

Energy & Sustainability Statement

13 - 15 John's Mews London WC1N 2PA

11th July 2017

Prepared for:

JM13 LTD

eb7 Ltd, Studio 1B, 63 Webber Street, London, SE1 0QW | 020 7148 6290 | info@eb7.co.uk | www.eb7.co.uk

e'J°

Contents

- 1 Site & Proposal
- 2 Baseline Energy results
- 3 Design for Energy Efficiency "Be Lean"
- 4 Supplying Energy Efficiently "Be Clean"
- 5 Renewable Energy Options "Be Green"
- 6 Sustainable Development
- 7 Conclusions

Appendices

- A SAP TER Outputs Baseline Energy Use
- B SAP DER Outputs "Be Lean"
- C Sample Part G Water Use Calculations

1.0 The Site & Proposal

The proposed development is located at 13 - 15 John's Mews, London, WC1N 2PA.

The development site relates to two attached buildings (Nos.13 and 15 St John's Mews), 2 x two storey traditional mews buildings located on the western side of the mews and forming part of a terrace.

The proposals comprises of the part demolition, change of use and conversion from B1 garage/workshop/offices (B1) to create 4 x 2 bed flats (C3) with basement and mansard extensions.

1.1 Planning Context

The project sits within the London Borough of Camden (Camden) and specific planning guidance has been taken into account via a per-application consultation.

Specific advice was offered in response to the pre-application submission:-

Sustainability

Water and energy

London Plan policy 5.3 'Sustainable design and construction' removes requirements for the Code for Sustainable Homes but continues to require development to demonstrate that sustainable design standards are integral to the proposal, including its construction and operation.

The Council will continue to require the submission of a Sustainability Statement with applications for new residential development demonstrating how the development mitigates against the causes of climate change and adapts to the effects of climate change in line with existing policies contained in Camden's Core Strategy CS13 Tackling climate change through promoting higher environmental standards and Development Policies document DP22 Sustainable design and construction. Proposals should demonstrate how sustainable design and construction principles, including the relevant measures as set out in DP22 page 104, have been incorporated into the design and proposed implementation.

New residential development will be required to demonstrate that the development is capable of achieving a maximum internal water use of 105 litres per person/day, with an additional 5 litres person/day for external water use.

The Council will continue to apply policies which require compliance with energy performance standards until the Planning and Energy Act 2008 has been amended (likely late 2016). The Code Level 4 equivalent in carbon dioxide emissions reduction below part L Building Regulations 2013 is 20%. New residential dwellings will be required to demonstrate how this has been met by following the energy hierarchy in an energy statement.

Please note that policy CS13 also requires that all developments (existing and new build) achieve a 20% reduction in on-site carbon dioxide emissions through renewable technologies, unless demonstrated that such provision is not feasible.

Based on this, a sustainability statement and water efficiency should be submitted with any future applications.

1.2 Current Planning Policy

Since the date of the pre-application advice the new Local Plan was adopted by Camden on 3rdJuly 2017 and has replaced the Core Strategy and Camden Development Policies documents as the basis for planning decisions and future development in the borough.

Therefore the key policies taken into account when compiling this report are:-

- London Plan Policy
- Camden Local Plan 2017 Chapter 8 (key policies reproduced below)
- Camden's CPG 3 Sustainability

Camden's Local Plan, Chapter 8 - Sustainability and Climate Change

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;

b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;

c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;

d. support and encourage sensitive energy efficiency improvements to existing buildings;

e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and

f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;

h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and

i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

Policy CC2 Adapting to climate change

The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation measures such as:

a. the protection of existing green spaces and promoting new appropriate green infrastructure;

b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;

c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and

d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Any development involving 5 or more residential units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainability Statement.

Sustainable design and construction measures

The Council will promote and measure sustainable design and construction by:

e. ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;

f. encourage new build residential development to use the Home Quality Mark and Passivhaus design standards;

g. encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM domestic refurbishment; and

h. expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019.

1.3 The London Plan

On 10 March 2015, the Mayor published (i.e. adopted) the Further Alterations to the London Plan (FALP). From this date, the FALP are operative as formal alterations to the London Plan (the Mayor's spatial development strategy) and form part of the development plan for Greater London; further updates to The London Plan – not relevant to this report – were adopted in 2016

Chapter 5 deals with London's Response to Climate Change and covers areas such as climate change - minimising energy; (see Policy 5.2 below), sustainable use of water, aggregates and other resources, reducing air and water pollution, managing flood risk and sustainable urban drainage systems, conserving and enhancing the natural environment and promoting sustainable waste behaviour.

Of particular significance is Policy 5.2 Minimising Carbon Dioxide Emissions, which requires:-

e J

Development proposals should make the fullest contribution to minimising carbon dioxide emission in accordance with the following energy hierarchy:

- 1 Be lean: use less energy
- 2 Be clean: supply energy efficiently
- 3 Be green: use renewable energy

As part of this assessment, it must consider unregulated energy use not covered under the Building Regulations at each stage of the Energy Hierarchy i.e. cooking and appliances and use of equipment.

In March 2016, the Mayor's office published "Energy Planning - Greater London Authority guidance on preparing energy assessments"

This document formally introduces the principle of zero carbon hoes from 1st October 2016 and confirmed that "the London Plan policy seeking 'zero carbon' homes remains in place and was not changed by the recent Minor Alterations to the London Plan."

'Zero carbon homes are defined as homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site. The remaining regulated carbon dioxide emissions, to 100 per cent, are to be off-set through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

Accordingly, this report is guided by and reports against the above noted required standards, however, it should be noted that the project at 13-15 Johns Mews would not be considered major development.

2.0 Baseline Energy Results

In order to consider the project against the London Plan Energy Hierarchy, this report will first establish the "Baseline" energy consumption.

2.1 Dwelling created via change of use/conversion

The new dwellings created as part of the conversion/extension of the existing office building will be considered against the Building Regulations AD L1B; Accordingly, the energy requirements for space heating, water heating and ventilation for the dwellings within the existing structure have been calculated using the Standard Assessment Procedure 2012 (SAP) in line with Part L1B of the Building Regulations 2013 and the Domestic Heating Compliance Guide 2nd Edition.

The baseline building results have been calculated and are presented in Table 4 below. They have been compiled assuming basic compliance with the building regulations as set out below:-

Element	AD L1B U -Value Standard
Retained Walls (where upgraded)	0.30
New Walls	0.28
Retained/New Roof - pitched	0.16
Retained/New Roof - flat	0.18
Floors	0.22
Windows	1.6
Doors	1.8
Air permeability	15m ³ /Hr/m ²

Table 1 - AD L1B Elemental Standards

The replacement of/new controlled services are governed by the Compliance Guides:-

Table 2 – AD L1B - Controlled services and fittings

Controlled Service	AD L1B Compliance
	Requirement
Mains Gas Boiler	86% Efficient
DHW	150I tank with 35mm
	Foam insulation
Controls	Programmer, Stat,
	TRVs & Interlock
Lighting	N/A

The baseline un-regulated energy uses for cooking & appliances in the residential units have been calculated using the SAP Section 16 methodology; the same calculation used for Code for Sustainable Homes (CfSH) Ene 7.

Appliances = $E_A = 207.8 \text{ X} (TFA \text{ X N})^{0.4714}$ Cooking = (119 + 24N)/TFA

N= no of occupant SAP table 1B

TFA – Total Floor Areas

The unregulated energy use per sqm is summarised in Table 3 below

Unit	Unregulated Energy Use
	Kg/sqm
Flat 1	15.08
Flat 2	15.13
Flat 3	15.29
Flat 4	15.23

Table 3 – Unregulated Energy Use

The un-regulated emission rates are added to the baseline regulated emission rates (as calculated above) in order to set the total baseline emission rates before then applying the energy hierarchy in line with The London Plan and Camden Local Plans policies: -

Table 4 – Baseline energy consumption and CO2 emissions

Unit	Baseline Emission	Unregulated Energy	Total baseline	Total baseline
	(regulated energy	Use	emissions	emissions
	use)			
	Kg/sqm	Kg/sqm	Kg/sqm	Kg
Flat 1	32.38	15.08	47.46	4617.80
Flat 2	34.29	15.13	49.42	4543.81
Flat 3	31.49	15.29	46.78	3567.81
Flat 4	27.49	15.23	42.72	3488.19
Total				16217.61

The baseline SAP DER outputs are attached at **Appendix A** confirming the above tabulated data.

3.0 Design for energy efficiency

The first step in the Mayor's 'Energy Hierarchy' as laid out in Section 5 of The London Plan requests that buildings be designed to use improved energy efficiency measures – Be Lean. This will reduce demand for heating, cooling, and lighting, and therefore reduce operational costs while also minimising associated carbon dioxide emissions.

This section sets out the measures included within the design of the proposed dwellings, to reduce the demand for energy, both gas and electricity (not including energy from renewable sources). The table at the end of this section details the amount of energy used and CO_2 produced by the proposed development after the energy efficiency measures have been included.

To achieve reductions in energy, demand the following measures have been included within the design and specification of the building:

3.1 Orientation & Passive Design

Local Plan policy requires "measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.."

The project is based upon a site with fixed southwest – northeast orientation due to its mid-terrace location.

The fenestration design is specific to meeting the design requirements of the building's contribution to the conservation area, so options for external shading are limited.

Accordingly, passive solar gain control is achieved via the use of a solar control glazing with a g-value at less than 0.45.

Advantage is taken of the north easterly aspect – not seen from the road, with larger areas of glazing incorporated to enhance internal daylight levels and reduce reliance on artificial lighting

All flats have a design which enables cross ventilation, enabling a purge ventilation rate at circa 3 air changes per hour - maximising passive cooling, with upper floor flats able to purge ventilate overnight.

3.2 Heating system

The primary heating system for the dwellings will consist of a high efficiency condensing gas boilers - this will in turn provide domestic heating and hot water via highly insulated low loss cylinders for DHW storage

- High efficiency gas boiler (89.3% SEDBUK efficiency)
- Built-in flue gas heat recovery, improving combustion efficiency by up to 3%

To increase the efficiency in the use of the heating system, the following controls will be used in a 'boiler interlock' system to eliminate needless firing of the boiler.

