ENERGY & SUSTAINABILITY STATEMENT

307-309 Finchley Road

Produced by XCO2 for Carltone Group

August 2017

XCO2 56 Kingsway Place, Sans Walk London EC1R OLU +44 (0)20 7700 1000 mail@xco2.com xco2.com

CONTENTS

EXECUTIVE SUMMARY	5
INTRODUCTION	7
PLANNING POLICIES	8
PROPOSED SUSTAINABILITY MEASURES	17
SUSTAINABILITY STANDARDS	22
ENERGY STRATEGY SUMMARY	29
BE LEAN – USE LESS ENERGY	33
BE GREEN – USE RENEWABLE ENERGY	
CONCLUSIONS	
APPENDIX A – OVERHEATING RISK ASSESSMENT	A
APPENDIX B – SAP RESULTS	B
APPENDIX C – SBEM RESULTS	C
APPENDIX D – SURFACE WATER CALCULATIONS	D
APPENDIX E – THAMES WATER ASSET PLAN	Е

Remarks	Draft			
Prepared by	TS/JC			
Checked by	JC			
Authorised by	SP			
Date	22/08/2017			
Project reference	8.996			

307-309 Finchley Road Page 4 of 52

EXECUTIVE SUMMARY

The energy strategy for the development at 307-309 Finchley Road has been developed in line with the energy policies of the London Plan and of Camden's Local Plan. The three-step Energy Hierarchy has been implemented and the estimated regulated CO₂ savings on site are 26.6% for the new build domestic part, 64.7% for the domestic refurbishment, and 67.6% for the non-domestic part of the development, against against an existing building baseline for the refurbishment portion of the scheme, and a Part L 2013 Baseline for new build elements where relevant.

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 307-309 Finchley Road located in the London Borough of Camden.

The proposal comprises the redevelopment of 307-309 Finchley Road and 307 Lithos Road. The scheme will provide additional residential and commercial accommodation through a roof level extension and refurbishment of the Lithos Road frontage of the building.

This document is divided into three parts:

- Planning policies
- Proposed sustainability measures incorporated into the scheme
- Energy Strategy

The Planning Policy section provides an overview of the site and planning policies applicable to this development in accordance with the London Plan and the relevant Camden Council's planning policies.

The second section on proposed sustainability measures outlines the sustainability measures that have been adopted in the team's aim to maximise sustainability within the site and achieve a BREEAM Domestic Refurbishment 'Excellent' rating for the refurbished dwellings. A summary of the preassessment credits for the BREEAM assessment are provided at the end of the BREEAM section, demonstrating that the scheme could achieve a score of 73.34%, exceeding the minimum 70% for an 'Excellent' rating. The third section describes the predicted energy performance and carbon dioxide emissions of the proposed development at 307-309 Finchley Road. For this, the development's extension and new-build part will be compared to a notional building constructed to Part L1A standards, whilst the refurbished parts of the scheme are compared to notional existing baseline building.

Figure 1 summarises the regulated CO_2 savings achieved by the proposed development in comparison to the baseline buildings at each stage of the energy hierarchy. In total, the development is expected to achieve regulated CO_2 savings of 63%. This reduction reflects regulated energy use only, as unregulated energy use (e.g. plug-in appliances) is not taken into account in Part L of the Building Regulations.

The development is expected to achieve regulated CO_2 savings of 63% (44.6% total) across the entire site; 26.6% for the new build domestic part of the development, 64.7% for the domestic refurbishment part of the development, and 67.6% for the commercial refurbishment part of the development.

The regulated CO₂ saving has been achieved by maximising fabric efficiency for both the refurbished and new build aspects. The team aims to improve the building fabric beyond Building Regulations Part L targets through the incorporation of an efficient fabric with low U values, a good air permeability rate and a thermal bridging y-value in line with the Accredited Construction Details for all the new build parts. The design team aims to improve the refurbished elements of the scheme by improving the fabric U values beyond Part L1B and L2B compliance levels and through improving the air tightness of the units as well as

upgrading the heating and hot water systems in the scheme.

In summary, the proposed development complies with the London Plan CO_2 savings target of 35% overall. In

line with GLA policy, carbon offset payment to zero carbon for the residential elements is not relevant for this scheme.

Total CO₂ Savings over Part L 2013 Buildings Regulations Baseline (for new build parts) and existing baselines (for refurbishment parts)

INTRODUCTION

This Chapter presents the description of the site and of the development proposal, the energy policy framework and the methodology employed for the energy assessment.

SITE & PROPOSAL

The proposal comprises the redevelopment of 307-309 Finchley Road and 307 Lithos Road extension. The proposed scheme will provide additional accommodation, both residential and office use. The proposal also seeks to extend and re-evaluate the late 20th century Lithos Road frontage of the building, in keeping with the wider context of the surrounding site. A new top floor, set back from the main building line is also proposed. The scheme will generate additional floor space totalling approximately 2,260m², whilst current floor space is approximately 1,865m². There will be an overall increase in B1 and C3 uses, and retention of A2 use. A number of new residential units is proposed, ranging from studios to 3-bedroom family flats.

Figure 2: Location of the application site.

307-309 Finchley Road Page 7 of 52

PLANNING POLICIES

The proposal will seek to respond to the energy and sustainability policies of the London Plan (2016), and of the policies within the London Borough of Camden's Local Plan (2017) and Planning Guidance 3 – Sustainability.

The most relevant applicable energy policies in the context of the proposed development are presented below.

THE LONDON PLAN

The London Plan (2016) is the overall strategic plan for London, setting out an integrated economic, environmental, transport and social framework for the development of London over the next 20–25 years.

The overarching energy policies of the London Plan are included in Chapter Five *London's Response to Climate Change* and include Policies 5.2 to 5.15:

- Policy 5.2: Minimising carbon dioxide emissions;
- Policy 5.3: Sustainable Design and Construction;
- Policy 5.4: Retrofitting;
- Policy 5.7: Renewable energy;
- Policy 5.9: Overheating and cooling; and
- Policy 5.15: Water Use and Supplies.

Extracts of Policies 5.2, 5.6, 5.7 and 5.9 are presented below as these are considered most relevant to the proposed scheme.

The London Plan also consists of a suite of guidance documents, most relevant of which are the Sustainable Design and Construction SPG (April 2014) & Energy Planning – GLA Guidance on preparing energy assessments (March 2016).

POLICY 5.2 MINIMISING CARBON DIOXIDE EMISSIONS

A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

Be lean: use less energy

Be clean: supply energy efficiently Be green: use renewable energy B. The Mayor will work with boroughs and developers to ensure major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emission Rate (TER) outlined in the national Building Regulations leading to zero carbon residential

buildings from 2016 and zero carbon non-domestic buildings from 2019.

Table 1: \mbox{CO}_2 emissions improvement targets against the current Building Regulations

Residential Buildings					
Year	Minimum improvement over Building Regulations 2013				
2016 - 2031	Zero Carbon				
Non-domestic Buildings					
Year	Minimum improvement over Building Regulations 2013				
2016 - 2019	35%				
2019 - 2031	Zero Carbon				

POLICY 5.3 SUSTAINABLE DESIGN AND CONSTRUCTION

"Planning decisions:

B. Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.

C. Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be clearly demonstrated within a design and access statement. The standards include measures to achieve other policies in this Plan and the following sustainable design principles:

- a. minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
- *b.* avoiding internal overheating and contributing to the urban heat island effect
- *c. efficient use of natural resources (including water), including making the most of natural systems both within and around buildings*
- *d. minimising pollution (including noise, air and urban runoff)*
- *e. minimising the generation of waste and maximising reuse or recycling*
- f. avoiding impacts from natural hazards (including flooding)

- *g. ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions*
- *h.* securing sustainable procurement of materials, using local supplies where feasible, and
- *i.* promoting and protecting biodiversity and green infrastructure."

POLICY 5.4 RETROFITTING

The environmental impact of existing urban areas should be reduced through policies and programmes that bring existing buildings up to the Mayor's standards on sustainable design and construction. In particular, programmes should reduce carbon dioxide emissions, improve the efficiency of resource use (such as water) and minimise the generation of pollution and waste from existing building stock.

POLICY 5.7 RENEWABLE ENERGY

B. Within the framework of the energy hierarchy (see Policy 5.2), major proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible.

D. All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets, and to avoid any adverse impacts on air quality.

POLICY 5.9 OVERHEATING AND COOLING

B. Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- 1. Minimise internal heat generation through energy efficient design
- 2. Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls
- *3. Manage the heat within the building through exposed internal thermal mass and high ceilings*

- Passive ventilation
 Mechanical ventilation
 Active cooling systems (ensuring they are the lowest carbon options).

POLICY 5.15 WATER USE AND SUPPLIES

"...setting an upper limit of daily domestic water consumption to 105 litres/head for residential developments (excluding a maximum allowance of 5 litres/head/day for external water consumption)."

GLA GUIDANCE ON PREPARING ENERGY ASSESSMENTS

This document (last updated in March 2016) provides guidance on preparing energy assessments to accompany strategic planning applications; it contains clarifications on Policy 5.2 carbon reduction targets in the context of zero carbon policy, as well as detailed guidelines on the content of the Energy Assessments undertaken for planning.

The guidance document specifies the emission reduction targets the GLA will apply to applications as follows:

Stage 1 schemes received by the Mayor on or after the f^t October 2016: Zero carbon for residential development and 35% below Part L 2013 for commercial development.

The definition of zero carbon homes is provided in section 5.3 of the guidance:

'Zero carbon' homes are homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site. The remaining regulated carbon dioxide emissions, to 100 per cent, are to be offset through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

The new guidance also includes changes to technical requirements relating to presenting carbon information separately for domestic and non-domestic elements of developments and the provision for cooling demand data where active cooling is required.

The structure of this report and the presentation of the carbon emission information for the development follows the guidance in this document.

SUSTAINABLE DESIGN AND CONSTRUCTION SPG

The Sustainable Design and Construction SPG, adopted in April 2014, provides additional information and guidance to support the implementation of the Mayor's London Plan. The SPG does not set new policy, but explains how policies in the London Plan should be carried through into action.

It is applicable to all major developments and building uses so it is not technically applicable to this development, however in line with the developer's intention to implement the requirements of the London Plan it has been used to guide the design. It covers the following areas:

- Resource Management
- Adapting to Climate Change and Greening the City
- Pollution Management

This SPG provides a basis for sustainable design in London and is used as the overarching structure of this report. Where additional local policies are addressed by these areas this has also been indicated.

HOUSING SPG

This document provides guidance on the implementation of housing policies in the London Plan and it replaces the 2012 Housing SPG.

Part 2 covers housing quality and updates London housing standards to reflect the implementation of the government's new national technical standards through the Minor Alterations to the London Plan (2015-2016).

As design affects the quality of life, health & wellbeing, safety and security of users and neighbours, this guidance is integral to sustainable development and will be cross-referenced as relevant in the subsequent sections.

MARCH 2016

LONDON PLAN 2016 IMPLEMENTATION FRAMEWORK

307-309 Finchley Road Page 12 of 52

CAMDEN LOCAL PLAN -2017

The Camden Local Plan sets out the Council's planning policies and replaces the Core Strategy and Development Policies planning documents (adopted in 2010). The Local Plan in particular will help deliver the objectives of creating the conditions for harnessing the benefits of economic growth, reducing inequality and securing sustainable neighbourhoods.

The policies relevant to energy and sustainability are outline below:

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- *c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;*
- *d.* support and encourage sensitive energy efficiency improvements to existing buildings;
- *e.* require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town)

and safeguarding potential network routes; and

i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network. To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

Policy CC2 Adapting to climate change

The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation measures such as:

- *a. the protection of existing green spaces and promoting new appropriate green infrastructure;*
- b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;
- *c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and*

d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Any development involving 5 or more residential units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainability Statement.

Sustainable design and construction measures

The Council will promote and measure sustainable design and construction by:

- e. ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;
- f. encourage new build residential development to use the Home Quality Mark and Passivhaus design standards;
- g. encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM domestic refurbishment; and
- h. expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019.

Policy CC3 Water and flooding

The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible.

We will require development to:

- a. incorporate water efficiency measures;
- b. avoid harm to the water environment and improve water quality;
- *c.* consider the impact of development in areas at risk of flooding (including drainage);
- *d. incorporate flood resilient measures in areas prone to flooding;*
- e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and
- f. not locate vulnerable development in floodprone areas.

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore.

Policy CC4 Air quality

The Council will ensure that the impact of development on air quality is mitigated and ensure that exposure to poor air quality is reduced in the borough.

The Council will take into account the impact of air quality when assessing development proposals, through the consideration of both the exposure of occupants to air pollution and the effect of the development on air quality.

Consideration must be taken to the actions identified in the Council's Air Quality Action Plan.

Air Quality Assessments (AQAs) are required where development is likely to expose residents to high levels of air pollution. Where the AQA shows that

a. development would cause harm to air quality; the Council will not grant planning permission unless measures are adopted to mitigate the impact. Similarly, developments that introduce sensitive receptors (i.e. housing, schools) in locations of poor air quality will not be acceptable unless designed to mitigate the impact.

Development that involves significant demolition, construction or earthworks will also be required to assess the risk of dust and emissions impacts in an AQA and include appropriate mitigation measures to be secured in a Construction Management Plan.

Policy CC5 Waste

The Council will seek to make Camden a low waste borough.

We will:

a. aim to reduce the amount of waste produced in the borough and increase recycling and the reuse of materials to meet the London Plan targets of 50% of household waste

recycled/composted by 2020 and aspiring to achieve 60% by 2031;

- b. deal with North London's waste by working with our partner boroughs in North London to produce a Waste Plan, which will ensure that sufficient land is allocated to manage the amount of waste apportioned to the area in the London Plan;
- c. safeguard Camden's existing waste site at Regis Road unless a suitable compensatory waste site is provided that replaces the maximum throughput achievable at the existing site; and
- d. make sure that developments include facilities for the storage and collection of waste and recycling.

CAMDEN PLANNING GUIDANCE -SUSTAINABILITY CPG3 - 2013

It is expected that this Guidance would be updated since the new Local Plan has been adopted in June 2017.

The Camden Planning Guidance support the policies set out in the Local Development Framework (LDF). While the Camden LDF contains policies relating to sustainability in their Core Strategy and Development Policies documents, the Council also has a separate planning guidance specific to sustainability. The sections that will be covered by the following sections of this Sustainability Statement are listed below:

The energy hierarchy

All new developments are to be designed to minimise carbon dioxide emissions by being as energy efficient as is feasible and viable.

Energy efficiency: new buildings

All new developments are to be designed to minimise carbon dioxide emissions by being as energy efficient as is feasible and viable.

Decentralised energy networks and combined heat and power

Development should follow the Energy Hierarchy

use less energy
 supply energy efficiently
 use renewable energy

Renewable Energy

All developments are to target at least a 20% reduction in carbon dioxide emissions through the installation of on-site renewable energy technologies. Special consideration will be given to heritage buildings and features to ensure that their historic and architectural features are preserved.

Water Efficiency

The Council expect all development to be designed to be water efficient by minimising water use and maximising the re-use of water. This includes new and existing buildings.

Sustainable use of materials

Major developments are anticipated to be able to achieve 15-20% of the total value of materials used to be derived from recycled and reused sources.

Sustainability assessment tools

Developments are anticipated to be able to achieve BREEAM 'Excellent' from 2013 onwards and at least 60% of Energy and Water credits and 40% of Materials credits.

Brown roofs, green roofs and green walls

The Council will expect all developments to incorporate brown roofs, green roofs and green walls unless it is demonstrated this is not possible or appropriate. This includes new and existing buildings. Special consideration will be given to historic buildings to ensure historic and architectural feature are preserved.

Flooding

Developments must not increase the risk of flooding, and are required to put in place mitigation measures where there is known to be a risk of flooding.

Adapting to climate change

All development is expected to consider the impact of climate change and be designed to cope with the anticipated conditions

PROPOSED SUSTAINABILITY MEASURES

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water and lighting. Sustainability measures will also include outline key sustainability items.

Due to the area of the non-domestic portion of the development being less than 500m², a BREEAM assessment is not required for this part of the development. The proposed sustainability measures for the non-domestic and new build portions of the scheme will be in line with Local Plan Policies CC1 to CC5, and the recommendations presented in Camden's Planning Guidance Part 3 on Sustainability. The domestic refurbishment portion of the development will be assessed under BREEAM Domestic Refurbishment, and a pre-assessment is presented later in the report.

The following subsections detail the sustainability measures that will be incorporated into the design of the development as a whole. The proceeding section furthers this, describing the specific measures required for the refurbished domestic portion of the development.

ENERGY

DWELLING AND BUILDING EMISSION RATE AND FABRIC ENERGY EFFICIENCY

The methodology set out by the Department of Energy and Climate Change (DECC) for assessing the energy use of dwellings is the Standard Assessment Procedure (SAP). The current version is SAP 2012. For non-domestic buildings, SBEM has been used.

Preliminary SAP and SBEM calculations were carried out to assess the potential \mbox{CO}_2 savings achieved through

- Energy efficiency measures
- The efficient supply of energy and
- Renewable systems

The preliminary calculations showed an improvement over baseline buildings and Part L Building Regulations

2013 where relevant, amounting to a 63% reduction in regulated CO_2 emissions for the scheme.

The energy demand of the development will be reduced by maximising fabric efficiency for both refurbished and new build portions of the development. This will be done by improving the building fabric beyond Building Regulations Part L through incorporation of high levels of insulation, accredited thermal bridging details and good levels of air tightness to improve the building's fabric efficiency. SAP and SBEM calculations were based on a building fabric with low U-values and an air permeability rate of 5m³/m².h at 50 Pa for new build and 10m³/m².h at 50 Pa for refurbished spaces.

DRYING SPACE

The proposed dwellings will include provisions for internal or external clothes drying where appropriate, thereby reducing the amount of electricity consumed through the use of tumble dryers.

ENERGY LABELLED WHITE GOODS

The dwellings will be supplied with an EU Energy Efficiency Labelling Scheme Leaflet to help the tenants choose energy efficient white goods or energy efficient white goods where the dwellings have been fitted out.

EXTERNAL LIGHTING

Energy efficient light fittings will be installed throughout the development where appropriate. In addition, external lights will be fitted with controls to reduce the energy consumption of the building during periods of infrequent use:

- External space lighting will include energy efficient fittings
- Security lighting will include daylight cut-off devices, with a maximum wattage of 150W and PIR.

307-309 Finchley Road Page 17 of 52

LOW OR ZERO CARBON TECHNOLOGIES

A feasibility study was carried out to determine the energy strategy for the proposed development. The proposed strategy has surpassed Part L Building Regulations due to the reduction in the demand by a highly efficient shell. Photovoltaics have been proposed for the residential portion of the development, whilst air source heat pumps (ASHPs) are proposed for the commercial, achieving 9.6% reduction in CO2 emissions compared to the Baseline stage, and 20.6% compared to the Be Lean stage, which meets Camden's Local Plan Policy CC1.

CYCLE STORAGE

Communal cycle storage spaces will be provided for use by the residents to reduce the frequency of short car journeys. The cycle storage will be adequately sized and secured.

WATER

INDOOR WATER USE

The development at 307-309 Finchley Road aims to reduce water consumption in the dwellings to less than 96 litres per person per day, lower than the new target set out within the London Plan (Minor Alterations to the London Plan 2016), through the use of water efficient fittings, and these are listed below.

Fitting	Consumption per use		
WC (full flush)	4 litres per flush		
WC (half flush)	2.6 litres per flush		
Kitchen sink tap	6 litres per min		
Wash basin tap	5 litres per min		
Bath	150 litres to overflow		
Shower	7 litres per min		
Washing machine	8.17 litres per kilogram		
Dishwasher	1.25 litres per place setting		

MATERIALS

Embodied energy is the energy that is used in the manufacture, processing and the transportation of the materials to site.

The construction build-ups for each of the main building elements are rated from A+ to E. Each element to be used in the building has been rated according to the BRE Green Guide to Specification whereby:

- A+ rated elements are least likely to affect the environment
- E rated elements are most likely to affect the environment

It is assumed that most of the main building elements within this development will achieve between an A+ to C rating where possible.

All timber used during site preparation and construction to be FSC certified, and all non-timber materials to be certified with Environmental Management Systems (ISO 14001 OR BES 6001) where possible.

WASTE

HOUSEHOLD WASTE

Dedicated external waste storage for the dwellings will be provided to meet the Local Authority requirements.

Adequate internal storage for recyclable waste will be provided to all dwellings in a dedicated position. The Local Authority provides recyclable household waste collection and sorting. Communal waste storage space will be provided for both commercial and residential parts of the development.

CONSTRUCTION SITE WASTE MANAGEMENT

The development will minimise the impact of construction waste on the environment through a Resource Management Plan or Strategy. This plan will include information such as:

- Benchmarks for resource efficiency
- Procedures and commitments to reduce hazardous and non-hazardous waste
- Monitoring hazardous and non-hazardous waste

POLLUTION

GLOBAL WARMING POTENTIAL (GWP) OF INSULANTS

Global warming potential (GWP) is a measure of how effective a gas is at preventing the passage of infrared radiation. Blowing agents, used in the production of insulation, are a common source of gases with high GWPs.

The development will aim to specify insulation materials that have a low Global Warming Potential (GWP).

NO_X EMISSIONS

Space heating and hot water requirements are to be met through high efficiency gas boilers with inherently low NOx emissions.

HEALTH AND WELLBEING

DAYLIGHTING

The dwellings have been designed with daylight in mind and measures have been taken to maximise daylight where possible.

SOUND INSULATION

The development proposes that airborne sound insulation will comply with current Building Regulations Part E standards.

LIFETIME HOMES

All dwellings will aim to be designed in line with Lifetime Homes principles where possible, ensuring that they are easily adaptable for future use.

MANAGEMENT

CONSTRUCTION SITE IMPACTS

To minimise the construction impacts of the site, the contractor will strive to monitor, report and set targets for:

- The production of CO₂ arising from site activities
- Water consumption from site activities

In addition, contractors will strive to adopt best practice policies for air (dust) and water (ground and surface) pollution occurring on site. All timber will be sourced following the Government's Timber Procurement Policy.

ECOLOGY

ECOLOGICAL VALUE OF SITE & PROTECTION OF ECOLOGICAL FEATURES

Due to its urban location and absence of ecological features on the existing site, the site is considered to be of low ecological value.

BUILDING FOOTPRINT

The proposed development will increase the density of the site. This will ensure that the land is used efficiently whilst maximising the building area.

SURFACE WATER RUN-OFF

There will be no increase in the man-made impermeable area draining to the watercourse, therefore there will be no increase in peak rate of runoff over the development lifetime.

The Environment Agency flood map shows the proposed development to be located within an area at low risk of flooding. A detailed Sustainable Urban Drainage Systems Strategy for the proposed development can be found in the following section.

Figure 3: Flood map for local area

307-309 Finchley Road Page 20 of 52

SUSTAINABLE URBAN DRAINAGE SYSTEMS

The total site area is approximately 528m² and is considered to be impermeable in its entirety. This impermeable area consists of both existing and proposed roof space. Pre and post development surface water runoff calculations showing the peak flow rate leaving the site can be found in Appendix D.

The onsite surface water would be managed in a sustainable manner to mimic the surface water flow arising from the site prior to the proposed development. This management strategy should aim to reduce flood risk to the site itself as well as elsewhere in the catchment while taking the influence of climate change into account.

The most effective way of managing flood risk at urban sites is through reducing the rate of surface water discharge. Historically, traditional piped systems transport surface water through our developments as quickly as possible, however this has proven to cause a number of additional adverse impacts including downstream flooding, reduced ground water levels, dry water flow and surface water contamination through run-off contamination.

EXISTING DRAINAGE NETWORKS

The Thames Water asset plan in Appendix E shows that there is a combined sewer running along both Lithos Road and Finchley Road. The closest manhole to the development site is located immediately north east of the site. The elevation of this manhole is shown to be 59.4m AOD with an invert level of 54.85m AOD on the asset plan

PROPOSED SUDS SOLUTION

The suggested SUDS solution aims to treat rainwater at source as far as possible, reducing the burden on existing Thames Water infrastructure. As the development involves the refurbishment and extension of an existing developed site located within a dense urban environment it is not considered possible to increase the area of permeable space. For this reason it is deemed most appropriate to integrate onsite storage and attenuation in order to reduce runoff as far as feasibly possible. Policy 5.13 (Sustainable Drainage) of the London Plan states that developments should aim to achieve greenfield runoff rates and ensure that surface water run-off is managed as close to its source as possible. In the case of the proposed development site, greenfield runoff rate was calculated at 0.08 l/s.

Due to the urban nature, density of the site the application of natural infiltration SUDS techniques was considered unrealistic. For this reason the scheme will utilise onsite rainwater attenuation. As a result of the proposed attenuation, runoff is determined by the nature of the flow control device (Hydro-brake or similar approved) that restricts outflow to the local sewer system to 5l/s.

For the proposed 307-309 Finchlev Road development it has been decided that the most appropriate SUDS strategy would be the integration of 4.2m³ of storage in the form of a rainwater attenuation tank. It was decided that the most appropriate location for this tank would be at basement level, allowing all site runoff to naturally drain to the lowest point of the site. This system would provide the total storage requirement to cope with the runoff rate following a 1 in 100 year, 6 hour storm event. This stored water will be channelled to the closest manhole located to the north east of the development site. As the proposed attenuation tank will be located at below ground level it will be necessary for the installation of a water pump to assist the flow of water from the site to the local combined sewer system.

This analysis has fully considered the Sustainable Urban Drainage hierarchy. With the information provided it has been proven that with the addition of a basement level attenuation tank the outflow will be reduced to 5l/s and thus reduce the flood risk and burden on existing Thames Water Infrastructure currently associated with the development site

307-309 Finchley Road Page 21 of 52

SUSTAINABILITY STANDARDS

Within the Draft Core Strategy (2016), the BREEAM standard of 'Excellent' is required for all residential refurbishments with 5 or more dwellings. The following Pre-Assessment demonstrates compliance with the Local Authority's policies in relation to BREEAM assessments.

BREEAM DOMESTIC REFURBISHMENT 2014

BREEAM Domestic Refurbishment is a performance based assessment method and certification scheme for domestic buildings undergoing refurbishment. The primary aim of BREEAM Domestic Refurbishment is to improve the environmental performance of existing dwellings in a robust and cost effective manner. This is achieved through integration and use of the scheme by clients and their project teams at key stages in the refurbishment process.

A BREEAM Domestic Refurbishment Pre-Assessment was carried out for the residential refurbishment element of the development.

The pre-assessment tool uses established benchmarks to evaluate a building's specification, design, construction and operation, over a broad range of categories and criteria:

- Management processes
- Health and wellbeing
- Energy use
- Transport
- Water use
- Materials
- Waste
- Land use and ecology
- Pollution
- Innovation

The outcome of the pre-assessment is expressed as a single certified BREEAM rating, ranging from Pass (30%) to Outstanding (85%).

Table 2: BREEAM Certification Thresholds

BREEAM 2014 Rating	Percentage of Credits Required
Outstanding	85%
Excellent	70%
Very Good	55%
Good	45%
Pass	30%

The following section discusses how the development addresses the BREEAM sustainability criteria required to meet BREEAM 'Excellent'.

Each of the sustainability categories as set out in BREEAM are addressed; each sub-section highlights the sustainability measures that have been adopted to meet BREEAM 'Excellent'.

MANAGEMENT

MAN01 Home User Guide

A 'Home User Guide' will be made available to the main dwellings providing occupants with an understanding of the energy associated with the operation of their home. This non-technical guide will include operational instructions, recommendations on improving energy use and information on the surrounding area (local amenities) to obtain full credits in this section.

MAN02 Responsible Construction Practices

The tender specification will require contractors to be compliant with the Considerate Constructors Scheme (CCS). Additional credits have been awarded as it is expected that formal certification will be achieved and that contractors will operate beyond best practice with a score of 35-39 with a score of at least 7 in each section.

MAN03 Construction Site Impacts

To minimise the construction impacts of the site, contractors will be required to monitor, report and set targets for the reduction of CO_2 arising from site activities in respect to energy and CO_2 emissions, and water consumption.

MAN04 Security

All external doors and windows will meet minimum security standards and be appropriately certified. A suitably qualified security consultant will be consulted at the design stage, with their recommendations incorporated into the refurbishment specification.

MAN06 Project Management

All of the project team has been involved in the project decision-making and individual and shared roles and responsibilities have been assigned by the project manager across the following key design and refurbishment stages:

- Planning and Building control notification
- Design
- Refurbishment
- Commissioning and handover
- Occupation

Key design team meetings will be held to define and make key decisions that influence or affect the dwelling's proposed designs, and their refurbishment in accordance with the design (and therefore the dwelling's sustainability impacts and BREEAM performance).

As part of the handover and aftercare strategy a handover meeting will be arranged and two or more of the following items will be committed to:

- A site inspection within 3 months of occupation.
- Conduct post occupancy interviews with building occupants or a survey via phone or posted information within 3 months of occupation.
- Longer term after care e.g. a helpline, nominated individual or other appropriate system to support building users for at least the first 12 months of occupation.

HEALTH AND WELLBEING

HEA01 Daylighting

The refurbishment will be designed to result in a neutral impact on the dwellings daylighting levels in the kitchen, living room, dining room and study.

HEA02 Sound Insulation

Existing separating walls and floors will be designed to achieve airborne sound insulation levels 3dB higher than Part E and impact sound levels 3dB lower than Part E. This will be confirmed through sound testing post-completion.

HEA05 Ventilation

The minimum ventilation levels set out in Sections 5 and 7 of Building Regulations Approved Document Part F will be provided for all habitable rooms, kitchens, utility rooms and bathrooms.

HEA06 Safety

Fire and carbon monoxide detection systems will be installed as part of the refurbishment and extension. A compliant fire detection and alarm system will also be provided.

ENERGY

ENE01 Improvement in Energy Efficiency Rating (EER)

The Energy Efficiency Rating (EER) is a measure of the overall efficiency of a dwelling. It accounts for regulated energy use in terms of heating, hot water, equipment, lighting and auxiliary energy use.

The methodology set out by the Department of Energy and Climate Change (DECC) for assessing the energy use of dwellings is the Standard Assessment Procedure (SAP). The current version of software is FSAP 2012.

Preliminary SAP calculations were carried out to assess the potential CO_2 savings achieved through energy efficiency measures.

The preliminary SAP calculation for the proposed development at 307-309 Finchley Road showed considerable reductions in energy demand in comparison to the existing building. The SAP calculation results indicate that the EER will increase by an average of 19 for the refurbished dwellings.

ENEO2 Energy Efficiency Rating (EER) Post Refurbishment

Reduction in energy demand of the proposed dwellings will be achieved through the use of well insulated external building elements, high performance glazing, use of efficient lighting throughout the dwellings, and the installation of energy efficient space heating and hot water systems.

SAP calculations show that an average EER of 80 will be achieved. This exceeds the EER of 70 required to meet BREEAM Domestic Refurbishment 'Excellent'.

ENE03 Primary Energy Demand

An average primary energy demand of less than 120 kWh/m²/year will be achieved after refurbishment works are carried out for the development at 307-309 Finchley Road.

ENE05 Energy Labelled White Goods

The dwellings will be supplied with energy efficient appliances that are recognised as having the following ratings in the EU Energy Efficiency Labelling Scheme.

- Fridges, freezers & fridge-freezers: A+
- Washing machines: A++
- Dishwashers: A+
- Washer dryers & tumble dryers A>

ENE06 Drying Space

The proposed refurbishment will include provisions for clothes drying, thereby reducing the amount of electricity consumed through the use of tumble dryers. The development will include at least 4m of retractable drying lines in 1-2 bedroom dwellings and at least 6m of retractable drying line in 3+ bedroom dwellings.

