

10 Downside Creascent

Construction Method Statement

Prepared by: Rafael Delimata, Director, Bow Tie Construction

Direct Phone: +44 (0)7934705888

Address: Unit 86, Basepoint Business Centre, High Wycombe, Bucks HP12 3RL E: rafael@bowtieconstruction.co.uk | W: http://www.bowtieconstruction.co.uk

1.0 INTRODUCTION

1.1 This document has been prepared to identify the structural scheme and construction method statement at 10 Downside Crescent and is to be read in conjunction with ESI's Basement Impact Assessment report and SAS's report.

1.2 It is proposed to construct a new single storey extension with basement to the back of the existing semi detached property.

1.3 This report is in response to The Camden Development Policy DP27, with reference to paragraph 27.3., the proposed extension is a single storey at level with neighbouring properties.

1.4 Following the format guidance in The Camden Policy Guidance PG4, the stages for a Basement Impact Assessment are:

- o Stage 1 Screening;
- o Stage 2 Scoping;
- o Stage 3 Site investigation and study;
- o Stage 4 Impact assessment;
- o Stage 5 Review and decision making.

ESI Consulting(ESI) have been commissioned to provide a Basement Impact Assessment report based on the above stages.

1.5 ESI's report follows the Flow Charts of Appendix E to The Camden Development Policy and Policy Guidance and uses the Figurative information given in the Camden Geological, Hydro-geological and Hydrological Study.

1.6 10 Downside Crescent is located on the relevant Figures of the Camden Geological, Hydro-geological and Hydrological Study, as part of ESI's report.

1.7 This section of the Basement Impact Assessment considers the structural proposals at 10 Downside Crescent and considers the potential sequencing of the works to ensure a safe sequence of works that maintains the stability of 10 Downside Crescent and all neighbouring structures at all times.

2.0 SITE INFORMATION

2.1 10 Downside Crescent is a Victorian property, three storey semi-detached build circa 1900. The construction is typical for buildings of this era with load bearing masonry walls and timber floors.

2.2 10 Downside Crescent lies within the generally sloped setting of Hampstead & Belsize Park, although the immediate area of the site is flat and level.

2.3 Site has front driveway which would be sufficient to accommodate skips and materials.

3.0 PROPOSED SCHEME - STRUCTURE

3.1 Groundwater

Based on SAS BIA report, we confirm that during investigation we found no groundwater or perched water present on the site. Two boreholes drilled to 15m in depth confirmed fallowing build up: Made Ground extends down to depths 0.6 and 1.8m in thickness and resting on Head Deposit to depth 2.4 and 2.7m below ground level which sits on London Clay Formation. Over 4 weeks period water was observed on 2.24m and 1.86m depth, however this is not considered to represent a true groundwater level, rather rainwater trapped within the standpipes. During construction, we are planning to continually monitor water levels in excavations and remove excess of water using pumps. Site size and excavations depth is very insignificant and would not affect local water table. Please refer to "Drainage" drawings and specifications for more details on future groundwater management.

3.2 Structural arrangement drawings, calculations and sequence is in the Appendix B.

4.0 CONSTRUCTION METHOD STATEMENT

4.1 This construction method statement describes how the works can proceed safely while minimising the impact of the works.

4.2 All of the underpinning works are to be carried out by a competent foundation contractor who is familiar with the suggested proposals. Works will be executed to comply with the Considerate Contractors Scheme.

4.3 Bow Tie Construction (BTC) have prepared an outline construction and temporary works sequence to validate that these works are achievable, BTC is going to submit full proposals, method statement and calculations to the Structural Engineer for review prior to the start of any works on site that demonstrate how the works can proceed safely while minimising the impact on adjoining properties. These proposals will all be agreed as safe working methods with the party wall surveyors and checking engineers as part of the party wall process, prior to any of the works commencing.

4.4 BTC is responsible for the design and erection of all temporary works in accordance with all relevant British Standards. BTC is to provide adequate supervision to ensure that the stability of the existing structure, excavations and surrounding structures are maintained at all times.

4.5 It is assumed deliveries, removals and access for operatives will take place from Downside Crescent. This access point is to be managed and controlled in such a way to ensure the safety to site operatives and the general public at all times.

4.6 At this stage the exact construction sequence has not been established, however, below is a suggested construction sequence for the works (refer to Appendix A for sketches).

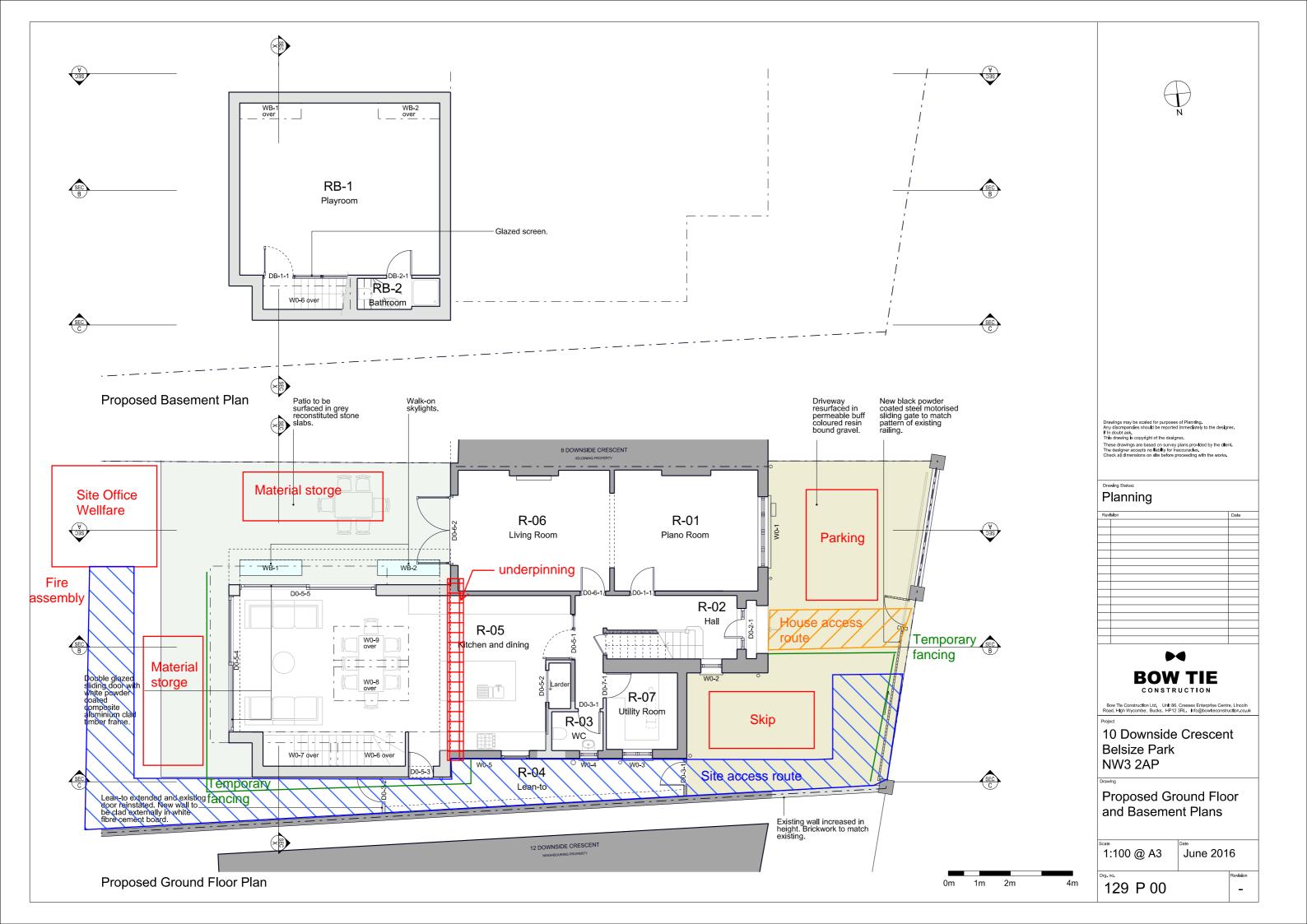
- Mobilisation and site set up. Fully enclosed site hoarding to the front of the property is not required as all main works take place at the back of the property. Temporary light weight timber frame site office and welfare facility will be constructed at the back garden.

- Commence underpinning of existing back wall in 1m bays following agreed sequence detailed in Appendix B.

- Complete existing property underpinning
- Commence construction of retaining walls for the basement as per Appendix B

- Commence reduce level dig to formation level, installing temporary horizontal propping at top of retaining walls.

- Excavate to basement formation level and install lateral props at base of retaining walls.


- Place blinding and reinforcement to basement slab. Cast basement slab and internal load bearing rc wall elements.

- Place formwork and reinforcement for ground floor slab. Cast ground floor slab.
- Remove all temporary props and make good.
- Commence works to upper floors and internal fit out.

10 Downside Creascent

Appendix A

10 Downside Creascent

Appendix B

Structural Calculations

for new basement at

10, Downside Crescent Belsize Park, London NW3 2AP

rodriguesassociates

1 Amwell Street London EC1R 1UL Telephone 020 7837 1133 www.rodriguesassociates.com October 2016 **Structural Calculations**

for

10, Downside Crescent Belsize Park, London NW3 for

Bow Tie Construction Ltd Unit 86, Cressex Enterprise Centre, Lincoln Road High Wycombe, Bucks HP12 3RL

Job No 1411

Rev	Date	Notes
-	12.10.16	Structural package

CONTENTS

Calculation plan	1
Resources	2
Area loads	3
Loads on elements	4
Existing back wall underpinning	5.1
New basement back retaining wall	5.2
New basement side wall	5.3
Load on basement side wall top beam	5.4
New basement side retaining wall top beam	5.4B
Ground floor slab	5.5
Beam B0.1	5.6
Beam B0.2	5.7
Water uplift check	5.8

1. CALCULATION PLAN

This report contains the structural engineering calculations for the proposed new basement for 10, Downside Crescent.

The development consists of an existing semi-detached house rear extension. The extension will be composed by two levels: basement and ground floor. The access from the main building will be provided creating a new opening in the existing building back wall.

1.1. SUMMARY OF STRUCTURE

Proposed plan area – extension

Maximum plan dimensions	6.4m by 6.5m, say
Footprint area	41.6m²
Storeys	Basement and Ground floor
Maximum height	3m over ground level

1.2. IMPOSED LOADS

The following imposed loads have been used

Typical imposed loads on pitched roofs	0.75 kN/m ²
Typical imposed loads on floors	1.50 kN/m ²
Partitions loads on floors (as imposed loads)	1.00 kN/m ²
Typical imposed loads on flat roofs allowing for maintenance	1.50 kN/m ²

1.3. REAR EXTENSION

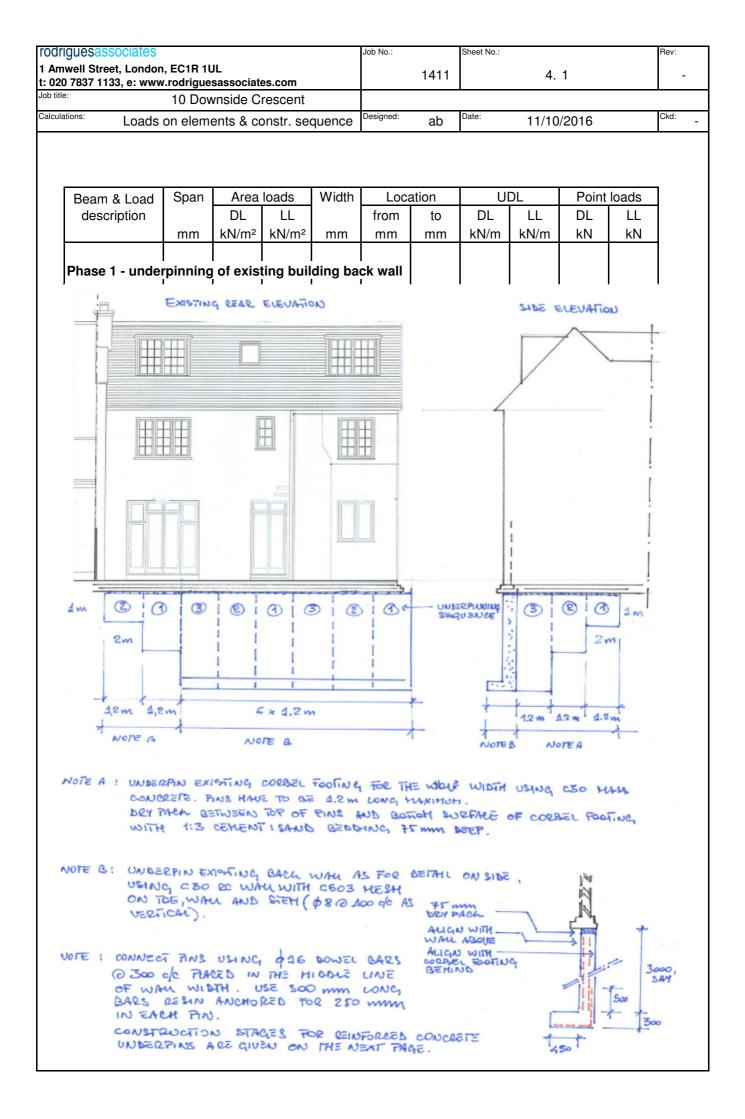
The basement of the new extension will be realised with new reinforced concrete walls and slabs. Ground floor walls will be realized with cavity block works and the roof will be mainly constructed in timber elements and steel beams.

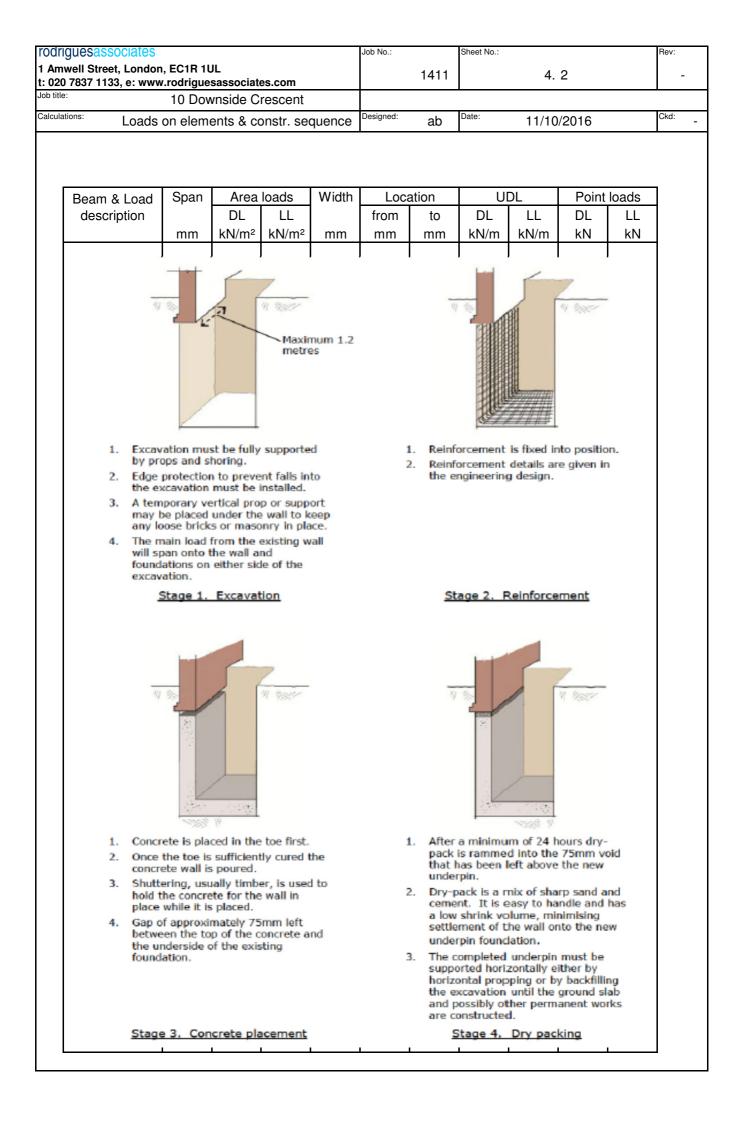
2. RESOURCES

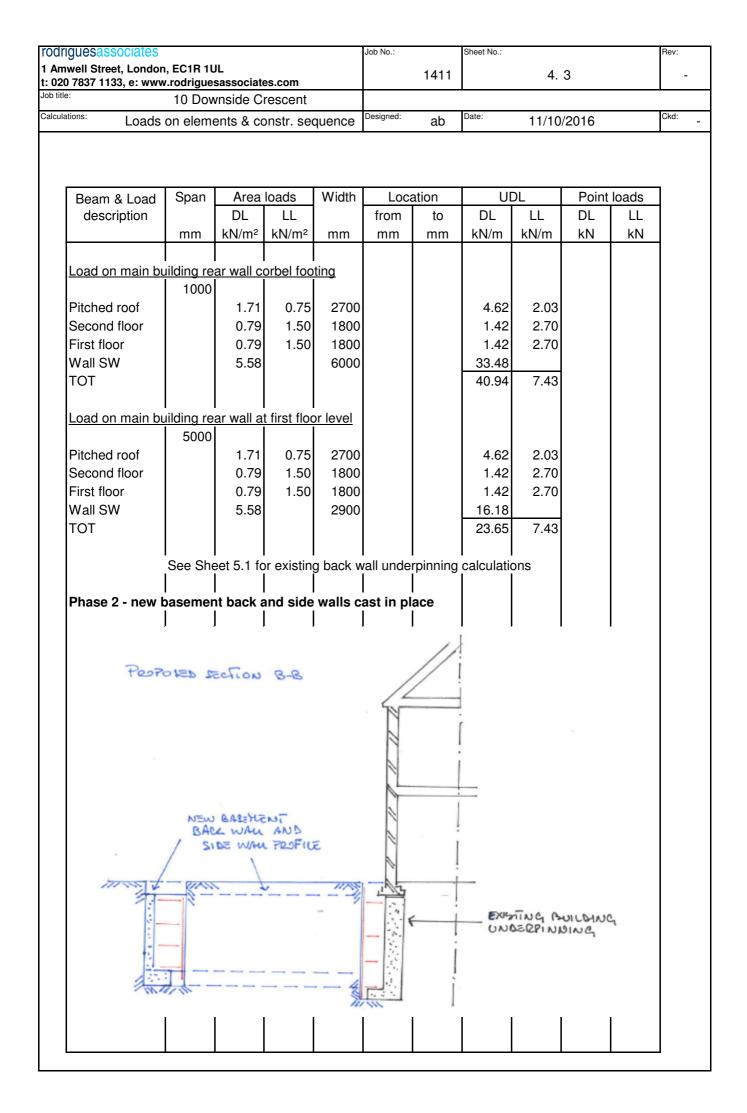
2.1 CODES & REFERENCES

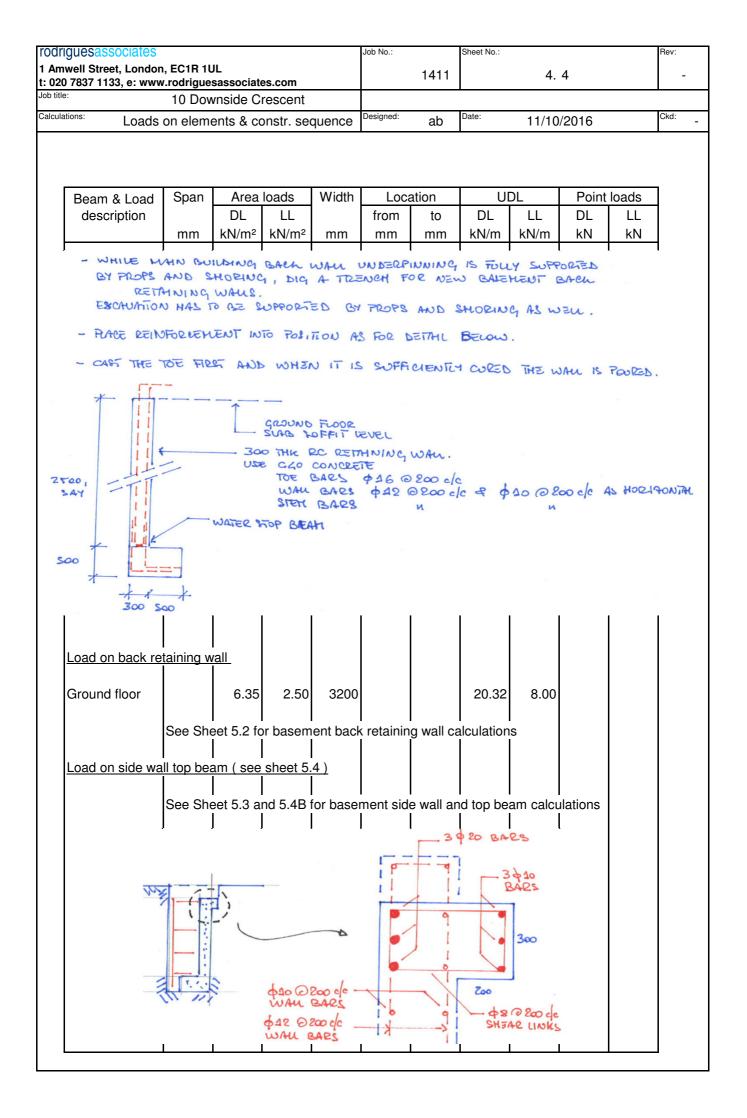
- BS6399 Pt1 Loadings for buildings. Code of practice for dead and imposed loads.
- BS6399 Pt2 Loadings for buildings. Code of practice for wind loads.
- BS6399 Pt3 Loadings for buildings. Code of practice for imposed roof loads.
- BS5269 Pt2 Structural use of Timber. Code of practice for permissible stress design, materials and workmanship.
- BS5628 Pt1 Use of masonry. Structural use of unreinforced masonry.
- BS5950 Pt1 Structural use of steelwork in building. Code of practice for design in simple and continuous construction hot rolled sections.
- BS8110 Pt1 Structural use of concrete

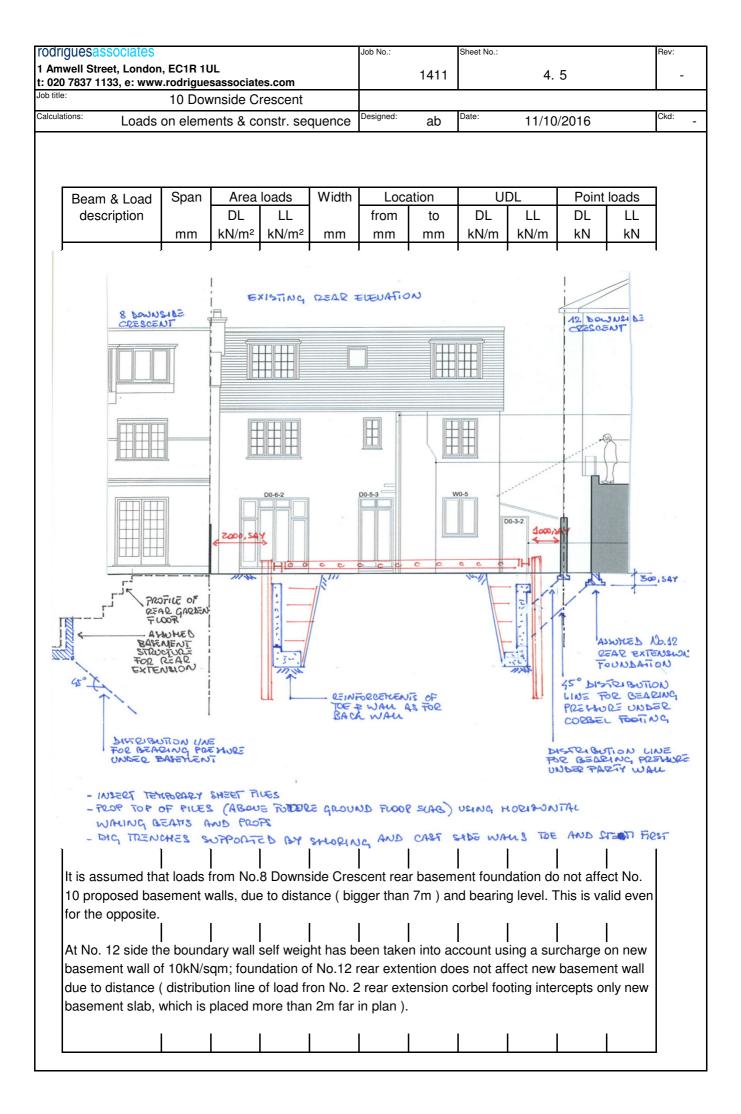
Manual for the design of plain masonry in building structures – The Institution of Structural Engineers. July 1997.

