

PHASE 2 – GROUND INVESTIGATION REPORT

FOR A PROPOSED COMMERCIAL DEVELOPMENT

AT

GREENWOOD CENTRE, GREENWOOD PLACE, CAMDEN, LONDON. NW5 1LB

Prepared For

Kier Construction Ltd 2 Langston Road Loughton Essex **IG10 3SD**

Report Reference Number: 1655,GI/LF,PD/23-06-16/V1

Project Number: 1655,GI Issue Reference:

Issue Date: 23 June 2016

DOCUMENT ISSUED RECORD

1655,GI/LF,PD/23-06-16/V1 Report Number:

Client: Kier Construction Ltd

Project: Greenwood Centre, Greenwood Place, Camden

Project Number: 1655,GI

Report Type: **Factual Ground Investigation Report**

Date of Report: 23 June 2016

Prepared by: Lianne Fountain Date: 23 June 2016

Ganfain. Thous Parky Reviewed by: **Tom Powling** 23 June 2016

Authorised by: 23 June 2016 **Paul Davies** Date:

Geosphere Environmental Ltd, Brightwell Prepared by: Barns, Ipswich Road, Brightwell, Telephone Suffolk, IP10 298 076. OBJ. (01603)www.geosphere-

environmental.co.uk

Confidentiality, Copyright and Reproduction

This document has been prepared by Geosphere Environmental Ltd in connection with a contract to supply goods and/or services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract. Geosphere Environmental Ltd accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

REVISION RECORD

Revision	Date	Document	Prepared By:	Admin

AMENDMENT RECORD

Revision	Date	Amendments	

CONTENTS

		Page No.
DOCUM	MENT ISSUED RECORD	1
1.	INTRODUCTION	4
2.	SITE SETTINGS	5
2.1	Site Description	5
3.	SITE WORKS	6
3.1	Methodology	6
3.2	Scope of Investigation	6
3.3	Exploratory Holes	6
3.3.1	Cable Percussive Boreholes	7
3.3.2	Windowless Sampling and Dynamic Probing	7
3.3.3	Hand-dug Pits for California Bearing Ratio Testing	7
3.3.4	Foundation Inspection Pits	8
3.4	Ground Conditions Encountered	8
3.5	Groundwater	9
3.6	Visual and Olfactory Evidence of Contamination	9
4.	LABORATORY TESTING	10
4.1	Methodology	10
4.2	Environmental Testing Suite	10
4.2.1	Quality Control	10
4.2.2	Environmental Testing Suite – Soils	10
4.2.3	Environmental Testing Suite – Water	11
4.2.4	Environmental Testing Suite – Ground Gas	11
4.3	Geotechnical Testing Suite	11
5.	MONITORING	12
5.1	Ground Gas	12
5.2	Groundwater	14
6.	CONCLUSIONS	16
ADDITIO	ONAL INFORMATION	17
A.	CONSULTATION	17
В.	SHORT-TERM MITIGATION MEASURES	17
C.	DISCOVERY STRATEGY	18

CONTENTS

APPENDICES
APPENDIX 1 – ACRONYMS AND ABBREVIATIONS
APPENDIX 2 – REPORT LIMITATIONS AND CONDITIONS
APPENDIX 3 – REFERENCES
APPENDIX 4 – EXPLORATORY HOLE LOGS
APPENDIX 5 – GAS AND GROUNDWATER MONITORING DATA
APPENDIX 6 – ENVIRONMENTAL LABORATORY TEST RESULTS
APPENDIX 7 – GEOTECHNICAL LABORATORY TEST RESULTS
APPENDIX 8 – DRAWINGS
APPENDIX 9 – PHOTOGRAPHS

TABLES

ole 2 - Ground Gas Monitoring Results ole 3 - Ground Gas Monitoring Results by PID	Page No.
Table 1 - Ground Conditions	8
Table 2 - Ground Gas Monitoring Results	12
Table 3 - Ground Gas Monitoring Results by PID	13
Table 4 - Groundwater Monitoring Results	14
Table 5 – Low Flow Groundwater Monitoring	15

1. INTRODUCTION

Geosphere Environmental Ltd was commissioned by the Client, Kier Construction Ltd, to undertake a Phase 2 Ground Investigation for a proposed commercial development at the Greenwood Centre, Greenwood Place, Camden, NW5 1LB.

The primary objective of this ground investigation are to:

Assess the ground conditions at the site for use in the design of the proposed development.

These are to be achieved by:

- Undertaking an intrusive investigation of the site based on proposals provided by Campbell Reith;
- Logging, sampling and in-situ testing of the soils encountered;
- Environmental and geotechnical laboratory analysis of selected samples;
- Subsequent monitoring and sampling of ground gas and ground water levels.

A Proposed Development Plan drawn by PCKO, Drawing ref. 1213 PL 002 Rev B, was provided by the Client, and is presented within Appendix 8.

It was understood that the proposed development will comprise of the demolition of the existing structures at the site, and the construction of a new four storey community centre, including a basement, which will cover an overall approximate area of 3600m². A new access way, cycle parking and associated soft landscaped areas are also proposed.

2. SITE SETTINGS

2.1 Site Description

The subject site was situated in Camden, London, approximately 0.2 km to the north west of the Kentish Town Station, and may be located by National Grid Reference, (NGR), TQ 28816 85385.

A Site Location Plan, Drawing ref. 1655,GI 001/Rev 0 is included in Appendix 8 at the back of the report, and in Figure 1 below:



Figure 1 – Site Location Plan

Figure 2 - Site Plan

The subject site comprised of an irregularly shaped former community centre, previously known as the Greenwood Community Centre. At the time of the investigation, the building was derelict and comprised of two adjoining single storey structures.

The former Greenwood Community Centre was of brick construction, and as mentioned above, comprised of two adjoining structures. A basement was present in the south west of the building, and a small garden area and pathway existed in the south of the site.

Ground levels were found to decrease toward the south west of the site, falling from approximately 40mAOD in the north, to approximately 34mAOD in the south.

The neighbouring building of Deane House bounded the site to the north west, and Greenwood Place ran adjacent to the eastern boundary of the site. A compound owned by Murphy and unspecified buildings bounded the site to the south and south west respectively.

A site plan Drawing ref. GIS001 – A, is presented in Figure 2 above, and within Appendix 8 of this report.

3. SITE WORKS

3.1 Methodology

This ground investigation was carried out on the basis of the practices set out in BS 10175: 2011+A1:2013, (ref. **R.1**), and BS 5930: 2015, (ref. **R.2**).

A geoenvironmental engineer from Geosphere Environmental Ltd, supervised the intrusive works and ensured safe methods of working at all times.

3.2 Scope of Investigation

Site works were carried out over a period of five weeks, between 14 March and 21 April 2016, and comprised of the following:

- The formation of two cable percussive boreholes, (BH01 and BH02), to an approximate depth of 25.0m bgl;
- The formation of two windowless sampler boreholes, (WS101 and WS102), to an approximate depth of 6.0m bgl;
- The extension of a windowless sampler borehole, WS102, by dynamic probing to an approximate depth of 12.0m bgl;
- The excavation of four hand dug or vacuum excavated foundation pits, (FIP1-FIP4), to varying depths;
- The excavation of two hand dug trial pits, (CBR3 and CBR4), and the subsequent CBR testing of encountered soils by in-situ methods with a TRL probe;
- o In-situ soil logging, sampling and testing within each exploratory hole location;
- The installation of three ground gas and groundwater monitoring wells within cable percussive and windowless sampler boreholes, (BH1, BH2 and WS102) to depths of 10.0m and 6.0m bgl respectively;
- Subsequent return visits to site in order to monitor ground gas and groundwater levels;
- o Installation of ground gas sampling equipment within the monitoring wells during monitoring visit 2 and the subsequent uninstallation during monitoring visit 3;
- Low flow monitoring of groundwater, where present, and subsequent sampling from monitoring wells
 installed during this investigation as well as the previous investigation.

3.3 Exploratory Holes

The locations and depths of the exploratory holes were defined by the consulting engineer, Campbell Reith. The positions of exploratory holes are presented on the exploratory hole location plan provided within Appendix 8 of this report, Drawing ref. 1655,GI 002/Rev 0.

The details of the methods used are provided within the following sections.

3.3.1 Cable Percussive Boreholes

Two cable percussive boreholes, (BH01 and BH02), were drilled within the existing structure using a track mounted cut down cable percussive rig to a required depth of 25.0m bgl. The original scope of the investigation included the formation of three cable percussive boreholes, however, due to restricted headroom, BH03 could not be undertaken.

Representative disturbed and undisturbed samples were collected at regular intervals throughout the boreholes. These samples included undisturbed thin wall samples, (UT100s), within clay soils, nominal disturbed, (D), samples and SPT samples. Environmental samples were of the Made Ground, and natural soils were also collected at each position.

Standard Penetration Tests, (SPTs), were undertaken at regular intervals throughout the depth of the boreholes using a split spoon sampler.

Following completion of drilling, the boreholes were backfilled to a depth of 10.0m bgl, and 50mm diameter combined ground gas and groundwater monitoring wells were installed with a gravel surround and a bentonite seal.

As the third cable percussive borehole could not be commenced, the intended BH03 position was relocated to outside of the existing structure, within the small garden area in the south of the site. Due to further access constraints, this borehole could not be commenced using cable percussive techniques, and windowless sampling and dynamic probing methods were used instead.

3.3.2 Windowless Sampling and Dynamic Probing

As mentioned above, windowless sampling and dynamic probing methods were used within the south of the site, within vicinity of the original BH03 position. A windowless sampler borehole, WS102, was drilled to 6.0m depth and disturbed samples for environmental and geotechnical purposes were collected throughout the depth of the borehole. SPTs were also undertaken every metre.

In order to achieve sufficient depth, the windowless sampling was ceased at 6.0m bgl, and dynamic probing methods were used to extend the borehole to 12.0m bgl where refusal was encountered.

Following the completion of WS102, a 50mm diameter combined ground gas and groundwater monitoring well was installed to a depth of 5.0m bgl.

A windowless sampler borehole, (WS101), was also undertaken in the proposed position of CBR1, to a depth of 6.0m bgl. Windowless sampling was undertaken in this position, as hand-digging was not possible due to the presence of a block and beam suspended floor. Disturbed samples were collected and SPTs were undertaken at regular intervals.

3.3.3 Hand-dug Pits for California Bearing Ratio Testing

Four hand pit positions, (CBR1-CBR4), were defined by the Client, for the purpose of undertaking in-situ California Bearing Ratio, (CBR), testing. Each position required surface break out, which was completed prior to undertaking the in-situ CBR tests. Block and beam suspended floors were encountered within positions CBR1 and CBR2, and therefore hand excavation and in-situ testing were deemed to be unsuitable.

Hand pits were excavated within the positions of CBR3 and CBR4, to depths of 0.60m and 0.85m bgl respectively, for the purpose of undertaking in-situ CBR tests. A CBR test by TRL Probe methods was undertaken in each pit, and the results of these tests are presented within Appendix 7 of this report.

Representative environmental samples were also collected within these pits to ensure appropriate coverage of the site.

3.3.4 Foundation Inspection Pits

Four hand dug pits were excavated at the site, in order to determine the depth and type of existing foundations.

Foundation inspection pits FIP2, FIP3 and FIP4, were hand dug to various depths to expose the top of the foundations. Hand auger methods were then used to extend the pits, in order to determine an approximate depth of the underside of the foundations. Representative samples for environmental and geotechnical purposes were collected from these pits.

Due to the nature of the ground conditions encountered within FIP1, hand excavation was not possible and vacuum excavation methods were used. A concrete obstruction, presumed to be the underlying concrete slab of the suspended floor, was encountered at a depth of 1.1m bgl, and therefore excavation was ceased.

Foundation profile sketches were produced for each foundation inspection pits, these are provided within Appendix 4 of this report.

3.4 Ground Conditions Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the British Geological Survey (BGS) map, Sheet Number 256, Solid Edition, 1:50,000 scale, published, 2001 as well as the BGS digital mapping geology viewer, at a scale of 1:50,000.

The sequence and indicative thickness of strata are provided below:

Table 1 - Ground Conditions							
Stuata	Depth Encou	ıntered (mgl)	Strata Thickness	Location and Composition			
Strata	From	То	(m)	Location and Composition			
			0.10 to 0.30	BH01, BH02, WS101, FIP1, FIP3, FIP2, FIP4, CBR4 - Concrete			
Surface Materials	0.00 - 0.20	0.10 - 0.30		WS102, CBR4 - Wooden decking			
				FIP4, CBR4 - Flexible Surfacing			
				Numerous layers of Made Ground of varying consistency were recorded.			
Made Ground	0.10 - 0.45	2.00 - 5.00	1.90 to 4.90	FIP1, BH01, BH02:			
				Coarse granular Made Ground within the sub-floor void space recorded to comprise a dark red			

				brown, grey and brown sand and gravel with angular to subangular brick, concrete, glass and wood fragments. BH01, WS102, WS102, FIP2, FIP3, CBR3:
				Dark brown, orange brown and grey clayey sand and gravel with brick, clinker, charcoal fragments and flint.
				BH01, BH02, WS101, WS102, FIP3, FIP4, CBR4:
				Dark brown and orange brown mottled silty clay with brick, concrete, clinker fragments and flint and varying sand content.
Weathered London Clay	2.00 - 5.00	10.50 - 13.00	7.50 to 8.00	FIP4, BH01, BH02, WS101, WS102: Orange brown and blue grey mottled fissured clay
London Clay Formation	10.50 - 13.00	>25.00	Base not proven	BH01 and BH02: Dark grey silty clay with occasional white fossils and occasional claystone bands

3.5 Groundwater

Groundwater seepage was recorded in FIP3 and FIP4, at a depth of 1.70 mbgl and 1.35 mbgl respectively. No groundwater was encountered in any of the other exploratory holes.

During subsequent visits to site to monitor groundwater levels, it was found that water had accumulated within monitoring wells DSC1, DSCBH2 (otherwise known as OBH2), and DSC4, (installed during the previous investigation), as well as WS102. The depths at which water was recorded is presented within section 5.2 of this report.

3.6 Visual and Olfactory Evidence of Contamination

Significant thicknesses of Made Ground were recorded during the intrusive investigation. Fragments of brick, concrete, clinker and charcoal were recorded within the Made Ground soils, and a natural organic odour with associated discolouration was noted within FIP2.

A suspected volatile odour was recorded within the Weathered London Clay in BH01 and WS101, at depths of 5.00m and 5.30m bgl respectively.

During surface break-out of the concrete slab at positions BH02 and FIP1, suspected asbestos containing materials were encountered.

4. LABORATORY TESTING

4.1 Methodology

Representative disturbed and undisturbed samples were taken at the depths shown on the exploratory hole records and dispatched to the laboratory. The exploratory hole logs are included in Appendix 4.

Numerous samples were collected for environmental purposes in amber glass jars and bulk bags and kept in a cool box with cooling aid. Geotechnical samples were recovered in plastic bulk bags, plastic tubs and undisturbed thin walled UT100 liners.

Water samples were collected from the monitoring wells during subsequent monitoring visits to site in glass bottles and vials, and kept in a cool box with cooling aid.

Ground gas samples were collected using Tenax Tubes and dispatched to the environmental laboratory. The Tenax tubes were installed into the monitoring wells during the second monitoring visit, and removed during the third monitoring visit.

All analyses of the soil samples took place in the laboratory.

4.2 Environmental Testing Suite

4.2.1 Quality Control

The environmental laboratories used, (Envirolab Ltd and Gradko International Ltd), were accredited laboratories by the United Kingdom Accreditation Service, (UKAS), and at least 50% of individual parameters are from methods pending accreditation to the Environment Agency Monitoring Certification Scheme, (MCERTS), for the range of analyses undertaken as part of this investigation. The MCERTS performance standard for the chemical testing of soil is an application of ISO 17025: 2000 specifically for the chemical testing of soil.

4.2.2 Environmental Testing Suite - Soils

The suite of chemical analyses was defined by Campbell Reith, and carried out on a number of samples. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, lead, mercury, selenium, boron, (water soluble), beryllium, copper, nickel, vanadium and zinc;
- Organic screen total petroleum hydrocarbons, (TPH) with specific carbon banding; benzene, toluene, ethylbenzene and xylenes, (BTEX); polyaromatic hydrocarbons, (PAH) – USEPA 16 suite; monohydric phenols;
- Inorganics screen cyanide, (total), sulphate, (water soluble);
- Others pH, organic matter, asbestos;
- Volatile Organic Compounds, (VOC) including: benzene, toluene, ethylbenzene and xylenes, (BTEX), and chlorinated solvents;
- o Semi-Volatile Organic Compounds, (SVOC) including: phenols and polyaromatic hydrocarbons, (PAH).

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.2.3 Environmental Testing Suite – Water

The suite of chemical analyses was defined by Campbell Reith, and carried out on three samples. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, hexavalent chromium, lead, mercury, selenium, boron, (water soluble), copper, nickel, and zinc;
- Organic screen total petroleum hydrocarbons, (TPH), polyaromatic hydrocarbons, (PAH) USEPA 16 suite; phenol, (total);
- o Inorganics screen cyanide, (total and free), sulphate, (water soluble), sulphur and sulphide;
- Others pH;
- Volatile Organic Compounds, (VOC);
- Semi-Volatile Organic Compounds, (SVOC).

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.2.4 Environmental Testing Suite – Ground Gas

The suite of chemical analyses undertaken on the ground gas samples was defined by Campbell Reith, and is detailed below:

Top 15 VOC suite.

A copy of the laboratory test results is included in Appendix 6 toward the end of this report.

4.3 Geotechnical Testing Suite

The geotechnical testing schedule was also defined by Campbell Reith, and undertaken in accordance with BS 1377 at a UKAS accredited laboratory. The following tests were undertaken:

- Moisture content determination;
- Plasticity testing;
- pH and soluble sulphate testing;
- Total sulphur content;
- Organic content (dichromate) testing;
- Particle size distribution testing;
- Determination of undrained shear strength.

A copy of the laboratory test results is included in Appendix 7 toward the end of this report.

5. MONITORING

Ground gas and groundwater monitoring wells were installed within three exploratory holes excavated during the intrusive investigation, (BH01, BH02 and WS102). Subsequent return visits were undertaken in order to monitor ground gas and groundwater levels which had accumulated within these wells. Monitoring wells installed during the previous investigation, (DSC1, DSC4 and DSCBH2), were also monitored during these visits. The results are presented within the following sections and within Appendix 5 of this report.

5.1 Ground Gas

Ground gas monitoring was undertaken by a suitably qualified environmental consultant, using a GA2000 landfill gas analyser. The main determinants recorded were methane, (CH_4) , carbon dioxide, (CO_2) , oxygen, (O_2) , as well as flow and groundwater levels. Levels of hydrogen sulphide, (H_2S) , carbon monoxide, (CO), and volatile organic compounds, (VOC), were recorded using a Photoionization Detector, (PID).

Ground gas monitoring was carried out in accordance with current guidance, (ref. **R.3**). Three consecutive monitoring visits were undertaken over a period of four weeks and included a monitoring visit during low barometric pressure conditions.

The results and dates of the monitoring visits are presented in Tables 2 and 3 below. Graphical representation of these results are presented within Appendix 5 of this report.

Table 2 - Ground Gas Monitoring Results							
Monitoring Well	Monitoring Date	Atmospheric Pressure (mb)	Flow Rate (I/hr)	Methane (%)	Carbon Dioxide (%)	Oxygen (%)	
	27-04-16	1009	-0.2	<0.1	0.1	20.9	
BH01	12-05-16	996	-0.4	<0.1	0.2	19.6	
	19-05-16	1004	+0.5	<0.1	0.3	20.0	
	27-04-16	1009	-0.2	<0.1	0.1	20.9	
BH02	12-05-16	996	-0.5	<0.1	0.1	20.9	
	19-05-16	1004	+0.5	<0.1	0.1	21.2	
	27-04-16	1009	-0.2	<0.1	0.9	20.9	
WS102	12-05-16	996	-0.3	0.1	0.7	20.7	
	19-05-16	1005	+0.5	<0.1	1.0	20.7	
	27-04-16	1010	-0.1	<0.1	4.9	8.8	
DCS1	12-05-16	996	-0.5	<0.1	3.7	15.8	
	19-05-16	1004	+0.5	0.1	5.3	15.0	
	27-04-16	1010	-0.1	<0.1	2.7	18.3	
DCSBH2	12-05-16	996	-0.3	<0.1	5.2	15.3	
	19-05-16	1004	+0.4	0.1	5.3	12.3	
DCS4	27-04-16	nm	nm	nm	nm	nm	

12-05-16 99
6 10

Table 3 - Ground Gas Monitoring Results by PID							
Monitoring Well	ell Monitoring Date Carbon Monoxide Hydrogen Sulpl (ppm) (ppm)		Hydrogen Sulphide (ppm)	VOC (ppm)			
	27-04-16	56.0	<0.1	241.0			
BH01	12-05-16	38.0	0.1	326.0			
	19-05-16	35.0	<0.1	406.0			
	27-04-16	1.0	<0.1	9.0			
BH02	12-05-16	<0.1	<0.1	19.0			
	19-05-16	<0.1	<0.1	12.0			
	27-04-16	<0.1	<0.1	15.0			
WS102	12-05-16	4.0	<0.1	28.0			
	19-05-16	<0.1	<0.1	<0.1			
	27-04-16	<0.1	<0.1	3.0			
DCS1	12-05-16	<0.1	<0.1	5.0			
	19-05-16	<0.1	<0.1	3.0			
	27-04-16	<0.1	<0.1	1.0			
DCSBH2	12-05-16	<0.1	<0.1	3.0			
	19-05-16	45.0	<0.1	23.0			
	27-04-16	nm	nm	nm			
DCS4	12-05-16	<0.1	<0.1	<0.1			
	19-05-16	<0.1	<0.1	<0.1			

5.2 Groundwater

The groundwater levels were also monitored during the monitoring visits, over a period of four weeks. The water levels and dates of monitoring are presented in the table below:

Table 4 - Groundwater Monitoring Results							
Monitoring	Depth of	Groundwater Encountered at (mbgl)					
Well	Monitoring Well	Visit 1	Visit 2	Visit 3			
	(mbgl)	27/04/16	12/05/16	19/05/16			
BH01	9.95	Dry	Dry	Dry			
BH02	10.00	Dry	Dry	Dry			
WS102	5.00	Dry	2.30	2.00			
DSC1	4.10	1.43	1.40	1.75			
DSCBH2	2.20	1.66	1.65	1.40			
DSC4	2.15	1.97	Dry	Dry			

Notes:

Dry - no groundwater encountered

n/m – not measured

0 - well filled with water

As mentioned previously, groundwater samples were collected during the second monitoring visit and dispatched to the environmental laboratory for analysis. Prior to collecting the samples, low flow monitoring was undertaken, whereby conductivity, dissolved oxygen, pH and redox potential values of the groundwater were measured. The results of this monitoring are presented in the table overleaf.

Table 5 - Low Flow Groundwater Monitoring							
Monitoring	Depth of Monitoring Well (mbgl)	Time	Parameter				
Well		(mins)	Dissolved Oxygen (%)	Electrical Conductivity (μs/cm)	рН	Redox Potential (mV)	
		0	52.3	5757	7.62	254	
		5	12.5	5681	7.59	256	
		10	11.3	5534	7.57	240	
WS102	5.00	15	10.7	5528	7.58	238	
		20	10.0	5521	7.57	236	
		25	10.1	5522	7.58	237	
		30	10.0	5520	7.58	237	
	4.10	0	36.5	1379	7.17	261	
		5	15.0	1334	7.13	259	
		10	12.6	1295	7.11	247	
DSC1		15	8.9	1232	7.12	246	
		20	8.7	1159	7.12	243	
		25	8.8	1132	7.11	242	
		30	8.8	1120	7.12	241	
		0	21.0	1259	7.56	369	
		5	4.6	1187	7.58	321	
		10	10.8	1065	7.33	297	
DSCBH2	2.20	15	11.6	1066	7.34	291	
		20	9.9	899	7.32	250	
		25	9.5	789	7.34	246	
Notes		30	9.8	890	7.31	245	

Notes:

Dry - no groundwater encountered

n/m – not measured

6. CONCLUSIONS

Geosphere Environmental Ltd was commissioned by the Client, Kier Construction Ltd, to undertake a Phase 2 Ground Investigation for a proposed commercial development at the Greenwood Centre, Greenwood Place, Camden.

A ground investigation was undertaken at the former Greenwood Centre, Greenwood Place, Camden. The investigation comprised of the formation of cable percussive boreholes, windowless sampler boreholes and the excavation of a number of hand dug or vacuum excavated pits to varying depths. Monitoring wells were installed within three boreholes and three subsequent monitoring visits were undertaken after the intrusive works, in order to monitor ground gas and groundwater levels and collect samples of ground gas and groundwater.

The ground conditions beneath the site were found to comprise of varying thicknesses of surface materials and Made Ground overlying cohesive deposits of the London Clay Formation. A number of samples were collected during the ground investigation, for environmental and geotechnical purposes, and dispatched to the relevant laboratories for testing.

Whilst this report provides a detailed account of the intrusive investigation and the subsequent monitoring and laboratory testing undertaken, the interpretation of the laboratory results and the ground conditions encountered is the responsibility of the consulting engineers instructed by the Client.

ADDITIONAL INFORMATION

A. CONSULTATION

During the development of a contaminated site, consultation may be required for a number of reasons with a number of Regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required. The remediation strategy would have to be agreed with the following:

- Local Authority. Consultation is likely to be required with a designated Contaminated Land Officer within the Environmental Health Department, as part of the planning process. The Local Authority is generally concerned with human health risks. Some Authorities now require 'Completion Certificates' to be signed off following remediation works;
- Environment Agency. Where a site is within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.

In addition to which, the following may also be involved in the consultation process:

National House Building Council, NHBC. Section 4.1 of the NHBC Standards requires land management to be addressed.

 Water Authorities. They are likely to impose constraints on the nature of water supply pipes that are to be laid in contaminated land. Guidance on the selection of materials for water pipes is provided by the Water Regulations Advisory Scheme, (ref. R.4).

Based upon the results of any consultation, there may be specific remediation requirements imposed by one or more of the aforementioned Authorities.

B. SHORT-TERM MITIGATION MEASURES

During site preparatory works of any potential development/construction works, some short-term mitigation measures will be required to protect the site workers, neighbouring sites users and the environment from the potential effects of exposure to potentially contaminated materials and soils. The majority of the proposed measures represent good practice for the construction industry and include:

- Briefing all of the site workers of the identified contamination on site, and ensuring they are aware of the potential health effects from exposure;
- Where appropriate, workers who are at potentially risk due to their working in areas of identified contamination will be provided with suitable PPE;
- Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are discouraged from smoking, eating or drinking without washing their hands first;
- Ensuring site personnel report any unusual complaints, such as skin rashes, nausea, light-headedness etc. which may be attributable to the contamination on the site;
- Ensuring that dust suppression measures are put into practice where contamination is becoming airborne;

- Site drainage should be prevented from entering the adjacent watercourse;
- Where necessary contamination will be prevented from dirtying adjacent highways, a wheel-wash or other method for cleaning vehicles may be required.

Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations. The classification of contaminated soils for disposal is dependent upon the individual landfill operator, which is in term dependent upon the operator's license.

C. DISCOVERY STRATEGY

There is the possibility that other sources of contamination may be present on the site which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:

- The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated;
- Short-term storage of the suspected material while undertaking verification testing for suspected contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area;
- Treatment of the identified contamination in accordance with the site-specific Remediation Method Statement;
- Having a suitably experienced Environmental Engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

Should any anomalous materials be identified within the soils, the Regulatory Authorities should be informed and where necessary the remedial strategy agreed.