ENE07 Lighting

External - Energy efficient light fittings will be installed in the external spaces. Existing external lighting will also meet the compliance requirements.

In addition, external lights will be fitted with controls to reduce the energy consumption of the building during periods of infrequent use:

- external space lighting will include energy
- efficient fittings
- security lighting will include daylight cut-off
- devices, with a maximum wattage of 150W andPIR

Internal lighting will have a maximum average wattage across the total floor area of 9 watts/ m^2 .

ENE08 Energy Display Devices

Energy display devices will be installed in all dwellings to enable the occupants to gain an understanding of their energy consumption and to enable them to reduce their energy use in the future.

The display device will provide information on current electricity and primary heating consumption data and will be capable of recording consumption data.

ENE09 Cycle Storage

At least 20 cycle storage spaces will be provided for the site. This is to reduce the frequency of short car journeys. The cycle storage space will be adequately sized, secure, covered and accessible to all residents.

ENE10 Home Office

Each proposed dwelling will allow for a home office space in an appropriate room comprising:

- sufficient space for a chair, desk and bookshelf
- adequate ventilation
- 2 No. double power sockets and
- 2 No. telephone sockets (or one telephone
- socket where broadband is provided)

WATER

WAT01 Internal Water Use

The water category aims to reduce the consumption of potable water in the home from all sources. These are mandatory credits within BREEAM Domestic Refurbishment, with BREEAM 'Excellent' setting an upper limit of 107 litres per person per day.

The proposed development aims to reduce water consumption through the use of water efficient fittings, including dual flush toilet, water efficient shower heads and taps.

It is estimated that the proposed refurbishment and extension will achieve a water consumption rate of less than 96 litres/person/day, exceeding the minimum requirement for BREEAM Domestic Refurbishment 'Excellent'.

WAT02 External Water Use

As the development have no individual or communal garden space, this credit has been awarded by default.

MATERIALS

MAT01 Environmental Impact of Materials

Embodied energy is the energy that is used in the manufacture, processing and the transportation of the materials to site.

The construction build-ups for each of the main building elements are rated from A+ to E. Each element to be used in the building has been rated according to the BRE Green Guide to Specification whereby:

- A+ rated elements are least likely to affect the environment
- E rated elements are most likely to affect the environment

It is assumed that most of the main building elements within this development will achieve between an A+ to C rating.

MAT02 & MAT03 Responsible Sourcing of Materials and Insulation

The principal contractor will source materials in accordance with a documented sustainable procurement plan and at least 80% of the materials specified will be obtained from responsible sources.

This includes all basic building elements, comprising the building frame, floors, roof, external walls, foundations and internal walls and all finishing elements.

In addition, 100% of all timber used on site will be legally sourced, thereby satisfying the mandatory requirements set out in this category. Any timber used in the structural and finishing elements will be specified from certified sustainable sources such as FSC or PEFC.

Where possible, on-site materials will be reused and recycled to lower transport CO_2 emissions associated with off-site recycling. Where practicable, materials with a high recycled or waste content will be specified.

The insulation index for all new insulation used in external walls, floors, roof and building services will be more than 2 when calculated using the BREEAM Mat03 Insulation Calculator.

WASTE

WAS01 Household Waste

A Local Authority Collection Scheme will be in operation for the collection of mixed recyclable household waste, at least 30 litres of storage space for recycling will be provided internally at a dedicated position in the kitchen.

WAS02 Construction Site Waste Management

The development will minimise the impact of construction waste on the environment through a Level 2 Site Waste Management Plan (SWMP). This plan will include:

- benchmarks for resource efficiency
- procedures and commitments to reduce
- hazardous and non-hazardous waste
- monitoring hazardous and non-hazardous
- waste

The amount of waste generated will be recorded in the SWMP, and the volume of non-hazardous construction waste generated from the development will meet or exceed the target resource efficiency benchmark. If demolition is included as part of the refurbishment programme, then the audit should also cover demolition materials. In addition, pre-refurbishment audit of the existing building will be completed prior to works commencing on site.

POLLUTION

POL01 NOx Emissions

This section aims to reduce the release of nitrogen oxide (NOx) into the atmosphere. Space heating and hot water requirements of the dwellings will be met by a centralised CHP system with high efficiency gas boiler backup and low inherent NOx emissions. Gas boilers and CHP with NOx emissions of less than 70 mg/kWh will be specified.

POL02 Surface Water Runoff

The building footprint will remain the same after the refurbishment, therefore there will be a neutral impact on surface water.

POL03 Flooding

The Environment Agency flood map shows the site to be at low risk of flooding. Please refer to image 3 in Page 21.

BREEAM PRE-ASSESSMENT RESULTS

A BREEAM pre-assessment has been undertaken at pre-application stage which has shown that a score of 73.34 is feasible. This includes the minimum requirements from Camden Council for Energy and Water (at least 60% of available credits) and Materials (at least 40% of available credits).

The results for the pre-assessment are summarised in the table below, and include a breakdown of the currently targeted score for each issue and category.

Table 3: BREEAM Pre-Assessment Breakdown

DDEEAM Catagory	Total Credits	Score Assessment		
DREEAM Calegory	Available	Sub-total	Weighting	Score (%)
Management	11	11	12%	12.0%
Health & Wellbeing	12	8	17%	11.3%
Energy	29 10		43%	30.4%
Water	5	4	11%	8.80%
Materials	48	22	8%	3.6%
Waste	5	4	3%	2.4%
Pollution	8	5	6%	3.75%
Innovation	10	1	-	1.0%
BREE	EAM 'Excellent'	Total	Points Scor	red: 73.34%

ENERGY STRATEGY SUMMARY

This section describes the predicted energy performance and carbon dioxide emissions of the proposed 307-309 Finchley Road development based on the information provided by the design team.

METHODOLOGY - BE LEAN, BE CLEAN, BE GREEN

The methodology used to determine CO_2 emissions is in accordance with the London Plan's three-step Energy Hierarchy (Policy 5.2A) outlined below. The development will be compared to existing baseline buildings and Building Regulations Part L 2013 baseline.

The reductions made through each step have been outlined here:

BE LEAN - USE LESS ENERGY

The first step addresses reduction in energy demand, through the adoption of passive and active design measures.

The proposed energy efficiency measures include levels of insulation beyond Building Regulation requirements, low air tightness levels, efficient lighting as well as energy saving controls for space conditioning and lighting.

By means of energy efficiency measures alone, regulated CO_2 emissions are shown to reduce by:

- 0.3% (0.01 tonnes per annum) for the new build domestic part of the development;
- 56.5% (25.5 tonnes per annum) for the refurbishment domestic part of the development;
- 57.3% (7.7 tonnes per annum) for the nondomestic part of the development; and
- 53.4% (33.2 tonnes per annum) across the whole site.

BE CLEAN – SUPPLY ENERGY EFFICIENTLY

The application site is located in an area where district heating is not expected to be implemented in the future.

A site heat network has not been found to be feasible or viable for a development of this scale; individual high efficiency gas boilers are instead proposed to provide heat to the dwellings. There will be no additional savings at this step.

BE GREEN - USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified photovoltaics and air source heat pumps as suitable technologies for the development.

The incorporation of renewable technologies will further reduce CO_2 emissions *on site* by a further:

- 26.3% (1.0 tonnes per annum) for the new build domestic part of the development;
- 8.2% (3.7 tonnes per annum) for the refurbished domestic part of the development;
- 10.3% (1.4 tonnes per annum) for the nondomestic part of the development; and
- 9.6% (5.9 tonnes per annum) across the site as a whole.

The scheme will also achieve a 20.6% reduction in regulated CO2 emission with LZC technologies when compared to the Be Lean Stage, which meets the 20% target set out in Camden's Local Plan Policy CC1.

CUMULATIVE ON SITE SAVINGS

The overall regulated CO_2 savings *on site* against existing buildings baseline and Part L 2013 compliant scheme are therefore:

- 26.6% (1.0 tonnes per annum) for the new build domestic part of the development;
- 64.7% (29.1 tonnes per annum) for the refurbishment domestic part of the development; and
- 67.6% (9.1 tonnes per annum) for the nondomestic part of the development.

The total regulated CO_2 savings for the site are 39.1 tonnes, equivalent to 63% of the baseline emissions, and exceeding the 35% reduction target set out in the London Plan for major developments.

NEW-BUILD DOMESTIC ENERGY HIERARCHY AND TARGETS

Figure 4: The New Build Domestic Energy Hierarchy

REFURBISHMENT DOMESTIC ENERGY HIERARCHY AND TARGETS

Figure 5: The Refurbishment Domestic Energy Hierarchy

REFURBISHMENT NON-DOMESTIC ENERGY HIERARCHY AND TARGETS

XCIC

307-309 Finchley Road Page 31 of 52

SITE WIDE ENERGY HIERARCHY AND TARGETS

Figure 7: The Site Wide Energy Hierarchy

307-309 Finchley Road Page 32 of 52

BE LEAN – USE LESS ENERGY

The proposal incorporates a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water and lighting. Measures will also be put in place to reduce the risk of overheating. The regulated carbon saving achieved in this step of the Energy Hierarchy is 53.4% over the site wide baseline level.

PASSIVE DESIGN MEASURES

ENHANCED U-VALUES

The heat loss of different building fabric elements is dependent upon their U-value. A building with low Uvalues provides better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and high-performance glazing beyond notional building specifications, in order to reduce the demand for space conditioning (heating and/or cooling).

The tables to the right demonstrate the improved performance of the proposed building fabric for both new build and refurbishment domestic and nondomestic uses.

AIR TIGHTNESS IMPROVEMENT

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2013 minimum standards for air tightness by targeting air permeability rates of $5m^3/m^2$ at 50Pa for all new build units and $10m^3/m^2$ at 50Pa for refurbished areas.

New Build Domestic (U-values in W/m ² .K)					
Element	Building Regulations	Proposed	Improvement		
Walls	0.30	0.15	50%		
Roof	0.20	0.10	50%		
Windows	2.00	1.40	30%		
Refurbishment (U-values in W/m².K)					
Element	Existing	Proposed	Improvement		
Walls	1.70	0.30	82%		
Floor	0.53	0.25	55%		
Roof	1.50	0.18	88%		
Windows	4.80	1.60	67%		

Table 4: Thermal Envelope U-values

REDUCING THE NEED FOR ARTIFICIAL LIGHTING

The development has been designed to maximise daylight in all habitable spaces.

All of the habitable areas will benefit from generous glazing area to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

ACTIVE DESIGN MEASURES

HIGH EFFICACY LIGHTING

The development intends to incorporate low energy lighting fittings throughout the residential and nonresidential spaces. All light fittings will be specified as low energy lighting, and will accommodate LED, compact fluorescent (CFLs) or fluorescent luminaries only.

HEAT RECOVERY VENTILATION

Mechanical ventilation heat recovery (MVHR) is proposed for the commercial units. The mechanical ventilation system will include heat recovery in order to achieve ventilation in the most energy-efficient way. Natural ventilation is proposed for the dwellings.

COMFORT COOLING

Air source heat pumps with high energy efficiency ratios may be used for both heating and cooling in the commercial units, therefore the impact of active cooling in terms of energy use and carbon emissions will be minimised.

CONTROLS

Advanced lighting controls will be incorporated, specifically for areas of infrequent use, occupant sensors will be fitted for lighting, whereas day lit areas will incorporate daylight sensors where appropriate for the commercial parts of the development.

MONITORING

Apart from the above design measures, the development will incorporate monitoring equipment and systems to enable occupiers to monitor and reduce their energy use.

Smart meters will be installed to monitor the heat and electricity consumption of each dwelling; the display board will demonstrate real-time and historical energy use data and will be installed at an accessible location within the dwellings.

307-309 Finchley Road Page 34 of 52

ENERGY USE

The table below shows a breakdown of carbon dioxide emissions associated with the proposed development's fossil fuel and electricity consumption for the different uses. The site-wide data are presented, i.e. the sum of the demand for both the domestic and non-domestic parts of the development. The figures provide a comparison between the baseline condition and the proposed development once energy efficiency measures (Lean) have been applied. This table demonstrates the energy savings achieved through energy efficiency measures (Lean stage of the Energy Hierarchy)

Table 5: Breakdown of energy consumption and CO_2 emissions for the baseline and the proposed schemes after 'Lean' measures are implemented

	Baseline			Lean		
	Energy (kWh/yr.)	kgCO ₂ /yr.	kgCO ₂ /m ²	Energy (kWh/yr.)	kgCO ₂ /yr.	kgCO ₂ /m ²
Hot Water	58,670	12,800	11.1	34,590	7,550	6.5
Space Heating	157,620	37,800	32.8	62,590	14,070	12.2
Cooling	6,480	3,280	2.8	3,420	1,730	1.5
Auxiliary	3,100	1,590	1.4	1,370	700	0.6
Lighting	12,810	6,570	5.7	9,470	4,850	4.2
Equipment	43,880	22,770	19.7	46,320	24,040	20.8
Total Part L	238,670	62,050	53.8	111,440	28,900	25.0
Total (incl. equipment)	282,560	84,830	73.5	157,760	52,940	45.9

BE LEAN CO₂ EMISSIONS & SAVINGS

By means of energy efficiency measures alone, regulated CO_2 emissions are shown to reduce by:

- 0.3% (0.01 tonnes per annum) for the new build domestic part of the development;
- 56.5% (25.5 tonnes per annum) for the domestic refurbishment part of the development;
- 57.3% (7.7 tonnes per annum) for the nondomestic part of the development; and
- 53.4% (33.2 tonnes per annum) across the whole site.

BE CLEAN – SUPPLY ENERGY EFFICIENTLY

The development site does not lie in the vicinity of an existing or proposed district energy network, and a communal CHP network would not be viable for this scale of development. Communal heating has also been disregarded given the associated design, cost and maintenance implications of incorporating and operating a communal plantroom and the lesser efficiency of such a system compared to an individualised solution. The proposed system for space heating and hot water is therefore individual high efficiency gas boilers.

ENERGY SYSTEM HIERARCHY

The energy system for the development has been selected in accordance with the London Plan decentralised energy hierarchy. The hierarchy listed in Policy 5.6 states that energy systems should consider:

- 1. Connection to existing heating and cooling networks;
- 2. Site wide CHP network; and,
- 3. Communal heating and cooling.

Local heat and power sources minimise distribution losses and achieve greater efficiencies when compared to separate energy systems, thus reducing CO_2 emissions.

In a communal energy system, energy in the form of heat, cooling, and/or electricity is generated from a central source and distributed via a network of insulated pipes to surrounding residences.

CONNECTION TO AN EXISTING NETWORK

The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study.

An excerpt from the London Heat Map can be seen on the following page which shows the energy demand for different areas. Darker shades of red signify areas where energy demand is high. The map also highlights any existing and proposed district heating networks within the vicinity of the development.

SITE WIDE CHP NETWORK

The small scale of the development would not render the option of a site wide CHP network a feasible or viable option.

COMMUNAL HEATING

A centralised system is not suitable to a development of this size, due to the relatively large space required for the plant room, the small number of households to cover the capital costs and the small overall demand for heating rendering the centralised system inefficient.

INDIVIDUAL HEATING

Space heating and hot water for the development will therefore be provided by individual high efficiency gas boilers. Compared to a communal boiler heating system, individual boilers will be more efficient to run and maintain, therefore delivering higher carbon savings.

Given that it has not been found feasible or viable for the proposed development to incorporate the supply of low carbon heating, no carbon savings are achieved for this step of the Energy Hierarchy.

Figure 8: Excerpt from the London Heat Map

307-309 Finchley Road Page 37 of 52

BE GREEN – USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified photovoltaics for the domestic part of the development and air source heat pumps for the commercial part of the development as suitable technologies. The regulated carbon saving achieved in this step of the Energy Hierarchy is 9.6% over the site wide baseline level.

RENEWABLE TECHNOLOGIES FEASIBILITY STUDY

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were taken into account.

The development of 307-309 Finchley Road will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance. A range of renewable technologies were subsequently considered including:

- Biomass;
- Ground/water source heat pumps;
- Air source heat pump;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints; and
- Any potential visual impacts.

RENEWABLE ENERGY APPRAISAL SUMMARY

The table below summarises the factors taken into account in determining the appropriate renewable technologies for this project. This includes estimated capital cost, lifetime, level of maintenance and level of impact on external appearance. The final column indicates the feasibility of the technology in relation to the site conditions (10 being the most feasible and 0 being infeasible). It is important to note that the information provided is indicative and based upon early project stage estimates.

The feasibility study demonstrates that photovoltaics and ASHP would be the most feasible renewable technologies for the proposed 307-309 Finchley Road development. Detailed assessments for the proposed technologies can be found in the following sections.

Table 6: Summary of renewable technologies feasibility study

		Comments	Lifetime	Maintenance	Impact on external appearance	Site feasibility
Biomass		Not adopted -burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20 yrs.	High	High	2
PV		Adopted	25 yrs.	Low	Med	9
Solar thermal		Not adopted - PV is deemend to be the most effective roof mouted renewable solution	25 yrs.	Low	Med	3
GSHP		Not adopted -the installation of ground boreholes requires significant space, additional time at the beginning of the construction process and very high capital costs.	20 yrs.	Med	Low	0
ASHP	à	Adopted	20 yrs.	Med	Med	8
Wind	K	Not adopted - Wind turbines located at the site will have a significant visual impact on the existing locally listed building.	25 yrs.	Med	High	2

307-309 Finchley Road Page 39 of 52

DETAILED ASSESSMENT OF PHOTOVOLTAIC PANELS

Four types of solar cells are available on the market at present and these are mono-crystalline, polycrystalline, thin film and hybrid panels. Although monocrystalline and hybrid cells are the most expensive, they are also the most efficient with an efficiency rate of 12-20%. Poly-crystalline cells are cheaper but they are less efficient (9-15%). Thin film cells are only 5-8% efficient but can be produced as thin and flexible sheets.

Photovoltaics are considered a suitable technology for this development for the following reasons:

- The development provides an extent of roof space for the installation of PV panels;
- PV arrays are relatively easy to install when compared to other renewable systems; and
- PV panels provide a significant amount of CO₂ savings.

The PV shall comprise 11.6kWp (72.2m²) of horizontal roof mounted arrays. The PV array will be connected to the domestic part of the development (landlord areas).

The table to the right summarises the technical data for the proposed PV array and estimated CO_2 savings from the application of this technology. In total, the PV installation would produce regulated CO_2 savings of 7.3% for the development.

An indicative area for the installation of the PV panels on the roof can be found in the following page.

Table 7: Summary of technical/operational data and estimated CO_2 savings for PVs

Photovoltaics		
Module efficiency	16	%
Tilt	Horizontal	
Predicted site solar energy	950.6	kWh/m².yr
System losses	20	%
System peak power	11.55	kWp
Array area	72.16	m ²
Primary energy offset by PV	8,780	kWh/yr.
Total CO ₂ savings	4.6	t/yr.
Regulated baseline CO ₂ emissions	62.1	t/yr.
Total baseline CO ₂ emissions	84.8	t/yr.
% Regulated CO ₂ reduction*	9.6	%
% Total CO ₂ reduction*	7.0	%

* % reduction from site baseline

Figure 9: Monocrystalline PV arrays

ENERGY & SUSTAINABILITY STATEMENT

Figure 10. Proposed PV layout for 307-309 Finchley Road

DETAILED ASSESSMENT OF AIR SOURCE HEAT PUMPS

Air source heat pumps (ASHPs) employ the same technology as ground source heat pump (GSHPs). However, instead of using heat exchangers buried in the ground, heat is extracted from the external ambient air.

The efficiency of heat pumps is very much dependent on the temperature difference between the heat source and the space required to be heated. As a result, ASHPs tend to have a lower COP than GSHPs. This is due to the varying levels of air temperature throughout the year when compared to the relatively stable ground temperature. The lower the difference between internal and external air temperature, the more efficient the system.

ASHP is considered a suitable technology for the commercial part of the development for the following reasons:

- It is a high efficiency system that can cater for the space heating and cooling of the nondomestic areas of the proposed development;
- Requires less capital cost than GSHP and other renewable technologies; and
- It can be integrated with the proposed ventilation strategy.

This technology may be employed to provide the space heating and cooling for future fit-out of the non-domestic parts of the development.

The table below summarises the technical data for the proposed ASHP and estimated CO_2 savings from the application of this technology. In total, the ASHP technology would produce regulated CO_2 savings of 2.2% for the development.

Table 8: Summary of technical/operational data and estimated \mbox{CO}_2 savings for ASHP

ASHP for non-domestic spaces				
COP heating		4.0		
COP cooling		6.0		
Carbon intensity of electricity	0.519	kgCO2/kWh		
Proportion of non-domestic space heating and hot water met by ASHP	0	%		
Proportion of non-domestic space cooling met by ASHP	100	%		
Energy met by ASHP	10,590	kWh/yr.		
Energy used by ASHP	2,620	kWh/yr.		
Total CO ₂ savings	1.4	t/yr.		
Regulated baseline CO ₂ emissions	62.1	t/yr.		
Total baseline CO ₂ emissions	84.8	t/yr.		
% Regulated CO ₂ reduction*	2.2	%		
% Total CO ₂ reduction*	1.6	%		

* % reduction from site baseline

Figure 11: Outdoor unit of an ASHP

BE GREEN CO₂ EMISSIONS & SAVINGS

The incorporation of renewable technologies will further reduce CO_2 emissions by a further:

- 26.3% (1.0 tonnes per annum) for the new build domestic part of the development;
- 8.2% (3.7 tonnes per annum) for the domestic refurbishment part of the development;
- 10.3% (1.4 tonnes per annum) for the nondomestic part of the development; and
- 9.6% (5.9 tonnes per annum) across the whole site.

CONCLUSIONS

Following the implementation of the three-step Energy Hierarchy, the cumulative CO_2 savings on site are estimated at 26.6% for the new build domestic and 64.7% for the domestic refurbishment parts, and 67.6% for the non-domestic part of the development, against an existing buildings baseline and Part L 2013 compliant scheme. The regulated CO_2 savings for the site as a whole are 63%.

ON SITE CO2 SAVINGS

By implementing the three step Energy Hierarchy as detailed in the previous sections, the Regulated CO_2 emissions for the development have been reduced against a Part L 2013 compliant scheme through on site measures alone by:

- 26.6% (2.6 tonnes per annum) for the new build domestic part of the development;
- 64.7% (29.1 tonnes per annum) for the domestic refurbishment part of the development;
- 10.3% (9.1 tonnes per annum) for the nondomestic part of the development; and
- 63% (39.1 tonnes per annum) across the whole site.

The proposed development complies with the London Plan CO_2 savings target of 35% overall. The target 20% reduction in regulated CO_2 emissions from LZC technologies (when compared to the Be Lean Stage) set out in the Camden Local Plan is also achieved through the installation of photovoltaics and air source heat pumps.

The tables on the following pages summarise the implementation of the Energy Hierarchy for the proposed scheme and detail the CO_2 emissions and savings against the baseline scheme for each step of the hierarchy.

Separate tables are presented for the new build domestic, domestic refurbishment and non-domestic refurbishment parts of the development; as well as for the site as a whole.

Overall, the proposed development has been designed to meet energy policies set out by the GLA and the London Borough of Camden, which

demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

In line with GLA policy, carbon offset payment to zero carbon for the residential elements is not relevant for this scheme.

SUSTAINABILITY

In summary, the proposed 307-309 Finchley Road development will meet the targets set out by Camden Council and the Greater London Authority (GLA). The scheme achieves a BREEAM score of 73.34%, exceeding the BREEAM 'Excellent' target of 70%.

The credits obtained in the BREEAM pre-assessment and the site-wide sustainability measures incorporated reflect the client and design team's aspirations in integrating sustainability measures and demonstrates that the project is designed to exceed the planning policy sustainability requirements.

DOMESTIC CUMULATIVE SAVINGS

Table 9: CO₂ emissions after each step of the Energy Hierarchy for the new build domestic part of the development

	Carbon dioxide emissions for new build domestic part (tonnes CO2 per annum)		
	Regulated	Unregulated	
Baseline	3.6	3.6	
After energy demand reduction	3.6	3.6	
After heat network/CHP	3.6	3.6	
After renewable energy	2.64	3.6	

Table 10: Regulated CO₂ savings from each stage of the Energy Hierarchy for the new build domestic part of the development

	Regulated new build domestic part carbon dioxide savings		
	Tonnes CO ₂ per annum	% over baseline	
Savings from energy demand reduction	0.01	0.3%	
Savings from heat network/CHP	0.0	0.0%	
Savings from renewable energy	0.95	26.3%	
Cumulative on site savings	0.96	26.6%	

Table 11: CO₂ emissions after each step of the Energy Hierarchy for the domestic refurbishment part of the development

	Carbon dioxide emissions for domestic refurbishment part (tonnes CO2 per annum)		
	Regulated	Unregulated	
Baseline	45.0	15.6	
After energy demand reduction	19.5	15.6	
After heat network/CHP	19.5	15.6	
After renewable energy	15.86	15.6	

Table 12: Regulated CO₂ savings from each stage of the Energy Hierarchy for the domestic refurbishment part of the development

	Regulated domestic refurbishment part carbon dioxide savings		
	Tonnes CO ₂ per annum	% over baseline	
Savings from energy demand reduction	25.4	56.5	
Savings from heat network/CHP	0.0	0.0	
Savings from renewable energy	3.7	8.2	
Cumulative on site savings	29.1	64.7	

NON-DOMESTIC CUMULATIVE SAVINGS

Table 13: CO₂ emissions after each step of the Energy Hierarchy for the non-domestic refurbishment part of the development

	Carbon dioxide emissions for non-domestic refurbishment part (tonnes CO2 per annum)		
	Regulated	Unregulated	
Baseline	13.5	3.5	
After energy demand reduction	5.8	3.5	
After heat network/CHP	5.8	3.5	
After renewable energy	4.4	3.5	

Table 14: Regulated CO_2 savings from each stage of the Energy Hierarchy for the non-domestic refurbishment part of the development

	Regulated non-domestic refurbishment part carbon dioxide savings		
	Tonnes CO ₂ per annum	% over baseline	
Savings from energy demand reduction	7.7	57.3	
Savings from heat network/CHP	0.0	0.0	
Savings from renewable energy	1.4	10.3	
Cumulative on site savings	9.1	67.6	

SITE-WIDE CUMULATIVE SAVINGS

Table 15: Site wide regulated CO_2 emissions and savings

	Total regulated emissions (tonnes CO ₂ /year)	Regulated CO ₂ savings (tonnes CO ₂ /year)	Percentage saving (%)
Baseline	62.1		
Be Lean	28.9	33.2	53.4%
Be Clean	28.9	0.0	0.0%
Be Green	23.0	5.9	9.6%
Total	62.1	39.1	63.0%

APPENDIX A – OVERHEATING RISK ASSESSMENT

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Flat 2

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overhangs: Thermal mass parameter: Night ventilation: Blinds, curtains, shutters:	Flat England Thames valley Yes 2 Unspecified Average or unknown None Indicative Value Medium False		
Ventilation rate during hot weather (ach):	8 (Windows fully open)		
Overheating Details:			
Summer ventilation heat loss coefficient:	339.23		(P1)
Transmission heat loss coefficient:	42.1		(D2)
Summer neat loss coemcient:	381.32		(P2)
Overhangs:			
Orientation:Ratio:Z_oveNorth West (NW)01South East (SE)01North West (NW Baseme0t)1Solar shading:Orientation:Z blinds:Solar	access: Overhangs:	Z summer:	÷
North West (NW) 1 0.9	1	0.9	(P8)
South East (SE) 1 0.9		0.9	(P8)
Solar gains:	l de la companya de l	0.9	(10)
Orientation Area F	lux g_ FF	Shading	Gains
North West (NW) 0.9 x 2.4 9	8.85 0.7 0.8	0.9	107.61
South East (SE) 0.9 X 6 I	19.92 U.7 U.8 8.85 0.7 0.8	0.9	326.38
North West (NW basementy x 5.0 9	0.05 0.7 0.0	Total	604.36 (P3/P4)
Internal gains:			,
Internal gains	June	July	August

Likelihood of high internal temperature	Not significant	Not significant	Not sig	nificant
Threshold temperature	18.69	20.46	20.18	(P7)
Thermal mass temperature increment	0.25	0.25	0.25	
Mean summer external temperature (Thames valley)	16	17.9	17.8	
Summer gain/loss ratio	2.44	2.31	2.13	(P6)
Total summer gains	929.17	879.42	813.23	(P5)
Internal gains	286.45	275.06	281.33	

Assessment of likelihood of high internal temperature:

Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 4

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overhangs: Thermal mass parameter: Night ventilation: Blinds, curtains, shutters: Ventilation rate during hot weather (ach):	Flat England Thames valley No 2 Unspecified Average or unknown None Indicative Value Medium False 5 (Windows fully open)		
Overheating Details:			
Summer ventilation heat loss coefficient: Transmission heat loss coefficient: Summer heat loss coefficient:	186.72 56.6 243.37		(P1) (P2)
Overhangs:			
Orientation: Ratio: Z overhange	5:		
South East (SE) 0 1 North East (NE) 0 1 North East (NE Basement) 1 Solar shading:			
Orientation:Z blinds:Solar accessSouth East (SE)10.9North East (NE)10.9North East (NE Basement)0.9	s: Overhangs: 1 1 1	Z summer: 0.9 0.9 0.9	(P8) (P8) (P8)
Solar gains:			
Orientation Area Flux South East (SE) 0.9 x 4.6 119.92 North East (NE) 0.9 x 3.1 98.85 North East (NE Basement).9 x 2.3 98.85	g_FF0.70.80.70.80.70.8	Shading 0.9 0.9 0.9 Total	Gains 250.23 138.99 103.12 492.34 (P3/P4)
Internal gains:			
Internal gains Total summer gains Summer gain/loss ratio Mean summer external temperature (Thames valley) Thermal mass temperature increment	June 265.18 789.23 3.24 16 0.25	July 254.69 747.03 3.07 17.9 0.25	August 260.62 692.13 (P5) 2.84 (P6) 17.8 0.25
Inreshold temperature Likelihood of high internal temperature	19.49 Not significant	21.22 Slight	20.89 (P7) Slight

Assessment of likelihood of high internal temperature:

<u>Slight</u>

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 6

Dwelling type: Located in: Region: Cross ventilation pose Number of storeys: Front of dwelling faces Overshading: Overhangs: Thermal mass parame Night ventilation: Blinds, curtains, shutt Ventilation rate during Overheating Details: Summer ventilation her Transmission heat loss Summer beat loss coe	sible: s: eter: ers: hot wea eat loss o s coeffic	ther (ac coefficie	:h): ent:	Flat Englan Thame Yes 1 Unspec Averag None Indicat False 6 (Wir 487.84 63.4 551.2	d ss valley cified ge or unknown tive Value Medium ndows fully open)			(P1) (P2)
Overhangs:				551.2				(• _)
Orientation: North East (NE) South West (SW) South East (SE) Solar shading: Orientation: North East (NE) South West (SW) South East (SE)	Ratio: 0 0 2 blind: 1 1 1	5:	Z_overhangs: 1 1 1 Solar access: 0.9 0.9 0.9 0.9	C 1 1 1	Overhangs:	Z summer: 0.9 0.9 0.9		(P8) (P8) (P8)
Solar gains:								
Orientation North East (NE) South West (SW) South East (SE)	0.9 x 0.9 x 0.9 x	Area 5.4 3.2 1.5	Flux 98.85 119.92 119.92	g_ 0.7 0.7 0.7	FF 0.8 0.8 0.8	Shading 0.9 0.9 0.9 Total	Gains 242.12 174.07 81.6 497.78	(P3/P4)
Internal gains:								
Internal gains Total summer gains Summer gain/loss ratio Mean summer external Thermal mass temperat Threshold temperature Likelihood of high inter	temperat ure incre ernal tem	ure (Th ment perature	ames valley) e		June 405.07 934.83 1.7 16 0.25 17.95 Not significant	July 388.74 886.52 1.61 17.9 0.25 19.76 Not significa	August397.15833.731.5117.80.2519.56Not sign	(P5) (P6) (P7) nificant