- Time and temperature zone control
- Boiler fitted with delayed start thermostat

3.3 Fabric heat loss

Insulation measures will be utilised to ensure the calculated u values exceed the Building Regulations minima, with specific guidance taken from the design team, with the applicant seeking to go beyond the recommendation contained within Camden's CPG 3:

New basement wall constructions will aim to be achieving a u value of 0.18.

Existing walls will be internally lined to go beyond the requirements of AD L1B, achieving a u value of 0.25.

The mansard roof structures will meet a u-value of 0.12 for the roof and 0.15 for the walls.

The basement floors will be an insulated ground slab floor structure achieving u = 0.14. Glazing

New glazing for windows, roof lights and doors have area weighted average U-Values of 1.4w/m^2 K or better

3.4 Lighting and appliances

A 100% of internal light fittings will be dedicated low-energy/compact fluorescent fittings, with extensive use of LED lighting.

It is anticipated that under the principles of BREEAM and best practice sustainability, all of the electrical appliances will be provided as part of the finished dwelling; fridge/freezers A+ rated, Dishwasher and washing machines A rated and tumble dryer with a B rating.

In addition, again in line with BREEAM principles, any external lighting will be of the low energy type with consideration given to the design and location to reduce light pollution.

3.5 Energy efficiency results

The following table shows a comparison between the baseline scheme assessed under the SAP methodology based upon AD Part L1B minima and the scheme following the introduction of energy efficiency measures (not including energy from renewable sources).

Unit	"Be lean" Emission	Unregulated Energy	Total "Be lean"	Total emissions
	Rate	Use	emissions	
	(regulated energy			
	use)			
	Kg/sqm	Kg/sqm	Kg/sqm	Kg
Flat 1	26.28	15.08	41.36	4024.33
Flat 2	26.97	15.13	42.10	3870.81
Flat 3	22.26	15.29	37.55	2863.84
Flat 4	21.53	15.23	36.76	3001.55
Total				13760.54

Table 5 – Energy consumption and CO2 reductions

e'J°

The results show that, the new dwellings with the energy efficiency measures have achieved emissions reductions of 15.15% over the baseline model and clearly, the applicant has confirmed their commitment to go beyond the requirements of the minimum standards of the Building Regulations through the fabric first approach.

The SAP 2013 Dwelling Emission Rate outputs are attached at Appendix B.

4.0 Supplying Energy Efficiently

The second stage in the Mayor's 'Energy Hierarchy' is to ensure efficient and low carbon energy supply – Be Clean. In particular, this concerns provision of decentralised energy where practical and appropriate.

4.1 Community Heating/Combined Heat and Power (CHP)

Combined heat and power systems are essentially biomass or fossil fuel fired electricity generators that use the heat by-product to provide space and water heating. The electricity generated can be used directly within the host buildings or sold to electricity suppliers on the national grid. These systems can be employed on a large scale for community schemes or at the micro scale for individual dwellings.

Alternatively, larger scale systems operated as a standalone entity can be used to provide heat and power to the local neighbourhood – a District Energy Network (DEN).

The London Heat map has been consulted to look at the potential for the project to connect to a DEN now, or in the future. However, as can be seen from the extract below, the development site at Johns Mew's is some 150m distant from any opportunity areas of decentralised energy potential.

With this in mind, the distance that the heat network flow and return would need to be brought to site, as well as the small scale of the proposed development, the design team has agreed that a district heating system would not be appropriately employed in this scheme.

So, in line with best practice - we consider on-site provision:-

4.2 On-site CHP/District Heating

The heat production facility for a district heating scheme is generally considered to include heat only boilers (HOB) and/or the production of both electricity and heat i.e. CHP.

CHP is, as a rule of thumb, is only operated as a base load as, depending on the technology, it may be difficult and/or inefficient to operate according to daily variations in demand.

In a well-designed district heating network heat from CHP will provide between 60% and 80% of the annual heat (heating and hot water) requirement with heat-only boiler plants providing the peak load and back-up. To maximise efficiency of the engine it needs to run for at least 17 hours a day; therefore, the heat load needs to be present for this period.

Clearly, as a limited scale domestic development, with only the limited combined DHW demand to support a CHP installation, the economy of scale, in terms of year-round demand simply isn't present and as such the potential use of on-site CHP can be dismissed.

We should however, consider the use of a heat only DEN;

In more recent times, the difference between the actual and assumed efficiency of DH networks has come under the spotlight from a number of different sources.

Indeed, in recent studies collated by Innovate UK in the Building Data Exchange, inappropriately installed community heating systems were suffering heat losses of 50% or more.

However, when it comes to small scale networks as least, it is becoming very apparent that there is a difference between theoretical and real-world system efficiencies. In the CIBSE Technical symposium "CHP and District Heating - how efficient are these technologies?" (2011), further commentary is made on this issue.

This report identifies and acknowledges that the heat losses within a well-designed DH network will be at minimum of 15%, so immediately it can be seen that, a large scale modular boiler system offering gross efficiencies at circa 96%, will be less efficient than a local condensing boiler with a gross efficiency of 92%-93% at point of delivery.

It should be noted, that the efficiency of the latest condensing boilers with built-in heat recovery systems and modern controls, such as the Vaillant Home boilers noted under 3.2 above, that they can achieve gross efficiencies close to 96%. A further significant benefit of the use of local gas boilers, is the lower NOx emission associated, commonly less than 40mg/KWh of heat delivered.

Clearly, a DH network driven by HOB would not be viable at the John's Mews development.

5.0 Renewable Energy Options

The final element of the Mayor's 'Energy Hierarchy' requires development proposals should provide a reduction in expected carbon dioxide emissions through the use of onsite renewable energy generation, where feasible – Be Green.

Renewable energy can be defined as energy taken from naturally occurring or renewable sources, such as sunlight, wind, waves/tides, geothermal etc. Harnessing these energy sources can involve a direct use of natural energy, such as solar water heating panels, or it can be a more indirect process, such as the use of Biofuels produced from plants, which have harnessed and embodied the suns energy through photosynthesis.

The Energy Efficiency measures outlined under 3.0 above have the most significant impact on the heating and hot water energy requirements for the dwelling, and the associated reduction in gas consumption.

It should be noted that each Kwh of gas energy saved reduces emissions by 0.216kgCO₂/kwh, whereas, grid based electrical energy has a emissions factor of 0.519kgCO₂/kwh and accordingly, emphasis will be placed upon "off-setting" grid based electricity in order to achieve the optimum use of renewable technologies.

This section then sets out the feasibility of implementing different energy technologies in consideration of: -

- Potential for Carbon savings
- Capital costs
- Running costs
- Payback period as a result of energy saved/Government incentives
- Maturity/availability of technology
- Reliability of the technology and need for back up or alternative systems.

5.1 Government incentives

5.1.1 Feed in Tariff

Feed in Tariffs (FiTs) replaced ROCs for renewable energy generators rated at less than 5MW in April 2010. FiTs are payments made for every kilowatt-hour kWh of renewable electricity generated and the level of the payment is laid down by the government, and varies for different renewable energy sources and at different scales. Unlike the flat rates paid for ROCs, FiTs are designed to compensate for less efficient/more expensive sources of renewable energy – and for the first time – make the investment in low and zero carbon technologies viable for both domestic generators and larger companies alike.

Recent reviews of Feed in Tariff rates will lead to lower returns on such technologies in 2016, but the expectation is that system capital costs and enhanced efficiencies will compensate for this over the medium term.

5.1.2 Renewable Heat Incentive

The Renewable Heat Incentive (RHI) was formally launched by the UK Government on 10th March 2011. The RHI will pay a tariff payment to renewable technologies that provide heat energy from a renewable source, with the payment relating to the KWh of heat energy provided e.g. if a property has a heat load of 20,000 KWh per annum, and it is 100% provided from a renewable source, then the tariff is paid against the 20,000KWh.

The Government decided on a two stage delivery - the first stage being for non-domestic schemes, which commenced in July 2011, with domestic scheme having come on stream in April 2014.

5.2 Wind turbines

Wind turbines come in two main types'- horizontal axis and vertical axis. The more traditional horizontally axis systems rotate around the central pivot to face into the wind, whilst vertical axis systems work with wind from all directions.

The potential application of wind energy technologies at a particular site is dependent upon a variety of factors. But mainly these are: -

- Wind speed
- Wind turbulence
- Visual impact
- Noise impact
- Impact upon ecology

The availability and consistency of wind in urban environments is largely dependent upon the proximity, scale and orientation of surrounding obstructions. The site is surrounded with other properties of 3-4 storeys in height adjacent and in all directions.

To overcome these obstructions and to receive practical amounts of non-turbulent wind, the blades of a wind turbine would need to be placed significantly above the roof level of the surrounding buildings.

It is clear that a wind turbine of this size would be considered unacceptable in this location and is therefore dismissed as an option.

5.3 Solar Energy

5.3.1 Solar water heating

Solar water heating panels come in two main types; flat plate collectors and evacuated tubes. Flat plate collectors feed water, or other types of fluid used specifically to carry heat, through a roof mounted collector and into a hot water storage tank. Evacuated tube collectors are slightly more advanced as they employ sealed vacuum tubes, which capture and harness the heat more effectively.

Solar energy can be delivered in 2 formats as noted above, each system requiring an appropriate area in which to install panels.

The new development at John's Mews has some available roof space with a clear southerly aspect, so solar panels could be an option.

However, given the limited roof space available, and the strategy to off-set the electrical use, solar PV may be a stronger candidate (see below) and would offer a greater return in terms of carbon savings

Solar thermal systems also require a constant demand on hot water, and a large solar tank in which to store the pre-heated water as well as a management strategy to ensure energy savings and environmental benefits are maximised – the space required not being a commodity available for the development at John's Mews

Additionally, the development is located within the Bloomsbury conservation area, therefore the feasibility of installing solar thermal collectors is not considered viable due to the aesthetic constraints.

Accordingly, this technology is dismissed as being inappropriate for the development.

