Appendix E - Ground Investigation Factual Report (by Ground and Water Ltd January 2016)

ground&water

FACTUAL GROUND INVESTIGATION REPORT

for the site at

6 STUKELEY STREET, COVENT GARDEN, LONDON WC2B 5LQ

on behalf of

DEREK SAVAGE C/O MILAN BABIC ARCHITECTS

Report Refere	nce: GWPR1437/GIR/January 2016	Status: FINAL
lssue:	Prepared By:	Verified By:
V2.01 January 2016	ll May	S-T. Williams
2010	Philip Allvey BSc (Hons) M.Eng Geotechnical Engineer	Francis Williams M.Geol. (Hons) FGS CEnv AGS MSoBRA Director
	File Reference: Ground and Wate	
	GWPR1437 6 Stukeley Stree	t, London

Ground and Water Limited 15 Bow Street, Alton, Hampshire GU34 1NY Tel: 0333 600 1221 E-mail: enquiries@groundandwater.co.uk Website: www.groundandwater.co.uk

CONTENTS

1.0 INTRODUCTION

- 1.1 General
- 1.2 Aims of Investigation
- 1.3 Conditions and Limitations

2.0 SITE SETTING

- 2.1 Site Location
- 2.2 Site Description
- 2.3 Proposed Development
- 2.4 Geology
- 2.5 Slope Stability and Subterranean Developments
- 2.6 Hydrogeology and Hydrology
- 2.7 Radon

3.0 FIELDWORK

5.1

- 3.1 Scope of Works
- 3.2 Sampling Procedure

4.0 ENCOUNTERED GROUND CONDITIONS

- 4.1 Soil Conditions
- 4.2 Foundation Exposures
- 4.3 Roots Encountered
- 4.4 Groundwater Conditions
- 4.5 Obstructions

5.0 IN-SITU AND LABORATORY GEOTECHNICAL TESTING

- Laboratory Geotechnical Testing
 - 5.1.1 Atterberg Limit Test
 - 5.1.2 Comparison of Soil's Moisture Content with Index Properties
 - 5.1.2.1 Liquidity Index Analysis
 - 5.1.2.2 Liquid Limit
 - 5.1.3 Particle Size Distribution (PSD) Test
 - 5.1.4 Sulphate and pH Tests
 - 5.1.5 BRE Special Digest 1
- 5.2 Chemical Laboratory Testing Human Health Risk Assessment
 - 5.2.1 Soil Assessment Criteria
 - 5.2.2 Determination of Representative Contamination Concentration
- 5.3 Discovery Strategy
- 5.4 Waste Disposal
- 5.5 Imported Material
- 5.6 Duty of Care

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Development Area
- Figure 3 Aerial View of the Site
- Figure 4 Trial Hole Location Plan

APPENDICES

- Appendix A Conditions and Limitations
- Appendix B Fieldwork Logs
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Chemical Laboratory Test Results
- Appendix E Soil Assessment Criteria
- Appendix F Waste Hazard Assessment

1.0 INTRODUCTION

1.1 General

Ground and Water Limited were instructed by Derek Savage, c/o Milan Babic Architects, on the 13th October 2015 to undertake a Ground Investigation on 6 Stukeley Street, Covent Garden, London WC2B 5LQ. The scope of the investigation was detailed within the Ground and Water Limited fee proposal ref.: GWQ2591, dated 14th September 2015.

1.2 Aims of the Investigation

The aim of the investigation was understood to be to supply the client and their designers with factual information regarding the ground conditions underlying the site to assist them in preparing an appropriate scheme for development.

The investigation was to be undertaken to provide parameters for the design of foundations by means of in-situ and laboratory geotechnical testing undertaken on soil samples recovered from trial holes.

The requirements of the London Borough of Camden, Camden Geological, Hydrogeological and Hydrological Study, Guidance for Subterranean Development (November 2010) was reviewed with respect to this report.

A Desk Study and full scale contamination assessment were not part of the remit of this report.

The techniques adopted for the investigation were chosen considering the anticipated ground conditions and development proposals on-site, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

1.3 Conditions and Limitations

This report has been prepared based on the terms, conditions and limitations outlined within Appendix A.

This revision of our report supersedes any previously issued.

2.0 SITE SETTING

2.1 Site Location

The site comprised a $70m^2$ (0.007ha) rectangular shaped plot of land, orientated in a north-east to south-west direction, located on the south-east side of Stukeley Street, at the south-western end of the cul-de-sac. The site was located ~20m north-east of the pedestrian access to Stukeley Street off Drury Lane. The site was located in the St Giles area of Holborn within the London Borough of Camden.

The national grid reference for the centre of the site was approximately TQ30315 81335. A site location plan is given within Figure 1. A plan showing the site area is given within Figure 2.

2.2 Site Description

At the time of reporting, January 2016, the site comprised a single storey brick built property, almost mews like in construction. A single <0.80m wide door was doorway was noted allowing access to the property. The property footprint covered the entire site area.

An aerial view of the site is provided within Figure 3.

2.3 Proposed Development

At the time of reporting, January 2016, it is understood the proposed development will comprise the excavation of a basement beneath the footprint of the property. The basement will be formed at \sim 3.00 – 3.50m bgl.

2.4 Geology

The BGS Geological Map (Solid and Drift) for the North London area (Sheet No. 256), and Figure 3 and 4 of the Camden Geological, Hydrogeological and Hydrological Study, revealed that the site was located on the Lynch Hill Gravel Member, underlain by the London Clay formation.

Lynch Hill Gravel Member

The rivers of the south-east of England, including the River Thames and its tributaries, have been subject to at least three changes of level since Pleistocene times. One result has been the formation of a complex series of river terrace gravels. These terraces represent ancient floodplain deposits that became isolated as the river cut downwards to lower levels. Deposits generally consist of sand and gravel of flint or chert commonly in a matrix of silt and clay.

London Clay Formation

The London Clay Formation comprises stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of Gypsum (Selenite) are often found within the weathered part of the London Clay Formation, and precautions against sulphate attack to concrete are sometimes required. The lowest part of the formation is a sandy bed with black rounded gravel and occasional layers of sandstone and is known as the Basement Bed.

A BGS borehole ~100m south-east of the site revealed ~5.00 – 5.45m of gravels overlying the London Clay Formation. Groundwater was encountered at around 5.00m bgl.

A Ground and Water Limited borehole drilled at 8 - 10 Stukeley Street, London WC2B 5LQ revealed Made Ground comprising a clayey gravelly sand to gravelly sandy clay to a depth of 3.70m bgl, underlain by soils of the Lynch Hill Gravel Member to a depth of 7.00m bgl comprising an orange

brown sand and gravel. These soils were underlain by a grey silty clay proved to a depth of 8.00m bgl, corresponding to the soils of the London Clay Formation.

No areas of Made Ground or Worked Ground were noted within a 250m radius of the site.

2.5 Slope Stability and Subterranean Developments

The site was not situated within an area where a natural or man-made slope of greater than 7° was present (Figure 16 Camden Geological, Hydrogeological and Hydrological Study).

Figure 17 of the Camden Geological, Hydrogeological and Hydrological Study indicated that the site was not situated within an area prone to landslides.

Figure 18 of the Camden Geological, Hydrogeological and Hydrological Study indicated that an underground section/tunnel of the CrossRail Underground Line was situated running in a west to east direction within the proximity of the proposed development area. No other major subterranean infrastructure (including existing and proposed tunnels) were noted within close proximity to the site.

2.6 Hydrogeology and Hydrology

A study of the aquifer maps on the Environment Agency website, and Figure 8 of the Camden Geological, Hydrogeological and Hydrological Study, revealed the site to be located on a **Secondary A Aquifer** relating to the deposits of the Lynch Hill Gravel Member. These deposits were underlain by **Unproductive Strata** relating to the bedrock deposits of the London Clay Formation.

Superficial (Drift) deposits are permeable unconsolidated (loose) deposits, for example, sands and gravels. The bedrock is described as solid permeable formations e.g. sandstone, chalk and limestone.

Unproductive strata are rock layers with low permeability that have negligible significance for water supply or river base flow. These were formerly classified as non-aquifers.

Secondary aquifers include a wide range of drift deposits with an equally wide range of water permeability and storage capacities. Secondary A Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

Examination of the Environment Agency records, and Figure 8 of the Camden Geological, Hydrogeological and Hydrological Study, showed that the site did not fall within a Groundwater Source Protection Zone as classified in the Policy and Practice for the Protection of Groundwater.

No surface water features were noted within a 250m radius of the site.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at moderate depth (>5m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a southerly direction in alignment with the local topography, towards the River Thames.

Examination of the Environment Agency records showed that the site was **not** situated within flood zone or flood warning area.

2.7 Radon

BRE 211 (2015) Map 4 Hampshire, Berkshire and south Oxfordshire revealed the site **was not** located within an area where mandatory protection measures against the ingress of Radon were likely to be required. The site **was not** located within an area where a risk assessment was required.

3.0 FIELDWORK

3.1 Scope of Works

Fieldwork was undertaken on the 2^{nd} November 2015 and comprised the drilling of one Window Sampler Borehole (BH1) to a depth of 3.50m bgl and the hand excavation of two trial pit foundation exposures (TP/FE1 and TP/FE2) to a depth of between 0.67 – 0.90m bgl. BH1 was constructed through the base of TP/FE2.

Further fieldwork was undertaken on the 3rd November 2015 to extend the depth of BH1 to 8.00m bgl, using a Hollow Stem Flight Auger. A groundwater monitoring standpipe was installed in BH1 to a depth of 8.00m bgl to enable the measurement of standing groundwater levels.

All measurements are taken from internal floor level (m bgl).

The construction of the well installed can be seen tabulated below.

Combin	ed Bio-gas and	Groundwater Mon	itoring Well Con	struction
Trial Hole	Depth of Installation (m bgl)	Thickness of slotted piping with gravel filter pack (m)	Depth of plain piping with bentonite seal (m bgl)	Piping external diameter (mm)
BH1	8.00	7.00	1.00	50

The approximate locations of the trial holes can be seen within Figure 4.

Prior to commencing the ground investigation, a walkover survey was carried out to identify the presence of underground services and drainage. Where underground services/drainage were suspected and/or positively identified, exploratory positions were relocated away from these areas.

Upon completion of the site works, the trial holes were backfilled and made good/reinstated in relation to the surrounding area.

3.2 Sampling Procedures

Small disturbed samples were recovered from the trial holes at the depths shown on the trial hole records. Soil samples were generally retrieved from each change of strata and/or at specific areas of concern. Samples were also taken at approximately 0.5m intervals during broad homogenous soil horizons.

A selection of samples were despatched for geotechnical testing purposes.

4.0 ENCOUNTERED GROUND CONDITIONS

4.1 Soil Conditions

All exploratory holes were logged by Philip Allvey of Ground and Water Limited generally in accordance with BS EN 14688 'Geotechnical Investigation and Testing – Identification and Classification of Soil'.

The ground conditions encountered within the trial holes constructed on the site generally conformed to that anticipated from examination of the geology map. Made Ground was noted to overlie the Lynch Hill Gravel Member, which was in turn were underlain by the bedrock deposits of the London Clay Formation.

The ground conditions encountered during the investigation are described in this section. For more complete information about the Made Ground, Lynch Hill Gravel Member and the London Clay Formation at particular points, reference must be made to the individual trial hole logs within Appendix B.

The trial hole location plan can be viewed in Figure 4.

For the purposes of discussion the succession of conditions encountered in the trial holes in descending order can be summarised as follows:

Made Ground Lynch Hill Gravel Member (BH1 only) London Clay Formation (BH1 only)

Made Ground

Made Ground was encountered from ground level to a depth of 3.20m bgl in BH1 (TP/FE2) and for the full depth of TP/FE1, a depth of 0.67m bgl. The soils comprised a black/dark brown/grey brown silty gravelly sand to sandy gravelly silty clay. The sand was fine to coarse grained and the gravel rare to abundant, fine to coarse, sub-angular to sub-rounded flint, brick, concrete, tarmac, lignite, clinker and wood ash.

Lynch Hill Gravel Member

Soils described as representative of the Lynch Hill Gravel Member were encountered underlying the Made Ground to a depth of 5.00m bgl in BH1. These soils comprised a light brown clayey sandy gravel. The sand was fine grained and the gravel abundant, fine to medium, sub angular to rounded flint.