APPENDICES

APPENDIX 1 - ACRONYMS AND ABBREVIATIONS

Acronym /	Definition
Abbreviation ACM	Asbestos containing material
ADE	_
	Average daily exposure
ASPT	Average score per Taxon
BOD	Biochemical oxygen demand
ВН	Borehole
BRE	Building Research Establishment
BS	British Standard
ВТЕХ	Benzene, Toluene, Ethyl benzene and Xylenes
CIRIA	Construction Industry Research and Information Association
CLEA	Contaminated Land Exposure Assessment
CLR	Contaminated Land Research reports
DEFRA	Department of the Environment, Food and Rural Affairs (formerly the DoE and DETR)
DETR	Department of the Environment, Transport and the Regions (formerly the DoE and now Defra)
DO	Dissolved oxygen
DoE	Department of the Environment (then DETR and later Defra)
DQRA	Detailed quantitative risk assessment (Tier 2)
EA	Environment Agency
ЕРН	Extractable petroleum hydrocarbons
EQI	Environmental Quality Index
EQS	Environmental Quality Standards
GQRA	Generic quantitative risk assessment (Tier 1)
mAOD	Metres above ordnance datum
mbgl	Metres below ground level
NGR	National grid reference
NHBC	National House Building Council
NRA	National Rivers Authority (now the Environment Agency)
PACM	Potentially asbestos containing material

APPENDIX 2 - REPORT LIMITATIONS AND CONDITIONS

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

The comments given in this report, and the opinions expressed herein, are based upon the readily available information collated for the report and an assessment based upon the current UK guidance, primarily the Contaminated Land Research (CLR) Reports, and most importantly CLR Report 3, (ref. **R.5**).

This report has been prepared for the sole use of the Client for the purposes described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

This report is prepared and written for the use stated herein; it should not be used for any other purposes without reference to Geosphere Environmental Limited. The report has been prepared in relation to the proposed end-use should another end-use been intended a further re-assessment may be required. It is likely that over time practises will improve and the relevant guidance and legislation be amended or superseded, which may necessitate a re-assessment of the site.

The report is limited to those aspects of land contamination specifically reported on and is necessarily qualified accordingly, no liability shall be accepted for other aspects which may be the result of gradual or sudden pollution incidents, past or present unrecorded land uses both on and off site and the potential for associated contaminant migration. The opinions expressed cannot be absolute due to the limitations of time and resources imposed by the agreed brief.

The accuracy of any map extracts cannot be guaranteed. It is possible that different conditions existed on site, between and subsequent to the various map surveys appended.

Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes discussed or on the possible presence of features based on visual, verbal or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

The conceptual model is based on the information available at the time of conducting this assessment and is an interpretative assessment of the conditions at the site. It should be noted that the redevelopment and/or further investigation of the site may reveal additional information and therefore alter the conceptual model and the conclusion of this report.

APPENDIX 3 - REFERENCES

- **R.1.** British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2011+A1:2013.
- **R.2.** British Standards Institute: BS 5930 'Code of practice for ground investigations', 2015.
- **R.3.** CIRIA Report C665, 'Assessing risks posed by hazardous ground gases to buildings', 2007.
- **R.4.** Water Regulations Advisory Scheme, Information and Guidance Note, October 2002, 'The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land'.
- **R.5.** CLR 3, 'Documentary research on industrial sites', Report by RPS Consultants Ltd, DoE 1994.

APPENDIX 4 - EXPLORATORY HOLE LOGS

Borehole Logs (BH01 and BH02)

Windowless Sample Hole Logs (WS101 and WS102)

CBR Pits (CBR3 and CBR4)

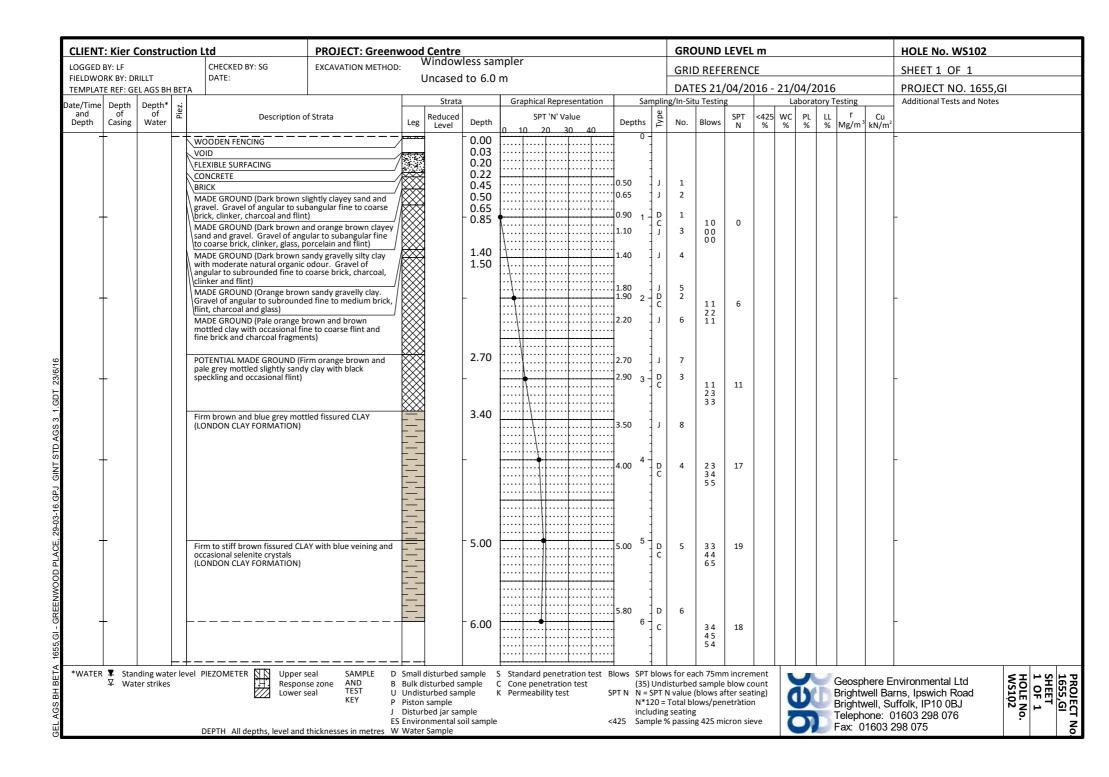
Foundation Inspection Pit Logs
(FIP1 to FIP4)

Hand Auger Logs
(HA1)

Dynamic Probe Logs (BH01, WS102)

CLIENT	: Kier (Cons	tructio	on Ltd	PROJECT: Greenv	wood	Cable B	woules!	on /shall and augar'		GRO	DUND	LEVE	_ m						HOLE No. BH01
LOGGED E		.		CHECKED BY: SG DATE:	EXCAVATION METHOD:				on (shell and auger)		GRI	D REFE	RENC	Œ						SHEET 1 OF 3
FIELDWOI TEMPLAT			S BH BET.				Uncased	1 (0 25.	ווו כ		DAT	ΓES -								PROJECT NO. 1655,GI
ate/Time	Depth	Dep		•	•		Strata		Graphical Representation			tu Testin	g	<u> </u>	La	borato	ry Tes	ting		Additional Tests and Notes
and Depth	of Casing	Wa		Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40	Depths A	No.	Blows	SPT N	<425 %	WC %		LL % N	r 1g/m³	Cu kN/m²	
7	_		11	CONCRETE			3	0.00		0 =										No groundwater encountered during drilling
				MADE GROUND (Brown, grey a gravel of brick, concrete, clinke			X	0.10		# 1										
						\bowtie														
1	-			CONCRETE				1.10		1 11										Ī
				MADE GROUND (Dark brown cl angular to subangular fine to co	ayey sand and gravel of		3	1.30												
				concrete and clinker)	odise brick, fillit,	\bowtie														
7	_					\bowtie	}	-		2.00 ² J+D	1									
			[:[]:]				3			1 1										
			 				<u> </u>			‡ ‡										
†	-		: <u> </u> : :	MADE GROUND (Dark brown a	nd orange brown		Ž	3.00		1+D	2									
			 	mottled slightly sandy slightly g angular to subangular fine to m occasional brick and charcoal)	edium flint and	\bowtie				1 1										
			.H.	occasional brick and charcoal)		\bowtie				1										
+	-			MADE GROUND (Brown, orang	e brown and blue grey		*	4.00		4.00 ⁴ J+D	3									BRE SD1 suite, soil organic matter, moistur
			[計]	mottled slightly gravelly fissure subangular to subrounded fine	d clay. Gravel of to coarse flint and	\bowtie	3			1										content, Atterberg limit, triaxial
				occassional brick)		\bowtie				1										
+	-		<u> </u>	Firm brown and blue grey mott	led fissured CLAY with			5.00		5.00 5 J+D	4									BRE SD1 suite and moisture content
				suspected volatile odour (LONDON CLAY FORMATION)			-													
						<u> </u>				.1 -1										
+	-		:H:					F		6.00 6 J+D	5	23	18							Moisture content and Atterberg limit
]		4 4 4 6								
						=														
+	-							F		7 - 7.00 7 - J+D	6									Moisture content
			[<u>.</u> [].			==-														
			<u>:</u> : :	Stiff brown fissured CLAY with crystals	occasional selenite			7.50		7.50- UT10 7.95	0 1									Triaxial
+	-		[計]	(LONDON CLAY FORMATION)		=		F		8.00 8 J+D	7									BRE SD1 suite and moisture content
			排			=														
										1 1										
+	-		[:][:]			=		-		9.00 9 J+D	Q	24	22							-
						<u> </u>				3.00		54								
						=	1			1		"								
	-		.н.					<u> </u>		10										<u> </u>
WATER	▼ Stan ▼ Wat	nding er str	water lev ikes	vel PIEZOMETER Upper s Respon Lower s	se zone AND B		disturbed s		S Standard penetration test E C Cone penetration test	(35) Und	isturbe	d sample	blow c	ount						Environmental Ltd 무리 약
				Lowers	eal TEST U	Undis	turbed san			PTN N = SPT I N*120 =		(blows a lows/per				Dt				Environmental Ltd arns, Ipswich Road uffolk, IP10 0BJ 01603 298 076
					J	Distur	rbed jar sar onmental s			including 425 Sample 9	seatin	g			7	77	Te	elepho	one: (01603 298 076
				DEPTH All depths, level and				ou sample	:	+23 sample	∘ hq??II	18 425 M	ici off Sle	eve	6	11	Fa	ax: 0	1603 2	298 075

CLIENT	: Kier (Construc	tion	n Ltd	PROJECT: Greenv	wood	Centre		7.1.11		GR	OUND	LEVEL	. m					HOLE No. BH01
LOGGED I		DILLT		CHECKED BY: SG DATE:	EXCAVATION METHOD				n (shell and auger)		GRI	D REFE	RENC	Œ					SHEET 2 OF 3
FIELDWO TEMPLAT		KILLI EL AGS BH I	BETA				Jncased	10 25.5)		DA	ΓES -							PROJECT NO. 1655,GI
Date/Time and	Depth of	Depth*	Piez.				Strata		Graphical Representation			tu Testin			Laborat		esting r		Additional Tests and Notes
Depth	Casing	Water	4	Description of	Strata	Leg	Reduced Level	Depth	SPT 'N' Value 0 10 20 30 40	Depths 2	No.	Blows	SPT N	<425 V	VC PL % %	LL %	Mg/m ³	Cu kN/m²	
				Stiff brown fissured CLAY with c	occasional selenite	=		_		10.00 10-	9								-
				(LONDON CLAY FORMATION) (c	ontinued)					10.50- UT1	00 2								Triaxial
	=							_		10.95									_
										11.00 J+C	10								
										1									
-	_			12.00 Becoming dark brown wit	h depth			_		12.00 12 D	11	23	23						_
				-	•							4 5 6 8							
							-			1									
1 1	_			Stiff dark grey fissured CLAY wit fossil fragments	h occasional white fine			13.00		13.00 D	12								_
				(LONDON CLAY FORMATION)		==			•	13.50- UT1	00 3								Triaxial
<u> </u>	_							_		13.95	1.0								
9/16							-			14.00 T	13								pH & sulphate
23/6										1									
<u>-</u>	-					=		-	+	15.00 15	11	25	25						_
လ လ										1		5 7 6 7							
D AG							-			1									
	_							_		16.00 ¹⁶ J+0	12								-
N										16.50- UT1	00 4								Triaxial
								_		16.95									-
-50										17.00 THE	13 18								
й 22										1									
PLAC	=							_		18.00 18 D	19	2.5	33						_
JOC										1		6 7 10 10							
N										1									
GKE	-					=		-		19.00- 19- 19.45	0 5								
1										13.43									Triaxial
1655,G			\perp					_		20-									_
GEL AGS BH BETA	▼ Star ▼ Wa	nding water ter strikes	· leve	PIEZOMETER Upper so Respons Lower so	e zone AND B TEST U KEY P J ES	Bulk d Undis Piston Distur Enviro	listurbed sa turbed sam sample bed jar san onmental so	ample (aple inple	·	(35) Un PT N N = SPT	disturbe N value Total b g seatin	d sample (blows a lows/per g	blow co fter sea netration	ount ting) n	gec	DE	Brightw Brightw Feleph	vell Ba vell, Su one: 0	nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076 298 075


CLIENT	: Kier C	Constru	ıctio	n Ltd	PROJECT: Greenv	wood	Centre				GROU	JND L	EVEL	m						HOLE No. BH01
LOGGED E				CHECKED BY: SG	EXCAVATION METHOD				n (shell and auger)	L	GRID I	REFER	RENC	E						SHEET 3 OF 3
FIELDWO!			I BETA	DATE:			Uncased	1 to 25.5	5 M		DATES	S -								PROJECT NO. 1655,GI
ate/Time	Depth	Depth*	żz.				Strata	1	1		In-Situ 1	Testing			Lal	orato	ry Te	esting		Additional Tests and Notes
and Depth	of Casing	of Water	Piez.	Description of	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value Depths	Type	No. B	Blows	SPT N	<425 %		PL %	LL %	r Mg/m³	Cu kN/m²	
+	-		Ħ	Stiff dark grey fissured CLAY wit fossil fragments		=		-	20.00	D	19									-
				(LONDON CLAY FORMATION) (c	ontinued)															
+	-							-	21	D		24	37							-
											9	9 12								
+	-							-	22	D	21									-
									22.50- UT	100	6									Triaxial
+	-							_	22.50- UT 22.95 23.00 23	D	22									_
+	-							-	24.00 24	D		24	33							-
						<u> </u>			1			99								
+	-							_	25.00- ²⁵ ų	100	7									_ Triaxial
								25.45												Borehole completed at 25.45m depth
-	-							_	20											-
-	-							_	27											-
+	-							-	28											- -
+	-							_	29											_
			$\perp \downarrow$			<u> </u>		_	30											
'WATER	▼ Stan ▼ Wat	er strikes	er lev	el PIEZOMETER Upper so Respons Lower so	se zone AND B eal TEST U	Bulk (disturbed san	ample (K Permeability test SPT N N = SF	ndist PT N v	urbed sa alue (bl	ample b	low co er seat	unt ing)		A				nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 11603 298 076
					J	Distu	n sample rbed jar sar onmental s		includ	ing se	eating	vs/pene 425 mici				5	B	Brightv eleph	vell, Su one: 0	uffolk, IP10 0BJ 11603 298 076
				DEPTH All depths, level and t					1.25 54111	o p			5.0	_	6	10		·ax: 0	1603 2	298 075

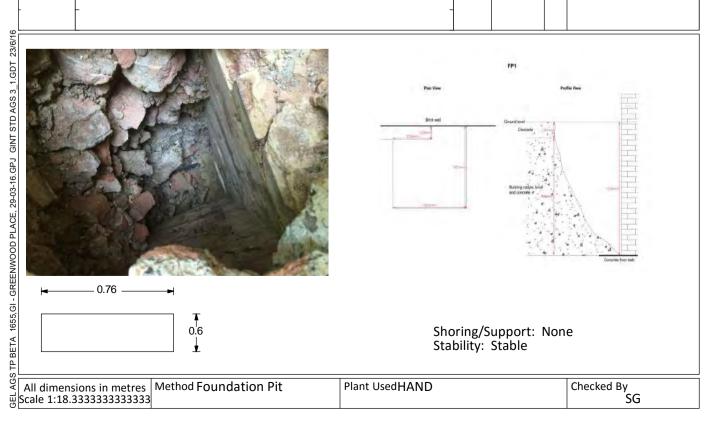
CLIENT	T: Kie	r Coı	nstru	ction	n Ltd	PROJECT: Greenw	vood	Centre						GRO	DUND	LEVEL	m					HOLE No. BH02
LOGGED		DDII.	-		CHECKED BY: SG	EXCAVATION METHOD:					(shell and auge	r)		GRII	D REFE	RENC	E					SHEET 1 OF 3
TEMPLAT				BETA	DATE:		·	Jncased	to 25.0	.u m	n			DAT	ES -							PROJECT NO. 1655,GI
Date/Time and Depth	Deptl of Casin		epth* of Vater	Piez.	Description o	f Strata	Leg	Strata Reduced Level	Depth	(Graphical Represen	De	Sampli epths	ng/In-Sit	u Testin Blows	SPT N	<425 WC	PL	tory Te	esting r Mg/m³	Cu kN/m²	Additional Tests and Notes
Depth -	Casin	g V	vater		CONCRETE MADE GROUND (Dark red brown Gravel of angular to subangular concrete, wood, glass and fraging asbestos containing materials) CONCRETE MADE GROUND (Orange brown mottled gravelly silty clay. Grassubrounded fine to coarse bric concrete) Firm brown and orange brown (LONDON CLAY FORMATION) 2.50 Becoming gravelly with desubrounded fine to coarse flint Firm orange brown and blue grounded fine to coarse flint 4.00 Becoming silty and sheare 4.50 Selenite crystals present w	wn silty sand and gravelfine to coarse brick, ments of potential n and dark brown rel of angular to k, charcoal and mottled fissured CLAY pth with subangular to ey mottled fissured	Leg		0.00 0.10 1.20 1.30 2.00		10 20 30	40 De	0 B B B B B B B B B B B B B B B B B B B	1 1 2 3 4 2 0 3 4 5	13 22 22 22 11 23 44	8 8 13	% % 19 30 31 28	24	69	1.98 1.98	80 127	Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH, PAH and asbestos screen Moisture content, Atterberg limit, metals, cyanide, pH, TPH, PAH and asbestos screen Triaxial Moisture content Moisture content Triaxial Triaxial
-	_							_				9.0	9 D	9	23	24	28					Moisture content, pH & sulphate and sulphur content
*WATER					PIEZOMETER Upper s Respon Lower s	se zone AND B eal TEST U KEY P J ES	Bulk d Undist Piston Distur Enviro	isturbed san turbed samp sample bed jar sam onmental so	nple (ple l	S S' C C K P	Standard penetratio Cone penetration te Permeability test	on test Blows est SPT N	10 SPT blog (35) Und N = SPT N*120 =	disturbed N value Total bl g seating	d sample (blows a ows/per	blow co fter seat netration	unt ing)	O O		Brightw Brightw Felepho	/ell Bai /ell, Su one: 0	nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076 298 075

CLIENT	: Kier (Const	ructio	on Ltd	PROJECT: Greenv	NOOC	Centre				GRO	UND L	EVEL	m						HOLE No. BH02
LOGGED				CHECKED BY: SG	EXCAVATION METHOD:				n (shell and auger)		GRID	REFE	RENC	E						SHEET 2 OF 3
FIELDWO TEMPLAT			ВН ВЕТ	DATE:			Jncased	1 to 25.0) m		DATE	:S -								PROJECT NO. 1655,GI
ate/Time	Depth	Depth		<u> </u>			Strata				g/In-Situ	Testing			Lak	orato	ry Te	sting		Additional Tests and Notes
and Depth	of Casing	of Wate	Fiez.	Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value Depths	Type	No.	Blows	SPT N	<425 %		PL %	LL %	r Mg/m³	Cu kN/m²	
-	_			Stiff dark grey silty CLAY with o fossil fragments and bands of c (LONDON CLAY FORMATION)	ccasional fine white laystone			10.50	10.00 10 10.50 11.00-11 11.45 11.00	D D 1100 D	10 11 12				27	29	76	2.02	290	Atterberg limit and triaxial
-	_			13.20 - 13.60 Claystone band				_	12.50- 12.95 13.00 13 14.00-14 14.45	D D		23 45 67	22							- рн & sulphate
_	-							_	15.50- U 15.95 15.95-16- 16.00	D 1100 D					30			1.98	132	Triaxial -
-	_							-	17.00- 17.45 18.00 18- 18.50- 18.95 19- 19.00	D D 1100 D		3 6 7 7 7 10	31		28			2.00	175	_ Triaxial _
+WATER	¥ Star ▼ Wat	nding w ter strik	ater lev	rel PIEZOMETER Upper s Respons Lower s	se zone AND B eal TEST U KEY P J ES	Bulk of Undis Pistor Distur Enviro	listurbed sa turbed san sample bed jar sar onmental s	ample (nple i nple	Standard penetration test Blows SPT b Cone penetration test (35) L Permeability test SPT N N = SI N*12:	Jndis PT N 0 = T ding	sturbed s value (b otal blow seating	sample l lows aft ws/pene	olow co er seat etration	unt ing)		ハメハ	B B Te	rightw rightw elepho	/ell Bar /ell, Su one: 0	nvironmental Ltd rns, Ipswich Road Infolk, IP10 0BJ 11603 298 076

CLIENT: Kier Construct	ion Ltd	PROJECT: Greenv	wood	Centre				GRO	DUND	LEVEL	. m					HOLE No. BH02
LOGGED BY: LF	CHECKED BY: SG	EXCAVATION METHOD				n (shell and auger)		GRII	D REFE	RENC	E					SHEET 3 OF 3
FIELDWORK BY: DRILLT TEMPLATE REF: GEL AGS BH B	DATE:			Uncased	το 25.0	, m		DAT	ES -							PROJECT NO. 1655,GI
Date/Time Depth Depth*	1			Strata		Graphical Representation		ng/In-Sit	tu Testin	g		Labora				Additional Tests and Notes
and of of Depth Casing Water	Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value	Depths 원	No.	Blows	SPT N	<425 %	WC PL %	LL %	r Mg/m³	Cu kN/m²	
1655,GI - GREENWOOD PLACE, 29-03-16.GPJ GINT STD AGS 3 1.GDT 23/6/16	Stiff dark grey silty CLAY with o fossil fragments and bands of a (LONDON CLAY FORMATION) (laystone			-		0.00-20 D 0.45 D 1.00 21 D 1.50- U10(1.95 D 1.95-22 D 2.00 D 3.00-23 D 3.45 D		37 78 99 57 811 1215	33		26		2.05	219	Triaxial Triaxial, pH & sulphate and sulphur content
*WATER ¥ Standing water Water strikes Water strikes		se zone AND B real TEST U KEY P J	Bulk o Undis Pistor Distur Enviro	listurbed sa turbed sam sample bed jar san onmental so	ample (aple I	·		isturbe N value Total bl g seating	d sample (blows at lows/per	blow co fter seat netration	ount ting) n	dec	D	Brightv Brightv Teleph	vell Bai vell, Su one: 0	nvironmental Ltd rns, Ipswich Road uffolk, IP10 0BJ 01603 298 076

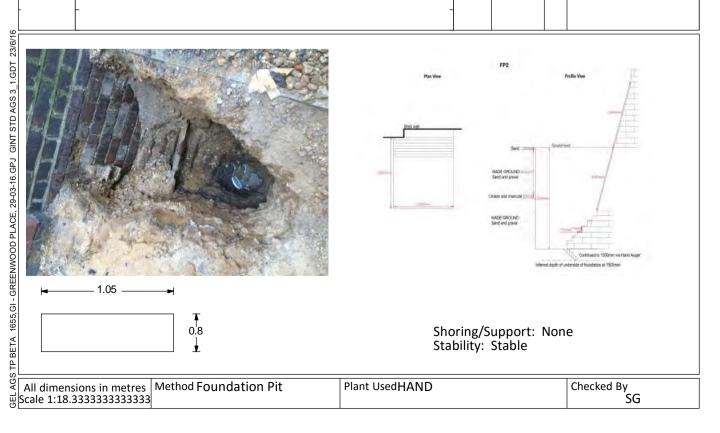
CLIENT: Kier Construction Ltd	PROJECT: Greenw						GR	OUND	LEVEI	. m					HOLE No. WS101		
LOGGED BY: LF CHECKED BY: SG	EXCAVATION METHOD:		Vindow		•		GRI	D REFE	REN	Œ					SHEET 1 OF 1		
FIELDWORK BY: DRILLT TEMPLATE REF: GEL AGS BH BETA DATE:		U	Jncased	to 6.0	m		DA	ΓES 20/	04/20)16 -	20/04/2	2016	,		PROJECT NO. 1655,GI	1	
			Strata		Graphical Representation		ng/In-S	tu Testin			Labora				Additional Tests and Notes		
Date/Time Depth Depth* 이 이 이 Depth 이 Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value	Depths ≥	No.	Blows	SPT N	<425 %	WC PL %	LL %	r Mg/m	Cu kN/m²			
CONCRETE		2222	LCVCI	0.00	0 10 20 30 40	0 -				70	70 70	/*		K. 1, 111	-		
SUB FLOOR VOID	/			0.05		1											
						1											
]											
]											
+				_		1 -									-		
CONCRETE				1.20													
MADE GROUND (Grey brown s	ightly clayey sand and	\bowtie		1.30 1.50		1 1	1										
gravel. Gravel of angular to sul brick, concrete and flint) MADE GROUND (Orange brow)		\bowtie		1.50		1.60 D	2										
clay. Gravel of angular to subro	unded fine to coarse	\bowtie				1.80	3										
Firm orange brown and blue gr		\bowtie		2.10		2.00 ² D	2	00	7						-		
CLAY (LONDON CLAY FORMATION)	ey mottica rissarca]]		22									
l (conson of mannen)						2.50	4										
<u>©</u>		<u> </u>				1 1											
19/61				-		3 - 3 -									_		
		=			· · ·] · · · · · · · · ·	3.00 J	3 5	11 12	9								
<u>-</u>						c		3 3									
3.50 Becoming silty and sheare	d with depth	<u> </u>				1 1											
2 3.80 Fine selenite crystals prese	nt with donth																
ω	nt with depth	==		=	•	4.00 4 D	4	12	10						-		
						4.00 D	4	13	10								
		=				1		33									
29-03-16.GPJ]											
0-03		=]											
	fissured CLAY with			5.00	•	5.00 5 D	5	22	13						-		
Firm becoming stiff dark brown blue grey veining. (LONDON CLAY FORMATION) 5.30 Moderate suspected volat					1	c		2 3 4 4									
5.30 Moderate suspected volat	ile odour with depth					5.30 J	6										
Section 1							_										
						5.80- D	7 6										
				6.00	· · · · · · · · · · · · · · · · · · ·	6.00 6 c		20 23							-		
1655,GI								31									
•						1 1											
*WATER \$\square\$ Standing water level PIEZOMETER \$\square\$ Respon Lowers	se zone AND B	Bulk di	isturbed sa	ample (S Standard penetration test B C Cone penetration test	(35) Un	disturbe	d sample	blow c	ount	V				nvironmental Ltd	1 OF 1 HOLE No. WS101	2 16 PR
Lower s	eal TEST U		urbed sam sample	nple I	K Permeability test S	PT N N = SPT N*120:		(blows a lows/per			(1)				rns, Ipswich Road Iffolk, IP10 0BJ	유민씨	# 155 E
AG	J	Disturb	oed jar san nmental so			includir 425 Sample	g seatin	g				1	Teleph	one: 0	1603 298 076	_ 6 1	15.5
DEPTH All depths, level and				on sumple	`	.25 Jample	, 5 Passi	ااا دعه ه	310				Fax: 0	1603 2	298 075		Z O

Greenwood Centre Sier Construction Ltd	Project				Client					TRIAL PIT No
Teledowork By DRILLT Legend Depth No Remarks/Tests Depth DESCRIPTION Legend Depth No Remarks/Tests	Gre	enwood C	entre			nstruction Lt	d			CDD 2
Fieldwork By DRILLT LF Sheet 1 of 1 Depth DESCRIPTION Legend Depth No Remarks/Tests	Job No		Date	Ground	d Level (m)	Grid Referen	ce ()			CDN 3
DRILLT Legend Depth No Remarks/Tests 0.00-0.10 FLEXIBLE SURFACING 0.10-0.60 MADE GROUND (Yellow brown silty very gravelly fine to coarse sand. Gravel of brick, clinker, concrete and flint). 0.40 1J Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH										
Depth DESCRIPTION Legend Depth No Remarks/Tests 0.00-0.10 FLEXIBLE SURFACING 0.10-0.60 MADE GROUND (Yellow brown silty very gravelly fine to coarse sand. Gravel of brick, clinker, concrete and flint). 11 Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH		-								
0.10-0.60 MADE GROUND (Yellow brown silty very gravelly fine to coarse sand. Gravel of brick, clinker, concrete and flint). 0.40 11 Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH	DRI	LLT			LF					1 of 1
0.10-0.60 MADE GROUND (Yellow brown silty very gravelly fine to coarse sand. Gravel of brick, clinker, concrete and flint). 0.40 1J Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH	Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
Shoring/Support: Stability:	0.10-0.60	MADE GRO Gravel of b	UND (Yellow bro			arse sand.				Metals, cyanide, pH, TPH, PAH and asbestos screen
All dimensions in metres Method Hand Method Plant UsedHAND Checked By	AGS TP BETA 1655,GI - GREENWOOD PLACE, 29-03-16.GPJ GINT STD AGS 3_1.GDT 23/6/1	ions in metro	► Method Hand	d Method	Plant U	Sta	oring/Si bility:	upport:		Checked By