Assessment of likelihood of high internal temperature:

Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 8

Dwelling type: Located in: Region: Cross ventilation possi Number of storeys: Front of dwelling faces Overshading: Overhangs: Thermal mass paramet Night ventilation: Blinds, curtains, shutte Ventilation rate during	ible: :: :er: ers: hot wea	ther (a	ch):	Flat Engla Tham Yes 1 Unspe Avera None Indica False 6 (W	nd es valley ecified ge or unkn ative Value indows fully	own Medium y open)				
Overheating Details:										
Summer ventilation heat loss	at loss o s coeffic	coefficie	ent:	386.5 50.5	1					(P1)
Summer heat loss coef	fficient:			436.9	6					(P2)
Overhangs:										
Orientation:	Ratio:		Z_overhangs:							
South East (SE) South West (SW)	0		1							
Solar shading: Orientation: South East (SE) South West (SW)	Z blinds 1 1	5:	Solar access: 0.9 0.9		Overhangs 1 1	5:	Z summer: 0.9 0.9			(P8) (P8)
Solar gains:										
Orientation South East (SE) South West (SW)	0.9 x 0.9 x	Area 3.6 1.4	Flux 119.92 119.92	g_ 0.7 0.7		FF 0.8 0.8	Shading 0.9 0.9 Total	G 1 7 2	Sains 95.83 6.16 71.98	(P3/P4)
Internal gains:										
Internal gains Total summer gains Summer gain/loss ratio Mean summer external to Thermal mass temperature Threshold temperature Likelihood of high inter	emperat ure incre rnal tem	ure (Th ment peratu i	ames valley) e		June 343.98 629.5 1.44 16 0.25 17.69 Not sign	ificant	July 330.4 602.38 1.38 17.9 0.25 19.53 Not significa	A 3 5 1 1 1 0 1 0 1	August 38.2 91.93 .35 7.8 9.25 9.4 lot sig	(P5) (P6) (P7) nificant

Assessment of likelihood of high internal temperature:

Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 10

Dwelling type:	Flat	
Located in:	England	
Region:	Thames valley	
Cross ventilation possible:	No	
Number of storeys:	1	
Front of dwelling faces:	Unspecified	
Overshading:	Average or unknown	
Overhangs:	None	
Thermal mass parameter:	Indicative Value Medium	
Night ventilation:	False	
Blinds, curtains, shutters:		
Ventilation rate during hot weather (ach):	4 (Windows fully open)	
Overheating Details:		
Summer ventilation heat loss coefficient:	114.39	(P1)
Transmission heat loss coefficient:	17 7	

Transmission heat loss coefficient:	17.7	
Summer heat loss coefficient:	132.12	(P2)

c	1.10	>rh	or		\sim .
	JVE	er r		IU	S÷
-				. 31	

Orientation:	Ratio:		Z_overhangs:					
North East (NE)	0		1					
Solar shading:								
Orientation:	Z blin	ds:	Solar access:	Ove	rhangs:	Z summer:		
North East (NE)	1	(0.9	1		0.9		(P8)
Solar gains:								
Orientation		Area	Flux	g_	FF	Shading	Gains	
North East (NE)	0.9 x	4.7	98.85	0.7	0.8	0.9 Total	210.73 210.73	(P3/P4)
Internal gains:								
						lub.	August	

June	July	August
251.38	241.54	247.39
478.88	452.27	419.8 (P5)
3.62	3.42	3.18 (P6)
16	17.9	17.8
0.25	0.25	0.25
19.87	21.57	21.23 (P7)
Not significant	Slight	Slight
	251.38 478.88 3.62 16 0.25 19.87 Not significant	JuneJuly251.38241.54478.88452.273.623.421617.90.250.2519.8721.57Not significantSlight

<u>Slight</u>

Assessment of likelihood of high internal temperature:

APPENDIX B – SAP RESULTS

307-309 Finchley Road

			User D	Details:						
Assessor Name: Software Name:	Stroma FS	AP 2012		Strom Softwa	a Num are Ver	ber: rsion:		Versio	on: 1.0.4.6	
			Property	Address	: Flat 2					
Address :										
1. Overall dwelling dime	nsions:		•	- (2)		A 11	·			
Basement			Are	a(m²)	(1a) x	AV. He	ignt(m)	(2a) =	Volume(m ³)] (3a)
Ground floor				21.00	(1b) x		23	(2b) =	70.83](3b)
Total floor area TFA = (1a	a) + (1b) + (1c) + (1c)	(1d)+(1e)+ (1	n)	12.96			.20	(_~)	70.00](02)
	a)+(10)+(10)+	(10)+(10)+(1		13.80	(4) (3a)+(3b))+(3c)+(3d)+(30)+	(3n) -		
					(50)1(55))1(00)1(00)1(00)1	.(01) =	128.5	(5)
2. Ventilation rate:	main	coonda	×3.4	othor		total			m ³ por bour	
	heating	heating	iry	other		total			m° per nour	_
Number of chimneys	0	+ 0	+	0	=	0	x 4	= 0	0	(6a)
Number of open flues	0	+ 0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent far	าร					2	x 1	0 =	20	(7a)
Number of passive vents						0	x 1	0 =	0	(7b)
Number of flueless gas fir	res				Ē	0	x 4	= 0	0	(7c)
								Air ch	ange <mark>s per</mark> hou	ır
Infiltration due to chimney	s, flu <mark>es and fa</mark>	ans = (6a)+(6b)+	(7a) +(7b)+((7c) =	Г	20	<u> </u>	÷ (5) =	0.16	(8)
If a pressurisation test has be	een ca <mark>rried o</mark> ut or	r is intended, proce	ed to (17),	otherwise	continue fr	om (9) to ((16)			-
Number of storeys in th	ie dw <mark>elling</mark> (ne	5)					1(0)	41-0-4	0	(9)
Structural infiltration: 0	25 for steel or	timber frame c	or () 35 fo	r masoni	ny constr	uction	[(9)-	1]XU.1 =	0	$\int_{(10)}^{(10)}$
if both types of wall are pr	esent, use the va	lue corresponding	to the grea	ter wall are	ea (after	uction			0](,,)
deducting areas of openin	gs); if equal user	0.35								٦
If no draught lobby, ent	100r, enter 0.2	(unsealed) or (J.1 (seale	ea), eise	enter U				0	$\int_{(12)}^{(12)}$
Percentage of windows	and doors dr	aught stripped							0	$\int_{(14)}^{(13)}$
Window infiltration		augin omppou		0.25 - [0.2	2 x (14) ÷ 1	00] =			0	1(14)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value,	q50, expresse	ed in cubic metr	es per ho	our per s	quare m	etre of e	nvelope	area	10	(17)
If based on air permeabili	ty value, then	(18) = [(17) ÷ 20]+	(8), otherw	ise (18) =	(16)				0.66	(18)
Air permeability value applies	s if a pressurisatio	on test has been do	one or a de	gree air pe	rmeability	is being us	sed			-
Number of sides sheltered Shelter factor	d			(20) = 1 -	[0.075 x (1	9)] =			2	(19)
Infiltration rate incorporati	ing shelter fac	tor		(21) = (18	x(20) =				0.85	$]^{(20)}$
Infiltration rate modified for	or monthly wir	nd speed		. ,	, (-)				0.00](=')
Jan Feb	Mar Apr	May Jun	Jul	Aua	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Tabl	e7	1	3	1 - 71				I	
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (22	2a)m =	(22)m ÷	4									_	
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	tion rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.71	0.7	0.68	0.61	0.6	0.53	0.53	0.52	0.56	0.6	0.63	0.65		
Calcula If me	ate ettect chanical	ventila	<i>cnange i</i> ition:	rate for t	ne appli	cable ca	se						0	(23a)
lf exh	aust air hea	at pump i	using Appe	endix N. (2	3b) = (23a	a) x Fmv (e	equation (N	(15)), other	wise (23b) = (23a)			0	(236)
lf bala	anced with	heat reco	overv: effici	iencv in %	allowing f	or in-use f	actor (from	Table 4h) =) (200)			0	(230)
a) If	balanced	l mecha	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	΄ ι)m = (22	2b)m + (2	23b) × [′	I – (23c)	÷ 100]	(230)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balanced	l mecha	anical ve	ntilation	without	heat rec	covery (N	/IV) (24b)m = (22	2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole ho	use ex	tract ven	tilation o	or positiv	ve input v	ventilatio	on from c	outside			-	-	
i	f (22b)m	< 0.5 ×	(23b), t	hen (240	c) = (23b); otherv	wise (24	c) = (22b	o) m + 0.	5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If i	natural v f (22b)m	entilation $= 1, the$	on or wh en (24d)	ole hous m = (22t	e positiv b)m othe	/e input [,] erwise (2	ventilatio 4d)m = 0	on from l 0.5 + [(2	oft 2b)m² x	0.5]				
(24d) <mark>m=</mark>	0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	, 0.66	0.68	0.7	0.71		(24d)
Effec	ctive air c	hange	rate - er	nter (24a) or (24t	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.7	0.71		(25)
<u>э. пе</u>	al 105585	anune	a 1055 l	Jalaheu										
		Gros	25	Openin	as	Net Ar	e 2	l I-valı		ΔΧΠ		k-value	<u> </u>	AXk
ELEN	IENT	Gros area	ss (m²)	Openin m	gs 1 ²	Net Ar A ,r	ea n²	U-valı W/m2	le K	A X U (W/ł	<)	k-value kJ/m²·l	e K	A X k kJ/K
ELEN Doors	IENT	Gros area	ss (m²)	Openin m	gs 2	Net Ar A ,r 2	ea n² x	U-valı W/m2	Je K	A X U (W/ł 3	<)	k-value kJ/m²∙l	e K	A X k kJ/K (26)
ELEN Doors Windov	NT ws Type	Gros area	55 (m²)	Openin m	gs 2	Net Ar A ,r 2 2.4	ea n² x x ¹ /	U-valu W/m2 1.5 /[1/(1.6)+	Je K 0.04] =	A X U (W/ł 3 3.61	<)	k-value kJ/m²·I	e K	A X k kJ/K (26) (27)
ELEN Doors Windov Windov	WS Type	Gros area 1 2	55 (m²)	Openin m	gs ²	Net Ar A ,r 2 2.4 6	ea n ² x x x ¹ / x 1/	U-valı W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+	ue K 0.04] = [0.04] = [A X U (W/ł 3 3.61 9.02	<) 	k-value kJ/m²·I	e K	A X k kJ/K (26) (27) (27)
ELEN Doors Windov Windov Windov	NT ws Type ws Type ws Type	Gros area 1 2 3	55 (m²)	Openin m	gs ²	Net Ar A ,r 2 2.4 6 3.8	ea n ² x x x ^{1,} x ^{1,} x ^{1,}	U-valu W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+	ue K 0.04] = [0.04] = [0.04] = [A X U (W/ł 3 3.61 9.02 5.71		k-value kJ/m²•I	e K	A X k kJ/K (26) (27) (27) (27)
ELEN Doors Windov Windov Windov Floor	NT ws Type ws Type ws Type	Gros area 1 2 3	55 (m²)	Openin m	gs 2	Net Ar A ,r 2 2.4 6 3.8 21.92	ea n ² x x x ¹ / x ¹ / x ¹ / x ¹ / 8 x	U-valu W/m2 [1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ [0.25]	Je K 0.04] = [0.04] = [0.04] = [=]	A X U (W/) 3 3.61 9.02 5.71 5.482		k-value kJ/m²-I	×	A X k kJ/K (26) (27) (27) (27) (28)
ELEN Doors Windov Windov Floor Walls T	NT ws Type ws Type ws Type Type1	Gros area 1 2 3	55 (m ²)	Openin m 3.8	gs ²	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72	ea n ² x x ^{1/} x ^{1/} x ^{1/} x ^{1/} 8 x 2 x	U-valu W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3	Je K 0.04] = [0.04] = [0.04] = [=]	A X U (W/) 3 3.61 9.02 5.71 5.482 3.52		k-value kJ/m²·I		A X k kJ/K (26) (27) (27) (27) (27) (28) (29)
ELEN Doors Windov Windov Floor Walls T Walls T	NT ws Type ws Type ws Type Type1 Type2	Gros area 1 2 3 <u>15.5</u> 17.8	55 (m²) 52 33	Openin m 3.8	gs 2	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43	ea n ² x x ^{1/} x ^{1/} x ^{1/} 8 x 2 x x x	U-valu W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3	Je K 0.04] = [0.04] = [0.04] = [] = [] = [A X U (W/I 3 3.61 9.02 5.71 5.482 3.52 2.23		k-value kJ/m²-I		A X k kJ/K (26) (27) (27) (27) (27) (28) (29) (29)
ELEN Doors Window Window Floor Walls 1 Walls 1 Walls 1	NT ws Type ws Type ws Type Type1 Type2 Type3	Gros area 1 2 3 15.5 17.8 2.93	55 (m²) 52 33 3	Openin m 3.8 10.4	gs 2	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93	ea n ² x x ^{1/} x ^{1/} x ^{1/} 8 x 2 x x x x x	U-valu W/m2 [1.5 /[1/(1.6)+ /[1/(1.6)+ [1/(1.6)+ 0.25 0.3 0.3 0.27	Je K 0.04] = [0.04] = [0.04] = [] = [] = [] = [A X U (W/) 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78		k-value kJ/m²-I		A X k kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29)
ELEN Doors Window Window Floor Walls 1 Walls 1 Walls 1 Total a	NT ws Type ws Type ws Type Type1 Type2 Type3 rea of ele	Gros area 1 2 3 15.5 17.8 2.93 ements	55 (m²) 52 33 3 , m²	Openin m 3.8 10.4 0	gs 2	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21	ea n ² x x ¹⁾ x ¹⁾ x ¹⁾ 8 x 2 x x x x x	U-valu W/m2 [1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ [0.25 0.3 0.3 0.3 0.27	Je K 0.04] = [0.04] = [0.04] = [] = [] = [] = [A X U (W/) 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78		k-value kJ/m²-I		A X k kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (31)
ELEN Doors Window Window Floor Walls T Walls T Walls T Total a * for wind ** include	NT ws Type ws Type ws Type fype1 fype2 fype3 irea of ele dows and r de the areas	Gros area 1 2 3 15.5 17.8 2.93 ements oof winde	55 (m ²) 52 53 3 , m ² 50 ws, use e sides of in	Openin m 3.8 10.4 0 ffective wi	gs 2 ndow U-va	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calcul titions	ea n ² x 1/ x 1/ x 1/ 8 x 2 x 2 x 4 x 1/ 8 x 2 x 4 x 1/ 8 x 4 x 1/ 8 x 4 x 1/ 8 x 4 x 4 x 1/ 8 x 4 x 4 x 4 x 4 x 4 x 4 x 4 x 4	U-valu W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.3 0.27	Je K 0.04] = [0.04] = [] = [] = [] = [] = [] = [A X U (W/) 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 we)+0.04] a	<)	k-value kJ/m²-l	а К	A X k kJ/K (26) (27) (27) (27) (27) (27) (29) (29) (29) (29) (29) (31)
ELEN Doors Window Window Floor Walls 1 Walls 1 Walls 1 Total a * for wind ** include Fabric	IENT ws Type ws Type ws Type Type1 Type2 Type3 irea of ele dows and r te the areas heat loss	Gros area 1 2 3 15.5 17.8 2.93 2.93 2.93 2.93 con both 5, W/K =	55 (m ²) 52 33 3 , m ² ows, use e sides of in = S (A x	Openin m 3.8 10.4 0 ffective wi aternal walk	gs 2 ndow U-va	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calculations	ea n ² x x ¹ / x ¹ / x ¹ / 8 x 2 x x x x ated using	U-valu W/m2 [1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ [1/(1.6)+ 0.25 0.3 0.3 0.3 0.27	$\begin{bmatrix} Je \\ K \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A X U (W/) 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 re)+0.04] a	<)	k-value kJ/m²-I	a K □	A X k kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29) (31)
ELEN Doors Window Window Floor Walls T Walls T Walls T Total a * for wind ** include Fabric Heat ca	IENT ws Type ws Type ws Type Type1 Type2 Type3 irea of ele dows and r te the areas heat loss apacity C	Gros area 1 2 3 15.5 17.8 2.92 ements coof winde con both con both con both con both con = S(55 (m ²) 52 33 , m ² ows, use e sides of in = S (A x (A x k)	Openin m 3.8 10.4 0 ffective wi aternal walk	gs 2 ndow U-va	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calculations	ea n ² x x ^{1/} x ^{1/} 8 x 2 x 2 x x 2 x x x ated using	U-valu W/m2 1.5 ([1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.3 0.3 0.27	$\begin{bmatrix} Je \\ K \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 $	A X U (W/ł <u>3</u> <u>3.61</u> <u>9.02</u> <u>5.71</u> <u>5.482</u> <u>3.52</u> <u>2.23</u> <u>0.78</u> re)+0.04] a	<)	k-value kJ/m²-l	x X 33.3 0	A X k kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29) (31) (31)
ELEN Doors Window Window Floor Walls T Walls T Walls T Total a * for wind ** include Fabric Heat ca Therma	IENT ws Type ws Type ws Type rype1 rype2 rype3 rea of ele dows and r dows and r dows and r dows and r dows and r	Gros area 1 2 3 15.5 2.93 17.8 2.93 con both 5, W/K = 5, W/K = 5, W/K =	52 52 53 3 , m ² 53 53 54 55 55 56 57 57 57 57 57 57 57 57 57 57	Openin m 3.8 10.4 0 ffective wi ternal walk U) P = Cm ÷	gs 2 ndow U-va ds and pan	Net Ar A ,r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calcul titions	ea n ² x x ^{1/} x ^{1/} 8 x 2 x x 2 x x 2 x x ated using	U-valu W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.3 0.27	$\begin{bmatrix} Je \\ K \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A X U (W/ł 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 re)+0.04] a .(30) + (32 tive Value:	<)	k-value kJ/m²-l paragraph (32e) =	e K] [] [] [] [] [] [] [] [] [] [A X k kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (31) (31)
ELEN Doors Window Window Floor Walls T Walls T Walls T Total a * for wind ** include Fabric Heat ca Therma For desig	IENT ws Type ws Type ws Type rype1 rype2 rype3 urea of ele dows and r te the areas heat loss apacity C al mass p gn assessm used instead	Gros area 1 2 3 15.5 17.8 2.93 ements coof winde con both con both con both con both con both con soft con soft c	(m^2) (Openin 3.8 10.4 0 ffective with $ternal walkU$) $P = Cm \div$ tails of the ylation	gs 2 ndow U-va s and part - TFA) ir construct	Net Ar A, r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calculations	ea n ² x ¹ / x ¹ / 8 x x x x x x x ated using	U-valu W/m2 1.5 ([1/(1.6)+ ([1/(1.6)+ ([1/(1.6)+ ([1/(1.6)+ 0.25 0.3 0.3 0.3 0.3 0.27 formula 1, (26)(30) eccisely the	Je K 0.04] = [0.04] = [0.04] = [= [] = [] = [/[(1/U-value + (32) = ((28) Indica	A X U (W/ł 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 re)+0.04] a .(30) + (32 tive Value: 9 values of	() ()<	k-value kJ/m²-l paragraph (32e) = able 1f	e K	A X k kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29) (31) (5) (33) (34) (34) (35)
ELEN Doors Window Window Floor Walls T Walls T Walls T Total a * for wind ** include Fabric Heat ca Fabric Heat ca For desig can be u	IENT ws Type ws Type ws Type ws Type fype1 fype2 fype3 rea of ele dows and r dows and r le the areas heat loss apacity C al mass p gn assess ised instead al bridge	Gros area 1 2 3 15.5 2.93 2.93 2.93 2.94 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	(m^2) (Openin m 3.8 10.4 0 ffective winternal walk U) $P = Cm \div$ tails of the ulation. culated u	gs 2 ndow U-va s and pan - TFA) ir construct	Net Ar A, r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calcul titions	ea n ² x x1/ x1/ 8 x 2 x x 2 x x ated using	U-valu W/m2 1.5 ([1/(1.6)+ ([1/(1.6)+ ([1/(1.6)+ ([1/(1.6)+ 0.25 0.3 0.3 0.3 0.3 0.27 1 formula 1, (26)(30) ecisely the	$\begin{bmatrix} K \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\$	A X U (W/ł 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 e)+0.04] a .(30) + (32 tive Value: e values of	<)	k-value kJ/m²-l paragraph (32e) = able 1f	e K	A X k kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29) (29) (31) (31) (31) (31) (32) (33) (34) (35)
ELEN Doors Window Window Floor Walls T Walls T Walls T Walls T Total a * for wind ** include Fabric Heat ca Therma For desig can be u Therma if details	IENT ws Type ws Type ws Type Type1 Type2 Type3 irea of ele dows and r le the areas heat loss apacity C al mass p gn assessm used instead al bridges of thermal	Gros area 1 2 3 15.5 17.8 2.93	(m^2) (Openin m 3.8 10.4 0 ffective winternal walk U) P = Cm ÷ tails of the ulation. culated to own (36) =	gs 2 ndow U-va s and part - TFA) ir construct using Ap = 0.15 x (3	Net Ar A, r 2 2.4 6 3.8 21.92 11.72 7.43 2.93 58.21 alue calculutions kJ/m²K ion are not pendix k 1)	ea n ² x x11 x11 x11 8 x 2 x x x x x ated using	U-valu W/m2 1.5 (1/(1.6)+ (1/(1.6)+ (1/(1.6)+ 0.25 0.3 0.3 0.3 0.3 0.27 formula 1, (26)(30) ecisely the	$\begin{bmatrix} Je \\ K \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ 0.04 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A X U (W/) 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 e)+0.04] a .(30) + (32 tive Value: e values of	<)	k-value kJ/m²-I	e K] [] [] [] [] [] [] [] [] [] [A X k kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29) (31) (5) (33) (34) (34) (35) (35)

Ventila	ation hea	at loss ca	alculated	d monthl	у		-		(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	31.91	31.49	31.08	29.17	28.81	27.15	27.15	26.84	27.79	28.81	29.54	30.29		(38)
Heat ti	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	73.99	73.58	73.17	71.25	70.9	69.23	69.23	68.92	69.87	70.9	71.62	72.38		
								-	-	Average =	Sum(39)1	12 /12=	71.25	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K				I	(40)m	= (39)m ÷	- (4)			
(40)m=	1.69	1.68	1.67	1.62	1.62	1.58	1.58	1.57	1.59	1.62	1.63	1.65	1.00	
Numbe	er of day	s in mo	nth (Tab	le 1a)					,	Average =	Sum(40)₁	12/12=	1.62	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			Į	Į	Į	!		ļ						
4 Wa	ater heat	tina ener	rav reau	irement:								kWh/ve	ar.	
		ang ono	igy ioqu											
		Ipancy, I	N 1 76 y	(1 ovo	(0 0003		- 12 0	<u>))] . 0 (</u>	1012 v /	TEA 12	1.	51		(42)
if TF	A £ 13.	9, N = 1 9, N = 1	+ 1.70 X	r [i - exh	0.0003	949 X (11	A -13.9	<i>)</i> 2)] + 0.0	JU13 X (IFA - 13.	.9)			
Annua	l averag	e hot wa	ater usa	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		70	0.11		(43)
Reduce	the annua e that 125	l average	hot water person pe	usage by r day (all w	5% if the a	lwelling is hot and co	designed t Id)	to achieve	a water us	se target o	f			
									0.00	Ort	Neu	Dee		
Hot wat	Jan er usage i	n litres per	day for ea	Apr ach month	Vd.m = fa	ctor from 7	Jul Table 1c x	(43)	Sep	Oct	INOV	Dec		
(44)m-	77.13	74 32	71 52	68 71	65.91	63.1	63.1	65.91	68 71	71.52	74.32	77 13		
(44)11-	77.15	74.52	71.52	00.71	00.31	05.1	0.0.1	05.91		$\frac{71.52}{1.52}$	m(44) _{1,42} =	77.13	841.37	(44)
Energy	content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	n x nm x E	0Tm / 3600	kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)	0 11.01	
(45)m=	114.37	100.03	103.23	89.99	86.35	74.51	69.05	79.23	80.18	93.44	102	110.77		
										Total = Su	m(45) ₁₁₂ =	=	1103.17	(45)
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)					
(46)m=	17.16	15	15.48	13.5	12.95	11.18	10.36	11.89	12.03	14.02	15.3	16.61		(46)
Storag	storage	1055: Do (litros)	includir	na anv s	olar or M	/\//HBC	storada	within sa	me ves	ما		0		(47)
If com	munity h	e (illies)	and no to	ng any si ank in du	ualling a	ntor 110	litras in	(17)		501		0		(47)
Otherv	vise if no	o stored	hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in ((47)			
Water	storage	loss:		,					,	,				
a) If m	nanufact	urer's de	eclared I	loss fact	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	e 2b								0		(49)
Energy	y lost fro	m water	storage	e, kWh/y	ear		_	(48) x (49)) =			0		(50)
b) If m	nanufact	urer's de	eclared (cylinder rom Tab	loss fact	or is not b/litro/da	known:					0		(54)
If com	munity h	leating s	ee secti	on 4.3		1/11110/08	iy)					0		(51)
Volum	e factor	from Ta	ble 2a									0		(52)
Tempe	erature f	actor fro	m Table	e 2b								0		(53)
Energy	y lost fro	m water	storage	e, kWh/y	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	/ater storage loss calculated for each month $((56)m = (55) \times (41)m$													
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinde	er contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	iix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0	j	(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(moo	dified by	/ factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)		1	
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 36	65 × (41)m						
(61)m=	39.3	34.21	36.44	33.89	33.59	31.12	32.16	33.59	33.89	36.44	36.65	39.3		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	l
(62)m=	153.68	134.24	139.67	123.88	119.94	105.63	101.21	112.82	114.07	129.89	138.65	150.07		(62)
Solar DH	-IW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)	•	
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C	G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	153.68	134.24	139.67	123.88	119.94	105.63	101.21	112.82	114.07	129.89	138.65	150.07		
								Outp	out from w	ater heate	r (annual)₁	12	1523.74	(64)
Hea <mark>t g</mark>	ains fro	m water	heating	, kWh/m	onth 0.2	5´[0.85	× (45)m	<mark>+ (61)</mark> m	n] + 0.8 x	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	47.86	41.81	43.43	38.39	37.11	32.56	31	34.74	35.13	40.18	43.08	46.66		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	vate <mark>r is f</mark> r	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table {	5 and 5a):									
Metab		s (Table	5) Wat	tts										
in o taio	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(66)m=	90.73	90.73	90.73	90.73	90.73	90.73	90.73	90.73	90.73	90.73	90.73	90.73		(66)
Lightin	g gains	(calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				1	
(67)m=	29.27	26	21.14	16.01	11.97	10.1	10.92	14.19	19.04	24.18	28.22	30.09		(67)
Applia	nces da	ins (calc	ulated ir	n Append	dix L. ea	uation L	13 or L1	3a), also	see Ta	ble 5			1	
(68)m=	196.03	198.06	192.94	182.02	168.25	155.3	146.65	144.62	149.74	160.66	174.43	187.38		(68)
Cookir	L na gains	i (calcula	L ated in A	ı ppendix	L equat	ion I 15	or I 15a') also se	e Table	1 9.5			1	
(69)m=	45.59	45.59	45.59	45.59	45.59	45.59	45.59	45.59	45.59	45.59	45.59	45.59		(69)
Pumps	and fai	l	I (Table /	L 5a)									ł	
(70)m=		3	3	3	3	3	3	3	3	3	3	3	l	(70)
				tivo valu	as) (Tah	<u> </u>	-	-	-			-	ł	
(71)m=	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49	-60.49		(71)
Wator	booting		[00.10	00.10	00.10	00.10	00.10	00.10	00.10	00.10	00.10	i	~ /
(72)m-	64 32	yanıs (1	58 28	53 33	40.88	45 22	41.66	46.7	48 70	54.01	59.83	62 71	1	(72)
Tetel:	04.32		00.00	00.00	40.00	(66)		+0.7	(60)m	(70)m + (7)	(1) (72)	02.71	l	(/
(73)m-	368 AF	941115 =	351 20	330.19	308.02	280 45	278.06	28/ 22	206 41	317.67	3/1 21	350	1	(73)
(13)III=	ar gaing	000.11	331.29	330.10	300.92	209.40	270.00	204.00	230.41	517.07	541.31	338		(10)
Solar o	ains are o	calculated	usina sola	r flux from	Table 6a	and assoc	iated equa	itions to co	onvert to th	ne applicat	ole orientat	ion.		
Orient	ation: 4	Access F	actor	Area		Flu	X		a		FF		Gains	

Table 6a

Table 6b

Table 6c

m²

Table 6d

(W)

Southeast 0.9x	0.77	x	6	x	36.79	x	0.7	x	0.8] =	85.67	(77)
Southeast 0.9x	0.77	x	6	x	62.67	×	0.7	x	0.8	j =	145.93	– (77)
Southeast 0.9x	0.77	x	6	x	85.75	x	0.7	x	0.8	i =	199.67	(77)
Southeast 0.9x	0.77	x	6	x	106.25	x	0.7	x	0.8	=	247.4	(77)
Southeast 0.9x	0.77	x	6	x	119.01	×	0.7	x	0.8	j =	277.11	– (77)
Southeast 0.9x	0.77	x	6	x	118.15	×	0.7	x	0.8	i =	275.11	(77)
Southeast 0.9x	0.77	x	6	x	113.91	×	0.7	x	0.8	i =	265.24	(77)
Southeast 0.9x	0.77	x	6	x	104.39	×	0.7	x	0.8	i =	243.07	(77)
Southeast 0.9x	0.77	x	6	x	92.85	x	0.7	x	0.8	i =	216.2	(77)
Southeast 0.9x	0.77	x	6	x	69.27	x	0.7	x	0.8] =	161.29	(77)
Southeast 0.9x	0.77	x	6	x	44.07	×	0.7	x	0.8	=	102.62	(77)
Southeast 0.9x	0.77	x	6	x	31.49	x	0.7	x	0.8	=	73.32	(77)
Northwest 0.9x	0.77	x	2.4	x	11.28	×	0.7	x	0.8] =	10.51	(81)
Northwest 0.9x	0.77	x	3.8	x	11.28	×	0.7	x	0.8	j =	16.64	(81)
Northwest 0.9x	0.77	x	2.4	x	22.97	x	0.7	x	0.8	=	21.39	(81)
Northwest 0.9x	0.77	x	3.8	x	22.97	×	0.7	x	0.8] =	33.87	(81)
Northwest 0.9x	0.77	x	2.4	x	41.38	×	0.7	x	0.8] =	38.54	(81)
Northwest 0.9x	0.77	x	3.8	x	41.38	x	0.7	x	0.8	=	61.02	(81)
Northwest 0.9x	0.77	x	2.4	x	67.96	x	0.7	x	0.8] =	63.29	(81)
Northwest 0.9x	0.77	x	3.8	х	67.96	×	0.7	x	0.8] =	100.21	(81)
Northwest 0.9x	0.77	x	2.4	x	91.35	x	0.7	x	0.8] =	85.08	(81)
Northwest 0.9x	0.77	x	3.8	x	91.3 <mark>5</mark>	x	0.7	x	0.8	=	134.71	(81)
Northwest 0.9x	0.77	x	2.4	x	97.38	×	0.7	x	0.8	=	90.7	(81)
Northwest 0.9x	0.77	x	3.8	x	97.38	x	0.7	x	0.8] =	143.61	(81)
Northwest 0.9x	0.77	x	2.4	x	91.1	x	0.7	x	0.8	=	84.85	(81)
Northwest 0.9x	0.77	x	3.8	x	91.1	x	0.7	x	0.8	=	134.35	(81)
Northwest 0.9x	0.77	x	2.4	x	72.63	x	0.7	x	0.8	=	67.64	(81)
Northwest 0.9x	0.77	x	3.8	x	72.63	×	0.7	x	0.8] =	107.1	(81)
Northwest 0.9x	0.77	x	2.4	x	50.42	x	0.7	x	0.8	=	46.96	(81)
Northwest 0.9x	0.77	x	3.8	x	50.42	x	0.7	x	0.8] =	74.36	(81)
Northwest 0.9x	0.77	x	2.4	x	28.07	x	0.7	x	0.8] =	26.14	(81)
Northwest 0.9x	0.77	x	3.8	x	28.07	x	0.7	x	0.8] =	41.39	(81)
Northwest 0.9x	0.77	x	2.4	×	14.2	×	0.7	x	0.8] =	13.22	(81)
Northwest 0.9x	0.77	x	3.8	×	14.2	×	0.7	x	0.8] =	20.94	(81)
Northwest 0.9x	0.77	x	2.4	x	9.21	×	0.7	x	0.8	=	8.58	(81)
Northwest 0.9x	0.77	x	3.8	x	9.21	×	0.7	x	0.8] =	13.59	(81)

Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$													
(83)m=	112.82	201.19	299.23	410.91	496.9	509.43	484.43	417.82	337.52	228.82	136.78	95.49	(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	481.27	566.31	650.52	741.1	805.82	798.87	762.49	702.15	633.93	546.49	478.09	454.49	(84)
7. Me	7. Mean internal temperature (heating season)												
Temp	erature	during h	eating p	eriods ir	n the livir	ng area l	from Tab	ole 9, Th	1 (°C)				21 (85)
Utilisa	Utilisation factor for gains for living area, h1,m (see Table 9a)												
Stroma I	SAP 201	2 version.	1.0.4.8r(s	AP992)		w.stroma.c	om ^{Jul}	Aug	Sep	Oct	Nov	Dec	Page 5 of 8

(86)m=	0.98	0.97	0.93	0.85	0.71	0.53	0.39	0.44	0.68	0.89	0.97	0.99		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Table	e 9c)					
(87)m=	19.81	19.99	20.26	20.59	20.8	20.9	20.92	20.92	20.85	20.56	20.14	19.8		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, Tl	h2 (°C)					
(88)m=	19.55	19.56	19.56	19.6	19.6	19.63	19.63	19.63	19.62	19.6	19.59	19.58		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.98	0.96	0.91	0.8	0.63	0.43	0.27	0.32	0.57	0.85	0.96	0.98		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.03	18.3	18.68	19.13	19.39	19.51	19.53	19.53	19.47	19.12	18.54	18.03		(90)
									f	iLA = Livin	g area ÷ (4	4) =	0.5	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	18.92	19.15	19.47	19.86	20.09	20.21	20.23	20.23	20.16	19.84	19.34	18.92		(92)
Apply	adjustr	nent to t	ne mear	internal	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.92	19.15	19.47	19.86	20.09	20.21	20.23	20.23	20.16	19.84	19.34	18.92		(93)
8. Spa	ace hea	ting requ	uirement											
Set Ti	to the I	nean int	ernal ter	mperatui	re obtair	ned at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	lan	Feb	Mar		May	lup	lul -	Αυσ	Sen	Oct	Nov	Dec		
Utilisa	tion fac	tor for a	ains hm	<u>г. трі</u>	Iviay	Jun	Jui		Joep		INOV	Dec		
(94)m=	0.97	0.95	0.91	0.81	0.66	0.47	0.33	0.37	0.61	0.86	0.95	0.98		(94)
Us <mark>efu</mark>	l gains,	hmGm .	W = (9	4)m x (84	4)m									
(95)m=	<mark>46</mark> 8.12	539.14	5 91.63	603.28	532.54	376.1	248.82	260.15	389.6	469.78	455.65	444.12		(95)
Mo <mark>nth</mark>	nly aver	age exte	rnal terr	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	oss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m=	1081.91	1048.2	948.98	780.91	595.1	388.11	250.96	263.63	423.29	655.26	876.73	1065.1		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97])m – (95)m] x (4	1)m		1	
(98)m=	456.66	342.09	265.86	127.9	46.54	0	0	0	0	138	303.18	462.01		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2142.25	(98)
Space	e heatin	g require	ement in	kWh/m ²	²/year								48.85	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space	e heatir	ng:												
Fracti	on of sp	ace hea	t from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	it from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								92.8	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	ז, %					·	0	(208)
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec	kWh/v	 ear
Space	e heatin	g require	ement (c	alculate	d above)	L		<u> </u>				·····/ j	
	456.66	. 342.09	265.86	127.9	46.54	0	0	0	0	138	303.18	462.01		
(211)m	i = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)					•				(211)
. ,	492.09	368.63	286.49	137.82	50.16	0	0	0	0	148.71	326.71	497.85		
								Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	=	2308.46	(211)

Space heating fuel (secondary), kWh/month

$= \{[(98)m \times (201)]\} \times 100 \div (208)$										
(215)m= 0 0 0 0	0	0	0	0	0	0	0	0]	
				Tota	ll (kWh/yea	ar) =Sum(2	2 15) _{15,1012}	2=	0	(215)
Water heating										
Output from water heater (calculated a 153.68 134.24 139.67 123.88	bove) 119.94	105.63	101.21	112.82	114.07	129.89	138.65	150.07	1	
Efficiency of water heater									83.5	(216)
(217)m= 90.27 89.98 89.37 87.98	85.91	83.5	83.5	83.5	83.5	88.05	89.67	90.33		(217)
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$								•	-	
(219)m = 170.24 149.2 156.28 140.81	139.61	126.51	121.2	135.11	136.61	147.52	154.63	166.13]	
				Tota	I = Sum(2	19a) ₁₁₂ =	•	•	1743.85	(219)
Annual totals						k	Wh/year	ſ	kWh/year	-
Space heating fuel used, main system	1								2308.46	ļ
Water heating fuel used									1743.85	
Electricity for pumps, fans and electric	keep-hot									
central heating pump:								30]	(230c)
Total electricity for the above, kWh/yea	r			sum	of (230a).	<mark>(2</mark> 30g) =	:		30	(231)
Electricity for lighting									2 <mark>06.78</mark>	(232)
Electricity generated by PVs									-4 <mark>82.91</mark>	(233)
10a. Fuel costs - individual heating sy	stems:									_
		Fu kW	el /h/year			Fuel P (Table	rice 12)		Fuel Cost £/year	
Space heating - main system 1		(211	l) x			3.4	8	x 0.01 =	80.33	(240)
Space heating - main system 2		(213	3) x			0)	x 0.01 =	0	(241)
Space heating - secondary		(215	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other fuel)		(219	9)			3.4	8	x 0.01 =	60.69	(247)
Pumps, fans and electric keep-hot		(231)			13.	19	x 0.01 =	3.96	(249)
(if off-peak tariff, list each of (230a) to (Energy for lighting	230g) se	parately (232	v as app 2)	licable a	nd apply	fuel pri	ce accor	ding to x 0.01 =	Table 12a 27.27	(250)
Additional standing charges (Table 12)									120	_](251)
		one	of (233) to	o (235) x)		13	19	x 0.01 =	-63.7	$\frac{1}{(252)}$
Annendix () items: reneat lines (253) a	nd (254)	as need	led			13.	10		-00.7	
Total energy cost	(245)(2	247) + (25	0)(254)	=					228.56	(255)
11a. SAP rating - individual heating sy	/stems									
Energy cost deflator (Table 12)									0.42	(256)
Energy cost factor (ECF)	[(255) x ([256)] ÷ [(4) + 45.0]	=					1.08	(257)

12a. CO2 emissions – Individual heating systems	including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	498.63 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	376.67 (264)
Space and water heating	(261) + (262) + (263) + (264) =		875.3 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	15.57 (267)
Electricity for lighting	(232) x	0.519 =	107.32 (268)
Energy saving/generation technologies Item 1		0.519 =	-250.63 (269)
Total CO2, kg/year	sur	n of (265)(271) =	747.56 (272)
CO2 emissions per m ²	(27	(2) ÷ (4) =	17.05 (273)
EI rating (section 14)			89 (274)
13a. Primary Energy			
Space heating (main system 1) Space heating (secondary)	Energy kWh/year (211) x (215) x	Primary factor 1.22 = 3.07 =	P. Energy kWh/year 2816.32 (261) 0 (263)
Energy for water heating	(219) x	1.22 =	2127.5 (264)
Space and water heating	(261) + (262) + (263) + (264) =		4943.83 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	92.1 (267)
Electricity for lighting	(232) x	0 =	634.82 (268)
Energy saving/generation technologies Item 1		3.07 =	-1482.54 (269)
'Total Primary Energy	sur	n of (265)(271) =	4188.21 (272)
Primary energy kWh/m²/year	(27	2) ÷ (4) =	95.5 (273)

			User D	Details:						
Assessor Name: Software Name:	Stroma FS	AP 2012		Strom Softwa	a Num are Vei	ber: sion:		Versic	on: 1.0.4.6	
		F	Property	Address	: Plot 4					
Address :										
T. Overall dwelling dime	nsions:		۸ro	a(m²)			iaht(m)		Volume(m ³)	
Basement				21.13	(1a) x	2	.63	(2a) =	55.58	(3a)
Ground floor				7.83	(1b) x	3.	.23	(2b) =	57.58]](3b)
Total floor area TFA = (1a	a)+(1b)+(1c)+((1d)+(1e)+(1	n) 📑	38.96	(4)		-]```]``
Dwelling volume			, <u> </u>		(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	113 16] (5)
									110.10](_)
2. Ventilation rate:	main	seconda	ry	other		total			m ³ per hour	
Number of chimneys	heating	heating	- 	0		0	x 4	40 =	0] (6a)
Number of open flues				0	」 L ヿ = ୮	0	x 2	20 =	0	
Number of intermittent fa	ns			0			x 1	10 =	20	$]^{(00)}_{(72)}$
Number of passive vents						2	x 1	10 =	20	$\frac{(7a)}{(7b)}$
Number of flueless gas fi	res					0	x 4	40 =	0	$\left \begin{array}{c} (70) \\ (7c) \end{array} \right $
Number of fideless gas fi					L	0		Air ch	hanges per hou](7C)](7C)
Infiltration due to chimney	s, flues and fa	ans = (6a)+(6b)+(7a)+(7b)+((7c) =	Г	20		÷ (5) =	0.18	(8)
If a pressurisation test has b	een ca <mark>rried o</mark> ut or	is intended, procee	ed to (17),	otherwise o	continue fr	om (9) to ((16)			-
Number of storeys in the	ne dw <mark>elling</mark> (ne	5)					[(0)	11×0.1 -	0	(9)
Structural infiltration: 0.	.25 for steel or	timber frame o	r 0.35 fo	r masoni	v constr	uction	[(9)-	· 1]x0. 1 =	0	1(10) 1(11)
if both types of wall are pr	resent, use the va	lue corresponding t	o the grea	ter wall are	a (after], ,
deducting areas of opening If suspended wooden f	ngs); if equal user loor enter 0.2	0.35 (unsealed) or (1 (seale	ad) else	enter ()				0	7(12)
If no draught lobby, ent	ter 0.05. else e	enter 0	. 1 (3000	50), 0130					0	$1^{(12)}$
Percentage of windows	s and doors dr	aught stripped							0	(14)
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	00] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value,	q50, expresse	ed in cubic metre	es per ho	our per s	quare m	etre of e	nvelope	area	10	(17)
If based on air permeabili	ity value, then	$(18) = [(17) \div 20] + (17)$	8), otherw	ise (18) = ((16) rmaabilitu	ia haina w	and		0.68	(18)
Number of sides sheltere	d	on lest has been do	ne or a de	gree all pe	тпеаршку	is being us	seu		2] (19)
Shelter factor	-			(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporat	ing shelter fac	tor		(21) = (18) x (20) =				0.58	(21)
Infiltration rate modified for	or monthly win	id speed								
Jan Feb	Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Tabl	e 7								
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjust	ed infiltra	ation rat	e (allowi	ing for sl	nelter an	d wind s	speed) =	(21a) x	(22a)m					
-	0.73	0.72	0.7	0.63	0.62	0.55	0.55	0.53	0.58	0.62	0.65	0.68		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	ise	<u>.</u>	<u>.</u>		<u>.</u>			
IT Me	echanica			ondix N (2	(25) = (22)		oquation (N5)) otho	nuico (22k	(220)			0	(23a)
lf bal	aust all the	beat reco	werv: effic	iency in %	(200) = (200)	a) X FIIIV (e	equation (n Table 4h	1 WISE (2.5L)) = (23a)			0	(23b)
a) If		d mach			with ho	of mocov			m = (2)	2h)m i ('22h) v [1 (22a)	0 · 1001	(230)
a) II (24a)m=									$\frac{1}{0}$			1 - (230)	÷ 100]	(24a)
(_ 10)11-	halance		l ° anical ve	l ntilation	without	heat rec		1 //// (24H	$\int_{-\infty}^{\infty} - (2)$	 2b)m + (23h)	Ů	l	()
(24b)m=	0								0		0	0		(24b)
c) If	whole h		tract ver	L	n nositiv		l ventilatio	n from (<u>l</u> nutside			-	I	· · · ·
0) 11	if (22b)n	n < 0.5 >	< (23b), t	then (24	c) = (23k	b); other	wise (24	c) = (22	b) m + 0	.5 × (23t	D)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilati	on or wh	ole hous	se positi	ve input	ventilati	on from	loft		<u>.</u>	<u> </u>		
_	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	erwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]				
(24d)m=	0.77	0.76	0.75	0.7	0.69	0.65	0.65	0.64	0.67	0.69	0.71	0.73		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24	o) or (24	c) or (24	d) in bo	x (25)					
(25)m=	0.77	0.76	0.75	0.7	0.69	0.65	0.65	0.64	0.67	0.69	0.71	0.73		(25)
3. He	at l <mark>osse</mark>	s and he	eat l <mark>oss</mark>	paramet	er:						_			
ELEN		Gros	ss (m²)	Openin m	igs 1 ²	Net Ar A .r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²∙ł	} ≺	A X k kJ/K
Doors						2	×	1.5		3	ń			(26)
Windo	ws Type	e 1				4.6		/[1/(1.6)+	0.04] =	6.92	=			(27)
Windo	ws Type	2				3.1		/[1/(1.6)+	0.04] =	4.66				(27)
Windo	ws Type	e 3				2.3		/[1/(1.6)+	0.04] =	3.46	=			(27)
Floor 7	Гуре 1					21.13	2 X	0.25		5.283	= I			(28)
Floor 7	Гуре 2					3.304	4 ×	0.3	=	0.9912				(28)
Walls ⁻	Type1	10.9	94	0		10.94	4 X	0.3	=	3.28				(29)
Walls ⁻	Type2	14.5	56	10		4.56	x	0.3		1.37			\dashv	(29)
Walls ⁻	Tvpe3	25.0	06	2		23.06	×	0.27	╡_	6.13			\exists	(29)
Walls ⁻	Tvpe4	22.0	21			22.91		0.21	╡_	6.87			╡┢	(29)
Total a	area of e	lements	5. m ²	L		97.91		0.0		0.07	I			(31)
* for win	dows and	roof wind	ows, use e	effective wi	indow U-vi	alue calcul	' lated usind	g formula 1	1/[(1/U-vali	ue)+0.041 a	as qiven in	paragraph	1 3.2	(01)
** incluc	le the area	as on both	sides of ir	nternal wal	ls and par	titions		,		,	5	,		
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =				41.9	96 (33)
Heat c	apacity	Cm = S	(A x k)						((28).	(30) + (3	2) + (32a)	(32e) =	0	(34)

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

(35)

250

((28)(30) + (32) + (32a)(32e) =	
Indicative Value: Medium	

Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix I	<						14.69	(36)
if details	of therma	nl bridging	are not kn	own (36) =	= 0.15 x (3	1)			(33) +	(36) -			50.05	(27)
Ventila	tion hea	at loss ca	alculated	l monthly	v				(38)m	= 0.33 × (25)m x (5))	50.05	(37)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m=	28.72	28.33	27.94	26.15	25.81	24.25	24.25	23.96	24.85	25.81	26.49	27.2		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	85.36	84.97	84.59	82.8	82.46	80.9	80.9	80.61	81.5	82.46	83.14	83.85		_
Heat lo	oss para	meter (H	HLP), W/	′m²K					ر (40)m	Average = = (39)m ÷	Sum(39) ₁ (4)	12 /12=	82.8	(39)
(40)m=	2.19	2.18	2.17	2.13	2.12	2.08	2.08	2.07	2.09	2.12	2.13	2.15]	
Numb			oth (Toh		I		1		,	Average =	Sum(40)1	12 /12=	2.13	(40)
NUMDE	Jan	Feb	nth (Tab Mar	Apr	May	Jun	Jul	Aua	Sep	Oct	Nov	Dec	1	
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													1	
4. Wa	ter heat	ing ener	gy requi	rement:								kWh/y	ear:	
Assum	ed occu	ipancy. I	N								1	38	1	(42)
if TF	A > 13.9	0, N = 1	+ 1.76 x	[1 - exp	(-0.0003	49 x (TF	-A -13.9)2)] + 0.0)013 x (FFA -13.	.9)	.50		(/
Annua	A £ 13.9 Laverad	9, N = 1 e hot wa	ater usad	ne in litre	es per da	v Vd.av	erage =	(25 x N)	+ 36		66	95	1	(43)
Reduce	the annua	l average	hot water	usage by	5% if the a	welling is	designed	to achieve	a water us	se target o	f		J	()
notmore		Tab			Maier use, I			A.1.0	Can	Oct	Nev	Dee	1	
Hot wate	Jan er usage ii	rep n litres per	War day for ea	Apr ach month	Vd,m = fa	ctor from T	Jui Table 1c x	Aug (43)	Sep	Oct	INOV	Dec	J	
(44)m=	73.65	70.97	68.29	65.61	62.93	60.26	60.26	62.93	65.61	68.29	70.97	73.65	1	
								ļ		Total = Su	r m(44) ₁₁₂ =	=	803.41	(44)
Energy of	content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x [OTm / 3600	kWh/mor	oth (see Ta	ables 1b, 1	c, 1d)	1	
(45)m=	109.21	95.52	98.57	85.93	82.46	71.15	65.93	75.66	76.56	89.23	97.4	105.77	4050.4	
lf instan	taneous w	ater heatir	ng at point	of use (no	o hot water	· storage),	enter 0 in	boxes (46)) to (61)	i otal = Su	m(45) ₁₁₂ =	=	1053.4	(45)
(46)m=	16.38	14.33	14.79	12.89	12.37	10.67	9.89	11.35	11.48	13.38	14.61	15.87]	(46)
Water	storage	loss:	inoludir				otorogo	within or	mayaa				-	(47)
Slorag	e volum munity h	e (ilires) eating a	nd no ta	ig any so ink in dw	velling e	100 AND NO	slorage	(47)	ine ves	sei		0	J	(47)
Otherv	vise if no	stored	hot wate	er (this in	icludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
Water	storage	loss:											۹	
a) If m —	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0]	(48)
Tempe	rature ta	actor fro	m Table	20 k)//b////	oor			$(49) \times (40)$				0]	(49)
b) If m	anufact	urer's de	eclared of	ylinder l	oss fact	or is not	known:	(40) X (49)	=			0	J	(50)
Hot wa	ter stora	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)					0]	(51)
It com	nunity h e factor	eating s from Tal	ee secti ble 2a	on 4.3								0	1	(52)
Tempe	erature fa	actor fro	m Table	2b								0]	(53)

Energy lost from water storage, kWh/year								$(47) \times (51) \times (52) \times (53) = 0$				0		(54)
Enter	(50) or ((54) in (5	o5)					((==))				0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)r	n				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)	n = (56)m	x [(50) – (l	H11)] ÷ (50	0), else (57	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary	y circuit	loss (an	nual) fro	om Table	∋ 3							0		(58)
Primary	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	5 × (41)	m					
(moc	dified by	factor fi	rom Tab	le H5 if t	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)		1	
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	culated	for each	month	(61)m =	(60) ÷ 36	35 × (41))m						
(61)m=	37.53	32.66	34.8	32.36	32.07	29.72	30.71	32.07	32.36	34.8	35	37.53		(61)
Total h	eat requ	uired for	water h	eating ca	alculated	for each	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)r	n
(62)m=	146.74	128.18	133.37	118.29	114.53	100.87	96.64	107.73	108.92	124.03	132.4	143.3		(62)
Solar DH	IW input o	calculated	using App	endix G o	⁻ Appendix	H (negativ	ve quantity	/) (enter '0'	' if no sola	r contributi	ion to wate	er heating)		
(add ac	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix G	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter										•	
(64)m=	146.74	128.18	133.37	118.29	114.53	100.87	96.64	107.73	108.92	124.03	132.4	143.3		
								Outp	out from wa	ater heatei	r (annual)₁	12	1454.99	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 / [0.85	× (45)m	+ (61)m] + 0.8 ×	(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	45.7	39.93	41.47	36.66	35.43	31.09	29.6	33.17	<mark>33</mark> .55	38.37	41.13	44.55		(65)
inclu	de (57)	m in calo	culation	of (65)m	only if c	ylinder is	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Inte	ernal ga	ains (see	Table 5	5 and 5a):			-						
Metabo	olic gain	s (Table	5) Wat	ts										
Wietabe	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec		
(66)m=	82.74	82.74	82.74	82.74	02.74	00.74		— – – –	-					
Liahting	a aains	(02.74	82.74	82.74	82.74	82.74	82.74	82.74	82.74		(66)
(67)m=	9 9	(calcula	ted in Ar	pendix	 L. equat	82.74 on L9 or	^{82.74} . L9a). a	^{82.74}	82.74 Table 5	82.74	82.74	82.74		(66)
۱ ۱۰	26.51	(calcula 23.54	ted in Ap 19.15	opendix 14.49	L, equat	82.74 ion L9 oi 9.15	82.74 ⁻ L9a), a 9.88	82.74 Iso see 12.85	82.74 Table 5 17.24	82.74 21.9	82.74 25.56	82.74 27.24		(66) (67)
Appliar	26.51	(calcula 23.54 ins (calc	ted in Ap 19.15 ulated ir	14.49	L, equat	82.74 ion L9 oi 9.15 uation L2	82.74 r L9a), a 9.88 13 or L13	82.74 Iso see ⁻ 12.85 3a), also	82.74 Table 5 17.24	82.74 21.9 ble 5	82.74 25.56	82.74 27.24		(66) (67)
Appliar (68)m=	26.51 nces ga 177.5	(caicula 23.54 ins (calc 179.34	ted in Ap 19.15 ulated ir 174.7	14.49 Appendix	L, equat 10.84 1x L, eq 152.35	82.74 ion L9 oi 9.15 uation L ² 140.63	82.74 r L9a), a 9.88 13 or L1: 132.79	82.74 Iso see 12.85 3a), also 130.95	82.74 Table 5 17.24 see Tal 135.59	82.74 21.9 ble 5 145.47	82.74 25.56 157.95	82.74 27.24 169.67		(66) (67) (68)
Appliar (68)m=	26.51 nces ga 177.5	(calcula 23.54 ins (calc 179.34 (calcula	ted in Ap 19.15 ulated ir 174.7	14.49 Appendix Append 164.82	L, equat 10.84 Jix L, eq 152.35	82.74 ion L9 or 9.15 uation L ² 140.63 ion L 15	82.74 r L9a), a 9.88 13 or L1: 132.79 or L 15a)	82.74 Iso see 12.85 3a), also 130.95	82.74 Table 5 17.24 see Tal 135.59	82.74 21.9 ble 5 145.47	82.74 25.56 157.95	82.74 27.24 169.67		(66) (67) (68)
Appliar (68)m= Cookin (69)m=	26.51 nces ga 177.5 g gains 44.65	(calcula 23.54 ins (calc 179.34 (calcula 44.65	ted in Ap 19.15 ulated ir 174.7 tted in A 44.65	Appendix 14.49 Append 164.82 ppendix 44.65	L, equat 10.84 Jix L, eq 152.35 L, equat	82.74 ion L9 or 9.15 uation L ⁻¹ 140.63 ion L15	82.74 r L9a), a 9.88 13 or L1: 132.79 or L15a) 44.65	82.74 lso see 12.85 3a), also 130.95 , also se 44.65	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65	82.74 21.9 ble 5 145.47 5 44.65	82.74 25.56 157.95 44.65	82.74 27.24 169.67 44.65		(66) (67) (68) (69)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m = \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65	(calcula 23.54 ins (calc 179.34 (calcula 44.65	ted in Ap 19.15 ulated ir 174.7 tted in A 44.65	2000 2000 2000 2000 2000 2000 2000 200	52.74 L, equat 10.84 Jix L, eq 152.35 L, equat 44.65	82.74 ion L9 oi 9.15 uation L7 140.63 ion L15 44.65	82.74 r L9a), a 9.88 13 or L1: 132.79 or L15a) 44.65	82.74 Iso see 12.85 3a), also 130.95 , also se 44.65	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65	82.74 21.9 ble 5 145.47 5 44.65	82.74 25.56 157.95 44.65	82.74 27.24 169.67 44.65		(66) (67) (68) (69)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3	ted in Ap 19.15 ulated ir 174.7 ted in A 44.65 (Table \$	2000 pendix 14.49 164.82 164.82 ppendix 44.65 5a) 3	32.74 L, equat 10.84 Jix L, eq 152.35 L, equat	82.74 ion L9 oi 9.15 uation L7 140.63 ion L15 44.65	82.74 r L9a), a 9.88 13 or L13 132.79 or L15a) 44.65	82.74 Iso see 12.85 3a), also 130.95 , also se 44.65	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65	82.74 21.9 ble 5 145.47 5 44.65	82.74 25.56 157.95 44.65	82.74 27.24 169.67 44.65		 (66) (67) (68) (69) (70)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ Losson$	26.51 nces ga 177.5 g gains 44.65 and fai 3	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3	ted in Ap 19.15 ulated ir 174.7 ted in A 44.65 (Table 5 3 p. (pegga	opendix 14.49 Appendix 164.82 ppendix 44.65 5a) 3 tive years	02.74 L, equat 10.84 Jix L, eq 152.35 L, equat 44.65 3 as) (Tab	82.74 ion L9 oi 9.15 uation L ⁷ 140.63 ion L15 44.65	82.74 r L9a), a 9.88 13 or L13 132.79 or L15a) 44.65	82.74 Iso see - 12.85 3a), also 130.95 , also se 44.65	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65	82.74 21.9 ble 5 145.47 5 44.65 3	82.74 25.56 157.95 44.65 3	82.74 27.24 169.67 44.65 3		(66) (67) (68) (69) (70)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \\ \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ Losses \\ (71)m= \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai 3 s e.g. ev	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3 aporatio	ted in Ap 19.15 ulated ir 174.7 tted in A 44.65 (Table \$ 3 on (nega	opendix 14.49 14.49 Appendix 164.82 ppendix 44.65 5a) 3 tive valu -55.16	L, equat 10.84 Jix L, eq 152.35 L, equat 44.65 3 es) (Tab	82.74 ion L9 oi 9.15 uation L 140.63 ion L15 44.65 3 le 5)	82.74 r L9a), a 9.88 13 or L13 132.79 or L15a) 44.65 3	82.74 Iso see 12.85 3a), also 130.95 , also se 44.65	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65 3	82.74 21.9 ble 5 145.47 5 44.65 3	82.74 25.56 157.95 44.65 3	82.74 27.24 169.67 44.65 3		 (66) (67) (68) (69) (70) (71)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \\ \\ Pumps \\ (70)m= \\ \\ Losses \\ (71)m= \\ \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai 3 s e.g. ev -55.16	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3 aporatio -55.16	ted in Ap 19.15 ulated ir 174.7 tted in A 44.65 (Table \$ 3 on (nega -55.16	opendix 14.49 14.49 Appendix 164.82 ppendix 44.65 5a) 3 tive valu -55.16	32.74 L, equat 10.84 Jix L, eq 152.35 L, equat 44.65 3 es) (Tab	82.74 ion L9 oi 9.15 uation L 140.63 ion L15 44.65 3 le 5) -55.16	82.74 r L9a), a 9.88 13 or L13 132.79 or L15a) 44.65 3 -55.16	82.74 Iso see - 12.85 3a), also 130.95), also se 44.65 3 -55.16	82.74 Table 5 17.24 see Tal 135.59 ee Table 44.65 3 -55.16	82.74 21.9 ble 5 145.47 5 44.65 3 -55.16	82.74 25.56 157.95 44.65 3 -55.16	82.74 27.24 169.67 44.65 3 -55.16		 (66) (67) (68) (69) (70) (71)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \\ \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ Losses \\ (71)m= \\ \end{bmatrix}$ Water I (72)m= $\begin{bmatrix} \\ \\ \\ \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai 3 e.g. ev -55.16 heating 61.42	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3 aporatio -55.16 gains (T	ted in Ap 19.15 ulated ir 174.7 ted in A 44.65 (Table 5 3 on (nega -55.16 Table 5)	opendix 14.49 164.82 ppendix 44.65 5a) 3 tive valu -55.16	02.74 L, equat 10.84 Jix L, eq 152.35 L, equat 44.65 3 es) (Tab -55.16	82.74 ion L9 oi 9.15 uation L 140.63 ion L15 44.65 3 le 5) -55.16	82.74 r L9a), a 9.88 13 or L1: 132.79 or L15a) 44.65 3 -55.16	82.74 Iso see 12.85 3a), also 130.95), also se 44.65 3 -55.16	82.74 Table 5 17.24 9 see Tal 135.59 ee Table 44.65 3 -55.16	82.74 21.9 ble 5 145.47 5 44.65 3 -55.16	82.74 25.56 157.95 44.65 3 -55.16	82.74 27.24 169.67 44.65 3 -55.16		 (66) (67) (68) (69) (70) (71) (72)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \\ \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ Losses \\ (71)m= \\ \end{bmatrix}$ Water I (72)m= $\begin{bmatrix} \\ Totol \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai 3 e.g. ev -55.16 heating 61.42	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3 aporatio -55.16 gains (T 59.41	ted in Ap 19.15 ulated in 174.7 tted in A 44.65 (Table 5 3 on (nega -55.16 Table 5) 55.74	opendix 14.49 14.49 Appendix 164.82 ppendix 44.65 5a) 3 tive valu -55.16 50.92	47.63	82.74 ion L9 oi 9.15 uation L 140.63 ion L15 44.65 3 le 5) -55.16 43.18	82.74 r L9a), a 9.88 13 or L13 132.79 or L15a) 44.65 3 -55.16 39.78	82.74 Iso see 12.85 3a), also 130.95), also se 44.65 3 -55.16 44.59	82.74 Table 5 17.24 9 see Tal 135.59 9e Table 44.65 3 -55.16 46.59	82.74 21.9 ble 5 145.47 5 44.65 3 -55.16 51.57	82.74 25.56 157.95 44.65 3 -55.16 57.13	82.74 27.24 169.67 44.65 3 -55.16 59.88		 (66) (67) (68) (69) (70) (71) (72)
Appliar (68)m= $\begin{bmatrix} \\ Cookin \\ (69)m= \\ \end{bmatrix}$ Pumps (70)m= $\begin{bmatrix} \\ Losses \\ (71)m= \\ \end{bmatrix}$ Water I (72)m= $\begin{bmatrix} \\ Total in \\ (73)m= \\ \end{bmatrix}$	26.51 nces ga 177.5 g gains 44.65 and fai 3 e.g. ev -55.16 heating 61.42 nternal	(calcula 23.54 ins (calc 179.34 (calcula 44.65 ns gains 3 aporatio -55.16 gains (T 59.41 gains =	ted in Ap 19.15 ulated ir 174.7 ted in A 44.65 (Table 5 (Table 5 3 on (nega -55.16 -able 5) 55.74	opendix 14.49 14.49 Appendix 164.82 ppendix 44.65 5a) 3 tive valu -55.16 50.92	02.74 L, equat 10.84 Jix L, eq 152.35 L, equat 44.65 3 es) (Tab -55.16 47.63	82.74 ion L9 oi 9.15 uation L ⁷ 140.63 ion L15 44.65 3 le 5) -55.16 43.18 (66)	82.74 r L9a), a 9.88 13 or L1 132.79 or L15a) 44.65 3 -55.16 39.78 m + (67)m	82.74 Iso see 12.85 3a), also 130.95), also se 44.65 3 -55.16 44.59 + (68)m +	82.74 Table 5 17.24 9 see Tal 135.59 ee Table 44.65 3 -55.16 46.59 + (69)m + (0)	82.74 21.9 ble 5 145.47 5 44.65 3 -55.16 51.57 70)m + (7	82.74 25.56 157.95 44.65 3 -55.16 57.13 1)m + (72)	82.74 27.24 169.67 44.65 3 -55.16 59.88 m		 (66) (67) (68) (69) (70) (71) (72) (73)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c	Gains (W)		
Northeast 0.9x	0.77	x	3.1	×	11.28	×	0.7	×	0.8] =	13.57	(75)
Northeast 0.9x	0.77	x	2.3	x	11.28	x	0.7	x	0.8	=	10.07	(75)
Northeast 0.9x	0.77	x	3.1	x	22.97	×	0.7	x	0.8] =	27.63	(75)
Northeast 0.9x	0.77	x	2.3	x	22.97	×	0.7	×	0.8	j =	20.5	(75)
Northeast 0.9x	0.77	x	3.1	x	41.38	x	0.7	x	0.8	=	49.78	(75)
Northeast 0.9x	0.77	x	2.3	x	41.38	×	0.7	×	0.8] =	36.93	(75)
Northeast 0.9x	0.77	x	3.1	x	67.96	×	0.7	×	0.8] =	81.75	(75)
Northeast 0.9x	0.77	x	2.3	x	67.96	×	0.7	×	0.8] =	60.66	(75)
Northeast 0.9x	0.77	x	3.1	x	91.35	×	0.7	×	0.8] =	109.89	(75)
Northeast 0.9x	0.77	x	2.3	x	91.35	×	0.7	×	0.8	j =	81.53	(75)
Northeast 0.9x	0.77	x	3.1	x	97.38	x	0.7	x	0.8	=	117.16	(75)
Northeast 0.9x	0.77	x	2.3	x	97.38	×	0.7	×	0.8	j =	86.92	(75)
Northeast 0.9x	0.77	x	3.1	x	91.1	×	0.7	x	0.8	i =	109.6	(75)
Northeast 0.9x	0.77	x	2.3	x	91.1	×	0.7	×	0.8	i =	81.32	(75)
Northeast 0.9x	0.77	x	3.1	x	72.63	x	0.7	x	0.8	j =	87.37	– (75)
Northeast 0.9x	0.77	x	2.3	×	72.63	×	0.7	X	0.8	-	64.83	(75)
Northeast 0.9x	0.77	x	3.1	x	50.42	x	0.7	x	0.8	i -	60.66	(75)
Northeast 0.9x	0.77	x	2.3	x	50.42	×	0.7	x	0.8] =	45	(75)
Northeast 0.9x	0.77	x	3.1	x	28.07	x	0.7	x	0.8	j =	33.77	(75)
Northeast 0.9x	0.77	x	2.3	x	28.07	x	0.7	x	0.8	j =	25.05	(75)
Northeast 0.9x	0.77	x	3.1	x	14.2	×	0.7	x	0.8] =	17.08	(75)
Northeast 0.9x	0.77	x	2.3	х	14.2	×	0.7	x	0.8] =	12.67	(75)
Northeast 0.9x	0.77	x	3.1	×	9.21	×	0.7	×	0.8] =	11.09	(75)
Northeast 0.9x	0.77	x	2.3	x	9.21	x	0.7	x	0.8] =	8.22	(75)
Southeast 0.9x	0.77	x	4.6	x	36.79	x	0.7	x	0.8] =	65.68	(77)
Southeast 0.9x	0.77	x	4.6	x	62.67	x	0.7	x	0.8] =	111.88	(77)
Southeast 0.9x	0.77	x	4.6	x	85.75	x	0.7	x	0.8] =	153.08	(77)
Southeast 0.9x	0.77	x	4.6	x	106.25	x	0.7	x	0.8] =	189.68	(77)
Southeast 0.9x	0.77	x	4.6	x	119.01	x	0.7	x	0.8] =	212.45	(77)
Southeast 0.9x	0.77	x	4.6	x	118.15	x	0.7	x	0.8] =	210.92	(77)
Southeast 0.9x	0.77	x	4.6	x	113.91	x	0.7	x	0.8] =	203.35	(77)
Southeast 0.9x	0.77	x	4.6	×	104.39	×	0.7	×	0.8] =	186.35	(77)
Southeast 0.9x	0.77	x	4.6	x	92.85	×	0.7	x	0.8] =	165.76	(77)
Southeast 0.9x	0.77	x	4.6	x	69.27	x	0.7	x	0.8] =	123.65	(77)
Southeast 0.9x	0.77	x	4.6	×	44.07	×	0.7	×	0.8] =	78.67	(77)
Southeast 0.9x	0.77	x	4.6	x	31.49	x	0.7	x	0.8] =	56.21	– (77)

