39.78	slack	slack
17			40.35	40.35	14.65	14.65
18			40.27	40.27	16.78	16.78
19			37.53	37.53	50.97	50.97
20			33.31	33.31	59.62	59.62
21			35.68	35.68	99.87	99.87

* Indicates that the total force shown is the sum of the force in the strut plus a force applied at the same elevation which may represent temperature load or other forces which are part of the strut load. Force components are listed in the detailed results for individual stages.

Units: kN,m

Bending moment, shear force, displacement envelopes

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	30 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

APPENDIX B - WALLAP INPUT / OUTPUT - SLS

SOUTHERN GEOTECHNICAL DESIGN Program: WALLAP, Version 6.05, Revision 145, 858, 849	Sheet No.
Licensed from GEOSOLVE	Made by : MP
Data filename/Run ID: SLS	
66 Fitzjohns Avenue, London NW3 5LT	Date:23-05-2016
SLS	Checked :
	Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of			Soil	type	S
no.	top of stratum	Ac	tive side		Pa	ssive side
1	19.00	1	Made Ground		1	Made Ground
2	16.00	2	Claygate Undr		2	Claygate Undr
3	15.00	2	Claygate Undr		3	Claygate To soft
4	14.50	4	London Clay Undr	<u>-</u>	4	London Clay Undr

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
;	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Made Ground	18.00	10000	0.500	OC	0.333	4.369	
					(0.200)	(0.000)	(0.000)	
2	Claygate	20.00	32000	1.000	OC	1.000	1.000	32.00u
	Undr				(0.490)	(2.000)	(2.000)	
3	Claygate To	20.00	32000	1.000	OC	1.000	1.000	32.00u
	soft				(0.490)	(2.000)	(2.000)	
4	London Cl	20.00	44000	1.000	OC	1.000	1.000	44.00u
	(14.50)		(1520)		(0.490)	(2.000)	(2.390)	(1.520)
5	Claygate	20.00	1	1.000	OC	1.000	1.000	1.000u
	(15.00)		(64000)		(0.490)	(2.000)	(2.000)	(64.00)
6	Claygate Dr	20.00	22400	1.000	OC	0.455	2.198	0.0d
					(0.150)	(1.349)	(2.965)	
7	London Cl	20.00	30800	1.000	OC	0.422	3.077	0.0d
	(14.50)		(1070)		(0.150)	(1.299)	(4.665)	

Additional soil parameters associated with Ka and Kp

	param	eters for	Ka	param	Кр	
	Soil	Wall	Back-	Soil	Wall	Back-
Soil type	friction	adhesion	fill	friction	adhesion	fill
Description	angle	coeff.	angle	angle	coeff.	angle
Made Ground	30.00	0.000	0.00	30.00	0.500	0.00
Claygate Undr	0.00	0.000	0.00	0.00	0.000	0.00
Claygate To soft	0.00	0.000	0.00	0.00	0.000	0.00
London Clay Undr	0.00	0.000	0.00	0.00	0.500	0.00
Claygate Soft	0.00	0.000	0.00	0.00	0.000	0.00
Claygate Dr	22.00	0.000	0.00	22.00	0.000	0.00
London Clay LT	24.00	0.000	0.00	24.00	0.500	0.00
	Soil type Description Made Ground Claygate Undr Claygate To soft London Clay Undr Claygate Soft Claygate Dr London Clay LT	param Soil Description angle Made Ground 30.00 Claygate Undr 0.00 Claygate To soft 0.00 London Clay Undr 0.00 Claygate Soft 0.00 Claygate Dr 22.00 London Clay LT 24.00	parameters for Soil Wall Soil type friction adhesion Description angle coeff. Made Ground 30.00 0.000 Claygate Undr 0.00 0.000 Claygate To soft 0.00 0.000 London Clay Undr 0.00 0.000 Claygate Soft 0.00 0.000 Claygate Dr 22.00 0.000 London Clay LT 24.00 0.000	parameters for Ka Soil Wall Back- Soil Wall Back- Description angle coeff. angle Made Ground 30.00 0.000 0.00 Claygate Undr 0.00 0.000 0.00 Claygate To soft 0.00 0.000 0.00 London Clay Undr 0.00 0.000 0.00 Claygate Dr 22.00 0.000 0.00 London Clay LT 24.00 0.000 0.00	parameters for Ka parameters for Ka Soil Wall Back- Soil Soil type friction adhesion fill friction Description angle coeff. angle angle Made Ground 30.00 0.000 0.00 30.00 Claygate Undr 0.00 0.000 0.00 0.00 London Clay Undr 0.00 0.000 0.00 0.00 Claygate Soft 0.00 0.000 0.00 0.00 Claygate Dr 22.00 0.000 0.00 22.00 London Clay LT 24.00 0.000 0.00 24.00	parameters for Ka parameters for Ka Soil Wall Back- Soil Wall Soil type Triction adhesion fill friction adhesion Mall Description angle coeff. angle angle coeff. Made Ground 30.00 0.000 0.00 30.00 0.500 Claygate Undr 0.00 0.000 0.00 0.000 0.000 London Clay Undr 0.00 0.000 0.00 0.000 0.000 Claygate Soft 0.00 0.000 0.00 0.000 0.000 Claygate Dr 22.00 0.000 0.00 22.00 0.000 London Clay LT 24.00 0.000 0.00 24.00 0.500