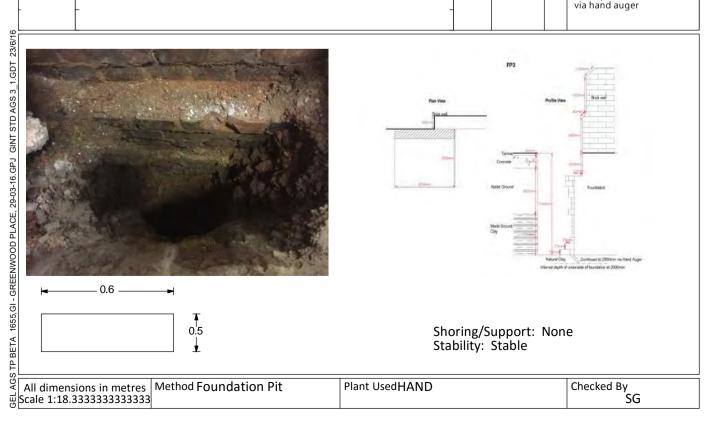
Project				Client					TRIAL PIT No
Gre	enwood C	Centre		Kier Co	onstruction L	_td			CDD /
Job No		Date	Ground	d Level (m)	Grid Refere	nce ()			CBR 4
165	55,GI								
Fieldwork	Ву			Logged By					Sheet
DRI	LLT			LF					1 of 1
Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.00-0.20	PATIO								·
0.20-0.30	-	DUND (Dark bross and fragment:	own very sandy ve s of flexible surfac	ry gravelly clay cing).	with bricks,		0.80	1)	Metals, cyanide, pH, TPH, PAH and asbestos screen Metals, cyanide, pH, TPH and PAH
All dimens		Method IIa	nd Mathed	Dlant	St	noring/Suability:	upport:		Chagland Du
All dimens	ions in metr	es Method Ha	nd Method	Plant	UsedHAND				Checked By

Project			Client		TRIAL PIT No
Greenwood Co	entre		Kier Cor	nstruction Ltd	FIP1
Job No	Date 01-04-16	Groun	d Level (m)	Grid Reference ()	LIPI
1655,GI	01-04-16				
Fieldwork By			Logged By		Sheet
DRILLT			LF		1 of 1


Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.12	CONCRETE				
0.12-1.10	MADE GROUND (Red/brown/grey silty sand & gravel with bricks and cobbles of concrete. Gravel of angular to subangular fine to coarse brick, concrete and clinker)		0.50	1J	Matak quasida pH TBH
-	- - -		0.30	13	Metals, cyanide, pH, TPH, PAH and asbestos screen
		-			Hand pit completed at 1.1m due to concrete obstruction
_					
	- -				
_	<u></u>	-			

Project			Client		TRIAL PIT No	
Greenwood Centre			Kier Construction Ltd		FIP2	
Job No	Date 01-04-16	Groun	d Level (m)	Grid Reference ()	FIPZ	
1655,GI	01-04-16					
Fieldwork By			Logged By		Sheet	
DRILLT			LF		1 of 1	

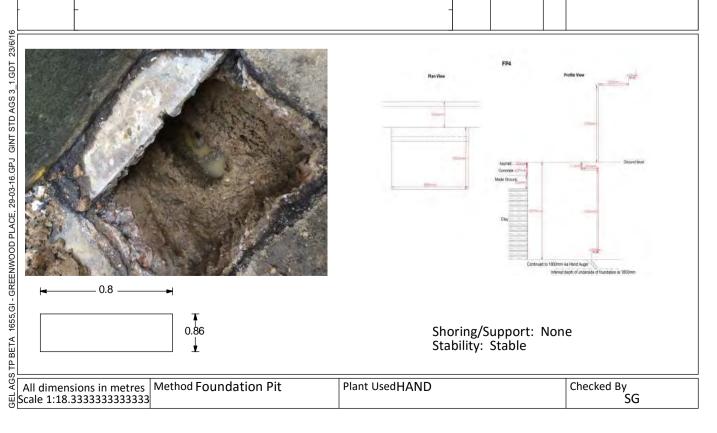
Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.10	MADE GROUND (Patio slab)				
0.10-0.80	MADE GROUND (Orange brown slightly clayey sand & gravel. Gravel of angular to subrounded fine to coarse flint and brick)				
	- - -		0.30	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
0.80-0.86	MADE GROUND (Black clinker and charcoal)		0.80	2J	Metals cyanide nH TPH
0.86-1.00	 MADE GROUND (Orange brown slightly clayey sand & gravel. Gravel of angular to subrounded fine to coarse flint and brick) 		0.00	23	Metals, cyanide, pH, TPH, PAH and asbestos screen
1.00-1.40	MADE GROUND (Black/orange brown sand & gravel. Gravel of angular to subangular fine to coarse flint and clinker)		1.30	2D	
1.40-1.50	Dark grey/brown CLAY with occasional gravel of flint and moderate		1.40	1D	
	natural organic odour				Hand pit extended to 1.5m via hand auger
	- -	_			
	- 	-			



TRIAL PIT LOG

Project			Client		TRIA	L PIT No
Greenwood Co	entre		Kier Cor	nstruction Ltd		IP3
Job No	Date 01-04-16	Groun	d Level (m)	Grid Reference ()	Г	IP3
1655,GI	01-04-16					
Fieldwork By			Logged By		Sheet	
DRILLT			LF		1	of 1

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.03 0.03-0.20	MADE GROUND (Flexible surfacing) - CONCRETE				
0.20-1.20	MADE GROUND (Dark brown very gravelly silty fine to coarse sand. - Gravel of angular to subangular fine to coarse brick, clinker and flint)		0.20 0.20	1D 3J	Fraction organic carbon
-	- - -	-	0.40	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
- -	- - 		0.80	2J	
1.20-1.70	MADE GROUND (Orange brown/blue grey mottled gravelly sandy clay. _ Gravel of angular to subangular fine to medium brick and clinker)		1.20	4J	Metals, cyanide, pH, TPH and PAH
1.70-2.00	Soft to firm orange brown/blue grey mottled CLAY -		1.70	3D	Seepage inflow of water at 1.7 m
-	<u> </u>	-			Hand pit extended to 2.0m via hand auger



TRIAL PIT LOG

Project			Client		TRIAL PIT No
Greenwood C	Centre		Kier Co	nstruction Ltd	FIP4
Job No 1655,GI	Date 01-04-16 01-04-16	Groun	d Level (m)	Grid Reference ()	FIP4
Fieldwork By	•	•	Logged By		Sheet
DRILLT			LF		1 of 1

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.03 0.03-0.15	MADE GROUND (Flexible surfacing) - CONCRETE				
0.15-0.30	Concrete Orange brown sandy CLAY with occasional gravel of flint and brick				
0.13-0.30	_ Orange brown sandy CLAT with occasional graver or fillit and brick				
0.30-1.80	Orange brown/pale grey mottled CLAY with occasional gravel of flint	<u></u>	0.30	4D	
-	-		0.40	3J	
-	-		0.50-0.70	1J	Metals, cyanide, pH, TPH, PAH and asbestos screen
-	-				PAH and asbestos screen
-	-				
-					
-			0.90	1D	
_			0.90	ID	
-					
_					
	_		1.20	2D	
Ψ					Seepage inflow of water at
	-				Seepage inflow of water at 1.35 m
-	-				
-	-				
-	-				
-			1.80	3D	Hand pit extended to 1.8m via hand auger
-	-				via hand auger
-					
-					

TRIAL PIT LOG

Project			Client			TRIAL PIT No
Greenwood Co	entre		Kier Cor	nstruction Ltd		HA1
Job No	Date 20-04-16	Groun	d Level (m)	Grid Reference ()		пАТ
1655,GI	20-04-16					
Fieldwork By			Logged By		SI	heet
DRILLT			LF			1 of 1

Depth	DESCRIPTION	Legend	Depth	No	Remarks/Tests
0.00-0.10	PATIO SLAB				
0.10-1.40					
1.40-1.50	Dark grey and brown CLAY with occassional gravel of flint and moderate natural organic odour		1.40	1J	

L						
AGS TP BETA 1655,GI - GREENWOOD PLACE, 29-03-16.GPJ GINT STD AGS 3_1.GDT 23/6/16	↓	ions in metres Method Hand Auger	Sho Sta	oring/S bility:	upport:	Checked By
ے لیے	An unnens	seeceeeee	I lant oseal IMIND			Checked by

ਲੂਂ Scale 1:16.666666666667

DYNAMIC PROBE LOG

Project										PROBE No
	reenwood Cer	ntre								DD4 (DU04)
Job No		Date 06	6-04-16	Ground Leve	el (m)	Co-Ordina	ates ()			DP1 (BH01)
	655,GI	06	6-04-16 6-04-16							
Contracto										Sheet
G	eosphere Envi	ronmenta	al Limited							1 of 1
Depth	Reading	gs		Diagram	(N100 V	/alues)			Torque	
(m)	Reading (blows/100	Dmm)	5	10	15	20	25	30	(Nm)	Remarks
				1					_	
- -								į	-	
-								į		
- -									-	
<u> </u>	4		,							
	1 1	3 ₋ \exists							-	
- -	2	² =]							
- -	1 1	, H						l I	-	
_ 2	1	1 🗄						į		
	2 2	, E						į		
-	1	' 1 ⊟							-	
	1 1	, F								
_ 3	1	′ 1 📙							_	
- - -	1 1	2 \exists	L					 		
- Г	1	1 H						į	-	
- - -	1 1	, \exists						ļ		
<u> </u>	1	1							_	
- - L	1 2		<u> </u>							
-	2	¹ ₃ \square							-	
- -	2 2	,						 		
- - 5	2	2 2						 		
, - -	1 2	, P	5					į		
	3	2 =						į	-	
	2 3	, =								
- 6		3 3							_	
- - 									-	
_								 	_	
-								İ	-	
- - -								<u>i</u>		
Hamme	erWt(kg)	63	3.5							GENERAL REMARKS
	r Drop (mm)									KLWAKKS
Cone D	ia (mm)	50								
Cone T			PH							
Dampe		No	one							
All dimer	nsions in metres le 1:43.75	Client	Kier Cons	truction Ltd	Metho Plant U	^{d/} ^{Jsed} Dynami	ic Prohes	ampling	L	ogged By PS
566						yı ıarı ıı	01100630	anping		ı o

DYNAMIC PROBE LOG

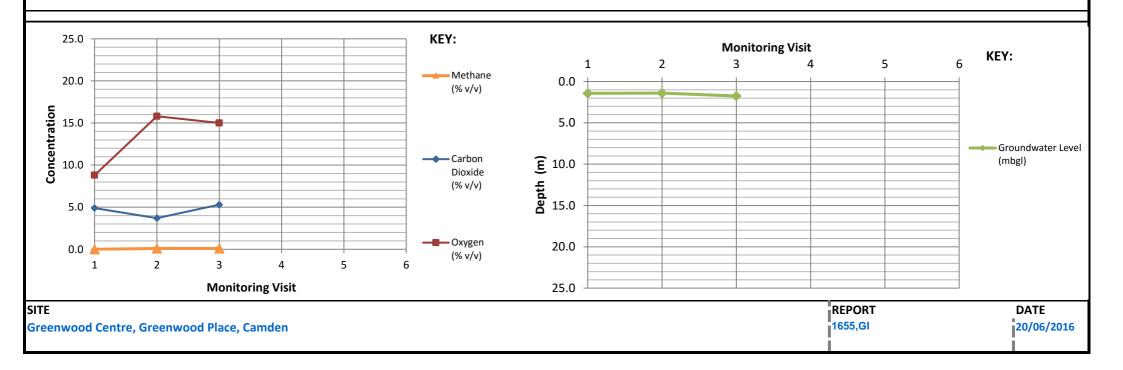
Project											PROBE No
Gre	eenwood Cen	tre									DD0 (14/0400)
Job No		Date	21-04-16	G	round Lev	/el (m)	Co-Ordina	ates ()			DP2 (WS102)
165	55,GI	:	21-04-16 21-04-16								
Contractor				•							Sheet
Ge	osphere Envi	ronmer	ntal Limited								1 of 2
Danth	Dooding)i anram	(N100 V	alues)			Torqui	
Depth (m)	Reading (blows/100	js (mm)	_					0.5	00	Torque (Nm)	Remarks
, ,			5		10	15	20	25	30	` '	
ļ.											
-									į		
[į]
- - 1											-
[']
-									İ		_
-									į		
[]
_ 2											-
-											-
[į		
-									į		-
- 3									-		-
-											_
-											-
E									į]
4									ļ		_
-											-
Ē]
23/6/16									į		
											-
5-1-2]
883											-
8- 8-									į		
Σ Σ Σ									į		
											-
1.16.6]
29-03	1 1	-	a						İ		_
ACE -	2 2	2							į		-
Z[2							!		<u> </u>
Hammer	Wt (kg)	(63.5								GENERAL REMARKS
Hommor	Dron (mm)		760								
o nammer	Drop (mm)	- '	760								
Cone Di	a (mm)		50								
Cone Ty	ре										
Damper			None								
Hammer Hammer Cone Di Damper All dimens Scale	sions in metres e 1:43.75	Clier	nt Kier Con	structi	ion Ltd	Method Plant U	⅓ ^{Ised} Dynami	ic Probe sa	mpling		Logged By LF

DYNAMIC PROBE LOG

Greenwood Centre
1655,Gl 21-04-16
1655,GI 21-04-16
Geosphere Environmental Limited 2 of 2
Depth (m) Readings (blows/100mm) Diagram (N100 Values) Torque (Nm)
(m) (blows/100mm) 5 10 15 20 25 30 (Nm) Remarks
(m) (blows/100mm) 5 10 15 20 25 30 (Nm) Remarks
- 4 4
9 13 12
9 13 12 12 13 15 15
15 15
10 15 15 14 16 20
17 16 18 24 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 24 28 28 30 Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 28 30
31 32 32
35 33 33 33 35 35 35 35 35 35 35 35 35 3
GENERAL GENERAL
Hammer VVI (kg) 63.5
Hammer Drop (mm) 760
Cone Dia (mm) 50
Cone Type
Damper None
All dimensions in metres Client Kier Construction Ltd Method/ Plant Used Dynamic Probe sampling LF

APPENDIX 5 - GAS AND GROUNDWATER MONITORING DATA

xplorate	ory Hole Locat	ion	BH1									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Com	ments
1	27/04/2016	1009	<0.1	<2	0.1	20.9	-0.2	241.0	<0.1	56	Dry	Cold, sunny, dry and bree	zy
2	12/05/2016	996	<0.1	<2	0.2	19.6	-0.4	326.0	1.0	38	Dry	Cool, sunny, dry and caln	1
3	19/05/2016	1004	<0.1	<2	0.3	20.0	+0.5	406.0	<0.1	35	Dry	Cool, overcast, damp and	calm
strume:	nt Used:	GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25	.0				KEY	·:				Monito	ring Visit		
20	.0					Methane (% v/v)	0.0	1	2	3	4	5	6 KEY:
Concentration 10	.0						5.0						Groundwater Lev
10 Coucer	.0				-	Carbon Dioxide (% v/v)	Depth (m) 15.0						(mbgl)
5	.0						å 15.0						
0	.0					Oxygen (% v/v)	20.0					d at 0.0 m - no	
	1	2 3 Monit	4 toring Visit	5	6		25.0		groundwa	ater encou	intered du	ring monitoring	
ITE Greenwo	ood Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/2016


xplorato	ory Hole Locat	ion	BH2									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Comr	nents
1	27/04/2016	1009	<0.1	<2	0.1	20.9	-0.2	9.0	<0.1	1.0	Dry	Cold, sunny, dry and breez	у
2	12/05/2016	996	<0.1	<2	0.1	20.9	-0.5	19.0	<0.1	<0.1	Dry	Cool, sunny, dry and calm	
3	19/05/2016	1004	<0.1	<2	0.1	21.2	+0.5	12.0	<0.1	<0.1	Dry	Cool, overcast, damp and	calm
strumer EMARKS		GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25.	.0				KEY	:			•		ring Visit		6 KEY:
20.	.0	•				1ethane % v/v)	0.0	1	2	3	4	5	6 KEY:
15.	.0						5.0						Groundwater Le
Concervation 10.	.0					arbon ioxide % v/v)	Debth (π) 15.0						(mbgl)
5.	.0						a 15.0						- - - - -
0.	.0					0xygen % v/v)	20.0	Wher		ater recor		m - no groundwater nitoring	- - - -
	1	2 3 Monito	4 oring Visit	5	6		25.0						
TE reenwo	ood Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI	DATE 20/06/2016

GROUND GAS AND GROUNDWATER MONITORING DATA

geosphere environmental Itd

xplorato	ory Hole Locat	ion	WS102									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	e Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Comr	ments
1	27/04/2016	1009	<0.1	<2	0.9	20.9	-0.2	15.0	<0.1	<0.1	Dry	Cold, sunny, dry and breez	:y
2	12/05/2016	996	0.1	1	0.7	20.7	-0.3	28.0	<0.1	4.0	2.30	Cool, sunny, dry and calm	
3	19/05/2016	1005	<0.1	<2	1.0	20.7	+0.5	<0.1	<0.1	<0.1	2.00	Cool, overcast, damp and	calm
strumer EMARKS		GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
25.	.0				KEY	•		1	2	Monito 3	oring Visit	5	6
20.	0					Methane (% v/v)	0.0 5.0		2	5	4		⁶ KEY:
Concutration 10.					1	Carbon							Groundwater Le
5.						Dioxide (% v/v)	Debth (m) 15.0						
0.		2 3	4	5		Oxygen (% v/v)	20.0	When		vater recor		m - no groundwater onitoring	
	1		oring Visits	J	J		25.0						
ITE												REPORT	DATE
reenwo	od Centre, Gr	eenwood Place	, Camden									1655,GI	20/06/2016

Explorato	ory Hole Locat	ion	DCS1									Date of Installation
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Comments
1	27/04/2016	1010	<0.1	<2	4.9	8.8	-0.1	3.0	<0.1	<0.1	1.43	Cold, sunny, dry and breezy
2	12/05/2016	996	0.1	1	3.7	15.8	-0.5	5.0	<0.1	<0.1	1.40	Cool, sunny, dry and calm
3	19/05/2016	1004	0.1	1	5.3	15.0	+0.5	3.0	<0.1	<0.1	1.75	Cool, overcast, damp and calm
Instrumen	t Used:	GA2000 gas anal	yser				NOTE:				n/a	Not applicable
REMARKS											nm	Not measured

geosphere environmental Itd

cplorato	ry Hole Locat	ion	DCSBH2									Date of Instal	lation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)		Comn	nents
1	27/04/2016	1010	<0.1	<2	2.7	18.3	-0.1	1.0	<0.1	<0.1	1.66	Cold, sunny, dr	y and breez	у
2	12/05/2016	996	<0.1	<2	5.2	15.3	-0.3	3.0	<0.1	<0.1	1.65	Cool, sunny, dr	y and calm	
3	19/05/2016	1004	<0.1	3	5.3	12.3	+0.4	23.0	<0.1	45.0	1.40	Cool, overcast,	damp and o	calm
strumen MARKS		GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured		
25.	0				KEY	:		1	2	Monitorin 3	g Visit	5	6	KEY:
20.	0					Methane % v/v)	0.0							
15.0	0						5.0							
Concentration 10.0	0					Carbon Dioxide % v/v)	(w) 10.0 pot 15.0							Groundwater Le (mbgl)
5.0	0						15.0							
0.0		2 3	4	5		Oxygen % v/v)	20.0							
		Monit	toring Visit				25.0							
TE reenwo	od Centre, Gr	eenwood Place	, Camden									REPORT 1655,GI		DATE 20/06/201

geosphere environmental Itd

xplorato	ry Hole Locat	ion	DCS4									Date of Installation	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (% LEL)	Carbon Dioxid	de Oxygen (% v/v)	Flow Rate (I/hr)	VOC (ppm)	H2S (ppm)	CO (ppm)	Water Level (mbgl)	Com	ments
1	27/04/2016	1010	-	-	-	-	-	-	-	-	1.43	Cold, sunny, dry and bree	zy
2	12/05/2016	996	0.1	1	1.0	20.2	-0.3	<0.1	<0.1	<0.1	Dry	Cool, sunny, dry and calm	1
3	19/05/2016	1004	<0.1	1	0.9	20.3	+0.5	<0.1	<0.1	<0.1	Dry	Cool, overcast, damp and	calm
strumen EMARKS	t Used:	GA2000 gas anal	yser				NOTE:				n/a nm	Not applicable Not measured	
VIANNO												Not measured	
25.0	o			к	EY:			_	Monitoring		_		
20.0					_	Methane (% v/v)	0.0	1	2	3	4	5	5 KEY:
Concentration 10.0							5.0						Groundwater Le
10.0					-	Carbon Dioxide (% v/v)	(m) 10.0						(mbgl)
5.0													
0.0		2 3	4	5	6	── Oxygen (% v/v)	20.0	wnere		ountered d		m - no groundwater nitoring	
	<u>-</u>		toring Visit	J	Ü		25.0						
TE		eenwood Place										REPORT 1655,GI	DATE 20/06/201

APPENDIX 6 - ENVIRONMENTAL LABORATORY TEST RESULTS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 16/02271

Issue Number: 1 **Date:** 25 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI
Order No: 1655GI
Date Samples Received: 19/04/16
Date Instructions Received: 19/04/16
Date Analysis Completed: 25/04/16

Prepared by: Approved by:

Kate Ellison Lianne Bromiley

Administrative Assistant Senior Client Manager

Envirolab Job Number: 16/02271

Client Project Name: Greenwood Place Resource Centre

_								
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			Method ref
Sample Matrix Code	5A	5A	5A	3	3		Units	Meth
% Moisture _A	10.6	-	14.1	18.5	18.8		% w/w	A-T-044
% Stones >10mm _A #	<0.1	24.8	9.6	<0.1	<0.1		% w/w	A-T-044
pH _D ^{M#}	11.61	-	8.92	8.02	7.85		pН	A-T-031s
Sulphate (acid soluble) _D ^{M#}	4400	-	5800	5600	11000		mg/kg	A-T-028s
Cyanide (total) _A ^{M#}	<1	-	<1	1	<1		mg/kg	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	-	<0.2	<0.2	<0.2		mg/kg	A-T-050s
Sulphide _A	<15	-	<15	<15	<15		mg/kg	A-T-S2-s
Total Organic Carbon _D ^{M#}	-	0.74	-	-	-		% w/w	A-T-032s
Arsenic _D ^{M#}	7	-	7	3	4		mg/kg	A-T-024s
Cadmium _D ^{M#}	0.7	-	0.7	1.0	1.0		mg/kg	A-T-024s
Copper _D ^{M#}	35	-	15	17	16		mg/kg	A-T-024s
Chromium _D ^{M#}	21	-	26	40	33		mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	-	-	<1	-		mg/kg	A-T-040s
Lead _D ^{M#}	54	-	42	12	11		mg/kg	A-T-024s
Mercury _D	1.28	-	0.23	<0.17	0.33		mg/kg	A-T-024s
Nickel _D ^{M#}	16	-	21	31	31		mg/kg	A-T-024s
Selenium _D	<1	-	<1	<1	2		mg/kg	A-T-024s
Vanadium _D ^{M#}	27	-	-	56	-		mg/kg	A-T-024s
Zinc _D ^{M#}	43	-	41	55	52		mg/kg	A-T-024s
					1			

E								
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			J e
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		,	Method ref
Sample Matrix Code	5A	5A	5A	3	3		Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A #	Chrysotile	NAD	-	-	-			A-T-045
Asbestos Matrix (microscope) _A	Loose Fibres	-	-	-				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	-	-	-			Gravimetry

Envirolab Job Number: 16/02271

Client Project Name: Greenwood Place Resource Centre

_						,000	,		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01			=	
Depth to Top	2.00	3.00	4.00	5.00	6.00			=	
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
PAH 16									
Acenaphthene _A ^{M#}	<0.01	-	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	-	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	-	<0.02	<0.02	<0.02			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	-	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	-	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	-	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	-	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	-	<0.07	<0.07	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	-	<0.06	<0.06	<0.06			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	-	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	-	<0.08	<0.08	<0.08			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	-	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	-	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	-	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.07	-	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	-	<0.07	<0.07	<0.07			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	-	<0.08	<0.08	<0.08			mg/kg	A-T-019s
TPH Banded 1									
>C6-C8 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C8-C10 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C10-C12 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C12-C16 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C16-C21 _A #	<10	-	<10	<10	<10			mg/kg	A-T-007s
>C21-C40 _A	23	-	<10	<10	<10			mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40) _A	23	-	<10	<10	<10			mg/kg	A-T-007s

				1	1	1		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			od re
Sample Matrix Code	5A	5A	5A	3	3		Units	Method ref
svoc								
Hexachlorobenzene _A	-	-	-	<100	-		μg/kg	A-T-052s
Diethyl phthalate _A	-	-	-	<100	-		μg/kg	A-T-052s
Dimethyl phthalate _A	-	-	-	<100	-		μg/kg	A-T-052s
Dibenzofuran _A	-	-	-	<100	-		μg/kg	A-T-052s
Carbazole _A	-	-	-	<100	-		μg/kg	A-T-052s
Butylbenzyl phthalate A	-	-	-	<100	-		μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A		•	•	<100	-		μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	•	•	•	<100	-		μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	•	•	•	<100	-		μg/kg	A-T-052s
4-Nitrophenol _A	•	•	•	<100	-		μg/kg	A-T-052s
4-Methylphenol _A	•	•	•	<100	-		μg/kg	A-T-052s
4-Chloro-3-methylphenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2-Nitrophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2-Methylphenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2-Chlorophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2,6-Dinitrotoluene _A	-	-	-	<100	-		μg/kg	A-T-052s
2,4-Dinitrotoluene _A	-	-	-	<100	-		μg/kg	A-T-052s
2,4-Dimethylphenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2,4-Dichlorophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
2-Chloronaphthalene _A	-	-	-	<100	-		μg/kg	A-T-052s
2-Methylnaphthalene _A	-	-	-	<100	-		μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	-	-	-	<100	-		μg/kg	A-T-052s
Phenol _A	-	-	-	<100	-		μg/kg	A-T-052s
Pentachlorophenol _A	-	-	-	<100	-		μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	-	-	-	<100	-		μg/kg	A-T-052s
n-Dioctylphthalate _A	-	-	-	<100	-		μg/kg	A-T-052s
n-Dibutylphthalate _A	-	-	-	<100	-		μg/kg	A-T-052s
Nitrobenzene _A	-	-	-	<100	-		μg/kg	A-T-052s
Isophorone _A	-	-	-	<100	-		μg/kg	A-T-052s
Hexachloroethane _A	-	-	-	<100	-		μg/kg	A-T-052s

Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5			
Client Sample No	J1	J2	J3	J4	J5			
Client Sample ID	BH01	BH01	BH01	BH01	BH01			
Depth to Top	2.00	3.00	4.00	5.00	6.00			
Depth To Bottom								
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16			ref
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		,	od re
Sample Matrix Code	5A	5A	5A	3	3		Units	Method
Hexachlorocyclopentadiene _A	-	-	-	<100	-		μg/kg	A-T-052s
Perylene _A	-	-	-	<100	-		μg/kg	A-T-052s