London Clay Formation

Soils described as the London Clay Formation were encountered underlying the soils of the Lynch Hill Gravel Member for the remaining depth of BH1, a depth of 8.00m bgl. These soils were described as a dark grey silty clay.

For details of the composition of the soils encountered at particular points, reference must be made to the individual trial hole logs within Appendix B.

4.2 Foundation Exposures

A description of the foundation layout and ground conditions encountered within the hand dug trial pit/foundation exposures are given within this section of the report.

TP/FE1

Trial pit foundation exposure TP/FE1 was hand excavated from ground level internally on the northeastern flank wall of the property, adjacent to No. 8 Stukeley Street. The exact location of the trial hole can be seen in Figure 4 with a section drawing of the foundation encountered in Figure 5.

The foundation exposure was measured from ground level.

The foundation layout encountered consisted of a brick wall to ground level. From ground level to a depth of 0.50m bgl a brick wall was noted. The brick wall was noted to rest upon a concrete footing which stepped out by 0.13m and was 0.17m in thickness. The concrete footing was noted to rest upon a concrete slab at a depth of 0.67m bgl which prevented the trial pit being excavated to a greater depth. The ground conditions encountered directly surrounding the foundation are shown in Figure 5.

- No roots were noted during excavation of the foundation exposure.
- No groundwater was noted during excavation of the foundation exposure.

TP/FE2

Trial pit foundation exposure TP/FE2 was hand excavated from ground level internally on southeastern flank wall of the property, adjacent to No.10 Stukeley/182 Drury Lane. The exact location of the trial hole can be seen in Figure 4 with a section drawing of the foundation encountered in Figure 6.

The foundation exposure was measured from ground level.

The foundation layout encountered consisted of a brick wall to ground level. From ground level to a depth of 0.46m bgl a brick wall was noted. The brick wall was noted to rest upon three brick steps (0.05 - 0.07m out from the property and 0.08m in thickness). The brick steps were noted to rest on Made Ground at a depth of 0.70m bgl. The Made Ground was described as a mid grey/brown gravelly very sandy silty clay. The sand was fine to coarse grained and the gravel occasional to abundant, fine to medium, sub-angular to sub-rounded flint, brick, concrete and lignite. The exact location of the trial hole can be seen in Figure 4 with a section drawing of the foundation encountered in Figure 6.

- No roots were noted during excavation of the foundation exposure.
- No groundwater was noted during excavation of the foundation exposure.

4.3 Roots Encountered

No roots were encountered during construction of the trial holes.

It must be noted that the chance of determining actual depth of root penetration through a narrow diameter borehole is low. Roots may be found to greater depths at other locations on the site, particularly close to trees and/or trees that have been removed both within the site and its close environs.

4.4 Groundwater Conditions

No groundwater was encountered during the intrusive investigation, however the drilling process

may have obscured groundwater strikes.

Monitoring of the combined bio-gas and groundwater monitoring well installed in BH1 (installed to 8.00m bgl) by a Ground and Water Limited Engineer revealed a standing water level of 5.60m bgl on the 9th December 2015.

Changes in groundwater level occur for a number of reasons including seasonal effects and variations in drainage. Exact groundwater levels may only be determined through long term measurements from monitoring wells installed on-site. The investigation was undertaken in October and December 2015, when groundwater levels are likely to be rising towards their annual maximum (i.e. highest level).

Isolated pockets of groundwater may be perched within any Made Ground found at other locations around the site.

4.5 Obstructions

A concrete obstruction was encountered in TP/FE1 resulting the trial pit being terminated at a depth of 0.67m bgl. No other artificial or natural sub-surface obstructions were noted during excavation of the other trial hole.

5.0 INSITU AND LABORATORY GEOTECHNICAL TESTING

5.1 Laboratory Geotechnical Testing

A programme of geotechnical laboratory testing, scheduled by Ground and Water Limited and carried out by K4 Soils Laboratory and QTS Environmental Limited, was undertaken on samples recovered from the Made Ground, Lynch Hill Gravel Member and London Clay Formation. The results of the tests are presented in Appendix C.

The test procedures used were generally in accordance with the methods described in BS1377:1990.

Details of the specific tests used in each case are given below:

Standard Meth	odology for Laboratory Geotechnical Tes	ting
Test	Standard	Number of Tests
Atterberg Limit Tests	BS1377:1990:Part 2:Clauses 3.2, 4.3 & 5	1
Particle Size Distribution	BS1377:1990:Part 2:Clause 9	1
Water Soluble Sulphate & pH	BS1377:1990:Part 3:Clause 5	2
BRE Special Digest 1 (incl. Ph, Electrical Conductivity, Total Sulphate, W/S Sulphate, Total Chlorine, W/S Chlorine, Total Sulphur, Ammonium as NH4, W/S Nitrate, W/S Magnesium)	BRE Special Digest 1 "Concrete in Aggressive Ground (BRE, 2005).	2

5.1.1 Atterberg Limit Test

A précis of the result of an Atterberg Limit Test undertaken on one sample of the London Clay Formation can be seen tabulated below.

		Atterb	erg Limit Tests	Results Sur	nmary			
Stratum	Moisture	Passing 425	Modified	Soil Class	Consistency	Volume Change Potential Range		
Stratum	Content (%)	μm sieve (%)	PI (%)	Range	Index (lc)	NHBC	BRE	
London Clay Formation	26	92	30.36	СН	Stiff	Medium	Medium	

NB: NP – Non-plastic

BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results)Soil Classification based on British Soil Classification System.Consistency Index (Ic) based on BS EN ISO 14688-2:2004.

5.1.2 Comparison of Soil's Moisture Content with Index Properties

5.1.2.1 Liquidity Index Analyses

The result of the Atterberg Limit Test undertaken on one sample of the London Clay Formation was analysed to determine the Liquidity Index of the sample. This gives an indication as to whether the sample recovered showed a moisture deficit and its degree of consolidation. The results are tabulated overleaf.

Liquidity Index Calculations Summary								
Strata/Trial Hole/Depth/Soil Description	Moisture Content (%)	Plastic Limit (%)	Modified Plasticity Index (%)	Liquidity Index	Result			
London Clay Formation BH1/7.30m bgl. (Grey slightly gravelly silty CLAY with occasional sandy clay pockets. (The gravel was fine to medium and sub- angular)).	26	23	30.36	0.10	Heavily Overconsolidated			

Liquidity Index testing revealed no evidence of a moisture deficit within the heavily overconsolidated sample of the London Clay Formation tested.

5.1.2.2 Liquid Limit

A comparison of the soil moisture content and the liquid limit can be seen tabulated below.

Moisture Content vs. Liquid Limit							
Strata/Trial Hole/Depth/Soil Description	Moisture Content (MC) (%)	Liquid Limit (LL) (%)	40% Liquid Limit (LL)	Result			
London Clay Formation BH1/7.30m bgl. (Grey slightly gravelly silty CLAY with occasional sandy clay pockets. (The gravel was fine to medium and sub- angular)).	26	56	22.4	MC > 0.4 x LL (Not significantly desiccated)			

The moisture content vs. liquid limit assessment has shown that no potential significant moisture deficit was present within the sample of the London Clay Formation tested.

5.1.3 Particle Size Distribution (PSD) Test

The results of PSD testing undertaken on one sample of the Lynch Hill Gravel Member is tabulated below.

PSD Test Results Summary							
Trial Hole/Depth/Soil Description	Volume Cha Ra	Passing 63µm					
	BRE	NHBC	Sieve (%)				
Lynch Hill Gravel Member WS2/3.50m bgl (Brown clayey very sandy GRAVEL. (Gravel is fine to coarse and sub-angular to sub-rounded)).	No	No	6				

NB Volume Change Potential refers to BRE Digest 240 (based on Grading test results).

Volume Change Potential – BRE 240 states that a soil has a volume change potential when the clay fraction exceeds 15%. Only the silt and clay combined fraction are determined by sieving therefore the volume change potential is estimated from the percentage passing the $63\mu m$ sieve.

NHBC Standards Chapter 4.2 states that a soil is shrinkable if the percentage of silt and clay passing the $63\mu m$ sieve is greater than 35% and the Plasticity Index is greater than 10%.

5.1.4 Sulphate and pH Tests

A sulphate and pH test was undertaken on one sample from the Lynch Hill Gravel Member (BH1/TP2 at 3.50m bgl) and one sample of the London Clay Formation (BH1/7.30m bgl). A sulphate concentration ranging between 0.29 - 0.99g/l with a pH range of 7.55 - 7.65 was determined.

5.1.5 BRE Special Digest 1

In accordance with BRE Special Digest 1 'Concrete in Aggressive Ground' (BRE, 2005) two samples of Made Ground (TP2/BH1 at 1.00m and 2.00m bgl) were scheduled for laboratory analysis to determine parameters for concrete specification.

Summary of Results of BRE Special Digest Testing								
Determinand	Unit	Minimum	Maximum					
рН	-	7.9	8.9					
Ammonium as NH ₄	mg/kg	<0.5	2.1					
Sulphur	%	0.04	0.31					
Chloride (water soluble)	mg/kg	9	11					
Magnesium (water soluble)	mg/l	2.6	7.5					
Nitrate (water soluble)	mg/kg	84	135					
Sulphate (water soluble)	mg/l	162	1660					
Sulphate (total)	%	0.09	0.57					

The results are given within Appendix C and a summary is tabulated below.

5.2 Chemical Laboratory Testing – Human Health Risk Assessment

A programme of chemical laboratory testing, scheduled by Ground and Water Limited, and carried out by QTS Environmental Limited, was undertaken on one sample of Made Ground (TP/FE2 at 0.50m bgl).

A Desk Study and full scale contamination assessment were not part of the remit of this report. However, one soil sample was sent off for analysis for a broad range of contaminants in accordance with DEFRA/CLEA methodologies. The sample tested and the reasons for testing can be seen tabulated below.

Π	Methodology for Samp	ling Locations and Chemical Laboratory Testing
Trial Hole	Depth (m bgl)	Sampling Strategy
TP/FE2	0.50m	Representative sample of the Made Ground.

The area investigated as part of the proposed residential development totals $\sim 70m^2$ (0.07ha) and with two sampling locations, given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 52.5m² and a radius of approximately 4.08m would be encountered (CLR 4).

Soil sampling depths were chosen to reflect the receptors of concern, human health, and typically

comprised a surface or near surface sample. The receptors relevant to the sampling depths can be seen below:

Near surface samples	Direct ingestion, dermal contact and dust inhalation. Protection of end-users and maintenance workers e.g. Landscape Gardeners. Protection of shallow rooted plants.
----------------------	---

The depth of soil sampling can be seen within the trial hole logs presented in Appendix B. The analysis suite is presented below and comprised:

- Semi Metals and Heavy Metals incl. Arsenic, Cadmium, Chromium (incl. Hexavalent Chromium), Copper, Lead, Mercury, Nickel, Selenium, Vanadium, (TP/FE2 at 0.50m bgl);
- Asbestos Screen (TP/FE2 at 0.50m bgl);
- Polycyclic Aromatic Hydrocarbons (PAHs) incl. Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene, (TP/FE2 at 0.50m bgl);
- Fuel Oils Speciated TPH including full aliphatic/aromatic split (TP/FE2 at 0.50m bgl);
- BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and MTBE used as marker compounds for Volatile Organic Compounds (VOCs) (TP/FE2 at 0.50m bgl).

The chemical laboratory results are presented in Appendix D.

5.2.1 Soil Assessment Criteria

The derivation of Soil Assessment Criteria used within this report can be seen within Appendix E.

5.2.2 Determination of Representative Contamination Concentration

At the time of reporting, January 2016, it is understood the proposed development will comprise the excavation of a basement beneath the footprint of the property. The basement will be formed at \sim 3.00 – 3.50m bgl. No area of soft landscaping are present.

Therefore, the results of the chemical laboratory testing were compared to the LQM/CIEH Suitable 4 Use Levels (S4UL) for a *'Residential without homegrown produce'* land-use scenarios, as this was considered the most appropriate land-use scenario. The C4SL LLTC for Lead was compared to a *'Residential without homegrown produce'* land-use scenario.