Solar g	olar gains in watts, calculated for each month (83)m = Sum(74)m(82)m												
(83)m=	89.33	160.01	239.8	332.09	403.88	415	394.26	338.55	271.42	182.47	108.42	75.52	(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	429.99	497.55	564.62	637.56	689.92	683.18	651.96	602.17	546.08	476.64	424.29	407.55	(84)

7. Me	an inter	nal temp	perature	(heating	season)								
Temperature during heating periods in the living area from Table 9, Th1 (°C)											21	(85)		
Utilisation factor for gains for living area, h1,m (see Table 9a)														
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec		
(86)m=	0.98	0.97	0.95	0.9	0.8	0.65	0.51	0.56	0.77	0.93	0.97	0.99		(86)
Moon internal temperature in living area T1 (follow store 2 to 7 in Table 0a)														
(87)m-	10 30	10 57		living an	20.58		20.88		207	20.28	10.78	10.37		(87)
												(07)		
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)														
(88)m=	19.21	19.22	19.22	19.25	19.26	19.28	19.28	19.29	19.27	19.26	19.25	19.23		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling, I	h2,m (se	e Table	9a)						
(89)m=	0.98	0.96	0.93	0.86	0.72	0.51	0.33	0.38	0.66	0.89	0.96	0.98		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	na T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	17.18	17.45	17.87	18.43	18.85	19.1	19.15	19.15	19.01	18.48	17.77	17.18		(90)
			I						f	LA = Livin	g area ÷ (4	4) =	0.46	(91)
N 4					ala duna	() () () () () () () () () () () () () (. (4 8	A) T O					
	Interna		ature (fo			IIIng) = II		+(1 - IL)	A) X I Z	10.2	19.60	10 10		(92)
(92)m=	odiuota	10.42	10.70	19.27	19.04	19.00	m Table	19.93	19.76	19.3	18.69	10.10		(32)
Apply	18 10		18 78					4e, wrie	10.78		18.60	18 18		(93)
(33)III- 8 Sna	ace heat	ting requ	uirement	19.27	19.04	15.00	19.94	19.95	19.70	3.5	10.03	10.10		(00)
Set Ti	to the r	mean int	ernal to	moeratur	e obtain	ed at st	an 11 of	Table Of	so tha	t Ti m_('	76)m an	d re-calc	ulata	
the ut	the utilisation factor for gains using Table 9a													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Util <mark>isa</mark>	ation fac	tor for g	ains, hm	1:				v						
(94)m=	0.97	0.96	0.93	0.86	0.74	0.57	0.4	0.45	0.7	0.89	0.96	0.98		(94)
Usefu	l gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	418.16	476.18	523.1	547.96	511.3	386.32	260.87	271.03	380.33	423.63	406.05	397.91		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	oss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1186.02	1148.56	1038.85	858.31	655.06	426.98	270.31	284.93	463.09	717.45	963.43	1172.64		(97)
Space	e heatin	g require	ement fo	r each m	nonth, k\	Nh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	571.29	451.84	383.72	223.46	106.96	0	0	0	0	218.61	401.32	576.4		_
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2933.59	(98)
Space	e heating	g require	ement in	kWh/m²	/year								75.3	(99)
9a. En	er <u>gy reo</u>	uir <u>emer</u>	nts <u>– Ind</u>	ivid <u>ual h</u>	eat <u>ing s</u> v	yst <u>ems i</u>	ncl <u>uding</u>	mi <u>cro-C</u>	(HP)					
Space	e heatir	ng:												
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main svs	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ina svste	em 1								Q2 8	
Efficie	nov of a		nu/ounol	amontor	v hootin	a eveter	0/						JZ.U	
Efficiency of secondary/supplementary heating system, %										U	(200)			

								I	· · · · ·	i	i		1	
Creat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	571.29	451.84	383.72	223.46	106.96) 0	0	0	0	218.61	401.32	576.4	1	
(211)m	= {[(98])m x (20	I 4)] } x 1	1 100 ÷ (20	L)6)]	(211)
(,	615.61	486.9	413.49	240.79	115.26	0	0	0	0	235.57	432.46	621.12]	
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	3161.19	(211)
Space heating fuel (secondary), kWh/month = {[(98)m x (201)] } x 100 ÷ (208)														_
$= \{[(98)]$)m x (20)1)]}x1	00 ÷ (20)8) I o	0				0			0	1	
(215)11=	0	0	0	0	0	0	0	Tota	l (kWh/yea	ar) =Sum(2	215)	=		(215)
Water	Nater heating													
Output	from w	, ater hea	ter (calc	ulated a	bove)								-	
	146.74	128.18	133.37	118.29	114.53	100.87	96.64	107.73	108.92	124.03	132.4	143.3		-
Efficier	ncy of w	ater hea	iter										83.5	(216)
(217)m=	90.73	90.57	90.21	89.36	87.75	83.5	83.5	83.5	83.5	89.2	90.3	90.79		(217)
(219)m	r water i = (64)	meating, m x 100	кууп/m) ÷ (217)	onth)m										
(219)m=	161.73	141.53	147.84	132.38	130.52	120.8	115.74	129.02	130.44	139.04	146.61	157.84		_
								Tota	I = Sum(2	19a) ₁₁₂ =			1653.49	(219)
Annua Space	Annual totals kWh/year													7
Space	heating	fueluse	u, main	System	'								3161.19]
water	neating	tuel use	a.										1653.49	
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatin	ig pump										30		(230c) -
Tota <mark>l e</mark>	lectricity	y for the	above, l	kWh/yea	r			sum	of (230a).	(<mark>2</mark> 30g) =			30	(231)
Electric	city for li	ighting											187.24	(232)
Electric	city gene	erated b	y PVs										-428.92	(233)
10a. F	uel cos	sts - indiv	vidual he	eating sy	stems:									
						Fu	el			Fuel P	rice		Fuel Cost	
						kW	/h/year			(Table	12)		£/year	_
Space	heating	- main s	system 1	1		(21)	1) x			3.4	8	x 0.01 =	110.01	(240)
Space	heating	- main s	system 2	2		(21:	3) x			0		x 0.01 =	0	(241)
Space	heating	- secon	dary			(21	5) x			13.	19	x 0.01 =	0	(242)
Water	heating	cost (otl	her fuel)			(219	9)			3.4	8	x 0.01 =	57.54	(247)
Pumps	, fans a	nd elect	ric keep	-hot		(23	1)			13.	19	x 0.01 =	3.96	(249)
(if off-p Energy	eak tari for ligh	ff, list ea ting	ach of (2	30a) to (230g) se	eparately (232	y as app ²⁾	licable a	nd apply	/ fuel pri 13.	ce accor	ding to x 0.01 =	Table 12a 24.7	(250)
Additio	nal star	nding cha	arges (T	able 12)									120	(251)
						one	of (233) to	o (235) x)		13.	19	x 0.01 =	-56.57	(252)
Appeno Total	dix Q ite energ	ems: rep I y cost	eat lines	s (253) ai	nd (254) (245)(as need (247) + (25	ded 50)(254)	=					259.63	(255)

11a. SAP rating - individual heating systems				
Energy cost deflator (Table 12)			0.42	(256)
Energy cost factor (ECF) [(255) × (25		1.3	(257)	
SAP rating (Section 12)			81.88	(258)
12a. CO2 emissions – Individual heating systems	s including micro-CHP			
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/yea	ar
Space heating (main system 1)	(211) x	0.216 =	682.82	(261)
Space heating (secondary)	(215) x	0.519 =	0	(263)
Water heating	(219) x	0.216 =	357.15	(264)
Space and water heating	(261) + (262) + (263) + (26	54) =	1039.97	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	15.57	(267)
Electricity for lighting	(232) x	0.519 =	97.18	(268)
Energy saving/generation technologies Item 1		0.519 =	-222.61	(269)
Total CO2, kg/year		sum of (265)(271) =	930.11	(272)
CO2 emissions per m ²		(272) ÷ (4) =	23.87	(273)
El rating (section 14)			85	(274)
13a. Primary Energy				
	Energy kWh/year	Primary factor	P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22 =	3856.66	(261)
Space heating (secondary)	(215) x	3.07 =	0	(263)
Energy for water heating	(219) x	1.22 =	2017.25	(264)
Space and water heating	(261) + (262) + (263) + (26	54) =	5873.91	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	92.1	(267)
Electricity for lighting	(232) x	0 =	574.83	(268)
Energy saving/generation technologies Item 1		3.07 =	-1316.78	(269)
'Total Primary Energy		sum of (265)(271) =	5224.07	(272)
Primary energy kWh/m²/year		(272) ÷ (4) =	134.09	(273)

			User D	etails:									
Assessor Name: Software Name:	sessor Name:Stroma Number:ftware Name:Stroma FSAP 2012Software Version:Version:												
Property Address: Plot 6													
Address :	Address :												
1. Overall dwelling dimensions: Area(m2) Av. Height(m) V/													
Ground floor			Area	(m²)	(1o) x	AV. He		(20) - I					
	· · · (1 h) · · (1 n) · · (1 n) · · (1 n)	(1 m)		0.98		3.	.47	(2a) =	246.39	_(^{3a)}			
)+(10)+(10)+(10)+(10))+(11)	70	0.98	(4) (20) (2b)	u (20) u (2d		(2n) = -					
					(3a)+(3b)	I+(30)+(30	i)+(3e)+	.(31) =	246.39	(5)			
2. Ventilation rate:				a the an		total							
	heating he	eating	· · · ·	otner		total			m ³ per nou				
Number of chimneys	0 +	0	+	0] = [0	X 4	40 =	0	(6a)			
Number of open flues	0 +	0	+	0] = [0	× 2	20 =	0	(6b)			
Number of intermittent far	IS					2	x ^	10 =	20	(7a)			
Number of passive vents					Г	0	x ´	10 =	0	(7b)			
Number of flueless gas fir	es				Γ	0	x 4	40 =	0	(7c)			
Air changes per hour													
Infiltration due to chimney	s, flues and fans = (6a	i)+(6b)+(7a))+(7b)+(7	7c) =		20		÷ (5) =	0.08	(8)			
It a pressurisation test has be Number of storeys in th	en carried out or is intended	d, proceed	to (17), o	otherwise c	ontinue fro	om (9) to (16)	1	0				
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)			
Structural infiltration: 0.2	25 for steel or timber fi	rame or 0).35 for	masonr	y constr	uction			0](11)			
if both types of wall are pre	esent, use the value corresp	onding to t	he greate	er wall area	a (after			I		_			
deducting areas of opening	gs); if equal user 0.35	od) or 0 1	(soalo	d) also	ontor ()			I	0				
If no draught lobby enter	er 0.05 else enter 0	50) 01 0.1	(Seale	u), eise	enter o				0	(12)			
Percentage of windows	and doors draught str	ipped							0	$\int_{(14)}^{(13)}$			
Window infiltration				0.25 - [0.2	x (14) ÷ 1	00] =			0](15)			
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)			
Air permeability value, o	q50, expressed in cubi	c metres	per ho	ur per so	quare m	etre of e	nvelope	area	10	– (17)			
If based on air permeabilit	ty value, then (18) = [(17	7) ÷ 20]+(8)	, otherwis	se (18) = (16)			İ	0.58	(18)			
Air permeability value applies	if a pressurisation test has	been done	or a deg	ree air per	meability i	is being us	sed			_			
Number of sides sheltered	d			(20) – 1 - [0 075 x (1	9)] —			2	(19)			
Infiltration rate incorporation	ng shelter factor			(20) - 1	x (20) -	0)] –		l	0.85	(20)			
Infiltration rate modified for	r monthly wind speed			(21) = (10)	x (20) -			l	0.49				
Jan Feb I	Mar Apr Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec					
Monthly average wind spe	ed from Table 7				1								
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7					
		I					1						
Wind Factor $(22a)m = (22)$	$\frac{1}{2}$)m ÷ 4		0.05	0.00		4.00	4.45						
(zza)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18					

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m	-				
.	0.63	0.62	0.61	0.54	0.53	0.47	0.47	0.46	0.49	0.53	0.56	0.58		
Calcul	ate effe	ctive air	change	rate for t	he appli	cable ca	se					_		(22.0)
lf exh	aust air h		using App	endix N (2	3h) - (23a) x Fmv (e	equation (N	(5)) other	wise (23h) – (23a)			0	(23a)
lf bala	anced with	n heat reco	overv: effic	iencv in %	allowing f	or in-use f	actor (from	Table 4h) =) = (20u)			0	(230)
a) If	balance	nd moch			with hor	ot rocov	$a \alpha		$(-)^{-}$	2b)m i (22h) v [1 (22c)	0 · 1001	(230)
a) II (24a)m-								1K) (24a	(22)	$\frac{20}{10}$	230) x [1 - (230)	- 100j	(24a)
(2 la)				ntilation	without	boot roc		 /\/) (24b	m = (2)) 2b)m + ('	23h)	ů		
(24b)m=				0	0			0	0		0	0		(24b)
(2 15)11-	whole h		tract ver				ventilatio	n from c		Ů		Ů		
i c)	if (22b)n	$n < 0.5 \times$	(23b), t	hen (24d	c) = (23b); otherv	vise (24	c) = (22b) m + 0.	5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	n or wh	ole hous	e positiv	/e input v	ventilatio	on from l	oft	!				
, i	if (22b)n	n = 1, th	en (24d)	m = (22k)m othe	rwise (2	4d)m = (0.5 + [(2	2b)m² x	0.5]				
(24d)m=	0.7	0.69	0.68	0.65	0.64	0.61	0.61	0.6	0.62	0.64	0.65	0.67		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.7	0.69	0.68	0.65	0.64	0.61	0.61	0.6	0.62	0.64	0.65	0.67		(25)
3. He	at losse	s and he	at loss i	paramete	er:									
ELEN		Gros	s	Openin	qs	Net Ar	ea	U-valu	Je	AXU		k-value	9	AXk
		area	(m²)	'n	2	A ,n	m²	W/m2	K	(VV/I	<)	kJ/m²·ł	<	kJ/K
Doo <mark>rs</mark>						2	x	1.5	=	3				(26)
Windo	ws Type	e 1				5.4	x1/	/[1/(1.6)+	0.04] =	8.12				(27)
Windo	ws Type	2				3.2	x1/	/[1/(1.6)+	0.04] =	4.81				(27)
Windo	ws Type	e 3				1.5	x1/	/[1/(1.6)+	0.04] =	2.26				(27)
Floor T	Гуре 1					66.59	9 x	0.25		16.6497	5			(28)
Floor T	Гуре 2					4.385	5 X	0.3		1.3155	i F		- -	(28)
Walls ⁻	Type1	38.7	'4	10.1		28.64	L X	0.3		8.59	ו ד		i F	(29)
Walls ⁻	Type2	6.4	3	2		4.43	×	0.27		1.19	= i		\dashv	(29)
Total a	rea of e	lements	. m²	L		116.1	6		I	-	L			(31)
* for win	dows and	roof wind	, ows, use e	effective wi	ndow U-va	alue calcula	ated using	formula 1,	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph	3.2	
** inclua	le the area	as on both	sides of ir	nternal wall	s and part	titions	-				-			
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)	+ (32) =				45.93	(33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	0	(34)
Therm	al mass	parame	ter (TMF	P = Cm ÷	- TFA) ir	∩ kJ/m²K			Indica	tive Value	Medium		250	(35)
For desi can be ι	ign asses: Ised inste	sments wh ad of a de	ere the de tailed calc	tails of the ulation.	construct	ion are not	t known pr	ecisely the	indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						17.42	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			63.36	(37)
Ventila	tion hea	at loss ca	alculated	i monthly	/	. 1		. I	(38)m	= 0.33 × (25)m x (5))	l	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(00)
(38)m=	56.78	56.15	55.54	52.66	52.12	49.61	49.61	49.14	50.57	52.12	53.21	54.35		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m		I	
(39)m=	120.14	119.51	118.9	116.01	115.47	112.96	112.96	112.5	113.93	115.47	116.57	117.71		
Stroma I	FSAP 201	2 Version:	1.0.4.6 (8	SAP 9.92) -	http://ww	w.stroma.c	com			Average =	Sum(39)1	12 /12=	116.¢±	¹ age 2 of ³ 89)

Heat lo	ss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)				
(40)m=	1.69	1.68	1.67	1.63	1.63	1.59	1.59	1.58	1.61	1.63	1.64	1.66			
Numbe	or of day	rs in mo	nth (Tab	le 12)				!	,	Average =	Sum(40)1	.12 /12=	1.63	(40)	
	lan	Feb	Mar		May	lun	l lul	Δυσ	Sen	Oct	Nov	Dec			
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)	
(,												0.		()	
4. Water heating energy requirement:kWh/year:													ear:		
Assum if TF	ed occu A > 13.9 A £ 13.9	upancy, 9, N = 1 9 N = 1	N + 1.76 x	[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.	2.: .9)	27		(42)	
Annual	averag	je hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		88	.11		(43)	
Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)															
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Hot wate	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	<u>.</u>						
(44)m=	96.92	93.39	89.87	86.35	82.82	79.3	79.3	82.82	86.35	89.87	93.39	96.92			
									-	Total = Su	m(44) ₁₁₂ =		1057.29	(44)	
Energy c	content of	hot water	used - cal	culated me	onthly $= 4$.	190 x Vd,r	m x nm x L	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)			
(45)m=	143.73	125.7	129.72	113.09	108.51	93.64	86.77	99.57	100.76	117.42	128.18	139.19		_	
If instant		votor hooti	ng of point	e of upp (ne	bot wata	r otorogo)	ontor 0 in	hoven (46	1 to (61)	Total = Su	m(45) ₁₁₂ =		1 <mark>3</mark> 86.27	(45)	
	aneous w		ng at point	or use (no		slorage),		boxes (40)						(10)	
(46)m= Water 9	21.56	18.86	19.46	16.96	16.28	14.05	13.02	14.94	15.11	17.61	19.23	20.88		(46)	
Storage	e volum	e (litres)	includir	ng any se	olar or M	/WHRS	storage	within sa	ame ves	sel		า		(47)	
lf com	nunity h	neating a	ind no ta	ink in dw	vellina e	nter 110) litres in	(47)			Ľ`	5		()	
Otherw	rise if no	o stored	hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)				
Water s	storage	loss:													
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				()		(48)	
Tempe	rature f	actor fro	m Table	2b							(C		(49)	
Energy	lost fro	m water	storage	, kWh/y	ear			(48) x (49)) =		(C		(50)	
b) If m	anufact	urer's de	eclared (cylinder com Tabl	loss fact	or is not h/litro/dc	known:							(54)	
If com	nunitv h	eating s	ee secti	on 4.3		1/1110/02	ay)					J		(51)	
Volume	e factor	from Ta	ble 2a									0		(52)	
Tempe	rature f	actor fro	m Table	2b							(0		(53)	
Energy	lost fro	m water	· storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	(C		(54)	
Enter ((50) or ((54) in (5	55)								()		(55)	
Water s	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m					
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)	
If cylinde	r contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H		
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)	
Primary	y circuit	loss (ar	nual) fro	om Table	e 3						(0		(58)	
Primary	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m				-		
(mod	lified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)				
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)	
Combi	loss ca	alculated	for eacl	n month	(61)m =	(60)) ÷ 36	65 × (41))m						
-----------------------	-----------------------	--------------------------	----------------------	--------------	------------	------	------------	------------------------	--------------	---------------	---------------------	----------------	-------------	---------------	------
(61)m=	49.39	42.99	45.8	42.58	42.2	3	9.11	40.41	42.2	42.58	45.8	46.06	49.39]	(61)
Total h	heat rec	uired for	water h	leating c	alculated	d fo	r eacl	h month	(62)m =	0.85 × 0	(45)m	+ (46)m +	(57)m +	(59)m + (61)n	า
(62)m=	193.11	168.69	175.51	155.67	150.72	1:	32.74	127.18	141.77	143.34	163.2	2 174.23	188.58]	(62)
Solar DI	-IW input	calculated	using Ap	pendix G o	r Appendix	(Н ((negati	ve quantity	v) (enter '0	' if no sola	r contrib	oution to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	and/or	WWHRS	s ap	plies	, see Ap	pendix (G)				-	
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Output	t from v	vater hea	ter	_										-	
(64)m=	193.11	168.69	175.51	155.67	150.72	1:	32.74	127.18	141.77	143.34	163.2	2 174.23	188.58		_
									Outp	out from w	ater hea	ter (annual)	112	1914.77	(64)
Heat g	ains fro	om water	heating	i, kWh/m	onth 0.2	5 ′	[0.85	× (45)m	+ (61)m	n] + 0.8 x	x [(46)ı	m + (57)m	+ (59)m	1]	
(65)m=	60.14	52.54	54.58	48.25	46.63	4	0.91	38.95	43.66	44.15	50.49	54.13	58.63		(65)
inclu	ıde (57)m in calo	culation	of (65)m	only if c	ylir	nder i	s in the c	dwelling	or hot w	ater is	from com	imunity h	neating	
5. Int	ternal g	ains (see	e Table	5 and 5a):										
Metab	olic gai	ns (Table	e 5), Wa	tts						-				_	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	136.19	136.19	136.19	136.19	136.19	1:	36.19	136.19	136.19	136.19	13 <mark>6.1</mark>	9 136.19	136.19		(66)
Ligh <mark>tin</mark>	g gains	(calcula	ted in A	ppendix	L, equat	ion	L9 o	r L9a), <mark>a</mark>	lso see	Table 5					
(67)m=	4 <mark>6.26</mark>	41.09	33.42	25.3	18.91	1	5.96	17.2 <mark>5</mark>	22.42	30.1	38.21	44.6	47.55		(67)
Applia	nces ga	ains (ca <mark>lc</mark>	ulated i	n Appen	dix L, eq	uat	tion L	13 or L1:	3a), also	o see Ta	ble <mark>5</mark>				
(68)m=	2 <mark>9</mark> 7.88	300.98	29 <mark>3.19</mark>	276.6	255.67		236	222.85	219.76	227.55	244.1	3 265.07	284.74		(68)
Cookir	ng gains	s (calcula	ated in A	ppendix	L, equa	tior	n L15	or L15a)	, also se	ee Table	5		-	•	
(69)m=	50.89	50.89	50.89	50.89	50.89	5	0.89	50.89	50.89	50.89	50.89	50.89	50.89		(69)
Pumps	and fa	Ins gains	(Table	 5a)											
(70)m=	3	3	3	3	3		3	3	3	3	3	3	3]	(70)
Losses	s e.g. e	vaporatic	n (nega	ative valu	ies) (Tab	le :	5)				•				
(71)m=	-90.79	-90.79	-90.79	-90.79	-90.79	-9	90.79	-90.79	-90.79	-90.79	-90.7	9 -90.79	-90.79]	(71)
Water	heating	, g gains (T	rable 5)										!		
(72)m=	80.83	78.19	73.36	67.01	62.68	5	6.82	52.36	58.68	61.32	67.87	75.18	78.8]	(72)
Total i	nterna	l gains =					(66)	m + (67)m	ı + (68)m -	+ (69)m +	(70)m +	(71)m + (72))m	1	
(73)m=	524.26	519.54	499.25	468.2	436.54	4	08.07	391.74	400.15	418.25	449.5	484.14	510.37]	(73)
6. So	lar gain	IS:	•		ł						L				
Solar g	gains are	calculated	using sola	ar flux from	Table 6a	and	associ	iated equa	tions to co	onvert to th	ne applio	able orienta	tion.		
Orienta	ation:	Access F Table 6d	actor	Area m²	l		Flu Tal	x ole 6a	Т	g_ able 6b		FF Table 6c		Gains (W)	
Northea	ast <mark>0.9x</mark>	0.77	×	5	4	x	1	1.28	x	0.7	×	0.8	=	23.64	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	5	4	x	2	2.97	x	0.7	× ٦	0.8	=	48.13	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	5	4	x	4	1.38	×	0.7	×	0.8	= =	86.71	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	5	4	x	6	7.96	×	0.7	× ٦	0.8	=	142.41	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	5	4	x	9	1.35	x	0.7	× ٦	0.8	=	191.43	(75)