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	31 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

Active sidePassive sideInitial water table elevation16.4016.40

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side		Passive side					
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.		
		m	m	kN/m2		m	m	kN/m2		
1	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC	
					2	13.00	16.40	34.0		
2	1	16.40	16.40	0.0	1	14.65	14.65	0.0	WC	
					2	12.60	16.40	38.0		
3	1	16.40	16.40	0.0	1	15.00	15.00	0.0	MC+WC	
					2	14.90	16.40	15.0		
4	1	18.00	18.00	0.0	1	15.00	15.00	0.0	WC	
					2	14.90	16.40	15.0		

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 12.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 2.2600E+07 kN/m2 Moment of inertia of wall I = 1.3400E-03 m4/m run E.I = 30284 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

51015	and An	CHORD						
Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	18.50	5.00	0.020000	2.000E+08	5.00	0.00	0	No
2	19.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No
3	15.20	1.00	0.400000	2.000E+07	5.00	0.00	0	No

SURCHARGE LOADS

Surch	Equiv. Partial
-arge	- soil factor/
no.	e type Category
1	N/A 1.00 -
2	N/A 1.00 -
3	N/A 1.00 -
4	N/A 1.00 -
3 4	N/A N/A

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	neet	32 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

CONSTRUCTION STAGES

Construction	Stage description	
stage no.		
T	Change EI of Wall to 100.00 KN.m2/m run	
	100.00 kN.m2/m run	
	No adjustments to wall displacements	
2	Apply surcharge no.1 at elevation 18.00	
3	Change EI of wall to 30284 kN.m2/m run	
	30284 kN.m2/m run	
	Reset wall displacements to zero at this stage	
4	Apply surcharge no.2 at elevation 18.00	
5	Apply surcharge no.3 at elevation 19.00	
6	Excavate to elevation 18.00 on PASSIVE side	
7	Install strut or anchor no.1 at elevation 18.50	
8	Apply water pressure profile no.1 (Mod. Conserv.)	
9	Excavate to elevation 15.00 on PASSIVE side	
10	Change properties of soil type 3 to soil type 5	
	Ko pressures will not be reset	
11	Fill to elevation 15 40 on PASSIVE side with soil type 1	
12	Install strut or anchor no 3 at elevation 15 20	
13	Install strut or anchor no 2 at elevation 19.20	
1.4	Remove strut or anchor no 1 at elevation 19.20	
14	Nemiove Struct of anchor no.1 at elevation 16.50	
10	Apply Suicharge no.4 at elevation 15.20	
10	Apply water pressure profile no.5 (Mod. Conserv.)	
1 /	Change properties of soll type 2 to soll type 6	
1.0	Ko pressures will not be reset	
18	Change properties of soil type 5 to soil type 6	
	Ko pressures will not be reset	
19	Change properties of soil type 4 to soil type 7	
	Ko pressures will not be reset	
20	Change EI of wall to 21640 kN.m2/m run	
	Yield moment not defined	
	Allow wall to relax with new modulus value	
21	Apply water pressure profile no.3 (Mod. Conserv.)	
FACTORS OF SAN	FETY and ANALYSIS OPTIONS	
Limit State	e options: Serviceability Limit State	
All load	ds and soil strengths are unfactored	
Stability a	analysis:	
Method d	of analysis – Strength Factor method	
Factor o	on soil strength for calculating wall depth = 1.00	
Parameters	for undrained strata:	
Minimum	equivalent fluid density = 5.00 kN/m3	
Maximum	depth of water filled tension crack = 0.00 m	
Bending mor	ment and displacement calculation:	
Method	- Subgrade reaction model using Influence Coefficients	
Open Ter	sion Crack analysis? - No	
Non-line	Parameter $(L) = 0$ m	
NOII 1116	ai Modulus Idlametel (1) = 0 m	
Boundary of	anditions.	
Joundary Co	$f_{\rm control} = 1000 00 m$	
Length (or warr (normar co prane or anarysis) - 1000.00 m	
Width of	excavation on active side of wall = 20.00 m	
Width of	e excavation on passive side of wall = 20.00 m	
		
Distance	e to rigid boundary on active side = 20.00 m	
Distance	e to rigid boundary on passive side = 20.00 m	
Southern Geotechnica	l Design Limited Contact: Mark Pearson Tel: 07932 374 955 e-mail: Mark@SGDL.co.uk	Website www.SGDL.co.uk

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	33 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Stage No.21 Apply water pressure profile no.3 (Mod. Conserv.)