Where no LQM/CIEH S4UL/C4SL LLTC was available for a particular determinant then preliminary reference was made to the laboratory detection limit of the determinant. If a positive concentration was noted then further risk assessment was undertaken.

For Cyanide, where no LQM/CIEH S4UL or C4SL LLTC was available a Site Specific Assessment Criteria of 10mg/kg was adopted. This is based on ICRCL 59/83, TCL, ATRISK (SOIL) Screening Value and Dutch Intervention Value (ranging from 20 – 34mg/kg). Therefore, a SSAC of ~10mg/kg is considered conservative.

The Mercury detected within the sample of Made Ground tested (TP/FE2 at 0.50m bgl) was compared to C4SL LLTC of 40mg/kg for a *"Residential without homegrown produce"*

scenario for inorganic mercury, as it was considered unlikely that Mercury would be present in its elemental form within the Made Ground.

Where a contaminant of concern's LQM/CIEH S4UL/C4SL LLTC varies according to the Soil's Organic Matter (SOM), the SOM recorded for each soil sample was used to derive the appropriate SGV/GAC. The SOM of the sample analysed was 1.1%. The results showing comparison of the representative contaminant concentrations are presented in the table overpage.

Soil Guid	eline Values and General Acceptance Criteria Results
Substance	Sample Location Where available LQM/CIEH S4UL/, CSL4 LLTC or GAC were exceeded for relevant land-use scenario
	"Residential without homegrown produce" Land-Use Scenario
Arsenic	None
Boron	None
Cadmium	None
Chromium (III)	None
Hexavalent Chromium (VI)	None
Copper	None
Lead	TP/FE2 at 0.50m bgl (383mg/kg)
Mercury (Elemental)	None
Nickel	None
Selenium	None
Vanadium	None
Zinc	None
Cyanide (Total)	None
Total Phenol	None
Naphthalene	None
Acenapthylene	None
Acenapthene	None
Fluorene	None
Phenanthrene	None
Anthracene	None
Fluoranthene	None
Pyrene	None
Benzo(a)anthracene	None
Chrysene	None
Benzo(b)fluoranthene	None
Benzo(k)fluoranthene	None
Benzo(a)pyrene	None
Indeno(1,2,3-cd)pyrene	None
Dibenz(a,h)anthracene	None
Benzo(ghi)perylene	None
TPH C5 – C6 (aliphatic)	None
TPH C6 – C8 (aliphatic)	None
TPH C8 - C10 (aliphatic)	None
TPH C10 - C12 (aliphatic)	None
TPH C12 - C16 (aliphatic)	None
TPH C16 - C21 (aliphatic)	None
TPH C21 - C34 (aliphatic)	None
TPH C5 – C7 (aromatic)	None
TPH C7 – C8 (aromatic)	None
TPH C8 – C10 (aromatic)	None
TPH C10 – C12 (aromatic)	None
TPH C12 – C16 (aromatic)	None
TPH C16 - C21 (aromatic)	None
TPH C21 - C35 (aromatic)	None
Benzene	None
Toluene	None
Ethylbenzene	None
Xylene (o, m & p)	None
MTBE	None

Chemical laboratory testing revealed elevated levels of Lead in one sample of Made Ground tested. A level of 383mg/kg was noted within TP/FE2 at 0.50m bgl, in excess of the C4SL LLTC of 330mg/kg for a *"Residential without homegrown produce"* scenario.

Chemical laboratory testing of the Made Ground revealed no other elevated levels of determinants above the guideline levels for a '*Residential without homegrown produce'* land-use scenarios.

The chemical laboratory results have verified that no elevated concentrations of aliphatic/aromatic hydrocarbons (C_5 - C_{35}) or BTEX compounds are present in the soils underlying the site.

At the time of reporting, January 2016, it is understood the proposed development will comprise the excavation of a basement beneath the footprint of the property. The basement will be formed at \sim 3.00 – 3.50m bgl. Given the end use of the site, the elevated levels of contaminants noted will remain permanently locked under areas of hard standing/or be removed during basement construction, therefore posing no risk to end users of the site.

5.3 Discovery Strategy

There may be areas of contamination that have not been identified during the course of the intrusive investigation. For example, there may have been underground storage tanks (UST's) not identified during the Ground Investigation for which there is no historical or contemporary evidence.

Such occurrences may be discovered during the demolition and construction phases for the redevelopment of the site.

Groundworkers should be instructed to report to the Site Manager any evidence for such contamination; this may comprise visual indicators, such as fibrous materials within the soil, discolouration, or odours and emission. Upon discovery advice must be taken from a suitably qualified person before proceeding, such that appropriate remedial measures and health and safety protection may be applied.

Should a new source of contamination be suspected or identified then the Local Authority will need to be informed.

5.4 Waste Disposal

The excavation of foundations is likely to produce waste which will require classification and then recycling or removal from site.

Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all waste must be classified as;

- Inert;
- Non-hazardous, or;
- Hazardous.

The Environment Agency's Hazardous Waste Technical Guidance (WM2) document outlines the methodology for classifying wastes.

Once classified the waste can be removed to the appropriately licensed facilities, with some waste requiring pre-treatments prior to disposal.

Based on a risk phrase analysis of the chemical laboratory test results, in accordance with EC Hazardous Waste Directive and undertaken by Ground and Water Limited, the Made Ground

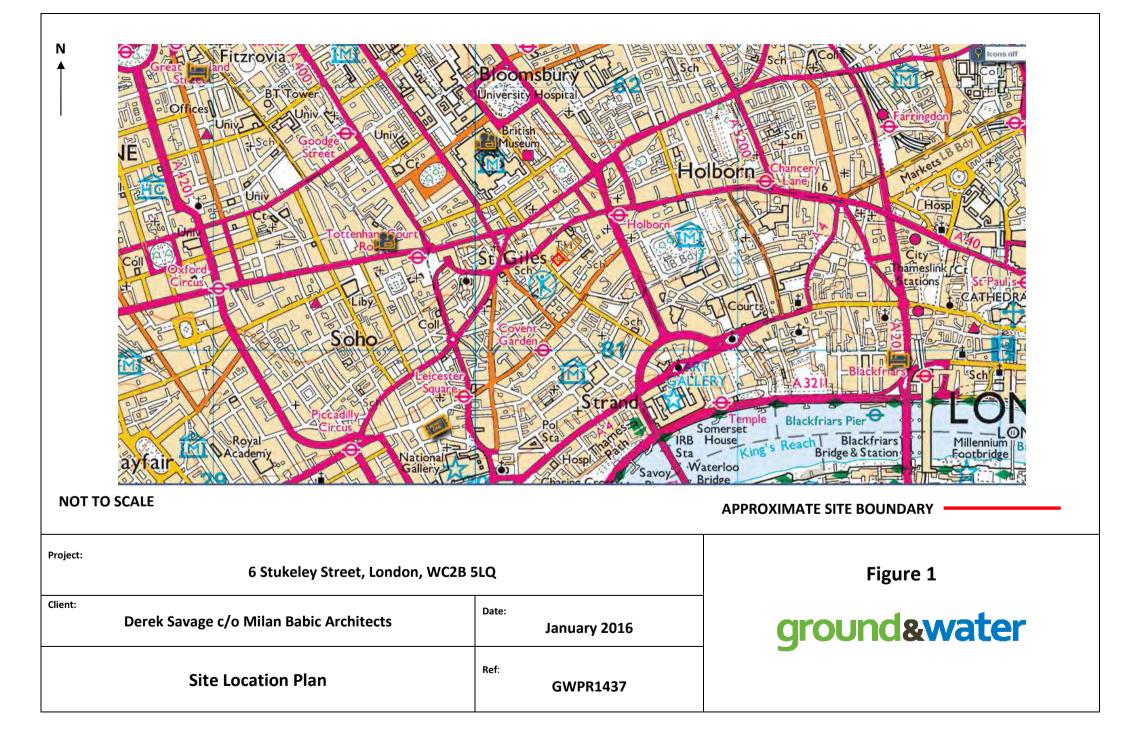
encountered on-site was **NON-HAZARDOUS.** The results of the assessment are given within Appendix F.

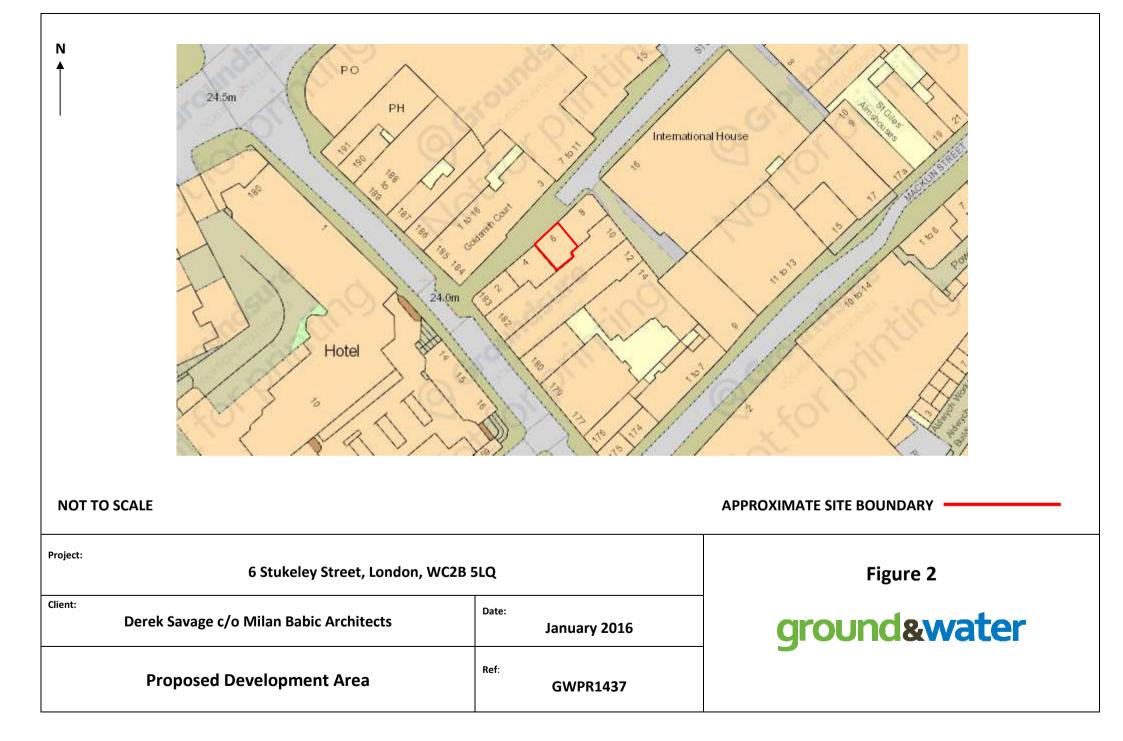
INERT waste classification should be undertaken to determine if the proposed waste confirms to INERT or NON-HAZARDOUS Waste Acceptable Criteria (WAC).