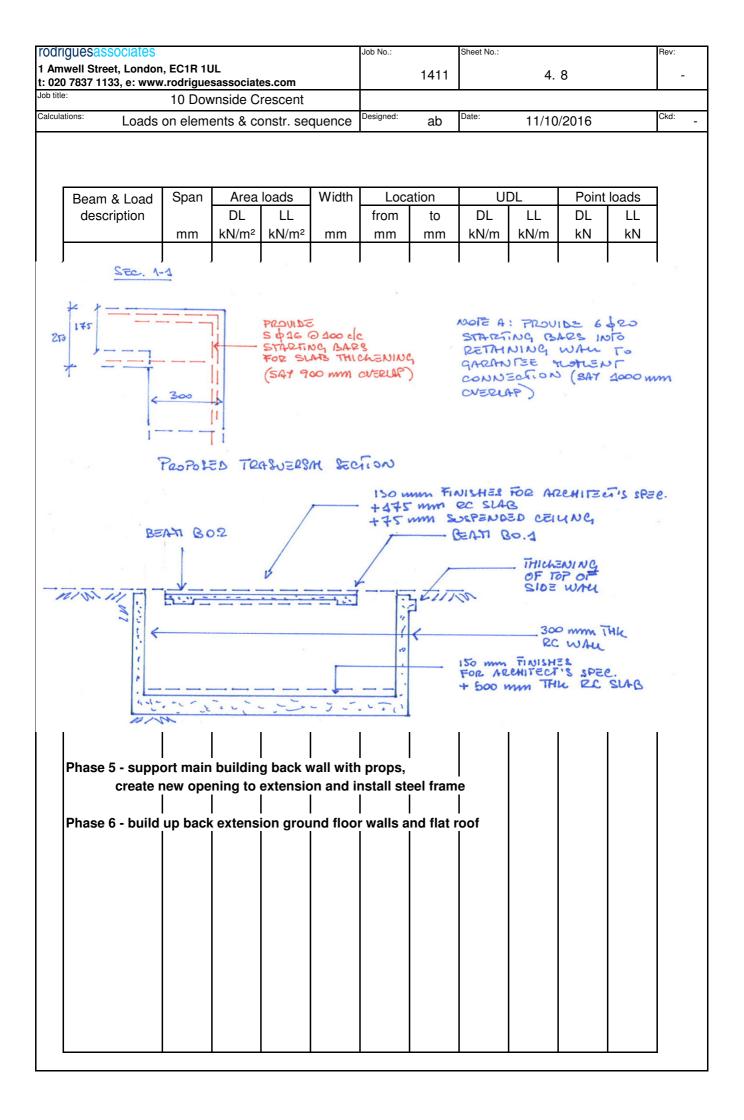

2.2 SOFTWARE


Tekla Structural Designer suite of design and analysis tools.

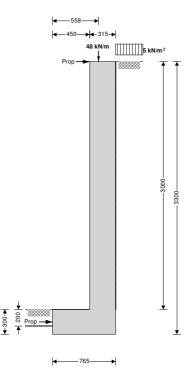

, •	w.rodriguesassociates.com 10 Downside Crescent			
ns:		Designed: Det		(
	Area loads	Designed: ab	^{te:} 11/10/2016	
xisting pitched	l roof			
Dead	Tiles or slates		0.80 kN/m	
	Battens and felt		0.05 kN/m	
	Rafters		0.15 kN/m	
	Insulation		0.01 kN/m	
	Services		0.05 kN/m	
	Plasterboard and skim coat		0.15 kN/m	2
			1.21 kN/m	2
	Roof Angle 45 °		1.71 kN/m	2
Impose	ed		0.75 kN/m	2
xisting typical	floor			
Dead	Finishes		0.15 kN/m	2
Doud	Boarding		0.14 kN/m	
	Joists		0.15 kN/m	
	Insulation		0.05 kN/m	
	Services		0.05 kN/m	
	Lath and plaster		0.25 kN/m	
			0.79 kN/m	
Impose	ed		1.50 kN/m	2
xternal brick w	vall			
Dead	External render		0.60 kN/m	2
- 044	215mm brickwork		4.73 kN/m	
	Plaster		0.25 kN/m	
			5.58 kN/m	


well Street. Lou	ies ndon, EC1R 1UL	Job No.:	Sheet N		Rev:
0 7837 1133, e:	www.rodriguesassociates.com	1	411	3. 2	
e:	10 Downside Crescent		-		-
ations:	Area loads	Designed:	ab Date:	11/10/2016	Ckd:
Proposed gr	ound floor slab				
Dea	d Finishes			0.15 kN/m	2
Dou	Screed			1.80 kN/m	
	Insulation			0.05 kN/m	
	175mm slab			4.20 kN/m	
	Services			0.15 kN/m	
	Gervices			6.35 kN/m	
Imp	aad			1.50 kN/m	2
mp	osed Partitions			1.00 kN/m	
	Parimons			2.50 kN/m	
				2.50 KIN/III	
Proposed ba	sement floor slab				
Dea	d Finishes			0.15 kN/m	2
204	Screed			1.80 kN/m	
	Insulation			0.05 kN/m	
	500mm slab			12.00 kN/m	
	Services			0.15 kN/m	
	Services			14.15 kN/m	
Imp	osed			1.50 kN/m	2
	Partitions			1.00 kN/m	
				2.50 kN/m	
Proposed fla	<u>t roof</u>				
Dea	d Fibre glass waterproofing			0.15 kN/m	2
	Boarding			0.14 kN/m	2
	Insulation			0.05 kN/m	2
	Joists			0.15 kN/m	2
	Services			0.05 kN/m	2
	Plasterboard and skim coa	at		0.15 kN/m	2
				0.69 kN/m	
Imp	osed (allowing for maintenance	e of structure above	e)	1.50 kN/m	2
Glazing					
Dea	d Glazing (Double)			0.65 kN/m	2
200	Framing			0.20 kN/m	
				0.85 kN/m	


rodriguesassociates		Job No.:		Sheet No.:	Rev:
1 Amwell Street, Londo t: 020 7837 1133, e: ww	on, EC1R 1UL w.rodriguesassociates.com		1411	3. 3	-
Job title:	10 Downside Crescent			-	-
Calculations:	Area loads	Designed:	ab	Date: 11/10/2016	6 ^{Ckd:} -
<u>Proposed exte</u> Dead	rnal wall External render 100mm blockwork Insulation 100mm block work Plasterboard and skim coat			1 0 1 0	.60 kN/m ² .50 kN/m ² .05 kN/m ² .50 kN/m ² .15 kN/m ² .80 kN/m ²



well Street, London, EC1R 1UL 0 7837 1133, e: www.rodriguesassociates.com					1411 4. 6						
e:	10 Dov	vnside C	rescent				-				
ations: Loads	on elem	ents & co	onstr. see	quence	Designed:	ab	Date:	11/10	/2016		Ckd:
Beam & Load	Span	Area	loads	Width	Loca	ation	U	DL	Point	loads	
description		DL	LL		from	to	DL	LL	DL	LL	
	mm	kN/m²	kN/m ²	mm	mm	mm	kN/m	kN/m	kN	kN	
Phase 3 - new l) basemer	nt front v	wall and	slab ca	st in pla	се					
71070120	SECTION	B-B					I, ,				l
112107 8			1.2		AREAI	N OR	HIDN W SER TO MUNG	PLACE	TOP		
Hoee	0 0 0	000	•11H		COWER BONDY	EXCAN PROP	UAT10N S.	AGAIN	V is Pa	ARE	
	0 00 0	0 0 0		500	DEINFO	AGAIN RECEVE	U EXCA ENT AN BLAB,	UATION DE CAST	, FUAR	E MNU TH	k
RE WI	TH CHEM	C/C HOE BAR	ERTION		BOIR	2 200 c/c 1 01 2200 2 P 7 B	TONS		NG BAR		
Peopoleso		U B-B	11 11				ot hoe then?			2	
					AND OUTSUD	≠ A2 0 E FAE	RETE FOI 200 cle E), ¢ 3ARS (11	BARS	(INSID 200 clc	E AND	
	ground 1			i place							
Phase 4 - new g	<u>tension c</u>						_	_			
Load on new ex	tension <u>c</u> 6400x3	1					6.35	2.50			1
	6400x3	6.35		1000 I floor sla	ıb calcul	ations					
Load on new ex	6400x3	6.35			ıb calcul	ations					


rodriguesassociates					Job No.:		Sheet No.:				Rev:
1 Amwell Street, London	ı, EC1R 1U	JL				1411		4.	7		-
t: 020 7837 1133, e: www Job title:		sassociate vnside Ci									
Calculations:	on eleme				Designed:	ab	Date:	11/10	/2016		Ckd:
LUdus			1150.500	Juence		au		11/10	/2010		-
Beam & Load	Span	Area	loade	Width		ation	U	ור	Point I	nade	
description	Opan	DL	LL	WIGUI	from	to	DL		DL	LL	
	mm	kN/m²	kN/m²	mm	mm	mm	kN/m	kN/m	kN	kN	
PROPOSED	SECTION	B-B	11	- 7	esp Agn	IN REM	INING h	Au AT	LOWER		
	====		- H				TOUE				
HLE WATER	4	c e	H	- 0	AST GRE	OND F	LOOP SI	AB 17	5 mm Ti	HILL.	
- BAR			····	WAJER	BARS A	FIOP	AND BO	mon 1	N BOIL	1	
			: :.	GAR	ARECT	ONS.					
A CONTRACTOR	18. C. S.	100									
	ו ן	1 1					1		[]		1
Beam B0.1											
	6400										
Ground floor		6.35	2.50		triangula	ar load	11.11	4.38			
Direct load on be	eam	2.15	2.50	500			1.08	1.25			
<u>Beam B0.2</u>											
<u>Boam Boile</u>	6400										
Ground floor		6.35	2.50	1750	triangula	ar load	11.11	4.38			
		6.35	1.50	400				0.60			
Direct load on be	eam	2.15	2.50	500		4400		1.25			
Glazed door Cavity wall abov		0.85 3.80		2300 2500		4400 6400					
Roof	1600	0.69	1.50	2500	4400	0400	0.00		2.76	6.00	
	See She	eet 5.6 ai	nd 5.7 fo	r beam I	B0.1 and	B0.2 ca	lculation	S			
	<u> </u>		PEOF	Poled G	ROUND	floor r	in		×		
		VOID For			P		1				
		SHEY EIGH		\				VOID FOR			
			-		+	L ····					
5	500 x 250	AZEP					극가		÷.		
6+5	PC BEAL	RS-		1	30.2 145 1	mm THK. SLAB		NISTING			
SHE	AP UNI	rs of BI		-	A BC	slab —		A B			
(200			7 1		V		1	BALEMENT	F		
	2ETA	HNALC HS BELO	1 1 1 1	1	B 0.1			BASETIENT WHUS P	ROFILE		
	0071	- s bell	1-7.			175					
	Soox	250 DEEP	7:			14					
Sts	\$46 BARS	WITH -	ž E	7	×						
ye (NOID FOR	-		2		THICKE				
	<u> </u>	DIME				07 707	of side	when	1		

Tekka Tedds RODRIGUES ASSOCIATES 1 AMWELL STREET LONDON EC1R 1UL	Project	10 Downsic	Job no. 1411			
	Calcs for	exist back wal	l underpinning		Start page no./Re 5.	evision I.1
	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

TEDDS calculation version 1.2.01.06

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

Mobilisation factor Moist density of retained material

Cantilever propped at both h_{stem} = **3000** mm twall = 315 mm I_{toe} = **450** mm $I_{heel} = \mathbf{0} mm$ $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 765 \text{ mm}$ t_{base} = **300** mm $d_{ds} = 0 \text{ mm}$ lds = **15** mm t_{ds} = **300** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3300 \text{ mm}$ $d_{cover} = \mathbf{0} mm$ d_{exc} = **200** mm $h_{water} = 0 mm$ $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 0 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ_{base} = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3300 \text{ mm}$

M = **1.5** γ_m = **18.0** kN/m³

Tekla Tedds	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for	exist back wa	Start page no./F	Revision 5.1. 2		
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date
Saturated density of retained n	naterial	γ _s = 21.0 kl				
Design shear strength		φ' = 18.6 de	-			
Angle of wall friction		$\delta = 0.0 \text{ deg}$	1			
Base material details						
Firm clay						
Moist density		γ _{mb} = 18.0				
Design shear strength		φ' _b = 16.5 d	-			
Design base friction		δ _b = 18.6 d	-			
Allowable bearing pressure		P _{bearing} = 10)0 kN/m²			
Using Coulomb theory Active pressure coefficient for $K_a = sin(c)$ Passive pressure coefficient for	$(\alpha + \phi')^2 / (\sin(\alpha)^2)$ r base material	$^{2} \times \sin(\alpha - \delta) \times [1 +]$				
	ιτρ = 5ii	i(θ0 - ψb) / (Siii(θ0) - 06) × [1 - V(8	$\sin(\psi + 0) \times \sin(\psi$	φο) / (Siii(30 +	(00))))) = 2.000
At-rest pressure	-t-stal		- (12) 0 001			
At-rest pressure for retained m	aterial	$\kappa_0 = 1 - \sin^2 \theta$	n(φ') = 0.681			
Loading details Surcharge load on plan Applied vertical dead load on w Applied vertical live load on wa Position of applied vertical load Applied horizontal dead load o Applied horizontal live load on Height of applied horizontal load	ll d on wall n wall wall	Surcharge $W_{dead} = 41$. $W_{live} = 7.4$ $I_{load} = 558$ r $F_{dead} = 0.0$ $F_{live} = 0.0$ k $h_{load} = 0$ mr	kN/m nm kN/m N/m			
0 11		48 ↓ []]]]]				
	م <u>م</u> 4.8 و ع	Prop				
				Loads show	vn in kN/m, pressu	res shown in kN/m ²

Loads shown in kN/m, pressures shown in kN/m²

Tekla	Project	10 Downsi	Job no. 1411					
Tedds RODRIGUES ASSOCIATES		10 Downsi						
1 AMWELL STREET	Calcs for	evist back wa	II underpinning	a	Start page no./I	Revision		
LONDON			-	-				
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da		
Vertical forces on wall								
Wall stem		$w_{wall} = h_{stern}$	$x \times t_{wall} \times \gamma_{wall} =$	22.3 kN/m				
Wall base		$W_{base} = I_{base}$	$ imes t_{base} imes \gamma_{base}$	= 5.4 kN/m				
Applied vertical load		$W_v = W_{dead}$	i + Wlive = 48.4	kN/m				
Total vertical load		$W_{total} = W_{wa}$	$H + W_{base} + W_v$	= 76.1 kN/m				
Horizontal forces on wall								
Surcharge		$F_{sur} = K_a \times$	Surcharge \times h	l _{eff} = 8.5 kN/m				
Moist backfill above water tabl	e	$F_{m_a} = 0.5$	$ imes$ Ka $ imes$ γ_{m} $ imes$ (he	$ff - h_{water})^2 = 50.6$	kN/m			
Total horizontal load		$F_{total} = F_{sur} + F_{m_a} = 59.1 \text{ kN/m}$						
Calculate total propping for	ce							
Passive resistance of soil in fr		$F_p = 0.5 \times I$	$K_{p} \times \cos(\delta_{b}) \times \delta_{b}$	(d _{cover} + t _{base} + d _d	s - d_{exc}) ² × γ_{mb} =	• 0.2 kN/m		
Propping force		$F_{prop} = max(F_{total} - F_p - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$						
		F _{prop} = 35.8 kN/m						
Overturning moments								
Surcharge		M _{sur} = F _{sur} :	× (h_{eff} - 2 × d_{ds}	s) / 2 = 14.1 kNm	/m			
Moist backfill above water tabl	e			., Nwater - 3 × dds) / 3				
Total overturning moment			Mm_a = 69.7					
Restoring moments			-					
Wall stem		Mwall = Wwall	\times (Itoe + twall / 2	2) = 13.5 kNm/m				
Wall base			$_{se} \times I_{base} / 2 = 2$					
Design vertical dead load			$_{ead} \times I_{load} = 22.9$					
Total restoring moment				_{ad} = 38.5 kNm/m				
Check bearing pressure								
Total vertical reaction		R = W _{total} =	• 76.1 kN/m					
Distance to reaction			2 = 383 mm					
Eccentricity of reaction		$e = abs((I_{ba}$	_{ase} / 2) - x _{bar}) =	0 mm				
			-	Reaction acts	within middle	e third of ba		
Bearing pressure at toe		$p_{toe} = (R / I)$	$_{ m base})$ - (6 $ imes$ R $ imes$	e / I _{base} ²) = 99.5	kN/m²			
Bearing pressure at heel		$p_{heel} = (R /$	I_{base}) + (6 × R \gtrsim	$\times e / I_{base^2}$ = 99.5	kN/m²			
	P	ASS - Maximum L	earing press	ure is less than	allowable bea	aring pressu		
Calculate propping forces to								

Propping force to base of wall

$$\begin{split} F_{prop_top} = (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = \textbf{17.460} \text{ kN/m} \\ F_{prop_base} = F_{prop} - F_{prop_top} = \textbf{18.299} \text{ kN/m} \end{split}$$

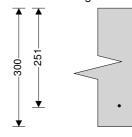
	Project	t 10 Downside Crescent			Job no. 1411				
RODRIGUES ASSOCIATES	Calcs for				Start page no./F	Revision			
1 AMWELL STREET LONDON		exist back wa	II underpinning	g	5	.1. 4			
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da			
RETAINING WALL DESIGN (BS 8002:1994)							
		<u>L</u>			TEDDS calculation	n version 1.2.0			
Ultimate limit state load fact	ors								
Dead load factor		$\gamma_{f_d} = 1.4$							
Live load factor		γ _{f_l} = 1.6							
Earth and water pressure facto	or	$\gamma_{f_e} = 1.4$							
Factored vertical forces on v	vall								
Wall stem		$W_{wall_f} = \gamma_{f_d}$	imes h _{stem} $ imes$ t _{wall} $ imes$	$\gamma_{wall} = 31.2 \text{ kN/m}$	n				
Wall base				$< \gamma_{\text{base}} = 7.6 \text{ kN/r}$					
Applied vertical load			-	W _{live} = 69.2 kN/n					
Total vertical load		$W_{total_f} = W_w$	vall_f + Wbase_f +	W _{v_f} = 108 kN/m					
Factored horizontal at-rest fe	orces on wall								
Surcharge		$F_{sur_f} = \gamma_{f_l} >$	$K_0 \times Surcharget$	$ge \times h_{eff} = 18 \text{ kN/}$	′m				
Moist backfill above water tabl	е	$F_{m_a_f} = \gamma_{f_e}$	$F_{m_a_f} = \gamma_{\underline{f}_e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = 93.4 \text{ kN/m}$						
Total horizontal load		$F_{total_f} = F_{sur}$	_f + F _{m_a_f} = 11	1 .4 kN/m					
Calculate total propping force	e								
Passive resistance of soil in fro	ont of wall	$F_{p_f} = \gamma_{f_e} \times$	$0.5 imes K_p imes cos$	$\delta(\delta_b) imes (d_{cover} + t_{ball})$	use + dds - dexc) ²	$\times \gamma_{mb} = 0.3$			
kN/m									
Propping force		$F_{prop_f} = ma$ $F_{prop_f} = 78.$		(W _{total_f} - $\gamma_{f_l} \times W$	$T_{live}) imes tan(\delta_b), 0$	kN/m)			
Factored overturning mome	nts								
Surcharge		$M_{sur_f} = F_{sur}$	$_{f} \times (h_{eff} - 2 \times d)$	d _{ds}) / 2 = 29.7 kN	m/m				
Moist backfill above water tabl	e	$M_{m_a_f} = F_m$	_a_f × (h _{eff} + 2 >	$<$ h _{water} - 3 \times d _{ds}) /	3 = 102.8 kNm	ı/m			
Total overturning moment		$M_{ot_f} = M_{sur_f}$	_f + M _{m_a_f} = 13	2.5 kNm/m					
Restoring moments									
Wall stem		$M_{wall_f} = w_{wall_f}$	$_{\text{all}_{f}} \times (I_{\text{toe}} + t_{\text{wall}})$	/ 2) = 19 kNm/m					
Wall base		$M_{base_f} = W_b$	$_{\rm ase_f} imes I_{ m base}$ / 2 =	= 2.9 kNm/m					
Design vertical load		$M_{v_f} = W_{v_f}$	\times I _{load} = 38.6 k	Nm/m					
Total restoring moment		$M_{rest_f} = M_{w}$	$all_f + M_{base_f} + I$	M _{v_f} = 60.5 kNm/	m				
Factored bearing pressure									
Total vertical reaction		$R_{f} = W_{total_{f}}$	= 108.0 kN/m						
Distance to reaction		$x_{bar_f} = I_{base}$	/ 2 = 383 mm						
Eccentricity of reaction		$e_f = abs((I_{ba}$	ase / 2) - Xbar_f) =	= 0 mm					
				Reaction acts	within middle	e third of b			
Bearing pressure at toe		$p_{toe_f} = (R_f / R_f)$	I_{base}) - (6 × R_{f}	$\times e_f / I_{base}^2 = 141$	I.2 kN/m ²				
Bearing pressure at heel		$p_{\text{heel}_f} = (R_f$	$/ I_{base}) + (6 \times F$	$R_f \times e_f / I_{base}^2 = 14$	11.2 kN/m²				
Rate of change of base reaction	on	$rate = (p_{toe})$	$_{f}$ - p_{heel_f} / I_{base}	= 0.00 kN/m ² /m					
Bearing pressure at stem / toe		$p_{stem_toe_f} =$	max(p _{toe_f} - (ra	te \times I _{toe}), 0 kN/m ²	²) = 141.2 kN/m	1 ²			
Bearing pressure at mid stem		$p_{stem_mid_f} =$	max(p _{toe_f} - (ra	$te \times (I_{toe} + t_{wall} / 2)$	2)), 0 kN/m²) = -	141.2 kN/m			
Bearing pressure at stem / hee	el	pstem_heel_f =	max(p _{toe_f} - (ra	ate × ($I_{toe} + t_{wall}$)),	0 kN/m ²) = 14 1	I.2 kN/m ²			
Calculate propping forces to	top and base	e of wall							

Propping force to base of wall

F_{prop_base_f} = F_{prop_f} - F_{prop_top_f} = **46.487** kN/m

Tekla	Project	10 Downsi	Job no.				
Tedds		TO DOWNS	de Crescent		I	1411	
RODRIGUES ASSOCIATES	Calcs for		Start page no./F	Start page no./Revision			
1 AMWELL STREET		exist back wall underpinning				5.1.5	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date	
		ļ	1		1		
Design of reinforced concre	te retaining w	all toe (BS 8002:1	<u>994)</u>				
Design of reinforced concre Material properties	te retaining w	all toe (BS 8002:1	<u>994)</u>				
-	-	<u>all toe (BS 8002:1</u> f _{cu} = 30 N/r					

k = 0.13 %


 $c_{toe} = 45 \text{ mm}$

Base details Minimum area of reinforcement Cover to reinforcement in toe Calculate shear for toe design

Shear from bearing pressure Shear from weight of base Total shear for toe design

Calculate moment for toe design

Moment from bearing pressure Moment from weight of base Total moment for toe design

$$\begin{split} & \mathsf{V}_{\text{toe_wt_base}} = \gamma_{f_d} \times \gamma_{\text{base}} \times \mathsf{l}_{\text{toe}} \times \mathsf{t}_{\text{base}} = \textbf{4.5 kN/m} \\ & \mathsf{V}_{\text{toe}} = \mathsf{V}_{\text{toe_bear}} - \mathsf{V}_{\text{toe_wt_base}} = \textbf{59.1 kN/m} \\ & \mathsf{M}_{\text{toe_bear}} = (2 \times p_{\text{toe_f}} + p_{\text{stem_mid_f}}) \times (\mathsf{l}_{\text{toe}} + \mathsf{t}_{\text{wall}} / 2)^2 / 6 = \textbf{26.1 kNm/m} \\ & \mathsf{M}_{\text{toe_wt_base}} = (\gamma_{f_d} \times \gamma_{\text{base}} \times \mathsf{t}_{\text{base}} \times (\mathsf{l}_{\text{toe}} + \mathsf{t}_{\text{wall}} / 2)^2 / 2) = \textbf{1.8 kNm/m} \end{split}$$

 $M_{toe} = M_{toe_bear} - M_{toe_wt_base} = 24.2 \text{ kNm/m}$

 $V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 63.6 \text{ kN/m}$

▲100-**▶**

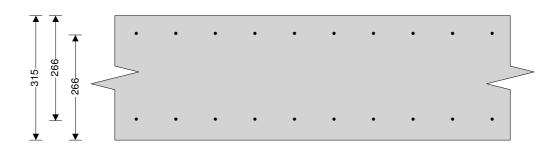
Check toe in bending	
Width of toe	b = 1000 mm/m
Depth of reinforcement	$d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = 251.0 \text{ mm}$
Constant	$K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.013$
	Compression reinforcement is not required
Lever arm	$z_{toe} = min(0.5 + \sqrt{(0.25 - (min(K_{toe}, 0.225) / 0.9)), 0.95)} \times d_{toe}$

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided

Check shear resistance at toe Design shear stress Allowable shear stress

From BS8110:Part 1:1997 – Table 3.8 Design concrete shear stress
$$\begin{split} K_{toe} &= M_{toe} \ / \ (b \times d_{toe}^2 \times f_{cu}) = \textbf{0.013} \\ \hline & \textit{Compression reinforcement is not require} \\ z_{toe} &= \min(0.5 + \sqrt{(0.25 - (\min(K_{toe}, 0.225) \ / \ 0.9)), 0.95) \times d_{toe}} \\ z_{toe} &= \textbf{238 mm} \\ A_{s_toe_des} &= M_{toe} \ / \ (0.87 \times f_y \times z_{toe}) = \textbf{234 mm}^2 / m \\ A_{s_toe_min} &= k \times b \times t_{base} = \textbf{390 mm}^2 / m \\ A_{s_toe_req} &= Max(A_{s_toe_des}, A_{s_toe_min}) = \textbf{390 mm}^2 / m \\ \textbf{C503 mesh} \end{split}$$

