RESULTS OF SUBSOIL INVESTIGATION

ADDRESS:

58 Gloucester Crescent London NW1 7EG

CLIENT:

Redbourne Consultants 3 Redbourne Avenue Finchley London N3 2BP

OUR REF: A.3681

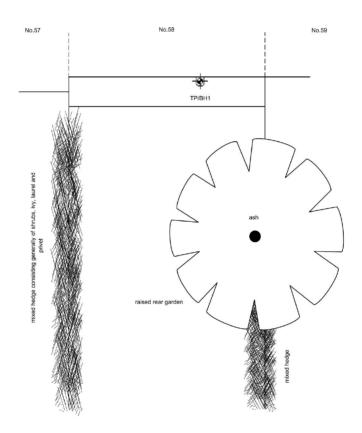
YOUR REF: RC 1541/16 DATE: 24th February 2017

MERIDIAN SOILS LIMITED

Electron House
Office & Technology Centre
West Hanningfield Road
Great Baddow
Chelmsford
Essex
CM2 8JT

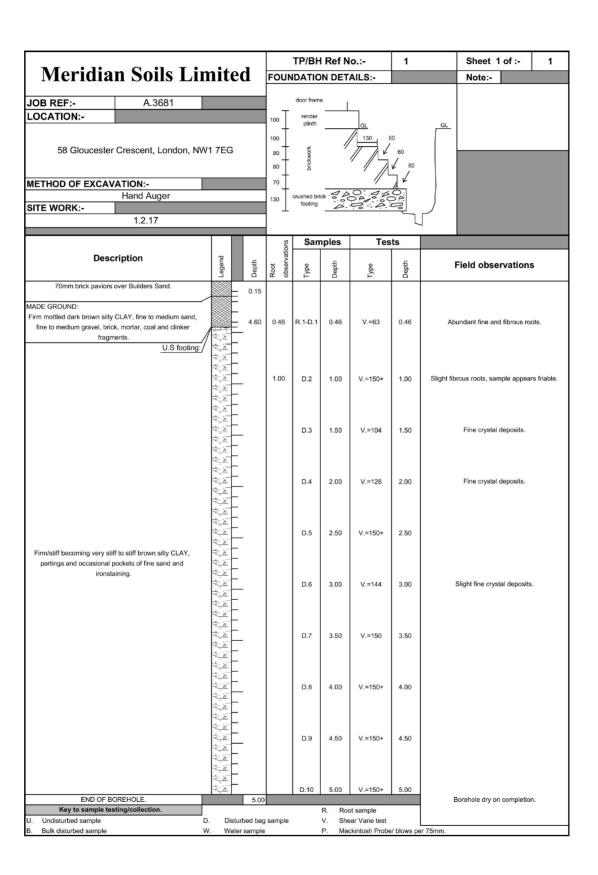
Tel: 01245 473113

Email: mail@meridiansoils.co.uk Web: www.meridiansoils.co.uk

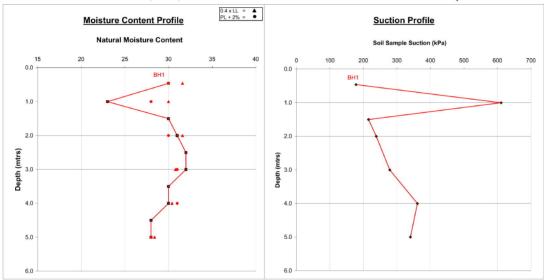

Meridian Soils Limited

Office & Technology Centre, West Hanningfield Road, Great Baddow, Essex. CM2 8JT
ne: 01245 473113 e-mail: mail@meridiansoils.co.uk Web: www.meridiansoils

Telephone: 01245 4/3113	e-mail: mail@meridiansoils.co.uk	Web: www.meridiansoils.co.uk						
Location:	58 Gloucester Crescent London NW1 7FG		Date:	February 2017				

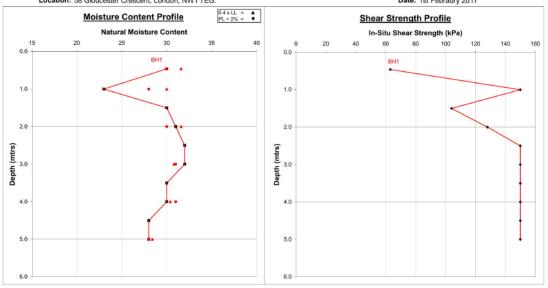

A.3681

Site Location Plan


Scale: NTS

Title:

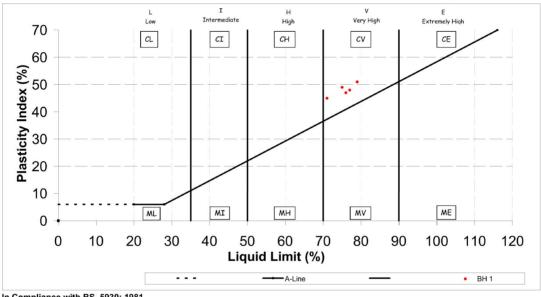
Electron House, Office & Technology Centre, West Hanningfield Road, Great Baddow, Essex. CM2 8JT
Tel: 01245 473113 E-mail: mail@meridiansoils.co.uk Web: www.meridiansoils.co.uk


Our Ref: A.3681 Location: 58 Gloucester Crescent, London, NW1 7EG. Client Ref: RC 1541/16 Date: 1st Febraury 2017

- NOTES 1 Unless specifically noted, the profiles have not been related to a site datum.
 2 if plotted, 0.4 LL and PL +2 (after Driscoll, 1983) should only be applied to London Clay (and similar overconsolidated clays) at shallow depths.
- If shown, the theoretical equilibrium profiles (defining the assumed typical range for the value of Ko=1.0 and Ko=2.5) are based on conventional assumptions associated with London Clay and other similarly overconsolidated clays at shallow depths and include a component of sample disturbance appropriate to the method of soil sampling and any recompaction. The theoretical equilibrium profile lines are only set as a guide and would be subject to change dependant upon the subsoil conditions.