Northea	st <mark>0.9x</mark>	0.77		x	5.4	4	×	g	7.38	x		0.7	x	0.8		=	204.08	(75)
Northea	st 0.9x	0.77		x	5.4	4	x		91.1] ×		0.7	- ×	0.8		=	190.91	(75)
Northea	st 0.9x	0.77		x	5.4	4	×	7	2.63	x		0.7		0.8		=	152.2	(75)
Northea	st 0.9x	0.77		x	5.4	4	×	5	0.42	x		0.7		0.8		=	105.66	(75)
Northea	st 0.9x	0.77		x	5.4	4	×	2	8.07	x		0.7		0.8		=	58.82	(75)
Northea	st <mark>0.9x</mark>	0.77		x	5.4	4	×		14.2	x		0.7		0.8		=	29.75	(75)
Northea	st 0.9x	0.77		x	5.4	4	×	9	9.21	x		0.7	×	0.8		=	19.31	(75)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	3	6.79	x		0.7	×	0.8		=	21.42	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	6	2.67	x		0.7	x	0.8		=	36.48	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	8	5.75	x		0.7	x	0.8		=	49.92	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	1	06.25	x		0.7	x	0.8		=	61.85	(77)
Southea	ast <mark>0.9</mark> x	0.77		x	1.	5	×	1	19.01	x		0.7	x	0.8		=	69.28	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	1	18.15	x		0.7	×	0.8		=	68.78	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	1	13.91	x		0.7	×	0.8		=	66.31	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	1	04.39	x		0.7	×	0.8		=	60.77	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.	5	×	g	2.85	x		0.7	×	0.8		=	54.05	(77)
Southea	ast <mark>0.9</mark> x	0.77		x	1.	5	×	6	9.27	x		0.7	×	0.8		=	40.32	(77)
Southea	ast 0.9x	0.77		x	1.	5	X	4	4.07	x		0.7	x	0.8		=	25.65	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	1.5	5	x	3	1.49] x		0.7	x	0.8		-	18.33	(77)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	x	3	6.79] /]		0.7	x	0.8		=	45.69	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	6	2.67]		0.7	x	0.8		=	77.83	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	8	5.75]		0.7	x	0.8		=	106.49	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	x	1	06.25			0.7	x	0.8		=	131.95	(79)
Southwe	est <mark>0.9</mark> x	0.77		x	3.2	2	×	1	19.01]		0.7	x	0.8		=	147.79	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	x	1	18.15]		0.7	x	0.8		=	146.73	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	1	13.91			0.7	×	0.8		=	141.46	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	1	04.39]		0.7	×	0.8		=	129.64	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	g	2.85			0.7	×	0.8		=	115.31	(79)
Southwe	est <mark>0.9x</mark>	0.77		x	3.2	2	×	6	9.27			0.7	×	0.8		=	86.02	(79)
Southwe	est <mark>0.9</mark> x	0.77		x	3.2	2	×	4	4.07			0.7	×	0.8		=	54.73	(79)
Southwe	est <mark>0.9</mark> x	0.77		x	3.2	2	x	3	1.49			0.7	×	0.8		=	39.1	(79)
Solar g	ains in	watts, ca	alculate	ed	for eac	1 mon	th	10.59	208 68	(83)m	n = Sun	n(74)m	.(82)m	110.12	76.7	4		(83)
Total o	90.76 ains – i	nternal a	and sol	ar	(84)m =	= (73)n	<u> </u>	83)m	watts	342	2.0	275.02	165.10	110.13	70.7	4		(00)
(84)m=	615.01	681.98	742.3	7	804.41	845.04	4 8	27.65	790.43	742	2.75	693.27	634.66	594.27	587.1	12		(84)
	on into	nol tom	orotur		(booting					I	-	1			1			. ,
Temp	erature	during h	neating		eriods ir	the liv	vina	area	from Tal	hle 9	Th1	(°C)					21	1 (85)
Utilisa	tion fac	ctor for a	ains fo	or li	iving are	a h1	m (s	ee Ta	ble 9a)	010 0	,	(0)					21	
[Jan	Feb	Ma	r	Apr	May	y T	Jun	Jul	A	ug	Sep	Oct	Nov	De	ec		
(86)m=	0.99	0.99	0.98	╡	0.95	0.88	╈	0.74	0.59	0.6	64	0.84	0.96	0.99	0.99	Э		(86)
Mean	interna	l temper	ature i	n I	iving are	ea T1	(follo	ow ste	ps 3 to 7	7 in T	[able]	9c)		-				
(87)m=	19.67	19.8	20.02		20.34	20.63		20.83	20.9	20.	.89	20.74	20.39	19.99	19.6	6		(87)
L		1	I							1				1	I			

Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	ble 9, Tl	h2 (°C)					
(88)m=	19.55	19.55	19.56	19.59	19.59	19.62	19.62	19.62	19.61	19.59	19.58	19.57		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling, l	h2,m (se	e Table	9a)						
(89)m=	0.99	0.98	0.97	0.92	0.82	0.63	0.42	0.47	0.75	0.94	0.98	0.99		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	17.82	18.01	18.35	18.82	19.2	19.45	19.51	19.51	19.37	, 18.9	18.32	17.83		(90)
									f	LA = Livin	g area ÷ (4	l) =	0.3	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwel	llina) = fl	LA x T1	+ (1 – fL	A) × T2			•		
(92)m=	18.37	18.55	18.85	19.28	19.63	19.86	19.92	19.92	, 19.78	19.34	18.82	18.38		(92)
Apply	adjustn	nent to t	he mear	internal	tempera	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.37	18.55	18.85	19.28	19.63	19.86	19.92	19.92	19.78	19.34	18.82	18.38		(93)
8. Spa	ace hea	ting requ	uirement											
Set T	i to the r	nean int	ernal ter	nperatur	re obtain	ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
uie ui	Jan	Feh	Mar	Anr	Mav	Jun	Jul	Αμα	Sen	Oct	Nov	Dec		
Utilisa	ation fac	tor for a	ains. hm	יק <u>רי</u> ו:	iviay	Juli	001	Aug	Ocp	000	1107	Dee		
(94)m=	0.99	0.98	0.96	0.92	0.82	0.65	0.46	0.51	0.77	0.93	0.98	0.99		(94)
Us <mark>efu</mark>	Il gains,	hmGm	, W = (9	4)m x (84	4)m									
(95)m=	<mark>60</mark> 5.99	666. <mark>65</mark>	713.05	738.02	696.41	<mark>53</mark> 7.43	364.5 <mark>2</mark>	379.64	531.7	590.45	580.02	579.83		(95)
Mo <mark>nt</mark> ł	nly avera	age exte	ernal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]	4005.0	4000.44		(07)
(97)m=	1690.75	1631.01	1468.06	1203.8	915.4	594.72	375.55	396.1	647	1009.5	1365.6	1669.11		(97)
(98)m=	807.06	648.05	561.73	335.36	162.93	0	0.02	4 X [(97))11 <mark> – (9</mark> 5 0	311.77	565.62	810.43		
()								Tota	l per year	(kWh/year) = Sum(9	B) _{15.912} =	4202.95	(98)
Snace	a heatin	a requir	oment in	$kM/h/m^2$?/vear						, (,	50.21	(99)
	5 neatin	grequit			/year							l	59.21	(00)
9a. En	ergy rec e hoetir	luiremer	nts — Indi	ividual h	eating sy	stems i	ncluding	micro-C	HP)					
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system					[0	(201)
Fracti	on of sp	ace hea	at from m	nain svst	em(s)	,		(202) = 1 -	- (201) =			l	1	(202)
Fracti	on of to	tal heati	na from	, main sve	stem 1			(204) = (2	02) × [1 –	(203)] =		[1	(204)
Efficie	ency of r	nain spa	ace heat	ina svste	em 1								92.8	(206)
Efficie	ency of s	seconda	rv/suppl	ementar	v heating	n system	า %					l	0	(208)
Emol		Fab	Mor	Apr	Max		I, 70	Aug	Son	Oct	Nov	Dee	پ ۲۹۸۸	(200)
Snace	- heatin	a require	ement (c	alculate	d above	Jun	Jui	Aug	Sep	Oci	INOV	Dec	KVVI	/year
Opuol	807.06	648.05	561.73	335.36	162.93	0	0	0	0	311.77	565.62	810.43		
(211)m	$n = \{[(98)]$)m x (20	ı 4)]}x1	00 ÷ (20)6)									(211)
()	869.68	698.33	605.31	361.38	175.57	0	0	0	0	335.96	609.5	873.31		()
			1					Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012} :	=	4529.04	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month							L		1
= {[(98)m x (20)1)]}x ¹	00 ÷ (20	8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	I (kWh/yea	ar) =Sum(2	2 15) _{15,1012}	=	0	(215)

Water heating

Output	from w	ater hea	ter (calc	ulated al	oove)		· · · · ·		ı —	,	,		7	
	193.11	168.69	175.51	155.67	150.72	132.74	127.18	141.77	143.34	163.22	174.23	188.58		٦
Efficier	ncy of w	ater hea	iter										83.5	(216)
(217)m=	90.85	90.71	90.4	89.64	88.09	83.5	83.5	83.5	83.5	89.38	90.43	90.89		(217)
(219)m	r water = (64)	meating,	кvvn/me) ÷ (217)	onth m										
(219)m=	212.57	185.96	194.14	173.67	171.1	158.97	152.31	169.79	171.66	182.61	192.68	207.48		
								Tota	al = Sum(2	19a) ₁₁₂ =			2172.96	(219)
Annua	l totals		l		4					k	Wh/year		kWh/year	7
Space	neating	j tuel use	ed, main	system	1								4529.04	ļ
Water	heating	fuel use	d										2172.96	
Electric	city for p	oumps, f	ans and	electric l	keep-ho	t								
centra	al heatir	ng pump	:									30]	(230c)
Total e	lectricit	y for the	above, l	<wh td="" yea<=""><td>r</td><td></td><td></td><td>sum</td><td>of (230a)</td><td>(230g) =</td><td>:</td><td></td><td>30</td><td>(231)</td></wh>	r			sum	of (230a)	(230g) =	:		30	(231)
Electric	city for I	ighting											326.79	(232)
Electric	city gen	erated b	y PVs										-781.79	(233)
10a. I	Fuel cos	sts - indiv	vidual he	eating sy	stems:									
	Г					Fu kW	el /h/vear			Fuel P	rice		Fuel Cost €/vear	
Space	heating	ı - main s	svstem 1			(21	1) x			34	18	x 0.01 =	157 61	(240)
Space	heating	, ı - main s	svstem 2			(213	3) x					x 0.01 =	0](241)
Space	heating	I - secon	darv			(21	5) x			13	19	x 0.01 =	0](242)
Water	heating	cost (ot	her fuel)			(219	9)			3.4	18	x 0.01 =	75.62](247)
Pumps	s, fans a	nd elect	ric keep	-hot		(23	1)			13.	19	x 0.01 =	3.96](249)
(if off-p	eak tar	iff, list ea	ach of (2	30a) to (230g) se	eparately	/ as app	licable a	ind apply	/ fuel pri	ce accor	ding to	Table 12a	_
Energy	/ for ligh	nting				(232	2)			13.	19	x 0.01 =	43.1	(250)
Additio	nal star	nding cha	arges (T	able 12)									120	(251)
						one	of (233) t	o (235) x)		13.	19	x 0.01 =	-103.12	(252)
Appen	dix Q ite	ems: rep	eat lines	(253) aı	nd (254)	as need	ded							
Total	energ	jy cost			(245)(247) + (25	50)(254)	=					297.17	(255)
11a. S	SAP rat	ing - indi	vidual h	eating sy	stems									
Energy	cost d	eflator (T	able 12)									0.42	(256)
Energy	v cost fa	ctor (EC	F)		[(255) x	(256)] ÷ [((4) + 45.0]	=					1.08	(257)
SAP ra	ating (S	ection 1	2)										84.99	(258)
12a. (CO2 <u>er</u> r	nissio <u>ns</u> ·	– Individ	ual h <u>eati</u>	ng s <u>yste</u>	ems i <u>nclu</u>	udin <u>g m</u> i	cro-CHF	>					_
						Γ	01011			Emias	ion for	40 r	Emicoloura	
						⊑n kW	/h/year			kg CO	2/kWh		kg CO2/yea	ar

Space heating (main system 1)	(211) x	0.216	=	978.27	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	469.36	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1447.63	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	15.57	(267)
Electricity for lighting	(232) x	0.519	=	169.61	(268)
Energy saving/generation technologies Item 1		0.519	=	-405.75	(269)
Total CO2, kg/year	sum	of (265)(271) =		1227.06	(272)
CO2 emissions per m ²	(272)	÷ (4) =		17.29	(273)
El rating (section 14)				86	(274)
(88	· · ·
13a. Primary Energy], ,
13a. Primary Energy	Energy kWh/year	Primary factor		P. Energy kWh/year], ,
13a. Primary Energy Space heating (main system 1)	Energy kWh/year (211) x	Primary factor	=	P. Energy kWh/year](261)
13a. Primary Energy Space heating (main system 1) Space heating (secondary)	Energy kWh/year (211) x (215) x	Primary factor 1.22 3.07	-	P. Energy kWh/year 5525.43](261)](263)
13a. Primary Energy Space heating (main system 1) Space heating (secondary) Energy for water heating	Energy kWh/year (211) x (215) x (219) x	Primary factor 1.22 3.07 1.22	-	P. Energy kWh/year 5525.43 0 2651.01	(261) (263) (264)
13a. Primary Energy Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating	Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) =	Primary factor 1.22 3.07 1.22	-	P. Energy kWh/year 5525.43 0 2651.01 8176.43	(261) (263) (264) (265)
13a. Primary Energy Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating Electricity for pumps, fans and electric keep-hot	Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) = (231) x	Primary factor 1.22 3.07 1.22 3.07	-	P. Energy kWh/year 5525.43 0 2651.01 8176.43 92.1](261)](263)](264)](265)](267)
13a. Primary Energy Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting	Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	Primary factor 1.22 3.07 1.22 3.07 0	-	P. Energy kWh/year 5525.43 0 2651.01 8176.43 92.1 1003.25	(261) (263) (264) (265) (267) (268)

'Total Primary Energy

Primary energy kWh/m²/year

6871.7

96.81

(272)

(273)

sum of (265)...(271) =

(272) ÷ (4) =

		U	lser Deta	ails:						
Assessor Name: Software Name:	Stroma FSAP 2012	2	St Sc	troma oftwa	Num re Ver	ber: sion:		Versio	n: 1.0.4.6	
		Prop	perty Ado	dress:	Plot 8					
Address :										
1. Overall dwelling dimer	nsions:			-						
Cround floor		Г	Area(m	n²)	(1 -)	Av. Hei	ight(m)](22)	Volume(m ³)	
	\ . / 4 \ . / 4 . \ . / 4 . \ . / 4 .]	56.24	4	ia) x	3.	.47	(2a) =	195.21	(38)
Total floor area TFA = (1a	i)+(1b)+(1c)+(1d)+(1e)	+(1n)	56.24	24	(4) (0) - (0 -)			(0)		-
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	195.21	(5)
2. Ventilation rate:				-						
	main se heating he	condary eating	oti	her		total			m ³ per houi	•
Number of chimneys	0 +	0	+	0	=	0	X 4	40 =	0	(6a)
Number of open flues	0 +	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	ns				Ē	2	x ^	10 =	20	(7a)
Number of passive vents					Γ	0	x ′	10 =	0	(7b)
Number of flueless gas fir	es				Γ	0	x 4	40 =	0	(7c)
					_			Air ch	anges per ho	ur
Infiltration due to chimney	s, flues and fans = (6a)+(6b)+(7a)+	-(7b)+(7c)	=	Ĺ	20		÷ (5) =	0.1	(8)
It a pressurisation test has be Number of storeys in the	en carried out or is intended	d, proceed to	o (17), othe	erwise co	ontinue fro	om (9) to (16)	1	0	
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel or timber fr	ame or 0.3	35 for m	asonry	constr	uction		1	0	(11)
if both types of wall are pre	esent, use the value corresp	onding to the	e greater w	vall area	(after			I		
deducting areas of opening	gs); if equal user 0.35) or 0 1 ((acalad)		ntor 0			1		
If suspended wooden in	001, enter 0.2 (unseale	u) or 0. r ((sealeu),	, eise e					0	(12)
Percentage of windows	and doors draught str	inned							0	(13)
Window infiltration		ippou	0.2	25 - [0.2	x (14) ÷ 1	= [00			0	(14)
Infiltration rate			(8)	+ (10) +	· (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value, o	q50, expressed in cubi	c metres p	ber hour	per sq	uare m	etre of e	nvelope	area	10	(17)
If based on air permeabilit	ty value, then (18) = [(17	r) ÷ 20]+(8), c	otherwise ((18) = (1	6)				0.6	(18)
Air permeability value applies	if a pressurisation test has	been done o	or a degree	e air peri	meability i	is being us	sed			_
Number of sides sheltered	b		(20	(-1)) 075 v (1	0)1			2	(19)
Sheller lactor	na choltor footor		(20	(10) = (10)	y (20) -	9)] =			0.85	(20)
Inititration rate incorporation	ng sneiter lactor		(21	1) = (10)	x (20) =			ļ	0.51	(21)
	Mar Apr Max	lun	lul l	A.u.a.	Son	Oct	Nov	Dee		
		Jun	Jui	Aug	Sep	Uci	INOV	Dec		
Monthly average wind spe		2.0	2.0	27	4	4.2	4.5	47		
	1.3 4.4 4.3	5.0	0.0	5.1	4	4.3	4.0	4.1		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95 0	0.95 (0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sł	nelter an	d wind s	speed) =	(21a) x	(22a)m				_		
	0.65	0.64	0.63	0.56	0.55	0.49	0.49	0.47	0.51	0.55	0.58	0.6			
Calcul If m	ate effec	ctive air	change	rate for t	he appli	cable ca	se								(220)
lf exh	aust air h	eat pump	usina Appe	endix N. (2	3b) = (23a	a) x Fmv (e	equation (N5)) . othei	wise (23b) = (23a)					(23b)
If bala	anced with	heat reco	overv: effic	iencv in %	allowing f	or in-use fa	actor (from	n Table 4h) =	, (,					(230)
a) If	halance	d mech	anical ve	ntilation	with he	at recove	erv (MV/	HR) (24a) m = (22	2b)m + (23b) x [1 – (23c)	⊥		(200)
(24a)m=				0	0	0			0	0	0]		(24a)
b) If	balance	l d mech	I anical ve	Intilation	without	L heat rec	L coverv (N	L /\\/) (24b	m = (22)	l 2b)m + (;	L 23b)	I	I		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0	1		(24b)
c) If	whole h	use ex	ract ver	tilation o	n pripositiv	re input v	ventilatio	n from c	outside				I		
0)	if (22b)n	n < 0.5 ×	(23b), t	hen (240	c) = (23b); otherv	wise (24	c) = (22b	o) m + 0.	5 × (23b)				
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input	ventilatio	on from I	oft	-					
	if (22b)n	n = 1, th	en (24d)	m = (22l	o)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1		
(24d)m=	0.71	0.7	0.7	0.66	0.65	0.62	0.62	0.61	0.63	0.65	0.67	0.68			(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	d) in boy	(25)	i	i	.	1		
(25)m=	0.71	0.7	0.7	0.66	0.65	0.62	0.62	0.61	0.63	0.65	0.67	0.68			(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	oaramete	ər:										
	/ENT	Gros	s	Openin	gs	Net Ar	ea	U-valu	Je	AXU		k-value	e	A >	(k
D		area	(m²)	m	12	A ,r	n²	W/m2	K r	(VV/I	<)	kJ/m ² ·l	K	kJ/	K
Doors	_					2	×	1.5		3					(26)
Windo	ws Type	e 1				3.6	x1.	/[1/(1.6)+	0.04] =	5.41					(27)
Windo	ws Type	2		_		1.4	x1.	/[1/(1.6)+	0.04] =	2.11	Ľ.				(27)
Walls	Type1	24.8	37	0		24.87	7 X	0.3	=	7.46					(29)
Walls	Type2	29.4	16	5		24.46	3 X	0.28	=	6.85					(29)
Walls	Туре3	43.1	1	2		41.11	x	0.27	=	11.01					(29)
Total a	area of e	lements	, m²			97.44	4								(31)
* for win	ndows and	roof wind	ows, use e sidos of ir	effective wi	ndow U-va	alue calcul	ated using	formula 1	/[(1/U-valu	ie)+0.04] a	ns given in	paragraph	n 3.2		
Fabric	heat los	s W/K :	= S (A x)		is and pan			(26)(30)	+ (32) =				25	<u>9</u> 1	(33)
Heat c	anacity	Cm = S('A x k)	0)				. , . ,	((28)	.(30) + (32	2) + (32a).	(32e) =	55.		(34)
Therm	al mass	parame	ter (TMF	² = Cm -	- TFA) ir	n k.I/m²K			Indica	tive Value	: Medium	(020)	25		(35)
For desi	ign assess	sments wh	ere the de	tails of the	construct	ion are not	t known pr	ecisely the	indicative	values of	TMP in T	able 1f	20	0	
can be ı	used inste	ad of a de	tailed calc	ulation.											
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						14.	62	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)			(00)	(00)					-
	abric ne	at loss	- - 4	l	_				(33) +	(36) =	05) (5	N N	50.	46	(37)
ventila					V NA	l	11	Δ	(38)m	= 0.33 × (∠5)m x (5		1		
(20)~	Jan			Apr		Jun		Aug	Sep			12.07			(38)
(30)11=	40.94	45.41	44.00	42.43	41.97	39.03	39.63	39.44	40.00	41.97	42.9	43.67	J		(50)
Heat ti	ransfer o	coefficier	nt, W/K	00.00	00.45	00.00	00.00	00.00	(39)m	= (37) + (37)	38)m	0.1.00	1		
(39)m=	96.4	95.86	95.34	92.89	92.43	90.29	90.29	89.89	91.11	92.43	93.36	94.33			
									/	-verage =	Sum(39)	12 / 12=	92.	00	(33)

Heat lo	ss para	ameter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	1.71	1.7	1.7	1.65	1.64	1.61	1.61	1.6	1.62	1.64	1.66	1.68		
Numbe	or of day	rs in mo	nth (Tab	le 1a)	1			ļ	,	Average =	Sum(40)1	12 /12=	1.65	(40)
	Jan	Feb	Mar	Anr	May	Jun	Jul	Aug	Sen	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(,														
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF, if TF,	ed occu A > 13.9 A £ 13.9	upancy, 9, N = 1 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	349 x (TF	⁻ A -13.9)2)] + 0.(0013 x (⁻	TFA -13	1.; .9)	87]	(42)
Annual Reduce not more	averag the annua that 125	je hot wa al average i litres per	ater usag hot water person pe	ge in litre usage by r day (all w	es per da 5% if the c vater use, l	ay Vd,av Iwelling is hot and co	erage = designed ld)	(25 x N) to achieve	+ 36 a water us	se target o	78 f	3.7		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)					1	
(44)m=	86.57	83.42	80.27	77.12	73.98	70.83	70.83	73.98	77.12	80.27	83.42	86.57		
_			!	!					-	Total = Su	m(44) ₁₁₂ =		944.36	(44)
Energy o	content of	hot water	used - ca	culated me	onthly $= 4$.	190 x Vd,r	m x nm x L	OTm / 3600) kWh/mor	oth (<mark>see Ta</mark>	ables 1b, 1	c, 1d)		
(45)m=	1 <mark>2</mark> 8.38	112.28	115.86	101.01	96.92	<mark>8</mark> 3.64	77.5	88.93	90	104.88	114.49	124.33		
				(- f				1		Total = Su	m(45) ₁₁₂ =		1238.21	(45)
It instant	aneous v	vater neati.	ng at point	t of use (no	o not watel	storage),	enter 0 in	boxes (46)) to (61)					
(46)m=	19.26	16.84	17.38	15.15	14.54	12.55	11.63	13.34	13.5	15.73	17.17	18.65		(46)
Storage	e volum	luss. ne (litres)	Vincludir	ng any se	olar or M	WHRS	storage	within sa	ame ves	sel		n	1	(47)
lf comr	nunity h	peating a	and no te	ank in dw		nter 110	litres in	(47)			Ľ`	0		(47)
Otherw	ise if no	o stored	hot wate	er (this in	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
Water	storage	loss:		,					,	,	,			
a) If m	anufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				(0		(48)
Tempe	rature f	actor fro	m Table	2b							(0		(49)
Energy	lost fro	om water	r storage	, kWh/ye	ear			(48) x (49)) =		(0		(50)
b) If m	anufact	turer's d	eclared of	cylinder	loss fact	or is not	known:						1	
Hot wa	ter stor	age loss	s factor fi	rom Tabl	le 2 (kW	h/litre/da	ay)				(0		(51)
Volume	e factor	from Ta	ble 2a	011 4.5								n	1	(52)
Tempe	rature f	actor fro	m Table	2b								0		(52)
Enerav	lost fro	om water	r storage	kWh/ve	ear			(47) x (51)) x (52) x (53) =		- n]	(54)
Enter	(50) or ((54) in (5	55)	,, ·	Jul				((- / (,		0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m			1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (L H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is from	m Append	l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Priman	v circuit	· loss (ar	nual) fr	· m Table	<u>.</u> 3	•	•	-				0		(58)
Primar	v circuit	1033 (al	culated	for each	month (59)m = ((58) ÷ 36	65 x (41)	m		`	-	l	x = /
(moc	lified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
		•	•	•	•	•	•	•			•!		•	

Combi	loss ca	lculated	for ea	ich	month (61)m =	(60)) ÷ 36	65 × (41))m						
(61)m=	44.11	38.4	40.9	1	38.03	37.7	3	4.93	36.09	37.7	38.03	40.91	41.14	44.11		(61)
Total h	eat req	uired for	wate	' he	ating ca	lculate	d fo	r each	n month	(62)m =	= 0.85 × ((45)m -	+ (46)m +	(57)m +	(59)m + (61)m	
(62)m=	172.49	150.67	156.	77	139.04	134.62	1	18.56	113.59	126.63	128.03	145.79	155.62	168.44		(62)
Solar DH	I W input	calculated	using /	Appe	endix G or	Appendi	хH	(negativ	ve quantity	/) (enter 'C	' if no sola	r contrib	ution to wate	er heating)		
(add a	dditiona	al lines if	FGH	RS a	and/or V	VWHR	S ap	plies,	, see Ap	pendix (G)		_		-	
(63)m=	0	0	0		0	0		0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter								i		_		-	
(64)m=	172.49	150.67	156.	77	139.04	134.62	1	18.56	113.59	126.63	128.03	145.79	155.62	168.44		_
										Out	out from wa	ater hea	er (annual)₁	12	1710.26	(64)
Heat g	ains fro	m water	heati	ng,	kWh/mo	onth 0.2	25 ´	[0.85	× (45)m	+ (61)n	n] + 0.8 >	((46)r	n + (57)m	+ (59)m	<u>[</u>]	
(65)m=	53.71	46.93	48.7	5	43.09	41.65	3	6.54	34.79	38.99	39.43	45.1	48.35	52.37		(65)
inclu	de (57)	m in calc	culatio	on o	of (65)m	only if o	cylir	nder is	s in the o	dwelling	or hot w	ater is	from com	munity ł	neating	
5. Int	ernal g	ains (see	Tabl	e 5	and 5a)	:										
Metabo	olic gaiı	ns (Table	5), V	/att	S					-		-		-	_	
	Jan	Feb	Ma	ar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	112.41	112.41	112.4	11	112.41	112.41	1	12.41	112.41	112.41	112.41	112.41	112.41	112.41		(66)
Ligh <mark>tin</mark>	<mark>g g</mark> ains	(calculat	ted in	Ap	pendix l	_, equa	tion	L9 or	r L9a), <mark>a</mark>	lso see	Table 5					
(67)m=	41.9	37.22	30.2	7	22.92	17.13	1	4.46	15.63	20.31	27.26	3 <mark>4.62</mark>	40.4	43.07		(67)
App <mark>lia</mark> r	nces ga	ins (ca <mark>lc</mark>	ulated	d in	Append	lix L, ec	juat	tion L'	13 o <mark>r L1</mark>	3a), also	o see Ta	ble <mark>5</mark>				
(68)m=	<mark>24</mark> 3.84	246.37	23 <mark>9.</mark> 9	99	226.42	209.28	1	93.18	182.42	179.89	186.27	199.84	216.98	233.08		(68)
Coo <mark>kin</mark>	g gains	s (calcula	ted ir	Ap	<mark>pen</mark> dix	L, equa	tior	1 L15	or L15a)), also s	ee Table	5		-		
(69)m=	48.11	48.11	48.1	1	48.11	48.11	4	8.11	48.11	48.11	48.11	48.11	48.11	48.11		(69)
Pumps	and fa	ns gains	(Tab	e 5	a)										-	
(70)m=	3	3	3		3	3		3	3	3	3	3	3	3]	(70)
Losses	s e.g. e	vaporatio	n (ne	gati	ive valu	es) (Tal	ble	5)		•	•				-	
(71)m=	-74.94	-74.94	-74.9	94	-74.94	-74.94	-7	74.94	-74.94	-74.94	-74.94	-74.94	-74.94	-74.94]	(71)
Water	heating	gains (T	able	5)								-		-	-	
(72)m=	72.2	69.84	65.5	2	59.85	55.98	5	0.75	46.76	52.41	54.77	60.62	67.15	70.39]	(72)
Total i	nterna	gains =						(66)	m + (67)m	n + (68)m -	+ (69)m + ((70)m +	(71)m + (72)	m	-	
(73)m=	446.53	442.01	424.3	37	397.77	370.98	3	46.98	333.4	341.2	356.88	383.66	6 413.12	435.12]	(73)
6. Sol	ar gain	s:								-		-		-		
Solar g	ains are	calculated	using s	olar	flux from	Table 6a	and	associ	ated equa	tions to co	onvert to th	e applic	able orientat	ion.		
Orienta	ation:	Access F	actor		Area			Flu	X	-	g_		FF		Gains	
	-	l able 6d			m²			Tac	DIE 6a		able 6b		I able 6C		(VV)	_
Southea	ast <mark>0.9x</mark>	0.77		x	3.6	6	x	3	6.79	x	0.7	x	0.8	=	51.4	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	3.6	6	x	6	2.67	x	0.7	×	0.8	=	87.56	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	3.6	6	x	8	5.75	x	0.7	×	0.8	=	119.8	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	3.6	6	x	1(06.25	x	0.7	x	0.8	=	148.44	(77)
Southea	ast <mark>0.9x</mark>	0.77		x	3.6	6	x	1'	19.01	x	0.7	x	0.8	=	166.27	(77)