 $A_{s_toe_prov} = 503 \text{ mm}^2/\text{m}$

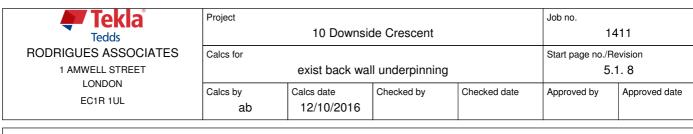

PASS - Reinforcement provided at the retaining wall toe is adequate

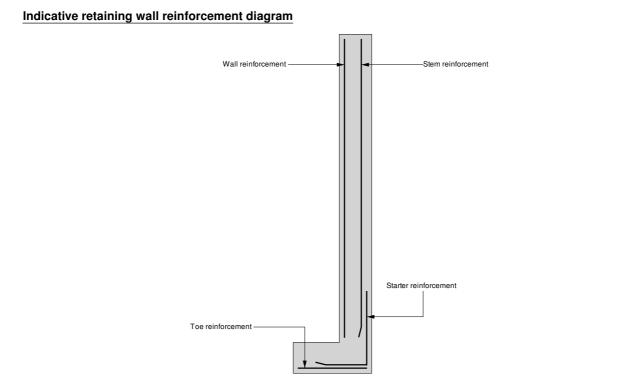
$$\label{eq:vtoe} \begin{split} v_{toe} &= V_{toe} \ / \ (b \times d_{toe}) = \textbf{0.235} \ \text{N/mm}^2 \\ v_{adm} &= \min(0.8 \times \sqrt{(f_{cu} \ / \ 1 \ \text{N/mm}^2), \ 5)} \times 1 \ \text{N/mm}^2 = \textbf{4.382} \ \text{N/mm}^2 \\ \textbf{PASS - Design shear stress is less than maximum shear stress} \end{split}$$

vc_toe = 0.441 N/mm²

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

	Project	10 Downsi	Job no. 1411						
RODRIGUES ASSOCIATES	Calcs for		Start page no./ł	Revision					
1 AMWELL STREET	Calcs IO	exist back wall underpinning				5.1. 6			
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat			
EC1R 1UL	ab	12/10/2016			, pproved by	Approved da			
Design of reinforced concre	te retaining wa	all stem (BS 8002	::1994)						
Material properties									
Characteristic strength of cond	crete	f _{cu} = 30 N/r	nm²						
Characteristic strength of reint	orcement	$f_y = 500 \text{ N}/$	mm²						
Wall details									
Minimum area of reinforcement	nt	k = 0.13 %							
Cover to reinforcement in ster	n	C _{stem} = 45 mm							
Cover to reinforcement in wall	over to reinforcement in wall			c _{wall} = 45 mm					
Factored horizontal at-rest f	orces on stem	I							
Surcharge		$F_{s_sur_f} = \gamma_{f_}$	$_{1} \times K_{0} \times Surcha$	$arge imes (h_{eff} - t_{base} \cdot$	- d _{ds}) = 16.3 kN	l/m			
Moist backfill above water tabl	е	$F_{s_m_a_f} = 0$	$.5 imes \gamma_{f_e} imes K_0 imes$	$x \gamma_{m} imes (h_{eff} - t_{base} - t_{base})$	- d_{ds} - h_{sat}) ² = 77.2 kN/m				
Calculate shear for stem dea	sign								
Surcharge		$V_{s_sur_f} = 5$	$\times F_{s_{s_{s_{r_{f}}}}} / 8 = $	10.2 kN/m					
Moist backfill above water tabl	е	$V_{s_m_a_f} = F$	$s_{m_a_f} \times b_I \times (($	$5 imes L^2$) - bl ²) / (5 $ imes$	< L ³) = 60.2 kN	/m			
Total shear for stem design		$V_{stem} = V_{s_s}$	$ur_f + V_{s_m_a_f} =$	₌ 70.4 kN/m					
Calculate moment for stem	design								
Surcharge		$M_{s_sur} = F_{s_}$	_{sur_f} × L / 8 = 6	5 .4 kNm/m					
Moist backfill above water tabl	е	$M_{s_m_a} = F_{s_m_a_f} \times b_i \times ((5 \times L^2) - (3 \times b_i^2)) \ / \ (15 \times L^2) = \textbf{35.2 kNm/m}$							
Total moment for stem design		$M_{stem} = M_{s_{-}}$	$sur + Ms_m_a = 4$	41.6 kNm/m					
Calculate moment for wall d	esign								
Surcharge		$M_{w_sur} = 9 >$	$< F_{s_sur_f} \times L / 1$	28 = 3.6 kNm/m					
Moist backfill above water tabl	е	$M_{w_m_a} = F_s$	s_m_a_f × 0.577>	$<$ bi \times [(bi ³ +5 \times ai \times L ²)/	/(5×L ³)-0.577 ² /	3] = 14.6			
kNm/m									
Total moment for wall design		$M_{wall} = M_{w_s}$	sur + Mw_m_a = 1	18.2 kNm/m					
	∢ -100- ▶								

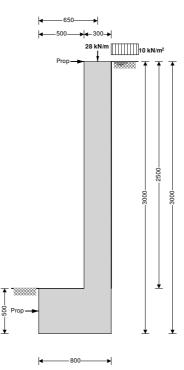



| ← 100 →

Check wall stem in bending	
Width of wall stem	b = 1000 mm/m
Depth of reinforcement	d _{stem} = t _{wall} - c _{stem} - (φ _{stem} / 2) = 266.0 mm
Constant	$K_{stem} = M_{stem} / (b \times d_{stem}^2 \times f_{cu}) = 0.020$
	Compression reinforcement is not required
Lever arm	$z_{stem} = min(0.5 + \sqrt{(0.25 - (min(K_{stem}, 0.225) / 0.9)), 0.95)} \times d_{stem}$
	z _{stem} = 253 mm
Area of tension reinforcement required	$A_{s_stem_des} = M_{stem} / (0.87 \times f_y \times z_{stem}) = 379 mm^2/m$

	10 Downoide Crossont							
RODRIGUES ASSOCIATES	Calcs for		Start page no./Revision					
1 AMWELL STREET LONDON		exist back wa	all underpinnin	g	5	.1. 7		
ECIR 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da		
Minimum area of tension reinfo	orcement	A _{s_stem_min} =	= $\mathbf{k} \times \mathbf{b} \times \mathbf{t}_{wall}$ =	410 mm²/m				
Area of tension reinforcement	required	As_stem_req =	Max(As_stem_de	es, As_stem_min) = 4 1	1 0 mm²/m			
Reinforcement provided		C503 mes	h					
Area of reinforcement provide	As_stem_prov	= 503 mm²/m						
		PASS - Reinfo	prcement pro	vided at the reta	ining wall ste	m is adequa		
Check shear resistance at w	all stem							
Design shear stress		v _{stem} = V _{ster}	$_{\rm m}$ / (b × d _{stem}) =	• 0.265 N/mm ²				
Allowable shear stress		v _{adm} = min	(0.8 × √(f _{cu} / 1	N/mm^2), 5) × 1 N/	/mm ² = 4.382 N	V/mm ²		
				r stress is less t				
From BS8110:Part 1:1997 -	Table 3.8							
Design concrete shear stress		Vc_stem = 0.4	427 N/mm ²					
			Vsten	n < Vc_stem - No sł	near reinforce	ment requi		
Check mid height of wall in	bending							
Depth of reinforcement		d _{wall} = t _{wall} -	- c _{wall} – (¢ _{wall} / 2	2) = 266.0 mm				
Constant		$K_{wall} = M_{wall}$	/ (b × d _{wall} ² × f	cu) = 0.009				
				Compression re	inforcement i	s not requi		
Lever arm		z _{wall} = Min(0.5 + √(0.25 -	(min(K _{wall} , 0.225)	/ 0.9)),0.95) ×	dwall		
		Z _{wall} = 253						
Area of tension reinforcement	required	A _{s_wall_des} =	M_{wall} / (0.87 \times	$f_y \times z_{wall}$) = 166 m	m²/m			
Minimum area of tension reinfo	orcement	A _{s wall min} =	$A_{s_wall_min} = k \times b \times t_{wall} = 410 \text{ mm}^2/\text{m}$					
Area of tension reinforcement	required		As_wall_req = Max(As_wall_des, As_wall_min) = 410 mm ² /m					
Reinforcement provided		C503 mesh						
Area of reinforcement provide	d	$A_{s_wall_prov} =$	503 mm²/m					
	PAS	S - Reinforcemen	t provided to	the retaining wa	ll at mid heig	ht is adequ		
Check retaining wall deflect	ion							
Basic span/effective depth rati		ratio _{bas} = 2	0					
		$f_s = 2 \times f_y \times$	As_stem_req / (3	$\times A_{s_stem_prov}) = 2$	71.6 N/mm ²			
Design service stress				_				
Design service stress Modification factor	factor _{tens} = m	in(0.55 + (477 N/n	1m² - fs)/(120 ×	< (0.9 N/mm² + (N	$I_{\rm stem}/(b \times d_{\rm stem}^2)$)))),2) = 1.70		
-			nm² - fs)/(120 > atio _{bas} × factor		/I _{stem} /(b × d _{stem} 2))))),2) = 1.70		

PASS - Span to depth ratio is acceptable



Toe mesh - C503 - (503 mm²/m) Wall mesh - C503 - (503 mm²/m) Stem mesh - C503 - (503 mm²/m)

Tekla Tedds	Project Job no 10 Downside Crescent					Job no. 1411	
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	Calcs for Start page no./Revis new basement back retaining wall 5.2.					
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date	

TEDDS calculation version 1.2.01.06

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

Mobilisation factor Moist density of retained material

Cantilever propped at both h_{stem} = **2500** mm twall = 300 mm $I_{toe} = 500 \text{ mm}$ $I_{heel} = \mathbf{0} mm$ $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 800 \text{ mm}$ t_{base} = **500** mm $d_{ds} = 0 \text{ mm}$ lds = **15** mm t_{ds} = **500** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3000 \text{ mm}$ $d_{cover} = 0 mm$ $d_{exc} = 0 mm$ h_{water} = **3000** mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2500 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ_{base} = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3000 \text{ mm}$

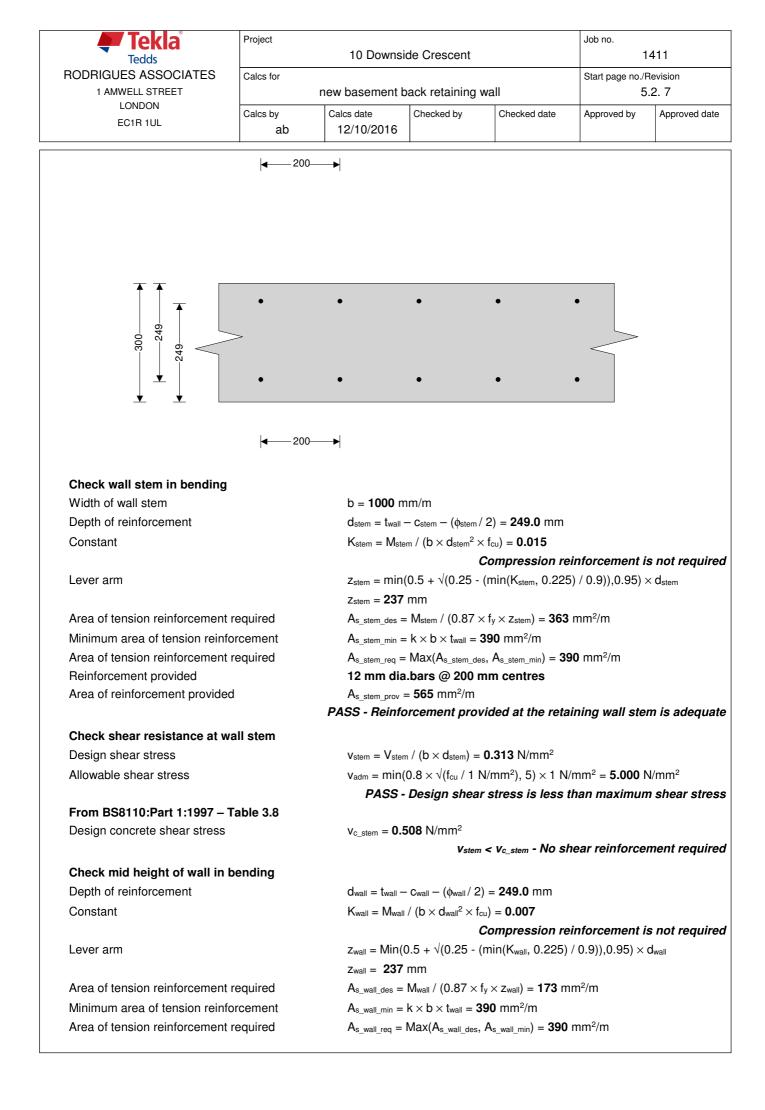
M = **1.5** γ_m = **18.0** kN/m³

	Project	Project Job no. 10 Downside Crescent 1411				
RODRIGUES ASSOCIATES	Calcs for				Start page no./F	
1 AMWELL STREET LONDON		new basement I	-	wall	5	.2. 2
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved dat
Saturated density of retained r	material	γ _s = 21.0 k				
Design shear strength		φ' = 18.6 d	-			
Angle of wall friction		$\delta = 0.0 \deg$	g			
Base material details						
Firm clay						
Moist density		$\gamma_{mb} = 18.0$	kN/m³			
Design shear strength		φ' _b = 16.5 α	deg			
Design base friction		$\delta_b = 18.6$ c	leg			
Allowable bearing pressure		P _{bearing} = 1	00 kN/m²			
Using Coulomb theory						
Active pressure coefficient for	retained materi	ial				
$K_a = sin(e)$	$(\alpha + \phi')^2 / (\sin(\alpha))$	$^{2} \times \sin(\alpha - \delta) \times [1 + $	+ $\sqrt{(\sin(\phi' + \delta))}$	< sin(φ' - β) / (sin($(\alpha - \delta) \times \sin(\alpha + \delta)$	$\beta)))]^2) = 0.5$
Passive pressure coefficient for	or base materia	l				
	K _p = sir	n(90 - ¢' _b)² / (sin(9	0 - $\delta_{b}) imes$ [1 - \sqrt{s}	$\sin(\phi_{b}' + \delta_{b}) imes \sin(\phi_{b}')$	φ' _b) / (sin(90 +	$\delta_b)))]^2) = 2.8$
At-rest pressure						
At-rest pressure for retained m	naterial	K ₀ = 1 – si	n(ǫ') = 0.681			
Loading details						
Surcharge load on plan		Surcharge	= 10.0 kN/m ²			
Applied vertical dead load on v	wall	W _{dead} = 20				
Applied vertical live load on wa		W _{live} = 8.0				
Position of applied vertical loa		l _{load} = 650	mm			
Applied horizontal dead load of	on wall	F _{dead} = 0.0	kN/m			
Applied horizontal live load on	wall	Flive = 0.0 k	kN/m			
Height of applied horizontal loa	ad on wall	$h_{load} = 0 m$	m			
		28 	<u>∏</u> 10			
		Prop -				
2	24.2 69.3	69.3	5.2 0703	29.4		

Tekla Tedds	Project	10 Downsi	Job no. 1411				
RODRIGUES ASSOCIATES	Calcs for new basement back retaining wall					Start page no./Revision 5.2. 3	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date	
Vertical forces on wall Wall stem		$w_{wall} = h_{stem}$	$\times t_{wall} \times \gamma_{wall} =$	17.7 kN/m			

waii stem	Wwall = listem < twall < fwall = 17.7 Kit/in
Wall base	$w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 9.4 \text{ kN/m}$
Applied vertical load	$W_v = W_{dead} + W_{live} = 28.3 \text{ kN/m}$
Total vertical load	$W_{total} = w_{wall} + w_{base} + W_v = 55.5 \text{ kN/m}$
Horizontal forces on wall	
Surcharge	$F_{sur} = K_a \times Surcharge \times h_{eff} = 15.5 \text{ kN/m}$
Saturated backfill	$F_s = 0.5 \times K_a \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = 26 \text{ kN/m}$
Water	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 44.1 \text{ kN/m}$
Total horizontal load	$F_{total} = F_{sur} + F_s + F_{water} = 85.6 \text{ kN/m}$
Calculate total propping force	
Passive resistance of soil in front of wall	$F_{p} = 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = \textbf{6} \text{ kN/m}$
Propping force	$F_{prop} = max(F_{total} - F_{p} - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$
	F _{prop} = 63.6 kN/m
Overturning moments	
Surcharge	$M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 23.2 \text{ kNm/m}$
Saturated backfill	$M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 26 \text{ kNm/m}$
Water	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 44.1 \text{ kNm/m}$
Total overturning moment	$M_{ot} = M_{sur} + M_s + M_{water} = 93.4 \text{ kNm/m}$
Restoring moments	
Wall stem	$M_{wall} = w_{wall} \times (I_{toe} + t_{wall} / 2) = 11.5 \text{ kNm/m}$
Wall base	$M_{base} = w_{base} \times I_{base} / 2 = 3.8 \text{ kNm/m}$
Design vertical dead load	$M_{dead} = W_{dead} \times I_{load} = 13.2 \text{ kNm/m}$
Total restoring moment	$M_{rest} = M_{wall} + M_{base} + M_{dead} = 28.5 \text{ kNm/m}$
Check bearing pressure	
Total vertical reaction	R = W _{total} = 55.5 kN/m
Distance to reaction	x _{bar} = I _{base} / 2 = 400 mm
Eccentricity of reaction	$e = abs((I_{base} / 2) - x_{bar}) = 0 mm$
	Reaction acts within middle third of base
Bearing pressure at toe	$p_{toe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 69.3 \text{ kN/m}^2$
Bearing pressure at heel	$p_{heel} = (R / I_{base}) + (6 \times R \times e / I_{base}^2) = 69.3 \text{ kN/m}^2$
PA	SS - Maximum bearing pressure is less than allowable bearing pressure
Calculate propping forces to top and base	of wall
Propping force to top of wall	

Propping force to base of wall

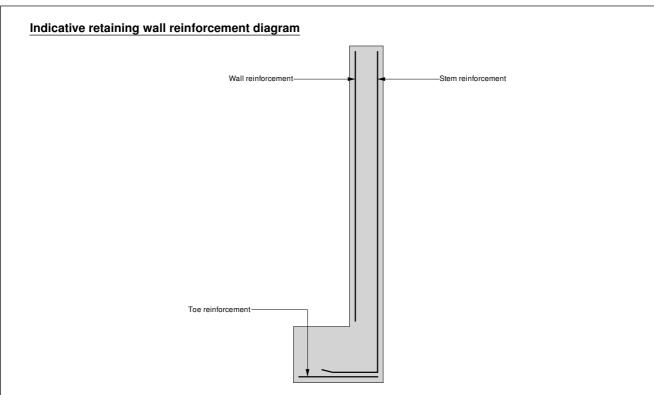

$$\begin{split} F_{prop_top} &= (M_{ot} - M_{rest} + R \times I_{base} / \ 2 - F_{prop} \times t_{base} / \ 2) / (h_{stem} + t_{base} / \ 2) = \textbf{25.881 kN/m} \\ F_{prop_base} &= F_{prop} - F_{prop_top} = \textbf{37.737 kN/m} \end{split}$$

	Project	10 Downside Crescent			Job no. 1	411			
RODRIGUES ASSOCIATES	Calcs for	Start page no./Revisi							
1 AMWELL STREET LONDON		new basement	back retaining	wall	5	.2. 4			
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da			
	RE 9002-1004	 \	_						
RETAINING WALL DESIGN (I	D3 0002.1994	<u>)</u>			TEDDS calculatio	on version 1.2.01			
Ultimate limit state load facto	ors								
Dead load factor		$\gamma_{f_d} = 1.4$							
Live load factor		$\gamma_{f_{-}I} = 1.6$							
Earth and water pressure facto	or	$\gamma_{f_e} = 1.4$							
Factored vertical forces on v	vall								
Wall stem		$W_{wall_f} = \gamma_{f_i}$	$1 imes h_{ m stem} imes t_{ m wall} imes$	γ _{wall} = 24.8 kN/r	n				
Wall base		$W_{base_f} = \gamma_f$	_d × Ibase × tbase >	$\times \gamma_{\text{base}} = 13.2 \text{ kN}$	/m				
Applied vertical load				W _{live} = 41.2 kN/r					
Total vertical load			•-	W _{v_f} = 79.2 kN/n					
Factored horizontal at-rest for	orces on wall								
Surcharge		$F_{sur} f = \gamma_{f}$	× K₀ × Surchar	ae × h _{eff} = 32.7 k	N/m				
Saturated backfill			$\begin{aligned} F_{sur_{f}} &= \gamma_{f_{1}} \times K_{0} \times Surcharge \times h_{eff} = \textbf{32.7 kN/m} \\ F_{s \ f} &= \gamma_{f \ e} \times 0.5 \times K_{0} \times (\gamma_{s} - \gamma_{water}) \times h_{water}^{2} = \textbf{48 kN/m} \end{aligned}$						
Water			$F_{\text{water}} = \gamma_{\text{f}} e \times 0.5 \times h_{\text{water}}^2 \times \gamma_{\text{water}} = 61.8 \text{ kN/m}$						
Total horizontal load		- •	-	er_f = 142.5 kN/m					
		- total_r - r o	· · · · · · · · · · · · ·						
Calculate total propping force Passive resistance of soil in fro		$F_{r} = \gamma_{r} = \gamma_{r}$	$(0.5 \times K_{\star} \times cos)$	$s(\delta_b) imes (d_{cover} + t_{ball})$	$d_{12} + d_{12} + d_{22}$	× V 85			
kN/m		i p_t = γt_e λ	10.0 × Np × 008	$S(Ob) \wedge (Ocover + lba)$	ase + Uds - Uexc)	~ γmb = 0.5			
Propping force		Farm f = m	ax(Ftotal f - Fo f -	$\cdot (W_{total_{f}} - \gamma_{f_{l}} \times W)$	$I_{\rm line}$) × tan $(\delta_{\rm b})$ 0	kN/m)			
		$F_{\text{prop}_f} = 11$			(00), c	,			
Factored overturning momen	nte	h. • h ⁻ .							
Surcharge	11.5	Mour f = Fo	r f × (h₀# - 2 × (d _{ds}) / 2 = 49 kNm	ı/m				
Saturated backfill		_		(ds) / 3 = 48 kNm/s					
Water									
Total overturning moment		$M_{water_f} = F_{water_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 61.8 \text{ kNm/m}$ Mot f = Msur f + Ms f + Mwater f = 158.8 kNm/m							
Restoring moments Wall stem		M		(2) = 16.1 kMm	m				
Wall base			$b_{ase_f} \times b_{ase} / 2 =$	/ 2) = 16.1 kNm/ - 5 3 kNm/m	111				
Design vertical load			$f \times I_{load} = 26.8 \text{ k}$						
Total restoring moment				M _{v_f} = 48.2 kNm/	'n				
-		TVIrest_1 – TVI	waii_i + ivibase_i + i	WV_1 - 40.2 KINII/	111				
Factored bearing pressure			70.0 \.\.						
Total vertical reaction Distance to reaction		-	_f = 79.2 kN/m ₂ / 2 = 400 mm						
Eccentricity of reaction			pase / 2) - Xbar_f) :	– 0 mm					
			Jase / L/ Abai_i/		s within middle	e third of ba			
Bearing pressure at toe		$p_{toe f} = (R_f)$	/ I_{base}) - (6 × R_{f}	$\times e_f / I_{base}^2 = 99.$.1 kN/m ²				
Bearing pressure at heel				$R_f \times e_f / I_{base}^2 = 9$					
Rate of change of base reaction	on			$a = 0.00 \text{ kN/m}^2/\text{m}$					
Bearing pressure at stem / toe			•	tte \times I _{toe}), 0 kN/m		2			
Bearing pressure at mid stem		Pstem mid f =	= max(p _{toe_f} - (ra	$ate imes (I_{toe} + t_{wall} / 2)$	2)), U KIN/M²) = '	99.1 kN/m ²			

Propping force to top of wall

Tedds RODRIGUES ASSOCIATES		10 Downsi	de Crescent			411
1 AMWELL STREET LONDON	Calcs for	new basement b	Start page no./Revision 5.2. 5			
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved
Propping force to base of wall	F _{prop_top_f} :	= (M _{ot_f} - M _{rest_f} + R F _{prop_base_f} =		_{op_f} × t _{base} / 2) / (h pp_f = 70.070 kN/		= 41.608
Design of reinforced concret	e retaining wa	all toe (BS 8002:1	994)			
Material properties						
Characteristic strength of conci	rete	f _{cu} = 40 N/r	nm²			
Characteristic strength of reinfo	prcement	f _y = 500 N/r	mm²			
Base details						
Minimum area of reinforcement	ł	k = 0.13 %				
Cover to reinforcement in toe	•	$C_{toe} = 45 \text{ m}$				
Calculate shear for toe desig	n					
Shear from bearing pressure		V _{toe bear} = (t	Otoe f + Ostem toe	_f) × I _{toe} / 2 = 49.5	kN/m	
Shear from weight of base				$be \times t_{base} = 8.3 \text{ kN}$		
Total shear for toe design			pear - V _{toe_wt_base}			
Calculate moment for toe des	lan					
Moment from bearing pressure	-	Mara haar — ($2 \times n_{\rm track} + n_{\rm track}$	n_mid_f) × (Itoe + twa	/ 2\ ² / 6 - 20 (kNm/m
Moment from weight of base				$t_{\rm base} \times (t_{\rm toe} + t_{\rm wall})$	-	
woment nom weight of base					(2) / (2) = 3.3 K	INIII/111
Total moment for toe design		M _{toe} = M _{toe} _	bear - Witoe_wt_base	₉ = 17.4 KNm/m		
-	>	M _{toe} = M _{toe}	_bear ⁻ ₩itoe_wt_base	•	•	
Total moment for toe design	► 4 200	•	bear - IVitoe_wt_base	•	•	
Total moment for toe design	► ←200	•	_bear ⁻ ₩itoe_wt_base	•	•	
Total moment for toe design	> • ∢ —_200	•	•	•	•	
Total moment for toe design	► 4 200	• • b = 1000 m	•	•	•	
Total moment for toe design	► 4 200	• b = 1000 m dtoe = tbase -	• nm/m	• = 447.0 mm	•	
Total moment for toe design	●	• b = 1000 m d _{toe} = t _{base} - K _{toe} = M _{toe} /	$m/m = c_{toe} - (\phi_{toe} / 2)$	• = 447.0 mm = 0.002 Compression re		-
Total moment for toe design	► 4 200	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C$	• • • • • • • • • • • • • •	• = 447.0 mm = 0.002		-
Total moment for toe design		• b = 1000 m dtoe = tbase - Ktoe = Mtoe / ztoe = min(C ztoe = 425 m		• = 447.0 mm = 0.002 Compression re min(K _{toe} , 0.225) /	′ 0.9)),0.95) × d	-
Total moment for toe design	required	b = 1000 m dtoe = tbase - Ktoe = Mtoe / Ztoe = min(C Ztoe = 425 m As_toe_des =	$f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}$	• • • • • • • • • • • • • • • • • • •	′ 0.9)),0.95) × d	-
Total moment for toe design	required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C_{toe} = 425 \text{ m})$ $A_{s_toe_des} = (A_{s_toe_min} = 1)$	• • • • • • • • • • • • • •	• = 447.0 mm = 0.002 <i>Compression re</i> min(K _{toe} , 0.225) / × z _{toe}) = 94 mm ² 50 mm ² /m	′′ 0.9)),0.95) × d ²/m	-
Total moment for toe design	required	b = 1000 m dtoe = tbase - Ktoe = Mtoe / ztoe = min(C ztoe = 425 m As_toe_des = As_toe_min = 1 As_toe_req = 1	$ \int \frac{1}{\sqrt{10^{-10} - 10^{-10} -$	• = 447.0 mm = 0.002 Compression remin(K _{toe} , 0.225) / × Z _{toe}) = 94 mm 50 mm ² /m A _{s_toe_min}) = 650 r	′′ 0.9)),0.95) × d ²/m	-
Total moment for toe design	required rcement required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C Z_{toe} = 425 \text{ m})$ $A_{s_toe_des} = A_{s_toe_des} = I$ $A_{s_toe_req} = I$ 16 mm dia	• • • • • • • • • • • • • •	• = 447.0 mm = 0.002 Compression remin(K _{toe} , 0.225) / × Z _{toe}) = 94 mm 50 mm ² /m A _{s_toe_min}) = 650 r	′′ 0.9)),0.95) × d ²/m	-