5.3.2 Photovoltaics (PV)

Solar panel electricity systems, also known as solar photovoltaics (PV), capture the sun's energy using photovoltaic cells. These cells will be accumulated on a PV panel, usually about 2.0m x 1.0m. These panels are then wall, roof or floor mounted and are connected directly to the electricity grid via the properties meter. In this way, the electrical generation can be fully exported and is not related to the consumption of the houses within this development.

PV panels also offer a much more attractive return from the Feed in Tariff often achieving 6-8% returns or better.

As noted above, the available roof spaces located on the main roof areas would be appropriate for solar PV panels. However, also as noted above, the development is located within the Bloomsbury conservation area where rooftop development is not acceptable. Therefore Photovoltaics are not proposed for inclusion.

5.4 Biomass heating

Biomass is a term given to fuel derived directly from biological sources for example rapeseed oil, wood chip/pellets or gas from anaerobic digestion. It can only be considered as a renewable energy source if the carbon dioxide emitted from burning the fuel is later recaptured in reproducing the fuel source (i.e. trees that are grown to become wood fuel, capture carbon as they grow).

Biomass heating systems require space to site a boiler and fuel hopper along with a supply of fuel. There also needs to be a local source of biomass fuel that can be delivered on a regular basis.

It is not considered appropriate to specify biomass boilers within these dwellings, as they do not have space to accommodate a relatively large biomass boiler and a supply of fuel.

A boiler of this type would replace the need for a conventional gas boiler and therefore offset all the gas energy typically used for space and water heating, however, biomass releases high levels of NO_x emissions and would therefore have to be considered carefully against the high standard of air quality requirements set out in the London Plan.

5.5 Ground source heat pump

All heat pump technologies utilise electricity as the primary fuel source – in this case displacing gas, as such, the overall reduction in emissions when using this technology can be less effective when opposed to a technology that is actually displacing electricity.

Ground source heating or cooling requires a source of consistent ground temperature, which could be a vertical borehole or a spread of pipework loops and a 'heat pump'. The system uses a loop of fluid to collect the more constant temperature in the ground and transport it to a heat pump. In a cooling system this principle works in reverse and the heat is distributed into the ground.

The heat pump then generates increased temperatures by 'condensing' the heat taken from the ground, producing hot water temperatures in the region of 45°C. This water can then be used as pre-heated water for a conventional boiler or to provide space heating with an under floor heating system.

The use of a ground source heating/cooling system will therefore require:

- Vertical borehole or ground loop
- Use of under floor heating
- Space for heat pump unit

Clearly, there is insufficient land area to install low level collector loops, leaving deep bore GSHP as the only potential option.

Normally the boreholes would need to be 6 to 8 metres apart and a 100 metre deep borehole will only provide about 5kW of heat. The borehole should also be formed around 3m away from the perimeter of the building and most specialists don't recommend using the structural boreholes.

Clearly, in the case of the proposed development at John's Mews, there is no scope for the locating of the ground collector devices and as such, ground source heating cannot be considered.

5.6 Air source heat pump

Air source heating or cooling also employs the principle of a heat pump. This time either, upgrading the ambient external air temperature to provide higher temperatures for water and space heating, or taking warmth from within the building and dissipating it to the outdoor air.

It must be remembered that heat pumps utilise grid based electricity and the associated emissions, so that the actual reduction in emissions can be limited. Assuming a seasonal system efficiency of 320% (Coefficient of Performance of 3.2) and that the air source heat pump will replace 90% of the space heating/hot water demand, then the system would reduce the overall CO_2 emissions by approximately 10-20%. The table below demonstrates, on the assumption of a demand of 10000Kwh/year for heating and hot water:-

Table 6 – Comparative Heat Pump performance

		-	
Type of Array	Energy Consumption (Kwh/yr.)	Emission factor (kgCO ₂ /Kwh)	Total CO ₂ emissions (kg/annum)
90% efficient gas boiler	11111	0.216	2400
320% efficient ASHP	2813	0.519	1460
100% efficient immersion (back-up)	1000	0.519	519

A theoretical carbon saving of 17.5%

With the above data in mind, clearly an ASHP could be an option, however, heat pump would require external installation, giving rise to: -

- A potential visual impact to neighbouring properties overlooking the installation location.
- The requirement for a noise impact assessment, and the potential for a noise nuisance to be present in this dense suburban location.
- Associated loss of amenity space.
- Negative impact on the Bloomsbury conservation area.

Given such impacts, it is considered that air source heat pumps would not be appropriate at this location.

5.7 Final Emissions Calculation

The results of the assessment of suitable technologies relative to the nature, locations and type of development suggest that, principally due to the development's location in the Bloomsbury conservation area – there are no suitable renewable technologies that would be acceptable in this location.

Accordingly, the data set out in Table 5 above and reproduced below demonstrate the final design SAP DER outputs, which are attached at **Appendix B**: -

Unit	"Be lean" Emission	Unregulated Energy	Total "Be lean"	Total emissions
	Rate	Use	emissions	
	(regulated energy			
	use)			
	Kg/sqm	Kg/sqm	Kg/sqm	Kg
Flat 1	26.28	15.08	41.36	4024.33
Flat 2	26.97	15.13	42.10	3870.81
Flat 3	22.26	15.29	37.55	2863.84
Flat 4	21.53	15.23	36.76	3001.55
Total				13760.54

Table 5 – Energy consumption and CO2 reductions

The data at Table 5 confirms that overall emissions – including unregulated energy use - have been reduced by **15.15%** over and above the baseline model.

Excluding the un-regulated use, i.e. considering emissions controlled under the Building Regulations AD Part L, then the reduction equates to **22.44%** and given the proposals put in place above, it is clear that the applicant has sought to meet the requirements of London Borough of Camden's Policies through a careful design strategy involving best practice passive design and efficient services.

6.0 Sustainable Development

Due to the small scale nature of the development, LDF Policy DP22's requirement for a formal Eco Homes assessment does not apply - indeed, in March 2015, HM Government withdrew the Code for sustainable Homes and any other technical housing standard.

However, the applicant is committed to adopting many of the principles of Eco Homes and the Code for Sustainable Homes:-

Materials

- Newly construction elements will be considered against the BRE Green Guide to ensure that, where practical, the most environmentally friendly construction techniques are deployed.
- Construction materials will be sourced from suppliers capable of demonstrating a culture of responsible sourcing via environmental management certification, such as BES6001
- Insulation materials will be selected that demonstrate the use of blowing agents with a low global warming potential, specifically, a rating of 5 or less. Additionally, all insulants used will demonstrate responsible sourcing of material and key processes.
- The principle contractor with be required to produce a site waste management plan and sustainable procure plan, in line with BREEAM requirements – this will include a pre-demolition audit to identify demolition materials to reuse on-site or salvage appropriate materials to enable their reuse or recycling off-site. The procurement plan will follow the waste hierarchy Reduce; Reuse & Recycle.
- A Site Waste Management Plan (SWMP) will be developed prior to commencement of development stage to inform the adoption of good practice waste minimisation in design. This will set targets to minimise the generation of non-hazardous construction waste using the sustainable procurement plan to avoid over-ordering and to use just-in-time delivery policies.
- The developer will also maximise the use of recycled and secondary aggregates.
- Waste and recycling appropriate internal and external storage space will be provided to ensure that residents can sort, store and dispose of waste and recyclable materials in line with Camden's collection policies.

Pollution

- The contractor will also monitor the use of energy and water use during the construction phase and incorporate best site practices to reduce the potential for air (dust) and ground water pollution.
- The completed dwellings will use low NOx emission gas boilers, with a minimum NOx rating of 5 and emissions at less than 40mg/Kwh
- The main contractor will be required to register the site with the Considerate Constructors Scheme and achieve a best practice score of 25 or more.
- To void the issue of noise pollution, the development will comply with Building Regulations Part E, providing a good level of sound insulation between the proposed development and surrounding buildings. All new windows will be double glazed to minimise the transmission of noise between the building and adjacent properties.

Energy

- All the new dwellings will incorporate the energy efficient measures as set out within the main body of this report.
- Each home will also be supplied with a Home User Guide offering practical advice on how to use the home economically and efficiently.
- This will be further enhanced by the installation of smart energy metering, enabling occupants to accurately assess their energy usage and thereby, manage it.

Water

- The development minimise water use as far as practicable by incorporating appropriate water efficiency and water recycling measures. In new homes, the applicants will ensure that all dwellings meet the required level of 105 litres maximum daily allowable usage per person in accordance with Level 4 of the Code for Sustainable Homes. A sample Part G internal water use calculation is attached at **Appendix D**
- The individual dwelling at basement level will have rainwater harvesting water butts connected to rainwater pipes to enable the recycling of rainwater for the upkeep of terrace planting
- SuDs The site is located in Flood Zone 1 at low risk of flooding. The Site is
 also currently completely impermeable with hard landscaping and building areas,
 the main aim of development will be to improve the water retention of the site.
 The design will ensure the peak rate of surface runoff into watercourse is no
 worse than existing rate.
- Elements of green roof are to be incorporated into the design proposals to further aid in the attenuation of surface water run-off, as well as enhances site ecology.

7.0 Conclusions

This report has detailed the baseline energy requirements for the proposed development, the reduction in energy demand as a result of energy efficiency measures and the potential to achieve further CO₂ reductions using renewable energy technologies.

The baseline results have shown that if the development was built to a standard to meet only the minimum requirements of current building regulations, the total amount of CO_2 emissions would be **16,218Kg/year**.

Following the introduction of passive energy efficiency measures into the development, as detailed in section 3, the total amount of CO_2 emissions would be reduced to **13,761Kg/year**, a reduction of **15.15%**.

There is also a requirement to reduce CO_2 emissions across the development using renewable or low-carbon energy sources, where practical and feasible. Therefore, the report has considered the feasibility of the following technologies:

- Wind turbines
- Solar hot water
- Photovoltaic systems
- Biomass heating
- CHP (Combined heat and power)
- Ground & Air source heating

The results of the assessment of suitable technologies relative to the nature, location and type of development suggest that given the limitations imposed by the sensitive location within the Bloomsbury conservation area, there are no appropriate renewable technologies that can be recommended for the Johns Mews development.