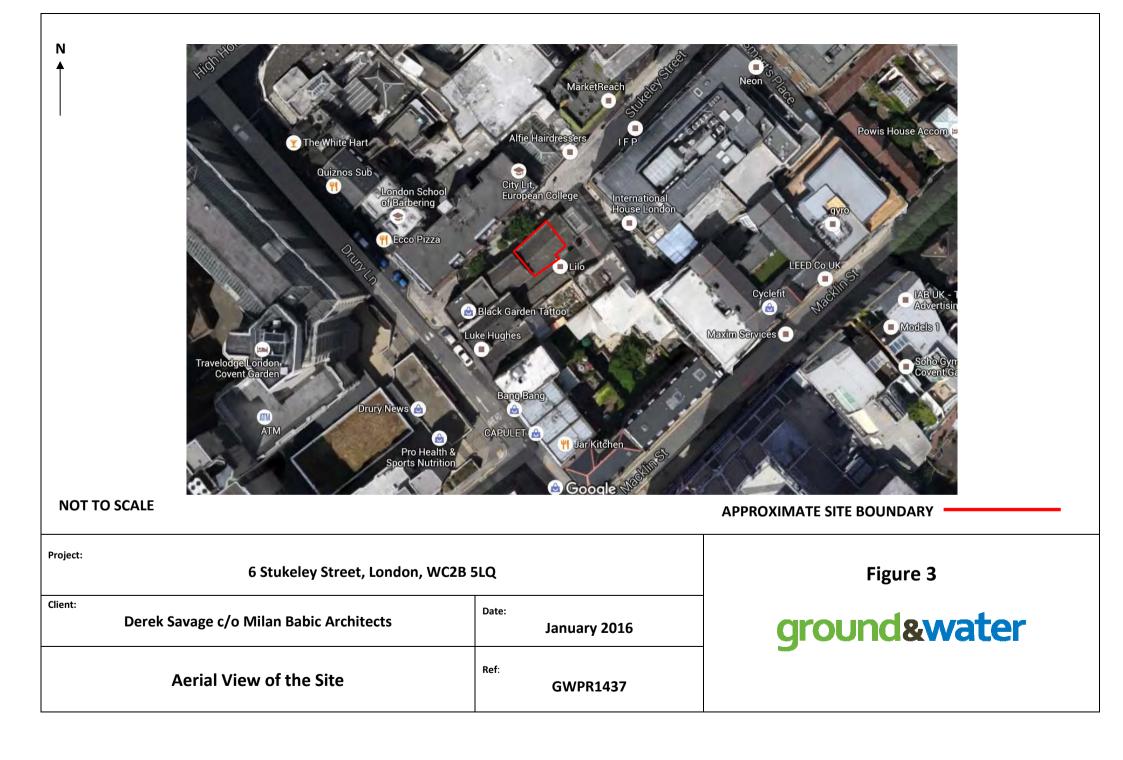
It is important to note that whilst we consider our in-house assessment tool to be an accurate interpretation of the requirements of WM2, therefore producing an initial classification in accordance with the guidance, landfill operators have their own assessment tools and can often come to different conclusions. As a result, some landfill operators could refuse to take apparently suitable waste. It is recommended that the receiving landfill views the results of this assessment and the chemical laboratory results to determine their own classification.

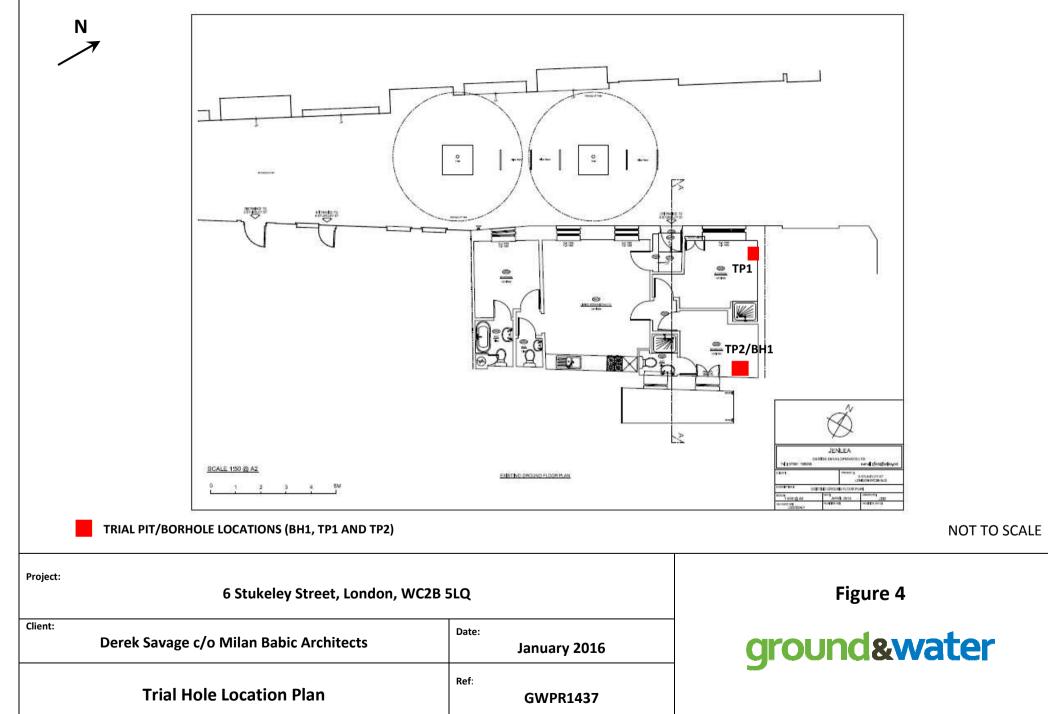
5.5 Imported Material

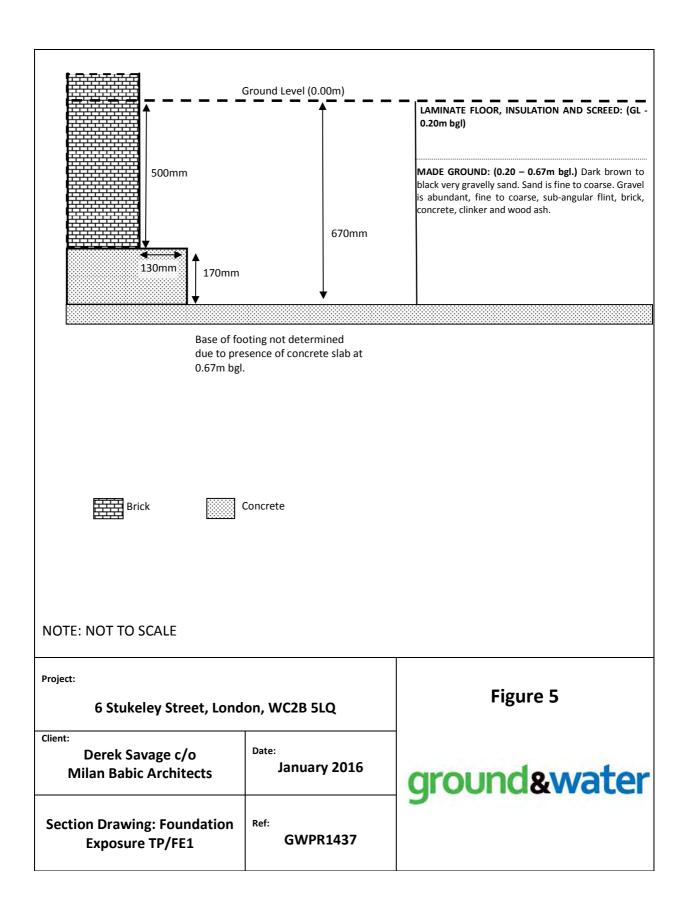
Any soil which is to be imported onto the site must undergo chemical analysis to prove that it is suitable for the purpose for which it is intended.

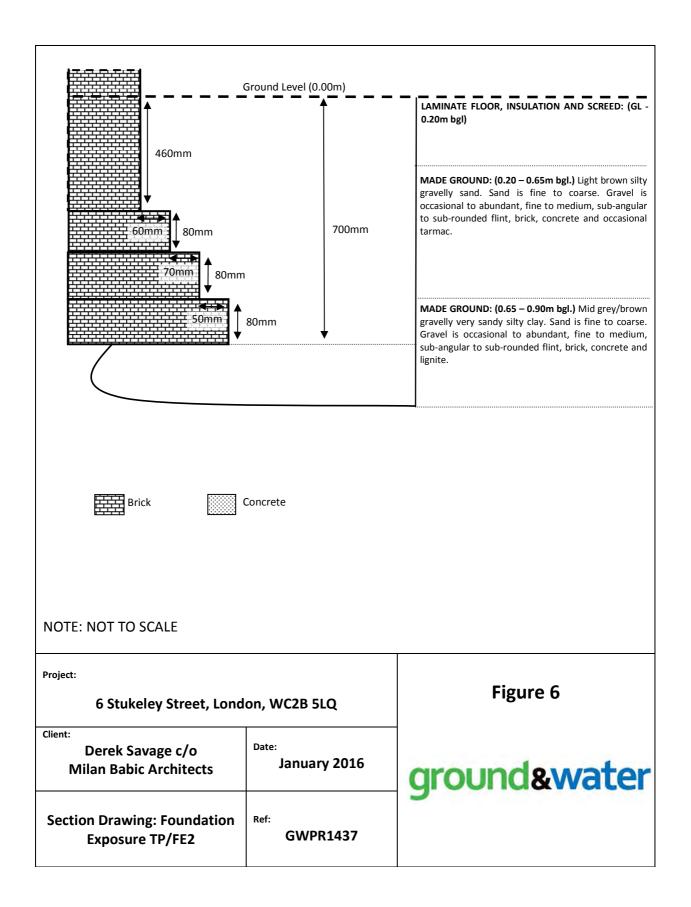

The Topsoil must be fit for purpose and must either be supplied with traceable chemical laboratory test certificates or be tested, either prior to placing (ideally) or after placing, to ensure that the human receptor cannot come into contact with compounds that could be detrimental to human health. The compounds that are to be tested for are those given in the LQM CIEH Generic Assessment Criteria, which can be viewed in Appendix E of this report.


5.6 Duty of Care


Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.


To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust were generated as a result of construction activities.


The site should be securely fenced at all times to prevent unauthorised access. Washing facilities should be provided and eating restricted to mess huts.



APPENDIX A Conditions and Limitations

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

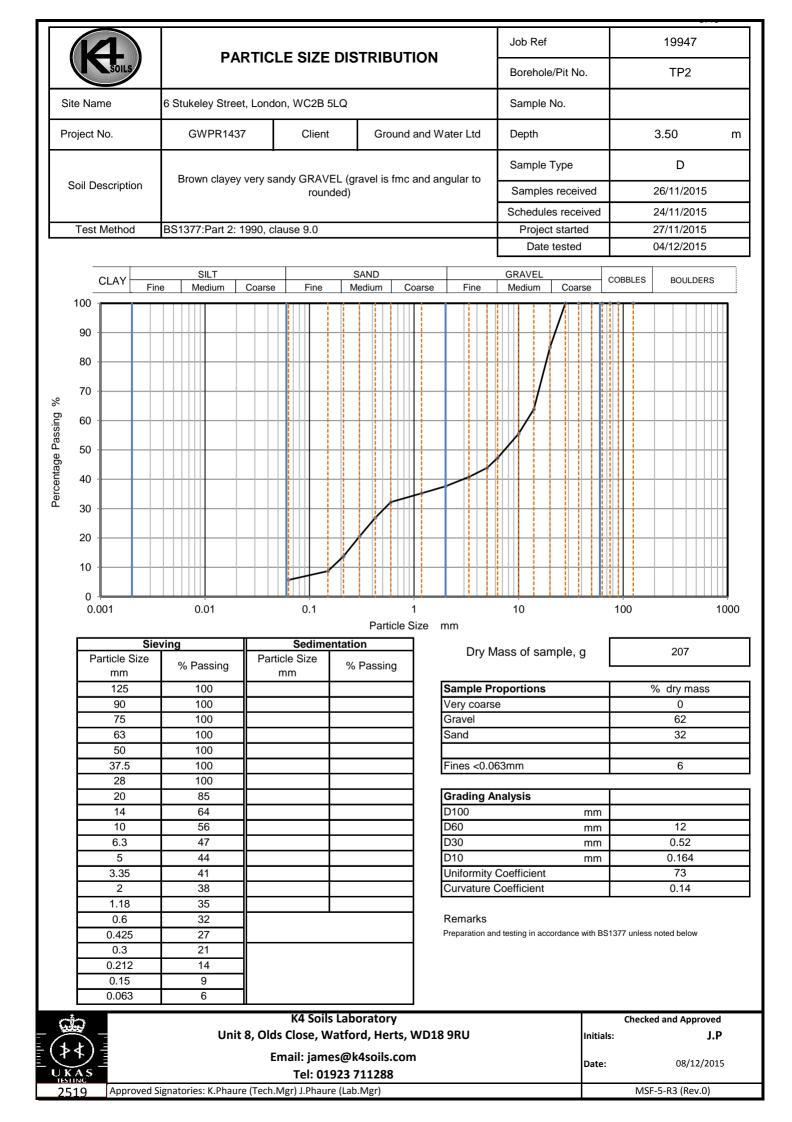
The conclusions and recommendations relate to 6 Stukeley Street, Covent Garden, London WC2B

5LQ.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.


Recipients are not permitted to publish this report outside of their organisation without our express written consent.