	Project	10 Downs	ide Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for				Start page no./	Revision
1 AMWELL STREET		new basement l	back retaining	wall		.2. 6
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da
EC1R 1UL	ab	12/10/2016				
Check shear resistance at to	e					
Design shear stress		$v_{toe} = V_{toe}$ /	$(b \times d_{toe}) = 0.0$)92 N/mm²		
Allowable shear stress			N/mm^2), 5) × 1 N/	/mm ² = 5.000 N	√/mm²	
				r stress is less t		
From BS8110:Part 1:1997 - 1	Table 3.8		-			
Design concrete shear stress		v _{c_toe} = 0.4	50 N/mm²			
			Vte	oe < Vc_toe - No st	near reinforce	ment requii
Design of reinforced concre	te retaining wa	all stem (BS 8002	2:1994 <u>)</u>			
Material properties						
Characteristic strength of conc	crete	f _{cu} = 40 N/	mm²			
Characteristic strength of reinf	orcement	f _y = 500 N/	mm ²			
Wall details						
Minimum area of reinforcemer	nt	k = 0.13 %)			
Cover to reinforcement in stem	n	Cstem = 45 I	mm			
Cover to reinforcement in wall		c _{wall} = 45 n	ım			
Factored horizontal at-rest fe	orces on stem					
Surcharge		$F_{s_sur_f} = \gamma_{f_}$	$_{I} \times K_{0} \times Surcha$	$arge imes (h_{eff} - t_{base})$	- d _{ds}) = 27.2 kN	l/m
Saturated backfill		$F_{s_s_f} = 0.5$	$ imes \gamma_{f_e} imes K_0 imes (\gamma$	$\gamma_{\rm s} - \gamma_{\rm water}) \times h_{\rm sat}^2 = 3$	33.3 kN/m	
Water		$F_{s_water_f} = 0$	$0.5 imes\gamma_{f_e} imes\gamma_{wate}$	er × h _{sat} ² = 42.9 k№	√/m	
Calculate shear for stem des	sign					
Surcharge		$V_{s_sur_f} = 5$	$\times F_{s_sur_f} / 8 = -$	17 kN/m		
Saturated backfill		$V_{s_s_f} = F_{s_f}$	$_{\rm s_f} imes$ (1 - ($a_{\rm l}^2 imes$ (((5 × L) - a _l) / (20	× L ³))) = 26.7	κN/m
Water		Vs_water_f =	$F_{s_water_f} \times (1 - ($	$(al^2 \times ((5 \times L) - al))$	/ (20 × L ³))) =	34.3 kN/m
Total shear for stem design		$V_{stem} = V_{s_s}$	$sur_f + Vs_s_f + V$	s_water_f = 78 kN/m	ı	
Calculate moment for stem of	design					
Surcharge	U U	$M_{s_sur} = F_{s_s}$	_sur_f × L / 8 = 9	.4 kNm/m		
Saturated backfill				15×a×L)+(20×L ²))/(60×L ²) = 12 .	2 kNm/m
Water			, .	×a ²)-(15×a×L)+(2		
kNm/m		_		, , ,		
Total moment for stem design		M _{stem} = M _s	_sur + Ms_s + Ms	_water = 37.3 kNm/	′m	
Calculate moment for wall de	esign					
Surcharge	-	$M_{w_sur} = 9$:	$\times F_{s_{sur_f}} \times L / 1$	28 = 5.3 kNm/m		
Saturated backfill				L)-a _l)/(20×L ³)-(x-k	$(3 \times a^2) = 5$. 5 kNm/m
Water		$M_{w water} = H$	$s_{s_{water_f}} \times [a_{l}^2 \times x]$	×((5×L)-a)/(20×L	°)-(x-b _i)°/(3×ai	²)] = / kNm/i

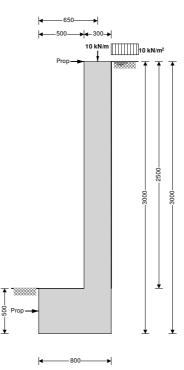

Tekla	Project				Job no.		
Tedds		10 Downside Crescent 1411				411	
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	new basement b	back retaining	wall	Start page no./F	Revision .2. 8	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date	
Reinforcement provided		12 mm dia	.bars @ 200 ı	nm centres			
Area of reinforcement provideo	Ł	As_wall_prov =	565 mm²/m				
	D A O (+ musuldad ta				
	PASS	S - Reinforcement	t provided to	the retaining wa	ili at mid neigi	ht is adequa	
Check retaining wall deflection		5 - Reinforcemen	i provided io	the retaining Wa	ai at mid neigi	ht is adequa	
Check retaining wall deflection Basic span/effective depth ratio	on	ratio _{bas} = 2		the retaining wa	in at mid neigi	ht is adequa	
•	on	ratio _{bas} = 2	0	the retaining wat $X = A_{s_stem_prov} = 2$		ht is adequa	
Basic span/effective depth ratio	on 0	ratio _{bas} = 2	0 : A _{s_stem_req} / (3	$\times A_{s_stem_prov}) = 2$	29.9 N/mm ²		

Actual span/effective depth ratio

ratio_{max} = ratio_{bas} × ratio_{tens} = cratio_{act} = h_{stem} / d_{stem} = **10.04**

PASS - Span to depth ratio is acceptable

Tekla Tedds	Project	10 Downsid	de Crescent		Job no. 14	11
RODRIGUES ASSOCIATES	Calcs for	new basement b	ack retaining wa	all	Start page no./Re 5.2	evision 2.9
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date



Toe bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$ Wall bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$ Stem bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$

📕 Tekla	Project				Job no.	
Tedds		10 Downsid	de Crescent		14	11
RODRIGUES ASSOCIATES	Calcs for				Start page no./Revision	
1 AMWELL STREET		new basem	ent side wall		5.3. 1	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

TEDDS calculation version 1.2.01.06

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

Mobilisation factor Moist density of retained material

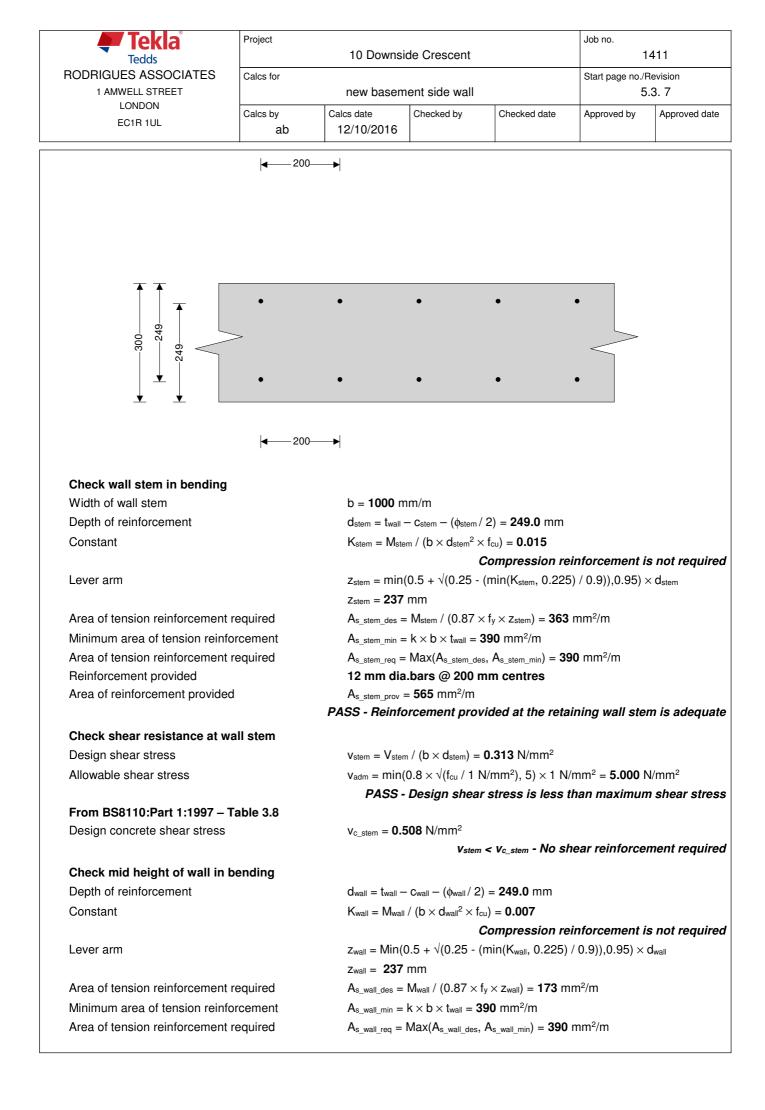
Cantilever propped at both h_{stem} = **2500** mm twall = 300 mm $I_{toe} = 500 \text{ mm}$ $I_{heel} = \mathbf{0} mm$ $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 800 \text{ mm}$ t_{base} = **500** mm $d_{ds} = 0 \text{ mm}$ lds = **300** mm t_{ds} = **500** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3000 \text{ mm}$ $d_{cover} = 0 mm$ $d_{exc} = 0 mm$ h_{water} = **3000** mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2500 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ_{base} = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3000 \text{ mm}$

M = **1.5** γ_m = **18.0** kN/m³

Tedds RODRIGUES ASSOCIATES 1 AMWELL STREET LONDON ECTR 1UL Calcs for new basement side Calcs by Calcs data 12/10/2016 Calcs data 100 kN/m ³ Calcs data 100 kN/m ³ Calcs data 100 kN/m 100 kol dot 10 kN/m 10 kod = 00 mm 10 kod 10 kN/m 10 kod = 00 mm 10 kod 10 kol 10 kol	Job no. scent 1411
$\begin{tabular}{ c c c c c c } \hline Calcs by & Calcs date & Checked & 12/10/2016 & Checked & 13/10, Ch$	Start page no./Revision le wall 5.3. 2
Design shear strength $\phi' = 18.6 \text{ deg}$ Angle of wall friction $\delta = 0.0 \text{ deg}$ Base material detailsFirm clayMoist density $\gamma_{mb} = 18.0 \text{ kN/m}^3$ Design shear strength $\phi'_b = 16.5 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $P_{bearing} = 100 \text{ kN/m}^3$ Value pressure coefficient for retained material $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 - \delta_b) \times [1 + \sqrt$	
Angle of wall friction $\delta = 0.0 \text{ deg}$ Base material detailsFirm clayMoist density $\gamma_{mb} = 18.0 \text{ kN/m^3}$ Design shear strength $\phi_b = 16.5 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $P_{bearing} = 100 \text{ kN/m^3}$ Using Coulomb theoryActive pressure coefficient for retained material $K_a = \sin(\alpha + \phi)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\alpha - \delta))^2}]$ At-rest pressure coefficient for base material $K_p = \sin(90 - \phi_b)^2 / (\sin(90 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\phi)^2 + \sin(\phi)^2)^2}]$ At-rest pressureAt-rest pressure for retained materialKo = 1 - \sin(\phi') = 0.100 \text{ kN/m}Applied vertical dead load on wallApplied vertical live load on wallApplied horizontal load on wallProp <td></td>	
Base material details Firm clay Moist density Design shear strength Design base friction Allowable bearing pressure Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\phi)^2 + \sin(\phi)^2)}]$ Attrest pressure Attrest pressure coefficient for base material $K_p = \sin(90 - \phi_b)^2 / (\sin(90 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\phi)^2 + \sin(\phi)^2)}]$ Attrest pressure Attrest pressure for retained material $K_0 = 1 - \sin(\phi^2) = 0.$ Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal load on wall Applied horizontal load on wall Applied horizontal load on wall $K_p = 0.0 \text{ kN/m}$ $K_{pe} = 0.0 \text{ kN/m}$ K	
Firm clay Moist density $\gamma_{mb} = 18.0 \text{ kN/m}^3$ Design shear strength $\phi_b = 16.5 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $P_{\text{bearing}} = 100 \text{ kN/m}^3$ Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 + \sin(\phi)^2 + \sin($	
Moist density $\gamma_{mb} = 18.0 \text{ kN/m}^3$ Design shear strength $\phi_b = 16.5 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $P_{\text{bearing}} = 100 \text{ kN/m}^3$ Using Coulomb theoryActive pressure coefficient for retained material $K_a = \sin(\alpha + \phi)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 + \sin(\phi)^2 + \sin$	
Design shear strength $\phi_b = 16.5 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $P_{\text{bearing}} = 100 \text{ kN/m}^2$ Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2)^2}]$ Passive pressure coefficient for base material $K_p = \sin(90 - \phi_b)^2 / (\sin(90 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2)^2}]$ At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0$. Loading details Surcharge load on plan $Surcharge = 10.0 \text{ kN/m}$ Applied vertical dead load on wall $W_{live} = 0.0 \text{ kN/m}$ Applied vertical live load on wall $W_{live} = 0.0 \text{ kN/m}$ Applied horizontal dead load on wall $F_{live} = 0.0 \text{ kN/m}$ Applied horizontal load on wall $F_{live} = 0.0 \text{ kN/m}$ Applied horizontal load on wall $F_{live} = 0.0 \text{ kN/m}$ $M_{load} = 0 \text{ mm}$	
Design base friction Allowable bearing pressure Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 + \sin(\alpha - \delta)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + \cos(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + (\sin(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + (\sin(\phi)^2 + (\sin(\phi)^2 - \delta_b) \times [1 + \sqrt{(\sin(\phi)^2 + (\sin(\phi)^2 + $	
Allowable bearing pressure $P_{bearing} = 100 \text{ kN/m}^2$ Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 + \sin(\phi)^2 + $	
Using Coulomb theory Active pressure coefficient for retained material $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + (\sin(\phi)^2 + \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\alpha - \delta) \times [1 + \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^2 + \sin(\alpha - \delta) \times [1 + \cos(\alpha - \delta) $	
Active pressure coefficient for retained material $K_{a} = \sin(\alpha + \phi)^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)} + \phi)^{2}]$ Passive pressure coefficient for base material $K_{p} = \sin(90 - \phi'_{b})^{2} / (\sin(90 - \delta_{b}) \times [1 + \sqrt{(\sin(\phi)} + \phi)^{2}]$ At-rest pressure At-rest pressure At-rest pressure for retained material Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical load on wall Applied vertical load on wall Applied horizontal dead load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load horizontal load on wall Applied horizontal hori	n²
Active pressure coefficient for retained material $K_{a} = \sin(\alpha + \phi)^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)} + \phi)^{2}]$ Passive pressure coefficient for base material $K_{p} = \sin(90 - \phi'_{b})^{2} / (\sin(90 - \delta_{b}) \times [1 + \sqrt{(\sin(\phi)} + \phi)^{2}]$ At-rest pressure At-rest pressure At-rest pressure for retained material Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical load on wall Applied vertical load on wall Applied horizontal dead load on wall Applied horizontal load on wall Height of applied horizontal load on wall Height of applied horizontal load on wall Height of applied horizontal load on wall Applied horizontal load on wall Height of applied horizontal load horizontal load horizontal	
$K_{a} = \sin(\alpha + \phi)^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi)^{2} + \cos(\phi)^{2})^{2}}]$ Passive pressure coefficient for base material $K_{p} = \sin(90 - \phi'_{b})^{2} / (\sin(90 - \delta_{b}) \times [1 + \sqrt{(\sin(\phi)^{2} + \cos(\phi)^{2})^{2}}]$ At-rest pressure $At-rest pressure for retained material$ $K_{0} = 1 - \sin(\phi') = 0.$ Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $F_{ive} = 0.0 \text{ kN/m}$	
Passive pressure coefficient for base material $K_p = \sin(90 - \phi'b)^2 / (\sin(90 - \delta_b) \times $ At-rest pressure At-rest pressure for retained material Loading details Surcharge load on plan Applied vertical dead load on wall Applied horizontal dead load on wall Applied horizontal load on wall Applied horizontal live load on wall Height of applied horizontal load on wall horizontal load on wall horizontal ho	$\phi' + \delta > \sin(\phi' - \beta) / (\sin(\alpha - \delta) > \sin(\alpha + \beta)))^{2} = 0$
$K_{p} = \sin(90 - \phi'_{b})^{2} / (\sin(90 - \delta_{b}) \times $ At-rest pressure for retained material At-rest pressure for retained material Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal load on wall Height of applied horizontal load on wall $F_{live} = 0.0 \text{ kN/m}$	$\psi = 0 / x \sin(\psi = p) / (\sin(\omega = 0 / x \sin(\omega = p)))]) = 0.0$
At-rest pressureAt-rest pressure for retained materialLoading detailsSurcharge load on planApplied vertical dead load on wallApplied vertical live load on wallApplied horizontal dead load on wallApplied horizontal live load on wallFive = 0.0 kN/mHeight of applied horizontal load on wallPropPropProp	$([1 - \sqrt{(\sin(\phi_{1} + \delta_{1}) \times \sin(\phi_{1})}) / (\sin(90 + \delta_{1}))))^{2}) = 28$
At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0$. Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall Hotal = 0 mm Hotal = 0 mm	$\left[1 - \sqrt{(\sin(\psi_{\rm D} + \phi_{\rm D}) \times \sin(\psi_{\rm D}) / (\sin(\psi_{\rm D} + \phi_{\rm D})))}\right] = 2.6$
Loading details Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall Height = 0.0 kN/m Hood = 0 mm hoad = 0 mm hoad = 0 mm	
Surcharge load on plan Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $P_{\text{totad}} = 0.0 \text{ kN/m}$ $P_{\text{totad}} = 0.0 \text{ kN/m}$ $P_{\text{totad}} = 0.0 \text{ kN/m}$ $P_{\text{totad}} = 0 \text{ mm}$ $P_{\text{totad}} = 0 \text{ mm}$).681
Applied vertical dead load on wall Applied vertical live load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $P_{ive} = 0.0 \text{ kN/m}$ $P_{ive} = 0.0 \text{ kN/m}$	
Applied vertical live load on wall Position of applied vertical load on wall Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $Prop \rightarrow 0 \text{ kN/m}$ $Prop \rightarrow 0 \text{ kN/m}$	kN/m ²
Position of applied vertical load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $I_{load} = 650 \text{ mm}$ $F_{dead} = 0.0 \text{ kN/m}$ $h_{load} = 0 \text{ mm}$	1
Applied horizontal dead load on wall Applied horizontal live load on wall Height of applied horizontal load on wall $F_{dead} = 0.0 \text{ kN/m}$ $h_{load} = 0 \text{ mm}$	
Applied horizontal live load on wall Height of applied horizontal load on wall $F_{live} = 0.0 \text{ kN/m}$ $h_{load} = 0 \text{ mm}$ P_{rop}	
Height of applied horizontal load on wall $h_{load} = 0 \text{ mm}$	
Prop	
24.2 46.8 46.8 46.8 46.8	

Tekla Tedds	Project	10 Downsid	de Crescent		Job no. 14	11
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	new basem	ent side wall		Start page no./Revision 5.3. 3	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

ertical forces on wall	
Vall stem	$w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = \textbf{17.7} \text{ kN/m}$
Vall base	$w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 9.4 \text{ kN/m}$
pplied vertical load	$W_v = W_{dead} + W_{live} = 10.3 \text{ kN/m}$
otal vertical load	$W_{total} = w_{wall} + w_{base} + W_v = 37.4 \text{ kN/m}$
lorizontal forces on wall	
Surcharge	$F_{sur} = K_a \times Surcharge \times h_{eff} = 15.5 \text{ kN/m}$
Saturated backfill	$F_s = 0.5 \times K_a \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = 26 \text{ kN/m}$
Vater	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 44.1 \text{ kN/m}$
otal horizontal load	$F_{total} = F_{sur} + F_s + F_{water} = 85.6 \text{ kN/m}$
Calculate total propping force	
Passive resistance of soil in front of wall	$F_{p} = 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = \textbf{6} \text{ kN/m}$
Propping force	$F_{prop} = max(F_{total} - F_{p} - (W_{total}) \times tan(\delta_{b}), 0 \text{ kN/m})$
	F _{prop} = 67.0 kN/m
Overturning moments	
Surcharge	$M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 23.2 \text{ kNm/m}$
Saturated backfill	$M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 26 \text{ kNm/m}$
Vater	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 44.1 \text{ kNm/m}$
otal overturning moment	$M_{ot} = M_{sur} + M_s + M_{water} = 93.4 \text{ kNm/m}$
Restoring moments	
Vall stem	$M_{wall} = w_{wall} \times (I_{toe} + t_{wall} / 2) = 11.5 \text{ kNm/m}$
Vall base	$M_{base} = w_{base} \times I_{base} / 2 = 3.8 \text{ kNm/m}$
Design vertical dead load	$M_{dead} = W_{dead} \times I_{load} = 6.7 \text{ kNm/m}$
otal restoring moment	$M_{rest} = M_{wall} + M_{base} + M_{dead} = 22 \text{ kNm/m}$
Check bearing pressure	
otal vertical reaction	R = W _{total} = 37.4 kN/m
Distance to reaction	x _{bar} = I _{base} / 2 = 400 mm
ccentricity of reaction	$e = abs((I_{base} / 2) - x_{bar}) = 0 mm$
	Reaction acts within middle third of base
Bearing pressure at toe	$p_{toe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 46.8 \text{ kN/m}^2$
Bearing pressure at heel	$p_{\text{heel}} = (R \mid I_{\text{base}}) + (6 \times R \times e \mid I_{\text{base}}^2) = 46.8 \text{ kN/m}^2$
	S - Maximum bearing pressure is less than allowable bearing pressure


 $F_{prop_top} = (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 25.324 \text{ kN/m}$ Propping force to base of wall $F_{prop_base} = F_{prop} - F_{prop_top} = 41.679 \text{ kN/m}$