-	1	T.	r	1		ect her: 10	 ,		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				ţ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
voc									
Dichlorodifluoromethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Chloromethane _A #	-	-	-	<10	-			μg/kg	A-T-006s
Vinyl Chloride _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromomethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Chloroethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Trichlorofluoromethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1-Dichloroethene _A #	-	-	-	12	-			μg/kg	A-T-006s
Carbon Disulphide _A #	-	-	-	<1	•			μg/kg	A-T-006s
Dichloromethane A	-	-	-	21	-			μg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	•	-	-	4	i			μg/kg	A-T-006s
1,1-Dichloroethane _A #	•	-	-	<1	•			μg/kg	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	15	-			μg/kg	A-T-006s
2,2-Dichloropropane _A #	•	-	-	<1	i			μg/kg	A-T-006s
Bromochloromethane _A #	•	-	-	<5	i			μg/kg	A-T-006s
Chloroform _A #	•	-	-	85	•			μg/kg	A-T-006s
1,1,1-Trichloroethane _A #	•	-	-	<1	•			μg/kg	A-T-006s
1,1-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Carbon Tetrachloride _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,2-Dichloroethane _A #	-	-	-	29	-			μg/kg	A-T-006s
Benzene A#	-	-	-	4	-			μg/kg	A-T-006s
Trichloroethene _A #	-	-	-	21100	-			μg/kg	A-T-006s
1,2-Dichloropropane _A #	•	-	-	<1	•			μg/kg	A-T-006s
Dibromomethane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromodichloromethane _A #	-	-	-	<10	-			μg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Toluene A#	-	-	-	10	-			μg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	243	-			μg/kg	A-T-006s
1,3-Dichloropropane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Tetrachloroethene _A #	-	-	-	3690	-			μg/kg	A-T-006s
Dibromochloromethane _A #	-	-	-	<3	-			μg/kg	A-T-006s
1,2-Dibromoethane _A #	-	-	-	<1	-			μg/kg	A-T-006s

						ect nei. 10	,		
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				Į.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	5A	5A	5A	3	3			Units	Meth
Chlorobenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	-	6	-			μg/kg	A-T-006s
Ethylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
m & p Xylene _A #	-	-	-	4	-			μg/kg	A-T-006s
o-Xylene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Styrene _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromoform _A #	-	-	-	<1	-			μg/kg	A-T-006s
Isopropylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	2	-			μg/kg	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	<1	-			μg/kg	A-T-006s
Bromobenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
n-Propylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
2-Chlorotoluene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
4-Chlorotoluene _A #	-	-	-	<1	-			μg/kg	A-T-006s
tert-Butylbenzene _A #	-	-	-	<2	-			μg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
sec-Butylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
4-Isopropyltoluene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	<1	-			μg/kg	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
n-Butylbenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	-	-	-	<2	-			μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	-		-	<3	-			μg/kg	A-T-006s
Hexachlorobutadiene _A #	-	-	-	<1	-			μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	-		-	<3	-			μg/kg	A-T-006s

Envirolab Job Number: 16/02271 Client Projec

Client Project Name: Greenwood Place Resource Centre

_									
Lab Sample ID	16/02271/1	16/02271/2	16/02271/3	16/02271/4	16/02271/5				
Client Sample No	J1	J2	J3	J4	J5				
Client Sample ID	BH01	BH01	BH01	BH01	BH01				
Depth to Top	2.00	3.00	4.00	5.00	6.00				
Depth To Bottom									
Date Sampled	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16	12-Apr-16				
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES			1	od rei
Sample Matrix Code	5A	5A	5A	3	3			Units	Method ref
TPH UKCWG									
Ali >C5-C6 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Ali >C6-C8 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Ali >C8-C10 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Ali >C10-C12 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Ali >C12-C16 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Ali >C16-C21 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Ali >C21-C35 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Ali >C35-C44 _A	-	-	-	<0.1	-			mg/kg	A-T-023s
Total Aliphatics _A	-	-	-	<0.1	-			mg/kg	A-T-023s
Aro >C5-C7 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Aro >C7-C8 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Aro >C8-C9 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Aro >C9-C10 _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
Aro >C10-C12 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Aro >C12-C16 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Aro >C16-C21 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Aro >C21-C35 _A #	-	-	-	<0.1	-			mg/kg	A-T-023s
Aro >C35-C44 _A	-	-	-	<0.1	-			mg/kg	A-T-023s
Total Aromatics _A	-	-	-	<0.1	-			mg/kg	A-T-023s
TPH (Ali & Aro) _A	-	-	-	<0.1	-	_	_	mg/kg	A-T-023s
BTEX - Benzene _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
BTEX - Toluene _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
BTEX - o Xylene _A #	-	-	-	<0.01	-			mg/kg	A-T-022s
MTBE _A #	-	-	-	<0.01	-			mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 16/02115

Issue Number: 1 **Date:** 15 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI
Order No: 1655, GI
Date Samples Received: 08/04/16
Date Instructions Received: 11/04/16
Date Analysis Completed: 15/04/16

Prepared by: Approved by:

Danielle Brierley

Administrative Assistant

John Gustafson Director

Envirolab Job Number: 16/02115

Client Project Name: Greenwood Place Resource Centre

				0.101161110	ject her. 10	oo, a.		
Lab Sample ID	16/02115/1	16/02115/2	16/02115/3					
Client Sample No	J1	J3	J4					
Client Sample ID	FIP1	FIP3	FIP3					
Depth to Top	0.50	0.20	1.20					
Depth To Bottom								
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16					*
Sample Type	Solid	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	7	5AB	5AB				Units	Meth
% Stones >10mm _A #	<0.1	29.2	10.4				% w/w	A-T-044
pH _D ^{M#}	12.22	-	8.76				pН	A-T-031s
Cyanide (total) _A ^{M#}	<1	-	<1				mg/kg	A-T-042sTCN
Fraction of organic carbon _D #	-	0.0110	-				N/A	A-T-032 FOC
Arsenic _D ^{M#}	5	-	6				mg/kg	A-T-024s
Cadmium _D ^{M#}	0.5	-	1.0				mg/kg	A-T-024s
Copper _D ^{M#}	6	-	29				mg/kg	A-T-024s
Chromium _D ^{M#}	21	-	44				mg/kg	A-T-024s
Lead _D ^{M#}	14	-	38				mg/kg	A-T-024s
Mercury _D	0.41	-	<0.17				mg/kg	A-T-024s
Nickel _D ^{M#}	14	-	31				mg/kg	A-T-024s
Selenium _D	2	-	<1				mg/kg	A-T-024s
Zinc _D ^{M#}	28	-	84				mg/kg	A-T-024s
TPH total (>C6-C40) _A	<10	-	<10	 			 mg/kg	A-T-007s

Lab Sample ID	16/02115/1	16/02115/2	16/02115/3				
Client Sample No	J1	J3	J4				
Client Sample ID	FIP1	FIP3	FIP3				
Depth to Top	0.50	0.20	1.20				
Depth To Bottom							
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16				¥.
Sample Type	Solid	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	7	5AB	5AB			Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	-	-				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	-				Gravimetry

Envirolab Job Number: 16/02115

Client Project Name: Greenwood Place Resource Centre

-					ojoot mon re			
Lab Sample ID	16/02115/1	16/02115/2	16/02115/3					
Client Sample No	J1	J3	J4					
Client Sample ID	FIP1	FIP3	FIP3					
Depth to Top	0.50	0.20	1.20					
Depth To Bottom								
Date Sampled	01-Apr-16	06-Apr-16	06-Apr-16					.
Sample Type	Solid	Soil - ES	Soil - ES				1	Method ref
Sample Matrix Code	7	5AB	5AB				Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	0.03	-	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.07	-	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.05	-	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.07	-	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	-	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	-	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	0.07	-	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	-	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.17	-	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	-	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.04	-	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	-	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.09	-	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	0.12	-	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.75	-	<0.08				mg/kg	A-T-019s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 16/01877/1

Envirolab Job Number: 16/01877

Issue Number: 2 **Date:** 15 April, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655, GI
Order No: 0872/LF
Date Samples Received: 24/03/16
Date Instructions Received: 04/04/16
Date Analysis Completed: 15/04/16

Prepared by: Approved by:

Kate Ellison

Administrative Assistant Senior Client Manager

Lianne Bromiley

-										
Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16		*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Method ref
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB	Units	Meth
% Stones >10mm _A #	<0.1	<0.1	11.8	<0.1	23.2	13.0	24.6	<0.1	% w/w	A-T-044
pH _D ^{M#}	10.96	9.92	10.22	8.76	10.13	8.63	7.80	9.64	pН	A-T-031s
Cyanide (total) _A ^{M#}	<1	1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-042sTCN
Arsenic _D ^{M#}	9	23	8	7	5	75	14	9	mg/kg	A-T-024s
Cadmium _D ^{M#}	0.8	1.3	0.6	0.7	0.6	4.9	1.0	0.8	mg/kg	A-T-024s
Copper _D ^{M#}	24	48	25	8	17	262	144	24	mg/kg	A-T-024s
Chromium _D ^{M#}	25	28	18	19	15	35	16	26	mg/kg	A-T-024s
Lead _D ^{M#}	264	580	106	30	45	377	296	73	mg/kg	A-T-024s
Mercury _D	0.41	0.78	0.25	<0.17	<0.17	0.42	0.35	<0.17	mg/kg	A-T-024s
Nickel _D ^{M#}	15	18	11	8	20	88	18	17	mg/kg	A-T-024s
Selenium _D	7	8	3	1	<1	4	<1	3	mg/kg	A-T-024s
Zinc _D ^{M#}	174	397	48	30	70	1040	143	61	mg/kg	A-T-024s
TPH total (>C6-C40) _A	44	175	45	<10	52	<10	<10	<10	mg/kg	A-T-007s

					-					
Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16		*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	40	Method ref
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	Chrysotile & Amosite	Chrysotile & Amosite	NAD	NAD	NAD	NAD	-	Chrysotile		A-T-045
Asbestos Matrix (visual) _A	-	Loose Insulation	-	-	-	-	-	-		A-T-045
Asbestos Matrix (microscope) _A	Loose Insulation & Loose Fibres	Loose Fibres	-	-	-	-	-	Loose Fibres		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A		Gravimetry
Asbestos in Soil Quantification % (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	0.026	0.073	-	-	-	-	-	<0.001	% w/w	A-T-054

_					Chefit F10	ect hei: 16	55, GI			
Lab Sample ID	16/01877/1	16/01877/2	16/01877/3	16/01877/4	16/01877/5	16/01877/6	16/01877/7	16/01877/8		
Client Sample No	J1	J2	J3	J4	J1	J1	J2	J1		
Client Sample ID	BH02	BH02	BH02	BH02	CBR3	CBR4	CBR4	FIP3		
Depth to Top	0.30	0.50	1.70	2.00	0.40	0.60	0.80	0.40		
Depth To Bottom										
Date Sampled	15-Mar-16	15-Mar-16	15-Mar-16	15-Mar-16	18-Mar-16	17-Mar-16	18-Mar-16	21-Mar-16		_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Sample Matrix Code	7	4A	5A	5A	4A	4A	4A	4AB	Units	Method ref
PAH 16										
Acenaphthene _A ^{M#}	<0.01	0.02	0.09	0.02	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	0.07	<0.01	<0.01	0.05	0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	0.15	0.16	0.35	0.06	0.04	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.18	1.33	0.49	0.07	0.15	0.31	<0.04	0.07	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.09	1.24	0.42	0.06	0.16	0.38	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.21	1.74	0.55	0.09	0.21	0.50	0.07	0.07	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.08	0.87	0.26	<0.05	0.20	0.26	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.20	0.50	0.21	<0.07	<0.07	0.17	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.10	1.45	0.49	0.09	0.17	0.34	<0.06	0.07	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	0.23	0.07	<0.04	<0.04	0.06	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.18	1.65	1.12	0.27	0.34	0.33	0.10	0.18	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	0.02	0.08	0.02	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.08	0.92	0.30	0.04	0.17	0.33	0.05	0.04	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	0.19	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.10	0.68	1.01	0.25	0.12	0.12	0.06	0.08	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.17	2.04	0.92	0.24	0.31	0.32	0.09	0.15	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	1.39	12.9	6.34	1.51	2.03	3.21	0.45	0.66	mg/kg	A-T-019s

Envirolab Job Number: 16/01877

Client Project Name: Greenwood Place Resource Centre

Lab Sample ID	16/01877/11	16/01877/12	16/01877/13				
Client Sample No	J1	J2	J1				
Client Sample ID	FIP2	FIP2	FIP4				
Depth to Top	0.30	0.80	0.50				
Depth To Bottom			0.70				
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16				J .
Sample Type	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	1A	4A	5A			Units	Meth
% Stones >10mm _A #	48.8	14.2	<0.1			% w/w	A-T-044
pH _D ^{M#}	8.54	8.23	7.91			pН	A-T-031s
Cyanide (total) _A ^{M#}	<1	<1	4			mg/kg	A-T-042sTCN
Arsenic _D ^{M#}	4	23	4			mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	1.8	0.8			mg/kg	A-T-024s
Copper _D ^{M#}	4	353	9			mg/kg	A-T-024s
Chromium _D ^{M#}	9	27	35			mg/kg	A-T-024s
Lead _D ^{M#}	12	636	19			mg/kg	A-T-024s
Mercury _D	<0.17	5.69	2.23			mg/kg	A-T-024s
Nickel _D ^{M#}	9	36	13			mg/kg	A-T-024s
Selenium _D	<1	<1	3			mg/kg	A-T-024s
Zinc _D ^{M#}	21	674	49			mg/kg	A-T-024s
TPH total (>C6-C40) _A	<10	25	<10			mg/kg	A-T-007s

Lab Sample ID	16/01877/11	16/01877/12	16/01877/13				
Client Sample No	J1	J2	J1				
Client Sample ID	FIP2	FIP2	FIP4				
Depth to Top	0.30	0.80	0.50				
Depth To Bottom			0.70				
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16				.
Sample Type	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	1A	4A	5A			Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	-	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	N/A				Gravimetry

				Onent i io	•	•		
Lab Sample ID	16/01877/11	16/01877/12	16/01877/13					
Client Sample No	J1	J2	J1					
Client Sample ID	FIP2	FIP2	FIP4					
Depth to Top	0.30	0.80	0.50					
Depth To Bottom			0.70					
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16					.
Sample Type	Soil - ES	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	1A	4A	5A				Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.06	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	0.03	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.04	<0.03	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.15	0.09	<0.08				mg/kg	A-T-019s

Envirolab Job Number: 16/01877

Client Project Name: Greenwood Place Resource Centre

Lab Sample ID	16/01877/11	16/01877/12	16/01877/13				
Client Sample No	J1	J2	J1				
Client Sample ID	FIP2	FIP2	FIP4				
Depth to Top	0.30	0.80	0.50				
Depth To Bottom			0.70				
Date Sampled	23-Mar-16	23-Mar-16	23-Mar-16			1	_
Sample Type	Soil - ES	Soil - ES	Soil - ES				od re
Sample Matrix Code	1A	4A	5A			Units	Method ref
TPH UKCWG							_
Ali >C5-C6 _A #	-	<0.02	-			mg/kg	A-T-022s
Ali >C6-C8 _A #	-	<0.02	-			mg/kg	A-T-022s
Ali >C8-C10 _A #	-	<0.02	-			mg/kg	A-T-022s
Ali >C10-C12 _A #	-	<0.1	-			mg/kg	A-T-023s
Ali >C12-C16 _A #	-	<0.1	-			mg/kg	A-T-023s
Ali >C16-C21 _A #	-	<0.1	-			mg/kg	A-T-023s
Ali >C21-C35 _A #	-	<0.1	-			mg/kg	A-T-023s
Ali >C35-C44 _A	-	<0.1	-			mg/kg	A-T-023s
Total Aliphatics	-	<0.1	-			mg/kg	A-T-023s
Aro >C5-C7 _A #	-	<0.02	-			mg/kg	A-T-022s
Aro >C7-C8 _A #	-	<0.02	-			mg/kg	A-T-022s
Aro >C8-C9 _A #	-	<0.02	-			mg/kg	A-T-022s
Aro >C9-C10 _A #	-	<0.02	-			mg/kg	A-T-022s
Aro >C10-C12 _A #	-	<0.1	-			mg/kg	A-T-023s
Aro >C12-C16 _A #	-	<0.1	-			mg/kg	A-T-023s
Aro >C16-C21 _A #	-	<0.1	-			mg/kg	A-T-023s
Aro >C21-C35 _A #	-	<0.1	-			mg/kg	A-T-023s
Aro >C35-C44 _A	-	<0.1	-			mg/kg	A-T-023s
Total Aromatics _A	-	<0.1	-			mg/kg	A-T-023s
TPH (Ali & Aro) _A	-	<0.1	-			mg/kg	A-T-023s
BTEX - Benzene _A #	-	<0.02	-			mg/kg	A-T-022s
BTEX - Toluene _A #	-	<0.02	-			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.02	-			mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	<0.02	-			mg/kg	A-T-022s
BTEX - o Xylene _A #	-	<0.02	-			mg/kg	A-T-022s
MTBE _A #	-	<0.02	-			mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 16/02405/1

Envirolab Job Number: 16/02405

Issue Number: 2 Date: 20 May, 2016

Client: Geosphere Environmental Ltd

Unit 11

Brightwell Barns Ipswich Road Brightwell Ipswich Suffolk IP10 0BJ

Project Manager: Lianne Fountain

Project Name: Greenwood Place Resource Centre

Project Ref: 1655,GI
Order No: 0880/LF
Date Samples Received: 25/04/16
Date Instructions Received: 26/04/16
Date Analysis Completed: 18/05/16

Prepared by: Approved by:

Kate Ellison

Administrative Assistant Senior Client Manager

Lianne Bromiley

_					Official 1 To	ect Ref: 16	55,GI		
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		-
Sample Type	Soil - ES Soil - ES	Soil - ES		od re					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Method ref
% Moisture _A	17.2	16.5	-	15.9	20.3	25.5	17.3	% w/w	A-T-044
% Stones >10mm _A #	24.2	22.7	<0.1	<0.1	<0.1	5.0	<0.1	% w/w	A-T-044
pH _D ^{M#}	10.02	8.04	-	7.63	9.60	7.98	7.93	рН	A-T-031s
Sulphate (acid soluble) _D M#	1500	250	-	8300	5000	1200	290	mg/kg	A-T-028s
Cyanide (total) _A ^{M#}	<1	<1	-	<1	<1	<1	<1	mg/kg	A-T-042sTCN
Phenois - Total by HPLC _A	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Sulphide	<15	<15	-	<15	<15	<15	<15	mg/kg	A-T-S2-s
Total Organic Carbon _D ^{M#}	-	-	-	-	5.81	-	-	% w/w	A-T-032s
Arsenic _D ^{M#}	6	9	-	4	53	17	9	mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	0.8	-	1.0	2.4	0.9	1.1	mg/kg	A-T-024s
Copper _D ^{M#}	58	8	-	19	25200	122	28	mg/kg	A-T-024s
Chromium _D ^{M#}	20	39	-	52	33	23	45	mg/kg	A-T-024s
Chromium (hexavalent) _D	-	-	<1	-	-	-	<1	mg/kg	A-T-040s
Lead _D ^{M#}	95	12	-	14	4710	1240	22	mg/kg	A-T-024s
Mercury _D	0.39	<0.17	-	<0.17	1.24	1.62	0.51	mg/kg	A-T-024s
Nickel _D ^{M#}	13	13	-	40	54	21	36	mg/kg	A-T-024s
Selenium _D	2	<1	-	1	2	<1	<1	mg/kg	A-T-024s
Vanadium _D ^{M#}	-	-	57	-	-	-	75	mg/kg	A-T-024s
Zinc _D ^{M#}	37	35	-	68	5280	173	71	 mg/kg	A-T-024s

							•		
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		4
Sample Type	Soil - ES oil - ES	Soil - ES		Method ref					
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
Asbestos in Soil (inc. matrix)									
Asbestos in soil _A #	-	-	-	-	Chrysotile	-	-		A-T-045
Asbestos Matrix (microscope) _A	-	-	-	-	Loose Fibres	-	-		A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	-	-	-	N/A	-	-		Gravimetry
Asbestos in Soil Quantification % (Hand Picking & Weighing)									
Asbestos in soil % composition (hand picking and weighing) _D	-	-	-	-	<0.001	-	-	% w/w	A-T-054

T					0	ect her. 10	oo, o		_
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Method ref
PAH 16									
Acenaphthene _A ^{M#}	0.05	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	0.05	<0.02	-	<0.02	<0.02	0.04	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.24	<0.04	-	<0.04	0.10	0.24	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.23	<0.04	-	<0.04	0.10	0.28	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.27	<0.05	-	<0.05	0.13	0.38	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.14	<0.05	-	<0.05	<0.05	0.18	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.11	<0.07	-	<0.07	<0.07	0.14	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	0.24	<0.06	-	<0.06	0.11	0.33	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	-	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.39	<0.08	-	<0.08	0.19	0.56	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	0.04	<0.01	-	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.16	<0.03	-	<0.03	0.08	0.20	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.12	<0.03	-	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.33	<0.03	-	<0.03	0.08	0.20	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.34	<0.07	-	<0.07	0.16	0.48	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	2.73	<0.08	-	<0.08	0.94	3.03	<0.08	mg/kg	A-T-019s
TPH Banded 1									
>C6-C8 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C8-C10 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C10-C12 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C12-C16 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C16-C21 _A #	<10	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
>C21-C40 _A	80	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s
TPH Total (sum of bands) (>C6-C40)A	80	<10	-	<10	<10	<10	<10	mg/kg	A-T-007s

Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Method ref
svoc									
Hexachlorobenzene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Diethyl phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Dimethyl phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Dibenzofuran _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Carbazole _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Butylbenzyl phthalate A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Nitrophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
4-Chloro-3-methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Nitrophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Methylphenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Chlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,6-Dinitrotoluene _A	•	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dinitrotoluene _A	•	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dimethylphenol _A	•	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4-Dichlorophenol _A	•	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Chloronaphthalene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
2-Methylnaphthalene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Acenaphthylene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Acenaphthene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Anthracene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(a)anthracene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(b)fluoranthene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(k)fluoranthene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(a)pyrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Benzo(ghi)perylene₄	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Chrysene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s

						100111011110			
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		J.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	40	Method ref
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
Fluoranthene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Fluorene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Indeno(1,2,3-cd)pyrene _A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Phenanthrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Pyrene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Naphthalene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Dibenzo(ah)anthracene A	-	-	<100	-	-	-	-	μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Phenol A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Pentachlorophenol _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Dioctylphthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
n-Dibutylphthalate _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Nitrobenzene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Isophorone _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Hexachloroethane _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Hexachlorocyclopentadiene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s
Perylene _A	-	-	<100	-	-	-	<100	μg/kg	A-T-052s

	ı	ı	T	1		ect her: 10			
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Method ref
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Meth
voc									
Dichlorodifluoromethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Chloromethane _A #	-	-	<10	-	-	-	<10	μg/kg	A-T-006s
Vinyl Chloride _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Bromomethane _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
Chloroethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Trichlorofluoromethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1-Dichloroethene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Carbon Disulphide _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Dichloromethane A	-	-	<5	-	-	-	7	μg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1-Dichloroethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	<1	-	-		305	μg/kg	A-T-006s
2,2-Dichloropropane _A #	-	-	<1	-	-	•	<1	μg/kg	A-T-006s
Bromochloromethane _A #	-	-	<5	-	-	•	<5	μg/kg	A-T-006s
Chloroform _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1,1-Trichloroethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1-Dichloropropene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Carbon Tetrachloride _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,2-Dichloroethane _A #	-	-	<2	-	-	-	<2	 μg/kg	A-T-006s
Benzene A#	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
Trichloroethene _A #	-	-	1640	-	-	-	1300	μg/kg	A-T-006s
1,2-Dichloropropane _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s
Dibromomethane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Bromodichloromethane _A #	-	-	<10	-	-	-	<10	μg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Toluene A#	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1,2-Trichloroethane _A #	-	-	11	-	-	-	4	μg/kg	A-T-006s
1,3-Dichloropropane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Tetrachloroethene _A #	-	-	486	-	-	-	104	μg/kg	A-T-006s
Dibromochloromethane _A #	-	-	<3	-	-	-	<3	μg/kg	A-T-006s
1,2-Dibromoethane _A #	-	-	<1	-	-	-	<1	 μg/kg	A-T-006s

						ect ner. 10	,		
Lab Sample ID	16/02405/1	16/02405/3	16/02405/6	16/02405/7	16/02405/8	16/02405/10	16/02405/16		
Client Sample No	J1	J3	J6	J7	J1	J3	J1		
Client Sample ID	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS101 (CBR1)	WS102 (BH3)	WS102 (BH3)	HA1		
Depth to Top	1.30	1.80	5.30	5.70	0.50	1.10	1.40		
Depth To Bottom									
Date Sampled	20-Apr-16	20-Apr-16	20-Apr-16	20-Apr-16	21-Apr-16	21-Apr-16	20-Apr-16		.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Sample Matrix Code	5A	5A	3	5	5AD	5AD	5	Units	Method ref
Chlorobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Ethylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
m & p Xylene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
o-Xylene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Styrene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Bromoform _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Isopropylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,2,3-Trichloropropane _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
Bromobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
n-Propylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
2-Chlorotoluene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
4-Chlorotoluene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
tert-Butylbenzene _A #	-	-	<2	-	-	-	<2	μg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
sec-Butylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
4-Isopropyltoluene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,3-Dichlorobenzene _A	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,4-Dichlorobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
n-Butylbenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,2-Dichlorobenzene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	-	-	<2	-	-	-	<2	μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	<3	-	-	-	<3	μg/kg	A-T-006s
Hexachlorobutadiene _A #	-	-	<1	-	-	-	<1	μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	<3	-	-	-	<3	μg/kg	A-T-006s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

218

(A division of Gradko International Ltd.) St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

REPORT NUMBER AMENDMENT TO REPORT K03210R CUSTOMER GEOSPHERE ENVIRONMENTAL

Brightwell Barns, Ipswich Road

Brightwell Suffolk IP10 0BJ

GRADKO LAB REFERENCE 02K0837-02K0842

DESPATCH NOTE No. 30302

JOB REFERENCE 1655

DATE SAMPLES RECEIVED 26.05.2016

BOOKING IN REF. X5915

IDENTIFICATION AND ESTIMATION (SEMI-QUANTITATIVE ANALYSIS) OF TOP 15 VOC ON TENAX DIFFUSION TUBES BY GC/MS

Analysis has been carried out in accordance with in-house method GLM 13

CD A OOCOO

Tuba Numban

U Analysis is UKAS accredited under our Fixed Scope
F Analysis is UKAS accredited under our Flexible Scope

N Analysis is not UKAS accredited

Tube Number	GRA 02692			
Exposure Time(mins)	10080			
Sample ID	OBH2			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Tetrachloroethylene	F	4391	217.79	1428.7
Trichloroethylene	F	3551	176.14	915.92
cis-1,2-Dichloroethylene	F	552.92	27.43	105.32
4,7-Methano-1H-indene, octahydro-	N	122.66	6.08	33.10
Carbon disulfide	F	64.45	3.20	9.72
Cyclopentane, methyl-	N	58.85	2.92	9.81
Cyclohexane, isothiocyanato-	N	55.73	2.76	15.59
Toluene	F	54.08	2.68	9.87
m/p-Xylene	F	46.33	2.30	9.74
trans-1,2-Dichloroethylene	F	42.51	2.11	8.10
Benzene, 1-ethyl-3-methyl-	F	37.30	1.85	8.88
Naphthalene, decahydro-1,2-dimethyl-	N	31.29	1.55	10.30
Pentane, 3-methyl-	F	29.80	1.48	5.08
Decahydro-4,4,8,9,10-				
pentamethylnaphthalene	N	29.70	1.47	12.26
Naphthalene, decahydro-2,6-dimethyl-	N	28.81	1.43	9.49

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 – February 2015

REPORT OFFICIALLY CHECKED

Tube Number

218

(A division of Gradko International Ltd.) St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