APPENDIX B Fieldwork Logs

vate	r						⊉groundandwater.co.uk water.co.uk	BH1	
io at N	2000				voia et t			Sheet 1 of Hole Typ	
ject Na stuklev	ame Street				oject N WPR1		Co-ords: -	WS	Ċ
ation:		WC2	B 5LQ		VVI IXI	107		Scale	
							Level: -	1:50	
ent:	Derek S	Sovoa	_				Dates: 02/11/2015-03/11/2015	Logged B	3y
		-			1	,	Dates: 02/11/2015-03/11/2015	JD	
Water Strikes		es & In Type	Situ Testing Results	Depth (m)	Level (m AOD	Legend	Stratum Description		
2	0	_		0.20		xxxx	LAMINTE FLOOR, INSULATION AND SCREED		-
	0.30 0.50	D D					MADE GROUND: Light brown silty gravelly sand. San coarse grained. Gravel is occasional to abundant, fine	e to	Ē
	0.75	D		0.65			medium, sub-angular to sub-rounded flint, brick, concruct occasional tarmac.	ete and	Ł
1	0.80 1.00	D D		0.90			MADE GROUND: Mid grey-brown gravelly very sandy Sand is fine to coarse grained. Gravel is occasional to	silty clay.	Æ
							abundant, fine to medium, sub-angular to sub-rounded brick, concrete and lignite.		'
	1.50	D		1.60			MADE GROUND: Light brown slightly sandy gravelly of		F
							fine to medium grained. Gravel is occasional, fine to n sub-rounded to sub-angular brick, concrete and lignite		
	2.00	D		2.20			MADE GROUND: Dark brown gravelly silty clay. Grav occasional, fine, sub-rounded flint and brick.	el is rare to	-2
4	2.50	D					MADE GROUND: Dark grey-brown gravelly clay. Grav	vel is rare to	
	2.00	D					occasional, fine to medium, sub-rounded flint.		-
	3.00	D							-3
				3.20			LYNCH HILL GRAVEL MEMBER: Light brown clayer	sandy GRAVEL.	-
	3.50	D					Gravel is abundant, fine to medium, sub-angular to rou flint. Sand is fine grained.	inded	-
									-
									-4
									-
									-
				5.00					
	5.20	D				x <u>x</u> <u>x</u>	LONDON CLAY FORMATION: Dark grey silty CLAY.		-
						xx			-
	5.80	D				X X			-
	6.20	D				× ×			-6
	0.20					N N			-
						x = _x			-
	6.80	D							-7
	7.30	D				2 2 2			
						× × ×			
	7.80	D							
				8.00		1000	End of Borehole at 8.00 m		+8
									ŀ
									-
									- - - 9
									-
									ŀ
		Туре	Results	_					-
narks:			e to 3.50m be						J
		amer		-yas ar	iu grou	nuwatel	r monitoring well installed to 8.00m bgl. cured by drilling process.	AG	S

APPENDIX C Geotechnical Laboratory Test Results

K				Summary of Classification Test Results										
Job No.	~		Project	. Name	3	<u> </u>	Progr	ramme						
	19947		6 Stuke	6 Stukeley Street, London, WC2B 5LQ						received received		1/2015 1/2015		
Project No.			Client	-					Project sta			1/2015 1/2015		
	GWPR1437				Water Ltd				Testing St			2/2015		
Hole No.		San	mple	т <u> </u>	Soil Description	NMC	Passing 425µm	LL	PL	PI	Rem	narks		
	Ref	Тор	Base	Туре		%	425µm %	%	%	%				
BH1		7.30		D	Grey slightly gravelly silty CLAY with occasional sandy clay pockets (gravel fm and sub-angular)		92	56	23	33				
cio					rt 2: 1990:					· ,		ked and		
	Natural Moisture Content : clause 3.2 Test Report by K4 SOILS LABORATORY Atterberg Limits: clause 4.3 and 5.0 Unit 8 Olds Close Olds Approach						ļ	Appr	roved					
Watford Herts WD						18 9RU	1	ļ	Initials	J.P				
				Tel: 01923 711 288 Email: James@k4soils.com							Date:	08/12/2015		
2519	Appro	ved Sigr	natories:	K.Pha	ure (Tech.Mgr) J.Phaure (Lab.Mgr)						MSF-5-R1	1(a) -Rev. 0		

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results Tested in accordance with BS1377 : Part 3 : 1990, clause 5.3 and clause 9

Job No. Project Name Programme Samples received 26/11/2015 19947 6 Stukeley Street, London, WC2B 5LQ Schedule received 24/11/2015 Client Project started 27/01/2015 Project No. GWPR1437 01/12/2015 Ground and Water Ltd **Testing Started** Sample Dry Mass SO3 SO4 passing Content Content pН Hole No. Soil description Remarks 2mm Ref Тор Base Туре % g/l g/l Grey slightly gravelly silty CLAY with occasional BH1 7.30 D sandy clay pockets (gravel is fm and sub-0.82 7.55 95 0.99 angular) Brown clayey very sandy GRAVEL (gravel is fmc TP2 3.50 D 38 0.24 0.29 7.65 and angular to rounded) Test Report by K4 SOILS LABORATORY Checked and Approved Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Initials J.P Tel: 01923 711 288 Email: James@k4soils.com Date: 08/12/2015 MSF-5-R29 (Rev. 0) Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

APPENDIX D Chemical Laboratory Test Results

James Dalziel Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 15-38154

Site Reference:	6 Stukeley Street, London, WC2B 5LQ					
Project / Job Ref:	GWPR1437					
Order No:	None Supplied					
Sample Receipt Date:	26/11/2015					
Sample Scheduled Date:	26/11/2015					
Report Issue Number:	1					
Reporting Date:	02/12/2015					

Authorised by: Russell Jarvis

Director **On behalf of QTS Environmental Ltd** Authorised by:

Q KOL Kevin Old Director **On behalf of QTS Environmental Ltd**

Soil Analysis Certificate					
QTS Environmental Report No: 15-38154	Date Sampled	02/11/15	02/11/15	02/11/15	
Ground & Water Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: 6 Stukeley Street, London, WC2B	TP / BH No	TP2	TP2	TP2	
5LQ					
Project / Job Ref: GWPR1437	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: None Supplied	Depth (m)	0.50	1.00	2.00	
Reporting Date: 02/12/2015	QTSE Sample No	179870	179871	179872	

Determinand	Unit	RL	Accreditation				
Asbestos Screen	N/a	N/a	ISO17025	Not Detected			
рН	pH Units	N/a	MCERTS	8.9	8.1	7.9	
Total Cyanide	mg/kg	< 2	NONE	< 2			
Total Sulphate as SO ₄	mg/kg	< 200	NONE		5657	872	
Total Sulphate as SO ₄	%	< 0.02	NONE		0.57	0.09	
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	1660	1630	162	
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	1.66	1.63	0.16	
Total Sulphur	%	< 0.02	NONE		0.31	0.04	
Organic Matter	%	< 0.1	MCERTS	1.1			
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	0.6			
Ammonium as NH_4	mg/kg	< 0.5	NONE		< 0.5	2.1	
Ammonium as NH_4	mg/l	< 0.05	NONE		< 0.05	0.21	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		11	9	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		5.6	4.5	
Water Soluble Nitrate (2:1) as NO_3	mg/kg	< 3	MCERTS		84	135	
Water Soluble Nitrate (2:1) as NO_3	mg/l	< 1.5	MCERTS		41.9	67.3	
Arsenic (As)	mg/kg	< 2	MCERTS	14			
W/S Boron	mg/kg	< 1	NONE	< 1			
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2			
Chromium (Cr)	mg/kg	< 2	MCERTS	15			
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			
Copper (Cu)	mg/kg	< 4	MCERTS	106			
Lead (Pb)	mg/kg	< 3	MCERTS	383			
W/S Magnesium	mg/l	< 0.1	NONE		7.5	2.6	
Mercury (Hg)	mg/kg	< 1	NONE	3.5			
Nickel (Ni)	mg/kg	< 3	MCERTS	13			
Selenium (Se)	mg/kg	< 3	NONE	< 3			
Vanadium (V)	mg/kg	< 2	NONE	28			
Zinc (Zn)	mg/kg	< 3	MCERTS	82			
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Wioletta Goral

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis ^(S)

Soil Analysis Certificate - Speciated PAHs									
QTS Environmental Report No: 15-38154	Date Sampled	02/11/15							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 6 Stukeley Street, London,	TP / BH No	TP2							
WC2B 5LQ									
Project / Job Ref: GWPR1437	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.50							
Reporting Date: 02/12/2015	QTSE Sample No	179870							

Determinand	Unit	RL	Accreditation		
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	0.13	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	0.15	
Pyrene	mg/kg	< 0.1	MCERTS	0.12	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

QTS Environmental Ltd - Registered in England No 06620874

Soil Analysis Certificate - TPH CWG Banded									
QTS Environmental Report No: 15-38154	Date Sampled	02/11/15							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 6 Stukeley Street, London,	TP / BH No	TP2							
WC2B 5LQ									
Project / Job Ref: GWPR1437	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.50							
Reporting Date: 02/12/2015	QTSE Sample No	179870							

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - BTEX / MTBE									
QTS Environmental Report No: 15-38154	Date Sampled	02/11/15							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 6 Stukeley Street, London,	TP / BH No	TP2							
WC2B 5LQ									
Project / Job Ref: GWPR1437	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.50							
Reporting Date: 02/12/2015	QTSE Sample No	179870							

Determinand	Unit	RL	Accreditation	
Benzene	ug/kg	< 2	MCERTS	< 2
Toluene	ug/kg	< 5	MCERTS	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2
MTBE	ug/kg	< 5	MCERTS	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

QTS Environmental Ltd - Registered in England No 06620874

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 15-38154	
Ground & Water Ltd	
Site Reference: 6 Stukeley Street, London, WC2B 5LQ	
Project / Job Ref: GWPR1437	
Order No: None Supplied	
Reporting Date: 02/12/2015	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 179870	TP2	None Supplied	0.50	8.3	Brown sandy clay with brick and concrete
\$ 179871	TP2	None Supplied	1.00	21.8	Brown sandy clay with brick
\$ 179872	TP2	None Supplied	2.00	15.9	Black sandy clay with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

\$ samples exceeded recommended holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information	
QTS Environmental Report No: 15-38154	
Ground & Water Ltd	
Site Reference: 6 Stukeley Street, London, WC2B 5LQ	
Project / Job Ref: GWPR1437	
Order No: None Supplied	
Reporting Date: 02/12/2015	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	4	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	titration with Iron (11) suiphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil Soil	DD		Determination of water soluble magnesium by extraction with water followed by ICP-OES Determination of metals by aqua-regia digestion followed by ICP-OES	E025 E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	(II) suprate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	U	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil Soil	D AR	Sulphur - Total SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-	E024 E006
Soil	AR	Thiocyanate (as SCN)	MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
			Determination of organic matter by ovidising with potassium dichromate followed by titration with iron	
Soil	D	Total Organic Carbon (TOC)	(II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

APPENDIX E Soil Assessment Criteria

Appendix E

Soil Guideline Values and Genera Assessment Criteria

E1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

E1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
EA CLEA Bulletin (2009).
CLEA software version 1.06 (2009)
Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

• do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.

• do not cover risks to the environment, such as groundwater, ecosystems or buildings.

• do not provide a definitive test for telling when human health risks are significant.

• are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

E1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

E1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J.,. *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2^{nd} edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

E1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

• A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and

• A demonstration of the methodology, via the derivation of C4SLs for six substances – arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a

significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

"4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made

that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of riskbased Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

• By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);

• By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and

• By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

E1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment.* **Contaminated Land: Applications in the Real Environment**. 2009. Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

E1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

 \Rightarrow Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.

Developing more accurate parameters using site data.

E1.8 Phytotoxicity

 \Rightarrow

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

E1.8 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination – a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

Treatment of Hot-Spots

 \Rightarrow A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.