	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for				Start page no./F	Revision
1 AMWELL STREET		new basem	5.3. 4			
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da
	1	1	!		- I	
RETAINING WALL DESIGN (BS 8002:1994	<u>)</u>			TEDDS calculatio	n version 1.2.0 [.]
Ultimate limit state load factor	ors					
Dead load factor		$\gamma_{f_d} = 1.4$				
Live load factor		γ _{f_l} = 1.6				
Earth and water pressure factor	or	$\gamma_{f_e} = 1.4$				
Factored vertical forces on v	vall					
Wall stem		$W_{wall_f} = \gamma_{f_d}$	imes h _{stem} $ imes$ t _{wall} $ imes$	γwall = 24.8 kN/r	n	
Wall base		$W_{base_f} = \gamma_{f_e}$	$1 \times I_{base} \times t_{base} >$	<γ _{base} = 13.2 kN	/m	
Applied vertical load		$W_{v_f} = \gamma_{f_d}$	$\langle W_{dead} + \gamma_{f_l} \times$	W _{live} = 14.4 kN/r	n	
Total vertical load		$W_{total_f} = w_w$	vall_f + Wbase_f +	W _{v_f} = 52.4 kN/n	ı	
Factored horizontal at-rest for	orces on wall					
Surcharge		$F_{sur f} = \gamma_{f}$	$K_0 \times Surcharget$	ge × h _{eff} = 32.7 k	N/m	
Saturated backfill				γ_{water} \times h_{water}^2 =		
Water				$^{2} \times \gamma_{\text{water}} = 61.8 \text{ k}$		
Total horizontal load		F _{total_f} = F _{su}	_f + Fs_f + Fwate	er_f = 142.5 kN/m		
Calculate total propping force	e					
Passive resistance of soil in fro		$F_{p f} = \gamma_{f e} \times$	$0.5 \times K_{p} \times cos$	$s(\delta_b) imes (d_{cover} + t_{ball})$	use + d _{ds} - d _{exc}) ²	$\times \gamma_{\rm mb} = 8.5$
kN/m		r_ •	r		···· · · ,	•
Propping force		$F_{prop_f} = ma$	x(F _{total_f} - F _{p_f} -	$(W_{total_f}) \times tan(\delta_t)$), 0 kN/m)	
		F _{prop_f} = 11	6.4 kN/m			
Factored overturning moment	nts					
Surcharge		$M_{sur_f} = F_{sur}$	$_{f} \times (h_{eff} - 2 \times d)$	d _{ds}) / 2 = 49 kNm	ı/m	
Saturated backfill		$M_{s_f} = F_{s_f}$	\times (h _{water} - 3 \times d _c	ds) / 3 = 48 kNm/	m	
Water		$M_{water_f} = F_w$	$_{water_f} imes (h_{water} -$	$3 \times d_{ds}) / 3 = 61.$	8 kNm/m	
Total overturning moment		$M_{ot_f} = M_{sur_f}$	$_{f} + M_{s_{f}} + M_{wate}$	er_f = 158.8 kNm/	m	
Restoring moments						
Wall stem		$M_{wall_f} = W_{wall_f}$	$_{\text{all}_{f}} \times (I_{\text{toe}} + t_{\text{wall}})$	/ 2) = 16.1 kNm/	m	
Wall base		$M_{base_f} = w_b$	$_{ase_f} \times I_{base} / 2 =$	= 5.3 kNm/m		
Design vertical load		$M_{v_f} = W_{v_f}$	\times I _{load} = 9.3 kN	lm/m		
Total restoring moment		$M_{rest_f} = M_{w}$	$all_f + M_{base_f} + I$	M _{v_f} = 30.7 kNm/	m	
Factored bearing pressure						
Total vertical reaction		$R_{f} = W_{total_{f}}$	= 52.4 kN/m			
Distance to reaction			/ 2 = 400 mm			
Eccentricity of reaction		$e_f = abs((I_{ba}$	_{ase} / 2) - X _{bar_f}) =			
Design and the					within middle	e third of ba
Bearing pressure at toe				$\times e_{\rm f} / l_{\rm base}^2 = 65.$		
Bearing pressure at heel				$R_{f} \times e_{f} / I_{base}^{2} = 68$		
Rate of change of base reaction			•	$t = 0.00 \text{ kN/m}^2/\text{m}$ te × I _{toe}), 0 kN/m		2
Bearing pressure at stem / toe Bearing pressure at mid stem						
Bearing pressure at mid stem / hee				$te imes (I_{toe} + t_{wall} / 2)$ ate $ imes (I_{toe} + t_{wall})),$		
DEALING DIESSILE ALSIEUL / DEE	71	Ustem heel f =	IIIAA(Utoe f - (fa	aισ∧(Itoe + lwall)),	$\cup r(N/11) = 00.$	

Propping force to top of wall

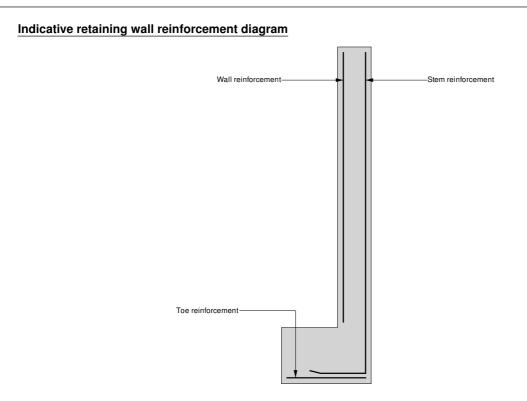
		10 Downsi	de Crescent		1 Start page no./F	411
RODRIGUES ASSOCIATES	Calcs for	new basem	new basement side wall			
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved
Propping force to base of wall	F _{prop_top_f} :	= (M _{ot_f} - M _{rest_f} + R F _{prop_base_f} =		_{rop_f} × t _{base} / 2) / (h top_f = 72.797 kN/i		= 43.621
Design of reinforced concret	te retaining w	all toe (BS 8002:1	994)			
Material properties	<u></u>		<u></u>			
Characteristic strength of conc	rete	f _{cu} = 40 N/r	nm²			
Characteristic strength of reinf		$f_y = 500 \text{ N/}$				
Base details		,				
Minimum area of reinforcemen	ıt	k = 0.13 %				
Cover to reinforcement in toe		c _{toe} = 45 m				
	1 0					
Calculate shear for toe desig Shear from bearing pressure	jn -	V		$() \times [-2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	'kN/m	
01				_f) × I _{toe} / 2 = 32.7		
Shear from weight of base				$toe \times t_{base} = 8.3 \text{ kN}$	1/111	
Total shear for toe design		$\mathbf{v}_{\text{toe}} = \mathbf{v}_{\text{toe}}$	pear - Vtoe_wt_base	a = 24.3 KIN/III		
Calculate moment for toe de	-		-			/
Moment from bearing pressure	9			$m_{mid_f} \times (I_{toe} + t_{wa})$	-	
Moment from weight of base				$t_{base} \times (I_{toe} + t_{wall} / $	2) ² / 2) = 3.5 k	Nm/m
Total moment for toe design		$M_{toe} = M_{toe}$	_bear - M _{toe_wt_bas}	_{se} = 10.3 kNm/m		
₹	•	•	•	•	•	
► 500	•	•)•	•	•	•	
Check toe in bending	► 200		•	•	•	
Check toe in bending Width of toe	•	b = 1000 n		•	•	
Check toe in bending Width of toe Depth of reinforcement	► ← _200	b = 1000 n d _{toe} = t _{base} -	- c _{toe} - (φ _{toe} / 2)		•	
Check toe in bending Width of toe	► ←200	b = 1000 n d _{toe} = t _{base} -	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) = 0.001	•	
Check toe in bending Width of toe Depth of reinforcement Constant	► ← _200	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe} ,	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) = 0.001 Compression re		-
Check toe in bending Width of toe Depth of reinforcement	► ←200	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = \min(0)$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu}) 0.5 + $\sqrt{(0.25 - (0.25))}$) = 0.001		-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm		$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - K_{\text{toe}} = M_{\text{toe}}$ $Z_{\text{toe}} = min(0)$ $Z_{\text{toe}} = 425 \text{ m}$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) 0.5 + $\sqrt{0.25}$ - (mm) = 0.001 <i>Compression re</i> min(K _{toe} , 0.225) /	′ 0.9)),0.95) × d	-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement	required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}} = M_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = min(0)$ $z_{\text{toe}} = 425 \text{ m}$ $A_{s_\text{toe_des}} = 0$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu}) 0.5 + $\sqrt{0.25}$ - (mm M _{toe} / (0.87 × f) = 0.001 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 56 mm ²	′ 0.9)),0.95) × d	-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = t_{toe} - t_{toe}$ $Z_{toe} = M_{toe} - t_{toe}$ $Z_{toe} = 425 \text{ m}$ $A_{s_toe_des} = t_{s_toe_min} = t_{s_toe_min}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{base} = 0)$) = 0.001 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 56 mm ² 650 mm ² /m	′ 0.9)),0.95) × d ²/m	-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinfor Area of tension reinforcement	required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = 425 \text{ m}$ $A_{s_\text{toe_des}} = A_{s_\text{toe_min}} = A_{s_\text{toe_req}} = t_{s_\text{toe_req}}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{toe})$ $k \times b \times t_{base} = 0$ $Max(A_{s_toe_des}, -1)$) = 0.001 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 56 mm ² 650 mm ² /m A _{s_toe_min}) = 650 m	′ 0.9)),0.95) × d ²/m	-
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	required prcement required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = 425 \text{ m}$ $A_{\text{s}_\text{toe}_\text{des}} = A_{\text{s}_\text{toe}_\text{min}} = A_{\text{s}_\text{toe}_\text{req}} = 16 \text{ mm dia}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{base} = 0)$) = 0.001 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 56 mm ² 650 mm ² /m A _{s_toe_min}) = 650 m	′ 0.9)),0.95) × d ²/m	-

	Project	10 Downsie	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for				Start page no./F	
1 AMWELL STREET	Calcs IO	new basem	ent side wall			.3. 6
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat
EC1R 1UL	ab	12/10/2016				
Check shear resistance at to	e					
Design shear stress		$v_{toe} = V_{toe}$ /	$(b \times d_{toe}) = 0.0$	55 N/mm²		
Allowable shear stress		v _{adm} = min(0.8 × √(f _{cu} / 1 №	N/mm^2), 5) \times 1 N/	/mm² = 5.000 N	√/mm²
		PASS -	Design sheal	r stress is less t	than maximun	n shear stre
From BS8110:Part 1:1997 - 1	Table 3.8					
Design concrete shear stress		v _{c_toe} = 0.45	0 N/mm²			
			Vto	oe < Vc_toe - No st	hear reinforce	ment requir
Design of reinforced concret	te retaining wa	all stem (BS 8002	:1994 <u>)</u>			
Material properties						
Characteristic strength of conc	crete	$f_{cu} = 40 N/n$	nm²			
Characteristic strength of reinf	orcement	$f_y = 500 \text{ N/r}$	nm²			
Wall details						
Minimum area of reinforcemen	nt	k = 0.13 %				
Cover to reinforcement in stem	า	Cstem = 45 m	ım			
Cover to reinforcement in wall		$c_{wall} = 45 \text{ m}$	m			
Factored horizontal at-rest for	orces on stem	1				
Surcharge		$F_{s_sur_f} = \gamma_{f_i}$	$ imes K_0 imes$ Surcha	$arge imes (h_{eff} - t_{base})$	- d _{ds}) = 27.2 kN	l/m
Saturated backfill		$F_{s_s_f} = 0.5$	$\times \gamma_{f_e} \times K_0 \times (\gamma_{e})$	s- γ_{water}) $ imes$ h _{sat} ² = 3	33.3 kN/m	
Water		$F_{s_water_f} = 0$	$.5 imes\gamma_{f_e} imes\gamma_{wate}$	r × h _{sat} ² = 42.9 k№	N/m	
Calculate shear for stem des	sign					
Surcharge		$V_{s_sur_f} = 5$	$< F_{s_sur_f} / 8 = 1$	1 7 kN/m		
Saturated backfill		$V_{s_s_f} = F_{s_s}$	$_{f} \times (1 - (a)^{2} \times ($	(5 × L) - al) / (20	× L ³))) = 26.7 k	≺N/m
Water		$V_{s_water_f} = F$	$s_{water_f} \times (1 - ($	$a_1^2 \times ((5 \times L) - a_1)$	$(20 \times L^3))) =$	34.3 kN/m
Total shear for stem design		$V_{stem} = V_{s_s}$	$ur_f + Vs_s_f + Vs_s$	s_water_f = 78 kN/m	า	
Calculate moment for stem of	design					
Surcharge		$M_{s_sur} = F_{s_s}$	$sur_f \times L / 8 = 9.$. 4 kNm/m		
Saturated backfill		$M_{s_s} = F_{s_s}$	$f \times a \times ((3 \times a)^2) - ($	15×a×L)+(20×L²)))/(60×L ²) = 12 .	2 kNm/m
Water		$M_{s_water} = F_s$	s_water_f ×aI×((3×	<ai²)-(15×ai×l)+(2< td=""><td>20×L²))/(60×L²)</td><td>= 15.7</td></ai²)-(15×ai×l)+(2<>	20×L²))/(60×L²)	= 15.7
kNm/m						
Total moment for stem design		$M_{stem} = M_{s_s}$	$sur + Ms_s + Ms_s$	_water = 37.3 kNm/	/m	
Calculate moment for wall de	esign					
Surcharge		$M_{w_sur} = 9 \times$	$F_{s_sur_f} \times L / 1$	28 = 5.3 kNm/m		
Saturated backfill		$M_{w_s} = F_{s_s_}$	$f \times [a_1^2 \times x \times ((5 \times 1)^2)]$	L)-a _l)/(20×L ³)-(x-b	$(3 \times a^2) = 5$	5 .5 kNm/m
Water		M _{w water} = F		×((5×L)-a)/(20×L	. ³)-(x-b _l) ³ /(3×a _l ²	²)] = 7 kNm/r
				((-))		/1

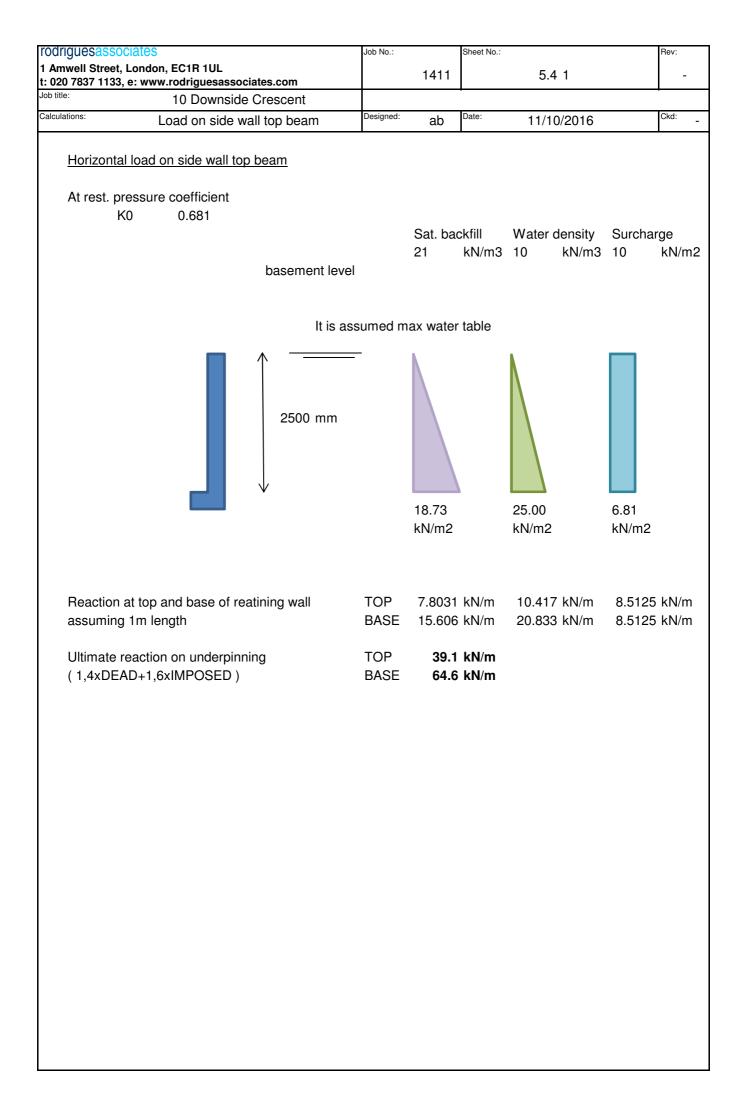
	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	new basem	nent side wall		Start page no./I 5	Revision 5.3. 8
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date
Reinforcement provided Area of reinforcement provided	1		bars @ 200 ₪ ⊧ 565 mm²/m	mm centres		
	PAS	S - Reinforcemen		the retaining wa	all at mid heig	ht is adequat
Check retaining wall deflecti	on					
Basic span/effective depth ratio	D	ratio _{bas} = 2	0			
Design service stress				$\times A_{s \text{ stem prov}} = 2$		

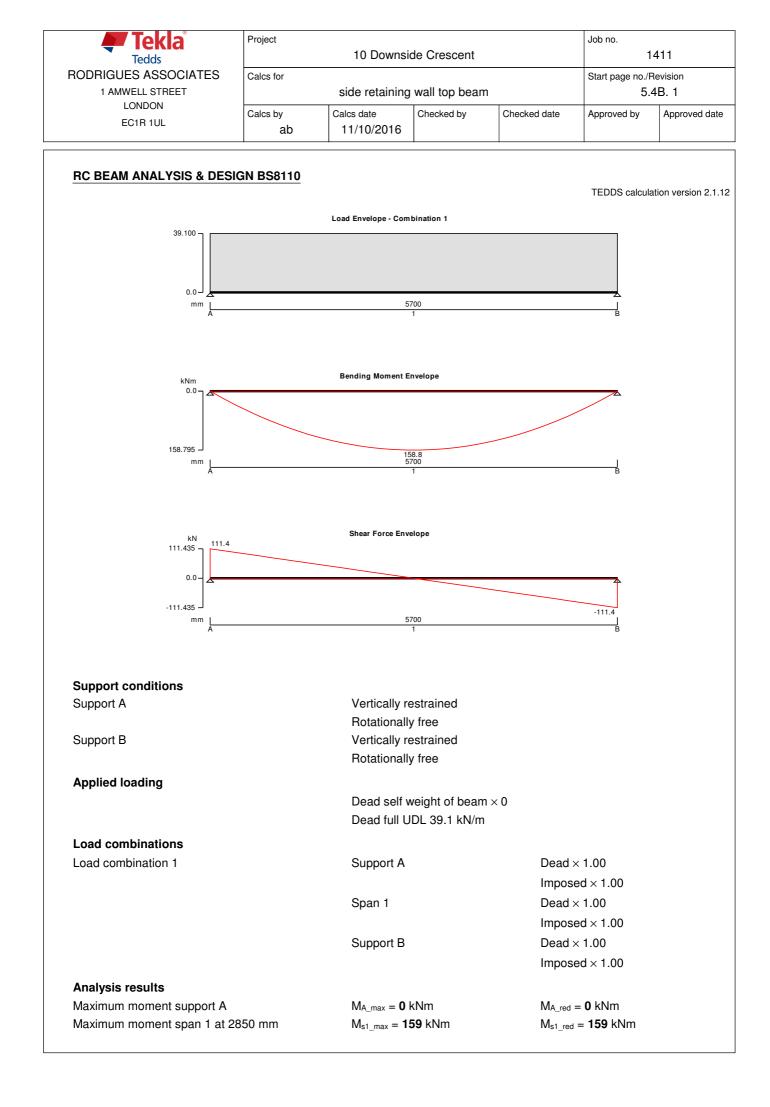
Design service stress Modification factor

 $factor_{tens} = min(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stem}/(b \times d_{stem}^2)))),2) = 1.92$


Maximum span/effective depth ratio

Actual span/effective depth ratio


 $ratio_{max} = ratio_{bas} \times factor_{tens} = 38.42$ $ratio_{act} = h_{stem} / d_{stem} = 10.04$


PASS - Span to depth ratio is acceptable

Tekla Tedds	Project	10 Downsid	de Crescent		Job no. 14	11
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	new basem	ent side wall		Start page no./Re 5.3	evision 3. 9
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

Toe bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$ Wall bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$ Stem bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$

Iekla	Project	10 Downsi	de Crescent		Job no. 1	411
Tedds RODRIGUES ASSOCIATES	Calcs for				Start page no./F	Revision
1 AMWELL STREET LONDON		-	wall top beam	I		4B. 2
EC1R 1UL	Calcs by ab	Calcs date 11/10/2016	Checked by	Checked date	Approved by	Approved d
Maximum moment support B		$M_{B_{max}} = 0$	kNm	M _{B_red} =	■ 0 kNm	
Maximum shear support A		V _{A_max} = 11			111 kN	
Maximum shear support A spa	n 1 at 447 mm	V _{A_s1_max} =			a = 94 kN	
Maximum shear support B Maximum shear support B spa	n 1 at 5252 mm	V _{B_max} = -1		_	-111 kN	
Maximum reaction at support A		V _{B_s1_max} = R _A = 111 k		V B_s1_ree	a = -94 kN	
Unfactored dead load reaction		$R_{A Dead} = 1$				
Maximum reaction at support E	••	R _B = 111 k				
Unfactored dead load reaction	at support B	$R_{B_{Dead}} = 1$	11 kN			
Rectangular section details						
Section width		b = 300 mr	n			
Section depth		h = 500 mr	n			
			0▶			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concret	•	C32/40 f _{cu} = 40 N/r E _c = 20kN/r		= 28000 N/mm ²		
Concrete strength class	•	f _{cu} = 40 N/r	mm^2 + 200 × f _{cu}	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret	reinforcement	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{ kN/r}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/r}$	mm ² + 200 \times f _{cu} mm ²	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of	reinforcement shear reinforcen	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{ kN/r}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/r}$	mm ² + 200 \times f _{cu} mm ²	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforce	reinforcement shear reinforcen ent ment	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{ kN/r}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/r}$ nent $f_{yv} = 500 \text{ N/r}$ $C_{nom_t} = 35$	mm ² + 200 × f _{cu} im mm ² /mm ² mm	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforced	reinforcement shear reinforcen ent ment rcement	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{ kN/r}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/r}$ nent $f_{yv} = 500 \text{ N/r}$ $C_{nom_t} = 35$ $C_{nom_b} = 35$	mm ² + 200 × f _{cu} Im mm ² /mm ² mm	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforce	reinforcement shear reinforcen ent ment rcement	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{ kN/r}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/r}$ nent $f_{yv} = 500 \text{ N/r}$ $C_{nom_t} = 35$	mm ² + 200 × f _{cu} Im mm ² /mm ² mm	= 28000 N/mm ²		
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforced	reinforcement shear reinforcen ent ment rcement	f _{cu} = 40 N/r E _c = 20kN/r h _{agg} = 20 m f _y = 500 N/r nent f _{yv} = 500 N/r Cnom_t = 35 Cnom_b = 35 Cnom_s = 35	mm ² + 200 × f _{cu} Im mm ² /mm ² mm			
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforced Nominal cover to bottom reinforced	reinforcement shear reinforcen ent ment rcement ement	f _{cu} = 40 N/r E _c = 20kN/r h _{agg} = 20 m f _y = 500 N/r nent f _{yv} = 500 N/r Cnom_t = 35 Cnom_b = 35 Cnom_s = 35	mm ² + 200 × f _{cu} mm /mm ² /mm ² mm mm mm x 10 $_{\phi}$ bars x 8 $_{\phi}$ shear legs at 2			
Concrete strength class Characteristic compressive cul Modulus of elasticity of concret Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforced Nominal cover to bottom reinforced	reinforcement shear reinforcem ent ment rcement ement	f _{cu} = 40 N/r E _c = 20kN/r h _{agg} = 20 m f _y = 500 N/r nent f _{yv} = 500 N/r Cnom_t = 35 Cnom_b = 35 Cnom_s = 35	mm ² + 200 × f _{cu} mm /mm ² /mm ² mm mm mm x 10 $_{\phi}$ bars x 8 $_{\phi}$ shear legs at 2			

Tekla Tedds	Project	10 Downsie	de Crescent		Job no. 14	.11
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	side retaining	wall top beam	ı	Start page no./Re 5.4	evision B. 3
LONDON EC1R 1UL	Calcs by ab	Calcs date 11/10/2016	Checked by	Checked date	Approved by	Approved date

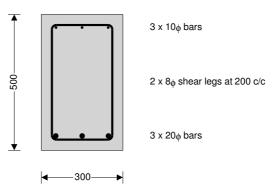
Rectangular section in shear

Design shear force span 1 at 447 mm Design shear stress Design concrete shear stress $(min(f_{cu}, 40) / 25)^{1/3} / \gamma_m$

Allowable design shear stress

Value of v from Table 3.7 Design shear resistance required Area of shear reinforcement required Shear reinforcement provided Area of shear reinforcement provided $V = \max(V_{A_s1_max}, V_{A_s1_red}) = 94 \text{ kN}$ $v = V / (b \times d) = 0.700 \text{ N/mm}^2$ $v_c = 0.79 \times \min(3, [100 \times A_{s, prov} / (b \times d)]^{1/3}) \times \max(1, (400 / d)^{1/4}) \times$ $v_c = 0.657 \text{ N/mm}^2$ $v_{max} = \min(0.8 \text{ N/mm}^2 \times (f_{cu}/1 \text{ N/mm}^2)^{0.5}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum allowable $0.5 \times v_c < v < (v_c + 0.4 \text{ N/mm}^2)$ $v_s = \max(v - v_c, 0.4 \text{ N/mm}^2) = 0.400 \text{ N/mm}^2$ $A_{sv,req} = v_s \times b / (0.87 \times f_{yv}) = 276 \text{ mm}^2/\text{m}$ $2 \times 8\phi \text{ legs at 200 c/c}$

 $A_{sv,prov} = 503 \text{ mm}^2/\text{m}$


 $s_{vl,max} = 0.75 \times d = 335 \text{ mm}$

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Mid span 1

Design moment resistance of rectangular section (cl. 3.4.4) - Positive moment

Design moment resistance of rectangular set	clion (cl. 3.4.4) - Positive moment
Design bending moment	$M = abs(M_{s1_red}) = 159 \text{ kNm}$
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_v - \phi_{bot} / 2 = 447 \text{ mm}$
Redistribution ratio	$\beta_b = min(1 - m_{rs1}, 1) = 1.000$
	$K = M / (b \times d^2 \times f_{cu}) = 0.066$
	K' = 0.156
	K' > K - No compression reinforcement is required
Lever arm	$z = min(d \times (0.5 + (0.25 - K / 0.9)^{0.5}), 0.95 \times d) = 411 mm$
Depth of neutral axis	x = (d - z) / 0.45 = 79 mm
Area of tension reinforcement required	$A_{s,req} = M / (0.87 \times f_y \times z) = 888 \text{ mm}^2$
Tension reinforcement provided	$3 \times 20\phi$ bars
Area of tension reinforcement provided	A _{s,prov} = 942 mm ²
Minimum area of reinforcement	$A_{s,min} = 0.0013 \times b \times h = \textbf{195} \ mm^2$
Maximum area of reinforcement	$A_{s,max} = 0.04 \times b \times h = 6000 \text{ mm}^2$
PASS - Area of	reinforcement provided is greater than area of reinforcement required

Rectangular section in shear	
Shear reinforcement provided	$2 \times 8\phi$ legs at 200 c/c
Area of shear reinforcement provided	$A_{sv,prov} = 503 \text{ mm}^2/\text{m}$