The SAP models (reproduced at **Appendix B**) for the development which have also been detailed above in Table 5, which show a final gross emission level of **13,760/year** representing a total reduction in emission over the baseline model, considering unregulated energy, of **15.15%**.

Tables 8 & 9 Demonstrate how the project at John's Mews aligns with the London Plan requirements and current GLA guidance on the preparation of energy statements.

Table 8 – Carbon Emission Reductions – Domestic Buildings

	Carbon Dioxide Emissions (Tonnes CO2 per annum)						
	Regulated	Unregulated					
Building Regulations 2013 Part L1A Compliant Development	10.95	5.27					
After Energy Demand Reduction	8.49	5.27					
After renewable energy	8.49	5.27					

Table 9 - Regulated Emissions Savings - Domestic Buildings

	Regulated Carbo	n Dioxide Savings
	(Tonnes CO2 per annum)	%
Savings from energy demand reduction	2.46	22.47
Savings from renewable energy	0.00	0.00
Total Cumulative Savings	2.46	22.47
Annual Savings from off- set payment	8.49	
Cumulative savings for off-set payment	254.7	

ej7°

Appendix A

Baseline Energy Use:-

SAP 2012 Dwelling Emission Rate Outputs

							User D	Details:						
Assessor Name: George Farr								Stroma Number: STRC					028460	
Softw	Software Name: Stroma FSAP 2012							Softwa	are Vei	on: 1.0.4.6				
						Р	roperty	Address	: Flat 1 -	Base				
Addre	SS :													
1. Ove	erall dwe	elling di	mension	s:										
							Are	a(m²)		Av. He	ight(m)	-	Volume(m ³)	-
Ground	l floor						Ę	52.41	(1a) x	2	.95	(2a) =	154.61	(3a)
First flo	or						4	14.88	(1b) x	3	.25	(2b) =	145.86	(3b)
Total flo	oor area	a TFA =	(1a)+(1	o)+(1c)+	(1d)+(1e	e)+(1n)	97.29	(4)			-		_
Dwellin	g volum	ne					L		(3a)+(3b)+(3c)+(3d	l)+(3e)+	.(3n) =	300.47	(5)
2. Ver	ntilation	rate:												_
				main heating	Se h	econdar eating	у	other		total			m ³ per hour	
Numbe	r of chir	nneys	Г	0] + [0] + [0] = [0	x 4	40 =	0	(6a)
Numbe	r of ope	n flues	Γ	0	 +	0] + [0] = [0	x	20 =	0	(6b)
Numbe	r of inte	rmittent	fans							3	x ′	10 =	30	(7a)
Numbe	r of pas	sive ver	nts						L L	0	x ^	10 =	0] (7b)
Numbe	r of flue	less gas	s fires						L L	0	x 4	40 =	0] (7c)
		Ū							L	-]``
												Air ch	hanges per ho	ur
Infiltrati	on due	to chim	neys, flu	es and f	ans = <mark>(6</mark>	a)+(6b)+(7	a)+(7b)+((7c) =	Г	30	· ·	÷ (5) =	0.1	(8)
lf a pr	essurisati	on test ha	is been ca	rried out o	r is intende	ed, proceed	d to (17),	otherwise	continue fr	rom (9) to ((16)			-
Num	ber of st	toreys ir	n the dw	elling (n	S)								0	(9)
Addit	tional inf	filtration	0.05 ([(9)-	-1]x0.1 =	0	(10)
Struc	ctural inf	of wall an	: 0.25 to	r steel o	r timber i	frame or	0.35 to	r masoni	ry constr	uction			0	(11)
dec	ducting are	eas of ope	enings); if	equal user	0.35	ponung to	ine grea		a (anoi					
lf sus	spendec	d woode	n floor,	enter 0.2	(unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
lf no	draught	lobby,	enter 0.0	05, else	enter 0								0	(13)
Perce	entage o	of windo	ows and	doors di	aught st	ripped							0	(14)
Wind	low infilt	tration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltr	ation ra	te						(8) + (10)	+ (11) + (1	12) + (13) -	+ (15) =		0	(16)
Airpo	ermeabi	ility valu	ie, q50,	expresse	ed in cub	rac metre	s per ho	our per s	quare m	etre of e	nvelope	area	15	(17)
II Dased	u on air rmeability	permea value an	IDIIITY VA nlies if a n	iue, men ressurisati	(10) = ((1))	7) - 20j+(0	e or a de	ree air ne	rmeability	is heina u	bad		0.85	(18)
Numbe	r of side	es shelte	ered	1000011000	01110011140	5 00011 0011		gree an pe	incability	is being ut	500		0	(19)
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltrati	on rate	incorpo	rating sł	nelter fac	tor			(21) = (18) x (20) =				0.85	(21)
Infiltrati	on rate	modifie	d for mo	nthly wir	nd speed	k								_
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly	y averaç	ge wind	speed f	rom Tab	e 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rat	e (allowi	ing for sl	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
•	1.08	1.06	1.04	0.93	0.91	0.81	0.81	0.79	0.85	0.91	0.96	1		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	ise	_ !				 г		
IT ME	ecnanica			ondix N (2	(25) = (22)		oquation	(NE)) othe	nuico (22k	(220)		Ļ	0	(23a)
If hale	aust all the	heat reco	overv: effic	iency in %	allowing f	or in-use f	factor (fro	m Table 4h	n) =) – (23a)		Ļ	0	(230)
a) If	halance	nd mech	anical ve	ntilation	with he	at recov			n = (2)	2h)m ± ((23h) v [_ 1 _ (23c)	0 · 1001	(230)
(24a)m=												$\frac{1}{0}$	- 100]	(24a)
() b) If	halance	d mech	l anical ve	I	without	heat rec		 M\/) (24	$1 - \frac{1}{2}$	1	(23h)			,
(24b)m=	0			0	0	0					0	0		(24b)
c) If	whole h	L OUSE EX	I tract ver	L ntilation (L or positiv	L /e input :	I ventilati	on from	L outside	I	Į	<u> </u>		
i i	if (22b)n	n < 0.5 >	< (23b), 1	then (24	c) = (23k	o); other	wise (24	4c) = (22	b) m + 0	.5 × (23	c)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	ve input	ventilat	ion from	loft		-			
i	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	erwise (2	24d)m =	0.5 + [(2	22b)m² x	0.5]				
(24d)m=	1.08	1.06	1.04	0.94	0.92	0.83	0.83	0.81	0.86	0.92	0.96	1		(24d)
Effe	ctive air	change	rate - er	nter (24a	i) or (24k	o) or (24	c) or (24	4d) in bo	x (25)	<u> </u>		<u> </u>		(05)
(25)m=	1.08	1.06	1.04	0.94	0.92	0.83	0.83	0.81	0.86	0.92	0.96	1		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros area	ss (m²)	Openin rr	igs 1²	Net Ar A ,r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²⋅K	A k	∖Xk J/K
Doors						1.89	x	1.6	=	3.024				(26)
Windo	ws Type	e 1				9.96	x x	1/[1/(1.6)+	- 0.04] =	14.98				(27)
Windo	ws Type	2				21.89	э х	1/[1/(1.6)+	- 0.04] =	32.92				(27)
Rooflig	phts					3.12	x x	1/[1/(1.6) +	0.04] =	4.992				(27b)
Floor						52.4	1 ×	0.22	=	11.530	2		7 [(28)
Walls -	Гуре1	45.3	39	0		45.39	 э х	0.28	=	12.71			i —	(29)
Walls -	Гуре2	45.5	55	31.8	5	13.7	· x	0.28		3.84			i —	(29)
Walls -	ГуреЗ	21.8	39	1.89)	20	x	0.25		5			i —	(29)
Roof		12.5	53	3.12	2	9.41	×	0.18	=	1.69			i —	(30)
Total a	rea of e	lements	s, m²	L		177.7	7	L			I		J L	(31)
Party v	vall					42.43	3 X	0		0			<u>ا</u> ا	(32)
Party o	eiling					39.88	3				I		i	(32b)
* for win	dows and	roof wind	ows, use e	effective wi	indow U-va	alue calcul	lated usin	g formula :	1/[(1/U-vali	ue)+0.04] a	L as given in	paragraph	ы Ц 3.2	`
Fabric	heat los	as on doth ss W/K	= S (A v	iternar war	is and par	แแบกร		(26)(30) + (32) =			Г	00.30	(22)
Heat c	apacity	Cm = S((A x k)	-,					((28).	(30) + (3	2) + (32a).	(32e) =	12446.8	(34)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Indicative Value: Medium

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

250

(35)