GRA 04596

Exposure Time(mins) 10080 DCS1 Accreditation
Top 15 VOC Status ng on tube ppb in air* ygm 3* Tetrachloroethylene F 17393 862.73 5659.5 Trichloroethylene F 7612 377.57 1963.4 (is-1,2-Dichloroethylene F 6768 335.70 1289.1 Dichloroacetaldehyde N 419.19 20.79 93.15 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 0-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2 Accreditation BH2 Accreditation Cyclohexane, 1,2,4-trimethyl- BH2 Accreditation Cyclohexane, 1,2,4-trimethyl- N 61.93 3.07 Cyclohexane, 1,2,4-trimethyl- N Cyclohexane, 1,2,4-trimethyl- N Cyclohexane, 1,2,4-trimethyl- N Cyclohexane, 1,2,4-trimethyl-
Tetrachloroethylene F 17393 862.73 5659.5 Trichloroethylene F 7612 377.57 1963.4 cis-1,2-Dichloroethylene F 6768 335.70 1289.1 Dichloroacetaldehyde N 419.19 20.79 93.15 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 <t< th=""></t<>
Trichloroethylene F 7612 377.57 1963.4 cis-1,2-Dichloroethylene F 6768 335.70 1289.1 Dichloroacetaldehyde N 419.19 20.79 93.15 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl- N 61.93 3.07 15.48 <td< th=""></td<>
cis-1,2-Dichloroethylene F 6768 335.70 1289.1 Dichloroacetaldehyde N 419.19 20.79 93.15 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2
Dichloroacetaldehyde N 419.19 20.79 93.15 Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2 Accreditation BH2
Benzene, 1-ethyl-3-methyl- F 147.26 7.30 35.06 m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2 Accreditation
m/p-Xylene F 130.21 6.46 27.38 trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2 Accreditation
trans-1,2-Dichloroethylene F 125.20 6.21 23.85 Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Toluene F 107.75 5.34 19.67 Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Cyclohexadecane N 87.86 4.36 39.05 Heptane, 2,2,4,6,6-pentamethyl- o-Xylene N 83.26 4.13 28.08 o-Xylene F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) 10080 BH2 Accreditation
Heptane, 2,2,4,6,6-pentamethyl- o-Xylene F F 74.86 3.71 15.74 Benzene, 1,2,4-trimethyl- Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) BH2 Accreditation
o-Xylene
o-Xylene
Benzene, 1,2,4-trimethyl- F 74.31 3.69 17.69 Cyclohexane, 1-ethyl-2,3-dimethyl- N 69.91 3.47 19.42 3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) 10080 Sample ID BH2 Accreditation
3-Carene F 69.10 3.43 18.65 Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number GRA 05727 Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.beta.,4.beta.)- Tube Number Exposure Time(mins) Sample ID GRA 05727 BH2 Accreditation
(1.alpha.,2.beta.,4.beta.)- N 61.93 3.07 15.48 Tube Number Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Tube Number GRA 05727 Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Exposure Time(mins) 10080 Sample ID BH2 Accreditation
Sample ID BH2 Accreditation
Sample ID BH2 Accreditation
Ton 15 VOC Status ng on tube nob in air* ugm ⁻³ *
10p 13 + 00 III on tube ppb III all pgill
Trichloroethylene F 19886 986.39 5129.3
Tetrachloroethylene F 7130 353.69 2320.2
Decane F 3477 172.46 979.57
Decane, 4-methyl- N 1429 70.87 442.23
Undecane F 1373 68.09 424.88
Benzene, 1,2,4-trimethyl- F 1302 64.57 309.95
Benzene, 1-ethyl-3-methyl- F 1286 63.80 306.22
Octane, 2,6-dimethyl- N 1264 62.67 355.99
Octane, 2,6-dimethyl- N 1264 62.67 355.99 Decane, 2-methyl- N 1224 60.71 378.85
Octane, 2,6-dimethyl- N 1264 62.67 355.99 Decane, 2-methyl- N 1224 60.71 378.85 4,7-Methano-1H-indene, octahydro- N 1205 59.77 325.15
Octane, 2,6-dimethyl- N 1264 62.67 355.99 Decane, 2-methyl- N 1224 60.71 378.85 4,7-Methano-1H-indene, octahydro- N 1205 59.77 325.15 Cyclohexane, butyl- N 1107 54.91 307.49

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Ν

Form LQF32b Issue 6 – February 2015

Decane, 3-methyl-

REPORT OFFICIALLY CHECKED

L. Gates, Laboratory Manager

920.11

45.64

284.79

Tube Number

218

(A division of Gradko International Ltd.) St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

GRA 06921

Tube Number	GRA 00921			
Exposure Time(mins)	10080			
Sample ID	BH1			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	40214	1994.7	10373
Tetrachloroethylene	F	39667	1967.6	12907
Decane	F	2824	140.06	795.56
Benzene, 1,2,4-trimethyl-	F	1145	56.79	272.60
Undecane	F	1135	56.28	351.16
Decane, 4-methyl-	N	1117	55.38	345.59
Benzene, 1-ethyl-3-methyl-	F	1038	51.51	247.26
Octane, 2,6-dimethyl-	N	990.92	49.15	279.19
4,7-Methano-1H-indene, octahydro-	N	973.84	48.31	262.78
Decane, 2-methyl-	N	945.92	46.92	292.79
Cyclohexane, butyl-	N	872.01	43.25	242.23
m/p-Xylene	F	839.15	41.62	176.49
Nonane, 2-methyl-	N	822.52	40.80	231.74
sec-Butylbenzene	F	781.78	38.78	207.85
Decane, 3-methyl-	N	740.66	36.74	229.25
Tube Number	GRA 10132			
Exposure Time(mins)	10080			
Sample ID	WS102			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	16644	825.61	4293.2
cis-1,2-Dichloroethylene	F	3133	155.43	596.84
Decane	F	2897	143.69	816.18
Undecane	F	1473	73.08	456.05
Benzene, 1,2,4-trimethyl-	F	1435	71.20	341.77
Benzene, 1-ethyl-3-methyl-	F	1298	64.39	309.09
Decane, 4-methyl-	N	1281	63.54	396.50
Decane, 2-methyl-	N	1149	56.97	355.50
4,7-Methano-1H-indene, octahydro-	N	1142	56.64	308.14
Octane, 2,6-dimethyl-	N	1088	53.98	306.63
m/p-Xylene	F	1007	49.95	211.79
Cyclohexane, butyl-	F	1004	49.82	278.99
Nonane, 2-methyl-	l l			
rionano, 2 mony	N	936.55	46.46	263.87
sec-Butylbenzene		936.55 893.23	46.46 44.31	263.87 237.49
· · · · · · · · · · · · · · · · · · ·	N			

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 – February 2015

REPORT OFFICIALLY CHECKED

24400

(A division of Gradko International Ltd.) St. Martins House, 77 Wales Street Winchester, Hampshire SO23 0RH tel.: 01962 860331 fax: 01962 841339 e-mail:diffusion@gradko.co.uk

LABORATORY ANALYSIS REPORT

Tube Number	GRA 02680			
Exposure Time(mins)	10080			
Sample ID	DCS4			
	Accreditation			
Top 15 VOC	Status	ng on tube	ppb in air*	μgm ⁻³ *
Trichloroethylene	F	8880	440.48	2290.5
Tetrachloroethylene	F	7017	348.06	2283.2
m/p-Xylene	F	291.48	14.46	61.30
Butane, 2-methyl-	N	260.87	12.94	37.27
o-Xylene	F	165.58	8.21	34.82
Benzene, 1,2,4-trimethyl-	F	157.02	7.79	37.39
Toluene	F	140.65	6.98	25.67
Benzene, 1-ethyl-3-methyl-	F	118.32	5.87	28.17
Ethylbenzene	F	101.89	5.05	21.43
alpha-Pinene	F	86.86	4.31	23.44
3-Carene	F	54.66	2.71	14.75
Benzene, 1,2,3-trimethyl-	F	53.05	2.63	12.63
1,2,4-Metheno-1H-indene, octahydro-1,7a-dime	• • • • • • • • •			
(1.alpha.,2.alpha.,3a.beta.,4.alpha.,5.alpha.,7a		= 4 00	0.50	
	<u>N</u>	51.68	2.56	20.92
Benzene, 1-ethyl-2-methyl-	F _	51.66	2.56	12.30
cis-1,2-Dichloroethylene	F	51.44	2.55	9.80

UPTAKE RATES

All Compounds 2.00ng.ppm⁻¹_min⁻¹

Identification and estimation results for ng on tube are calculated by reference to toluene and toluene-d8 Internal standard.

Results greater than 1000ng are outside of our UKAS accredited calibration range.

Exposure time was calculated from start and finish dates given on the exposure sheet.

Report was amended to add µgm⁻³ at the customer request.

Date of Analysis 02.06.2016

Date of Amended

Analysts Name Mariella Angelova Report 17.06.2016

The Diffusion Tubes have been tested within the scope of Gradko International Ltd. Laboratory Quality Procedures calculations and assessments involving the exposure procedures and periods provided by the client are not within the scope of our UKAS accreditation. Those results obtained using exposure data shall be indicated by an asterisk. Any queries concerning the data in this report should be directed to the Laboratory Manager Gradko International Ltd. This report is not to be reproduced, except in full, without the written permission of Gradko International Ltd.

Form LQF32b Issue 6 – February 2015

APPENDIX 7 - GEOTECHNICAL LABORATORY TEST RESULTS

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 18/03/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Road Camden London

16131

CLIENT:

Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 0BJ Soil Property Testing Ltd

Materials Division
15,16 & 18 Halcyon Court,
St Margarets Way,
Stukeley Meadows, Huntingdon,
Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

DCP Tests carried out by our own engineer APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS Quality Manager

W.JOHNSTONE
Materials Lab Manager

SAMPLES LABELLED:

DATE RECEIVED: 18/03/16

SAMPLES TESTED BETWEEN 18/03/16 and 18/03/16

REMARKS: For the attention of Mr Stephen Gilchrist

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

Soil Property Testing Ltd

Date of Issue: as page 1

Greenwood Road Camden London

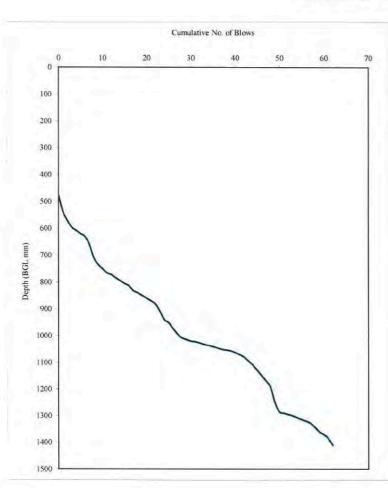
TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

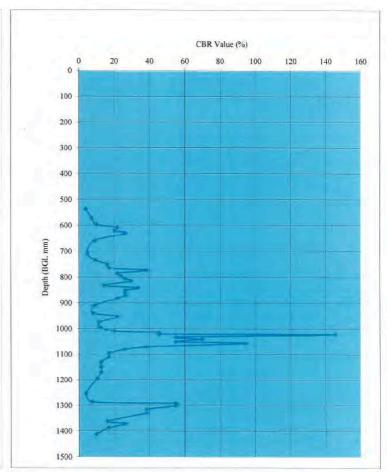
To TRL Report PR INT 277 04 and CNS Farnell Operating Instructions

Chainage:

Test No.: Location: CBR3

Final Depth (mm BGL): 1410


Date Tested: 18/03/2016


Layers Removed: 0.45m

Surface Type: Dark yellowish brown slighty silty gravelly SAND.

Surface moisture: DRY Easting: Northing: Existing Level: m OD 0,000 Test Level: m OD

Dynamic Cone Penetrometer Graph

Remarks:

Dark yellowish brown slightly silty gravelly SAND. Gravel is brown white and black fine to coarse sub angular to sub rounded flint with occasional brick fragments

Test started at 450mm below Ground Level. Material removed was engineered fill consisting of crushed concrete, brick and asphalt

Excessively high or anomalous readings may be the result of cone encountering obstructions such as large gravel fragments.

See attached sheet for Equivalent CBR values for each penetration

Soil Property Testing Ltd

Date of Issue: as page 1

Greenwood Road Camden London Contract:

Page 3 of 7 Pages Serial No: 16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage:

Layers Removed:

0.45m

DCP 1 Test No.:

Surface Type:

Dark yellowish brown slighty silty gravelly SAND.

Location: Direction: 0

Final Depth (mm BGL): 1410

Date Tested:

Surface moisture: Easting:

0 Northing: 0.000

Existing Level: m OD Test Level: m OD

0.000

DRY

0.000

Initial Zero reading =

18/03/2016

60

No. of Blows	Total Blows	Measured Depth (mm BGL)	Corrected Depth (mm BGL)	Penetration (mm/blow)	Log 10 CBR	CBR Value (%
0	0	85	475	0.00	0.00	0.00
1	1	146	536	61.00	0.59	3.92
1	2	180	570	34.00	0.86	7.26
1	3	205	595	25.00	1.00	10.05
1	4	217	607	12.00	1.34	21.84
	5	230	620	13.00	1.30	20.07
1	6	240	630	10.00	1.42	26.49
1 -	7	268	658	28.00	0.95	8.92
1	8	318	708	50.00	0.68	4.83
1	9	344	734	26.00	0.98	9.65
1	10	360	750	16.00	1.21	16.12
1	11	375	765	15.00	1.24	17.25
1	12	382	772	7.00	1.59	38.61
1	13	394	784	12.00	1.34	21.84
1	14	405	795	11.00	1.38	23.95
1	15	415	805	10.00	1.42	26.49
1	16	424	814	9.00	1.47	29.61
1	17	442	832	18.00	1.15	14.23
1	18	450	840	8.00	1.53	33.53
1-1-	19	460	850	10.00	1.42	26.49
-1	20	470	860	10.00	1.42	26.49
1	21	480	870	10.00	1.42	26.49
1	22	492	882	12.00	1.34	21.84
1	23	520	910	28.00	0.95	8.92
	24	550	940	30.00	0.92	8.29
1	25	562	952	12.00	1.34	21.84
_ d	26	584	974	22.00	1.06	11.51
1	27	605	995	21.00	1.08	12.09
-1-	28	618	1008	13.00	1.30	20.07
1 1 1	29	624	1014	6.00	1.66	45,45
1	30	630	1020	6.00	1.66	45.45
4	31	632	1022	2.00	2.16	145.15
2	33	1032	1032	5.00	1.74	55.10
2	35	1040	1040	4.00	1.84	69.76
2	37	1050	1050	5.00	1.74	55.10
2	39	1056	1056	3.00	1.98	94.55
2	41	680	1070	7.00	1.59	38.61
1	42	690	1080	10.00	1.42	26.49
1	43	705	1095	15.00	1.24	17,25
1	44	720	1110	15.00	1.24	17.25
1	45	740	1130	20.00	1.10	12.73
	46	760	1150	20.00	1.10	12.73
	47	780	1170	20.00	1.10	12.73

Soil Property Testing Ltd

Date of Issue: Contract:

as page 1

Greenwood Road Camden London

Page 4 of 7 Pages Serial No:

16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage:

DCP 1

Location: Direction: 0

1410 Final Depth (mm BGL):

Date Tested:

Test No.:

CBR3

18/03/2016

Layers Removed:

0.45m

Surface Type:

Dark yellowish brown slighty silty gravelly SAND.

Surface moisture:

DRY 0

Easting: Northing:

0.000

Existing Level: m OD 0,000

Test Level: m OD 0.000

1	48	804	1194	24.00	1.02	10.50
1	49	862	1252	58.00	0.62	4.13
1	50	895	1285	33.00	0.87	7.50
1	51	900	1290	5.00	1.74	55.10
1	52	905	1295	5.00	1.74	55.10
1	53	910	1300	5.00	1.74	55.10
2	55	924	1314	7.00	1.59	38.61
2	57	938	1328	7.00	1.59	38.61
2	59	970	1360	16.00	1.21	16.12
1	60	980	1370	10.00	1.42	26.49
= 1	61	995	1385	15.00	1.24	17.25
1	62	1020	1410	25.00	1.00	10.05

Soil Property Testing Ltd

as page 1 Greenwood Road Camden London 16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR INT 277/04 and CNS Farnell Operating Instructions

Chainage:

Test No.: DCP 2 Location: CBR4

Final Depth (mm BGL): 2196

Direction:

Date Tested:

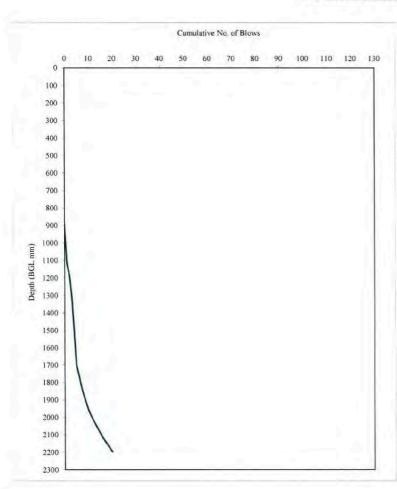
18/03/2016

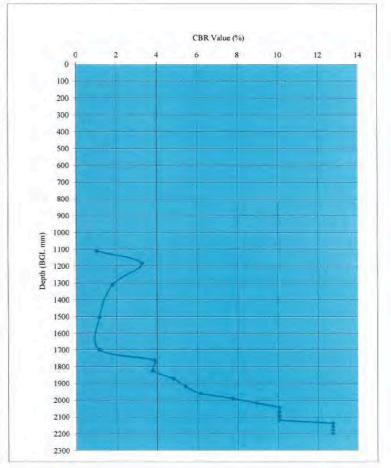
0

Layers Removed:

0.85m

Surface Type: Greyish brown slightly sandy gravelly CLAY.


DRY


Easting: Northing:

Existing Level: m OD 0.000

Test Level: m OD

Dynamic Cone Penetrometer Graph

Remarks:

Greyish brown slightly sandy gravelly CLAY. Gravel is brown white and black fine to coarse sub angular to sub rounded flint with occasional brick fragments

Test started at 850mm below ground level. Material removed was engineered fill consisting of crushed concrete, brick and asphalt.

Excessively high or anomalous readings may be the result of cone encountering obstructions such as large gravel fragments.

See attached sheet for Equivalent CBR values for each penetration

Soil Property Testing Ltd

Date of Issue: as page 1

Contract:

Greenwood Road Camden London

Page 6 of 7 Pages Serial No:

16131

TRL Dynamic Cone Penetrometer - Determination of CBR Value (%)

To TRL Report PR/INT/277/04 and CNS Farnell Operating Instructions

Chainage:

Test No.:

DCP 2

Location: CBR4 0 Direction:

Final Depth (mm BGL): 2196 Date Tested:

18/03/2016

Layers Removed:

0.85m

Surface Type:

Greyish brown slightly sandy gravelly CLAY

Surface moisture:

Easting:

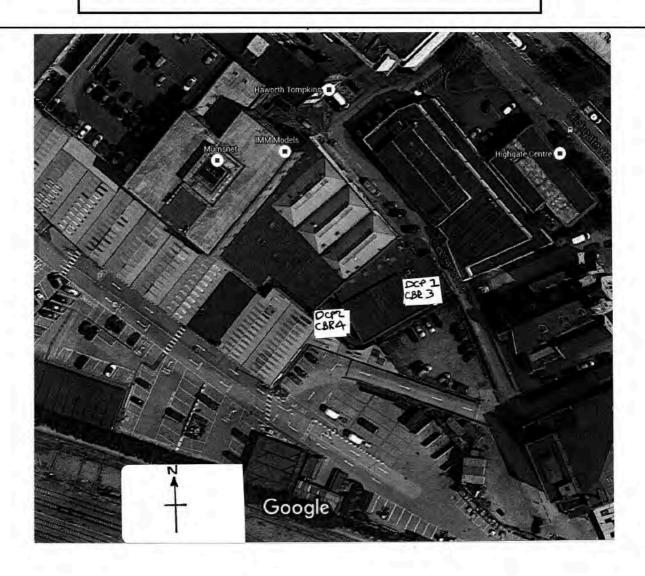
Northing: 0.000

Existing Level: m OD 0.000

Test Level: m OD 0.000

Initial Zero reading = 850

No. of Blows	Total Blows	Measured Depth (mm BGL)	Corrected Depth (mm BGL)	Penetration (mm/blow)	Log 10 CBR	CBR Value (%)
0	0	124	890	0.00	0.00	0.00
	1	342	1108	218.00	0.01	1.02
J	2	415	1181	73.00	0.51	3.24
- 1	3	542	1308	127.00	0.26	1.80
1	4	735	1501	193.00	0.06	1.16
1	5	930	1696	195.00	0.06	1.15
	6	992	1758	62.00	0.59	3.85
	7	1055	1821	63.00	0.58	3.79
1	8	1105	1871	50.00	0.68	4.83
1	9	1150	1916	45.00	0.73	5.40
	10	1190	1956	40.00	0.79	6.12
	11	1222	1988	32.00	0.89	7.75
1	12	1250	2016	28.00	0.95	8.92
1	13	1275	2041	25.00	1.00	10.05
_ 1	14	1300	2066	25.00	1.00	10.05
i i j	15	1325	2091	25.00	1.00	10.05
1	16	1350	2116	25.00	1.00	10.05
1	17	1370	2136	20,00	1.10	12.73
1	18	1390	2156	20.00	1.10	12.73
1	19	1410	2176	20.00	1.10	12.73
1	20	1430	2196	20.00	1.10	12.73


ISSUED BY : MATERIAL PROPERTY TESTING LTD.

DATE OF ISSUE: 18/03/16 PAGE 7 of 7 Pages

Contract Serial No.

Greenwood Road Camden London

16131

TRL Dunamic Cone Penetrometer Location Plan NOT TO SCALE DATE: 18/3/16

A. Butcher Bsa(How

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 23/04/16 PAGE 1 of 19 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

CLIENT	•
--------	---

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon,

Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

- Technical Director
- Quality Manager
- W. JOHNSTONE

Materials Lab Manager

S.P. TOWL

SAMPLES LABELLED:

Greenwood Centre, Greenwood Place, Camden, London.

DATE RECEIVED:

30/03/16

SAMPLES TESTED BETWEEN 30/03/16 and 23/04/16

REMARKS:

For the attention of Lianne Fountain

Your Ref: 1655,GI

Sulphate suite of tests subcontracted to Chemtest - results

included as Appendix A of this Test Report

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

SCHEDULE OF LABORATORY TESTS

Bh./ P No.	Sample Ref	Depth (from)	_	1:140)	19 tur 3 ili	e Col	tent Place	Detro	LINITE PROPERTY OF THE PROPERT	at 10 at 10 at 2 at 2 118	010000000000000000000000000000000000000	2 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	Mare Mare	ACE SOLVE	110	Ya.	er						Remarks
12	D2.5	2.00		*	*		<u></u>		;														
	U3.0	3.00				*		L.										T		:			
	D3.45	3.45	*								<u> </u>						<u>†</u> ~			!		-	
	D4.0	4.00	*	*			+	*	*	. *] -						Ī			<u> </u>		7	
	UT5.0	5.00	-		1	*					1		,			Γ.				_		·	
	UT8.0	8.00				*	Τ.			·-··			-			_ -		<u> </u>				.n.	
	D9.0	9.00	*				*		*	. *		T	·		 	· · —							
	UT11.0	11.00		*		*	1					 			· 						 -		
	D14.0	14.00				÷·· –	*		·· —	*													
	UT15.5					; *		 		*	 -			-		 	-				<u> </u>		
	UT18.5	•				*					ĺ	<u> </u>			<u> </u>	:						 	·
	UT21.5								 			+· ·									<u>: </u>	 	
	UT24.5	21.50		 -							 						- - -			<u> </u>	·		
_	0124.5	24.50			<u>-</u>	*			*	*												1	
	†·	-	4	3	1	8	4	3	3	4				<u> </u>			_					< Tota	l Number of Tests
	 			<u> </u>			<u>:</u>				 -							<u> </u>				<u>:</u> [··-
								<u> </u>	}		<u>.</u>	٠		<u> </u>									,
	 								<u>, </u>			 -											
		-								_			ļ				<u> </u>			 -			
				i	-									ļ							_		
				<u> </u>	<u> </u>		<u>-</u>			! !	<u> </u>										<u> </u>		
					<u> </u>		<u> </u>			: : :			_				ļ						
<u> </u>	-			<u> </u>	ļ .—						<u> </u>			<u> </u>			<u> </u>				<u>_</u>		
				<u> </u>	<u> </u>			<u> </u>			<u> </u>												
	<u> </u>			<u> </u>		ļ. <u>.</u> .				 				<u> </u>									• • • • • • • • • • • • • • • • • • • •
	<u> </u>				<u> </u>			<u></u> .	l			<u> </u>											
						<u> </u>				·		L	ļ 										
	ļ	<u>-</u> .		<u> </u>							<u> </u>												·
	<u> </u>																	!					
						i																	
											!												
		by: G													_	٠			·	ι			Date: 21/04

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 3 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

	1		100000000000000000000000000000000000000		_							<u> </u>	<u> </u>
Bonehote/	Depth	Sample	Moisture Content		Plastic Limit	Plast- icity	Liqu- idity	. ;	SAMPLE PE	Corr'd			
Pit No.	m.		(%)	(%)	(%)	Index (%)	Index (≰)	Method S/N	0.425mm	M/C <0.425mm	Time	Description	CLASS
BH2	2.50	D2.5	19	69	24	4 5	0.18*	ស្ន	41 (M)	32	24	Stiff yellowish brown slightly sandy gravelly CLAY. Gravel is brown, black and white fine to coarse angular to subrounded flint	CH
BH2	3.45	D3.45	31	-	-	-						Stiff closely fissured yellowish brown ChaY with occasional bluish grey mottling, recently active and decayed roots and rare selenite crystals	-
вн2	4.00	D4.0	28	65	26	39	0.05	N	0 (A)		95	Stiff dark yellowish brown CLAY with rare bluish grey veins, decayed roots and selenite crystals	CH
вн2	9.00	D9.0	28	**	-	-						Stiff dark yellowish brown CLAY with rare orange silt partings and selenite crystals	-
BH2	11.00	UT11	27	76	29	47	-0.04	N	0 (A)		75	Very stiff (Very high strength) fissured friable locally thickly laminated dark greyish brown CLAY with occasional dark grey mottling	ĊV

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

S = Wet Sieved Specimen N = prepared from Natural

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

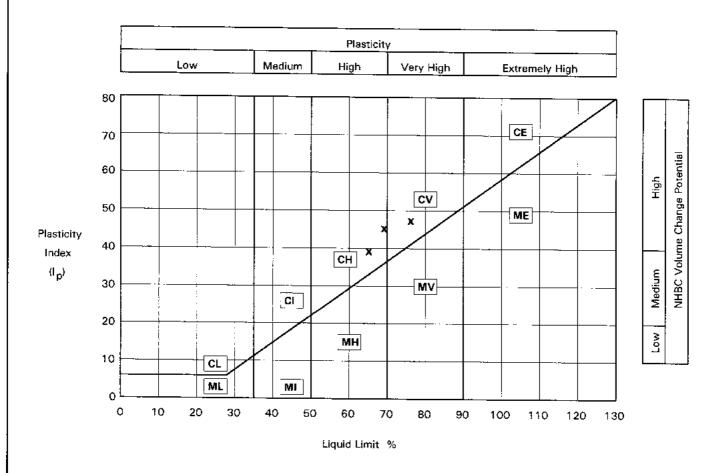
TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M ≠ Measured

COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin


ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE ψ of θ

Contract Serial No.

Greenwood Centre, Greenwood S29908 Place, Camden, London.

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, 8 = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

; VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

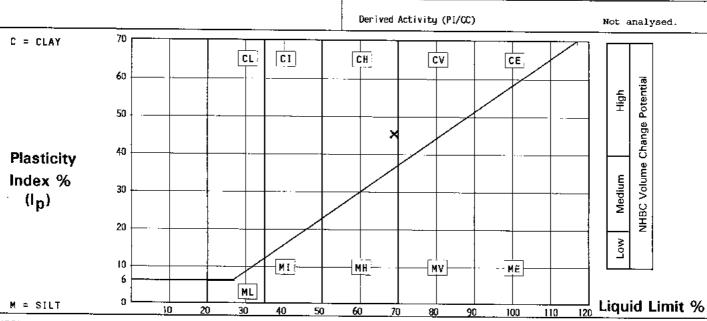
PLASTICITY CHART BS5930:1999:Figure 18

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 5 of 19

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London.


S29908

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content *	Description	Remarks
BH2	2.50	D2.5	19 Stiff yellowish CLAY. Gravel is to coarse angul	brown slightly sandy gravelly brown, black and white fine ar to subrounded flint	

•			Derived Activity (PI/CC)	Not analysed. %
Curing Time	24	Hours	Clay Content	1
Corrected moisture content for material passing 0.425mm	32	×	Liquidity Index	0.18
Sample retained 0.425 sieve (Measured)	41	*	Plasticity Index	45 X
Method of Preparation Sieved Specimen	_		Plastic Limit	24 🔏
PREPARATION			Liquid Limit	69 🛣

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

40% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

non porous. See BS1377:Part2:1990 Clause 3 Note 1.