	Project	10 Downsi	de Crescent		Job no.	411
RODRIGUES ASSOCIATES	Calcs for	side retaining	y wall top bean	ı	Start page no./I 5.	Revision 4B. 4
LONDON EC1R 1UL	Calcs by ab	Calcs date 11/10/2016	Checked by	Checked date	Approved by	Approved da
Minimum area of shear reinforc	ement (Table 3	8.7) A _{sv,min} = 0.4	4N/mm² × b / (0	0.87 × f _{yv}) = 276	mm²/m	
	F	ASS - Area of s	hear reinforce	ement provided	exceeds mini	mum requir
Maximum longitudinal spacing		,	′5 × d = 335 m			
	PASS - Long	itudinal spacing	-	-		
Design concrete shear stress				$(100 \times A_{s,prov} / (b))$ 2) / 25N/mm ²) ^{1/3} /		
Design shear resistance provid	ed		-	/ b = 0.729 N/m	-	
Design shear stress provided			$v_{\rm r} + V_{\rm c} = 1.386$			
Design shear resistance			$ \times (b \times d) = 18 $			
Shear lin	ks provided v	alid between 0 r	nm and 5700	mm with tensio	n reinforceme	ent of 942 m
Spacing of reinforcement (cl	3.12.11)					
Actual distance between bars in	n tension	s = (b - 2 ×	$(C_{nom_s} + \phi_v + \phi_v)$	¢ _{bot} /2)) /(N _{bot} - 1)	- φ _{bot} = 77 mm	
Minimum distance between b	ars in tension	(cl 3.12.11.1)				
Minimum distance between bar	s in tension	$s_{min} = h_{agg}$ -	+ 5 mm = 25 m	ım		
			PA	SS - Satisfies th	e minimum s	pacing crite
Maximum distance between b	oars in tensior	ı (cl 3.12.11.2)				
Design service stress		$f_s = (2 \times f_y)$	imes A _{s,req}) / (3 $ imes$ A	$A_{s,prov} \times \beta_b) = 313.$.9 N/mm²	
Maximum distance between ba	rs in tension	$s_{max} = min($		′ f _s , 300 mm) = 1		
			PAS	SS - Satisfies the	e maximum sj	pacing crite
Span to depth ratio (cl. 3.4.6)	2.0)					
Basic span to depth ratio (Table Design service stress in tensior		• – –	$epth_{basic} = 20.0$		$0 \text{N}/\text{mm}^2$	
Modification for tension reinforc		$I_s = (2 \times I_y)$	× As,req)/ (3 × A	$_{s,prov} \times \beta_b) = 313.9$	9 N/11111-	
		min(2.0, 0.55 + (477N/mm ² - fs) / (120 × (0.9N/n	nm² + (M / (b ×	$(d^2)))) = 0.9$
Modification for compression re		(,		,, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- ,,,,,
	f _{com}	₀ = min(1.5, 1 + ($100 imes A_{s2,prov}$ /	$(b \times d)) / (3 + (10))$	$00 imes A_{s2,prov}$ / (b	× d)))) = 1.0
Modification for span length		$f_{long} = 1.000$	0			
Allowable span to depth ratio				n_to_depth _{basic} \times	$f_{tens} \times f_{comp} = 19$	9.7
Actual span to depth ratio		•	$epth_{actual} = L_{s1}$			
		PASS	5 - Actual spa	n to depth ratio	is within the a	allowable lii
Support B						
] 3	x 10ø bars			
	-200	2	$x 8_{\phi}$ shear legs at	t 200 c/c		
		3	x 20ø bars			
	<u> </u>					
		_300►				
Rectangular section in shear						
Rectangular section in shear Design shear force span 1 at 52	253 mm	V = abs(mi	$n(V_{B_{s1}_{max}}, V_{B}_{max})$	_s1_red)) = 94 kN		

	Project	10 Downsi	de Crescent		Job no. 1	411		
RODRIGUES ASSOCIATES	Calcs for	side retaining	Start page no./Revision 5.4B. 5					
LONDON EC1R 1UL	Calcs by ab	Calcs date 11/10/2016	Checked by	Checked date	Approved by	Approved date		
Design concrete shear stress		$v_c = 0.79 \times$	min(3,[100 × /	$A_{s,prov} / (b \times d)]^{1/3}$	× max(1, (400	0 /d) ^{1/4}) ×		
(min(f _{cu} , 40) / 25) ^{1/3} / γ _m								
		Vc = 0.657						
Allowable design shear stress		v _{max} = min(0.8 N/mm ² × (f _{cu} /1 N/mm ²) ^{0.5} , 5 N/mm ²) = 5.000 N/mm ²						
		PAS	S - Design sh	near stress is le	ss than maxin	num allowab		
Value of v from Table 3.7		$0.5 imes v_c < v$	$< (v_c + 0.4 \text{ N/})$	mm²)				
Design shear resistance requir	red	v _s = max(v	- v _c , 0.4 N/mm	²) = 0.400 N/mm	2			
Area of shear reinforcement re	quired	A _{sv,req} = v _s >	< b / (0.87 × fy) = 276 mm²/m				
Shear reinforcement provided		$2 imes 8\phi$ legs	at 200 c/c					
Area of shear reinforcement pr	rovided	$A_{sv,prov} = 50$	3 mm²/m					
		PASS - Area of sl		ement provided	exceeds mini	mum require		
Maximum longitudinal spacing		$S_{vl,max} = 0.7$	5 × d = 335 m	m				
		gitudinal spacing						

	Project	10 Downsid	de Crescent		Job no. 14	11
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	ground	floor slab		Start page no./Re 5.5	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

RC SLAB DESIGN (BS8110:PART1:1997)	TEDDS calculation version 1.0.0
TWO WAY SPANNING SLAB DEFINITION – SIMPLY SUPPORTED	
Overall depth of slab h = 175 mm	
Outer sagging steel	
Cover to outer tension reinforcement resisting sagging $c_{sag} = 25 \text{ mm}$	
Trial bar diameter D _{tryx} = 12 mm	
Depth to outer tension steel (resisting sagging)	
$d_x = h - c_{sag} - D_{tryx}/2 = 144 \text{ mm}$	
Inner sagging steel	
Trial bar diameter D _{tryy} = 12 mm	
Depth to inner tension steel (resisting sagging)	
$d_y = h - c_{sag} - D_{tryx} - D_{tryy}/2 = 132 \text{ mm}$	
Materials	
Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$	
Characteristic strength of concrete $f_{cu} = 40 \text{ N/mm}^2$	
Asy Nominal 1 m width Asx	
Shorter Span	
h Asy Nominal 1 m width Asx	
Longer Span	
Two-way spanning slab (simple)	
MAXIMUM DESIGN MOMENTS	
Length of shorter side of slab $I_x = 3.500$ m	
Length of longer side of slab $I_y = 6.400 \text{ m}$	
Design ultimate load per unit area $n_s = 12.9 \text{ kN/m}^2$	

Tekla Tedds	Project	10 Downsid	de Crescent		Job no. 14	11
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	ground	floor slab		Start page no./Re 5.5	evision 5. 2
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

Moment coefficients

 $\alpha_{sx} = (I_y / I_x)^4 / (8 \times (1 + (I_y / I_x)^4)) = 0.115$

 $\alpha_{sy} = (I_y / I_x)^2 / (8 \times (1 + (I_y / I_x)^4)) = 0.034$

Maximum moments per unit width - simply supported slabs

 $m_{sx} = \alpha_{sx} \times n_s \times l_x^2 =$ **18.1** kNm/m

 $m_{sy} = \alpha_{sy} \times n_s \times I_x{}^2 = \textbf{5.4} \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) m_{sx} = 18.1 kNm/m

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

 $K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.022$

 $K'_x = min~(0.156~,~(0.402\times(\beta_{bx}$ - 0.4)) - $(0.18\times(\beta_{bx}$ - $0.4)^2~)) = \textbf{0.156}$

Outer compression steel not required to resist sagging

Slab requiring outer tension steel only - bars (sagging)

 $z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9)}))) = 137 mm$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 16 \text{ mm}$

Area of tension steel required

 $A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = \textbf{305} \text{ mm}^2/\text{m}$

Tension steel

Provide 12 dia bars @ 200 centres outer tension steel resisting sagging

 $A_{sx_prov} = A_{sx} = 565 \text{ mm}^2/\text{m}$

Area of outer tension steel provided sufficient to resist sagging

Design sagging moment (per m width of slab) $m_{sy} = 5.4 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{by} = 1.0$

Area of reinforcement required

 $K_y = abs(m_{sy}) / (d_{y^2} \times f_{cu}) = 0.008$

 $K'_{y} = min~(0.156$, $(0.402 \times (\beta_{by}$ - 0.4)) - $(0.18 \times (\beta_{by}$ - $0.4)^2$)) = 0.156

Inner compression steel not required to resist sagging

Slab requiring inner tension steel only - bars (sagging)

 $z_y = min ((0.95 \times d_y), (d_y \times (0.5 + \sqrt{(0.25 - K_y/0.9)}))) = 125 mm$

Neutral axis depth $x_y = (d_y - z_y) / 0.45 = 15 \text{ mm}$

Area of tension steel required

Tedds	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	around	floor slab		Start page no./F	Revision .5. 3
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da
EC1R 1UL	ab	12/10/2016	Checked by		Approved by	
$A_{sy_{req}} = abs(m_{sy}) / (1/\gamma)$	$V_{\rm ms} \times f_{\rm v} \times Z_{\rm v}) = 9$	9 mm²/m				
Tension steel	,					
Provide 12 dia bars @ 200	<u>centres</u> inner	tension steel res	sisting saggir	ng		
$A_{sy_prov} = A_{sy} = 565 \text{ mm}$	n²/m					
			inner tension	steel provided	sufficient to r	esist saggil
$\frac{Check min and max areas of}{Total area of concrete} A_c = h$						
Minimum % reinforcen						
$A_{st min} = k \times A_c = 228 n$		0				
$A_{st max} = 4 \% \times A_c = 70$						
$A_{st_max} = 4 / 6 \times A_c = 70$ Steel defined:						
Outer steel resisting s	agging A	- 565 mm ² /m				
Outer steer resisting s	ayying Asx_prov	= 303 mm /m		Area of outer s	steel provided	(saqqinq)
Inner steel resisting sa	agging A _{sy_prov} :	= 565 mm²/m				
				Area of inner s	teel provided	(sagging) (
SHEAR RESISTANCE OF CC	NCRETE SLA	BS (CL 3.5.5)				
Outer tension steel resisting	i sagging mom	nents				
Outer tension steer resisting	, cagging men					
Depth to tension steel			mm			
-	from compress	sion face $d_x = 144$		= 565 mm²/m		
Depth to tension steel	from compress	sion face d _x = 144 ed (per m width of	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor	from compress rcement provide force (per m w	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor Design ultimate shear	from compress rcement provide force (per m w	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength	from compress rcement provide force (per m w	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress	from compress rcement provide force (per m w n of concrete fo	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$	from compress reement provide force (per m w n of concrete for e 3.5.5.2	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$	slab) A _{sx_prov} :	= 565 mm²/m		
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times 10^{-1} \text{ mm})$	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ²	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$	slab) A _{sx_prov} :	= 565 mm²/m	She	ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \text{Shear stresses to clause 3.5})$	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ²	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$	slab) A _{sx_prov} :	= 565 mm²/m	She	ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \text{Shear stresses to clause 3.5}$ Design shear stress	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ² 5.5.3	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $_u = 40 \text{ N/mm}^2$	slab) A _{sx_prov} : 41 kN/m	= 565 mm²/m	She	ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = \min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \text{Shear stresses to clause 3.5})$ Design shear stress $f_{cu_ratio} = \text{if } (f_{cu} > 40 \text{ N/m})$	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ² 5.5.3	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$ $^2) = 5.00 \text{ N/mm}^2$ $/(25 \text{ N/mm}^2)) = 1.0$	slab) A _{sx_prov} : 41 kN/m 600			ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times \text{Shear stresses to clause 3.5}$ Design shear stress	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ² 5.5.3	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$ $^2) = 5.00 \text{ N/mm}^2$ $/(25 \text{ N/mm}^2)) = 1.0$	slab) A _{sx_prov} : 41 kN/m 600			ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause Vallowable = min ((0.8 N ^{1/2} /mm) × Shear stresses to clause 3.5 Design shear stress $f_{cu_ratio} = \text{ if } (f_{cu} > 40 \text{ N/m})$ $v_{cx} = 0.79 \text{ N/mm}^2 \times \text{min}$ $v_{cx} = 0.70 \text{ N/mm}^2$	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ² 5.5.3	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$ $^2) = 5.00 \text{ N/mm}^2$ $/(25 \text{ N/mm}^2)) = 1.0$	slab) A _{sx_prov} : 41 kN/m 600			ar stress - (
Depth to tension steel Area of tension reinfor Design ultimate shear Characteristic strength Applied shear stress $v_x = V_x / d_x = 0.29 \text{ N/mm}^2$ Check shear stress to clause $v_{allowable} = min ((0.8 \text{ N}^{1/2}/\text{mm}) \times$ Shear stresses to clause 3.5 Design shear stress $f_{cu_ratio} = if (f_{cu} > 40 \text{ N/m})$ $v_{cx} = 0.79 \text{ N/mm}^2 \times min$	from compress recement provide force (per m w n of concrete f_c e 3.5.5.2 $\sqrt{(f_{cu})}$, 5 N/mm ² 5.5.3	sion face $d_x = 144$ ed (per m width of idth of slab) $V_x =$ $u = 40 \text{ N/mm}^2$ $^2) = 5.00 \text{ N/mm}^2$ $/(25 \text{ N/mm}^2)) = 1.0$	slab) A _{sx_prov} : 41 kN/m 600			ar stress - (

	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for ground floor slab				Start page no./Revision 5.5. 4	
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date
		I				
SHEAR RESISTANCE OF CO		, <u>,</u>				
SHEAR RESISTANCE OF CO Inner tension steel resisting Depth to tension steel	sagging mor	nents	mm			

Design ultimate shear force (per m width of slab) $V_y = 26 \text{ kN/m}$

Characteristic strength of concrete fcu = 40 N/mm²

Applied shear stress

 $v_y = V_y / d_y = 0.20 \text{ N/mm}^2$

Check shear stress to clause 3.5.5.2

 $v_{allowable} = min ((0.8 \text{ N}^{1/2}/mm) \times \sqrt{(f_{cu})}, 5 \text{ N}/mm^2) = 5.00 \text{ N}/mm^2$

Shear stresses to clause 3.5.5.3

Design shear stress

$$\begin{split} f_{cu_ratio} &= if \; (f_{cu} > 40 \; N/mm^2 \;, \; 40/25 \;, \; f_{cu}/(25 \; N/mm^2)) = \textbf{1.600} \\ v_{cy} &= 0.79 \; N/mm^2 \; \times \; min(3,100 \; \times \; A_{sy_prov} \; / \; d_y)^{1/3} \; \times \; max(0.67,(400 \; mm) \; / \; d_y)^{1/4} \; / \; 1.25 \; \times \; f_{cu_ratio}^{1/3} \\ v_{cy} &= \textbf{0.73} \; N/mm^2 \\ \text{Applied shear stress} \\ v_y &= \textbf{0.20} \; N/mm^2 \end{split}$$

No shear reinforcement required

Shear stress - OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $I_x = 3.500 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 18 \text{ kNm/m}$

Depth to outer tension steel $d_x = 144 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided $A_{sx_prov} = 565 \text{ mm}^2/\text{m}$

Area of tension reinforcement required Asx_req = 305 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = 20

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

 $f_{s} = 2 \times f_{y} \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 179.8 \text{ N/mm}^{2}$

 $factor_{tens} = min (2, 0.55 + (477 \text{ N/mm}^2 - f_s) / (120 \times (0.9 \text{ N/mm}^2 + m_{sx} / d_x^2))) = 1.946$

Calculate Maximum Span

	Project	10 Downsic	le Crescent		Job no. 14	11
RODRIGUES ASSOCIATES	Calcs for	ground	floor slab		Start page no./Re 5.5	vision 5. 5
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 5.60 \text{ m}$

Check the actual beam span

Actual span/depth ratio $I_x / d_x = 24.31$

Span depth limit $ratio_{span_depth} \times factor_{tens} = 38.91$

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 175 mm

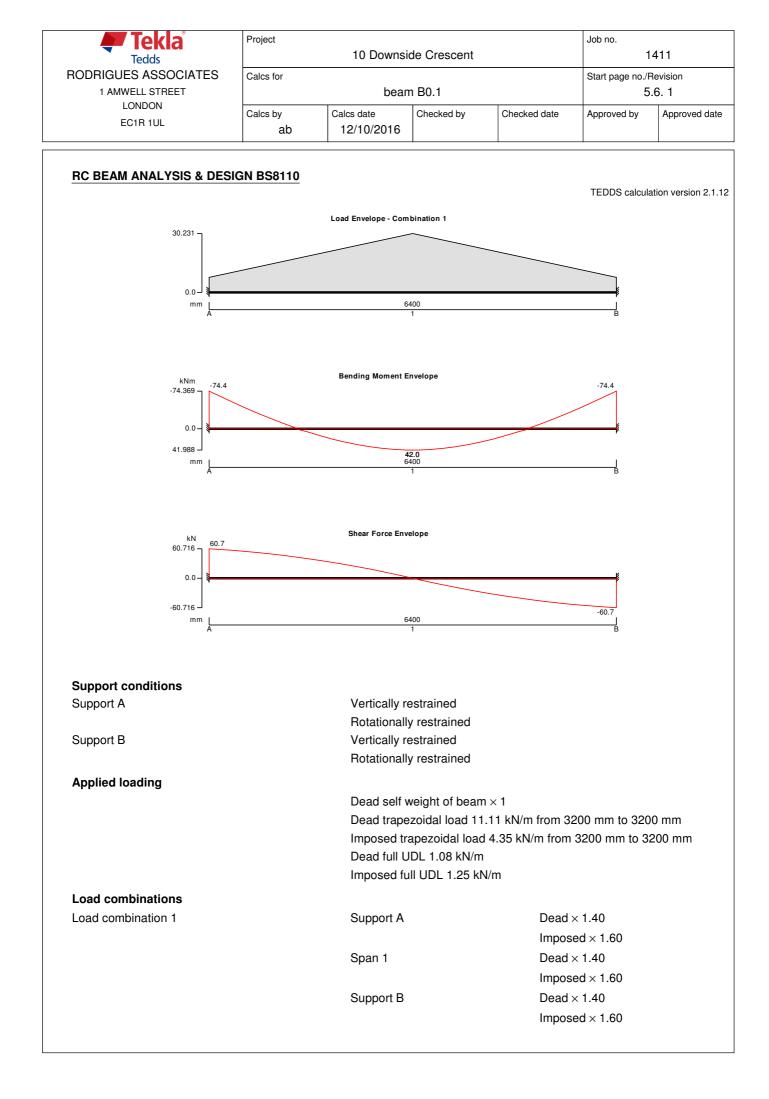
Effective depth to bottom outer tension reinforcement $d_x = 144.0 \text{ mm}$

Diameter of tension reinforcement $D_x = 12 \text{ mm}$

Diameter of links $L_{diax} = 0 \text{ mm}$

Cover to outer tension reinforcement

 $c_{tenx} = h - d_x - D_x / 2 = 25.0 \text{ mm}$


Nominal cover to links steel

 $c_{nomx} = c_{tenx} - L_{diax} = 25.0 \text{ mm}$

Permissable minimum nominal cover to all reinforcement (Table 3.4)

c_{min} = **25** mm

Cover over steel resisting sagging OK

🗾 Tekla	Project				Job no.	
Tedds		10 Downsid	de Crescent		14	11
RODRIGUES ASSOCIATES	Calcs for				Start page no./Re	evision
1 AMWELL STREET		beam	n B0.1		5.6	6. 2
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved date

Analysis results

Maximum moment support A	M _{A_max} = -74 kNm	M _{A_red} = -74 kNm
Maximum moment span 1 at 3200 mm	$M_{s1_max} = 42 \text{ kNm}$	M _{s1_red} = 42 kNm
Maximum moment support B	M _{B_max} = -74 kNm	M _{B_red} = -74 kNm
Maximum shear support A	$V_{A_{max}} = 61 \text{ kN}$	$V_{A_red} = 61 \text{ kN}$
Maximum shear support A span 1 at 199 mm	$V_{A_s1_max} = 59 \text{ kN}$	$V_{A_s1_red} = 59 \text{ kN}$
Maximum shear support B	$V_{B_{max}} = -61 \text{ kN}$	V _{B_red} = -61 kN
Maximum shear support B span 1 at 6201 mm	$V_{B_s1_max} = -59 \text{ kN}$	$V_{B_s1_red} = -59 \text{ kN}$
Maximum reaction at support A	R _A = 61 kN	
Unfactored dead load reaction at support A	$R_{A_Dead} = 31 \text{ kN}$	
Unfactored imposed load reaction at support A	R _{A_Imposed} = 11 kN	
Maximum reaction at support B	R _B = 61 kN	
Unfactored dead load reaction at support B	$R_{B_{Dead}} = 31 \text{ kN}$	
Unfactored imposed load reaction at support B	$R_{B_Imposed} = 11 \text{ kN}$	

Rectangular section details

Section width Section depth

Concrete details

Concrete strength class Characteristic compressive cube strength Modulus of elasticity of concrete Maximum aggregate size

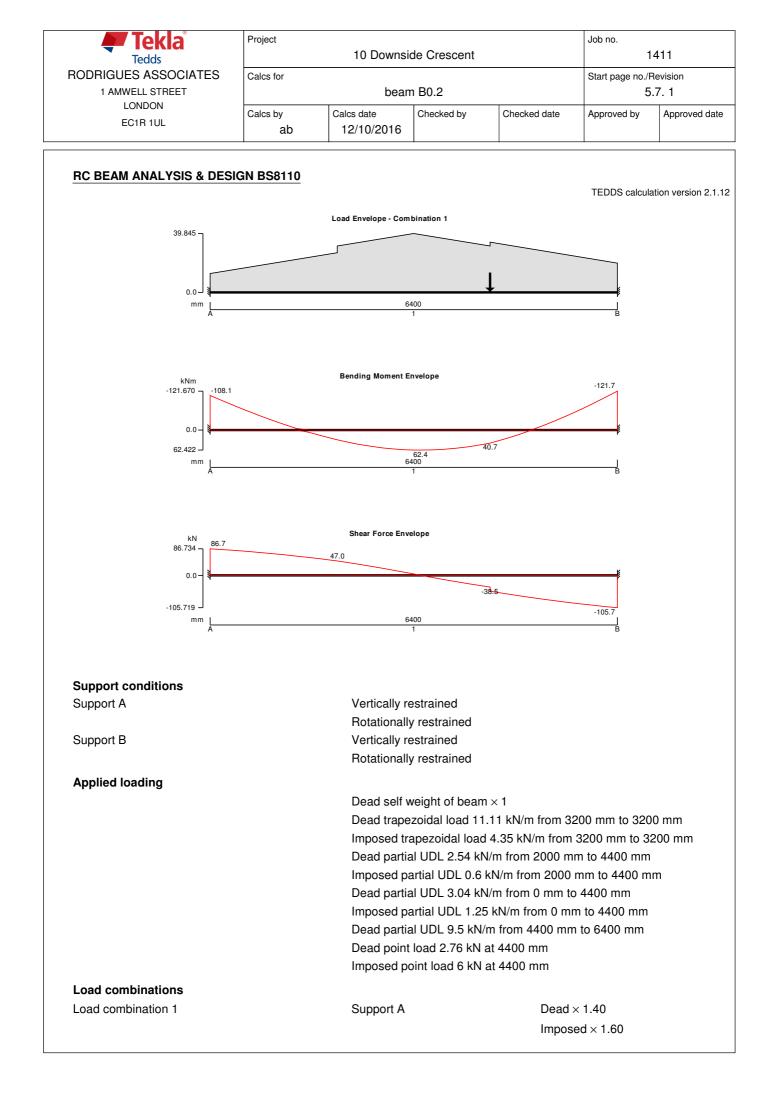
C32/40

 $\label{eq:fcu} \begin{array}{l} f_{cu} = {\rm 40} \ N/mm^2 \\ E_c = 20 kN/mm^2 + 200 \times f_{cu} = {\rm 28000} \ N/mm^2 \\ h_{agg} = {\rm 20} \ mm \end{array}$

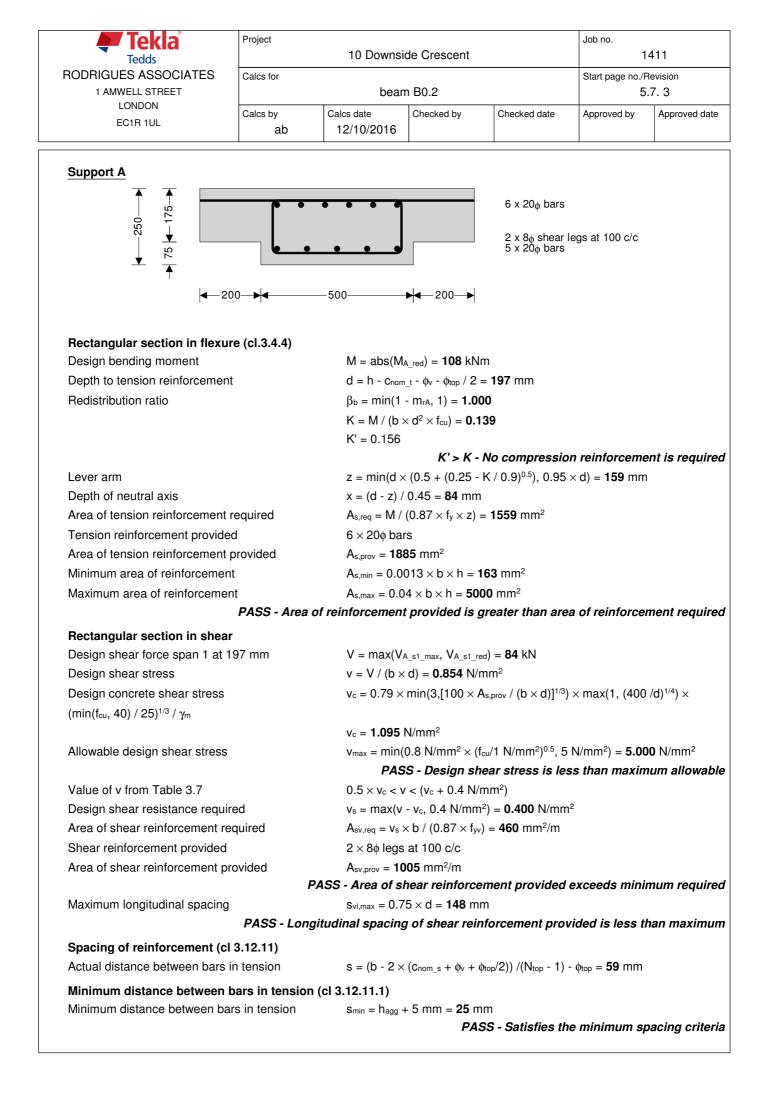
Reinforcement details

 $\begin{array}{ll} \mbox{Characteristic yield strength of reinforcement} & f_y = {\color{black}{500}} \ \mbox{N/mm}^2 \\ \mbox{Characteristic yield strength of shear reinforcement} & f_{yv} = {\color{black}{500}} \ \mbox{N/mm}^2 \end{array}$