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for elev. =	r toe 12.00	Toe el FoS =	ev. for 1.000	
Stage	G	L	Strut	Factor	Moment	Toe	Wall	
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	
				Safety	at elev.		-ation	
1	19.00	19.00	Cant.	Conditio	ons not su:	itable f	or FoS calc.	
2	19.00	19.00	Cant.	Conditio	ons not su	itable f	or FoS calc.	
3	19.00	19.00		No analy	ysis at th:	is stage	1	
Southern G	eotechnica	l Design Limited	Contact:	Mark Pearso	on Tel: 07932	374 955	e-mail: Mark@SGDL.co.uk	Website www.SGDL.co.uk

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	34 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

4	19.00	19.00	Cant.	Condition	s not su	itable for	FoS calc.
5	19.00	19.00	Cant.	Condition	s not su	itable for	FoS calc.
6	19.00	18.00	Cant.	2.965	12.60	16.87	1.13
7	19.00	18.00		No analys	is at th	is stage	
8	19.00	18.00	18.50	5.121	n/a	17.89	0.11
9	19.00	15.00	18.50	1.849	n/a	14.42	0.58
10	19.00	15.00	18.50	1.816	n/a	14.28	0.72
11	19.00	15.40	18.50	1.951	n/a	14.38	1.02
12	19.00	15.40		No analys	is at th	is stage	
All	remainir	ng stages	have mo	ore than o	ne strut	– FoS calc	culation n/a

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall

Analysis options Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients

Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall

Passive side 20.00 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	e Y	Displa	acement	Be	ending	moment			- Shear	force	
no.	. coord			Calcula	ated	Facto	ored	Calcul	ated	Fact	ored
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN.r	n/m	kN.	.m/m	kN/m	kN/m	kN/m	kN/m
1	19.20	0.005	-0.000	0	-0	0	-0	0	-30	0	-41
2	19.00	0.005	-0.000	0	-6	0	-8	0	-30	0	-41
3	18.75	0.005	-0.000	1	-13	1	-17	4	-26	5	-35
4	18.50	0.005	-0.000	2	-19	3	-26	6	-30	9	-41
5	18.25	0.006	0.000	1	-25	2	-34	4	-28	6	-38
6	18.00	0.007	0.000	3	-30	4	-41	6	-26	9	-35
7	17.60	0.007	0.000	6	-37	8	-50	7	-22	10	-30
8	17.20	0.008	0.000	8	-43	11	-58	5	-17	7	-23
9	16.80	0.008	0.000	10	-46	13	-62	3	-11	4	-14
10	16.40	0.008	0.000	11	-46	14	-62	6	-3	8	-5
11	16.00	0.007	0.000	11	-44	15	-59	15	-0	20	-0
12	15.70	0.007	0.000	11	-38	14	-52	25	-2	34	-3
13	15.40	0.007	0.000	10	-31	13	-41	37	-4	50	-5
14	15.20	0.006	0.000	9	-27	12	-36	45	-4	61	-6
15	15.00	0.006	0.000	8	-21	11	-29	41	-4	56	-6
16	14.75	0.006	0.000	7	-12	10	-16	42	-4	57	-5
17	14.50	0.005	0.000	6	-3	8	-4	39	-2	53	-3
18	14.25	0.005	0.000	13	-0	18	-0	23	-3	32	-4
19	14.00	0.005	0.000	17	-0	23	-0	13	-4	18	-5
20	13.60	0.004	0.000	17	-0	23	-0	2	-4	3	-6
21	13.20	0.004	0.000	14	-0	18	-0	0	-12	0	-16
22	12.80	0.003	0.000	8	-0	11	-0	0	-13	0	-18
23	12.40	0.003	0.000	3	-0	4	-0	0	-10	0	-14
24	12.00	0.002	0.000	0	-0	0	-0	0	-0	0	-0
	Calculat	ed Bend	ding Mome	nts and	Strut	Forces	have bee	en mult	iplied	by a f	actor

of 1.35 to obtain values for structural design.

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sł	neet	35 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Maximum and minimum bending moment and shear force at each stage

Stage			Bendir	ig momen	t				- Shear	force		
no.		Calcu	ulated		Fact	ored		Calc	ulated		Facto	ored
	max.	elev.	min.	elev.	max.	min.	max.	elev.	min.	elev.	max.	min.
	kN.m/m		kN.m/m	ı	kN	.m/m	kN/m		kN/m		kN/m	kN/m
1	0	13.60	-0	14.00	0	-0	0	19.20	0	19.20	0	0
2	0	14.25	-0	14.75	0	-0	0	14.50	-0	15.20	0	-0
3	No ca	lculatio	on at t	his sta	ge							
4	0	17.20	-0	14.75	0	-0	0	14.50	-0	15.20	0	-0
5	1	14.25	-0	19.20	1	-0	1	18.50	-1	13.20	1	-1
6	11	16.00	-0	19.20	15	-0	7	17.60	-4	15.20	10	-6
7	No ca	lculatio	on at t	his sta	ge							
8	11	16.00	-0	19.20	14	-0	7	17.60	-4	15.20	9	-5
9	10	13.60	-35	16.40	13	-47	35	15.00	-29	18.50	47	-39
10	11	13.60	-38	16.40	15	-51	37	14.75	-30	18.50	50	-41
11	12	13.60	-38	16.40	16	-51	37	14.75	-30	18.50	50	-41
12	No ca	lculatio	on at t	his sta	ge							
13	No ca	lculatio	on at t	his sta	ge							
14	13	13.60	-40	16.80	17	-54	32	14.75	-28	19.20	44	-37
15	16	13.60	-43	16.40	21	-57	40	14.75	-29	19.20	54	-39
16	16	13.60	-43	16.80	21	-57	40	14.75	-29	19.20	54	-39
17	17	13.60	-46	16.40	23	-62	42	14.75	-30	19.20	57	-41
18	17	13.60	-46	16.40	22	-61	42	15.20	-30	19.20	56	-40
19	13	13.60	-43	16.80	17	-58	43	15.20	-29	19.20	59	-39
20	13	13.60	-38	16.80	18	-52	45	15.20	-26	19.20	61	-36
21	13	13.60	-38	16.80	18	-52	45	15.20	-26	19.20	61	-36