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content	Description Remarks
вн2	4.00	D4.0	28	Stiff dark yellowish brown CLAY with rare bluish grey veins, decayed roots and selenite Oven dried at a maximum of 80°C due to the presence of selenite

<u></u>					
	PREPARATION		Liquid Limit		65. \$
Method of Preparation	Specimen from Natu	ral Soil	Plastic Limit		26 🐔
Sample retained 0.425	sieve (Assumed)	0 %	Plasticity Index		39 %
Corrected moisture con	tent for material passing	0.425пт ≰	Liquidity Index		0.85
Curing Time		95 Hc	urs Clay Content		Not analysed. 🕻
·4, .			Derived Activity (PI/CC)	Not analysed.
Plasticity Index % (Ip)	70 60 50 40 30 20	CL CI	CH CV		Low Medium High NHBC Volume Change Potential
M = SILT	0 10 20	ML 30 40 5	0 60 70 80	90 100 110	Liquid Limit %

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 7 of 19

Contract

Corrected moisture content for material passing 0.425mm

Serial No.

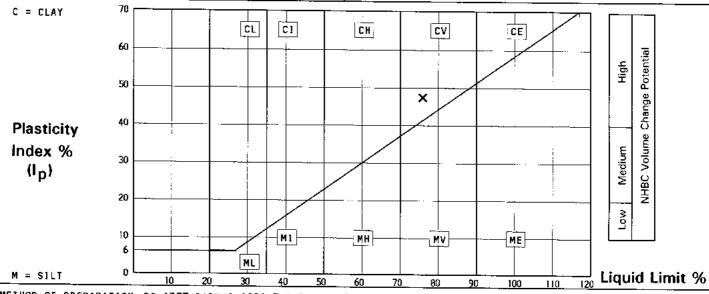
Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content:	Description Remarks
BH2	11.00	UT11	friabl	riff (Very high strength) fissured a locally thickly laminated dark brown CLAY with occasional dark greying
	PI	REPARA	FION	Liquid Limit 76 💃
Method of Pr	eparation	Specimen fr	om Natural Soil	Plastic Limit 29 ≰
Sample retai	ned 0.425 siev	e (Assume	d) 0	メ Plasticity Index 47 紫


Curing Time 75 Hours Clay Content Not analysed. %

Derived Activity (PI/CC)

Liquidity Index

Not analysed.

-0.04

NHBC Volume Change Potential

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 8 of (9)

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Bonehole/	Depth	Sample	Moisture Content	Bulk Density	Dry Density	Lateral Pressure	Deviator Stress	Shear Stress		CIRCLE YSIS	
Pit No.	т.	·	(%)	(Mg/m ³)	(Mg/m ³)	(kPa)	(kPa)	(kPa)	Cu (kPa)	Ø (degrees)	Description
вн2	3.00	U3	30	1.98	1.52	64	159	80			Stiff (High strength) fissured yellowish brown CLAY with occasional grey and orangish brown mottling and rare decaye roots
B#2	5.00	UTS	30	1.96	1.51	10 1	254	127			Stiff (Righ strength) fissured dark yellowish brown CLAY with occasional grey and orangish brown mottling and selenite crystals
BH2	8.00	UT8	27	1.98	1.56	161	265	133			Stiff (High strength) fissured dark yellowish brown CLAY with occasional grey and orangish brown mottling and selenite crystals
вн2	11.00	UT11	27	2.02	1.59	222	579	290			Very stiff (Very high strength fissured friable locally thic) laminated dark greyish brown CLAY with occasional dark grey mottling
вн2	15,50	UT15	30	1.98	1.52	310	265	132			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling and rare fossil fragments
BH2	18.50	UT18	28	2.00	1.56	372	349	175			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling
вн2	21.50	UT21	26	0.02	0.02	434	698	349			Extremely weak fissured dark greyish brown MUDSTONE with occasional dark grey mottling
вн2	24,50	UT24	25	2.05	1.64	491	439	219			Very stiff (Very high strength fissured friable dark greyish brown CLAY with occasional dar grey mottling

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4.2 & 8 PART 2:1990:7.2 PART 7:1990:8.3

METHOD OF TEST

: BS 1377:PART 2:1990:3 Determination of Moisture Content 1990:7 Determination of Density :PART 7:1990:8 Undrained Shear Strength 1990:9 Multi-stage test

Note Multi-stage test used when specimen has granular content / behaviour and length of specimen precludes the taking of 3 x 100mm dia by 200mm long specimens.

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

TYPE OF SAMPLE KEY

C = Core Cutter

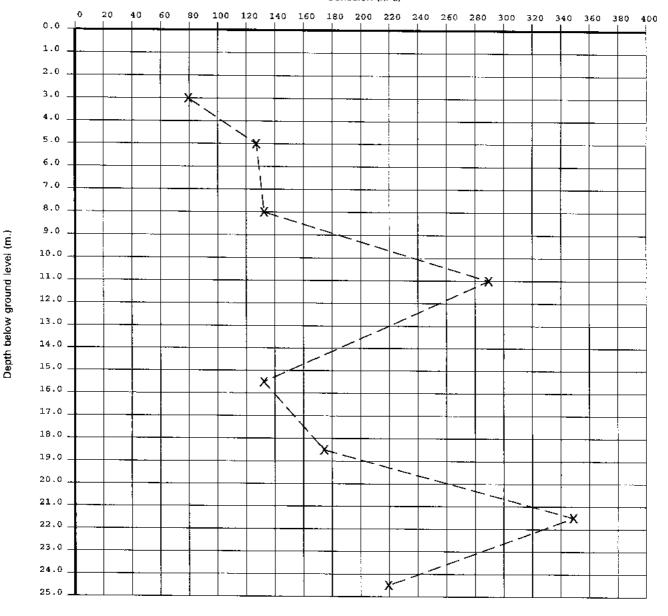
COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 9 of 19


Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908

Cohesion (kPa) vs Depth below ground level (m.).

Cohesion (kPa)

1/	X : BH2	,		 	
Key to					
Data Points		 		 	
			<u> </u>	 _	

ISSUED BY

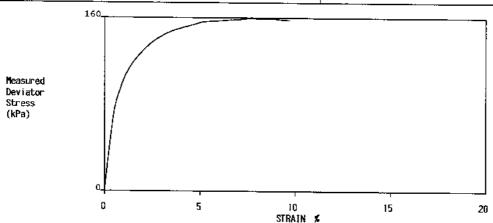
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (O of (9)

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.


S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

orehole/ it No.	Depth m.	Sample	Rema	Remarks					
BH2	3.00	U3 Stiff (High strength) fissured yellowish brown CLAY with occasional grey and orangish brown mottling and rare decayed roots							
Depth of Top of Specimen (m)		Height. mm		Diameter mm	Weight 9	Maisture Content	Wet Density Mg/m ³	Dry Density Mg/m ³	
		199,6		102.1	3235	30			

Specimen at Faiture	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected New Shear Stress Hohrs Circle Analysis
Specimen at Failure	O 3 (kPa)	(%)	Rubber Membrane	Piston Friction	O 1 - O 3 % (O 1 - O 3) f Cu (kPa) PHI °
	64	8.7	0.6	/	159 ag

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

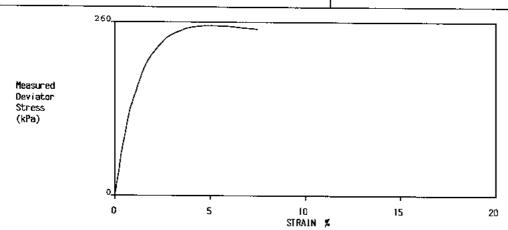
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE (of (9

Contract

Serial No.

Greenwood Centre, Greenwood


S29908

Place, Camden, London.

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

UTS				Description				
	Stiff with o	Oven dried at a maximum of 80°C due to the presence of selenite						
m		Diameter mm	Weight 9	Moisture Content	Wet Density Mg∕m ³	Dry Density Mg/m³		
`	6	102.8 3252		30	1.96	1.51		
	(m) m	Height mm	selemite crystals Height Diameter mm mm	Height Diameter Weight mm g	Height Diameter Weight Content Ton 9 \$	Height Diameter Weight Content Density Mg/m 3		

Specimen at Failure	Measured Strain at Cell Pressure Failure		Stress Corrections (kPa)		Corrected Max. Sheer Stress Mohrs Circle Analysis Deviator Stress Cu
specialen ac rariure	Ø3 (kPa)	(X)	Rubber Membrane	Piston Friction	σ1 σ3 %(σ1 σ1)ε Cu (κPa) PH1 °
	101	5.1	0.4	/	.254 127

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation,

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

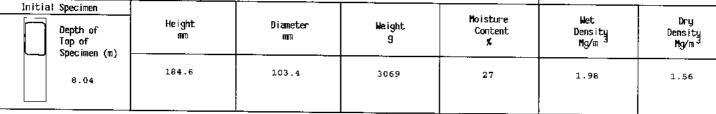
: Sample disturbance, loss of moisture, variation from test procedure, location and origin

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (2 of (9)

Contract

Serial No.


Greenwood Centre, Greenwood Place, Camden, London.

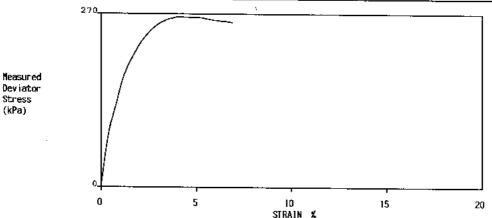
S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

e/ 	Depth m.	Sample			Remar	rks		
	8.00	UT8	Stiff (Hig with occas selenite o	gh strength) fi sional grey and crystals	Oven dried at a maximum of 80°C due to the presence of selenite			
_	Specimen Depth of Top of Specimen (m)	Height nom		Diameter mm	Weight 9	Moisture Content ≴	Wet Density Mg/m ³	Dry Density Mg∕m ³

TEST INFORMATION

Bonehole/ Pit No.


BH2

Rate of Strain

% per Min

Rubber Membrane Thickness

0.3

				STATISTIC NO.	
Specimen at Failure	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Ou
	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	161	4.1	0.3	/	265 133

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

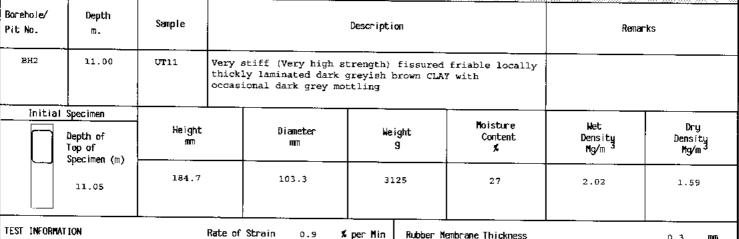
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (3 of 19

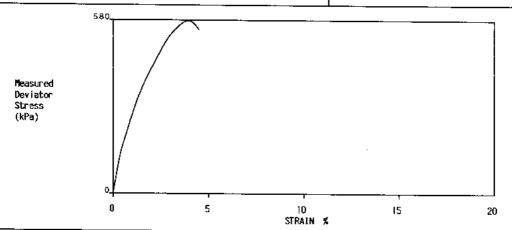
Contract

Serial No.


Greenwood Centre, Greenwood Place, Camden, London.

S29908

DETERMINATION OF UNDRAINED SHEAR STRENGTH


IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Rate of Strain

Rubber Membrane Thickness

0.3 mm

,	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Sheer Stress Mohrs Gircle Analysis Deviator Stress Gu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	222	4.0	0.3	/	579 290

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method, 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kM.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 14 of 19

Contract

Serial No.

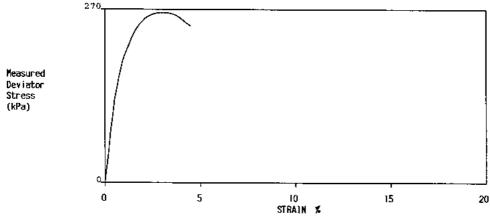
Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE


rehole/ t No.	Depth m.	Sample		Remar	Remarks				
BH2	15.50		Stiff (High strength) f with occasional dark gr fragments	Premature failure strain	failure at 3.1%				
Depth of Top of Specimen (m)		Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m 3	Dry Density Mg/m³		
		199.5	103.4	3313	30	1.98	1.52		

TEST INFORMATION

Rate of Strain

0.9 % per Min Rubber Membrane Thickness

0.3 mm

	Measured Cell Pressure	Strain at Fail ur e	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	Deviator Stress Cu
	310	3.1	0.2	/	265 132

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

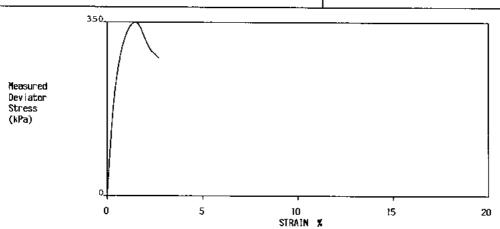
: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 15 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Depth m.	Sample		Rema	Remarks				
18.50	UT18	Very stiff (Very high s brown CLAY with occasion	strength) fissured onal dark grey mot	Premature failur strain	e at 1.5%			
Depth of Top of	Height.	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density Mg/m ³		
18.53	199.6	103.6	3370	28	2.00	1.56		
nitial Specimen Depth of Top of Specimen (m)	Specimen Depth of Tap of Specimen (m) Specimen (m) Sample Height	Specimen Depth of Top of Specimen (m) Sample Very stiff (Very high a brown CLAY with occasion Diameter mm Diameter mm 199.6 103.6	Sample Description 18.50 UT18 Very stiff (Very high strength) fissured brown CLAY with occasional dark grey mot Specimen Depth of Top of Specimen (m) 199.6 103.6 3370	Sample Description 18.50 UT18 Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling Specimen Description Noisture Content mm g % 199.6 103.6 3370 28	Description Rema 18.50 UT18 Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling Specimen Description Rema Premature failur strain Specimen Diameter Weight Content Density Mg/m 3 Specimen (m) 199.6 103.6 3370 28 2.00			

\$	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Ou						
Specimen at Failure	♂ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	σ (- σ 3 % (σ (- σ 3)) Cu (kPa) PHI		372	1.5	0.2	/	349 175

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

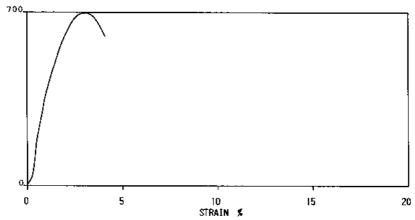
DATE OF ISSUE : As page 1 PAGE 16 of 19

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London.

S29908



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample	Description Re									
BH2	21.50		Extremely weak fissured dark greyish brown MUDSTONE with occasional dark grey mottling									
	Depth of Top of	Height mm	Diameter mm	Weight 9	Moisture Content メ	Wet Density Mg/m 3	Dry Density Mg/m ³					
Specimen (m)		199.5	103.3	34	26	0.02 0						

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohns Circle Analysis Deviator Stress Co
Specimen at Failure	Ø 3 (kPa)	(%)	Rubber Membrane	Piston Friction	の1 - の3 %(の1 - の3)。 (kPa) (kPa) Cu(kPa) PHI。
	434	3.1	0.2	/	696 349

METHOD OF PREPARATION: 8S 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 17 of 19

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

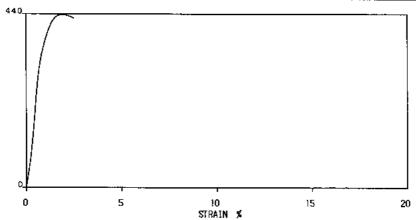
DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Barehole/ Pit No.	Depth m.	Sample		Remarks							
вн2	24.50	UT24	Very stiff (Very high strength) fissured friable dark greyish brown CLAY with occasional dark grey mottling strain								
	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m	Dry Density Mg/m ³				
	24.54	199.5	103.4	3428	25	2.05	1.64				

TEST INFORMATION

Rate of Strain


≸ per Min 0.8

Rubber Membrane Thickness

0.3

mm

0 - 1 5 11	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	
	491	1.9	0.2	/	439 219

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (of

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

DETERMINATION OF THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

Borehole/	Depth		Concentral Si	tion of Solub ail	le Sulphete	≭ of sample	Description	
Pit No.	m.	Sample	Acid Soluble	Soluble 2:1		passing 2mm sieve	j best ipergij	Remanks
Pit No.	14.00	D14.0	Acid Soluble SU3 \$	Soluble 2:1 SO3 9/1 0.72	g/I	passing	Very stiff fissured dark greyish brown CLAY	Remarks

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.5 BS1377:PART 3:1990:5.2 Acid Soluble, 5.3 Soil/Water Extract

METHOD OF TEST

: BS 1377:PART 3:1990:5.5

:5.4 Groundwater

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE (9 of (9

Contract

Serial No.

Greenwood Centre, Greenwood

S29908

Place, Camden, London.

			DETERN	VINATION OF THE PH VALUE	
orehole∕ it No.	Depth m.	Sample	p∺ Value	Description	Remarks
BH2	14.00	D14.0	8.0	Very stiff fissured dark greyish brown CLAY	
		}			
	:				
		1		!	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7 BS 1377:PART 3:1990:9.4

METHOD OF TEST : BS 1377:PART 3:1990:9.5

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

SPT Test Report No.: S29908 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.:

16-08730-1

Initial Date of Issue:

20-Apr-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire

PE29 6DG

Contact(s):

Jon Garner

Project

S29908 - Greenwood Centre,

Greenwood Place, Camden, London

Quotation No.:

Q16-06170

Date Received:

15-Арг-2016

Order No.:

S29908

Date Instructed:

15-Apr-2016

21-Apr-2016

No. of Samples:

3

5

Turnaround (Wkdays):

Results Due:

Date Approved:

20-Apr-2016

Approved By:

Details:

Keith Jones, Technical Manager

London

Client: Soil Property Testing		Che		ab Nos	16,08730	(10×087/0)	16,08730
Quotation No.: Q16-06170		Chemte	st Sam	ple ID.:	280667	280668	280669
Order No.: S29908		Clie	nt Samp	le Ref.:	8H2	BH2	BH2
		C∄	ent Sam	iple ID.:	D4.0	D9.0	UT24.5
			Sampl	е Туре:	SOIL	SOIL	SOIL
				pth (m):	4.00	9.00	24.50
Designation of the second second	i Valencia	7 ju	Million (Contraction)	Wro y			
Moisture	N	2030	%	0.020	21	21	20
рН	Ų	2010		N/A	7.9	7.9	8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	2.1	2.4	0.25
Total Sulphur	U	2175	%	0.010	0.36	1.2	0.50
Sulphate (Acid Soluble)	U	2430	%	0.010	0.88	1.7	0.16

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 11/05/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 OBJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS Technical Director

S.P. TOWNEND FGS Quality Manager

W. JOHNSTONE

Materials Lab Manager

SAMPLES LABELLED:

DATE RECEIVED:

Greenwood Centre, Greenwood Place, Camden, London

22/04/16

SAMPLES TESTED BETWEEN 22/04/16 and 11/05/16

REMARKS: For the attention of Lianne Fountain

Your reference 1655,GI

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS - United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of γ

Contract Serial No.

Greenwood Centre, Greenwood \$29994-1

Place, Camden, London

SCHEDULE OF LABORATORY TESTS

Bh./ Tp No.		Sample Depth Ref (from)	ef (from)											Rema	narks											
FIP2	D1	1,40	*	. *	*	*		*							_								•			
FIP3_	D3	1.70				*	*	*		:			 				Ī					77.				
FIP4	D1	0.90	*	*	*	*	*	*												Ī		 				
	D3	1.20				: *																{				
	D2	1.80				*												Ī	i—			-				
-		-	2	2	2	5	3	3														< Total	l Numb	er of	Tests	
					!	<u> </u>				<u> </u>														•		
		<u></u>			<u></u>	ļ 																				
									;		L.					: j					:					
		<u>.</u>				ļ				<u> </u>																
		 		!	L																					
											ĺ			1	<u>'</u>			Ī -								
				.				_										T								
				Ĺ.,													!									
				<u>i</u> !																		<u> </u>				
						!		L	<u> </u>				<u> </u>											•		
				<u> </u>				<u></u>				<u>.</u>														
	!					<u>.</u>				Ĺ																
										<u>L.</u>					L				i							
											L.,					[
		_			-	<u> </u>			<u> </u>			j														
	<u> </u>		L.		1				ĺ]										
				<u></u>											:					!						
		! ! 																								
		ļ															İ]						
													!	7-/					<u> </u>	1						
								Ī				<u> </u>														
																	i									
	<u></u>									1			i							†						
																ļ	1					<u> </u>				
	duled	hv: 6	100	en'	he~	^_	E			ma-	· + -	 	T + -	•	-				-	1		Target	. D - 4	<u> </u>	0 / 0 =	- /-

: SOIL PROPERTY TESTING LTD.

PAGE 3 of ? DATE OF ISSUE : As page 1

Serial No. Contract

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	Plastic	Plast-	Liou-						
Borehole/ Pit No.	Depth m.	Sample	Content (%)	Limit (%)	Limit	icity Index (%)	idity Index (%)	Hethod S/N	Ret'd 0.425mm (%)	Connid M/C <0.425mm	Curing Time (hrs.)	Description	CLASS
FIP2	1.40	D1	38	58	22	36	0.69*	ឆ	19 (M)	47	73	Very soft yellowish brown slightly sandy slightly gravelly CLAY with occasional greyish brown mottling and coke/coal fragments. Gravel is white, grey, light brown and brown fine and medium subangular and subrounded	CH
FIP3	1.70	D3	39	73	26	47	0.38*	S	11(M)	44	28	Soft yellowish brown slightly sandy slightly gravelly CLAY with occasional grey mottling and brick fragments. Gravel is dark grey and black fine and medium rounded to subangular	
FIP4	0.90	D1	25	51	19	32	0.25*	. 03	7 (M)	27	25	Stiff yellowish brown slightly sandy slightly gravelly CLAY with occasional grey and light orangish brown mottling. Gravel is red, white, grey, dark grey and brown fine and medium rounded to subangular	
FIP4	1.20	D3	29	-	-	-						Stiff slightly fissured yellowish brown CLAY with occasional grey and light orangish brown mottling and calcareous aggregations and powder	-
FIP4	1.80	D2	27	-								Stiff slightly fissured yellowish brown CLAY with occasional grey mottling, rare orange staining, calcareous aggregations and powder and decayed roots	-

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2 S ≠ Wet Sieved Specimen N = prepared from Natural

METHOD OF TEST : BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

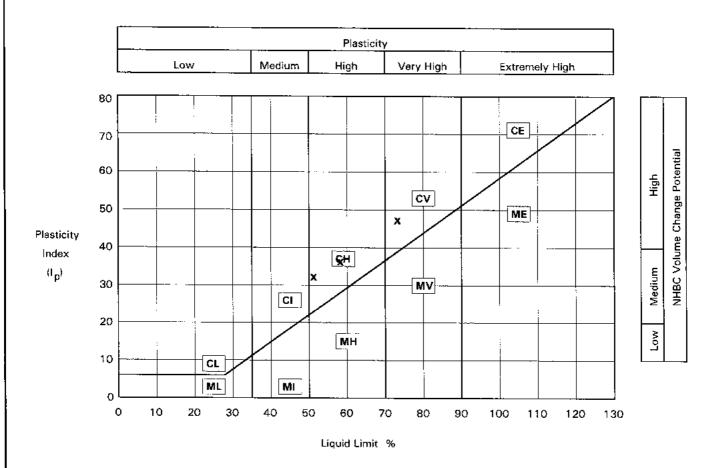
COMMENTS

TYPE OF SAMPLE KEY

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 4 of ?


Contract Serial No.

Greenwood Centre, Greenwood

S29994-1

Place, Camden, London

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS5930:1999:figure 18

ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 5 of 7 DATE OF ISSUE : As page 1

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-1

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content %		Descript	оп		Remark	is
FIP2	1.40	D1	38	Very soft yel: slightly grave greyish brown fragments. Gra and brown fine	elly CLAY wi mottling an evel is whit	th occasion: d coke/coal e, grey, lic	al ght brown		
	PI	REPARAT	ION	subrounded	Liquid Lin				58 K
Method of Pro	eparation	Sieved Speci	men		Plastic Li	mit			22 🕻
Sample retain	ned 0.425 siev	e (Measure	d)	19 %	Plasticity	Index			36 %
Corrected mo	isture content	for material	passing 0.425mm	47 🕺	Liquidity	Index			D. 69
Curing Time		·		73 Hours	Clay Conte	nt		Not an	nalysed. %
					Derived Ac	tivity (PI∕∝)	Not ar	nalysed.
C = CL	`	70 60 50	CL	CI	СН	[cv]	CE	High	Change Potential
Plasti Index (I _p)	ci ty %	30		MI	X	MV	ME	Low Medium	NHBC Volume C
M = SI	LT	6 10	ML 20 30	40 50	60 70	:	00 100 110	Liqui	d Limit %

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

15% retained on 2mm sieve.

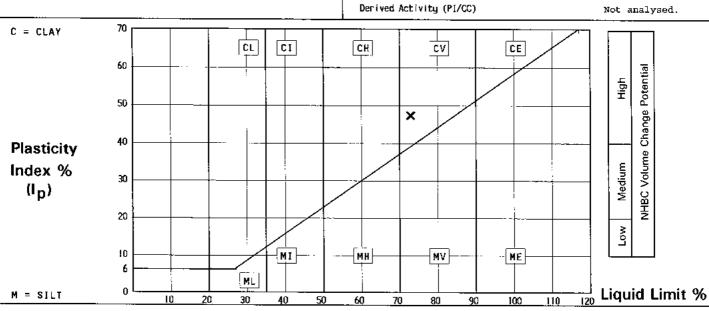
Corrected moisture content and calculated liquidity index assume material greater than $0.425 \mathrm{mm}$

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 7

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London


S29994-1

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content \$	Description	Remarks
FIP3	1.70	D3	39	Soft yellowish brown slightly sandy slightly gravelly CLAY with occasional grey mottling and brick fragments. Gravel is dark grey and black fine and medium rounded to subangular	

PREPARATION		Liquid Limit	
Method of Preparation Sieved Specimen		Plastic Limit	26 \$
Sample retained 0.425 sieve (Measured)	11 %	Plastic Limit Plasticity Index	47 %
Corrected moisture content for material passing 0.425mm	44 %	Liquidity Index	0.38
Curing Time	28 Hours	Clay Content	Not analysed. %
	· · · · · ·		

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST : B\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

10% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 7 of 7 DATE OF ISSUE : As page 1

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-1

Place, Camden, London

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content g		Description			Remarks
FIP4	0.90	D1		gravelly CLAY orangish brow white, grey,	sh brown slight; with occasiona m mottling. Gra- dark grey and bo d to subangular	ly sandy slightl l grey and light vel is red, rown fine and	Strong odou	r noted
	F	REPARAT	ION		Liquid Limit			51 %
Method of Pre	eparation	Sieved Speci	men	" <u>.</u>	Plastic Limit			19 🗴
Sample retain	ned 0.425 sie	eve (Measure	ed)	7 🙎	Plasticity Ind	lek		32 %
Corrected mai	isture conter	nt for material	passing 0.425mm	27 🟌	Liquidity Inde	×		0.25
Curing Time		·		25 Hours	: Clay Content			Not analysed. 🛪
					Derived Activi	ty (PI/CC)		Not analysed.
C = CL/	AY	70	CL	CI	CH	CV CE		
		60		 	<u> </u>	 		High Potential
		50		-	-·			High ge Potent
Plasti	city	40						Change
Index	%	30		×				Medium 3C Volume
(l _p)		20			<u> </u>		_	NHBC
		10		MI	 MH	MV ME		Low
		6			T		; '	
M = SI	LT	0	20 30	40 50	60 70	80 90 100	110 120	Liquid Limit %

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip \times (% less than 425 microns/100)

6% retained on 2mm sieve.

Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

SPT Test Report No.: S29994-1 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report No.:

16-10385-1

Initial Date of Issue:

11-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court

St Margarets Way Stukeley Meadows

Huntingdon Cambridgeshire PE29 6DG

Contact(s):

Jon Garner

Project

S29994-1 Greenwood Centre,

Greenwood Place

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-1

Date Instructed:

05-May-2016

No. of Samples:

2

Turnaround (Wkdays):

5

Results Due:

11-May-2016

Date Approved:

11-May-2016

Approved By:

Details:

Keith Jones, Technical Manager

Project: S29994-1 Greenwood Centre, Greenwood Place

Client: Soil Property Testing	1	(P) (S	me v			16,1088
Quotation No.: Q16-06170		Chemte	st Sam	ple ID.:	289713	289714
Order No.: S29994-1		Clie	nt Samp	le Ref.:	FIP2	FIP4
······································		Cli	ent Sam	ple ID.:	D1	D1
			Sampl	е Туре:	SOIL	SOIL
			Top De	oth (m):	1.40	0.90
Coloronia en la coloronia del Coloronia en la coloronia en la coloronia en la coloronia en la coloronia en la c			NUMES	filt elect		
Moisture	N	2030	%	0.020	26	26
pH		2010		N/A	8.3	8.3
Sulphate (2:1 Water Soluble) as SO4		2120	g/l	0.010	0.11	0.12
Total Sulphur	Ų	2175	%	0.010	0.030	0.050
Sulphate (Acid Soluble)	Ü	2430	%	0.010	0.079	0.077

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : 13/05/16 PAGE 1 of 7 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-2

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS
Quality Manager

W.Johnstone

Materials Lab Manager

SAMPLES LABELLED:

Greenwood Centre, Greenwood Place, Camden, London

DATE RECEIVED:

27/04/16

SAMPLES TESTED BETWEEN 27/04/16 and 13/05/16

REMARKS:

For the attention of Lianne Fountain

Your reference 1655,GI

Chemical testing subcontracted to Chemtest - results included as Appendix A to this Test Report

- NOTES: 1
- All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
- 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
- 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
- 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: As page 1 PAGE 2 of \mathcal{F}

Contract Serial No.

Greenwood Centre, Greenwood S29994-2 Place, Camden, London

SCHEDULE OF LABORATORY TESTS

Bh./ Tp No.	Sample Ref	Depth (from)		100:8	501.Ph 102:	ate y	lue lue lue lue lue lue lue lue lue lue	(2.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	Water Sul Sul Cid	L SOLUT	er control	mate ulph sient sient	Det P	repar Limit	ation ation	0.10							Rem			
<i>i</i> S101	D1	1.60	*	*	*	*	+					<u> </u>											Nem	iark\$		
IS102	D1	0.90	*	*	*	*	*	+	*	*	; · -			!	†	. —		İ			_					
	D2	1.90	*	*				*						-				:								
	D3	2.90	*	*	*	ļ		*	*						İ											
	D4	4.00	*	*				*										T .	_							
	D6	5.80	*	*		*	*	*	*														•			
-		-	6	6	3	3	3	5	3	1												< Total	i Numi	per of	Test	s —
																						<u> </u>				
								ļ	! }																· ·	
		<u> </u>							L.							ļ Ļ				<u></u>						
			<u> </u>				<u> </u>		ļ																	
			L										<u></u>							<u></u>	i					
			ļ	-			<u> </u>	_			:				!			<u> </u>	<u> </u>							
	! }		L		<u> </u>			ļ ļ																		
									<u> </u>				!	<u> </u>	ļ		<u> </u>			<u> </u>	<u>L</u> .					
	<u> </u>		L.			1		ļ		ļ																.
			<u> </u>		ļ		ļ					<u>L</u>									ļ					
			<u> </u>						!	<u> </u>	ļ	<u> </u>			<u> </u>	: 										
		· 	<u> </u>	ļ	<u> </u>							-					퇶.		ļ							
	·		igspace	7				ļ <u>.</u>	į_			ļ <u>.</u>	_	<u> </u>				<u> </u> 								
	<u> </u>		<u> </u>	ļ —				ļ			:		ļ		:					<u> </u>	ļ					
	_	ļ <u>.</u>	-	 -	<u> </u>		:	-	ļ. <u></u>					ļ	-					1						<u>.</u> .
	<u> </u>	<u> </u>		1	<u> </u>		<u> </u>	-	<u> </u>		 				<u> </u>	ļ	_									
	Ì		-	1		 					-					ļ										
	 				ļ		_	-	<u> </u>	<u> </u>			i	<u> </u>	_		-			<u> </u>	ļ	:				
	ļ			<u> </u>		-	_	<u> </u>		_		_		<u> </u>	_	_			-	<u> </u>	<u> </u>	<u> </u>				
		 -	-		!	<u> </u>	-	_		<u> </u>		<u> </u>			<u> </u>	-					_	<u> </u>				
	-		-				-	-	<u>i</u>	-					<u> </u>	1	_	ı	_		<u> </u>					
		<u> </u>	-	-		ļ. <u></u>	1	1		ļ <u>. </u>				<u> </u>		ļ_					<u> </u>					
	<u> </u>	<u>:</u>	1	<u>L</u>	i			<u>L</u>						1					<u>L_</u> .							
che	duled	by: 0	Geo	sp	hei	re	En	viı	on	mei	nta	ιl	Lto	đ.								Target	Da	te: 1	2/0	5/

ISSUED BY

: SOIL PROPERTY TESTING LTD.

PAGE 3 of 7 DATE OF ISSUE : As page 1

Contract

Serial No.

Greenwood Centre, Greenwood

529994-2

Place, Camden, London

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	 Plast.ic	Plast-	Ligu-	,	SAMPLE PR	EPARAT ION	ı		
Borehole/ Pit No.	Depth π.		Content (≰)		Limit (≴)	icity Index (%)	idity Index (%)	Method S/N	Ret'd 0.425mm (%)	Conn'd M/C <0.425mm	Ouring Time (hrs.)	Description	CLASS
WS102	0.90	D1	3.0	51	30	21	1.05*	Ø	42 (M)	52	24	MADE GROUND comprising dark grey and dark greyish brown slightly organic sandy clay, brick, mortar, concrete and glass fragments, fine and medium subangular and subrounded flint, rare ceramic fragments and decayed roots	МНО
WS102	1.90	D2	25	-	_	-						Soft yellowish brown slightly gravelly CLAY with occasional light brownish grey and light orangish brown mottling. Gravel is white, brown and grey fine and medium angular to subrounded gravel	
WS102	2.90	D3	22	57	23	34	-0.03	N	0 (A)		25	Stiff slightly fissured reddish yellow and dark grey CLAY with occasional grey and light orangish brown mottling	
W\$102	4.00	D4	28	-	-	-						Stiff slightly fissured brown CLAY with occasional grey and yellowish brown mottling	
WS102	5.80	D6	28	75	29	46	-0.02	N	0 (A)		24	Stiff slightly fissured yellowish brown CLAY with occasional grey mottling and selenite crystals	cv

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

S = Wet Sieved Specimen N = prepared from Natural

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

METHOD OF TEST

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

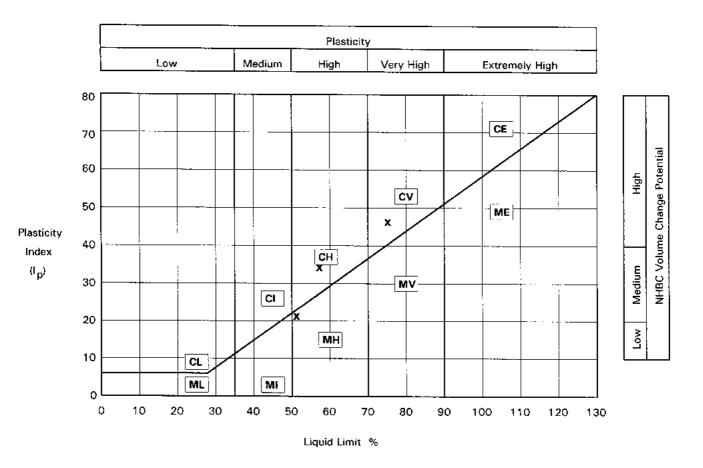
COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.

SPTR2CT

ISSUED BY : SOIL PROPERTY TESTING LTD.


PAGE 4 of 7 DATE OF ISSUE : As page 1

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-2

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: BS 1377: PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: 8\$ 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS\$930:1999:Figure 18

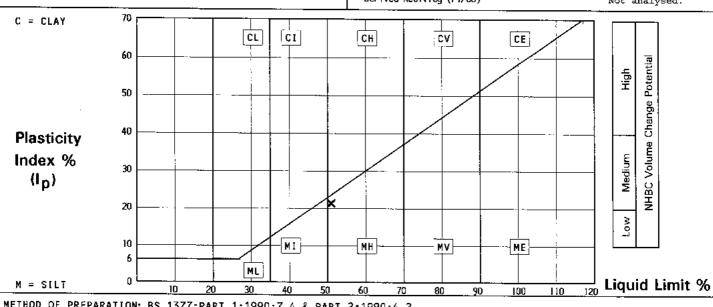
ISSUED BY : SOIL PROPERTY TESTING LTD.

PAGE 5 of 7 DATE OF ISSUE : As page 1

Contract

Serial No. Greenwood Centre, Greenwood S29994-2

Place, Camden, London


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content \$	Description	Remarks
WS102	0.90	Dl		MADE GROUND comprising dark grey and dark	"-
				greyish brown slightly organic sandy clay,	
				brick, mortar, concrete and glass fragments,	
				fine and medium subangular and subrounded flint, rare ceramic fragments and decayed	
		<u> </u>		flint, rare ceramic fragments and decayed	<u>L</u>
1				roots	

PREPARATION	oots	Liquid Unit.	51 💃
Method of Preparation Sieved Specimen		Plastic Limit	30 🔏
Sample retained 0.425 sieve (Measured)	42 🕱	Plasticity Index	21 \$
Corrected moisture content for material passing 0.425mm	52 🕺	Liquidity Index	1.05
Curing Time	24 Hours	Clay Content	Not analysed. %
	-		

Derived Activity (P1/CC)

Not analysed.

Change F

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

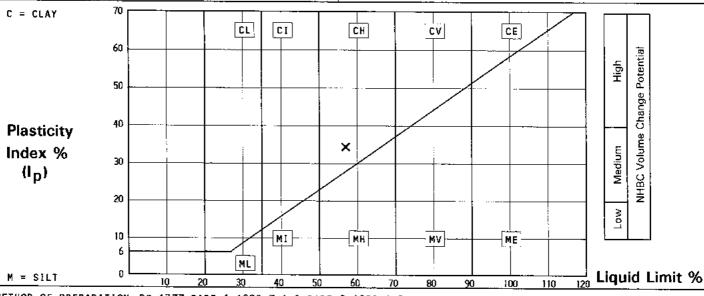
29% retained on 2mm sieve.

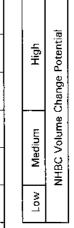
Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

: SOIL PROPERTY TESTING LTD.

PAGE 6 of } DATE OF ISSUE : As page 1

Contract Serial No. Greenwood Centre, Greenwood S29994-2


Place, Camden, London



DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Samp e	Moisture Content		Description		Remarks	<u>2007 (200 - 220</u>
WS102	2.90	D3	22		fissured reddish ye with occasional gremottling	and fine an	ly organic pock d medium gravel sibly fallen fr g sampling	L
	Р	REPARA	rion		Liquid Limit		.57	x
Method of Pr	eparation	Specimen fr	om Natural Soi	1	Plastic Limit		23	7
Sample retai	ned 0.425 siev	e (Assume	i)	o %	Plasticity Index		34	£
Corrected mo	isture content	for material	passing 0.425mm	x	Liquidity Index		-0.	03
Curing Time				25 Hours	Clay Content		Not analysed.	x

Derived Activity (PI/CC) Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377: PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

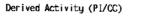
VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100) <1% gravel by dry mass picked out by hand and excluded from limits tests.

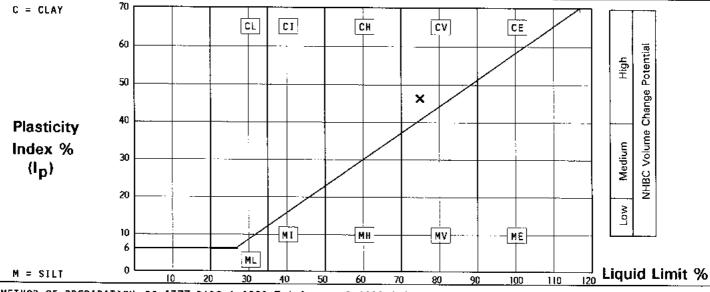
ISSUED BY : SOIL PROPERTY TESTING LTD.

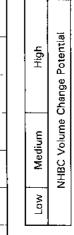
PAGE 7 of 7 DATE OF ISSUE : As page 1

Contract Serial No.

Greenwood Centre, Greenwood Place, Camden, London


S29994-2


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX


Borehole/ Pit No.	Depth m.	Sample	Hoisture Content X	Description	Renarks
WS102	5.80	D6		ightly fissured yellowish asional grey mottling and	Oven dried at a maximum of 80°C due to the presence of selenite

Curing Time	24 Hours	Clay Content	Not analysed. %
Corrected moisture content for material passing 0.425mm	*	Liquidity Jadex	-0.02
Sample retained 0.425 sieve (Assumed)	o %	Plasticity Index Liquidity Index	46 \$
Method of Preparation Specimen from Natural Soil		Plastic Limit	29 🕻
PREPARATION	_	Liquid Limit	75 🔏

Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

SPT Test Report No: \$29994-2 Appendix A

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report No.:

16-10366-1

Initial Date of Issue:

11-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire

PE29 6DG

Contact(s):

Jon Garner

Project

S29994-2 - Greenwood Centre,

Greenwood Place, Camden, London

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-2

Date Instructed:

05-May-2016

No. of Samples:

6

Turnaround (Wkdays):

O

: 5

Results Due:

11-May-2016

Date Approved:

11-May-2016

Approved By:

Details:

Keith Jones, Technical Manager

Results - Soil

London

<u></u>										
Client: Soil Property Testing		4.616	mestel	ol-Mor	16>10386	(6/1086)		#6#1086B	16-10366	16-10396
Quotation No.: Q16-06170	(hemte	st Sam	ple ID.:	289638	289639	289640	289641	289642	289643
Order No.: S29994-2		Clie	nt Samp	le Ref.:	WS101	WS102	WS102	WS102	WS102_	WS102
		Clic	ent Sam	ple ID.:	D1	D1	D2	D3	D4	D6
			Samp!	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	1.60	0.90	1.90	2.90	4.00	5.80
Paramiliano et l'assessione		241	. Inl. v	0000						
Moisture	N	2030	%	0.020	20	19	20	18	22	21
рН	ر	2010		N/A	8.3	8.5	8,0	8.1	8.3	8.1
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.065	0.019	< 0.010	0.061	0.34	0.72
Total Sulphur	U	2175	%	0.010	0.020	0.18				0.22
Sulphate (Acid Soluble)	כ	2430	%	0.010	0.025	0.15				0.55
Organic Matter BS1377	N	2930	%	0,10	0.90	2.1		0.90		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE: 19/05/16 PAGE 1 of 17 Pages

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

\$29994-3

CLIENT:

Geosphere Environmental Ltd. Brightwell Barns Brightwell Ipswich IP10 0BJ

Soil Property Testing Ltd.

15,16 & 18 Halcyon Court, St Margarets Way, Stukeley Meadows, Huntingdon, Cambs. PE29 6DG.

Telephone (01480) 455579 Fax (01480) 453619 Email enquiries@soilpropertytesting.com

SAMPLES SUBMITTED BY:

Geosphere Environmental Ltd.

APPROVED SIGNATORIES:

J.C.GARNER B.Eng (Hons.) FGS
Technical Director

S.P.TOWNEND FGS
Quality Manager

M.JOHNSTONE
Materials Lab Manager

SAMPLES TESTED BETWEEN 27/04/16 and 19/05/16

SAMPLES LABELLED:

DATE RECEIVED:

Greenwood Centre, Greenwood Place, Camden, London

REMARKS: For the attention of Lianne Fountain

Your reference 1655,GI

27/04/16

Chemical tests subcontracted to Chemtest - results

included as Appendix A to this Test Report

- NOTES: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.
 - 2 (a) UKAS United Kingdom Accreditation Service.
 - (b) Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.
 - 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.
 - 4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 2 of 17

Contract Serial No.

Greenwood Centre, Greenwood S29994-3

Place, Camden, London

SCHEDULE OF LABORATORY TESTS

Bh./ Tp No.	Sample Ref	Depth (from)	/	100:3	01Ph	ate ya	est.	(2:1) 12:50 12:01 13:11	wate ulden ulden ulden	tent siev 118.rr	ohron Dete Otal	adte Sold Sold	ation ation ation ation ation ation	onte	Lim nt nt nt nt nt nt nt nt nt nt nt nt nt	re le	813					Remarks
BH01	D3	4.00	*		*	*		*	*	*												
	D4	5.00	*	*	<u> </u> 	*			*	: *							i İ			İ		
	D5	6.00		ļ		*	*								_		<u> </u> 					
	D6	7.00				*			! }													
	UT1	7.50									*							_				
	D7	8,00	*	*		*			*	*												
	UT2	10.50									4											
	UT3	13.50				••••		i			*											·
	D13	14.00	*	*		!		<u> </u>		!												
	UT4	16,50									*	-	 									
	UTS	19.50			-			<u> </u>			*						İ			. <u></u> İ		
	UT6	22.50	† —			–					*								 	<u> </u>		
	UT7	25.00	<u> </u>		·	 					*								 !			
-	-	-	4	4	ı	5	2	1	3	3	7	 										< Total Number of Tests
								-														——————————————————————————————————————
								•														
						•			T .												- -	
						İ							; 									
				ļ—	j <i>-</i>	1			1	Ì								T "		i		
	<u> </u>	 	† <u> </u>	<u> </u>													<u> </u>					!
			† -	-											_	_						
	ļ. — — ·	1	1										-	<u> </u>		İ					! :	
										<u> </u>												_
						 	 	 			· —								<u> </u>		<u> </u>	
						 		Τ.	 	 					:				<u> </u>	 -		1-02
								-	 	 		 -								⊢ 		
			\vdash		-				+-	<u> </u>	<u> </u>		Ī	†								
							 	+		<u> </u>									<u></u> -	_		
			\vdash				 	+	<u>. </u>	+ .	-	L									<u> </u>	
	 	 	†-	 	+	+	!	-	<u> </u>							<u> </u>		 	Ţ.—			
 	i	by: (L	١	L	ـــــــــــــــــــــــــــــــــــــ		⊥	л —	L	·									L		Target Date: 12/05/1

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE J of 17

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

PLASTICITY INDEX AND LIQUIDITY INDEX

			Moisture	Liquid	Plastic	Plast-	Ligu-	SAMPLE PREPARATION					
Borehole/ Pit No.	Depth m.	Sample	Content (%)		Limit (%)	icity Index (%)	idity Index (%)	Method S/N	Ret'd 0.425mm (%)	Corr¹d N/C <0.425mm	Curing Time (hrs.)	Description	CLASS
вно1	4.00	D3	20	62	22	40	0.25*	S	37 (M)	32	28	Firm brown slightly sandy slightly gravelly CLAY. Gravel is black, brown and white fine to coarse angular to subrounded	CH
BH01	5.00	D4	30	-	-	_			:			Stiff dark yellowish brown CLAY with occasional bluish grey mottling, rare selenite crystals and decayed roots.	-
вноі	6.00	DS	30	76	29	47	0.02	N	(A) 0		27	Stiff dark yellowish brown CLAY with rare bluish grey mottling, rare decayed roots and selenite crystals	CA
вно1	7.00	D6	29	-	-	-						Stiff dark yellowish brown CLAY with rare bluish grey mottling, selenite crystals and decayed roots.	-
BH01	8.00	D7	30									Stiff fissured dark yellowish brown CLAY	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2 S = Wet Sieved Specimen

N = prepared from Natural

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY

: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter. A = Assumed, M = Measured

COMMENTS

REMARKS TO INCLUDE

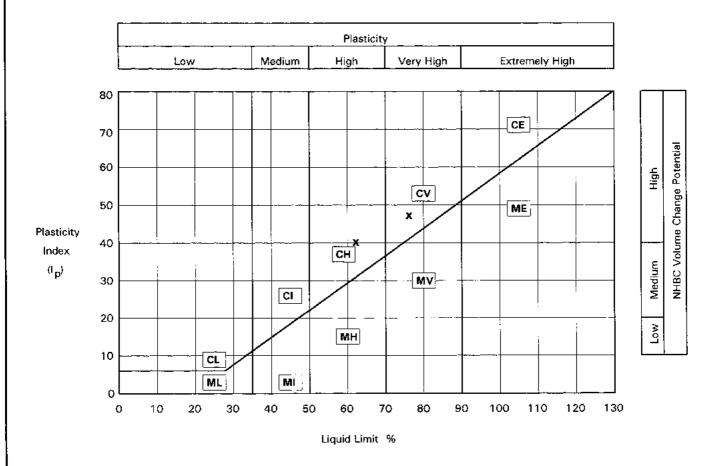
: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 4 of 1}

Contract


Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT **USING CASAGRANDE CLASSIFICATION CHART**

METHOD OF PREPARATION: 8S 1377:PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: VOLUME CHANGE POTENTIAL: NHEC Standards Chapter 4.2 Unmodified Plasticity Index

PLASTICITY CHART BS5930:1999:Figure 18

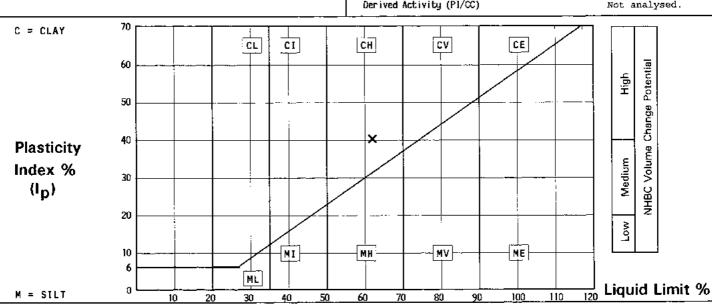
: SOIL PROPERTY TESTING LTD. ISSUED BY

DATE OF ISSUE : As page 1 PAGE 5 of (7

Contract

Greenwood Centre, Greenwood Place, Camden, London

Serial No. S29994-3


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit No.	Depth m.	Sample	Moisture Content:	Description	Remarks
BH01	4.00	D3		Firm brown slightly sandy slightly gravelly CLAY. Gravel is black, brown and white fine to coarse angular to subrounded	

PREPARATION			Liquid Limit	62 X
Method of Preparation Sieved Specimen			Plastic Limit	22 🕱
Sample retained 0.425 sieve (Measured)	37	×	Plasticity Index	40 \$
Corrected moisture content for material passing 0.425mm	32	×	Liquidity Index	0.25
Curing Time	28	Hours	Clay Content	Not analysed. 🕉
· · · · · · · · · · · · · · · · · · ·				

Derived Activity (PI/CC)

Not analysed.

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4 & PART 2:1990:4.2

: BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4 METHOD OF TEST

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHEC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

31% retained on 2mm sieve.

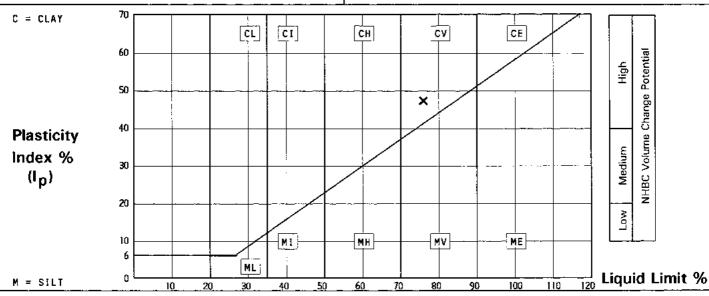
Corrected moisture content and calculated liquidity index assume material greater than 0.425mm

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 6 of 17

Contract Serial No.

Greenwood Centre, Greenwood S29994-3 Place, Camden, London


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX

Borehole/ Pit Mo.	Depth m.	Sample	Moisture Content X	Description	Remarks
BH01	6.00	D5		•	Oven dried at a maximum of 80°C due to the presence of selenite

PREPARATION		Liquid Limit	76 🕏
Method of Preparation Specimen from Natural Soil		Plastic Limit	29 🔏
Sample retained 0.425 sieve (Assumed)	o %	Plasticity index	47 🛣
Corrected moisture content for material passing 0.425mm	*	Liquidity Index	0.02
Curing Time	27 Hours	Clay Content	Not analysed. %

Derived Activity (PI/CC)

Not analysed.

METHOD OF PREPARATION: BS 1377; PART 1:1990:7.4 & PART 2:1990:4.2

METHOD OF TEST : BS 1377:PART 2:1990:3.2, 4.3, 5.3, 5.4

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : PLASTICITY CHART BS5930:1999:Figure 18

VOLUME CHANGE POTENTIAL: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

NOTE: Modified Plasticity Index I'p = Ip x (% less than 425 microns/100)

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 7 of 17

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF DENSITY, MOISTURE CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Bonehole/	Depth	Sample	Moisture Content	Bulk Density	Dry	1	Deviator Stress	Shear Stress		CIRCLE Lysis	Description
Pit No.	Π.	Sampre	(%)	(Mg/m ³)		(kPa)	(kPa)	(kPa)	Cu (kPa)	Ø (degrees)	•
BH01	7.50	UT1	30	1.97	1.52	149	205	103			Stiff (High strength) fissured yellowish brown CLAY with occasional greyish brown and grey mottling and selenite crystals
вно1	10.50	UT2	28	1.99	1.55	209	287	144			Stiff (High strength) fissured yellowish brown and brown CLAY with occasional dark grey mottling and selenite crystals
вн01	13.50	UT3	29	1.98	1.53	272	291	145			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling and rare orange staining
BH01	16.50	UT4	29	1.99	1.54	332	249	125			Stiff (High strength) fissured dark greyish brown CLAY with occasional dark grey mottling
вноі	19.50	UT5	28	1.98	1.55	392	323	161		; ;	very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling and rare shell fragments
вН01	22.50	UT6	28	2.00	1.56	452	522	261			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling
BH01	25.00	UT7	27	2.00	1.57	500	509	255			Very stiff (Very high strength fissured dark greyish brown CI with occasional dark grey mottling

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.4.2 & 8 PART 2:1990:7.2 PART 7:1990:8.3

METHOD OF TEST

: BS 1377:PART 2:1990:3 Determination of Moisture Content 1990:7 Determination of Density :PART 7:1990:8 Undrained Shear Strength 1990:9 Multi-stage test

TYPE OF SAMPLE KEY

Note Multi-stage test used when specimen has granular content / behaviour and length of specimen precludes the taking of 3 x 100mm dia by 200mm long specimens.

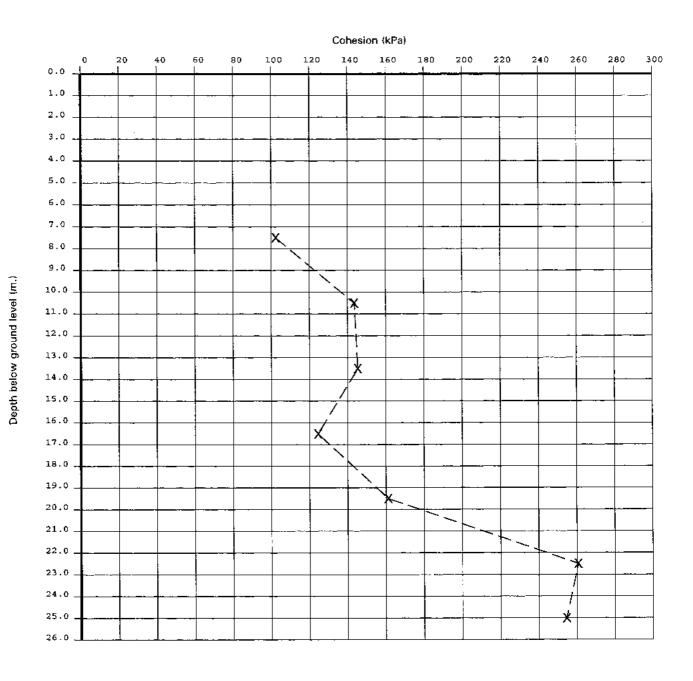
U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110 deg C.


ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 8 of 17

Contract Serial No.

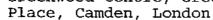
Greenwood Centre, Greenwood S29994-3 Place, Camden, London

Cohesion (kPa) vs Depth below ground level (m.).

	X : BH01				
Key to					
Data Points			 	 	
	<u> </u>	 		 	

ISSUED BY

: SOIL PROPERTY TESTING LTD.