Nominal cover to reinforcement


Nominal cover to top reinforcement	$C_{nom_t} = 35 \text{ mm}$
Nominal cover to bottom reinforcement	Cnom_b = 35 mm
Nominal cover to side reinforcement	C _{nom_s} = 35 mm

		10 Downs	side Crescent	1411					
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	bea		Start page no./Revision 5.6. 3					
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved of			
	ab	12/10/2010							
Support A									
	—	• •		$5 imes 16_{\varphi}$ bars 2 x 8_{\varphi} shear legs a	at 100 c/c				
-250									
_	.	• •		$5 \times 16_{\phi}$ bars					
<u> </u>									
←									
Rectangular section in flexu	re (cl.3.4.4)								
Design bending moment	. ,	M = abs(N)	/I _{A_red}) = 74 kNm	n					
Depth to tension reinforcement	t	$d = h - c_{no}$	m_t - φ _v - φ _{top} / 2	= 199 mm					
Redistribution ratio		$\beta_{b} = min(1)$	- m _r A, 1) = 1.0	00					
		$K = M / (b \times d^2 \times f_{cu}) = 0.094$							
		K' = 0.156							
			K' > K -	No compressio	on reinforceme	ent is requ			
Lever arm		z = min(d	× (0.5 + (0.25 -	K / 0.9) ^{0.5}), 0.95	× d) = 175 mm	Ì			
Depth of neutral axis		x = (d - z)	/ 0.45 = 52 mm	ı					
Area of tension reinforcement	required	$A_{s,req} = M$	/ (0.87 \times f _y \times z)	= 974 mm ²					
Tension reinforcement provide	d	$5 imes 16\phi$ ba	ars						
Area of tension reinforcement	orovided	$A_{s,prov} = 10$)05 mm²						
Minimum area of reinforcemen	t	$A_{s,min} = 0.0$	$0013 \times b \times h = -$	163 mm²					
Maximum area of reinforcemer			$04 \times b \times h = 50$						
	PASS - Area	of reinforcemer	nt provided is g	greater than are	a of reinforce	ment requ			
Rectangular section in shear									
Design shear force span 1 at 1	99 mm	V = max(\	/A_s1_max, VA_s1_r	_{ed}) = 59 kN					
Design shear stress		v = V / (b	v = V / (b × d) = 0.593 N/mm ²						
Design concrete shear stress (min(f _{cu} , 40) / 25) ^{1/3} / γ_m		$v_c = 0.79$:	< min(3,[100 × /	$A_{s,prov} / (b \times d)]^{1/3}$) × max(1, (400	/d) ^{1/4}) ×			
· · · ·		v _c = 0.883	N/mm ²						
Allowable design shear stress		$v_{max} = min(0.8 \text{ N/mm}^2 \times (f_{cu}/1 \text{ N/mm}^2)^{0.5}, 5 \text{ N/mm}^2) = 5.000 \text{ N/mm}^2$ <i>PASS - Design shear stress is less than maximum allowa</i>							
Value of v from Table 3.7		$0.5 \times v_c < v < (v_c + 0.4 \text{ N/mm}^2)$							
Design shear resistance requir	ed	$v_s = max(v - v_c, 0.4 \text{ N/mm}^2) = 0.400 \text{ N/mm}^2$							
Area of shear reinforcement re	quired	$A_{sv,req} = v_s \times b / (0.87 \times f_{yv}) = 460 \text{ mm}^2/\text{m}$							
Shear reinforcement provided		$2 imes 8\phi$ leg	s at 100 c/c						
Area of shear reinforcement pr		A _{sv,prov} = 1 PASS - Area of s	005 mm²/m shear reinforce	ement provided	exceeds mini	mum reau			
Maximum longitudinal spacing			75 × d = 149 m						
	PASS - Lor	gitudinal spacin			vided is less t	han maxin			
Spacing of rainforcement (al		J							
Spacing of reinforcement (cl	n tension			φ _{top} /2)) /(N _{top} - 1)					


Tedds		10 Downs	ide Crescent		1	411
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	bear	n B0.1		Start page no./F 5	Revision 6.6.4
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
EC1R 1UL	ab	12/10/2016				
Minimum distance between	bars in tension (cl 3.12.11.1)				
Minimum distance between ba	-	-	+ 5 mm = 25 m	าm		
				SS - Satisfies th	e minimum sp	pacing crit
Maximum distance between	bars in tension (cl 3.12.11.2)				
Design service stress		$f_s = (2 \times f_y)$	imes A _{s,req}) / (3 $ imes$ A	$A_{s,prov} \times \beta_b) = 323$.1 N/mm²	
Maximum distance between ba	ars in tension	s _{max} = min((47000 N/mm /	′ f _s , 300 mm) = 1 4	45 mm	
			PAS	SS - Satisfies the	e maximum s _l	pacing crit
Mid span 1						
 _						
	•••	• •		$5 \times 16_{\varphi}$ bars		
550				$2 \times 8_{\varphi}$ shear legs a	at 100 c/c	
	•	• •		$5 \times 16_{\phi}$ bars		
<u> </u>						
+		500				
Design moment resistance	of rootongular oo	ation (al. 2.4.4)	Desitivo ma	mont		
Design moment resistance of	of rectangular see					
Design bending moment	-	M = abs(M	s1_red) = 42 kNr	n		
Design bending moment Depth to tension reinforcemen	-	$M = abs(M)$ $d = h - c_{non}$	s1_red) = 42 kNr n_b - φ _v - φ _{bot} / 2	m = 199 mm		
Design bending moment	-	$M = abs(M)$ $d = h - c_{non}$ $\beta_b = min(1)$	s1_red) = 42 kNr n_b - φ _v - φ _{bot} / 2 - m _{rs1} , 1) = 1.0	m = 199 mm 000		
Design bending moment Depth to tension reinforcemen	-	$M = abs(M)$ $d = h - c_{non}$ $\beta_b = min(1)$	s1_red) = 42 kNr n_b - φ _v - φ _{bot} / 2	m = 199 mm 000		
Design bending moment Depth to tension reinforcemen	-	$M = abs(M)$ $d = h - c_{non}$ $\beta_b = min(1)$ $K = M / (b)$	$s_{1_red} = 42 \text{ kNr}$ $m_b - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu} = 0.0$	m = 199 mm 000	on reinforceme	ent is requ
Design bending moment Depth to tension reinforcemen	-	$M = abs(M)$ $d = h - C_{non}$ $\beta_b = min(1)$ $K = M / (b)$ $K' = 0.156$	s_{1_red}) = 42 kNr $n_b - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}$) = 0.0 <i>K' > K -</i>	n = 199 mm 000 053		-
Design bending moment Depth to tension reinforcemen Redistribution ratio	-	$M = abs(M)$ $d = h - c_{non}$ $\beta_b = min(1)$ $K = M / (b)$ $K' = 0.156$ $z = min(d)$	s_{1_red}) = 42 kNr $n_b - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}$) = 0.0 <i>K' > K -</i>	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95		-
Design bending moment Depth to tension reinforcement Redistribution ratio	ıt	$M = abs(M)$ $d = h - C_{non}$ $\beta_b = min(1)$ $K = M / (b)$ $K' = 0.156$ $z = min(d)$ $x = (d - z) / (d - z)$	$s_{1_red} = 42 \text{ kNr}$ $s_{1_rb} - \phi_V - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu} = 0.0$ K' > K - (0.25 - (0.25 - 0.0))	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95		-
Design bending moment Depth to tension reinforcement Redistribution ratio	required	$M = abs(M)$ $d = h - C_{non}$ $\beta_b = min(1)$ $K = M / (b)$ $K' = 0.156$ $z = min(d)$ $x = (d - z) / (d - z)$	s_{1_red}) = 42 kNr $s_{1_b} - \phi_V - \phi_{bot} / 2$ $- m_{rs1}, 1$) = 1.0 $\times d^2 \times f_{cu}$) = 0.0 $K' > K - \frac{1}{2}$ $(0.5 + (0.25 - \frac{1}{2}) - \frac{1}{2}$ mm $(0.87 \times f_y \times z)$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95		-
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement	required ed provided	$M = abs(M)$ $d = h - Cnon$ $\beta_b = min(1)$ $K = M / (b)$ $K' = 0.156$ $z = min(d)$ $x = (d - z) /$ $A_{s,req} = M /$ $5 \times 16\phi ba$ $A_{s,prov} = 10$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{rb}} - \phi_{v} - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ $K' > K - \frac{1}{2}$ $(0.5 + (0.25 - \frac{1}{2}) - (0.45 = 28 \text{ mm})$ $(0.87 \times f_y \times z)$ rs 05 mm^2	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 1 = 518 mm ²		-
Design bending moment Depth to tension reinforcement Redistribution ratio	required ed provided	$\begin{split} M &= abs(M) \\ d &= h - c_{non} \\ \beta_b &= min(1) \\ K &= M / (b) \\ K' &= 0.156 \\ z &= min(d) \\ x &= (d - z) / \\ A_{s,req} &= M / \\ 5 &\times 16\varphi \ ba \\ A_{s,prov} &= 10 \\ A_{s,min} &= 0.0 \end{split}$	s_{1_red}) = 42 kNr $s_{1_b} - \phi_V - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}$) = 0.0 $K' > K - \frac{1}{2}$ $(0.45 + (0.25 - \frac{1}{2}))$ (0.45 - 28 mm) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 1$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ²		-
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement	required ed provided nt nt	M = abs(M) d = h - Cnon $\beta_b = min(1)$ K = M / (b) K' = 0.156 z = min(d) $x = (d - z) / As, req = M / 5 \times 16\phi ba$ $A_{s, prov} = 10$ $A_{s, min} = 0.0$ $A_{s, max} = 0.0$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{red}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 - 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = -0.4$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 00 mm ²	× d) = 186 mm	
Design bending moment Depth to tension reinforcement Redistribution ratio	required ed provided nt nt PASS - Area of	M = abs(M) d = h - Cnon $\beta_b = min(1)$ K = M / (b) K' = 0.156 z = min(d) $x = (d - z) / As, req = M / 5 \times 16\phi ba$ $A_{s, prov} = 10$ $A_{s, min} = 0.0$ $A_{s, max} = 0.0$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{red}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 - 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = -0.4$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ²	× d) = 186 mm	
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement	required ed provided nt nt PASS - Area of	$\begin{split} M &= abs(M) \\ d &= h - C_{non} \\ \beta_b &= min(1) \\ K &= M / (b) \\ K' &= 0.156 \\ z &= min(d) \\ z &= (d - z) / \\ A_{s,req} &= M / \\ 5 &\times 16 \phi ba \\ A_{s,prov} &= 10 \\ A_{s,min} &= 0.0 \\ A_{s,max} &= 0.0 \\ reinforcemen \end{split}$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{rb}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - 0.25 - 0.45 = 28 mm $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 50$ t provided is g	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 00 mm ²	× d) = 186 mm	
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement	required ed provided nt nt PASS - Area of r	$\begin{split} M &= abs(M) \\ d &= h - c_{non} \\ \beta_b &= min(1) \\ K &= M / (b) \\ K' &= 0.156 \\ z &= min(d) \\ x &= (d - z) / \\ A_{s,req} &= M / \\ 5 &\times 16\phi \ ba \\ A_{s,prov} &= 10 \\ A_{s,min} &= 0.0 \\ A_{s,max} &= 0.0 \\ reinforcemen \\ 2 &\times 8\phi \ legs \end{split}$	s_{1_red}) = 42 kNr $s_{1_b} - \phi_V - \phi_{bot} / 2$ $- m_{rs1}, 1$) = 1.0 $\times d^2 \times f_{cu}$) = 0.0 $K' > K - \frac{1}{2}$ $(0.5 + (0.25 - \frac{1}{2}) - (0.45 - \frac{28}{2}) - (0.45 - \frac{28}{2}$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 00 mm ²	× d) = 186 mm	
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Shear reinforcement provided Area of shear reinforcement p	required ed provided nt nt PASS - Area of r rovided	$\begin{split} M &= abs(M) \\ d &= h - C_{non} \\ \beta_b &= min(1) \\ K &= M / (b) \\ K' &= 0.156 \\ z &= min(d) \\ z &= (d - z) / \\ A_{s,req} &= M / \\ 5 \times 16 \phi ba \\ A_{s,prov} &= 10 \\ A_{s,min} &= 0.0 \\ A_{s,max} &= 0.0 \\ reinforcemen \\ 2 \times 8 \phi \ legs \\ A_{sv,prov} &= 10 \\ \end{split}$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{red}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 - 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 50$ t provided is g s at 100 c/c $005 \text{ mm}^2/\text{m}$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 00 mm ² greater than are	× d) = 186 mm	1
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement	required ed provided nt nt PASS - Area of r rovided rcement (Table 3.7	$\begin{split} M &= abs(M \\ d &= h - Cnon \\ \beta_b &= min(1 \\ K &= M / (b \\ K' &= 0.156 \\ z &= min(d \times K') \\ K' &= 0.156 \\ z &= min(d \times K') \\ K' &= 0.156 \\ K' &= 0.156 \\ A_{s,req} &= M / \\ S \times 16 \\ b \\ b \\ A_{s,req} &= M / \\ S \times 16 \\ b \\ b \\ A_{s,prov} &= 10 \\ A_{s,max} &= 0.0 \\ A_{s,max} &= 0.0 \\ reinforcemen \\ 2 \times 8 \\ b \\ legs \\ A_{sv,prov} &= 10 \\ C \\ S \\ S \\ sv,prov &= 10 \\ C \\ S \\$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{rb}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 = 28 mm)) $(0.87 \times f_y \times z)$ rs $013 \times b \times h = 50$ $04 \times b \times h = 50$ $t \ provided \ is g$ $s \ at 100 \ c/c$ $005 \ mm^2/m$ $4N/mm^2 \times b / (0.5 + 0.25 - 0.25)$	m = 199 mm 000 053 No compressio K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 163 mm ² 00 mm ² greater than are 0.87 × f _{yv}) = 460	× d) = 186 mm a of reinforce mm²/m	ment requ
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfor	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA	$\begin{split} M &= abs(M \\ d &= h - c_{non} \\ \beta_b &= min(1 \\ K &= M / (b \\ K' &= 0.156 \\ z &= min(d > \\ X &= (d - z) / \\ A_s,req &= M / \\ 5 \times 16 \phi ba \\ A_s,prov &= 10 \\ A_s,min &= 0.0 \\ A_s,min &= 0.0 \\ A_s,max &= 0.0 \\ reinforcemen \\ 2 \times 8 \phi legs \\ A_sv,prov &= 10 \\ SS - \textit{Area of s} \end{split}$	s_{1_red}) = 42 kNr $s_{1_b} - \phi_{v} - \phi_{bot} / 2$ $- m_{rs1}, 1$) = 1.0 $\times d^{2} \times f_{cu}$) = 0.0 $K' > K - d^{2} \times f_{cu}$ = 0.0 $(0.87 \times f_{v} \times z)$ rs $0.45 = 28 mm^{2}$ $(0.87 \times f_{y} \times z)$ rs $013 \times b \times h = 7$ $04 \times b \times h = 50$ $t \ provided \ is g$ $s \ at 100 \ c/c$ $05 \ mm^{2}/m$ $4N/mm^{2} \times b / (t)$	m = 199 mm 000 053 <i>No compressio</i> K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 164 mm ² 165 mm ² 166 mm ² 167 mm ² 168 mm ² 169 mm ² 160 mm ² 160 mm ² 160 mm ² 161 mm ² 162 mm ² 163 mm ² 163 mm ² 164 mm ² 164 mm ² 165 mm ² 166 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 160 mm ² 160 mm ² 160 mm ² 161 mm ² 162 mm ² 163 mm ² 164 mm ² 164 mm ² 165 mm ² 166 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 169 mm ² 160 mm ²	× d) = 186 mm a of reinforce mm²/m	ment requ
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Shear reinforcement provided Area of shear reinforcement p	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA (cl. 3.4.5.5)	$\begin{split} M &= abs(M \\ d &= h - Cnon \\ \beta_b &= min(1 \\ K &= M / (b \\ K' &= 0.156 \\ z &= min(d > c \\ x &= (d - z) / \\ A_s,req &= M / \\ 5 \times 16 \varphi ba \\ A_s,prov &= 10 \\ A_s,min &= 0.0 \\ A_s,max &= 0.0 \\ A_s,max &= 0.0 \\ reinforcemen \\ 2 \times 8 \varphi legs \\ A_sv,prov &= 10 \\ SS - Area of s \\ Sv_v,max &= 0.7 \end{split}$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{red}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45)) (0.45 = 28 mm) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 50$ t provided is g c at 100 c/c $005 \text{ mm}^2/\text{m}$ $4N/\text{mm}^2 \times b / (0.5)$ hear reinforce $75 \times d = 149 \text{ m}$	m = 199 mm 500 53 No compressio $K / 0.9)^{0.5}$, 0.95 = 518 mm ² 163 mm ² 164 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 1	× d) = 186 mm ea of reinforce mm²/m exceeds mini	ment requ mum requ
Design bending moment Depth to tension reinforcement Redistribution ratio	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA (cl. 3.4.5.5)	$\begin{split} \mathbf{M} &= \mathbf{abs}(\mathbf{M} \\ \mathbf{d} &= \mathbf{h} - \mathbf{C_{non}} \\ \mathbf{\beta_b} &= \min(1 \\ \mathbf{K} &= \mathbf{M} / (\mathbf{b} \\ \mathbf{K}' &= 0.156 \\ \mathbf{z} &= \min(\mathbf{d} \times \mathbf{c} \\ \mathbf{z} &= (\mathbf{d} - \mathbf{z}) / \\ \mathbf{A}_{s,req} &= \mathbf{M} / \\ 5 \times 16 \phi \ \mathbf{ba} \\ \mathbf{A}_{s,prov} &= 10 \\ \mathbf{A}_{s,min} &= 0.0 \\ \mathbf{A}_{s,max} &= 0.0 \\ \mathbf{reinforcemen} \\ 2 \times 8 \phi \ \mathbf{legs} \\ \mathbf{A}_{sv,prov} &= 10 \\ \mathbf{S} \cdot \mathbf{Area of s} \\ \mathbf{S}_{vl,max} &= 0.7 \\ \mathbf{udinal spacing} \end{split}$	$s_{1_{red}} = 42 \text{ kNr}$ $s_{1_{red}} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 = 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 70$ $04 \times b \times h = 50$ t provided is g s at 100 c/c $005 \text{ mm}^2/\text{m}$ $4N/\text{mm}^2 \times b / (0.5 + 0.25)$ f constants = 100	m = 199 mm 000 053 No compressio $K / 0.9)^{0.5}$, 0.95 = 518 mm ² 163 mm ² 164 mm ² 165 mm ² 166 mm ² 177 mm ² 178 mm ² 179 mm ²	× d) = 186 mm a of reinforce mm²/m exceeds mini. vided is less to	ment requ mum requ han maxin
Design bending moment Depth to tension reinforcement Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfor	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA (cl. 3.4.5.5)	$\begin{split} M &= abs(M \\ d &= h - c_{non} \\ \beta_b &= min(1 \\ K &= M / (b \\ K' &= 0.156 \\ z &= min(d > \\ x &= (d - z) / \\ A_s,req &= M / \\ 5 \times 16 \varphi ba \\ A_s,prov &= 10 \\ A_s,min &= 0.0 \\ A_sv,prov &= 10 \\ K_sv,prov &= 10 \\ S_S - Area of s \\ S_Sv_sv,min &= 0.7 \\ S_S - Area of s \\ S_vl,max &= 0.7 \\ udinal spacing \\ v_c &= 0.79N \end{split}$	s_{1_red}) = 42 kNr s_{1_red} - ϕ_v - ϕ_{bot} / 2 - m_{rs1} , 1) = 1.0 × $d^2 \times f_{cu}$) = 0.0 K' > K - (0.5 + (0.25 - 0.45 = 28 mm)) (0.87 × $f_y \times z$) rs 05 mm ² 013 × b × h = 50 t provided is g at 100 c/c 005 mm ² /m 4N/mm ² × b / (0.45 + 100 m)) (0.87 × $f_y \times z$) rs s = 100 c/c s = 149 m g of shear rein (mm ² × min(3,[m = 199 mm 500 53 No compressio $K / 0.9)^{0.5}$, 0.95 = 518 mm ² 163 mm ² 164 165 mm ² 165 mm ² 166 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 169 mm ² 160 mm ² 170	× d) = 186 mm <i>ta of reinforcer</i> <i>mm²/m</i> <i>exceeds mini</i> <i>vided is less ti</i> × d)] ^{1/3}) × max(ment requ mum requ han maxin 1, (400mm
Design bending moment Depth to tension reinforcement Redistribution ratio	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA (cl. 3.4.5.5) PASS - Longit	$\begin{array}{l} M = abs(M \\ d = h - Cnon \\ \beta_b = min(1 \\ K = M / (b \\ K' = 0.156 \\ z = min(d > \\ K' = 0.156 \\ z = min(d > \\ K' = 0.156 \\ d \\ as,req = M / \\ 5 \times 16 \phi ba \\ As,prov = 10 \\ As,min = 0.0 \\ As,min = 0.0 \\ As,max = 0.0 \\ Asv,min = 0.4 \\ SS - Area of s \\ sv_v,max = 0.7 \\ sv,max = 0.7 \\$	$s_{1_{red}} = 42 \text{ kNr}$ $r_{b} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 = 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 50$ $04 \times b \times h = 50$ t provided is g c at 100 c/c $005 \text{ mm}^2/\text{m}$ $4N/\text{mm}^2 \times b / (0.5 + 0.25)$ f bear reinforce f c	m = 199 mm b00 b53 No compression K / 0.9) ^{0.5}), 0.95 = 518 mm ² 163 mm ² 164 165 mm ² 165 mm ² 166 mm ² 167 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 169 mm ² 160 mm ² 170	× d) = 186 mm a of reinforce mm ² /m exceeds mini vided is less t × d)] ^{1/3}) × max(/ γ _m = 0.883 N/1	ment requ mum requ han maxin 1, (400mm
Design bending moment Depth to tension reinforcement Redistribution ratio	required ed provided nt nt PASS - Area of r rovided cement (Table 3.7 PA (cl. 3.4.5.5) PASS - Longit	$\begin{split} M &= abs(M \\ d &= h - c_{non} \\ \beta_b &= min(1) \\ K &= M / (b) \\ K' &= 0.156 \\ z &= min(d > c) \\ X &= (d - z) / \\ A_s,req &= M / \\ 5 \times 16 \phi ba \\ A_s,prov &= 10 \\ A_s,min &= 0.0 \\ A$	$s_{1_{red}} = 42 \text{ kNr}$ $r_{b} - \phi_v - \phi_{bot} / 2$ $- m_{rs1}, 1) = 1.0$ $\times d^2 \times f_{cu}) = 0.0$ K' > K - (0.5 + (0.25 - 0.45 = 28 mm)) $(0.87 \times f_y \times z)$ rs 05 mm^2 $013 \times b \times h = 50$ $04 \times b \times h = 50$ t provided is g c at 100 c/c $005 \text{ mm}^2/\text{m}$ $4N/\text{mm}^2 \times b / (0.5 + 0.25)$ f bear reinforce f c	m = 199 mm b00 b53 No compressio $K / 0.9)^{0.5}$, 0.95 = 518 mm ² 163 mm ² 164 165 mm ² 165 mm ² 166 167 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 169 mm ² 160 mm ² 160 mm ² 160 mm ² 160 mm ² 161 mm ² 161 mm ² 162 mm ² 163 mm ² 164 mm ² 164 mm ² 165 mm ² 165 mm ² 166 mm ² 167 mm ² 168 mm ² 169 mm ² 169 mm ² 169 mm ² 160 mm	× d) = 186 mm a of reinforce mm ² /m exceeds mini vided is less t × d)] ^{1/3}) × max(/ γ _m = 0.883 N/1	ment requ mum requ han maxin 1, (400mm