can be ι	ised inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						26.67	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			117.04	(37)
Ventila	tion hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	107.44	105.33	103.23	92.9	90.96	81.89	81.89	80.21	85.38	90.96	94.9	99.01		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	224.48	222.38	220.27	209.95	208	198.94	198.94	197.26	202.43	208	211.94	216.06		
Heatle	se nara	meter (F		/m²k	I	I			(40)m	Average = - (39)m -	Sum(39)1.	12 /12=	209.89	(39)
(40)m-	2 21		2.26	2.16	2.14	2.04	2.04	2.02	2.08	2 14	(-)	2.22	1	
(40)11=	2.31	2.29	2.20	2.10	2.14	2.04	2.04	2.03	2.00	2.14	2.10	2.22	0.46	(40)
Numbe	er of day	/s in moi	nth (Tab	le 1a)						Average =	Sum(40)1.	12 / 1 Z =	2.10	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
										•				
4 Wa	iter hea	tina ener	rav reau	irement [.]								kWh/v	ear:	
			gyroqu											
Assum	ed occu	upancy, I	N								2.	71		(42)
IT I F if TF	A > 13. A £ 13	9, $N = 1$ 9, $N = 1$	+ 1.76 X	[1 - exp	(-0.0003	349 X (1F	-A -13.9)2)] + 0.0	JU13 X (IFA -13	.9)			
Annua	l averad	e hot wa	ater usad	ae in litre	es per da	av Vd.av	erage =	(25 x N)	+ 36		98	.63	1	(43)
Reduce	the annua	, al average	hot water	usage by a	5% if the a	lwelling is	designed t	to achieve	a water us	se target o	f		I	(- /
not more	e that 125	litres per p	person per	r day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	108.5	104.55	100.61	96.66	92.72	88.77	88.77	92.72	96.66	100.61	104.55	108.5		
										Total = Su	m(44) ₁₁₂ =	=	1183.6	(44)
Energy of	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,n	n x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	160.9	140.72	145.21	126.6	121.48	104.82	97.13	111.46	112.79	131.45	143.49	155.82		
										Total = Su	m(45) ₁₁₂ =	=	1551.89	(45)
If instant	taneous v	vater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46)) to (61)		ī			
(46)m=	24.13	21.11	21.78	18.99	18.22	15.72	14.57	16.72	16.92	19.72	21.52	23.37		(46)
vvater	storage	IOSS:	in also alte		- \ A		- 4			1			1	
Storag		ie (iitres)	incluair	ig any so	Jar or W		storage	within Sa	ame ves	sei		150		(47)
If com	nunity f	neating a	ind no ta	INK IN OW	/elling, e	nter 110	litres in	(47) mahi hail	ara) ant	or (0) in (47)			
Water	storado		not wate		iciudes i	nstantai	leous co		ers) ente		47)			
a) If m	anufact	turer's de	eclared l	oss facto	or is kno	wn (kWł	n/dav):					0	1	(48)
Tempe	arature f	actor fro	m Table	2h			"aay):					0		(40)
Enorm								$(40) \times (40)$				0		(49)
b) If m	anufact	urer's de	slorage	, Kvvn/ye svlinder l	ear loss fact	or is not	known.	(46) X (49)	=		1:	50		(50)
Hot wa	iter stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	iy)				0	01]	(51)
If com	munity h	neating s	ee secti	on 4.3	``		- /						I	
Volum	e factor	from Ta	ble 2a								0.	93		(52)
Tempe	erature f	actor fro	m Table	2b							0.	54		(53)

Enera	lost fro	m wata	r storade	k\Mb/u	oor			(47) x (51) x (52) x (53) -		07	(54	n
Enter	(50) or	(54) in (5	501290 55)	, it v v i i/ y v	cai			(47) X (01)	50) –	0	.67	(55	9 5)
Water	storage	loss cal	, culated	for each	month			((56)m = ((55) × (41)	m				ĺ
(56)m-	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(56	5)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	1
(57)m-	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(57	n
(57)11-	20.00	10.00	20.00	20.2	20.00	20.2	20.00	20.00	20.2	20.00	20.2	20.00	(0)	,
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3 month (E0)m	(EQ) . 20	E (11)				0	(58	<i>i</i>)
(mo	y circuit dified by	ioss cai i factor f	rom Tab	lor each le H5 if t	montn (there is s	solar wat	(58) ÷ 30 ter heatii	oo x (41))m a cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59))
O a sea la la			((04)	(00) - 0								Ì
Combi	loss ca		for each		(61)m =	(60) ÷ 30	65 × (41))m		0	0		(61	1
(61)m=	0							0	0	0	0)
I otal r	leat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	= 0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m I	
(62)m=	205.04	180.59	189.35	169.32	165.62	147.54	141.28	155.6	155.51	175.59	186.21	199.96	(62	.)
Solar Di	dditiona	calculated		endix G of	r Appendix	H (negati	ve quantity	/) (enter '0	י if no sola ר)	r contributi	on to wate	er heating)		
(auu a							, see Ap		3) 	0	0		(63	2
(03)III=				0	0	0	0	0	0	0	0	0	(00	7
	1005.04	ater nea		160.22	105.00	447.54	141.00	155.0	155 54	175 50	196.01	100.00	I	
(64)11=	205.04	180.59	169.35	169.32	105.02	147.34	141.20	155.6	155.51	175.59	100.21	199.90	2071.61 (64	0
			h									12	2071.01	,
Heat g	ains fro	m water	heating,	, KVVh/m	onth 0.2	5 [0.85	× (45)m	+ (61)n	n] + 0.8 >	((46)m	+ (57)m	+ (59)m		-
(65)m=	88.81	/8.69	83.6	76.27	/5./	69.03	67.61	/2.3/	/1.68	79.02	81.88	87.12	(05	ワ
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	is (Table	e 5), Wat	ts	i		I		I .	-			l	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(
(66)m=	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	(66	i)
Lightin	g gains	(calcula	ted in Ap	opendix I	L, equat	ion L9 o I	r L9a), a 1	lso see	Table 5			1	l (a-	
(67)m=	28.07	24.93	20.27	15.35	11.47	9.69	10.47	13.6	18.26	23.19	27.06	28.85	(67)
Applia	nces ga	ins (calc	ulated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		1	I.	
(68)m=	251.87	254.48	247.9	233.88	216.18	199.54	188.43	185.82	192.4	206.42	224.12	240.76	(68	6)
Cookir	ng gains	(calcula	ated in A	ppendix	L, equat	tion L15	or L15a)), also se	ee Table	5		-		
(69)m=	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	(69	י)
Pumps	and fa	ns gains	(Table &	5a)			-		-					
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	(70))
Losses	s e.g. ev	vaporatio	on (nega	tive valu	es) (Tab	ole 5)		-						
(71)m=	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	(71)
Water	heating	gains (1	Table 5)											
(72)m=	119.37	117.09	112.36	105.93	101.75	95.87	90.87	97.28	99.55	106.21	113.73	117.1	(72	2)
Total i	nternal	gains =				(66))m + (67)m	n + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72))m	-	
(73)m=	466	463.2	447.23	421.85	396.1	371.8	356.46	363.39	376.91	402.51	431.61	453.4	(73	;)
6. So	lar gains	S:	-	•	-	•	-	•	-					

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.3	x	21.89	×	11.28) ×	0.63	x	0.7	=	29.41	(75)
Northeast 0.9x	0.3	x	21.89	x	22.97	x	0.63	x	0.7	=	59.86	(75)
Northeast 0.9x	0.3	x	21.89	x	41.38	x	0.63	x	0.7	=	107.85	(75)
Northeast 0.9x	0.3	x	21.89	x	67.96	x	0.63	x	0.7	=	177.12	– (75)
Northeast 0.9x	0.3	x	21.89	x	91.35	x	0.63	x	0.7	=	238.09	– (75)
Northeast 0.9x	0.3	x	21.89	×	97.38	x	0.63	x	0.7	=	253.83	(75)
Northeast 0.9x	0.3	x	21.89	×	91.1	x	0.63	x	0.7	=	237.45	(75)
Northeast 0.9x	0.3	x	21.89	x	72.63	x	0.63	x	0.7	=	189.3	– (75)
Northeast 0.9x	0.3	x	21.89	x	50.42	x	0.63	x	0.7	=	131.42	– (75)
Northeast 0.9x	0.3	x	21.89	x	28.07	x	0.63	x	0.7	=	73.16	(75)
Northeast 0.9x	0.3	x	21.89	×	14.2	x	0.63	x	0.7	=	37	(75)
Northeast 0.9x	0.3	x	21.89	x	9.21	x	0.63	x	0.7	=	24.02	(75)
Southwest0.9x	0.77	x	9.96	×	36.79	i	0.63	x	0.7	=	112	– (79)
Southwest0.9x	0.77	x	9.96	×	62.67	ĺ	0.63	x	0.7	=	190.77	(79)
Southwest0.9x	0.77	x	9.96	×	85.75	i	0.63	x	0.7	=	261.02	- (79)
Southwest0.9x	0.77	x	9.96	x	106.25	i	0.63	x	0.7	=	323.42	– (79)
Southwest0.9x	0.77	x	9.96	×	119.01	ĺ	0.63	x	0.7	=	362.26	(79)
Southwest0.9x	0.77	x	9.96	×	118.15	i	0.63	x	0.7	=	359.64	– (79)
Southwest0.9x	0.77	x	9.96	x	113.91	i	0.63	x	0.7	=	346.73	(79)
Southwest0.9x	0.77	x	9.96	×	104.39	1	0.63	x	0.7	=	317.75	– (79)
Southwest0.9x	0.77	x	9.96	×	92.85	1	0.63	x	0.7	=	282.63	– (79)
Southwest0.9x	0.77	x	9.96	x	69.27	i	0.63	x	0.7	=	210.84	(79)
Southwest0.9x	0.77	x	9.96	×	44.07	ĺ	0.63	x	0.7	=	134.15	(79)
Southwest0.9x	0.77	x	9.96	x	31.49	i	0.63	x	0.7	=	95.85	– (79)
Rooflights 0.9x	1	x	3.12	×	26	x	0.63	x	0.8	=	36.8	(82)
Rooflights 0.9x	1	x	3.12	×	54	x	0.63	x	0.8	=	76.42	(82)
Rooflights 0.9x	1	x	3.12	×	96	x	0.63	x	0.8	=	135.86	(82)
Rooflights 0.9x	1	x	3.12	×	150	x	0.63	x	0.8	=	212.28	(82)
Rooflights 0.9x	1	x	3.12	×	192	x	0.63	x	0.8	=	271.72	(82)
Rooflights 0.9x	1	x	3.12	×	200	x	0.63	x	0.8	=	283.05	(82)
Rooflights 0.9x	1	x	3.12	x	189	x	0.63	x	0.8	=	267.48	(82)
Rooflights 0.9x	1	x	3.12	×	157	x	0.63	x	0.8	=	222.19	(82)
Rooflights 0.9x	1	x	3.12	×	115	×	0.63	x	0.8	=	162.75	(82)
Rooflights 0.9x	1	x	3.12	×	66	×	0.63	x	0.8	=	93.41	(82)
Rooflights 0.9x	1	x	3.12	×	33	×	0.63	×	0.8	=	46.7	(82)
Rooflights 0.9x	1	x	3.12	x	21	İ x	0.63	x	0.8	=	29.72	– (82)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m			
(83)m=	178.2	327.06	504.74	712.83	872.07	896.51	851.66	729.24	576.8	377.4	217.85	149.58	(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	644.2	790.26	951.96	1134.68	1268.17	1268.31	1208.12	1092.64	953.71	779.92	649.46	602.98	(84)