PAGE 9 of 17 DATE OF ISSUE : As page 1

Contract

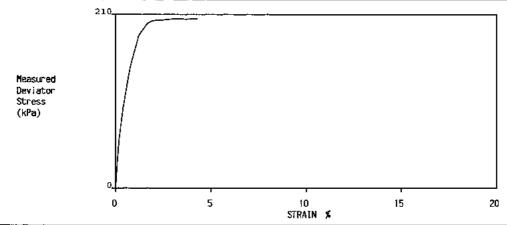
Serial No.

Greenwood Centre, Greenwood

S29994-3

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample		Description		Remarks		
вно1	7.50		Stiff (High strength) foccasional greyish browerystals	Strong solvent/hydrocarbon odour. Oven dried at a maximum of 80°C due to the presence of selenite				
Initial	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density Mg∕m ³	
	7.54	199,9	103.6	3317	30	1.97	1.52	


TEST INFORMATION

Rate of Strain

≴ per Min

Rubber Membrane Thickness

0.3

	Measured Cell Pressure	Strain at Failure	Stress Corr	ections (kPa)	Corrected Max. Deviator Stress	Shear Stress Cu	Mohrs Circle Analysis
Specimen at Failure	Specimen at Failure	(%)	Rubber Membrane	Piston Friction	Ø1+Ø3 (k₽a)	%(01-03) _f (kPa)	Cu (kPā) PHJ "
	149	3.3	0.2	/	205	103	

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE

: Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

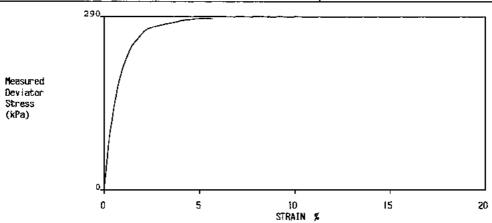
DATE OF ISSUE : As page 1

PAGE (O of)

Contract

Serial No.

Greenwood Centre, Greenwood


Place, Camden, London

S29994-3

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample			Remarks Oven dried at a maximum of 80°C due to the presence of selenite			
вно1	10.50	UT2		(High strength) f. with occasional data				
Initial Specimen Depth of Top of Specimen (m)		Height mm		Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m 3	Dry Density Mg/m ³
	10.54	184.6		103.6	3091	28	1.99	1.55
TEST INFORMA	TION	<u> </u>	Rate of	Strain 0.9 %	per Min Rubber M	L Membrane Thickness		0.3 mm

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Cu
Specimen at Failure	Ø3 (kPa)	(%)	Rubber Nembrane	Piston Friction	(KPa) (KPa
	209	5.5	0.4	/	287 144

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (of)

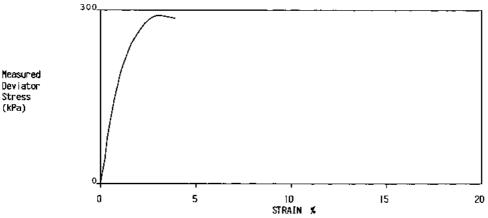
Contract

Serial No.

Greenwood Centre, Greenwood

Place, Camden, London

S29994-3



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

orehole/ it No.	Depth m.	Sample		Remarks			
вно1 13.50			Stiff (High strength) f with occasional dark gr staining				
Initial Specimen Depth of Top of		Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m ³	Dry Density Mg/m ³
	Specimen (m)	199.9	103.4	3330	29	1,98	1.53

TEST INFORMATION Rate of Strain 0.9 术 per Min | Rubber Membrane Thickness 0.3 mm

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress	Shear Stress Gu	Mohrs Circle Analysis
Specimen at Failure	σ3 (kPa)	(\$)	Rubber Membrane	Piston Friction	Ø1 − Ø3 (kPa)	%(<i>0</i> 1 - <i>0</i> 3) ₄ (kPa)	Cu (KPa) PHI
	272	3.1	0.2	/	291	27 0	

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE 12 of ()

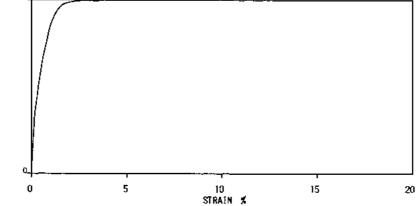
Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London



DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

rehale/ t No.	Depth m.	Sample		Renarks			
BH01 16.50			iff (High strength) f				
	Specimen Depth of Top of Specimen (m)	Height mm	Diameter om	Weight 9	Moisture Content	Wet Density Mg∕m	Dry Density Mg/m ³
	16.56	170.2	103.6	2849	29	1.99	1.54

250 Measured Deviator Stress

	Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Sheer Stress Mohrs Circle Analysis.
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	01-03 (kPa) Cu (kPa) PHI *
	332	2.5	0.2	,	249 125

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990;8 Definitive Method. 1990:9 Multi-stage loading

(kPa)

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation,

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

: SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1

PAGE () of ()

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Borehole/ Pit No.	Depth m.	Sample		Remarks			
BH01	19.50		Very stiff (Very high a brown CLAY with occasion shell fragments				
Initia	Specimen Depth of Top of Specimen (m)	Height mm	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m 3	Ory Density Mg/m ³
	specimen (iii)						"

Measured Deviator (kPa)

ı				_		
		Measured Cell Pressure	Strain at Failure	Stress Corre	ections (kPa)	Corrected Max. Shear Stress Mohrs Circle Analysis Deviator Stress Ou Mohrs Circle Analysis
	Specimen at Failure	cimen at Failure	(%)	Rubber Membrane	Piston Friction	
		392	2.7	0.2	/	323 .161

10

STRAIN X

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

15

20

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

: SOIL PROPERTY TESTING LTD.

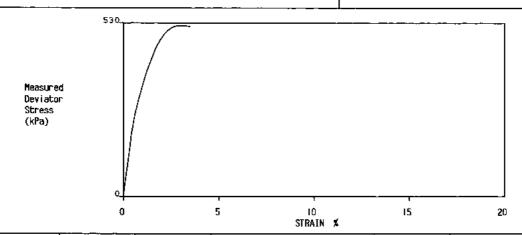
DATE OF ISSUE : As page 1

PAGE (4 of ()

Contract

Serial No.

Greenwood Centre, Greenwood


S29994-3

Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

Depth m.	Sample		Description	Remarks		
22.50						
pecimen epth of op of	Height mm	Diameter mm	Weight 9	Moisture Content	Wet Density Mg/m ³	Dry Density Mg/m ³
22.72	155.3	103.6	2618	28	2.00	1.56
	m. 22.50 pecimen epth of op of pecimen (m)	pecimen Height mm pecimen (m)	pecimen Height Diameter mm Diameter mm 155.3 103.6	Description 22.50 UT6 Very stiff (Very high strength) fissured brown CLAY with occasional dark grey mode brown of the pecimen (m) Pecimen Height mm g Diameter Weight mm g 155.3 103.6 2618	Description 22.50 UT6 Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling pecimen epth of op of pecimen (m) 155.3 Diameter Meight Content Content Meight Content Meight Content Meight Moisture Content Meight Moisture Content Meight Moisture Content Meight Moisture Content Meight Moisture Content Meight Moisture Content Meight Moisture Meight Moisture Content Meight Moisture Meight Meight Moisture Meight Moisture Meight Meight Moisture Meight Meigh	Description Remail 22.50 UT6 Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling pecimen epth of op of pecimen (m) 155.3 103.6 Description Remail Moisture Content Density Mg/m 3

	Measured Cell Pressure	Strain at Failure	Stress Corrections (kPa)		Stress Corrections (kPa)		Corrected Max. Sheer Stress Mohrs Circle Analysis Deviator Stress Gu
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Nembrane	Piston Friction	$\sigma_1 - \sigma_3 > (\sigma_1 - \sigma_3)_f$ Car (kPa) PHI σ_1		
	452	2.9	0.2	/	522 261		

METHOD OF PREPARATION: BS 1377:PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY

: SOIL PROPERTY TESTING LTD.

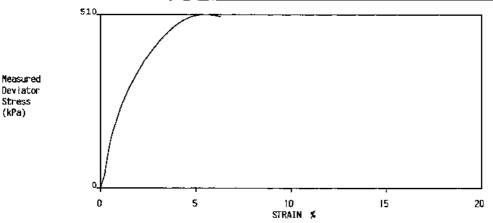
DATE OF ISSUE : As page ! PAGE (of ()

Contract

Serial No.

Greenwood Centre, Greenwood

S29994-3


Place, Camden, London

DETERMINATION OF UNDRAINED SHEAR STRENGTH

IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

orehole/ it No.	Depth m.	Sample		Renai	Remarks				
BH01	25.00		Very stiff (Very high strength) fissured dark greyish brown CLAY with occasional dark grey mottling						
Initial Specimen Depth of Top of Specimen (Ta)		Height mm	Diameter mm	Weight 9	Moisture Content %	Wet Density Mg/m ³	Dry Density Mg/m ³		
	Specimen (m)	199.6	103.6	3355	27	2.00	1.57		

	Measured Cell Pressure	Strain at Failure	Stress Corrections (kPa)		Corrected Max. Deviator Stress	Shear Stress Cu	Mehrs Circle Analysis
Specimen at Failure	σ 3 (kPa)	(%)	Rubber Membrane	Piston Friction	Ø1 - Ø3 (kPa)	½(σ1 - σ3) ₍ (kPa)	Cu: (kPa) PHI
	500	5.3	0.4	/	\$09	255	

METHOD OF PREPARATION: BS 1377: PART 1:1990:

METHOD OF TEST

: BS 1377:PART 7:1990:8 Definitive Method. 1990:9 Multi-stage loading

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS

: Tested in Vertical Orientation.

UKAS Calibration - loads from 0.2 to 10kN.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE 16 of 17

Contract Serial No.

Greenwood Centre, Greenwood

S29994-3

Place, Camden, London

DETERMINATION OF THE SULPHATE CONTENT OF SOIL AND GROUNDWATER

Borehole/	Depth		Concentra S	tion of Solub oil		%iofsample	Description	
Pit No.	m.	Sample	Acid Soluble S03 \$	Mater Soluble 2:1 S03 q/1	Groundwater 9/1	passing 2mm sieve	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Remarks
BHO1	14.00	D13		0:72		100	Very stiff dark grey CLAY	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7.5 BS1377:PART 3:1990:5.2 Acid Soluble, 5.3 Soil/Water Extract

METHOD OF TEST : BS 1377:PART 3:1990:5.5 :5.4 Groundwater

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

ISSUED BY : SOIL PROPERTY TESTING LTD.

DATE OF ISSUE : As page 1 PAGE (Fof)?

Contract

Serial No.

Greenwood Centre, Greenwood Place, Camden, London

S29994-3

DETERMINATION OF THE pH VALUE

	I			RMINATION OF THE pH VALUE	<u> </u>
Borehole/ Pit No.	Depth m.	Sample	pH Value	Description	Remarks
BH01	14.00	D13	8.0	Very stiff dark grey CLAY	
		Ì			
				» «	
				a 	
				· *	
				· :	
				8	
				*	

METHOD OF PREPARATION: BS 1377:PART 1:1990:7 BS 1377:PART 3:1990:9.4

METHOD OF TEST : BS 1377:PART 3:1990:9.5

TYPE OF SAMPLE KEY : U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample,

C = Core Cutter

COMMENTS : Test not UKAS accredited.

REMARKS TO INCLUDE : Sample disturbance, loss of moisture, variation from test procedure, location and origin

SPT Test Report No.: S29994-3 Appendix A

Chemtest Ltd. Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report No.:

16-10383-1

Initial Date of Issue:

10-May-2016

Client

Soil Property Testing

Client Address:

18 Halycon Court St Margarets Way

Stukeley Meadows

Huntingdon Cambridgeshire PE29 6DG

Contact(s):

Jon Garner

Project

S29994-3 Greenwood Centre,

Greenwood Place

Quotation No.:

Q16-06170

Date Received:

05-May-2016

Order No.:

S29994-3

Date Instructed:

05-May-2016

No. of Samples:

3

Turnaround (Wkdays):

Results Due:

11-May-2016

Date Approved:

10-May-2016

Approved By:

Details:

Martin Dyer, Laboratory Manager

Project: S29994-3 Greenwood Centre, Greenwood Place

Client: Soil Property Testing		Cha	nteet d	ob Noxi	/(6:10383)	16:10084	18-10383
Quotation No.: Q16-06170	,	Chemte	st Sam	ple ID.:	289700	289701	289702
Order No.: S29994-3		Clie	nt Samp	le Ref.:	BH01	BH01	BH01
		Clie	ent Sam	ple ID.:	D3	D4	D7
			Sampl	e Type:	SOIL	SOIL	\$OIL
· · · · · · · · · · · · · · · · · · ·			Top De	oth (m):	4.00	5.00	8,00
Determinant de la la la la la la la la la la la la la	Accres	SOP	1900	MAN S			
Moisture	N	2030	%	0.020	15	22	22
pH	U	2010		N/A	8.2	7.9	8.0
Sulphate (2:1 Water Soluble) as SO4	Ų	2120	g/t	0.010	0.35	1,4	0,51
Total Sulphur	U	2175	%	0.010	0.080	0.85	0.060
Sulphate (Acid Soluble)	U	2430	%	0.010	0.24	1.5	0.14
Organic Matter BS1377	N	2930	%	0.10	0.90		

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenois

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

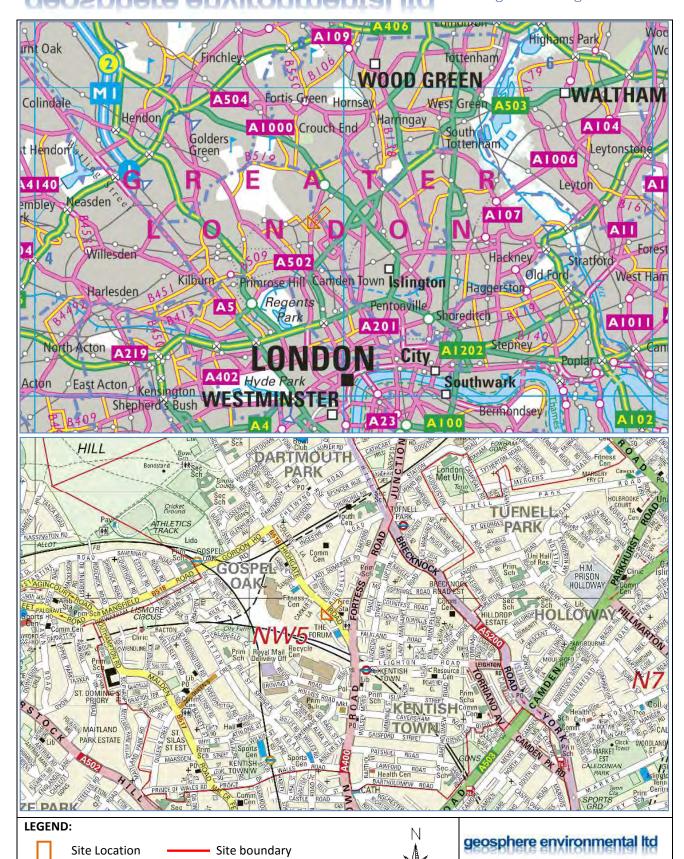
- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage


If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

APPENDIX 8 - DRAWINGS

Site Location Plan – Drawing ref. 1655,GI 001/Rev 0
Site Plan – Drawing ref. GIS001 – A

Exploratory Hole Location Plan – Drawing ref. 1655,GI 002/Rev 0

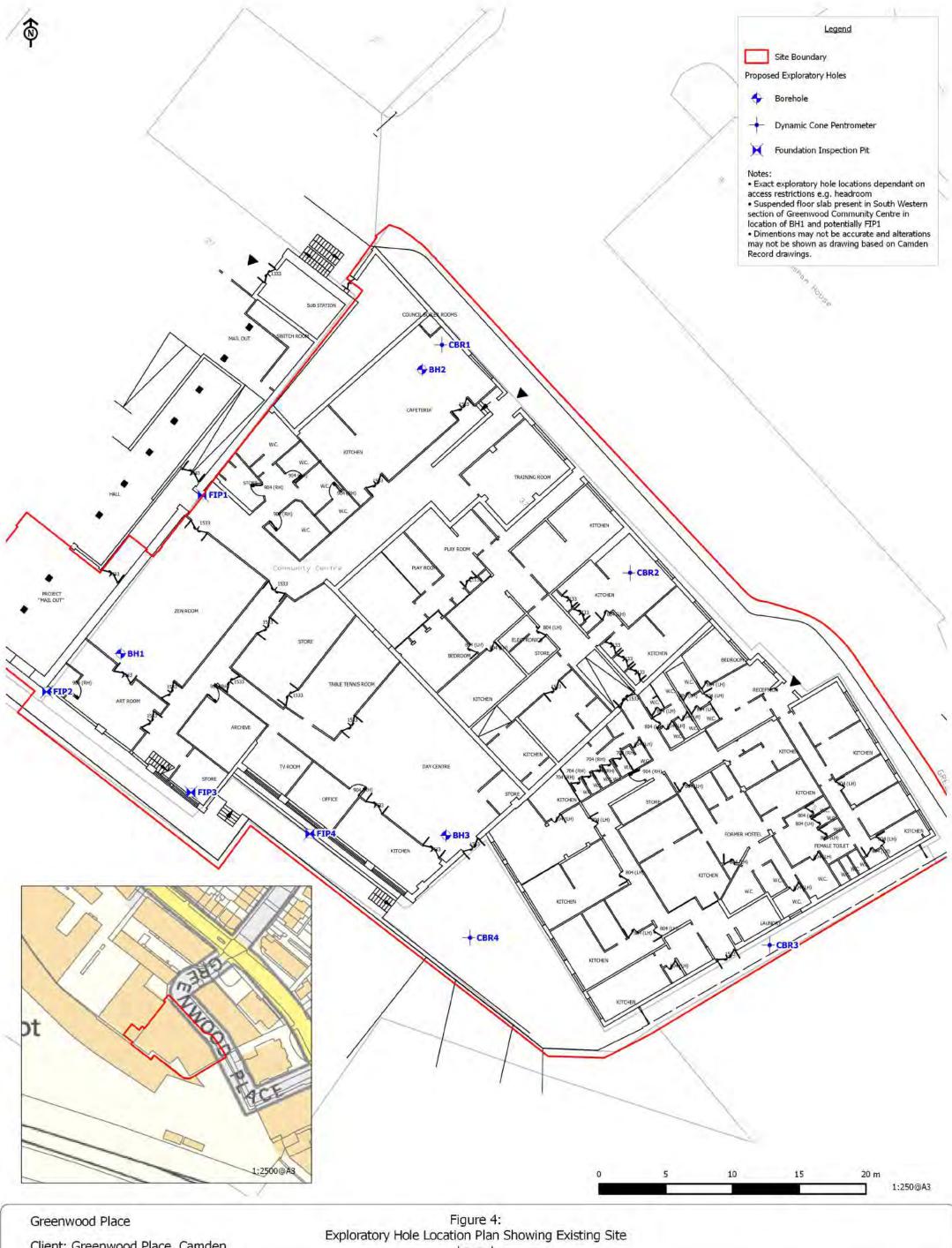
Proposed Development Plan – Drawing ref. 1213 PL 002/Rev B

TITLE
Site Location Plan
CLIENT
Kier Construction Ltd

REPORT NO. 1655,GI DRAWN BY LF DRAWING NO. 001 / Rev 0 CHECKED

T 01603 298 076

Brightwell,


June 2016
SCALE
Not to scale

F 01603 289 075

Suffolk, IP10

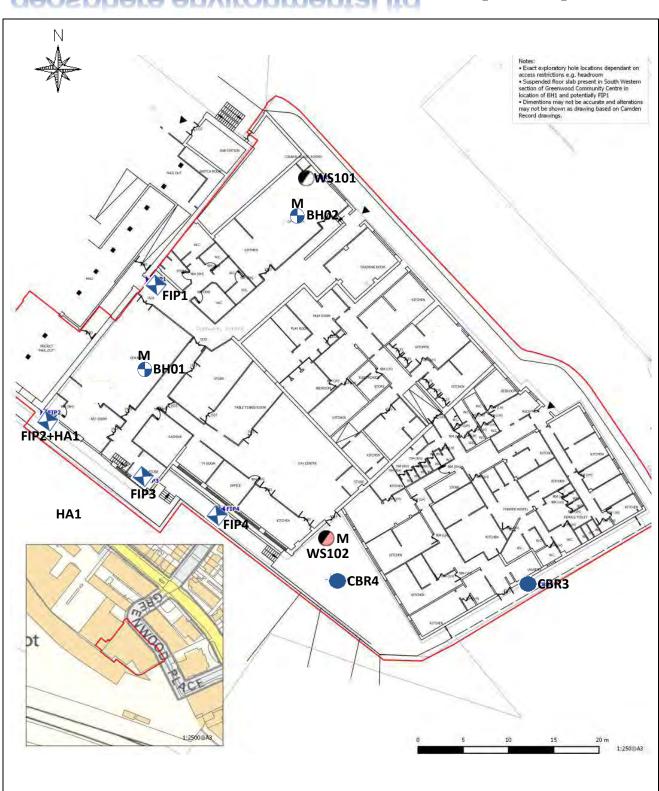
E info@geosphere-environmental.co.uk

0BJ

Client: Greenwood Place, Camden

Layout

Scale: 1:250@A3, Insert@1:2500
CampbellReith OS Copyright: © Crown copyright. All rights reserved. Licence number 100020027
Existing Layout plan provided by PCK Architects, drawing number PL 150 (Feb 2013)
Job Number: 12219
Drawn by - Checked by: RC - JHC
Drg No - Status/Revision: Rislorus: N:12250 - 12274\12291 R - The Greenwood Centre\Project_Workspaces (pdf in Outputs)
Date (Revision History): 05/01/2016 (A, First Issue, 06/01/15, RC)


CampbellReith

LONDON 020 7340 1700 □ □ MANCHESTER 0161 819 3060

REDHILL 01737 784 500 図 □ BIRNINGHAM 01675 467 484

BRISTOL 0117 916 1066 □ □ DUBAI 00 971 4453 4735

www.campbellreith.com

LEGEND:

Site boundary

Window sample location

Window sample and dynamic probe location

Monitoring well

Foundation pit location

Hand auger location

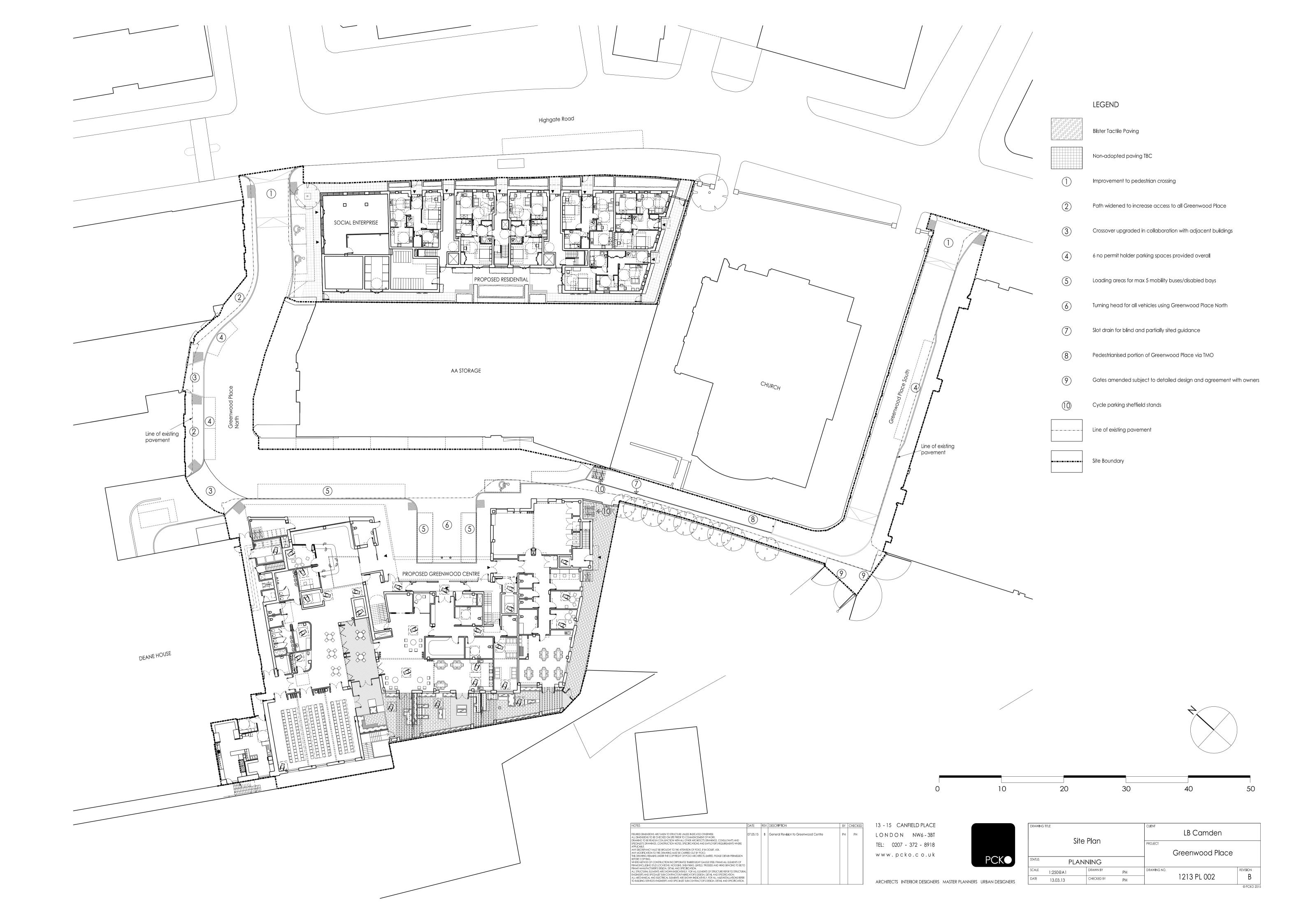
CBR Test pit location

Borehole location

NOTE: Drawing based upon Campbell Reith drawing, ref. GIS001 - A

geosphere environmental ltd

Brightwell **Ipswich** Brightwell, Suffolk, IP10 OBJ T 01603 298 076 F 01603 289 075 E info@geosphere-environmental.co.uk


SHE
Greenwood Centre,
Greenwood Place, Camden,
London, NW5 1LB

TITLE
Exploratory Hole Location Plan
CLIENT
Kier Construction

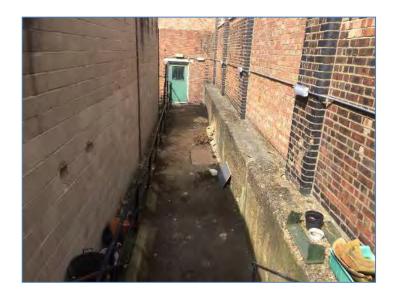
REPORT NO.
1655,GI
DRAWN BY
LF

DRAWING NO.						
002 / Rev 0						
CHECKED						
SG						

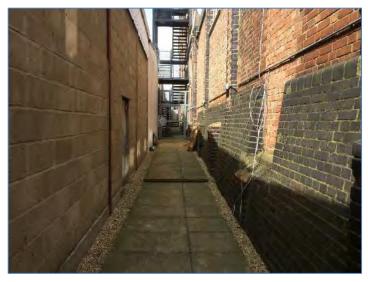
DATE					
June 2016					
SCALE					
Not to scale					

APPENDIX 9 - PHOTOGRAPHS

Position BH02 within the north of the site


Photograph 2

Garden area within the south of the site, location of CBR4 and WS102



Photograph 3

Basement of the structure, located within the south west of the site

Back passageway leading from the garden area toward the basement. FIP4 located toward the centre of the photo

Photograph 5

Back passageway leading toward Deane House. FIP2 located closed to metal gate

Photograph 6

Side passageway in the south east of the site. CBR 3 located toward the centre of the photograph

Ground conditions encountered within WS101 (position CBR1)

Photograph 8

Ground conditions encountered within WS102

Photograph 9

Foundation Inspection Pit 1 (FIP1)

Ground conditions within FIP1, continued backfill of material encountered

Photograph 11

Foundation Inspection Pit 2 (FIP2)

Photograph 12

Foundation Inspection Pit 3 (FIP3)

Investigate design resolve

Page 5 of 5

geosphere environmental Itd

Photograph 13

Foundation exposure within FIP3

Photograph 14

Foundation Inspection Pit 4 (FIP4)

This page is blank