Maximum and minimum displacement at each stage

Stage ----- Displacement ----- Stage description no. maximum elev. minimum elev. _____ m m 0.000 14.00 -0.000 17.60 Change EI of wall to 100.00kN.m2/m run 1 2 0.000 12.00 -0.000 18.25 Apply surcharge no.1 at elev. 18.00 3 Wall displacements reset to zero Change EI of wall to 30284kN.m2/m run 4 0.000 12.00 -0.000 19.20 Apply surcharge no.2 at elev. 18.00 0.000 19.20 Apply surcharge no.3 at elev. 19.00 0.001 19.20 5 0.005 19.20 0.000 19.20 Excav. to elev. 18.00 on PASSIVE side 6 culation at this stageInstall strut no.1 at elev. 18.5019.200.00019.20Apply water pressure profile no.116.400.00019.20Excav. to elev. 15.00 on PASSIVE side 7 No calculation at this stage 8 0.005 9 0.007 0.000 19.20 Change soil type 3 to soil type 5 10 0.007 16.40 0.007 0.000 19.20 Fill to elev. 15.40 on PASSIVE side 11 16.40 No calculation at this stage Install strut no.3 at elev. 15.20 12 13 No calculation at this stage Install strut no.2 at elev. 19.20 14 0.007 16.40 0.000 19.20 Remove strut no.1 at elev. 18.50 15 0.007 16.80 0.000 19.20 Apply surcharge no.4 at elev. 15.20 16.80 0.007 0.000 19.20 Apply water pressure profile no.3 16 17 0.008 16.80 0.000 19.20 Change soil type 2 to soil type 6 0.000 19.20 16.80 Change soil type 5 to soil type 6 18 0.008 0.007 16.80 0.000 19.20 Change soil type 4 to soil type 7 19 16.80 0.000 19.20 Change EI of wall to 21640kN.m2/m run 20 0.008 19.20 21 0.008 16.80 0.000 Apply water pressure profile no.3 Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sh	leet	36 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Strut forces at each stage (horizontal components)

Stage	tage Strut no. 1				Strut no. 2			Strut no. 3			
no.	at elev. 18.50			at	at elev. 19.20			at elev. 15.20			
	Calcu	lated	Factored	Calcu	lated	Factored	Calcu	lated	Factored		
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per		
	m run	strut	strut	m run	strut	strut	m run	strut	strut		
8	0	1	1								
9	35	174	235								
10	36	182	246								
11	36	182	245								
14				28	28	37	12	12	16		
15				29	29	39	slack	slack	slack		
16				29	29	39	slack	slack	slack		
17				30	30	41	7	7	10		
18				30	30	40	14	14	18		
19				29	29	39	27	27	37		
20				26	26	36	35	35	47		
21				26	26	36	35	35	47		

* Indicates that the total force shown is the sum of the force in the strut plus a force applied at the same elevation which may represent temperature load or other forces which are part of the strut load. Force components are listed in the detailed results for individual stages.

Bending moment (kN.m/m run) 100.0 18.0 16.0 Elev. 14.0 12.0 -100.0 0 100.0 1

Bending moment, shear force, displacement envelopes

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sł	neet	37 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
Limited			Chk				

Southern	Client:	CP Plus Limited	Ref:	C0745 C	alc 01	Rev:	00
Geotechnical	Project:	66, Fitzjohns Avenue, London NW3		Sł	neet	38 of	38
Design	Section:	Design of Permanent Bored Pile Wall	Ву	MP	Date	22/05	5/16
LIMITED			Chk				