7. Me	an inter	nal temp	perature	(heating	season)								
Temp	erature	during h	neating p	eriods ir	n the livir	ng area t	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	iving are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.95	0.89	0.77	0.63	0.69	0.88	0.97	0.99	1		(86)
Mean	internal	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.52	18.76	19.19	19.81	20.34	20.75	20.91	20.87	20.54	19.85	19.13	18.55		(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	ble 9, Tl	n2 (°C)					
(88)m=	19.14	19.15	19.16	19.23	19.24	19.3	19.3	19.32	19.28	19.24	19.22	19.19		(88)
Utilisa	tion fac	tor for a	ains for	rest of d	vellina	h2 m (se	e Table	9a)						
(89)m=	0.99	0.99	0.97	0.93	0.83	0.64	0.43	0.49	0.8	0.96	0.99	1		(89)
Moon	intorna	tompor	l oturo in	the rest	of dwolli	na T2 (f		\sim 2 to $^{-}$	7 in Tabl					
(90)m=	16.99	17.24	17.67	18.32	18.82	19.2	19.29	19.29	19.04	18.38	17.65	17.06		(90)
(f	LA = Livin	g area ÷ (4	4) =	0.43	(91)
						() () () () () () () () () () () () () (. (4 (1	A) TO		-		0.10	
Mean	Interna	temper	ature (fo			ling) = fl		+ (1 – fL 10.06	A) × 12	10.01	19.29	177		(92)
	adiustr	nont to t	10.32	internal	temper	ature fro	m Table	19.90			10.20	17.7		(52)
(93)m=	17.64	17.89	18.32	18.96	19.47	19.86	19.98	19.96	19.68	19.01	18.28	17.7		(93)
8. Spa	ace hea	tina real	uirement											
Set Ti	to the r	nean int	ernal ter	nperatur	e obtain	ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation	factor fo	or gains	using Ta	ble 9a						,			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm I	:										
(94)m=	0.99	0.99	0.97	0.93	0.84	0.69	0.52	0.58	0.82	0.96	0.99	0.99		(94)
Usetu	l gains,	hmGm	W = (94)	4)m x (84	4)m	074.04	602.0	622.2	705 4	745.0	644.47	500.00		(05)
(95)m=	039.21	770.02	923.23	1054.13	from T	o/1.01	023.0	033.3	765.4	740.2	041.17	599.28		(93)
(96)m=	4.3	4 9	65	89	11 7	14.6	16.6	16.4	14 1	10.6	71	42		(96)
Heat	oss rate	for me	an intern	al tempe	erature	 	=[(39)m :	x [(93)m	– (96)m	1				()
(97)m=	2995.45	2888.41	2602.69	2111.68	1616.29	1046.47	671.58	702.6	1129.94	1749.1	2369.7	2915.78		(97)
Space	e heatin	g require	ement fo	r each m	nonth, k\	Nh/moni	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	1753.04	1417.64	1249.52	761.44	407.29	0	0	0	0	746.9	1244.55	1723.48		
•								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	9303.85	(98)
Space	e heating	g require	ement in	kWh/m ²	/year							ĺ	95.63	(99)
9a. Ene	erav rea	uiremer	nts – Indi	vidual h	eating sv	vstems i	ncludina	micro-C	HP)			I		
Space	e heatir	ng:			eening e.)					
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	nt from m	nain syst	em(s)			(202) = 1 -	- (201) =			İ	1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ing syste	em 1								86.9	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	ז, %						0	(208)
			2 - F F F									l	-	` ´

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heatin	g require	ement (c	alculate	d above))	1		1	1	1		1	
	1753.04	1417.64	1249.52	761.44	407.29	0	0	0	0	746.9	1244.55	1723.48		
(211)m	n = {[(98)m x (20	04)] } x 1	100 ÷ (20)6)	i	i	r	i	i	i		1	(211)
	2017.31	1631.35	1437.88	876.22	468.69	0	0	0	0	859.5	1432.16	1983.29		٦
								lota	il (kWh/yea	ar) =Sum(2	211) _{15,1012}	-	10706.39	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month									
$= \{[(98) (215)m =$	$m \times (20)$)]}x1 0	$00 \div (20)$	08)	0	0	0	0	0	0	0	0]	
(2.0)	Ŭ	Ĵ			Ů	Ů	Ĵ	Tota	l v il (kWh/yea	ar) =Sum(2	215), 510 12	=	0	(215)
Water	heating	r								, ,	* 13, 1012			
Output	from w	ater hea	ter (calc	ulated a	bove)									
	205.04	180.59	189.35	169.32	165.62	147.54	141.28	155.6	155.51	175.59	186.21	199.96		
Efficier	ncy of w	ater hea	ater	-	-	-	-		-	-	-		76.8	(216)
(217)m=	85.72	85.63	85.42	84.87	83.72	76.8	76.8	76.8	76.8	84.78	85.44	85.73		(217)
Fuel fo	r water	heating,	kWh/m	onth										
(219)m =	1 = (64)	<u>m x 100</u> 210.9) ÷ (217) 221.67)m 199.5	197.83	192.11	183.95	202.61	202.49	207.12	217.94	233.25		
()								Tota	l = Sum(2	19a) _{1 12} =			2508.58	(219)
Annua	I totals									k	Wh/year		kWh/year	
Space	heating	fuel use	ed, main	system	1								10706.39	1
Water	heating	fuel use	ed										2508.58	ī
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								4
centra	al heatir	ng pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricit	y for the	above, l	kWh/yea	ır			sum	of (230a).	(230g) =	:		75	(231)
Electric	city for l	ighting											495.69	(232)
12a. (CO2 em	issions ·	– Individ	lual heat	ing syste	ems inclu	uding mi	cro-CHF)					1
						_								
						En kW	ergy /h/year			Emiss kg CO	i on fac 2/kWh	tor	Emissions kg CO2/yea	ır
Space	heating	(main s	ystem 1)		(21	1) x			0.2	16	=	2312.58	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	541.85	(264)
Space	and wa	ter heati	ng			(26	1) + (262)	+ (263) + ((264) =				2854.43	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	38.93	(267)
Electric	city for I	ighting				(23	2) x			0.5	19	=	257.26	(268)
Total C	CO2, kg/	/year							sum o	of (265)(2	271) =		3150.62	(272)
Dwelli	ng CO2	Emissi	on Rate	•					(272)	÷ (4) =			32.38	(273)
EI ratir	ng (secti	on 14)											70	(274)

							User D	Details:						
Asses	ssor N	ame:	Ge	orge Fa	arr			Strom	a Num	ber:		STRO	028460	
Softw	are Na	ame:	Str	oma FS	SAP 201	2		Softwa	are Ver	rsion:		Versic	on: 1.0.4.6	
						Р	roperty	Address	: Flat 2 -	Base				
Addre	ss :													
1. Ove	erall dwe	elling di	mension	IS:										
							Are	a(m²)	L	Av. He	ight(m)		Volume(m ³)	-
Ground	l floor						Ę	52.41	(1a) x	2	.95	(2a) =	154.61	(3a)
First flo	or							39.53	(1b) x	3	.25	(2b) =	128.47	(3b)
Total flo	oor area	a TFA =	(1a)+(1	b)+(1c)+	(1d)+(1e	e)+(1r	I)	91.94	(4)			-		_
Dwellin	g volum	ne							(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	283.08	(5)
2. Ver	ntilation	rate:												_
				main heating	S(econdar	у	other		total			m ³ per hour	
Numbe	r of chir	nneys	Γ	0	_ + [0] + [0] = [0	x 4	40 =	0	(6a)
Numbe	r of ope	n flues	Г	0		0	i + F	0	- - [0	x2	20 =	0	(6b)
Numbe	r of inte	rmittent	fans L		L_					3	x ′	0 =	30	_](7a)
Numbe	r of pas	sive ver	nts							0	x ^	0 =	0](7b)
Numbe	r of flue	less das	s fires							0	x 4	40 =	0]](7c)
										0			0	
												Air ch	anges per ho	ur
Infiltrati	on due	to chim	neys, flu	ies and f	ans = <mark>(6</mark>	a)+(6b)+(7	a)+(7b)+((7c) =	Г	30	<u> </u>	÷ (5) =	0.11	(8)
lf a pr	essurisati	on test ha	is been ca	rried out o	r is intende	ed, procee	d to (17),	otherwise o	continue fr	om (9) to ((16)			_
Num	ber of st	toreys ir	n the dw	elling (n	s)								0	(9)
Addit	ional in	filtration	1								[(9)-	1]x0.1 =	0	(10)
Struc	tural inf	iltration	: 0.25 fo	r steel o	r timber i	frame or	0.35 fo	r masoni	ry constr	uction			0	(11)
dec	oun types ducting are	eas of ope	e present, enings); if	equal user	0.35	ponaing to	ine grea	ler wall are	a (aller					
lf sus	spendec	l woode	n floor,	enter 0.2	? (unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
lf no	draught	lobby,	enter 0.0	05, else	enter 0								0	(13)
Perce	entage o	of windo	ows and	doors di	raught st	ripped							0	(14)
Wind	ow infilt	ration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltr	ation ra	te						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air p	ermeabi	ility valu	ie, q50,	expresse	ed in cub	oic metre	s per ho	our per s	quare m	etre of e	nvelope	area	15	(17)
If base	d on air rmoobility	permea	idility va	lue, then	(10) = [(1)	$() \div 20]+(0)$	o or o do	records = (10) = (10)	rmoobility	is boing u	and		0.86	(18)
Numbe	r of side	es shelte	ered	เธรรณกรสแ	Uniesinas	s been don	e or a de	yiee all pe	ппеаршку	is being us	seu		0] (19)
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltrati	on rate	incorpo	rating sl	nelter fac	ctor			(21) = (18) x (20) =				0.86	(21)
Infiltrati	on rate	modifie	d for mo	onthly wir	nd speed	ł								_
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly	/ averaç	ge wind	speed f	rom Tab	le 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	I	
Adjust	ed infiltra	ation rat	e (allowi	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
•	1.09	1.07	1.05	0.94	0.92	0.81	0.81	0.79	0.86	0.92	0.96	1.01		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	ise							
IT Me	echanica			ondix N (2	(25) = (22)			(NE)) othe	nuico (22k	(220)		l	0	(23a)
If bal	aust all the	heat reco	overv: effic	viency in %	allowing f	or in-use f	factor (fro	m Table 4h) =) – (23a)			0	(230)
a) If	halance	d mach	anical ve	antilation	with he	at recov			-) -) -) -) -) - - - - - - - - - - - -	2h)m ± ((23h) v [1 _ (23c)	0 · 1001	(230)
(24a)m=									$\frac{1}{0}$			1 - (230)	÷ 100]	(24a)
b) If	halance	d mech	l anical ve	I	without	heat rec	noverv (M\/) (24ł	$1 - \frac{1}{2}$	1	23h)	-		,
(24b)m=	0			0	0	0					0	0		(24b)
c) If	whole h	ouse ex	I tract ver	L ntilation of	I or positiv	I ve input v	I ventilati	on from	L outside	I	I	<u> </u>		
•)	if (22b)n	n < 0.5 >	< (23b), 1	then (24	c) = (23k	o); other	wise (24	4c) = (22	b) m + 0	.5 × (23	c)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	ve input	ventilati	ion from	loft			-		
İ	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	erwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]				(
(24d)m=	1.09	1.07	1.05	0.94	0.92	0.83	0.83	0.81	0.87	0.92	0.96	1.01		(24d)
Effe	ctive air	change	rate - er	nter (24a	i) or (24k	o) or (24	c) or (24	4d) in bo	x (25)	<u> </u>	<u> </u>			(05)
(25)m=	1.09	1.07	1.05	0.94	0.92	0.83	0.83	0.81	0.87	0.92	0.96	1.01		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros area	ss (m²)	Openin rr	igs 1 ²	Net Ar A ,r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²·ł	· A K k	∖Xk J/K
Doors						1.89	x	1.6	=	3.024				(26)
Windo	ws Type	e 1				7.24	. x	1/[1/(1.6)+	- 0.04] =	10.89				(27)
Windo	ws Type	2				21.89	 э х	1/[1/(1.6)+	- 0.04] =	32.92				(27)
Rooflig	ghts					3.12	×	1/[1/(1.6) +	0.04] =	4.992				(27b)
Floor						52.4	1 ×	0.22		11.530	2		7	(28)
Walls	Type1	45.3	39	0		45.39	 э х	0.28	=	12.71	i T		i —	(29)
Walls	Type2	42.	3	29.1	3	13.17	7 X	0.28	=	3.69	i T		i —	(29)
Walls	ТуреЗ	23.5	58	1.89	•	21.69	э х	0.6	=	12.91	i T		i —	(29)
Roof		12.8	39	3.12	2	9.77	· x	0.18	=	1.76			i —	(30)
Total a	rea of e	lements	s, m²			176.5	57							(31)
Party v	vall					42.43	3 X	0	=	0			-	(32)
Party of	ceiling					35.55	5	L			L		╡ ├──	(32b)
* for win	dows and le the area	roof wind	ows, use e sides of in	effective wi	indow U-va	alue calcul	lated usin	g formula d	1/[(1/U-val	ue)+0.04] a	L as given in	paragraph	 3.2	` ′
Fabric	heat los	s, W/K	= S (A x	U)	.s and par			(26)(30) + (32) =				94.12	(33)
Heat c	apacity	Cm = S	(Axk)	-					((28).	(30) + (3	2) + (32a).	(32e) =	12389.74	(34)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