Southea	ast <mark>0.9x</mark>	0.77	×	· [3.6	x	1	18.15	x	0.7	x	0.8	=	165.07	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	ן י	3.6	x	1	13.91	x	0.7	x	0.8	=	159.14	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	ן י	3.6	x	1	04.39	x	0.7	x	0.8	=	145.84	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	Ē	3.6	x	9	2.85	x	0.7	x	0.8	=	129.72	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	ן י	3.6] x	6	9.27	x	0.7	x	0.8	=	96.77	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	Ē	3.6	×	4	4.07	x	0.7	x	0.8	=	61.57	(77)
Southea	ast <mark>0.9x</mark>	0.77	×	Ē	3.6	x	3	31.49	x	0.7	x	0.8	=	43.99	(77)
Southw	est <mark>0.9x</mark>	0.77	×	Ē	1.4	x	3	86.79	1	0.7	x	0.8	=	19.99	(79)
Southw	est <mark>0.9x</mark>	0.77	×	[1.4	x	6	62.67]	0.7	x	0.8	=	34.05	(79)
Southw	est <mark>0.9x</mark>	0.77	×	: [1.4	x	8	35.75]	0.7	x	0.8	=	46.59	(79)
Southw	est <mark>0.9x</mark>	0.77	×	[1.4	x	1	06.25]	0.7	x	0.8	=	57.73	(79)
Southw	est <mark>0.9x</mark>	0.77	×	: [1.4	x	1	19.01]	0.7	x	0.8	=	64.66	(79)
Southw	est <mark>0.9x</mark>	0.77	×	· [1.4	x	1	18.15]	0.7	x	0.8	=	64.19	(79)
Southw	est <mark>0.9x</mark>	0.77	×	: [1.4	x	1	13.91]	0.7	x	0.8	=	61.89	(79)
Southw	est <mark>0.9x</mark>	0.77	×	: [1.4	x	1	04.39]	0.7	x	0.8	=	56.72	(79)
Southw	est <mark>0.9x</mark>	0.77	×	[1.4	x	9	92.85]	0.7	x	0.8	=	50.45	(79)
Southw	est <mark>0.9x</mark>	0.77	×	- [1.4	x	6	9.27]	0.7	x	0.8	=	37.63	(79)
Southw	est _{0.9x}	0.77	×		1.4	X	4	4.07		0.7	x	0.8	=	23.94	(79)
Southw	est <mark>0.9x</mark>	0.77	×	[1.4	x	3	31.49]	0.7	x	0.8	-	17.11	(79)
Sola <mark>r g</mark>	<mark>jain</mark> s in	watts, <mark>ca</mark>	lculate	d f	for each mor	ith	, 		(83)m	n = Sum(74)m	(82)m		_	-	
(83)m=	71.39	121.61	166.39		206.17 230.9	3 2	29.26	221.03	202	.56 180.17	134.4	1 85.51	61.1		(83)
l otal g	ains – i	nternal al	nd sola	ir ((84)m = (73)	n + (83)m	, watts							(0.4)
(84)m=	517.92	563.63	590.77		603.94 601.9		076.24	554.43	543	.76 537.05	518.0	498.63	496.22		(84)
7. Me	an inter	nal temp	erature	e (ł	heating seas	on)									
Temp	erature	during he	eating	pe	riods in the I	iving	area	from Tab	ole 9	, Th1 (°C)				21	(85)
Utilisa	ation fac	tor for ga	ins for	liv	/ing area, h1	,m (s	see Ta	ible 9a)	·		-			7	
	Jan	Feb	Mar		Apr Ma	y	Jun	Jul	A	ug Sep	Oct	Nov	Dec	-	
(86)m=	0.99	0.98	0.98		0.95 0.91		0.8	0.65	0.6	68 0.85	0.95	0.98	0.99		(86)
Mean	interna	l tempera	ature in	liv	ving area T1	(follo	ow ste	ps 3 to 7	7 in T	able 9c)				_	
(87)m=	19.68	19.8	20.01		20.3 20.5	7	20.79	20.89	20.	88 20.73	20.39	20	19.68		(87)
Temp	erature	during he	eating	pe	riods in rest	of dv	velling	from Ta	able 9	9, Th2 (°C)					
(88)m=	19.53	19.54	19.54		19.58 19.5	3	19.61	19.61	19.	61 19.6	19.58	19.57	19.56		(88)
Utilisa	ation fac	tor for ga	ins for	re	est of dwellin	g, h2	.m (se	e Table	9a)			-	-	-	
(89)m=	0.99	0.98	0.97	Т	0.93 0.86		0.69	0.47	0.5	61 0.77	0.93	0.98	0.99]	(89)
Mean	interna	l tempera	ature in	th	ne rest of dw	ellinc	1 T2 (f	n Now ste	ens 3	to 7 in Tab	le 9c)		<u>.</u>	_	
(90)m=	17.83	18.01	18.32	T	18.75 19.12	2	, 1 <u>2 (1</u> 19.41	19.49	19.	49 19.34	18.89	18.33	17.85]	(90)
		II		_	I			!	I	I	fLA = Liv	/ing area ÷ (4) =	0.23	(91)
Maar	intorna	Itomnore	turo /	0 r	the whole d		(a) - 4	ΙΛ Τ 4	. /4	fl A \ T O				L	
	18 25	1842	18 7	T			19) = 1 19 73		+ (1	- ILA) × 12	10.22	18.71	18.26	1	(92)
(52)11-	10.20	10.72	10.7		13.4	<u>́ </u>		1.0.01	L ' ^{3.}		1 10.20		10.20		(52)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.98 0.97 0.96 0.93 0.86 0.7 0.5 0.54 0.77 0.92 0.97 0.98 Utilisation factor for gains, hm: (94)m= 0.98 0.97 0.96 0.93 0.86 0.7 0.5 0.54 0.77 0.92 0.97 0.98 Useful gains, hmGm, W = (94)m x (84)m (95)m= 548.9 566.57 559.36 514.76 403.72 278.09 291.05 413.68 478.13 484.07 488.45 Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m= 1344.84	(94) (95) (96) (97)
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.98 0.97 0.96 0.93 0.86 0.7 0.5 0.54 0.77 0.92 0.97 0.98 Useful gains, hmGm , W = (94)m x (84)m (95)m= 508.5 548.9 566.57 559.36 514.76 403.72 278.09 291.05 413.68 478.13 484.07 488.45 Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m Total per year (kWh/year) = Sum(98)_{1.48.42} = 3291.21 </td <td>(94) (95) (96) (97)</td>	(94) (95) (96) (97)
JanFebMarAprMayJunJulAugSepOctNovDecUtilisation factor for gains, hm: $(94)m=$ 0.98 0.97 0.96 0.93 0.86 0.7 0.5 0.54 0.77 0.92 0.97 0.98 Useful gains, hmGm , W = (94)m x (84)m $(95)m=$ 508.5 548.9 566.57 559.36 514.76 403.72 278.09 291.05 413.68 478.13 484.07 488.45 Monthly average external temperature from Table 8 $(96)m=$ 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m - (96)m] $(97)m=$ 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ $(98)m=$ 622.24 502.06 443.86 279.73 150.05 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98)h_{1.58.12} = 3291.21 Space heating requirement in kWh/m²/year58.52	(94) (95) (96) (97)
Utilisation factor for gains, hm: $(94)m = 0.98 0.97 0.96 0.93 0.86 0.7 0.5 0.54 0.77 0.92 0.97 0.98$ Useful gains, hmGm, W = (94)m x (84)m $(95)m = 508.5 548.9 566.57 559.36 514.76 403.72 278.09 291.05 413.68 478.13 484.07 488.45$ Monthly average external temperature from Table 8 $(96)m = 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2$ Heat loss rate for mean internal temperature, Lm, W = [(39)m x [(93)m- (96)m] $(97)m = 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6$ Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ $(98)m = 622.24 502.06 443.86 279.73 150.05 0 0 0 0 0 237.91 431.77 623.59$ Total per year (kWh/year) = Sum(98) _{1.58-12} = 3291.21 Space heating requirement in kWh/m²/year Sesse	(94) (95) (96) (97)
	(94) (95) (96) (97)
Useful gains, hmGm , W = (94)m x (84)m (95)m= 508.5 548.9 566.57 559.36 514.76 403.72 278.09 291.05 413.68 478.13 484.07 488.45 Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m] (97)m= 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)m= 622.24 502.06 443.86 279.73 150.05 0 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98) _{150.12} = 3291.21 Space heating requirement in kWh/m ² /year 58.52	(95) (96) (97)
$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(95) (96) (97)
Monthly average external temperature from Table 8 $(96)m=$ 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] $(97)m=$ 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m $(98)m=$ 622.24 502.06 443.86 279.73 150.05 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ = 3291.21 Space heating requirement in kWh/m²/year Stating requirement in kWh/m²/year Stating requirement in kWh/m²/year	(96) (97)
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 622.24 502.06 443.86 279.73 150.05 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ 3291.21 Space heating requirement in kWh/m²/year Stating requirement in kWh/m²/year Stating requirement in kWh/m²/year	(96) (97)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1344.84 1296.01 1163.16 947.88 716.45 462.95 289.7 306.24 506.53 797.9 1083.75 1326.6 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 622.24 502.06 443.86 279.73 150.05 0 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98)_{15,912} = 3291.21 Space heating requirement in kWh/m ² /year 58.52	(97)
$\begin{array}{c} (97)\text{m} = & 1344.84 & 1296.01 & 1163.16 & 947.88 & 716.45 & 462.95 & 289.7 & 306.24 & 506.53 & 797.9 & 1083.75 & 1326.6 \\ \hline \text{Space heating requirement for each month, kWh/month} = 0.024 x [(97)\text{m} - (95)\text{m}] x (41)\text{m} \\ \hline (98)\text{m} = & 622.24 & 502.06 & 443.86 & 279.73 & 150.05 & 0 & 0 & 0 & 0 & 237.91 & 431.77 & 623.59 \\ \hline & & & & & & & & & & & & & & & & & &$	(97)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 622.24 502.06 443.86 279.73 150.05 0 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ = 3291.21 Space heating requirement in kWh/m ² /year 58.52 9a Energy requirements – Individual heating systems including micro-CHP)	1
(98)m= 622.24 502.06 443.86 279.73 150.05 0 0 0 0 237.91 431.77 623.59 Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ Space heating requirement in kWh/m²/year 58.52 9a. Energy requirements – Individual beating systems including micro-CHP)	
Total per year (kWh/year) = Sum(98)15.912 = 3291.21 Space heating requirement in kWh/m²/year 58.52 9a. Energy requirements - Individual heating systems including micro-CHP)	
Space heating requirement in kWh/m²/year 58.52 9a. Energy requirements – Individual heating systems including micro-CHP)	(98)
9a Energy requirements – Individual heating systems including micro-CHP)	(99)
our Energy requirementer internation of the international of the interna	
Space heating:	1
Fraction of space heat from secondary/supplementary system	(201)
Fraction of space heat from main system(s)(202) = 1 - (201) =1	(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1	(204)
Efficiency of main space heating system 1 92.8	(206)
Efficiency of secondary/supplementary heating system, %	(208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/vea	ı r
Space heating requirement (calculated above)	
622.24 502.06 443.86 279.73 150.05 0 0 0 237.91 431.77 623.59	
$(211)m = \{[(98)m \times (204)]\} \times 100 \div (206)$	(211)
670.51 541.01 478.3 301.44 161.7 0 0 0 0 256.37 465.27 671.97	、
Total (kWh/year) =Sum(211), 510, 17 3546.56	(211)
Space beating fuel (secondary) k/Wh/month]`´´
$= \{[(98)m \times (201)]\} \times 100 \div (208)$	
(215)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total (kWh/year) =Sum(215)_{1,510,12} = 0	(215)
Weter booting].
output from water heater (calculated above)	
Water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44	
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater	(216)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65)(216) (217)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater (217)m= 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65 Fuel for water heating, kWh/month)(216) (217)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater (217)m= 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65 Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m 64)m x 100 ÷ (217)m)(216) (217)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater (217)m= 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65 Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m (217)m 136.04 151.65 153.33 163.75 172.65 185.81	(216) (217)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater (217)m= 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65 Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m (219)m = 190.37 166.54 173.84 155.37 152.7 141.99 136.04 151.65 153.33 163.75 172.65 185.81 Total = Sum(219a) ₁₋₁₂ = 1944.04)(216) (217) (219)
water neating Output from water heater (calculated above) 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Efficiency of water heater 83.5 (217)m= 90.61 90.47 90.18 89.49 88.16 83.5 83.5 83.5 89.03 90.14 90.65 Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m (219)m = 190.37 166.54 173.84 155.37 152.7 141.99 136.04 151.65 153.33 163.75 172.65 185.81 Total = Sum(219a) ₁₁₂ = 1944.04 kWh/year)(216) (217))(219)

Water heating fuel used				1944.04	1
Electricity for pumps, fans and electric keep-hot					J
central heating pump:		Γ	30]	(230c)
Total electricity for the above, kWh/year	sum of (23	L 30a)(230g) =		30	(231)
Electricity for lighting				296.02	(232)
Electricity generated by PVs				-619.8	(233)
10a. Fuel costs - individual heating systems:					-1
	Fuel kWh/year	Fuel Price (Table 12)		Fuel Cost £/year	
Space heating - main system 1	(211) x	3.48 ×	0.01 =	123.42	(240)
Space heating - main system 2	(213) x	0 ×	0.01 =	0	(241)
Space heating - secondary	(215) x	13.19 ×	0.01 =	0	(242)
Water heating cost (other fuel)	(219)	3.48 ×	0.01 =	67.65	(247)
Pumps, fans and electric keep-hot	(231)	13.19 ×	0.01 =	3.96	(249)
(if off-peak tariff, list each of (230a) to (230g) separ Energy for lighting	rately as applicable and a (232)	pply fuel price accord	ling to ⁻ 0.01 =	Table 12a 39.04	(250)
Additional standing charges (Table 12)	one of (233) to (235) x)	13.19 ×	0.01 =	-81.75	(251)
Appendix Q items: repeat lines (253) and (254) asTotal energy cost(245)(247)	needed) + (250)(254) =			272.32	(255)
11a. SAP rating - Individual heating systems					
Energy cost deflator (Table 12)				0.42	(256)
Energy cost factor (ECF) [(255) x (256	6)] ÷ [(4) + 45.0] =			1.13	(257)
SAP rating (Section 12)				84.24	(258)
12a. CO2 emissions – Individual heating systems	Including micro-CHP				
	Energy kWh/year	Emission fact kg CO2/kWh	or	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	766.06	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	419.91	(264)
Space and water heating	(261) + (262) + (263) + (264) =	=		1185.97	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	15.57	(267)
Electricity for lighting	(232) x	0.519	=	153.63	(268)
Energy saving/generation technologies Item 1		0.519	=	-321.68	(269)
Total CO2, kg/year	SI	um of (265)(271) =		1033.5] (272)

CO2 emissions per m ²	(272) ÷ (4) =	18.38 (273)
EI rating (section 14)			86 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	4326.8 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	2371.73 (264)
Space and water heating	(261) + (262) + (263) + (264)	=	6698.53 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	92.1 (267)
Electricity for lighting	(232) x	0 =	908.78 (268)
Energy saving/generation technologies Item 1		3.07 =	-1902.79 (269)
'Total Primary Energy	٤	sum of (265)(271) =	5796.61 (272)
Primary energy kWh/m²/year	(<u>2</u> 72) ÷ (4) =	103.07 (273)

User Details:									
Assessor Name: Software Name:	Stroma FSAP 2012	2	Strom Softwa	a Num are Ver	ber: rsion:		Versio	on: 1.0.4.6	
		Proper	ty Address:	: Plot 10					
Address :									
1. Overall dwelling dimer	nsions:								
One word flags a		A	rea(m²)		Av. Hei	ight(m)		Volume(m ³)
Ground floor			35.53	(1a) x	2.	.44	(2a) =	86.66	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e))+(1n)	35.53	(4)					_
Dwelling volume				(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	86.66	(5)
2. Ventilation rate:					_				
	main se heating h	condary eating	other		total			m ³ per hou	r
Number of chimneys	0 +	0 +	0	=	0	X	40 =	0	(6a)
Number of open flues	0 +	0 +	0] = [0	x	20 =	0	(6b)
Number of intermittent far	าร			- E	2	x	10 =	20	(7a)
Number of passive vents				Γ	0	x .	10 =	0	(7b)
Number of flueless gas fir	res			Γ	0	X 4	40 =	0	(7c)
							Air ch	anges per ho	ur
Infiltration due to chimney	vs, flues and fans = (6a	i)+(6b)+(7a)+(7b)+(7c) =		20		÷ (5) =	0.23	(8)
If a pressurisation test has be	een carried out or is intende	d, proceed to (1)	7), otherwise (continue fr	om (9) to (16)			
Additional infiltration	le dweiling (ns)					[(9)	-11x0.1 =	0	-(9)
Structural infiltration: 0.	25 for steel or timber f	rame or 0.35	for masonr	y constr	uction	(0)		0	-(11)
if both types of wall are pre	esent, use the value corresp	oonding to the gr	eater wall are	a (after					
deducting areas of opening If suspended wooden fl	gs); if equal user 0.35	ad) or 0 1 (se	alad) alsa	enter ()				0	
If no draught lobby, ent	er 0.05. else enter 0							0	= (12) (13)
Percentage of windows	and doors draught str	ipped						0	(14)
Window infiltration	0		0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value, o	q50, expressed in cubi	c metres per	hour per se	quare m	etre of e	nvelope	area	10	(17)
If based on air permeabili	ty value, then (18) = [(17	") ÷ 20]+(8), othe	erwise (18) = (16)				0.73	(18)
Air permeability value applies	s if a pressurisation test has	been done or a	degree air pe	rmeability	is being us	sed			-
Number of sides sheltered	d		(20) = 1 -	[0.075 x (1	9)1 =			2	(19)
Infiltration rate incorporati	ng shelter factor		(21) = (18)	(20) = (20) =	•/]			0.85	$ = \begin{bmatrix} 20 \\ -21 \end{bmatrix} $
Infiltration rate modified for	or monthly wind speed		() (10)) // (=0)				0.62	(21)
	Mar Apr May	.lun .lu	Aug	Sen	Oct	Nov	Dec		
Monthly average wind an	and from Table 7		, tug	000	000	1101	200		
(22)m = 51 5 1		38 38	37	4	4.3	4.5	47		
					L		L	l	
Wind Factor $(22a)m = (22a)m $?)m ÷ 4							1	
(22a)m= 1.27 1.25 1	1.23 1.1 1.08	0.95 0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allow	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m	-	-	-	_	
.	0.79	0.78	0.76	0.68	0.67	0.59	0.59	0.57	0.62	0.67	0.7	0.73		
Calcul If ma	ate etter	ctive air al ventila	change	rate for t	he appli	cable ca	se						0	(220)
lf exh	aust air h	eat pump i	using App	endix N (2	(23a) = (23a	i) x Fmv (e	equation (I	N5)) other	wise (23h) = (23a)			0	
lf bal	anced with	heat reco	overv: effic	iencv in %	allowing f	or in-use f	actor (fron	n Table 4h) =) (200)			0	
a) If	halance	d mech	anical ve	ntilation	with he	at recove	orv (MV/	HR) (24a))m – (21	2b)m + (23h) v ['	l – (23c)	<u> </u>	(230)
(24a)m=				0	0	0			0			0]	(24a)
b) If	halance	d mech:	l anical ve	ntilation	without	heat rec	noverv (N	///) (24h)m = (22	2h)m + ('	23h)		1	· · ·
(24b)m=	0			0	0				0		0	0	1	(24b)
c) If	whole h		tract ver	L	l		ventilatio	n from c	utside				l	
0) 11	if (22b)n	n < 0.5 ×	(23b), t	hen (24	c) = (23b); other	vise (24	c) = (22b	o) m + 0.	5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input	ventilatio	on from l	oft				1	
	if (22b)n	n = 1, th	en (24d)	m = (22	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]	-			
(24d)m=	0.81	0.8	0.79	0.73	0.72	0.67	0.67	0.67	0.69	0.72	0.74	0.77		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.81	0.8	0.79	0.73	0.72	0.67	0.67	0.67	0.69	0.72	0.74	0.77		(25)
3. He	at losse	s and he	eat loss	oaramete	er:									
ELEN		Gros	SS	Openin	gs	Net Ar	ea	U-valu	Je	AXU		k-value	e	AXk
		area	(m²)	m	12	A ,r	m²	W/m2	К	(W/I	K)	kJ/m²·ł	ĸ	kJ/K
Doors						2	x	1.5	=	3				(26)
Windo	ws					4.7	x1	/[1/(1.6)+	0.04] =	7.07				(27)
Walls ⁻	Type1	12.8	9	4.7		8.19	x	0.3	=	2.46				(29)
Walls ⁻	Type2	4.4	6	2		2.46	x	0.27	=	0.66				(29)
Roof		4.3	3	0		4.33	x	0.3	=	1.3				(30)
Total a	area of e	lements	, m²			21.68	3							(31)
* for win	dows and	roof wind	ows, use e	effective wi	ndow U-va	alue calcul	ated using	g formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	n 3.2	
** inclua	le the area	as on both	sides of in	nternal wal	ls and pari	titions		(26) (20)	(22) -					(ee)
Fabric	neat los	SS, VV/K :	= 5 (A X	0)				(20)(30)	((00)	(00) . (0)		(00-)	14.48	(33)
		Cm = 5((A X K)	0		. I. I/m 21/			((28)	.(30) + (32	2) + (32a).	(32e) =	0	(34)
I nerm	ai mass	parame		P = Cm +	+ IFA) Ir	i KJ/M²K		en al a du a du a	Indica		: Medium	bla 1f	250	(35)
can be u	used inste	ad of a de	tailed calc	ulation.	construct	on are not	t known pi	ecisely life	Indicative	values of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix l	<						3.25	(36)
if details	of therma	al bridging	are not kr	own (36) =	= 0.15 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			17.73	(37)
Ventila	ation hea	at loss ca	alculated	monthly	y				(38)m	= 0.33 × (25)m x (5)		1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	23.27	22.92	22.58	20.97	20.67	19.28	19.28	19.02	19.82	20.67	21.28	21.92		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	41	40.65	40.31	38.71	38.41	37.01	37.01	36.75	37.55	38.41	39.01	39.65		
									,	Average =	Sum(39)1	12 /12=	38.71	(39)

Heat lo	ss para	ameter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	1.15	1.14	1.13	1.09	1.08	1.04	1.04	1.03	1.06	1.08	1.1	1.12		
Numbe	or of day	rs in mo	nth (Tab	le 1a)	1			ļ	,	Average =	Sum(40)1	.12 /12=	1.09	(40)
	.lan	Feb	Mar	Apr	May	Jun	.lul	Aug	Sen	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(,														
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF, if TF,	ed occu A > 13.9 A £ 13.9	upancy, 9, N = 1 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13	1 .9)	29]	(42)
Annual Reduce not more	averag the annua that 125	je hot wa al average i litres per	ater usag hot water person pe	ge in litre usage by r day (all w	es per da 5% if the c vater use, l	ay Vd,av Iwelling is hot and co	erage = designed ld)	(25 x N) to achieve	+ 36 a water us	se target o	64 f	.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)					1	
(44)m=	71.41	68.81	66.21	63.62	61.02	58.42	58.42	61.02	63.62	66.21	68.81	71.41		
_				!					-	Total = Su	m(44) ₁₁₂ =		778.98	(44)
Energy o	content of	hot water	used - ca	culated me	onthly $= 4$.	190 x Vd,r	n x nm x L	OTm / 3600) kWh/mor	nth (<mark>see Ta</mark>	ables 1b, 1	c, 1d)		
(45)m=	1 <mark>0</mark> 5.89	92.62	95.57	83.32	79.95	6 <mark>8.99</mark>	63.93	73.36	74.24	8 <mark>6.5</mark> 1	94.44	102.55		_
										Total = Su	m(45) ₁₁₂ =		1021.36	(45)
It instant	aneous w	vater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46)) to (61)					
(46)m=	15.88	13.89	14.34	12.5	11.99	10.35	9.59	11	11.14	12.98	14.17	15.38		(46)
Storage	e volum	luss. ne (litres)	Vincludir	ng any se	olar or M	WHRS	storage	within sa	ame ves	sel		<u>ר</u>		(47)
lf comr	nunity k	peating a	and no ts	ank in dw		nter 110	litres in	(47)			Ľ`	5		(47)
Otherw	vise if no	o stored	hot wate	er (this in	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
Water	storage	loss:		,					,	,				
a) If m	anufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				(D		(48)
Tempe	rature f	actor fro	m Table	2b							(C		(49)
Energy	lost fro	om water	r storage	, kWh/ye	ear			(48) x (49)) =		()		(50)
b) If m	anufact	turer's d	eclared of	cylinder	loss fact	or is not	known:						1	
Hot wa	ter stor	age loss	s factor fi	rom Tabl	le 2 (kW	h/litre/da	ay)				(0		(51)
Volume	e factor	from Ta	ble 2a	011 4.5								<u>ר</u>	1	(52)
Tempe	rature f	actor fro	m Table	2b)		(53)
Enerav	lost fro	om water	r storage	kWh/ve	ear			(47) x (51)) x (52) x (53) =		- 1]	(54)
Enter	(50) or ((54) in (5	55)	,, ·	Jul				((- / (,))		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m			1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	r contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (L H11)] ÷ (5	i0), else (5	7)m = (56)	m where (H11) is fro	m Append	l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Priman	v circuit	· loss (ar	nual) fro	om Table	• 3		•	•		•)		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m				I	
(moc	lified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
•													-	

Combi	loss ca	alculated	for eac	:h n	nonth (61)m =	(60)) ÷ 36	65 × (41))m						
(61)m=	36.39	31.67	33.74	Τ	31.37	31.1	2	28.81	29.77	31.1	31.37	33.74	33.93	36.39]	(61)
Total h	eat rec	uired for	water	hea	ating ca	alculated	d fo	r eacl	h month	(62)m =	= 0.85 ×	(45)m ·	+ (46)m +	(57)m +	- · (59)m + (61)m	
(62)m=	142.28	124.29	129.31		114.69	111.04	9	97.8	93.7	104.45	105.61	120.20	6 128.37	138.94]	(62)
Solar DI	HW input	calculated	using Ap	per	ndix G or	Appendix	(Н)	(negati	ve quantity	v) (enter '0)' if no sola	r contrib	ution to wate	er heating))	
(add a	dditiona	al lines if	FGHR	Sa	nd/or V	VWHRS	s ap	oplies	, see Ap	pendix	G)				_	
(63)m=	0	0	0		0	0		0	0	0	0	0	0	0		(63)
Output	from w	vater hea	ter												_	
(64)m=	142.28	124.29	129.31		114.69	111.04	9	97.8	93.7	104.45	105.61	120.20	6 128.37	138.94		-
										Out	put from w	ater hea	ter (annual)	12	1410.75	(64)
Heat g	ains fro	m water	heating	g, k	Wh/mo	onth 0.2	5 ´	[0.85	× (45)m	+ (61)r	n] + 0.8 x	x [(46)r	n + (57)m	+ (59)m	<u>]</u>	
(65)m=	44.31	38.71	40.21		35.55	34.36	3	80.14	28.7	32.17	32.53	37.2	39.88	43.2		(65)
inclu	ide (57))m in calo	culatior	n of	(65)m	only if c	ylir	nder i	s in the c	dwelling	or hot w	ater is	from com	munity I	neating	
5. Int	ternal g	ains (see	e Table	5 a	and 5a)):										
Metab	olic gai	ns (Table	e 5), Wa	atts	;		-		-		-	-		_	_	
	Jan	Feb	Mar		Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	77.6	77.6	77.6		77.6	77.6		77.6	77.6	77.6	77.6	77.6	77.6	77.6		(66)
Ligh <mark>tin</mark>	g gains	(calcula	ted in A	۹ ۹	endix l	_, equat	ion	L9 o	r L9a), <mark>a</mark>	lso see	Table 5					
(67)m=	25.99	23.08	18.77		14. <mark>2</mark> 1	10.62	8	8.97	9.69	12.6	16.91	21.47	25.05	26.71		(67)
App <mark>lia</mark>	nces ga	ains (ca <mark>lc</mark>	ulated	in /	Append	lix L, eq	uat	tion L	13 o <mark>r L</mark> 1	3a), also	o see Ta	ble 5				
(68)m=	1 <mark>6</mark> 4.89	166.6	16 <mark>2.29</mark>	, .	153.11	141.52	1:	30.63	123.36	121.65	125.96	13 <mark>5.1</mark> 4	4 146.73	157.62]	(68)
Coo <mark>kir</mark>	ng gains	s (calcula	ated in A	App	<mark>ben</mark> dix	L, equa	tior	L15 ו	or L15a)	, also s	ee Table	5				
(69)m=	44.05	44.05	44.05		44.05	44.05	4	4.05	44.05	44.05	44.05	44.05	44.05	44.05		(69)
Pumps	s and fa	ins gains	(Table	5a	ı)										_	
(70)m=	3	3	3		3	3		3	3	3	3	3	3	3]	(70)
Losses	s e.g. e	vaporatio	on (neg	ativ	/e valu	es) (Tab	ble	5)				-			-	
(71)m=	-51.73	-51.73	-51.73		-51.73	-51.73	-{	51.73	-51.73	-51.73	-51.73	-51.73	3 -51.73	-51.73]	(71)
Water	heating	gains (1	able 5)					-			-		-	-	
(72)m=	59.55	57.61	54.05	Τ	49.37	46.18	4	1.86	38.57	43.23	45.18	50	55.39	58.06]	(72)
Total i	nterna	l gains =						(66)	m + (67)m	ı + (68)m	+ (69)m +	(70)m +	(71)m + (72))m	-	
(73)m=	323.35	320.21	308.03	; ;	289.61	271.24	2	54.38	244.54	250.39	260.96	279.52	2 300.09	315.3]	(73)
6. So	lar gain	IS:												-		
Solar g	ains are	calculated	using so	lar f	lux from	Table 6a	and	assoc	iated equa	tions to c	onvert to th	ne applic	able orientat	tion.		
Orienta	ation:	Access F	actor		Area			Flu	X No Go	-	g_ Tabla 6b		FF Tabla 6a		Gains	
	1			-	111-				Jie da			_			(VV)	-
Northea	ast <mark>0.9x</mark>	0.77		×Ĺ	4.	7	x	1	1.28	×	0.7	×	0.8	=	20.58	(75)
Northea	ast 0.9x	0.77		׼	4.	7	x	2	2.97	×	0.7	×	0.8	=	41.89	(75)
Northea	ast <mark>0.9x</mark>	0.77		×Ĺ	4.	7	x	4	1.38	×	0.7	×	0.8	=	75.47	(75)
Northea	ast <mark>0.9x</mark>	0.77		×	4.	7	x	6	57.96	x	0.7	x	0.8	=	123.95	(75)
Northea	ast <mark>0.9x</mark>	0.77]	×「	4.	7	x	9	1.35	x	0.7	x	0.8	=	166.61	(75)

Northea	ast <mark>0.9</mark> x	0.77		x [4.7	7	x	9	97.38	x		0.7	x	0.8	=	177.63	(75)
Northea	ast <mark>0.9x</mark>	0.77		x [4.7	7	x		91.1	x		0.7		0.8	=	166.17	(75)
Northea	ast <mark>0.9</mark> x	0.77		x [4.7	7	x	7	72.63	x		0.7		0.8	=	132.47	(75)
Northea	ast <mark>0.9x</mark>	0.77		× [4.7	7	x	5	50.42	x		0.7		0.8	=	91.97	(75)
Northea	ast <mark>0.9x</mark>	0.77		x [4.7	7	x	2	28.07	x		0.7	- ×	0.8	=	51.19	(75)
Northea	ast <mark>0.9x</mark>	0.77		x [4.7	7	x		14.2	x		0.7	×	0.8	=	25.89	(75)
Northea	ast 0.9x	0.77		x [4.7	7	x		9.21	x		0.7		0.8	= =	16.81	(75)
	L			L						4						L	
Solar g	gains in	watts, ca	alculate	ed f	for each	n month	า			(83)m	ı = Sı	um(74)m .	(82)m				
(83)m=	20.58	41.89	75.47		123.95	166.61	1	77.63	166.17	132	.47	91.97	51.19	25.89	16.81]	(83)
Total g	gains – i	nternal a	ind sola	ar ((84)m =	: (73)m	+ (83)m	, watts							_	
(84)m=	343.93	362.1	383.5		413.56	437.86	4	32.01	410.71	382	.86	352.93	330.72	325.99	332.11		(84)
7. Me	ean inter	rnal temp	eratur	e (l	heating	seasor	ר)										
Temp	perature	during h	eating	ре	eriods in	the liv	ing	area	from Tab	ole 9	, Th	1 (°C)				21	(85)
Utilisa	ation fac	ctor for g	ains fo	r liv	ving are	a, h1,n	n (s	ee Ta	ble 9a)			. ,					
	Jan	Feb	Mar	Τ	Apr	May	Ť	Jun	Jul	A	ug	Sep	Oct	Nov	Dec]	
(86)m=	0.98	0.98	0.96	╈	0.89	0.74		0.54	0.39	0.4	14	0.69	0.91	0.97	0.99		(86)
Moon		tompor	atura ir		ving are	oo T1 /f		w eto	$r \sim 3 to 7$	I 7 in T						1	
(87)m=	20.26	20.35	20.51	T	20.75	20.89		0.94	20.95	20.	95	20.92	20.75	20.5	20.27	1	(87)
-				-					/			2.00				J	
l emp		during h	leating	pe T	eriods in	rest of			from Ta		9, Ir 05	12 (°C)	20.02	20	10.00	1	(88)
(00)11=	19.90	19.90	19.97	_	20.01	20.02		20.05	20.05	20.	05	20.04	20.02	20	19.99	J	(00)
Utilisa	ation fac	ctor for g	ains fo	r re	est of d	welling,	h2	,m (se	e Table	9a)				_	1	,	()
(89)m=	0.98	0.97	0.94		0.86	0.69		0.46	0.31	0.3	35	0.61	0.88	0.96	0.98		(89)
Me <mark>ar</mark>	interna	l temper	ature i	n th	ne r <mark>est</mark>	of dwel	ling	T2 (f	ollow ste	eps 3	to 7	7 in Tabl	e 9 <mark>c)</mark>	_			
(90)m=	18.99	19.13	19.37		19.71	19.89	1	9.97	19.98	19.	98	19.94	19.73	19.37	19.03		(90)
												f	LA = Liv	ing area ÷ (4	4) =	0.7	(91)
Mean	n interna	l temper	ature (for	the wh	ole dwe	ellin	g) = f	LA x T1	+ (1	– fL	A) x T2					
(92)m=	19.87	19.98	20.16	Т	20.43	20.58	2	20.65	20.65	20.	65	20.62	20.44	20.15	19.9]	(92)
Apply	/ adjustr	nent to tl	he mea	an i	internal	tempe	ratu	ire fro	m Table	4e,	whe	re appro	priate			3	
(93)m=	19.87	19.98	20.16		20.43	20.58	2	20.65	20.65	20.	65	20.62	20.44	20.15	19.9]	(93)
8. Sp	ace hea	ating requ	uireme	nt													
Set T	i to the	mean int	ernal te	em	peratur	e obtai	nec	l at st	ep 11 of	Tabl	e 9b	o, so tha	t Ti,m=	(76)m an	d re-cal	culate	
the u	tilisation	factor fo	or gains	s u	sing la	ble 9a							0.1	1		1	
	Jan	Feb	Mar		Apr	Мау		Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
Utilisa (04)m-		10^{10}	ains, n	m: T	0.97	0.72	Т	0.51	0.26		14	0.66	0.80	0.06	0.08	1	(94)
		bmGm	0.95		0.07 m x (9/	1)m		0.51	0.30	0.2	+ 1	0.00	0.89	0.90	0.90	J	(04)
(95)m-	1 yains,	351 25	362.69	94) 1	359.89	+)III 315.67	12	20 75	149.61	155	67	233.27	294 75	313 78	325.87	1	(95)
Montl	hlv aver	ade exte	rnal te	mn		from T	1 ⁻ abl	e 8	140.01		.07	200.27	204.70	010.70	020.07		()
(96)m=	4.3	4.9	6.5	T	8.9	11.7		14.6	16.6	16	.4	14.1	10.6	7.1	4.2	1	(96)
Heat	loss rat	e for mea	an inte	na.	l tempe	erature	Lm	1 . W =	I =[(39)m :	x [(9:	 3)m-	– (96)m	1	1	I	J	
(97)m=	638.57	612.95	550.85	5	446.33	341.14	2	23.79	150.01	156	.36	244.88	377.93	509.27	622.32]	(97)
Spac	e heatin	g require	ement	for	each m	nonth, k	Wr	/mon	th = 0.02	24 x	(97))m – (95)m] x (41)m	1	1	
(98)m=	224.66	175.87	139.99	,	62.24	18.95		0	0)	0	61.88	140.76	220.56]	
	-	-		-			-									-	