EC2 Sher to EN 1992-1-1:2004 (EC2) - Secart Well Circular Sections (Cast In-stu) using helical reinforcement Pile spacing = $\frac{360}{550}$ mm pile diameter dom = $\frac{360}{550}$ mm pile diameter dom = $\frac{360}{550}$ mm Ac = $\frac{350}{550}$ mm Ac = $\frac{350}{500}$ mm Ac = 3	REFERENCE		Rev:
4.4.1.3(4) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	EC2	Shear to EN 1992-1-1:2004 (EC2) - Secant Wall	Circular Sections (Cast In-situ) using helical reinforcement
	4 4 1 3(4)	$\frac{\text{Pile section}}{\text{pile dia}} = \frac{350}{550} \text{mm}$ $\frac{\text{Pile spacing}}{\text{pile diameter dnom}} = \frac{330}{330} \text{mm}^2$ $\frac{\text{Ac}}{\text{COVET Gram}} = \frac{40}{500} \text{mm}^2$	$k_2 = 50$ mm [NA 1 4 4 1 3 (4)]
6.2.2 Check requirement for shear reinforcement $V_{Rd,c} = [C_{Rd,c}k(100p,f_{cd})^{1/3}+k_1\sigma_{cp}]b_wd$ $CRd,c = 0.18 / \gamma c$ 0.11 with minimum = $(v_{min}+k_1\sigma_{cp})b_wd$ $P_1 = A_w/b_wd$ $0.01 < 0.02$ $v_{min} = 0.035k^{32}f_{cd}^{1/2}$ $\sigma_{cp} = N_{cd}/A_c$ 0.49809039 $k_1 = 0.15$ $[NA.1 6.2.2(1)]$ $V_{Rd,c} = 38 kN$ 6.2.3 Design Shear Reinforcement Check concrete strut capacity at Cot $\theta = 2.5$ · cot $\theta = \frac{2.5}{0.4}$ $V_{Rd,max} = \alpha_{cw}b_w.2.v_1f_{cd}/(Cot\theta+tan\theta)$ (6.9) $\alpha_{cw} = \frac{1}{0.9}$ $(NA.1 6.2.3(3)]$ $V_{Rd,max} = 180 kN$ $v_1 = 0.6 (1-(tck/250) 0.53 [6.6N]$ $ls V_{Rd,c} V_{Ed} = r$ YES Action: Calculate link spacing Calculation for strut inclination: $\theta = 0.5.sin^{-1}((6.54^{V}V_{Ed})/(b_w.d.(1-f_{cd}/250),f_{cd})$ $\theta = NA$ rad $cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,na} = 2.cot\theta(A_{0}/0.5s),f_{ywd}0.85$ $A_{rw} = 50.3 mm^2$ $f_{ywd} = 435 MPa$	4.4.1.3(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{c} = 1.5$ (This is adjusted by K _i =1.1 [2.4.2.5 (2)] to give 1.65) $\gamma_{c} = 1.65$ $\alpha_{cc} = 0.85$ [NA.1 3.1.6 (1)} $\gamma_{s} = 1.15$ SF factor 1.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6.2.2	Check requirement for shear reinforcement	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{split} V_{Rd,c} &= [C_{Rd,c}k(100\rho_1f_{ck})^{1/3} + k_1\sigma_{cp}]b_wd\\ \text{with minimum} &= (v_{min} + k_1\sigma_{cp})b_wd \end{split}$	$CRd,c = 0.18 / \gamma c \qquad 0.11$ k = 1+(200/d) ^{1/2} 1.93 <=2.0 $\rho_1 = A_{sy}/b_w d \qquad 0.01 <=0.02$
$V_{Rd,c} = 38 \text{ kN}$ $Is V_{Rd,c} > V_{Ed} \Rightarrow NO \text{ Action: Design of shear reinforcement required}$ 6.2.3 $Design Shear Reinforcement$ $Check concrete strut capacity at Cot \theta = 2.5: cot \theta = 2.5tan \theta = 0.4V_{Rd,max} = a_{cw} \cdot b_w \cdot z \cdot v_1 \cdot f_{cd} / (Cot \theta + tan \theta) (6.9) a_{cw} = 1 [NA.1 6.2.3(3)]z = 0.9d$ 206 mm $V_{Rd,max} = 180 \text{ kN}$ $v_1 = 0.6 (1 - (fck/250) 0.53 [6.6N]$ $Is V_{Rd,c} > V_{Ed} \Rightarrow YES \text{ Action: Calculate link spacing}$ $Calculation for strut inclination:- \theta = 0.5.sin^{-1}[(6.54^{+}V_{Ed})/(b_w \cdot d.(1 - f_{ck}/250) \cdot f_{ck})] \theta = NA \text{ rad} cot \theta = 2.5 > 1.0 Calculate shear reinforcement spacing after Turmo et al (2008):- V_{Rd,s} = z.cot \theta \cdot (A_{\phi}/0.5s) \cdot f_{ywd} \cdot 0.85 s = 2.((z.cot \theta \cdot A_{\phi}, f_{ywd} \cdot 0.85)/V_{Rd,s}) f_{ywd} = 435 \text{ MPa}$		$v_{min} = 0.035 k^{3/2} f_{ck}^{1/2}$ 0.49809039	$\sigma_{cp} = \frac{N_{ed}/A_c}{k_1} = \frac{0.15}{[NA.1 \ 6.2.2(1)]}$
6.2.3 (3) exp 6.9 $Is V_{Rd,c} > V_{Ed} => NO Action: Design of shear reinforcement required$ 6.2.3 (3) exp 6.9 $V_{Rd,max} = \alpha_{cw}.b_{w}.z.v_{1}.f_{cd} / (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 1 [NA.1 6.2.3(3)] (NA.1 6.2.3(3)] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 1 [NA.1 6.2.3(3)] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 1 [NA.1 6.2.3(3)] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 1 [NA.1 6.2.3(3)] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.6 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.6 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.5 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.5 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.6 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan\theta) (6.9) \alpha_{cw} = 0.5 (1-(fck/250) 0.53 [6.6N] (Cot\theta+tan 0) (Co$		V _{Rd,c} = 38 kN	
6.2.3 Design Shear Reinforcement Check concrete strut capacity at Cot $\theta = 2.5$: $cot \theta = 2.5$ $tan \theta = 0.4$ $V_{Rd,max} = \alpha_{cw}.b_{w}.z.v_1.f_{cd}/(Cot\theta+tan\theta)$ (6.9) $\alpha_{cw} = 1$ [NA.1 6.2.3(3)] z = 0.9d 206 mm $V_{Rd,max} = 180$ kN $v_1 = 0.6$ (1-(fck/250) 0.53 [6.6N] Is $V_{Rd,c} > V_{Ed}$ => YES Action: Calculate link spacing Calculation for strut inclination:- $\theta = 0.5.sin^{-1}[(6.54^{+}V_{Ed})/(b_w.d.(1-f_{ck}/250).f_{ck})]$ $\theta = NA$ rad $cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = 2.ct06.(A_{ch}/0.5s).f_{ywd}.0.85$ $s = 2.[[z.cot0.A_{p.}fywd.0.85]/V_{Rd,s}]$ r = -267 mm		Is $V_{Rd,c} > V_{Ed}$ => NO Action	n: Design of shear reinforcement required