250

(35)

Indicative Value: Medium

can be ι	ised inste	ad of a de	tailed calcu	ulation.										
Thermal bridges : S (L x Y) calculated using Appendix K if details of thermal bridging are not known (36) = $0.15 \times (31)$														(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			120.6	(37)
Ventila	tion hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	101.95	99.95	97.95	88.12	86.26	77.59	77.59	75.99	80.93	86.26	90.02	93.96		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	222.55	220.56	218.56	208.72	206.86	198.2	198.2	196.59	201.53	206.86	210.62	214.56		
Heatle		motor (F		/m2k					(40)m	Average =	Sum(39)1.	12 /12=	208.65	(39)
(40)-	2 42		1LF), VV/	2.27	2.25	2.16	2.16	2.14	2.10	- (59)m -	2 20	2.22		
(40)m=	2.42	2.4	2.30	2.27	2.25	2.10	2.10	2.14	2.19	2.20	2.29	2.33	0.07	
Numbe	er of day	s in mo	nth (Tab	le 1a)						Average =	Sum(40)₁.	12 /12=	2.27	(40)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (41)m= 31 28 31 30 31														
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4 \M/a	iter hea	ting ener	rav reaui	irement [.]								k\/\/h/\/	ear:	
4. Water heating energy requirement.														
Assumed occupancy, N 2.65 (42)														
it TF	A > 13.	9, N = 1	+ 1.76 x	[1 - exp	(-0.0003	49 x (TF	-A -13.9)2)] + 0.0	0013 x (FFA -13.	.9)			
Annua	Laverad	e hot wa	ater usad	ne in litre	es ner da	w Vd av	erade =	(25 x N)	+ 36		07	17		(43)
Reduce	the annua	al average	hot water	usage by a	5% if the a	welling is	designed t	to achieve	a water us	se target o	of ST	.17		(40)
not more	e that 125	litres per	person per	r day (all w	ater use, l	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	106.89	103	99.11	95.23	91.34	87.45	87.45	91.34	95.23	99.11	103	106.89		
							1	1		rotal = Su	m(44) ₁₁₂ =	=	1166.04	(44)
Energy of	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	158.51	138.63	143.06	124.72	119.67	103.27	95.69	109.81	111.12	129.5	141.36	153.51		
										Total = Su	m(45) ₁₁₂ =	=	1528.86	(45)
lf instan	taneous w	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46) to (61)		ī			
(46)m=	23.78	20.8	21.46	18.71	17.95	15.49	14.35	16.47	16.67	19.43	21.2	23.03		(46)
Water	storage	loss:											I	
Storag	e volum	e (litres)	incluain	ig any so	Diar or V	WHRS	storage	within sa	ame ves	sei		150		(47)
If com	nunity h	leating a	ind no ta	ink in dw	elling, e	nter 110) litres in	(47)		(0) : ((47)			
Otherv	lise if no	o stored	not wate	er (this in	iciudes i	nstantar	neous co	nod idmo	ers) ente	er 'O' in ((47)			
a) If m	storage	IUSS: urer's de	aclared l	oss facto	or is kno	wn (k)/k	v(dav).					0	l	(40)
							i/uay).					0		(40)
Tempe	erature i	actor Iro	miable	20								0		(49)
Energy	/ lost fro	m water	storage	, kWh/ye	ear	or io not	known	(48) x (49)) =		1:	50		(50)
Hot wa	ianuiaci	ane loss	factor fr	om Tahl	e 2 (kW	h/litre/ds	NIUWII: av)					01		(51)
If com	nunitv h	leating s	ee secti	on 4.3	(1000		.,,				<u>0</u> .	01		(01)
 	a factor			-										
volum		from ra	ble 2a								0.	93		(52)

Energ	y lost fro	m water	r storage	e, kWh/y	ear			(47) x (51) x (52) x (53) =	0.	.67	(54)
Enter	(50) or	(54) in (8	55)								0.	.67	(55)
Water	storage	loss cal	culated	for each	month			((56)m = ((55) × (41)	m			
(56)m=	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(56)
If cylind	er contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – ((H11)] ÷ (5 -	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H
(57)m=	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(57)
Prima	ry circuit	loss (ar	nnual) fro	om Table	e 3							0	(58)
Prima	ry circuit	loss cal	culated	for each	month (59)m =	(58) ÷ 36	65 × (41)	m				
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wa	ter heatii	ng and a	a cylinde	r thermo	stat)	1	l .
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(59)
Comb	i loss ca	lculated	for each	month	(61)m =	(60) ÷ 3	65 × (41))m					
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0	(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	: 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m
(62)m=	202.65	178.5	187.2	167.44	163.81	145.99	139.83	153.95	153.84	173.64	184.08	197.65	(62)
Solar D	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter 'C	' if no sola	r contributi	ion to wate	er heating)	
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)		-		
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0	(63)
Outpu	t from w	ater hea	iter					-			-		
(64)m=	202.65	178.5	187.2	167.44	163.81	145.99	139.83	153.95	153.84	173.64	184.08	197.65	
								Out	out from wa	ater heatei	r (annual)	12	2048.58 (64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)n	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]
(65)m=	88.02	77.99	82.88	75.64	75.1	68.51	67.13	71.82	71.12	78.37	81.18	86.35	(65)
inclu	ude (57)	m in cale	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating
5. In	ternal ga	ains (see	e Table 5	5 and 5a):								
Metab	olic gair	ıs (Table	e 5), Wat	ts									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m=	132.57	132.57	132.57	132.57	132.57	132.57	132.57	132.57	132.57	132.57	132.57	132.57	(66)
Lightir	ng gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				
(67)m=	27.04	24.01	19.53	14.78	11.05	9.33	10.08	13.1	17.59	22.33	26.07	27.79	(67)
Applia	nces ga	ins (calc	ulated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	•		
(68)m=	242.6	245.12	238.78	225.27	208.22	192.2	181.49	178.98	185.32	198.83	215.87	231.9	(68)
Cookii	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	ee Table	5			
(69)m=	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	(69)
Pump	s and fa	ns gains	(Table (5a)									
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	(70)
Losse	s e.q. ev	aporatic	n (nega	tive valu	es) (Tab	le 5)	1						
(71)m=	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	(71)
Water	heating	gains (1	rable 5)	!	!	ļ	I		ļ			ļ	I
(72)m=	118.3	116.06	111.4	105.06	100.95	95.15	90.23	96.54	98.78	105.34	112.74	116.07	(72)
Total	internal	aains =	! :	I	I	I(66)	I)m + (67)m	l 1 + (68)m ·	L + (69)m + ((70)m + (7	1)m + (72)	۱ــــــــــــــــــــــــــــــــــــ	
(73)m=	453.71	450.96	435.47	410.88	385.99	362.45	347.58	354.39	367.46	392.27	420.45	441.52	(73)
6. So	lar gains	S:	L			1	L		I			I *-	,