Total per year (kWh/year) = Sum(98) ₁₅	12 = 1044.9 (98)
Space heating requirement in kWh/m²/year	29.41 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system	0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$	1 (202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	1 (204)
Efficiency of main space heating system 1	92.8 (206)
Efficiency of secondary/supplementary heating system, %	0 (208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov E	ec kWh/year
Space heating requirement (calculated above)	2.56
$(2244)m = (1(00)m \times (204)1) \times (400 \times (200))$	(211)
(211) = {[(98) fit x (204)] } x 100 ÷ (206) 242.09 189.51 150.85 67.07 20.42 0 0 0 0 66.69 151.68 23	(211)
Total (kWh/year) =Sum(211) ₁₅₁₀₁₂ =	1125.97 (211)
Space heating fuel (secondary), kWh/month	
= {[(98)m x (201)] } x 100 ÷ (208)	
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0	0
Total (kWh/year) =Sum(215) _{15,1012} =	0 (215)
Water heating	
142.28 124.29 129.31 114.69 111.04 97.8 93.7 104.45 105.61 120.26 128.37 138	3.94
Efficiency of water heater	83.5 (216)
(217)m= 88.96 88.71 88.09 86.55 84.74 83.5 83.5 83.5 83.5 86.44 88.12 88	.97 (217)
Fuel for water heating, kWh/month	
$(219)m = (64)m \times 100 \div (217)m$ (219)m = 159.94 + 140.11 + 146.8 + 132.52 + 131.04 + 117.13 + 112.22 + 125.09 + 126.48 + 139.11 + 145.68 + 150	3.16
Total = Sum(219a), ₁₂ =	1632.28 (219)
Annual totals kWh/year	kWh/year
Space heating fuel used, main system 1	1125.97
Water heating fuel used	1632.28
Electricity for pumps, fans and electric keep-hot	
central heating pump:	30 (230c
Total electricity for the above kWh/year sum of (230a)(230g) =	(231)
	(232)
	183.57 (232)
Electricity generated by PVS	-391.65 (233)
10a. Fuel costs - individual heating systems:	
FuelFuel PricekWh/year(Table 12)	Fuel Cost £/year
Space heating - main system 1 (211) x 3.48 x 0.0)1 = 39.18 (240)

Space heating - main system 2	(213) x	0 × 0.01 =	= 0 (241)
Space heating - secondary	(215) x	13.19 × 0.01 =	= 0 (242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	= 56.8 (247)
Pumps, fans and electric keep-hot	(231)	13.19 × 0.01 =	= 3.96 (249)
(if off-peak tariff, list each of (230a) to (230g) Energy for lighting) separately as applicable an (232)	d apply fuel price according to 13.19 × 0.01 =	Table 12a 24.21 (250)
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 × 0.01 =	-51.66 (252)
Appendix Q items: repeat lines (253) and (25	54) as needed		
Total energy cost(245))(247) + (250)(254) =		192.5 (255)
11a. SAP rating - individual heating system	S		
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(25	5) x (256)] ÷ [(4) + 45.0] =		1 (257)
SAP rating (Section 12)			85.99 (258)
12a. CO2 emissions – Individual heating sy	stems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	243.21 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	352.57 (264)
Space and water heating	(261) + (262) + (263) + (2	64) =	5 <mark>95.78</mark> (265)
Electricity for pumps, fans and electric keep-	hot (231) x	0.519 =	15.57 (267)
Electricity for lighting	(232) x	0.519 =	95.27 (268)
Energy saving/generation technologies Item 1		0.519 =	-203.27 (269)
Total CO2, kg/year		sum of (265)(271) =	503.36 (272)
CO2 emissions per m ²		(272) ÷ (4) =	14.17 (273)
El rating (section 14)			92 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	1373.69 (261)
Space heating (secondary)	(215) x	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	1991.38 (264)
Space and water heating	(261) + (262) + (263) + (2	64) =	3365.07 (265)
Electricity for pumps, fans and electric keep-	hot (231) x	3.07 =	92.1 (267)

Electricity for lighting	(232)	x	[0	=	563.56	(268)
Energy saving/generation technologies			Г	0.07	л _	4000.00	(260)
			L	3.07		-1202.38	(269)
'Total Primary Energy			sum of ((265)(271) =		2818.35	(272)
Primary energy kWh/m²/year			(272) ÷	(4) =		79.32	(273)

APPENDIX C – SBEM RESULTS

XC_{@2}

307-309 Finchley Road

BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2013

Project name

Finchley Road_Lean

Date: Tue Aug 22 18:20:31 2017

Administrative information

Building Details

Address: Address 1, Address 2, City, Postcode

Certification tool

Calculation engine: SBEM Calculation engine version: v5.2.g.3 Interface to calculation engine: Virtual Environment Interface to calculation engine version: v7.0.6 BRUKL compliance check version: v5.2.g.3

Owner Details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details

Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building should not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	23.4
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	23.4
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	18
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	Ua-Limit	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.31	0.31	RM000001_W1
Floor	0.25	0.25	0.25	RM000001_F
Roof	0.25	-	-	"No heat loss roofs"
Windows***, roof windows, and rooflights	2.2	1.6	1.6	RM000001_W12_O0
Personnel doors	2.2	3.08	3.08	RM000006_W4_O0
Vehicle access & similar large doors	1.5	5 - 0	2 - 2	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"
U _{a-Limit} = Limiting area-weighted average U-values [M U _{a-Calc} = Calculated area-weighted average U-values	//(m²K)] s [W/(m²K))]	Ui-Calc = (

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	10

As built

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Main system

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HF	R efficiency
This system	4	6	-		-	
Standard value	2.5*	2.6	N/A	N/A	N/.	Ą
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syster	n	NO
* Standard shown is f for limiting standards	for all types >12 kW output	, except absorption and ga	s engine heat pumps. For t	ypes <=12 kW outpu	ut, re	fer to EN 14825

1- SYST0000-DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	Hot water provided by HVAC system	-1
Standard value	N/A	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
А	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

	Zonal extract system where the	e with grease filter
-		

Zone name		SFP [W/(I/s)]									UD officiency	
ID of system type	А	в	С	D	E	F	G	н	1		HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard	
B1 basement	-	-	-	0.8	-	-	-	-	-	0.7	0.5	
A2	7		-	0.8	-	-	-	-	-	0.7	0.5	
B1 Ground	-	-	-	0.8	-	-	-	-	-	0.7	0.5	

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
B1 basement	68	-	-	1105
A2	a n .	80	80	699
B1 Ground	68	-	-	675

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
B1 basement	NO (-94%)	NO

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
A2	NO (-41.7%)	NO
B1 Ground	NO (-60.7%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	NO
Is evidence of such assessment available as a separate submission?	NO
Are any such measures included in the proposed design?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional	%
Area [m ²]	244.3	244.3	20
External area [m ²]	363	363	
Weather	LON	LON	80
Infiltration [m ³ /hm ² @ 50Pa]	10	5	_
Average conductance [W/K]	166.49	212.19	
Average U-value [W/m ² K]	0.46	0.58	-
Alpha value* [%]	19.4	19.23	

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

Area	Building Type
	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
	C2 Residential Inst.: Hospitals and Care Homes
	C2 Residential Inst.: Residential schools
	C2 Residential Inst.: Universities and colleges
	C2A Secure Residential Inst.
	Residential spaces
	D1 Non-residential Inst.: Community/Day Centre
	D1 Non-residential Inst.: Libraries, Museums, and Galleries
	D1 Non-residential Inst.: Education
	D1 Non-residential Inst.: Primary Health Care Building
	D1 Non-residential Inst.: Crown and County Courts
	D2 General Assembly and Leisure, Night Clubs and Theatres
	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs

Others - Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	4.87	6.17
Cooling	6.07	11.24
Auxiliary	3.27	2.92
Lighting	20.57	24.79
Hot water	0.7	1.03
Equipment*	37.7	37.7
TOTAL**	35.47	46.15

* Energy used by equipment does not count towards the total for calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	158.35	199.73
Primary energy* [kWh/m ²]	106.18	138.15
Total emissions [kg/m ²]	18	23.4

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

ŀ	HVAC Systems Performance									
Sy	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[\$1	[ST] Split or multi-split system, [HS] Heat pump (electric): air source, [HFT] Electricity, [CFT] Electricity									
	Actual	65.3	93.1	4.9	6.1	3.3	3.73	4.26	4	6
	Notional	54	145.7	6.2	11.2	2.9	2.43	3.6		

Key to terms

Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Key Features

The BCO can give particular attention to items with specifications that are better than typically expected.

Building fabric

Element	U і-Тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.31	RM000001_W1
Floor	0.2	0.25	RM000001_F
Roof	0.15	e :	"No heat loss roofs"
Windows, roof windows, and rooflights	1.5	1.6	RM000001_W12_O0
Personnel doors	1.5	3.08	RM000006_W4_00
Vehicle access & similar large doors	1.5	(1 -1)	"No external vehicle access doors"
High usage entrance doors	1.5		"No external high usage entrance doors"
U _{I-Typ} = Typical individual element U-values [W/(m ² K)	1		U _{i-Min} = Minimum individual element U-values [W/(m ² K)]
* There might be more than one surface where the n	ninimum L	J-value oc	curs.

There might be more than one surface where the minimum U-value occurs. L

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	10

APPENDIX D – SURFACE WATER CALCULATIONS

		XC	72		17-18 Clerke	Haywards P	lace,			Job No. 8.996		
	Enormy Ltd			London ECIR 0EQ Tel: +44 (0)20 7700 1000 Email: mail@vco2enerry.com					Sheet no. 1 Date 22/08/17			
MaatanDualin	Project 207 20	0 Finables F								Bv	Checked	Reviewed
MasterDrain HY 9.36	^{Title} Surface	e Water Run	off							JC		
Data:-	_											
Location =	- Finchle	v Road			WRAP		=	2				
Long refer	ence =	0			Grid	refere	nce =	-				
M5-60 (mm)	= 2	1			SAAR	(mm/yr) = (500				
r	= 0	.45			Soil		=0	.30				
Hyd. area	=	7			Hyd.	zone	= 8	B 				
Hydrograph	1 = S [.]	ummer			Area	= Engl	and and	d Wales	3			
Site values	used in (design:-	0520 h	-	Cl ima	to aha	ngo fa	ator .	- 10%			
Pre-dev ar	e area	.0 = ed = 0	0528 h	la.		dev ar	nge Ia oa dra:	ined =	= 40% = 0 052	28 ha		
Imperm run	off fact	or = 98	88 88	a	Perm	runoff	facto	r e	= 0.052 = 20%	.0 11a		
Drea darrala												
Area to so	pment akawaya	= 0	0000 b	a	Area	to oth	er SIID		- 0 000)0 ha		
Perv. area	to SUDS	= 0.	00000 h	a	Pre-d	lev flo	w to di	rain =	= 0.000	1/s		
Post-devel	opment											
Area to so	akaways	= 0.	0000 h	a	Area	to oth	er SUD	5 =	= 0.000)0 ha		
Perv. area	to SUDS	= 0.	0000 h	a	Post-	dev fl	ow to a	irain =	= 0.00	l/s		
Calculations	:											
Revised Po Equiv. Pos Equiv. Pos Total Pre- Total Post 100 yr 6 h	ost-dev In st-dev Im st-dev Pe dev equi dev equi	mperm. ar perm. are rm. area v. area h iv. area intensit	rea = 0 a = 0 = 0 ha = 0 ha = 0 ry = 10	0.053 h 0.052 h 0.000 h 0.052 h 0.052 h 0.37mm/	a a a a hr							
Results:- Pre-dev pe	akflow r	unoff (1/	's) <mark>(m³/</mark>	s)	260	400	600	M	005	-		
R.P. 1 ⁻	10 2 12	5 7 8	4 6	240	360	480	600 1 4	Max 19.2	N/A	fina.	LF	1. 1
30 4	46.9 29	9 18.2	10.8	6.2	4.5	3.6	3.0	46.9	N/A	46.9	3	30
100	61.1 39	.3 24.0	14.2	8.1	5.8	4.6	3.9	61.1	N/A	61.1	10	00
Post-dev p	eakflow	runoff (]	/s)									
R.P.	15 3	30 60	120	240	360	480	600	Max	CCF	Fina	1 F	R.P.
1 :	19.2 12.	5 7.8	4.6	2.8	2.1	1.7	1.4	19.2	40	26.9		1
30 4	46.9 29	.9 18.2	10.8	6.2	4.5	3.6	3.0	46.9	40	65.7	3	30
100 0	61.1 39.	.3 24.0	14.2	8.1	5.8	4.6	3.9	61.1	40	85.6	10	00
100 year 6	hour (x	Climate Pre-dev Post-de Post-de 100 yr Pre-dev Post-de Post-de Post-de	Change runof v rain v volu 6 hour v volu v volu v volu v stor v 5mm	Facto f volu fall v me m ³ mean to d me to d rage vo imperm perm v	r) stor me m ³ : colume (excess intens: rain at drain a drain a lume volume colume :	rm give = 32.2m = 45. s above ity = 1 t 0 1/s at 0 1/ = 45.1m = 2.6 = 0.0 m	es:- n ³ .1m ³ e SUDS) L0.37mm s = 0.0 /s = 0. /s = 0. n ³ 5 m ³ n ³	= 45. /hr m ³ 0 m ³	lm³			

 $Q_{BAR(rural)} = 0.080 \ 1/s$ or 1.522 l/s/ha or 0.000 cumecs - from IoH 124.

The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

	17-18 Haywards Place, Clerkenwell,		Job No. 8.996			
	Energy Ltd	London EC1R 0EQ	Sheet no.	2	2	
	www.xco2.com	Email: mail@xco2energy.com	Date	22/08/17	,	
MasterDrain	Project 307-309 Finchley Road		Ву	Checked	Reviewed	
HY 9.36	Title Surface Water Runoff	_ JC				
1		to our more t				
Use the data	below for the SUR1 form	ita summary.				
Site areas:-						
Total sit	e area =	0.0528 ha ;528.0 m² [3A]			
Pre-dev	elopment impermeable area =	0.0528 ha [3B]	-			
Pre-dev	elopment permeable area =	0.0000 ha				
Post-dev	velopment impermeable area =	0.0528 ha [3C]				
Post-dev	velopment permeable area =	0.0000 ha				
Peak runoff:-						
Pre-dev	elopment 1 year storm (15min) =	19.2 l/s [6A]				
Pre-dev	elopment 100 vear storm (15min) =	61.1 l/s [6C]				
Post-de	velopment 1 year storm (15min) =	19.2 l/s [6B]				
Post-dev	velopment 100 year storm (15min)=	61.11 l/s [6D]				
	f f.					
	10Π :- = 0.080 l/s or 1.522 l/s/ba	or 0.000 cumers - from ToH 12	4			
Section Secti	- 0.000 1/5 01 1.522 1/5/14					
Climate ch	ange factor:-					
C	CF = 40%					
Volumes:-						
P. G	re-development 100 yr/6hr sto	rm [12A]= 45.1m ³	1 [100]	- 45 1-	.3	
P	ost-development 100 yr/onr sto	rm (add. volume with SUDS)) [120]	= 45.11 = 45.1n	n 3	
P	ost-development add. predicted	volume (No SUDS) [12C]		$= 0.0m^{3}$	3	
You may al	so require					
D	ata relating to the infiltrati	on test calculations (if appl	icable)			
E	vidence to show runoff reducti	on (if applicable)				
I	nformation on calculation meth	ods (if applicable see next s	heet)			
Note	umberg in gauaro brackota rola	te to the				

Numbers in square brackets relate to the Nov. 2010 v1.1 / issued 11/02/10 copy of SUR1

MasterDrain

17-18 Haywards Place,
Clerkenwell,
London EC1R 0EQ
Tel: +44 (0)20 7700 1000
Email: mail@xco2energy.com

^{Project} 307-309 Finchley Road

Title Surface Water Runoff

Definitions and methods

Hydrology The hydrological constants are derived from the Wallingford maps. They are used to calculate location specific rainfall figures.

Site values and factors

Areas of the site should be entered in hectares (10000 m²). If the Pre-development site is a green field, this box is blank.

Climate Change Factor is initially set at 20% - this may be changed as required.

Greenfield runoff is calculated using the method described in IoH 124.

Runoff factors

The impermeable runoff factor is initially set at 98%

The permeable runoff factor is initially set at 20%

Note: the CCF and the runoff factors may be changed by the user to suit the development The areas draining to soakaways and other SUDS are entered in the appropriate box (in hectares)

Calculations

The post-development area is reduced by subtracting the areas that drain to soakaways or other SUDS, to give a revised figure.

All areas are then multiplied by the appropriate runoff factor to give an equivalent area with 100% runoff. These are then summated.

This gives a total pre-development equivalent area, and a similar figure for the post-development area.

The 'Post-dev volume to drain (no SUDS)' gives the total runoff to drain if no SUDS were used.

Results

The pre- and post-development areas are subjected to 1,30 and 100 year return period storms with a duration of 15 to 600 minutes.

The Revised Post-dev Imperm. area is the area (in ha) that is not going to SUDS x impervious runoff factor.

The runoff rates are calculated for the chosen hydrograph (Summer or Winter) as I/s. Figures in red indicate m³/s The peak value is measured, multiplied by the CCF and the total maximum rate is shown.

The pre- and post-development volumes for a 100 year / 6 hour storm are calculated from the area under the hydrograph curve.

Post-dev volume (i.e. excess above SUDS) is that volume produced by the drained area that does not go to SUDS. Qbar(rural) is calculated in accordance with the procedure laid down in IoH 124

Company Project XCO2 Energy Ltd **Finchley Road** Item Job Ref Sheet no. Storage volume 8.996 1 Calc. by Date Checked by Date Approved by Date MasterDrain JC 22/08/17

Data:-

Percentage runoff = 98.0% (manual setting)

```
Pervious area = 0 m^2
Imperv. area = 528 \text{ m}^2
                                      Equiv area = 517 m^2 (Tot. area x % runoff).
Total area = 528 m<sup>2</sup>
Total runoff = 45.1 m<sup>3</sup>
                                 Discharge rate = 5.000 1/s
Storage (m<sup>3</sup>) = 4.2 m<sup>3</sup> (Sum of all balance quantities)
Total rainfall depth = 87.1 mm
```

Calculations	:-					
Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulative
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)
0.060	32.0	4.6	0.144	1.080	0.000	0.000
0.120	33.0	4.8	0.149	1.080	0.000	0.000
0.180	33.0	4.8	0.149	1.080	0.000	0.000
0.240	34.0	4.9	0.153	1.080	0.000	0.000
0.300	34.0	4.9	0.153	1.080	0.000	0.000
0.360	35.0	5.1	0.158	1.080	0.000	0.000
0.420	35.0	5.1	0.158	1.080	0.000	0.000
0.480	36.0	5.2	0.162	1.080	0.000	0.000
0.540	36.0	5.2	0.162	1.080	0.000	0.000
0.600	37.0	5.4	0.167	1.080	0.000	0.000
0.660	37.0	5.4	0.167	1.080	0.000	0.000
0.720	38.0	5.5	0.171	1.080	0.000	0.000
0.780	38.0	5.5	0.171	1.080	0.000	0.000
0.840	39.0	5.7	0.176	1.080	0.000	0.000
0.900	40.0	5.8	0.180	1.080	0.000	0.000
0.960	42.0	6.1	0.189	1.080	0.000	0.000
1.020	42.0	6.1	0.189	1.080	0.000	0.000
1.080	43.0	6.2	0.194	1.080	0.000	0.000
1.140	44.0	6.4	0.198	1.080	0.000	0.000
1.200	45.0	6.5	0.203	1.080	0.000	0.000
1.260	46.0	6.7	0.207	1.080	0.000	0.000
1.320	48.0	7.0	0.216	1.080	0.000	0.000
1.380	49.0	7.1	0.221	1.080	0.000	0.000
1.440	51.0	7.4	0.230	1.080	0.000	0.000
1.500	52.0	7.6	0.234	1.080	0.000	0.000
1.560	54.0	7.8	0.243	1.080	0.000	0.000
1.620	56.0	8.1	0.252	1.080	0.000	0.000
1.680	58.0	8.4	0.262	1.080	0.000	0.000
1.740	61.0	8.9	0.275	1.080	0.000	0.000
1.800	64.0	9.3	0.289	1.080	0.000	0.000
1.860	68.0	9.9	0.307	1.080	0.000	0.000
1.920	72.0	10.5	0.325	1.080	0.000	0.000
1.980	78.0	11.3	0.352	1.080	0.000	0.000
2.040	84.0	12.2	0.379	1.080	0.000	0.000
2.100	91.0	13.2	0.410	1.080	0.000	0.000
2.160	99.0	14.4	0.446	1.080	0.000	0.000
2.220	110.0	16.0	0.496	1.080	0.000	0.000
2.280	123.0	17.9	0.555	1.080	0.000	0.000
2.340	136.0	19.8	0.613	1.080	0.000	0.000
2.400	152.0	22.1	0.685	1.080	0.000	0.000

	Company		Project				
	XCO2 Energy Lt	d	Finchley Road				
IWL	Item Storage volume					Job Ref 8.996	Sheet no. 2
MasterDrain	Calc. by JC	Date 22/08/17	Checked by	Date		Approved by	Date
Calculations	(cont.) :-						
Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulative	9
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)	
2.460	170.0	24.7	0.766	1.080	0.000	0.000	
2.520	188.0	27.3	0.848	1.080	0.000	0.000	
2.500	208.0	30.2	1 028	1 080	0.000	0.000	
2.700	250.0	36.3	1,127	1.080	0.000	0.047	
2.760	274.0	39.8	1.235	1.080	0.155	0.203	
2.820	300.0	43.6	1.353	1.080	0.273	0.475	
2.880	328.0	47.6	1.479	1.080	0.399	0.874	
2.940	358.0	52.0	1.614	1.080	0.534	1.408	
3.000	392.0	56.9	1.767	1.080	0.687	2.096	
3.060	392.0	56.9	1.767	1.080	0.687	2.783	
3.120	358.0	52.0	1.614	1.080	0.534	3.317	
3.180	328.0	47.6	1.479 1.252	1 080	0.399	3.716	
3.240	274 0	43.0	1 235	1 080	0.273	3.969 4 144	
3.360	250.0	36.3	1.127	1.080	0.047	4.191	
3.420	228.0	33.1	1.028	1.080	0.000	4.139	
3.480	208.0	30.2	0.938	1.080	0.000	3.997	
3.540	188.0	27.3	0.848	1.080	0.000	3.765	
3.600	170.0	24.7	0.766	1.080	0.000	3.451	
3.660	152.0	22.1	0.685	1.080	0.000	3.057	
3.720	136.0	19.8	0.613	1.080	0.000	2.590	
3.780	123.0	17.9	0.555	1.080	0.000	2.064	
3.840	99 0	14.4	0.496	1 080	0.000	1.480	
3,960	91.0	13.2	0.410	1.080	0.000	0.177	
4.020	84.0	12.2	0.379	1.080	0.000	0.000	
4.080	78.0	11.3	0.352	1.080	0.000	0.000	
4.140	72.0	10.5	0.325	1.080	0.000	0.000	
4.200	68.0	9.9	0.307	1.080	0.000	0.000	
4.260	64.0	9.3	0.289	1.080	0.000	0.000	
4.320	61.0	8.9	0.275	1.080	0.000	0.000	
4.380	58.0	0.4 0 1	0.262	1.080	0.000	0.000	
4.500	54.0	7.8	0.243	1.080	0.000	0.000	
4.560	52.0	7.6	0.234	1.080	0.000	0.000	
4.620	51.0	7.4	0.230	1.080	0.000	0.000	
4.680	49.0	7.1	0.221	1.080	0.000	0.000	
4.740	48.0	7.0	0.216	1.080	0.000	0.000	
4.800	46.0	6.7	0.207	1.080	0.000	0.000	
4.860	45.0	6.5	0.203	1.080	0.000	0.000	
4.920	44.0	6.4 6.2	0.198	1 080	0.000	0.000	
5.040	42.0	6.1	0.189	1.080	0.000	0.000	
5.100	42.0	6.1	0.189	1.080	0.000	0.000	
5.160	40.0	5.8	0.180	1.080	0.000	0.000	
5.220	39.0	5.7	0.176	1.080	0.000	0.000	
5.280	38.0	5.5	0.171	1.080	0.000	0.000	
5.340	38.0	5.5	0.171	1.080	0.000	0.000	
5.400	37.0	5.4	0.167	1.080	0.000	0.000	
5.40U 5.520	3/.0	5.4 5 2	U.16/ 0 162	1 000 1 000	0.000	0.000	
5.580	36.0	5.2	0,162	1.080	0.000	0.000	
5.640	35.0	5.1	0.158	1.080	0.000	0.000	
5.700	35.0	5.1	0.158	1.080	0.000	0.000	
5.760	34.0	4.9	0.153	1.080	0.000	0.000	
5.820	34.0	4.9	0.153	1.080	0.000	0.000	
5.880	33.0	4.8	0.149	1.080	0.000	0.000	
5.940	33.0	4.8	0.149	1.080	0.000	0.000	
6.000	32.0	4.6	0.144	T.080	0.000	0.000	

Storage volume (m³) = 4.2 m³ (Sum of all balance quantities)

ililiililililililililili	Company				Project	
	XCO2 Energy Ltd				Finchley Road	
	Item				Job Ref	Sheet no.
	Storage volume		8.996	4		
MasterDrain	Calc. by	Date	Checked by	Date	Approved by	Date
	JC	22/08/17				

Maximum storage volumes for varying duration storms.

Storm length	Max. Vol	Max. Vol	Mean intens	Step time.	Peak found	
(hrs)	(m³)	time	(mm/hr)	(mins)		
0.25	0.00	0.25	151.84	0.2		
0.5	0.00	0.50	97.58	0.3		
1	0.00		59.61	0.6		
2	0.00		35.17	1.2		
3	0.00		25.51	1.8		
4	0.00		20.20	2.4		
5	0.00		16.84	3.0		
6	0.00		14.52	3.6		
7	0.00		12.81	4.2		
8	0.00		11.49	4.8		
9	0.00		10.43	5.4		
10	0.00		9.57	6.0		
12	0.00		8.24	7.2		
15	0.00		6.86	9.0		
18	0.00		5.90	10.8		
20	0.00		5.41	12.0		
24	0.00		4.65	14.4		
30	0.00		3.87	18.0		
36	0.00		3.33	21.6		
42	0.00		2.93	25.2		
48	0.00		2.62	28.8		
54	0.00		2.37	32.4		
60	0.00		2.17	36.0		
66	0.00		2.01	39.6		
72	0.00		1.87	43.2		
84	0.00		1.64	50.4		
96	0.00		1.47	57.6		
120	0.00		1.22	72.0		
150	0.00		1.01	90.0		
175	0.00		0.89	105.0		
200	0.00		0.79	120.0		
250	0.00		0.66	150.0		
300	0.00		0.56	180.0		
375	0.00		0.47	225.0		
500	0.00		0.37	300.0		
750	0.00		0.26	450.0		
1000	0.00		0.20	600.0		
1250	0.00		0.17	750.0		
1500	0.00		0.15	900.0		
1570	0.00		0.14	942.0		
2000	0.00		0.11	1200.0		
2500	0.00		0.09	1500.0		
3000	0.00		0.08	1800.0		
3500	0.00		0.07	2100.0		
4000	0.00		0.06	2400.0		
	Company				Project	
-------------	-----------------	----------	------------	---------------	-------------	-----------
	XCO2 Energy Ltd			Finchley Road		
	Item				Job Ref	Sheet no.
	Storage volume				8.996	5
	Calc. by	Date	Checked by	Date	Approved by	Date
MasterDrain	JC	22/08/17				

Explanatory notes for Peak Flow Storage

- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

Explanatory notes for Hydrograph Storage

- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.

6) Varying durations should be tried to find the maximum storage value - this can be narrowed down very closely.

*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?

The rainfall characteristics for each method are very different.

The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.

The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.

It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

APPENDIX E – THAMES WATER ASSET PLAN

XCO2 Energy Ltd 56Kingsway Place SANS WALK LONDON EC1R 0LU

Search address supplied

307-309 Finchley Road 309 Finchley Road London NW3 6EH

Your reference	Finchley Road	

Our reference

ALS/ALS Standard/2017_3632604

Search date

15 August 2017

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: 307-309 Finchley Road, 309, Finchley Road, London, NW3 6EH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

NB. Levels quoted in metres Ordnance Newlyn Datur	n. The value -9999.00 indicates that no survey information is available
---	---

Manhole Reference	Manhole Cover Level	Manhole Invert Level		
191C	n/a	n/a		
191D	n/a	n/a		
291A	n/a	n/a		
1902	57.86	54.02		
0902	57.55	53.8		
091C	n/a	n/a		
091B	n/a	n/a		
091H	n/a	n/a		
091F	n/a	n/a		
091E	n/a	n/a		
091D	n/a	n/a		
091G	n/a	n/a		
0001	61.45	58.7		
1903	n/a	n/a		
1905	58.3	55.92		
191A	n/a	n/a		
191B	n/a	n/a		
2901	n/a	n/a		
1916	n/a	n/a		
1005	n/a	n/a		
1001	59.4	54.85		
1004	n/a	n/a		
1002	60.41	55.76		
101A	n/a	n/a		
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position				
of mains and services must be verified and established on site before any works are undertaken.				

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

いし Outfall

Undefined End Inlet

Other Symbols

Symbols used on maps which do not fall under other general categories

- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.
- 6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- FIRE Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
 - Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
 - **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Meters

End Items

 $-\bigcirc$

Symbol indicating what happens at the end of ^L a water main. Blank Flange

- Capped End
- Undefined End

Emptying Pit

- Manifold

— Fire Supply

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

 Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306 Fax: 01722 332296 Email: <u>admin@tpos.co.uk</u>

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

XCO2 56 Kingsway Place, Sans Walk London EC1R OLU +44 (0)20 7700 1000 mail@xco2.com xco2.com