 \Rightarrow Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

E2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

C4SL Low Level of Toxicological Concern

	C4SL Low Level of Toxicological Concern									
Contaminant	ContaminantRwHP (mg/kg)RwoHP (mg/kg)Allotment (mg/kg)Commercial (mg/kg)POSresi (mg/kg)POSpark (mg/kg)									
Lead	<210	<330	<84	<6000	<760	<1400				

Phytotoxicity Recommendations

ICRCL 70/90 Restoration of metalliferous mining areas

Phyto	otoxicity (Harmful to Plants) Threshold Trigger Values							
Copper	250mg/kg							
Zinc	1000mg/kg							
Notes:								
Many cultivars and spe	Many cultivars and specifically grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for							
neutral or near neutral	pH. Site observation of plant vitality may give additional guidance.							

Cont'd from previous page: LQM CIEH Suitable 4 Use Levels (S4UL's)

LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals										
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Metals:										
Arsenic	37	40	43	640	79	170				
Beryllium	1.7	1.7	35	12	2.2	63				
Boron	290	11000	45	240000	21000	46000				
Cadmium	11	85	1.9	190	120	532				
Chromium (III)	910	910	18000	8600	1500	33000				
Chromium (VI)	6	6	1.8	33	7.7	20				
Copper	2400	7100	520	68000	12000	44000				
Elemental Mercury	1.2	1.2	21	58	16	30				
Inorganic Mercury	40	56	19	1100	120	240				
Methylmercury	11	15	6	320	40	68				
Nickel	180	180	230	980	230	3400				
Selenium	250	430	88	12000	1100	1800				
Vanadium	410	1200	91	9000	2000	5000				
Zinc	3700	40000	620	730000	81000	170000				

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds										
Contaminant	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
	1.0% SOM	0.087	0.38	0.017	27	72	90			
Benzene	2.5% SOM	0.170	0.70	0.034	47	72	100			
	6.0% SOM	0.370	1.40	0.075	90	73	110			
	1.0% SOM	130	880	22	56000	56000	87000			
Toluene	2.5% SOM	290	1900	51	110000	56000	95000			
	6.0% SOM	660	3900	120	180000	56000	100000			
	1.0% SOM	47	83	16	5700	24000	17000			
Ethylbenzene	2.5% SOM	110	190	39	13000	24000	22000			
	6.0% SOM	260	440	91	27000	25000	27000			
	1.0% SOM	60	88	28	6600	41000	17000			
o-Xylene	2.5% SOM	140	210	67	15000	42000	24000			
	6.0% SOM	330	480	160	33000	43000	33000			
	1.0% SOM	59	82	31	6200	41000	17000			
m-Xylene	2.5% SOM	140	190	74	14000	42000	24000			
	6.0% SOM	320	450	170	31000	43000	33000			
	4.000 0.000						47000			
	1.0% SOM	56	79	29	5900	41000	17000			
p-Xylene	2.5% SOM	130	180	69	14000	42000	23000			
	6.0% SOM	310	430	160	30000 is highlighted in bol	43000	31000			

Cont'd Overleaf:

GROUND AND WATER LIMITED

Cont'd from previous page:

	LQM/CIEH Suitable 4 Use Levels For TPH										
Alip	hatic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
	1.0% SOM	42	42	730	3,200 (304) ^{sol}	570,000 (304) ^{sol}	95,000 (304) ^{sol}				
EC 5-6	2.5% SOM	78	78	1,700	5,900 (558) ^{sol}	590,000	130,000 (558) ^{sol}				
	6.0% SOM	160	160	3,900	12,000 (1150) ^{sol}	600,000 ¹	180,000 (1150) ^{sol}				
	1.0% SOM	100	100	2,300	7,800 (144) ^{sol}	600,000	150,000 (144) ^{sol}				
EC >6-8	2.5% SOM	230	230	5,600	17,000 (322) ^{sol}	610,000	220,000 (322) ^{sol}				
	6.0% SOM	530	530	13,000	40,000 (736) ^{sol}	620,000	320,000 (736) ^{sol}				
	1.0% SOM	27	27	320	2,000 (78) ^{sol}	13,000	14,000 (78) ^{sol}				
EC >8-10	2.5% SOM	65	65	770	4,800 (118) ^{vap}	13,000	18,000 (118) ^{vap}				
	6.0% SOM	150	150	1,700	11,000 (451) ^{vap}	13,000	21,000 (451) ^{vap}				
		Van	100								
	1.0% SOM	130 (48) ^{vap}	130 (48) ^{vap}	2,200	9,700 (48) ^{sol}	13,000	21,000 (48) ^{sol}				
EC >10-12	2.5% SOM	330 (118) ^{vap}	330 (118) ^{vap}	4,400	23,000 (118) ^{vap}	13,000	23,000 (118) ^{vap}				
	6.0% SOM	760 (283) ^{vap}	770 (283) ^{vap}	7,300	47,000 (283) ^{vap}	13,000	24,000 (283) ^{vap}				
		col.			col		col				
	1.0% SOM	1,100 (24) ^{sol}	1,100 (24) ^{sol}	11,000	59,000 (24) ^{sol}	13,000	25,000 (24) ^{sol}				
EC >12-16	2.5% SOM	2,400 (59) ^{sol}	2,400 (59) ^{sol}	13,000	82,000 (59) ^{sol}	13,000	25,000 (59) ^{sol}				
	6.0% SOM	4,300 (142) ^{sol}	4,400 (142) ^{sol}	13,000	90,000 (142) ^{sol}	13,000	26,000 (142) ^{sol}				
	1.0% SOM	65,000 (8.48) ^{sol}	65,000 (8.48) ^{sol}	260,000	1,600,000	250,000	450,000				
EC >16-35	2.5% SOM	92,000 (21) ^{sol}	92,000 (21) ^{sol}	270,000	1,700,000	250,000	480,000				
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000				
	1.0% 5014	65 000 (8 48) ^{sol}	65,000 (8.48) ^{sol}	260,000	1 600 000	250,000	450.000				
	1.0% SOM	65,000 (8.48) ^{sol} 92,000 (21) ^{sol}	92,000 (8.48)	260,000	1,600,000	250,000	450,000				
EC >35-44	2.5% SOM			270,000	1,700,000	250,000	480,000				
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000				

E.

Cont'd from previous page:

	LQM/CIEH Suitable 4 Use Levels For TPH										
Aroma	atic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
565.7	1.0% SOM	70	370	13	26,000 (1220) ^{sol}	56,000	76,000 (1220 ^{sol}				
EC 5-7	2.5% SOM	140	690	27	46,000 (2260) ^{sol}	56,000	84,000 (2260) ^{sol}				
(Benzene)	6.0% SOM	300	1,400	57	86,000 (4710) ^{sol}	56,000	92,000 (4710) ^{sol}				
EC >7-8	1.0% SOM	130	860	22	56,000 (869) ^{vap}	56,000	87,000 (869) ^{sol}				
	2.5% SOM	290	1,800	51	110,000 (1920) ^{sol}	56,000	95,000 (1920) ^{sol}				
(Toluene)	6.0% SOM	660	3,900	120	180,000 (4360) ^{vap}	56,000	100,000 (4360) ^{vap}				
	1.0% SOM	34	47	8.6	3,500 (613) ^{vap}	5,000	7,200 (613) ^{vap}				
EC >8-10	2.5% SOM	83	110	21	8,100 (1500) ^{vap}	5,000	8,500 (1500) ^{vap}				
	6.0% SOM	190	270	51	17,000 (3850) ^{vap}	5,000	9,300 (3580) ^{vap}				
							col				
	1.0% SOM	74	250	13	16,000 (364) ^{sol}	5,000	9,200 (364) ^{sol}				
EC >10-12	2.5% SOM	180	590	31	28,000 (899) ^{sol}	5,000	9,700 (889) ^{sol}				
	6.0% SOM	380	1,200	74	34,000 (2150) ^{sol}	5,000	10,000				
	1.0% SOM	140	1,800	23	36,000 (169) ^{sol}	5,100	10,000				
EC >12-16	2.5% SOM	330	2,300 (419) ^{sol}	57	37,000	5,100	10,000				
	6.0% SOM	660	2,500	130	38,000	5,000	10,000				
	1.0% SOM	260	1,900	46	28,000	3,800	7,600				
EC >16-21	2.5% SOM	540	1,900	110	28,000	3,800	7,700				
	6.0% SOM	930	1,900	260	28,000	3,800	7,800				
			/		-,	-,					
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800				
EC >21-35	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800				
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900				
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800				
EC >35-44	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800				
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900				
	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800				
EC >44-70	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800				
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900				

SOM = Soil Organic Matter Content (%)

Determinant	S	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	210	3,000 (57.0) ^{sol}	34	84,000(57.0) ^{sol}	15,000	29,000
Acenapthene	2.5% SOM	510	4,700(141) ^{sol}	85	97,000(141) ^{sol}	15,000	30,000
	6.0% SOM	1100	6,000(336) ^{sol}	200	100,000	15,000	30,000
	1.0% SOM	170	2,900(86.1) ^{sol}	28	83,000(86.1) ^{sol}	15,000	29,000
Acenapthylene	2.5% SOM	420	4,600(212) ^{sol}	69	97,000(212) ^{sol}	15,000	30,000
	6.0% SOM	920	6,000(506) ^{sol}	160	100,000	15,000	30,000
	1.0% SOM	2,400	31,000(1.17) ^{vap}	380	520,000	74,000	150,000
Anthracene	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
	1.0% SOM	7.20	11	2.90	170	29	49
Benzo(a)anthracene	2.5% SOM	11	14	6.50	170	29	56
	6.0% SOM	13	15	13	180	29	62
	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(a)pyrene	2.5% SOM	2.70	3.20	2.00	35	5.70	12
	6.0% SOM	3.00	3.20	3.50	36	5.70	13
	1.0% SOM	2.60	3.90	0.99	44	7.10	13
Benzo(b)flouranthene	2.5% SOM	3.30	4.00	2.10	44	7.20	15
	6.0% SOM	3.70	4.00	3.90	45	7.20	16
	1.0% SOM	320	360	290	3,900	640	1,400
Benzo(ghi)perylene	2.5% SOM	340	360	470	4,000	640	1,500
	6.0% SOM	350	360	640	4,000	640	1,600
	1.0% SOM	77	110	37	1,200	190	370
Benzo(k)flouranthene	2.5% SOM	93	110	75	1,200	190	410
	6.0% SOM	100	110	130	1,200	190	440
	1.0% SOM	15	30	4.10	350	57	93
Chrysene	2.5% SOM	22	31	9.40	350	57	110
	6.0% SOM	27	32	19	350	57	120
	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
Dibenzo(ah)anthracene	2.5% SOM	0.28	0.32	0.27	3.60	0.57	1.30
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

LQM/CIE	LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)									
Determinar	nts	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
	1.0% SOM	280	1,500	52	2,3000	3,100	6,300			
Flouranthene	2.5% SOM	560	1,600	130	2,3000	3,100	6,300			
	6.0% SOM	890	1,600	290	2,3000	3,100	6,300			
	1.0% SOM	170	2,800 (30.9) ^{sol}	27	63,000(30.9) ^{sol}	9,900	20,000			
Flourene	2.5% SOM	400	3,800(76.5) ^{sol}	67	68,000	9,900	20,000			
	6.0% SOM	860	4,500(183) ^{sol}	160	71,000	9,900	20,000			
	1.0% SOM	27	45	9.50	500	82	150			
ndeno(123-cd)pyrene	2.5% SOM	36	46	21	510	82	170			
	6.0% SOM	41	46	39	510	82	180			
	1.0% SOM	2.30	2.6	4.10	190 [†] (76.4) ^{sol}	4,900 [†]	1,200 [†] (76.4)			
Napthalene	2.5% SOM	5.60	5.6	10	460 [†] (183) ^{sol}	4,900 [†]	1,900 [†] (183)			
	6.0% SOM	13	13	24	1,100 [†] (432) ^{sol}	4,900 [†]	3,000			
	1.0% SOM	95	1,300(183) ^{sol}	18	22,000	3,100	6,200			
Phenanthrene	2.5% SOM	220	1,500	38	22,000	3,100	6,200			
	6.0% SOM	440	1,500	90	23,000	3,100	6,300			
	1.0% SOM	620	3,700	110	54,000	7,400	15,000			
Pyrene	2.5% SOM	1200	3,800	270	54,000	7,400	15,000			
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000			
Coal Tar	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40			
(Benzo(a)pyrene used	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70			
as marker compound	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80			

 $^{\mathsf{vap}}-\mathsf{GAC}$ presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

Cont'd Overleaf:

LQM/CIEH Suitable 4 Use Levels (cont.)