6.2.3 (3) exp 6.9 Check concrete strut capacity at Cot $\theta = 2.5$: $\tan \theta = 0.4$ $V_{Rd,max} = \alpha_{cw}.b_{w}.z.v_{1}.f_{cd}/(Cot\theta+tan\theta)$ (6.9) $\alpha_{cw} = 1$ z = 0.9d 206 mm $v_{1} = 0.6 (1-(fck/250) 0.53 [6.6N]$ Is $V_{Rd,c} > V_{Ed}$ => YES Action: Calculate link spacing Calculation for strut inclination: $\theta = 0.5.sin^{-1}[(6.54*V_{Ed})/(b_{w}.d.(1+f_{ck}/250).f_{ck})]$ $\theta = NA$ rad Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = z.cot\theta.(A_{\phi}/0.5s).f_{ywd}.0.85$ $s = 2.[[z.cot\theta.A_{\phi}.fywd.0.85]/V_{Rd,s}]$ $A_{sw} = 50.3 mm^{2}$ $f_{ywd} = 435 MPa$	6.2.3	Design Shear Reinforcement	
6.2.3 (3) exp 6.9 $V_{Rd,max} = \alpha_{cw}.b_w.z.v_1.f_{cd} / (Cot0+tan0)$ (6.9) $\alpha_{cw} = 1$ [NA.1 6.2.3(3)] z = 0.9d 206 mm $V_{Rd,max} = 180$ kN $v_1 = 0.6 (1-(fck/250) 0.53 [6.6N]$ Is $V_{Rd,c} > V_{Ed}$ => YES Action: <i>Calculate link spacing</i> Calculation for strut inclination:- $\theta = 0.5.sin^{-1}[(6.54^*V_{Ed})/(b_w.d.(1-f_{ck}/250).f_{ck})]$ $\theta = NA$ rad $cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = z.cot0.(A_{\phi}/0.5s).f_{ywd}.0.85$ $s = 2.([z.cot0.A_{\phi}.fywd.0.85]/V_{Rd,s})$ $f_{ywd} = 435$ MPa		Check concrete strut capacity at Cot θ = 2.5 :-	$\cot \theta = 2.5$ $\tan \theta = 0.4$
$V_{Rd,max} = 180 \text{ kN}$ $v_1 = 0.6 (1-(fck/250) 0.53 [6.6N]$ $ls V_{Rd,c} > V_{Ed} = \text{YES} \text{ Action: } Calculate link spacing$ Calculation for strut inclination:- $\theta = 0.5.\sin^{-1}[(6.54^{+}V_{Ed})/(b_w.d.(1-f_{ck}/250).f_{ck})]$ $\theta = NA \text{ rad}$ $cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = 2.cot\theta.(A_{\Phi}/0.5s).f_{ywd}.0.85$ $A_{sw} = 50.3 \text{ mm}^{2}$ $f_{ywd} = 435 \text{ MPa}$	6.2.3 (3) exp 6.9	$V_{Rd,max} = \alpha_{cw}.b_{w}.z.v_1.f_{cd} / (Cot\theta+tan\theta)$	(6.9) $\alpha_{cw} = 1$ [NA.1 6.2.3(3)] z = 0.9d 206 mm
Is $V_{Rd,c} > V_{Ed}$ => YES Action: Calculate link spacing Calculation for strut inclination:- $\theta = 0.5.sin^{-1}[(6.54*V_{Ed})/(b_w.d.(1-f_{ck}/250).f_{ck})]$ $\theta = NA$ rad $\cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = z.cot\theta.(A_{\phi}/0.5s).f_{ywd}.0.85$ $A_{sw} = 50.3 \text{ mm}^2$ $s = 2.([z.cot\theta.A_{\phi}.fywd.0.85]/V_{Rd,s})$ $f_{ywd} = 435 \text{ MPa}$		V _{Rd,max} = 180 kN	$v_1 = 0.6 (1 - (fck/250)) 0.53 [6.6N]$
$\begin{array}{rcl} \text{Calculation for strut inclination:} \\ \theta &= 0.5.\text{sin}^{-1}[(6.54*V_{Ed})/(b_w.d.(1-f_{ck}/250).f_{ck}) \\ \theta &= \text{NA} \text{rad} & \text{cot } \theta &= 2.5 > 1.0 \\ \text{Calculate shear reinforcement spacing after Turmo et al (2008);} \\ V_{\text{Rd, s}} &= z.\text{cot}\theta.(A_{\Phi}/0.5s).f_{ywd}.0.85 & \text{A}_{sw} &= 50.3 \text{ mm}^2 \\ \text{s} &= 2.([z.\text{cot}\theta.A_{\Phi}.fywd.0.85]/V_{\text{Rd,s}}) & f_{ywd} &= 435 \text{ MPa} \\ \end{array}$		Is $V_{Rd,c} > V_{Ed}$ => YES Action	n: Calculate link spacing
$\theta = NA rad \qquad cot \theta = 2.5 > 1.0$ Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd,s} = z.cot\theta.(A_{\phi}/0.5s).f_{ywd}.0.85 \qquad A_{sw} = 50.3 \text{ mm}^2$ $s = 2.([z.cot\theta.A_{\phi}.fywd.0.85]/V_{Rd,s}) \qquad f_{ywd} = 435 \text{ MPa}$		Calculation for strut inclination:-	/250) f .)
Calculate shear reinforcement spacing after Turmo et al (2008);- $V_{Rd, s}$ =z.cot $(A_{\phi}/0.5s)$. f_{ywd} .0.85 A_{sw} =50.3 mm ² s=2.([z.cot $0.A_{\phi}$.fywd.0.85]/V _{Rd,s}) f_{ywd} =435 MPa		$\theta = NA rad$	$\cot \theta = 2.5 > 1.0$
$V_{Rd,s} = z.cot\theta.(A_{\phi}/0.5s).f_{ywd}.0.85 \qquad A_{sw} = 50.3 \text{ mm}^2$ s = 2.([z.cot0.A_{\phi}.fyud.0.85]/V_{Rd,s}) \qquad f_{ywd} = 435 \text{ MPa}		Calculate shear reinforcement spacing after Tu	rmo et al (2008);-
Check maximum shear link spacing:- is s _{l,max} > 0.75d YES		$\begin{array}{rcl} V_{\text{Rd, s}} &=& z.\text{cot}\theta.(A_{\Phi}/0.5s).f_{ywd}.0.85\\ s &=& 2.([z.\text{cot}\theta.A_{\Phi}.fywd.0.85]/V_{\text{Rd,s}})\\ &=& 367 & \text{mm}\\ \end{array}$ Check maximum shear link spacing:- is s _{l,max} > 0.75d YES	$\begin{array}{rcl} A_{sw} & = & 50.3 \ mm^2 \\ f_{ywd} & = & 435 \ MPa \end{array}$
Provide 8 mm helical at nominal pitch 170 mm		Provide 8 mm helical at no	minal pitch 170 mm
Turo, J, et al. Shear truss analogy for concrete members of solid and hollow circular cross section. Eng. Struc. (2008)		Turo, J, et al. Shear truss analogy for concrete membe	ers of solid and hollow circular cross section. Eng. Struc. (2008)