	Project	10 Downsi	de Crescent		Job no. 1	411
RODRIGUES ASSOCIATES	Calcs for				Start page no./F	
1 AMWELL STREET		bear	n B0.1			.6. 5
LONDON	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
EC1R 1UL	ab	12/10/2016	,		1-1	
Shear links	s provided va	lid between 0 m	m and 6400 n	nm with tension	reinforcemen	nt of 1005
Spacing of reinforcement (cl 3	3.12.11)					
Actual distance between bars in	tension	s = (b - 2 ×	(Cnom_s + ϕ_v +	φ _{bot} /2)) /(N _{bot} - 1)	- φ _{bot} = 84 mm	
Minimum distance between ba	ars in tension	(c) 3 12 11 1)				
Minimum distance between bars		-	⊦ 5 mm = 25 n	nm		
		Chini — Hayy		SS - Satisfies th	e minimum sı	pacing cri
Maximum distance between b	are in tensior	n (cl 3 12 11 2)				0
Design service stress			$\langle \mathbf{A}_{\alpha} \rangle / (2 \vee 1)$	$A_{s,prov} \times \beta_b) = 171$	6 N/mm ²	
Maximum distance between bar	s in tension	•		$f_{s,prov} \times p_b) = 171$ (f_{s} , 300 mm) = 27		
שמאווועווו טופנמווטב שבנשבבוו שמו				SS - Satisfies th		nacina cri
			r Av		s maximum sp	Caung Ull
Span to depth ratio (cl. 3.4.6)	0.0)					
Basic span to depth ratio (Table	,	·	$epth_{basic} = 20.0$		••••	
Design service stress in tension		t $f_s = (2 \times f_y)$	$<$ A _{s,req})/ (3 \times A	$(s, prov \times \beta_b) = 171.0$	5 N/mm²	
Modification for tension reinforce					0	10)
		min(2.0, 0.55 + (477N/mm² - f₅) / (120 × (0.9N/r	$nm^{2} + (M / (b \times$: d²))))) = 1
Modification for compression rel						
	f _{com}	$p = \min(1.5, 1 + (1.5))$		$(b \times d)) / (3 + (10))$	$00 imes A_{s2,prov} / (b$	× d)))) = 1
Modification for span length		$f_{long} = 1.000$				
Allowable span to depth ratio				n_to_depth _{basic} \times	$f_{tens} \times f_{comp} = 34$	1.9
Actual span to depth ratio		·	$epth_{actual} = L_{s1}$			
		PASS	5 - Actual spa	n to depth ratio	is within the a	allowable
Support B						
▲						
	• •	• •		$5 \times 16_{\varphi}$ bars		
-250				$2 \times 8\phi$ shear legs a	t 100 c/c	
				$5 \times 16_{\phi}$ bars		
				υλισφυαίδ		
_ ▼						
4 —		-500				
Pootongular agation in flamme	(a 2 4 4)					
Rectangular section in flexure Design bending moment	: (01.3.4.4)	M = aba/M		n		
			_{3_red}) = 74 kNn _{_t} - φ _v - φ _{top} / 2			
Depth to tension reinforcement						
Redistribution ratio			$-m_{rB}, 1) = 1.0$			
			$\langle d^2 \times f_{cu} \rangle = 0.0$	J94		
		K' = 0.156	171 17		a and the for	
				No compressio		-
		z = min(d x)	: (0.5 + (0.25 -	K / 0.9) ^{0.5}), 0.95	× d) = 175 mm	1
Lever arm			- ·			
Depth of neutral axis		x = (d - z) /	0.45 = 52 mm			
Depth of neutral axis Area of tension reinforcement re	-	x = (d - z) / A _{s,req} = M /	$(0.87 imes f_y imes z)$			
Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided		x = (d - z) / A _{s,req} = M / 5 × 16φ bar	$(0.87 \times f_y \times z)$ is			
Depth of neutral axis Area of tension reinforcement re		x = (d - z) / A _{s,req} = M /	$(0.87 \times f_y \times z)$ is			

🖊 Tekla	Project	10 Downsi	Job no.	411					
Tedds RODRIGUES ASSOCIATES		10 000013							
1 AMWELL STREET	Calcs for	hear	Start page no./Revision 5.6. 6						
LONDON	beam B0.1								
EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved da			
	ab	12/10/2010							
Maximum area of reinforcemen	ıt	$A_{s,max} = 0.0$	04 × b × h = 50	00 mm²					
	PASS - Area	of reinforcemen	t provided is g	greater than are	a of reinforce	ment requii			
Rectangular section in shear									
Design shear force span 1 at 6	201 mm	V = abs(m	in(V _{B_s1_max} , V _B	_ _{s1_red})) = 59 kN					
Design shear stress		$v = V / (b \times$	< d) = 0.593 N/i	mm²					
Design concrete shear stress		$v_c = 0.79 \times$: min(3,[100 × /	$A_{s,prov} / (b \times d)]^{1/3}$	\times max(1, (400) /d) ^{1/4}) ×			
$(min(f_{cu},40)/25)^{1/3}/\gamma_{m}$									
		$v_{c} = 0.883$	N/mm ²						
Allowable design shear stress		$v_{max} = min($	$(0.8 \text{ N/mm}^2 \times (100 \text{ M/mm}^2 \times 100 \text{ M/mm}^2))$	f _{cu} /1 N/mm²) ^{0.5} , 5	N/mm ²) = 5.0	00 N/mm²			
		PASS - Design shear stress is less than maximum allowal							
Value of v from Table 3.7			$0.5 \times v_c < v < (v_c + 0.4 \text{ N/mm}^2)$						
Design shear resistance requir		$v_s = max(v - v_c, 0.4 \text{ N/mm}^2) = 0.400 \text{ N/mm}^2$							
Area of shear reinforcement re	quired		$A_{sv,req} = v_s \times b / (0.87 \times f_{yv}) = 460 \text{ mm}^2/\text{m}$						
Shear reinforcement provided		$2 \times 8\phi$ legs at 100 c/c							
Area of shear reinforcement pr		A _{sv,prov} = 1005 mm ² /m							
		PASS - Area of shear reinforcement provided exceeds minimum requir							
Maximum longitudinal spacing	B400		75 × d = 149 m						
		gitudinal spacing	g of snear reli	norcement prov	viaea is iess t	nan maximi			
Spacing of reinforcement (cl	•								
Actual distance between bars i	n tension	s = (b - 2 ×	$s = (b - 2 \times (c_{nom_s} + \phi_v + \phi_{top}/2)) / (N_{top} - 1) - \phi_{top} = 84 \text{ mm}$						
Minimum distance between b	oars in tensio								
Minimum distance between bar	rs in tension	$s_{min} = h_{agg}$	+ 5 mm = 25 m						
			PA	SS - Satisfies th	e minimum s	pacing crite			
Maximum distance between	bars in tensio	on (cl 3.12.11.2)							
Design service stress		$f_s = (2 \times f_y)$	$f_{s} = (2 \times f_{y} \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_{b}) = \textbf{323.1} \ N/mm^{2}$						
Vaximum distance between bars in tension			s _{max} = min(47000 N/mm / f _s , 300 mm) = 145 mm						

		10 Downsi	de Crescent	1411			
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	bear	n B0.2		Start page no./F	Revision 5.7. 2	
LONDON	Calcs by Calcs date Checked by			Checked date	Approved by	Approved da	
EC1R 1UL	ab	12/10/2016					
		Span 1		Dead	× 1.40		
				Impos	ed imes 1.60		
		Support B		Dead	× 1.40		
				Impos	ed imes 1.60		
Analysis results							
Maximum moment support A		MA_max = -1		_	= -108 kNm		
Maximum moment span 1 at 3	309 mm	$M_{s1_max} = 6$		_	= 62 kNm		
Maximum moment support B		M _{B_max} = -1			= -122 kNm		
Maximum shear support A		V _{A_max} = 87			= 87 kN		
Maximum shear support A spa	n 1 at 197 mm	VA_s1_max =			ed = 84 kN		
Maximum shear support B		$V_{B_{max}} = -1$		_	= -106 kN		
Maximum shear support B spa		$V_{B_s1_max} =$		V _{B_s1_re}	ed = -102 kN		
Maximum reaction at support A		R _A = 87 kN					
Unfactored dead load reaction		$R_{A_{Dead}} = 4$					
Unfactored imposed load reac		R _{A_Imposed} =					
Maximum reaction at support E		R _B = 106 k					
Unfactored dead load reaction		-	$R_{B_{Dead}} = 60 \text{ kN}$				
Unfactored imposed load reac	lion at support B	$R_{B_{Imposed}} =$	14 KIN				
Flanged section details		. 500					
Section width		b = 500 mr					
Section depth		h = 250 mr					
Maximum flange width		b _f = 900 m					
Flange depth		h _f = 175 m					
T T							
75							
250 ⊢ 1.							
		1					
75							
↓ <u>75</u> ↓							
75	- 200►				-200		
	∢ —200—►		500	►	-200		
Concrete details	∢ —200—►		500	►	-200►		
	∢ —200— ▶	C32/40	500	►	-200►		
Concrete details		C32/40 f _{cu} = 40 N/r		►	-200►		
Concrete details Concrete strength class	be strength	f _{cu} = 40 N/r	nm²	► ■			
Concrete details Concrete strength class Characteristic compressive cul	be strength	f _{cu} = 40 N/r	nm² mm² + 200 × fa	► 4			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details	be strength te	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{kN/}$ $h_{agg} = 20 \text{ m}$	nm² mm² + 200 × fa 1m	► 4			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details Characteristic yield strength of	be strength te reinforcement	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{kN/}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/}$	mm² mm² + 200 × fa ոտ mm²	► 4			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of	be strength te reinforcement shear reinforcem	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{kN/}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/}$	mm² mm² + 200 × fa ոտ mm²	► 4			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem	be strength te reinforcement shear reinforcem ent	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{kN/}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/}$ nent $f_{yv} = 500 \text{ N}$	ກm² mm² + 200 × fo າm mm² /mm²	► ► ■			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem Nominal cover to top reinforce	be strength te reinforcement shear reinforcem ent ment	$f_{cu} = 40 N/r$ $E_c = 20kN/$ $h_{agg} = 20 m$ $f_y = 500 N/r$ hent $f_{yv} = 500 N$ $C_{nom_t} = 35$	nm² mm² + 200 × fa ۱m mm² /mm² mm	► 1			
Concrete details Concrete strength class Characteristic compressive cul Modulus of elasticity of concre Maximum aggregate size Reinforcement details Characteristic yield strength of Characteristic yield strength of Nominal cover to reinforcem	be strength te reinforcement shear reinforcem ent ment prcement	$f_{cu} = 40 \text{ N/r}$ $E_c = 20 \text{kN/}$ $h_{agg} = 20 \text{ m}$ $f_y = 500 \text{ N/}$ nent $f_{yv} = 500 \text{ N}$	nm² mm² + 200 × fa nm mm² /mm² mm mm	► • •			

Tedds		10 Downsi	de Crescent	1411 Start page no./Revision				
RODRIGUES ASSOCIATES	Calcs for	Calcs for beam B0.2						
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved		
Maximum distance between	bars in tension	(cl 3 12 11 2)						
Design service stress			$\langle A_{s,reg} \rangle / (3 \times A)$	$(s, prov \times \beta_b) = 275.$	8 N/mm²			
Maximum distance between b	ars in tension			f _s , 300 mm) = 1 7				
			PAS	S - Satisfies the	e maximum sp	acing cri		
Mid span 1								
				$6 \times 20_{\Phi}$ bars				
↓ 250 ↓ ↓ 75 ↓				0 x 200 Dais				
-250- ▲-175				5 00.1				
75		y		$\frac{1}{2}$ $\frac{1}$	egs at 100 c/c			
†								
← _2	00	—500———	▶ 200					
Flanged section in flexure -	Positive momer	nt						
Design bending moment	i ositive momen		s1_red) = 62 kNn	n				
Distance between points of ze	ero moment		L _{s1} = 5440 mr					
Effective flange width			$.2 \times I_0 + b, b_f$					
Depth to tension reinforcemer	ht		_b - φ _v - φ _{bot} / 2					
Percentage redistribution	ι.		$_{ed} / M_{s1_{max}} - 1$					
Redistribution ratio		$\beta_b = \min(1 - m_{rs1}, 1) = 1.000$						
		$K = M / (b_{eff} \times d^2 \times f_{cu}) = 0.045$						
		K' = 0.156	,					
				No compressio	n reinforceme	nt is requ		
Lever arm		z = min(d ×		- Κ / 0.9) ^{0.5}), 0.95				
Depth of neutral axis			0.45 = 23 mm					
Area of tension reinforcement	required	$A_{s,req} = M /$	$(0.87 \times f_y \times z) =$	= 769 mm²				
Tension reinforcement provide	эd	5 × 20ø bai	S					
Area of tension reinforcement	provided	A _{s,prov} = 15	71 mm²					
Area of tension reinforcement provided		$A_{s,min} = 0.0$	$A_{s,min} = 0.0013 \times b \times h = 163 \text{ mm}^2$					
	Minimum area of reinforcement		$A_{s,max} = 0.04 \times b \times h = 5000 \text{ mm}^2$					
		$A_{s,max} = 0.0$	4 × b × h = 50	JU mm²				
Minimum area of reinforcemer	nt	A _{s,max} = 0.0			a of reinforcer	nent requ		
Minimum area of reinforcemer Maximum area of reinforceme	nt PASS - Area o				a of reinforcer	nent requ		
Minimum area of reinforcemen Maximum area of reinforceme Rectangular section in shea	nt PASS - Area o	of reinforcement	t provided is g		a of reinforcer	nent requ		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided	nt <i>PASS - Area o</i> r		t <i>provided is g</i> at 100 c/c		a of reinforcer	nent requ		
Minimum area of reinforcemen Maximum area of reinforceme Rectangular section in shea	nt <i>PASS - Area o</i> r rovided	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$	t <i>provided is g</i> at 100 c/c 1 05 mm²/m			nent requ		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p	nt PASS - Area o r rovided rcement (Table 3	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$	t <i>provided is g</i> at 100 c/c 0 05 mm²/m !N/mm² × b / (0	greater than are $0.87 \times f_{yv}) = 460$ (mm²/m			
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p	nt PASS - Area o r rovided rcement (Table 3 P	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$.7) $A_{sv,min} = 0.4$ ASS - Area of set	t <i>provided is g</i> at 100 c/c 0 05 mm²/m !N/mm² × b / (0	greater than are 0.87 × f _{yv}) = 460 p ment provided	mm²/m			
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfor	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5)	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$.7) $A_{sv,min} = 0.4$ ASS - Area of set	t provided is g at 100 c/c $005 \text{ mm}^2/\text{m}$ $1000 \text{ mm}^2 \times b / (0000000000000000000000000000000000$	greater than are $0.87 \times f_{yv}) = 460 m$	mm²/m exceeds minir	num requ		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfor	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5)	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$ $A_{sv,min} = 0.4$ $ASS - Area of star S_{vl,max} = 0.7itudinal spacing$	t provided is g at 100 c/c $105 \text{ mm}^2/\text{m}^2$ $105/\text{mm}^2 \times b / (0)$ thear reinforce $5 \times d = 148 \text{ mm}^2$ of shear reinforce	greater than are $0.87 \times f_{yv}) = 460 m$	mm²/m exceeds minir rided is less th	num requ nan maxir		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfort Maximum longitudinal spacing	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5)	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$.7) $A_{sv,min} = 0.4$ ASS - Area of su $s_{vl,max} = 0.7$ itudinal spacing $v_c = 0.79 N/$	at 100 c/c $05 \text{ mm}^2/\text{m}^2 \times b / (0 \text{ hear reinforce}^2 \text{ 5} \times \text{d} = 148 \text{ mm}^2 \text{ of shear rein}^2$	greater than are $0.87 \times f_{yy}) = 460 m$ ment provided m	mm²/m exceeds minir ri ded is less th × d)] ^{1/3}) × max(1	num requ nan maxir		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfort Maximum longitudinal spacing	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5) PASS - Long	of reinforcement $2 \times 8\phi \text{ legs}$ $A_{sv,prov} = 100$ $A_{sv,min} = 0.4$ $ASS - Area of state of st$	at 100 c/c $05 \text{ mm}^2/\text{m}^2 \times b / (0000000000000000000000000000000000$	greater than are $0.87 \times f_{yv}) = 460 m$ m forcement provided 100 × A _{s,prov} / (b ×	mm²/m exceeds minir rided is less th < d)] ^{1/3}) × max(1 ' γ _m = 1.031 N/n	num requ nan maxir		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfort Maximum longitudinal spacing Design concrete shear stress	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5) PASS - Long	of reinforcement $2 \times 8\phi$ legs $A_{sv,prov} = 10$ $Asv_{min} = 0.4$ $ASS - Area of sizes S_{vl,max} = 0.7itudinal spacing v_c = 0.79 N//d)^{1/4}) × (mint v_{s,prov} = A_{sv}$	at 100 c/c $05 \text{ mm}^2/\text{m}^2 \times b / (0000000000000000000000000000000000$	$(p) (25 - 10^{-2}) (25 - 10^{-2}) = 0.87 \times f_{yv}) = 460 m$ $(p) (25 - 10^{-2}$	mm²/m exceeds minir rided is less th < d)] ^{1/3}) × max(1 ' γ _m = 1.031 N/n	num requ nan maxir		
Minimum area of reinforcement Maximum area of reinforcement Rectangular section in sheat Shear reinforcement provided Area of shear reinforcement p Minimum area of shear reinfort Maximum longitudinal spacing Design concrete shear stress Design shear resistance provi	nt PASS - Area o r rovided rcement (Table 3 P (cl. 3.4.5.5) PASS - Long	of reinforcement $2 \times 8\phi \text{ legs}$ $A_{sv,prov} = 100$ $A_{sv,min} = 0.4$ $ASS - Area of state of st$	at 100 c/c $05 \text{ mm}^2/\text{m}^2 \times b / (0000000000000000000000000000000000$	$(0.87 \times f_{yv}) = 460 m$ $(0.87 \times f_{yv}) = 4$	mm²/m exceeds minir rided is less th < d)] ^{1/3}) × max(1 ' γ _m = 1.031 N/n	num requ nan maxir		

Tedds		10 Downsi	de Crescent	1411		
RODRIGUES ASSOCIATES 1 AMWELL STREET	Calcs for	bear	Start page no./F	Revision .7. 5		
LONDON EC1R 1UL	Calcs by ab	Calcs date 12/10/2016	Checked by	Checked date	Approved by	Approved of
Spacing of reinforcement (cl 3	3.12.11)					
Actual distance between bars in	1 tension	s = (b - 2 ×	$(C_{nom_s} + \phi_v + \phi_v)$	¢ _{bot} /2)) /(N _{bot} - 1)	- φ _{bot} = 79 mm	
Minimum distance between b	ars in tension	(cl 3.12.11.1)				
Minimum distance between bar	s in tension	$s_{min} = h_{agg}$	+ 5 mm = 25 m	ım		
			PA	SS - Satisfies th	e minimum sj	pacing crit
Maximum distance between b	oars in tension	(cl 3.12.11.2)				
Design service stress			imes A _{s,req}) / (3 $ imes$ A	$\Lambda_{s,prov} \times \beta_b) = 163.$	1 N/mm²	
Maximum distance between bar	rs in tension			(f _s , 300 mm) = 28		
				SS - Satisfies the		pacing crit
Span to depth ratio (cl. 3.4.6)						
Basic span to depth ratio (Table	3 3 9)	span to d	epth _{basic} = 17.5			
Design service stress in tensior		• – –	•	$(s, prov imes \beta_b) = 163.$	1 N/mm²	
Modification for tension reinforc				s,prov (pb)	,	
	f _{tens} = m	in(2.0. 0.55 + (4	77N/mm ² - f _s) /	′ (120 × (0.9N/mr	$m^2 + (M / (b_{eff} \times$	(d ²))))) = 1 .
Modification for compression re		(-) (,	(- (. (. (- /////
·		nin(1.5, 1 + (100	$0 \times A_{s2,prov} / (b_{ef})$	_f × d)) / (3 + (100	× A _{s2.prov} / (b _{eff}	$(\times d)))) = 1.$
Modification for span length		$f_{long} = 1.000$,,,,,
Allowable span to depth ratio		-		n_to_depth _{basic} ×	$f_{tens} \times f_{comp} = 33$	3.6
Actual span to depth ratio		·	epthactual = L_{s1}			
		•	•	n to depth ratio	is within the a	allowable l
Support B						
	• •	••••		$6 ext{ x 20}_{\phi} ext{ bars}$		
250-						
				5 x 200 bars	egs at 100 c/c	
				Z X OØ SHEAT	eys at 100 c/c	
		500				
∢ —20	J─▶ ◀	—500———	▶ 200			
Rectangular section in flexure	ə (cl.3.4.4)					
Design bending moment		M = abs(M	_{B_red}) = 122 kN	m		
Depth to tension reinforcement		$d = h - c_{norr}$	n_t -	= 197 mm		
Redistribution ratio		$\beta_{b} = min(1$	- m _{rB} , 1) = 1.0	00		
		K = M / (b)	$\times d^2 \times f_{cu}) = 0.1$	57		
		K' = 0.156				
			K > 1	K' - Compressio	n reinforceme	ent is requ
Lever arm		$z = d \times (0.5)$	5 + (0.25 - K' /	0.9) ^{0.5}) = 153 mm	ו	
			0.45 = 98 mm			
Depth of neutral axis	ment	_	$+ \phi_v + \phi_{bot} / 2 =$			
Depth of neutral axis Depth of compression reinforce		$A_{s2,req} = (K$	- K') \times f _{cu} \times b \times	d^2 / (0.87 $ imes$ f _y $ imes$	(d - d ₂)) = 9 mr	n²
	nent required					
Depth of compression reinforce	-	5 × 20ø ba	rs			
Depth of compression reinforce Area of compression reinforcem	ovided	5 × 20¢ ba A _{s2,prov} = 15				
Depth of compression reinforce Area of compression reinforcem Compression reinforcement pro Area of compression reinforcem Maximum area of reinforcement	ovided nent provided t (cl.9.2.1.1(3))	$A_{s2,prov} = 1$ $A_{s,max} = 0.0$	5 71 mm² 04 × b × h = 50			
Depth of compression reinforce Area of compression reinforcem Compression reinforcement pro Area of compression reinforcem Maximum area of reinforcement	ovided nent provided t (cl.9.2.1.1(3))	$A_{s2,prov} = 1$ $A_{s,max} = 0.0$	5 71 mm² 04 × b × h = 50	00 mm² greater than are	a of reinforce	ment requ

	Project	10 Downsi	de Crescent		Job no. 1	411	
RODRIGUES ASSOCIATES	Calcs for				Start page no./F		
1 AMWELL STREET	04103 101	bear	beam B0.2			5.7. 6	
LONDON EC1R 1UL	Calcs by ab						
Tension reinforcement provided		6 × 20ø ba	ſS				
Area of tension reinforcement pr	ovided	A _{s,prov} = 18	85 mm²				
Minimum area of reinforcement ($A_{s,min} = 0.0$	$013 \times b \times h = 1$	1 63 mm²			
	PASS - Area	of reinforcemen	t provided is g	greater than are	a of reinforce	ment requii	
Rectangular section in shear							
Design shear force span 1 at 62	03 mm	V = abs(mi	n(V _{B s1 max} , V _B	_s1_red)) = 102 kN			
Design shear stress			d) = 1.032 N/r				
Design concrete shear stress		-		$A_{s,prov} / (b \times d)]^{1/3}$	× max(1, (400	/d) ^{1/4})×	
(min(f _{cu} , 40) / 25) ^{1/3} / γ _m				,p.ot / (2 / c/) /	(, (, , , , , , , , , , , , , , , , , ,		
		v _c = 1.095	N/mm²				
Allowable design shear stress				f _{cu} /1 N/mm²) ^{0.5} , 5	N/mm ²) = 5.00	0 N/mm ²	
				ear stress is les	•		
Value of v from Table 3.7			v < (v _c + 0.4 N/				
Design shear resistance required	b			[,] 1 ²) = 0.400 N/mm	2		
Area of shear reinforcement requ	uired	$A_{sv,req} = v_s$	× b / (0.87 × f _{yv}	<i>y</i>) = 460 mm ² /m			
Shear reinforcement provided		2 × 8¢ legs	at 100 c/c				
Area of shear reinforcement prov	/ided	$A_{sv,prov} = 10$					
		PASS - Area of s		ement provided	exceeds mini	mum requii	
Maximum longitudinal spacing		$S_{vl,max} = 0.7$	5×d = 148 m	m			
	PASS - Long	gitudinal spacing	g of shear reir	nforcement prov	vided is less tl	han maximi	
Spacing of reinforcement (cl 3	.12.11)						
Actual distance between bars in	-	s = (b - 2 ×	$(C_{nom_s} + \phi_v + \phi_v)$	\$top/2)) /(Ntop - 1)	- φ _{top} = 59 mm		
Minimum distance between ba	rs in tensior		•				
Minimum distance between bars			⊦ 5 mm = 25 m	ım			
		ennin Hagg		SS - Satisfies th	e minimum sp	pacing crite	
Maximum distance between ba	ars in tensio	n (cl 3 12 11 2)				-	
Design service stress			(Δ _{α rea}) / (3 × Δ	$A_{s,prov} \times \beta_b) = 323$	3 N/mm ²		
Maximum distance between bars	in tension			f_{s} , 300 mm) = 1 4			
and an alocation botwoon bure				SS - Satisfies the		oacina crite	

IGUESASSOCIATES Inwell Street, London, EC1R 1UL 0 7837 1133, e: www.rodriguesassociates.com e: 10 Downside Crescent						1411	Sheet No.:	5.8.	1		Rev:
											•
tions: Water uplift check					Designed:	ab	Date:	11/10)/2016		Ckd:
Beam & Load	Span	Aroa	loads	Width		ation		DL	Point	loads	1
description	Opan	DL LL			from to		DL LL		DL LL		
accomption	mm	kN/m²	kN/m²	mm	mm	mm	kN/m	kN/m	kN	kN	
Water uplift force 3m high water table Gravitational loa Roof dead load Basement slab Basement wall S TOT	<u>∍</u> 7000 <u>d</u> 7000 7000 7000	30.00 0.69 6.35		7300 5000 6300 7300	sqmm				1533.0 24.2 280.0 723.1 514.8 1542.1		