LQM CIEH Genera	al Assessm	ent Criter	ria: Volatile and	Semi-Volati	ile Organic	Compounds
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Chloroalkanes & alkenes						
1,2 Dichloroethane						
1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21
2.5% SOM	0.011	0.013	0.0083	0.97	29	24
6.0% SOM	0.019	0.023	0.016	1.70	29	28
1,1,2,2 Tetrachloroethane						
1.0% SOM	1.60	3.90	0.41	270	1,400	1,800
2.5% SOM	3.40	8.00	0.89	550	1,400	2,100
6.0% SOM	7.50	17	2.00	1,100	1,400	2,300
					· · ·	
1,1,1,2 Tetrachloroethane						
1.0% SOM	1.20	1.50	0.79	110	1,400	1,500
2.5% SOM	2.80	3.50	1.90	250	1,400	1,800
6.0% SOM	6.40	8.20	4.40	560	1,400	2,100
					,	,
Tetrachloroethene						
1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)
2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 ^{sol} (951)
6.0% SOM	0.90	0.92	3.60	95	1,400	1,500
1,1,1 Trichloroethane						
1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)
2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)
				3,000	140,000	100,000
6.0% SOM	39	40	240			^{vap} (6392)
Tetrachloromethene						
1.0% SOM	0.026	0.026	0.45	2.90	890	190
2.5% SOM	0.056	0.056	1.00	6.30	920	270
6.0% SOM	0.130	0.130	2.40	14	950	400
Trichloroethene						
1.0% SOM	0.016	0.017	0.041	1.20	120	70
2.5% SOM	0.034	0.036	0.091	2.60	120	91
6.0% SOM	0.075	0.080	0.210	5.70	120	120
Tulable and the						
Trichloromethane	0.04	4.20	0.12	00	2 500	2,000
1.0% SOM	0.91	1.20	0.42	99	2,500	2,600
2.5% SOM	1.70	2.10	0.83	170 350	2,500 2,500	2,800 3,100
6.0% SOM	3.40	4.20	1.70	330	2,500	5,100
Vinyl Chloride						
1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80
2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00
6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40

	•		al Assessment platile Organic			_
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Explosives						
2,4,6 Trinitrotoluene						
1.0% SOM	1.60	65	0.24	1,000	130	260
2.5% SOM	3.70	66	0.58	1,000	130	270
6.0% SOM	8.10	66	1.40	1,000	130	270
RDX (Hexogen/Cyclonite/1,3,5- trinitro-1,3,5- triazacyclohexane)						
1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}
2.5% SOM	250	13,000	38	210,000	26,000	51,000
6.0% SOM	540	13,000	85	210,000	27,000	53,000
HMX (Octogen/1,3,5,7- tetrenitro-1,3,5,7- tetrazacyclo-octane)						
1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}
2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}
6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}
Atrazine						
1.0% SOM	3.30	610	0.50	9,300	1,200	2,300
2.5% SOM	7.60	620	1.20	9,400	1,200	2,400
6.0% SOM	17.40	620	2.70	9,400	1,200	2,400
Pesticides						
Aldrin						
1.0% SOM	5.70	7.30	3.20	170	18	30
2.5% SOM	6.60	7.40	6.10	170	18	31
6.0% SOM	7.10	7.50	9.60	170	18	31
Dieldrin						
1.0% SOM	0.97	7.00	0.17	170	18	30
2.5% SOM	2.00	7.30	0.41	170	18	30
6.0% SOM	3.50	7.40	0.96	170	18	31
Disklamas						
Dichlorvos	0.022	6.40	0.0049	140	16	26
1.0% SOM 2.5% SOM	0.032	6.40 6.50	0.0100	140	16	26
6.0% SOM	0.066	6.60	0.0220	140	16	20
Alpha Endorulfan						
Alpha - Endosulfan 1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400
2.5% SOM	18	280(0.003) ^{vap}	2.90	7,400(0.003)	1,200	2,400
6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0.016) ^{vap}	1,200	2,400
					Cont'd Over	

Cont'd from previous page:

LQM CIEH Gener	al Assessment	t Criteria: Volat	tile and Semi-V	olatile Organi	ic Comp	oounds
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Pesticides						
Beta - Endosulfan						
1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6,300(0.00007) ^{vap}	1,200	2,400
2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002) ^{vap}	1,200	2,400
6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1,200	2,500
Alpha - Hexachlorocyclohexanes						
1.0% SOM	0.23	6.90	0.035	170	24	47
2.5% SOM	0.55	9.20	0.087	180	24	48
6.0% SOM	1.20	11	0.210	180	24	48
Beta - Hexachlorocyclohexanes						
1.0% SOM	0.085	3.70	0.013	65	8.10	15
2.5% SOM	0.200	3.80	0.032	65	8.10	15
6.0% SOM	0.460	3.80	0.077	65	8.10	16
Gamma - Hexachlorocyclohexanes						
1.0% SOM	0.06	2.90	0.0092	67	8.2	14
2.5% SOM	0.14	3.30	0.0230	69	8.2	15
6.0% SOM	0.33	3.50	0.0540	70	8.2	15
Chlorobenzenes						
Chlorobenzene						
1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675) ^{sol}
2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520) ^{sol}
6.0% SOM	2.40	2.40	32	290	14,000	2,900
1,2-Dichlorobenzene						
1.0% SOM	23	24	94	2,000 (571) ^{sol}	90,000	24,000(571) ^{sol}
2.5% SOM	55	57	230	4,800 (1370) ^{sol}	95,000	36,000(1370 ^{)sol}
6.0% SOM	130	130	540	11,000 (3240) ^{sol}	98,000	51,000(3240) ^{sol}
1,3-Dichlorobenzene						
1.0% SOM	0.40	0.44	0.25	30	300	390
2.5% SOM	1.00	1.10	0.60	73	300	440
6.0% SOM	2.30	2.50	1.50	170	300	470
1,4-Dichlorobenzene						
1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000 ^g	36,000 (224) ^{vap}
2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}
6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (1280) ^{va}
1,2,3,-Trichlorobenzene	4.50	1.50	4.70	102	1 900	
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)vap}
2.5% SOM	3.60	3.70	12	250 590	1,800 1,800	1,100(330) ^{vap} 1,600(789) ^{vap}
6.0% SOM	8.60	8.80	28	Cont'd Ove		1,600(789)

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds										
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Chlorobenzenes										
1,2,3,- Trichlorobenzene										
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134) ^{vap}				
2.5% SOM	3.60	3.70	4.70	250	1,800	1,100(330 ^{)vap}				
6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}				
0.078 30101	8.00	8.80	20	330	1,000	1,000(705)				
1,2,4,- Trichlorobenzene										
1.0% SOM	2.60	2.60	55	220	15,000	1,700(318) ^{vap}				
2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^{vap}				
6.0% SOM	15	15	320	1,300	19,000	4,000(1880) ^{vap}				
1,3,5,- Trichlorobenzene						van				
1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{vap}				
2.5% SOM	0.81	0.81	12	55	1,700	590(90.8) ^{vap}				
6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{vap}				
1,2,3,4,- Tetrachlorobenzene										
1.0% SOM	15	24	4.40	1,700(122 ^{)vap}	830	1,500(122) ^{vap}				
2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600				
6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600				
1,2,3,5,- Tetrachlobenzene				100		100				
1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}				
2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120				
6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130				
1,2,4, 5,- Tetrachlobenzene										
1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25				
2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26				
6.0% SOM	1.60	3.50	0.37	96	13	26				
Pentachlrobenzene										
1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190				
2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190				
6.0% SOM	22	38	7.00	830	100	190				
Hexachlorobenzene	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	20				
1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47		16	30				
2.5% SOM	4.90	6.70 (0.50) ^{vap}	1.10	120	16	30				
6.0% SOM	4.90	0.70(1.2)	2.50	120	16	30				

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds						
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Phenols & Chlorophenols						
Phenols						
1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,000)	760 ^{dir} (8,600)
2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11,000)	1,500 ^{dir} (9,700)
6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11,000)	3,200 ^{dir} (11,000)
Chlorophenols (4 Congeners)						
1.0% SOM	0.87	94	0.13	3,500	620	1,100
2.5% SOM	2.00	150	0.30	4,000	620	1,100
6.0% SOM	4.50	210	0.70	4,300	620	1,100
Pentachlorophenols						
1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110
2.5% SOM	0.52	29	0.08	400	60	120
6.0% SOM	1.20	31	0.19	400	60	120
Others						
Others						
Carbon Disulphide						
1.0% SOM	0.14	0.14	4.80	11	11,000	1,300
2.5% SOM	0.29	0.29	10	22	11,000	1,900
6.0% SOM	0.62	0.62	23	47	12,000	2,700
Hexachloro-1,3- Butadiene						
1.0% SOM	0.29	0.32	0.25	31	25	48
2.5% SOM	0.70	0.78	0.61	68	25	50
6.0% SOM	1.60	1.80	1.40	120	25	51

Г

Cont'd Overleaf:

CL:AIRE Soil Generic Assessment Criteria				
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)
Metals:				
Antimony	ND	550	ND	7500
Barium	ND	1300	ND	22000
Molybdenum	ND	670	ND	17000

ND – Not Derived.

NA – Not Applicable

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds					
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	
1,1,2 Trichloroethane					
1.0% SOM	0.60	0.88	0.28	94	
2.5% SOM	1.20	1.8	0.61	190	
6.0% SOM	2.70	3.9	1.40	400	
1,1-Dichloroethane					
1.0% SOM	2.40	2.50	9.20	280	
2.5% SOM	3.90	4.10	17	450	
6.0% SOM	7.40	7.70	35	850	
1,1-Dichloroethene					
1.0% SOM	0.23	0.23	2.80	26	
2.5% SOM	0.40	0.41	5.60	46	
6.0% SOM	0.82	0.82	12	92	
1,2,4-Trimethylbenzene					
1.0% SOM	0.35	0.41	0.38	42	
2.5% SOM	0.85	0.99	0.93	99	
6.0% SOM	2.00	2.30	2.20	220	
1,2-Dichloropropane					
1.0% SOM	0.024	0.024	0.62	3.3	
2.5% SOM	0.042	0.042	1.20	5.9	
6.0% SOM	0.084	0.085	2.60	12	
2,4-Dimethylphenol					
1.0% SOM	19	210	3.10	16000*	
2.5% SOM	43	410	7.20	24000*	
6.0% SOM	97	730	17	30000*	
2,4-Dinitrotoluene					
1.0% SOM	1.50	170*	0.22	3700*	
2.5% SOM	3.20	170	0.49	3700*	
6.0% SOM	7.20	170	1.10	3800*	
2,6-Dinitrotoluene					
1.0% SOM	0.78	78	0.12	1900*	
2.5% SOM	1.70	84	0.27	1900*	
6.0% SOM	3.90	87	0.61	1900*	
2-Chloronapthalene					
1.0% SOM	3.70	3.80	40	390*	
2.5% SOM	9.20	9.30	98	960*	
6.0% SOM	22	22	230	2200*	

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds				
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)
Biphenyl				
1.0% SOM	66*	220*	14	18000*
2.5% SOM	160	500*	35	33000*
6.0% SOM	360	980*	83	48000*
Bis (2-ethylhexyl) phthalate				
1.0% SOM	280*	2700*	47*	85000*
2.5% SOM	610*	2800*	120*	86000*
6.0% SOM	1100*	2800*	280*	86000*
Bromobenzene				
1.0% SOM	0.87	0.91	3.2	97
2.5% SOM	2.0	2.1	7.6	220
6.0% SOM	4.7	4.9	18	520
Bromodichloromethane				
1.0% SOM	0.016	0.019	0.016	2.1
2.5% SOM	0.030	0.034	0.032	3.7
6.0% SOM	0.061	0.070	0.068	7.6
Bromoform				
1.0% SOM	2.8	5.2	0.95	760
2.5% SOM	5.9	11	2.1	1500
6.0% SOM	13	23	4.6	3100
Butyl benzyl phthalate				
1.0% SOM	1400*	42000*	220*	940000*
2.5% SOM	3300*	44000*	550*	940000*
6.0% SOM	7200*	44000*	1300*	950000*
Chloroethane				
1.0% SOM	8.3	8.4	110	960
2.5% SOM	11	11	200	1300
6.0% SOM	18	18	380	2100
Chloromethane				
1.0% SOM	0.0083	0.0085	0.066	1.0
2.5% SOM	0.0098	0.0099	0.13	1.2
6.0% SOM	0.013	0.013	0.23	1.6
Cis 1,2 Dichloroethene				
1.0% SOM	0.11	0.12	0.26	14
2.5% SOM	0.19	0.12	0.50	24
6.0% SOM	0.37	0.39	1.0	47