MICHAEL CHESTER & PARTNERS Consulting Civil and Structural Engineers 8 Hale Lane London NW7 3NX tel 020 8959 9119 fax 020 8959 9662 mail@michaelchester.co.uk

APPENDIX C

66 FITZJOHN'S AVENUE, LONDON NW3

GEOTECHNICAL REPORT BY DONALDSON ASSOCIATES

A S S O C I A T E S

a COWI company

Duncan Mercer Michael Chester & Partners LLP 8 Hale Lane London NW7 3NX

ADDRESS Donaldson Associates Limited Bevis Marks House 24 Bevis Marks London

TEL 020 7407 0973 www donaldsonassociates.com

DATE 3 June 2016 PAGE 1/4 REF HISK PROJECT NO EL426

EC3A 7JB

Dear Duncan,

66 Fitzjohn's Avenue

This report assesses the potential ground movement and building damage, due to construction of a basement at the site.

The site is on Fitzjohn's Avenue, south of Lyndhurst Road, and covers the plot of land behind No.64. There is currently a two storey semi-detached building on the site (with no basement) and this is to be demolished and replaced with a new three storey building with a single storey basement.

A site investigation has been carried out and consisted of one 15m deep cable percussion borehole and two window samples. The ground consists of the Claygate Beds (clayey) over London Clay with the Claygate member extending to about 3m depth. Standpipes installed in September showed the water level at the time to be about 900mm above structural slab level.

The basement will be formed of a propped secant piled wall to form a cutoff so that the water within the excavation of 4.5m can be pumped out.