Electron House, Office & Technology Centre, West Hanningfield Road, Great Baddow, Essex. CM2 8JT Tel: 01245 473113 E-mail: mail@meridiansoils.co.uk Web: www.meridiansoils.co.uk

Our Ref: A.3681 Client Ref: RC 1541/16 Location: 58 Gloucester Crescent, London, NW1 7EG. Date: 1st Febraury 2017



- Unless specifically noted, the profiles have not been related to a site datum
 If plotted, 0.4 LL and PL+2 should only be applied to London Clay (and similar overconsolidated clays) at shallow depths. (Driscoll, 1983).
 Unless otherwise stated, values of Shear Strength were determined in situ using a Pilcon Hand Vane the calibration of which is limited to a maximum reading of 150 kPa

Electron House, Office & Technology Centre, West Hanningfield Road, Great Baddow, Essex. CM2 8JT
Tel: 01245 473113 E-mail: mail@meridiansoils.co.uk Web: www.meridiansoils.co.uk

Client Ref: RC 1541/16

Date: 1st Febraury 2017 Our Ref: A.3681 Location: 58 Gloucester Crescent, London, NW1 7EG.

In Compliance with BS. 5930: 1981

Electron House, Office & Technology Centre, West Hanningfield Road, Great Baddow, Essex. CM2 8JT Telephone :- 01245 473113 E-mail: mail@meridiansoils.co.uk www.meridiansoils.co.uk www.meridiansoils.co.uk

Our Ref: A.3681

Client Ref: RC 1541/16
Date: 1st Febraury

L	ocation:	58 Gloucest	er Cresce	nt, London, N	W1 7EG.						Date:	1st Febra	aury 201	7		
TP/BH	Sample	Depth	Moisture	Passing	Equivalent	Liquid	Plastic	Plasticity	Soil Class	Filter Paper	Soil Sample	Water			Insitu	Shear Van
No.	No.	mtrs.	Content	0.425um sieve	Moisture	Limit	Limit	Index		contact time	Suction	Soluble	Class	pH value		ngth (kPa)
			%	%	%	%	%	%		(Hours)	(kPa)	Sulphate			Mackintosh Prob	
															(Blows Per 75mr	
															1	
1	D.1	0.46 (U.S)	30	100	30	79	28	51	CV	168	178				V.=	63
	D.2	1.00	23	100	23	75	26	49	CV	168	611				V.=	150
	D.3	1.50	30							168	215				V.=	104
	D.4	2.00	31	100	31	79	28	51	CV	168	238				V.=	128
	D.5	2.50	32												V.=	150
	D.6	3.00	32	100	32	77	29	48	CV	168	279				V.=	150
	D.7	3.50	30												V.=	150
	D.8	4.00	30	100	30	76	29	47	CV	168	361				V.=	150
	D.9	4.50	28												V.=	150
	D.10	5.00	28	100	28	71	26	45	CV	168	340				V.=	150
															ĺ	
	ľ	I		1	1		ı	I	1	I	I	I	1	i i	1	

References
BS 1377:Part 2:1990
BS 5930:1991
BRE IP 4/93
Shear strength values determined in-situ using a pilcon direct reading hand vane tester unless stated otherwise.

Meridian Soils Limited Electron House Office & Technology Centre West Hanningfield Road GREAT BADDOW, Essex CM2 8JT

14/02/2017

Dr Ian B K Richardson BSc, PhD, CBiol, MiBiol, MiHort, FLS James Richardson BSc (Hons. Biology)

Enterprise House 49-51 Whiteknights Road Reading RG6 7BB

Tel: (0118) 986 9552 (Direct line) E-mail: richardsons@botanical.net Web: www.botanical.net

Your ref: A-3681 Our ref: 74/8902

Dear Sirs

58 Gloucester Crescent, Camden

The samples you sent in relation to the above on 03/02/2017 (received by us on 06/02/2017) have been examined. The structure was referable as follows:

TP1, u/s footing - R.1

1 root: FRAXINUS (Ash). 14 further samples, not examined in detail appeared similar under low magnification. Alive, recently*.

15 samples: unfortunately insufficient cells for identification.

I trust this is of help. Please call us if you have any queries; our Invoice is enclosed.

Yours faithfully

Dr Ian B K Richardson

Based mainly on the Iodine test for starch. Starch is present in some cells of a living woody root, but is more or less rapidly broken down by soil micro-organisms on death of the root, sometimes before decay is evident. This result need not reflect the state of the parent tree.

* * Try out our web site on www.botanical.net * *