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds				
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)
Dichloromethane				
1.0% SOM	0.58	2.10	0.10	270
2.5% SOM	0.98	2.80	0.19	360
6.0% SOM	1.70	4.50	0.34	560
Diethyl Phthalate				
1.0% SOM	120*	1800*	19*	150000*
2.5% SOM	260*	3500*	41*	220000*
6.0% SOM	570*	6300*	94*	290000*
Di-n-butyl phthalate				
1.0% SOM	13*	450*	2.00	15000*
2.5% SOM	31*	450*	5.00	15000*
6.0% SOM	67*	450*	12	15000*
Di-n-octyl phthalate				
1.0% SOM	2300*	3400*	940*	89000*
2.5% SOM	2800*	3400*	2100*	89000*
6.0% SOM	3100*	3400*	3900*	89000*
Hexachloroethane				
1.0% SOM	0.20	0.22	0.27	22*
2.5% SOM	0.48	0.54	0.67	53*
6.0% SOM	1.10	1.30	1.60	120*
Isopropylbenzene				
1.0% SOM	11	12	32	1400*
2.5% SOM	27	28	79	3300*
6.0% SOM	64	67	190	7700*
Methyl tert-butyl ether				
1.0% SOM	49	73	23	7900
2.5% SOM	84	120	44	13000
6.0% SOM	160	220	90	24000
Propylbenzene				
1.0% SOM	34	40	34	4100*
2.5% SOM	82	97	83	9700*
6.0% SOM	190	230	200	21000*
Styrene				
1.0% SOM	8.10	35	1.60	3300*
2.5% SOM	19	78	3.70	6500*
6.0% SOM	43	170	8.70	11000*

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds				
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)
Total Cresols (2-, 3-, and 4- methylphenol)				
1.0% SOM	80	3700	12	160000
2.5% SOM	180	5400	27	180000*
6.0% SOM	400	6900	63	180000*
Trans 1,2 Dichloroethene				
1.0% SOM	0.19	0.19	0.93	22
2.5% SOM	0.34	0.35	1.90	40
6.0% SOM	0.70	0.71	0.24	81
Tributyl tin oxide				
1.0% SOM	0.25	1.40	0.042	130*
2.5% SOM	0.59	3.10	0.100	180*
6.0% SOM	1.30	5.70	0.240	200*

Notes: *Soil concentration above soil saturation limit

APPENDIX F Waste Hazard Assessment

Waste Classification Report

Job name

GWPR1437 6 Stukeley Street, London, WC2B 5LQ

Waste Stream

Ground and Water V2 PA

Comments

Project

GWPR1437

Site

6 Stukeley Street, London, WC2B 5LQ

Classified by

Name: Allvey, Phillip Date: 14/12/2015 13:06 UTC Telephone: 07740110219 Company: Ground and Water Limited 2 The Long Barn, Norton Farm Selborne Road Alton GU34 3NB

Report

Created by: Allvey, Phillip Created date: 14/12/2015 13:06 UTC

Job summary

	-				
# S	ample Name	Depth [m]	Classification Result	Hazardous properties	Page
1 T	P2/0.50m		Non Hazardous		2

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	4
Appendix B: Notes	6
Appendix C: Version	6

Classification of sample: TP2/0.50m

🖾 Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
TP2/0.50m	Chapter:	17: Construction and Demolition Wastes (including
Sample Depth:		excavated soil from contaminated sites)
0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in
Moisture content: 0%		17 05 03)
(no correction)		,

Hazard properties

None identified

Determinands (Moisture content: 0%, no correction)

pH: (Whole conc. entered as: 8.9 pH, converted to conc.:8.9 pH or 8.9 pH)

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.768 mg/kg or <0.000377%) IGNORED Because: "<LOD"

arsenic trioxide: (Cation conc. entered: 14 mg/kg, converted to compound conc.:18.485 mg/kg or 0.00185%) boron tribromide/trichloride/trifluoride (combined): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

cadmium sulfide: (Cation conc. entered: <0.2 mg/kg, converted to compound conc.:<0.257 mg/kg or <0.0000257%, Note 1 conc.: <0.00002%) IGNORED Because: "<LOD"

Chromium (III) Sulphate: (Whole conc. entered as: 15 mg/kg or 0.0015%)

chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

copper (I) oxide: (Cation conc. entered: 106 mg/kg, converted to compound conc.:119.344 mg/kg or 0.0119%) lead chromate: (Cation conc. entered: 383 mg/kg, converted to compound conc.:597.409 mg/kg or 0.0597%, Note 1 conc.: 0.0383%)

mercury dichloride: (Cation conc. entered: 3.5 mg/kg, converted to compound conc.:4.737 mg/kg or 0.000474%) nickel dihydroxide: (Cation conc. entered: 13 mg/kg, converted to compound conc.:20.533 mg/kg or 0.00205%) selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex: (Cation conc. entered: <3 mg/kg, converted to compound conc.:<7.661 mg/kg or <0.000766%) IGNORED Because: "<LOD"

divanadium pentaoxide; vanadium pentoxide: (Cation conc. entered: 28 mg/kg, converted to compound conc.:49.985 mg/kg or 0.005%)

zinc chromate: (Cation conc. entered: 82 mg/kg, converted to compound conc.:227.48 mg/kg or 0.0227%) phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" phenanthrene: (Whole conc. entered as: 0.13 mg/kg or 0.000013%)

anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

fluoranthene: (Whole conc. entered as: 0.15 mg/kg or 0.000015%)

pyrene: (Whole conc. entered as: 0.12 mg/kg or 0.000012%)

benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" benzene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD" toluene: (Whole conc. entered as: <2 mg/kg or <0.0005%) IGNORED Because: "<LOD" ethylbenzene: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" xylene: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD" o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

diesel petroleum group: (Whole conc. entered as: <21 mg/kg or <0.0021%) IGNORED Because: "<LOD" TPH (C6 to C40) petroleum group: (Whole conc. entered as: <42 mg/kg or <0.0042%) IGNORED Because: "<LOD"

Legend

A- This determinand has one or more of its Hazard Statements and Risk Phrases defined and maintained by the Classifier

Notes utilised in assessment

C14: Step 5

"identify whether any individual ecotoxic substance is present at or above a cut-off value ...", used on:

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "arsenic trioxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "copper (I) oxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "mercury dichloride" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel dihydroxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel dihydroxide" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "zinc chromate" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "givene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "givene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "givene" Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "givene"

Note 1, used on:

Test: "HP 5 on STOT SE 2; H371, STOT RE 2; H373" for determinand: "lead chromate" Test: "HP 7 on Carc. 1B; H350, Carc. 1A; H350, Carc. 1B; H350i, Carc. 1A; H350i" for determinand: "lead chromate" Test: "HP 10 on Repr. 1A; H360, Repr. 1B; H360, Repr. 1B; H360F, Repr. 1A; H360F, Repr. 1A; H360D, Repr. 1B; H360FD, Repr. 1A; H360FD, Repr. 1A; H360FD, Repr. 1A; H360Fd, Repr. 1B; H360Dfd, Repr. 1B; H360Df, Repr. 1A; H360Df, Repr

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead chromate"

Determinand notes

Note 1, used on:

determinand: "lead chromate"

Note A , used on:

determinand: "zinc chromate"

Appendix A: Classifier defined and non CLP determinands

рΗ

Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06/08/2015 Risk Phrases: R14, T+; R26/28, C; R34, C; R35 Hazard Statements: EUH014, Acute Tox. 2; H330, Acute Tox. 2; H300, Skin Corr. 1A; H314, Skin Corr. 1B; H314

Chromium (III) Sulphate (CAS Number: 10101-53-8)

Comments: Data source: 10101-53-8 Data source date: 23/06/2015 Risk Phrases: None. Hazard Statements: None.

acenaphthylene (CAS Number: 208-96-8)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R22, R26, R27, R36, R37, R38 Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (CAS Number: 83-32-9)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, N; R50/53, N; R51/53 Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2; H411

fluorene (CAS Number: 86-73-7)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: N; R50/53 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (CAS Number: 85-01-8)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R22, R36, R37, R38, R40, R43, N; R50/53 Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Skin Irrit. 2; H315

anthracene (CAS Number: 120-12-7)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R36, R37, R38, R43, N; R50/53 Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

fluoranthene (CAS Number: 206-44-0)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xn; R22, N; R50/53 Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (CAS Number: 129-00-0)

Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: Xi; R36/37/38, N; R50/53 Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

indeno[123-cd]pyrene (CAS Number: 193-39-5)

Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R40 Hazard Statements: Carc. 2; H351

benzo[ghi]perylene (CAS Number: 191-24-2)

Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23/07/2015 Risk Phrases: N; R50/53 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

ethylbenzene (CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statements: Carc. 2; H351 Reason: 03/06/2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

diesel petroleum group (CAS Number: 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9)

Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R40, R51/53, R65, R66 Hazard Statements: Flam. Liq. 3; H226, Skin Irrit. 2; H315, Acute Tox. 4; H332, Carc. 2; H351, Asp. Tox. 1; H304, STOT RE 2; H373, Aquatic Chronic 2; H411

TPH (C6 to C40) petroleum group

Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R10, R45, R46, R51/53, R63, R65 Hazard Statements: Flam. Liq. 3; H226, Asp. Tox. 1; H304, STOT RE 2; H373, Muta. 1B; H340, Carc. 1B; H350, Repr. 2; H361d, Aquatic Chronic 2; H411

Appendix B: Notes

C14: Step 5

from section: WM3: C14 in the document: "WM3 - Waste Classification"

"identify whether any individual ecotoxic substance is present at or above a cut-off value ..."

Note 1

from section: 1.1.3.2, Annex VI in the document: "CLP Regulations"

"The concentration stated or, in the absence of such concentrations, the generic concentrations of this Regulation (Table 3.1) or the generic concentrations of Directive 1999/45/EC (Table 3.2), are the percentages by weight of the metallic element calculated with reference to the total weight of the mixture."

Note A

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Without prejudice to Article 17(2), the name of the substance must appear on the label in the form of one of the designations given in Part 3. In Part 3, use is sometimes made of a general description such as '... compounds' or '... salts'. In this case, the supplier is required to state on the label the correct name, due account being taken of section 1.1.1.4."

Appendix C: Version

Classification utilises the following:

- CLP Regulations Regulation 1272/2008/EC of 16 December 2008
- 1st ATP Regulation 790/2009/EC of 10 August 2009
- 2nd ATP Regulation 286/2011/EC of 10 March 2011
- 3rd ATP Regulation 618/2012/EU of 10 July 2012
- 4th ATP Regulation 487/2013/EU of 8 May 2013
- Correction to 1st ATP Regulation 758/2013/EU of 7 August 2013
- 5th ATP Regulation 944/2013/EU of 2 October 2013
- 6th ATP Regulation 605/2014/EU of 5 June 2014
- WFD Annex III replacement Regulation 1357/2014/EU of 18 December 2014
- Revised List of Wastes 2014 Decision 2014/955/EU of 18 December 2014
- WM3 Waste Classification May 2015
- 7th ATP Regulation 2015/1221/EU of 24 July 2015
- POPs Regulation 2004 Regulation 850/2004/EC of 29 April 2004
- 1st ATP to POPs Regulation Regulation 756/2010/EU of 24 August 2010
- 2nd ATP to POPs Regulation Regulation 757/2010/EU of 24 August 2010

HazWasteOnline Engine: WM3 1st Edition, May 2015 HazWasteOnline Engine Version: 2015.342.2986.5985 (08 Dec 2015) HazWasteOnline Database: 2015.342.2986.5985 (08 Dec 2015)