62/64 Fitzjohn's Avenue is around 3m and 14 Akenside Road is around 10m from the excavation.

Secant wall installation

Very little movement is to be expected when installing a secant wall in clay using modern plant. Limited data has been published in CIRIA C580¹ from prior to the 1990's and is available to provide an initial estimate. This is based on

Registered OFFICE: Donaldson Associates Limited, Eastfield, Church Street, Uttoxeter, Staffordshire ST14 8AA UK Registered in England and Wales No. 2962837

¹ CIRIA C580 "Embedded retaining walls – guidance for economic design", London 2003, see figures

PAGE 2/4

TRL Reports PR23² and R172³. Of particular interest is that 4 out of 5 of these piled walls were installed into a London geology sequence of made ground, claygate beds/head (firm clay) or terrace gravels over London clay.

Assuming a wall depth of around 7m, movements based on C580 of 2-3mm vertically and 2-4mm horizontally may be expected at the façades of 62/64 Fitzjohn's Avenue. At 14 Akenside Road up to 2mm vertically and horizontally may be expected at the facade.

Settlement due to basement excavation

Ground movement curves have been published in CIRIA C580⁴ based on empirical correlations of case history field measurements. The ground movement curves are shown in the figures. These ground movements have been derived from monitored surface movements due to the excavation in front of bored piles, diaphragm and sheet pile walls wholly embedded in stiff clay. In 16 of 17 case studies walls were installed into a London geology sequence of made ground, claygate beds/head (firm clay) or terrace gravels over London clay and so are relevant to the current site. The ground movements are expressed in terms of percentage of maximum excavation depth, here 4.5m.

62/64 Fitzjohn's Avenue is around 3m from the excavation. Movements based on this of 2-4mm vertically and 4-5mm horizontally may be expected at the facades.

14 Akenside Road is around 10m from the excavation. Movements based on this of up to 2mm vertically and 1-3mm horizontally may be expected at the facades.

Heave due to overburden removal

Settlements calculated by reference to C580 include an element caused by excavation heave. Using an adjusted elasticity method (BSEN 1997:2005 Geotechnical Design Part 1 General Rules Appendix F) and conservatively taking cu=65kPa as the soil strength over the heave bulb. Following the C580 recommendation, $Eu=65 \times 425kPa$, the initial heave at the centre of the base

² TRL PR23 "Behaviour during construction of a propped contiguous bored pile wall in stiff clay at Rayleigh Weir", 1994

³ TRL R172, "Ground movements caused by different embedded retaining wall construction techniques", 1995

⁴ CIRIA C580 "*Embedded retaining walls – guidance for economic design*", London 2003, see figures

PAGE 3/4

of the excavation can be estimated by treating the excavation as a negative load. The base of the excavation will heave around 20mm as overburden is removed. The effect of heave movements on adjacent buildings during construction will be limited by the wall depth, stiffness and propping. In the longer term, slab construction and the re-imposition of building loading will limit heave to negligible levels.

Building damage assessment

An initial assessment of building damage can be made using C580 empirical estimates of ground movement.

BUILDING	v (mm)	h (mm)	Deflection ratio, M (%)	Horizontal strain, εh (%)	DAMAGE CATEGORY
62/64 FA	4-7	6-9	~0	0.05	0/1
14 AR	0-4	1-5	~0	0.05	0/1

Conclusion

Basement construction has the potential to cause ground movements during wall installation, excavation and in the longer term. Longer term ground movements will be limited by wall and basement design.

Ground movements during wall installation and excavation have been empirically derived based on the construction methodology in the BIA and indicated category 0/1 damage.

14 Akenside Road is around 10m from the excavation and at low risk of damage. No further assessment is proposed.

62/64 Fitzjohn's Avenue is around 3m from the excavation and the initial screening suggests a low risk of damage. However, given its proximity to the excavation, it is suggested that the BIA construction methodology used for the assessment is confirmed to still be the case when basement design and sequencing is finalised. It is likely that a condition survey and some façade monitoring will be required.

I hope that this report answers the questions raised by the BIA review.

PAGE 4/4

Yours sincerely,

H. Siim

Hilary Skinner

Figures from CIRIA C580 "Embedded retaining walls – guidance for economic design", London 2003

Figure 2.8 Ground surface movements due to bored pile wall installation in stiff clay

Figure 2.11 Ground surface movements due to excavation in front of wall in stiff clay

(a) Definition of deflection ratio.

MICHAEL CHESTER & PARTNERS Consulting Civil and Structural Engineers 8 Hale Lane London NW7 3NX tel 020 8959 9119 fax 020 8959 9662 mail@michaelchester.co.uk

APPENDIX D

66 FITZJOHN'S AVENUE, LONDON NW3

DRAWING NUMBER 15094/SK02revA BY MICHAEL CHESTER & PARTNERS

	Date JULY 15	Drg No	Rev			
RTNERS	Drawn DM	15094/5802	Δ			
ineers	Scale nts	1000-10102				
	Project					
fax 020 8959 9662	66 FITZJOHNS AVENUE					
	LONDON NW3					
less noted otherwise. d specifications.	PRELIMINA	RY	A3			
			•			