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.3	x	21.89	×	11.28) ×	0.63	×	0.7] =	29.41	(75)
Northeast 0.9x	0.3	x	21.89	×	22.97	x	0.63	×	0.7	=	59.86	(75)
Northeast 0.9x	0.3	x	21.89	×	41.38	x	0.63	×	0.7	=	107.85	(75)
Northeast 0.9x	0.3	x	21.89	x	67.96	x	0.63	x	0.7	i =	177.12	(75)
Northeast 0.9x	0.3	x	21.89	x	91.35	x	0.63	x	0.7	=	238.09	(75)
Northeast 0.9x	0.3	x	21.89	×	97.38	x	0.63	×	0.7	=	253.83	(75)
Northeast 0.9x	0.3	x	21.89	x	91.1	x	0.63	x	0.7	i =	237.45	(75)
Northeast 0.9x	0.3	x	21.89	x	72.63	x	0.63	x	0.7	=	189.3	(75)
Northeast 0.9x	0.3	x	21.89	×	50.42	x	0.63	×	0.7	i =	131.42	(75)
Northeast 0.9x	0.3	x	21.89	×	28.07	x	0.63	×	0.7	i =	73.16	(75)
Northeast 0.9x	0.3	x	21.89	×	14.2	x	0.63	×	0.7	=	37	(75)
Northeast 0.9x	0.3	x	21.89	×	9.21	x	0.63	×	0.7	i =	24.02	(75)
Southwest0.9x	0.77	x	7.24	×	36.79	i	0.63	×	0.7	i =	81.41	(79)
Southwest0.9x	0.77	x	7.24	x	62.67	1	0.63	x	0.7	i =	138.67	(79)
Southwest0.9x	0.77	x	7.24	x	85.75	ĺ	0.63	×	0.7	i =	189.74	(79)
Southwest0.9x	0.77	x	7.24	x	106.25	i	0.63	x	0.7	i =	235.1	(79)
Southwest0.9x	0.77	x	7.24	x	119.01	1	0.63	x	0.7	i =	263.33	(79)
Southwest0.9x	0.77	x	7.24	x	118.15	i	0.63	×	0.7	i =	261.42	(79)
Southwest0.9x	0.77	x	7.24	×	113.91	ĺ	0.63	x	0.7	=	252.04	(79)
Southwest0.9x	0.77	x	7.24	×	104.39	1	0.63	x	0.7	=	230.98	(79)
Southwest0.9x	0.77	x	7.24	×	92.85	ĺ	0.63	×	0.7	=	205.45	
Southwest0.9x	0.77	x	7.24	×	69.27	ĺ	0.63	x	0.7	=	153.26	(79)
Southwest0.9x	0.77	x	7.24	×	44.07	Ī	0.63	x	0.7	=	97.51	(79)
Southwest0.9x	0.77	x	7.24	×	31.49	ĺ	0.63	×	0.7	=	69.67	(79)
Rooflights 0.9x	1	x	3.12	×	26	x	0.63	×	0.8] =	36.8	(82)
Rooflights 0.9x	1	x	3.12	×	54	×	0.63	×	0.8	=	76.42	(82)
Rooflights 0.9x	1	x	3.12	×	96	x	0.63	×	0.8] =	135.86	(82)
Rooflights 0.9x	1	x	3.12	x	150	x	0.63	x	0.8] =	212.28	(82)
Rooflights 0.9x	1	x	3.12	×	192	x	0.63	×	0.8	=	271.72	(82)
Rooflights 0.9x	1	x	3.12	×	200	x	0.63	×	0.8	=	283.05	(82)
Rooflights 0.9x	1	x	3.12	×	189	x	0.63	×	0.8	=	267.48	(82)
Rooflights 0.9x	1	x	3.12	×	157	x	0.63	×	0.8	=	222.19	(82)
Rooflights 0.9x	1	x	3.12	x	115	x	0.63	x	0.8	=	162.75	(82)
Rooflights 0.9x	1	x	3.12	x	66	x	0.63	×	0.8] =	93.41	(82)
Rooflights 0.9x	1	x	3.12	×	33	×	0.63	×	0.8] =	46.7	(82)
Rooflights 0.9x	1	x	3.12	x	21	x	0.63	x	0.8	=	29.72	(82)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m				
(83)m=	147.62	274.96	433.45	624.5	773.14	798.3	756.97	642.47	499.62	319.82	181.22	123.41	(83)	
Total gains – internal and solar (84)m = (73)m + (83)m , watts														
(84)m=	601.33	725.92	868.92	1035.39	1159.13	1160.75	1104.54	996.86	867.08	712.09	601.67	564.93	(84)	
7. Me	an inter	nal temp	erature	(heating	season)								
-------------------	-----------	------------------------	------------	--------------------	-------------	-------------	--------------	--------------------	--------------------	-----------------	-------------	------------	---------	-------
Temp	erature	during h	leating p	eriods ir	n the livir	ng area t	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	tion fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.96	0.9	0.79	0.66	0.72	0.9	0.98	0.99	1		(86)
Mean	internal	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.41	18.64	19.07	19.7	20.25	20.7	20.88	20.84	20.48	19.76	19.03	18.44		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	ble 9, Tl	n2 (°C)					
(88)m=	19.07	19.08	19.09	19.16	19.17	19.23	19.23	19.24	19.21	19.17	19.15	19.12		(88)
Utilisa	tion fac	tor for a	ains for	rest of d	welling.	h2.m (se	e Table	9a)						
(89)m=	0.99	0.99	0.98	0.94	0.85	0.66	0.45	0.52	0.82	0.96	0.99	1		(89)
Mean	interna	temper	ature in	the rest	of dwelli	na T2 (f	n Now ste	ons 3 to 7	7 in Tahl	e 9c)				
(90)m=	16.84	17.08	17.5	18.17	18.69	19.1	19.21	19.21	18.93	18.25	17.5	16.9		(90)
` <i>`</i>									f	L LA = Livin	g area ÷ (4	1) =	0.41	(91)
Moon	internal	tompor	atura (fo	r tho wh	olo dwol	lling) – fl	I A ⊷ T1	⊥ (1 _ fl	۸) v T2			I		
(92)m=	17.49	17.72	18.15	18.8	19.34	19.76	19.9	+ (1 − 1∟ 19.88	19.57	18.87	18.13	17.54		(92)
vlagA	adiustr	nent to t	he mear	internal	tempera	ature fro	m Table	4e. whe	ere appro	opriate				
(93)m=	17.49	17.72	18.15	18.8	19.34	19.76	19.9	19.88	19.57	18.87	18.13	17.54		(93)
8. Spa	ace hea	ting requ	uirement											
Set Ti	to the r	nean int	ernal ter	nperatur	e obtain	ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation	factor fo	or gains	using Ta	ble 9a									
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m-					0.86	0.71	0 54	0.6	0.84	0.96	0.99	0 99		(94)
Usefu	l gains	hmGm	W = (94	4)m x (84	4)m	0.11	0.01	0.0	0.01	0.00	0.00	0.00		
(95)m=	596.59	715.83	844.5	968	991.69	822.91	595.71	601.61	727.27	682.75	594.11	561.34		(95)
Month	ly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	oss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	2934.74	2827.91	2545.85	2066.21	1579.73	1022.84	653.36	683.87	1102.05	1710.77	2323.72	2861.68		(97)
Space	e heating	g require	ement fo	r each m	nonth, k	Nh/mont	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	1739.58	1419.32	1265.8	790.71	437.5	0	0	0	0	764.84	1245.32	1/11.45	0074 50	
								lota	l per year	(kwh/year) = Sum(9)	8)15,912 =	9374.53	(96)
Space	e heating	g require	ement in	kWh/m ²	/year								101.96	(99)
9a. Ene	ergy req	luiremer	nts – Indi	vidual h	eating sy	ystems i	ncluding	micro-C	HP)					
Space Fraction	e heatir	ig: Jace hea	t from s	econdar	/sunnle	mentary	svstem					1	0	(201)
Fracti	on of sn	ace hea	it from m	nain svst	em(s)	montary	System	(202) = 1 -	- (201) =			l	1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ing syste	em 1								86.9	(206)
Efficie	ency of s	seconda	ry/supple	ementar	y heating	g system	ז, %						0	(208)

			_	_		_	_	_		_			_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ır
Space	e heatin	g require	ement (o	calculate	d above))							1	
	1739.58	1419.32	1265.8	790.71	437.5	0	0	0	0	764.84	1245.32	1711.45		
(211)m	1 = {[(98)m x (20	(4)] } x 1	100 ÷ (20)6)								1	(211)
	2001.82	1633.28	1456.62	909.91	503.45	0	0			880.14	1433.04	1969.45		
0		- f] / .						TULA			211) _{15,10} 12	-	10787.72	(211)
= {[(98]) m x (20	g iuei (s)1)] } x 1	$00 \div (20)$	у), күүн/)8)	monun									
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
I								Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
Water	heating	J												-
Output	from w	ater hea	ter (calc	ulated a	bove)								1	
Efficien	202.65	178.5	187.2	167.44	163.81	145.99	139.83	153.95	153.84	173.64	184.08	197.65		
(217)m-	85 72	85 64	85.45	8/ 05	83.80	76.8	76.8	76.8	76.8	8/ 8/	85.45	85 73	76.8	(217)
Euel fo	r water	heating	kWh/m	onth	05.09	70.0	70.0	70.0	70.0	04.04	00.40	05.75		(217)
(219)m	1 = (64)	<u>m x 100</u>) ÷ (217)	<u>)m</u>										
(219)m=	236.4	208.43	219.07	197.11	195.26	190.09	182.08	200.46	200.31	204.68	215.41	230.54		-
								Tota	I = Sum(2	19a) ₁₁₂ =			2479.83	(219)
Annua	l totals	fueluse	nd main	evetam	1					k	Wh/year		kWh/year	1
Water	heating	fueluse	d, main	System	1								10707.72	J
water	neating	iuei use	a .										2479.83	
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatin	ig pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	/ for the	above,	kWh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ghting											477.45	(232)
12a. (CO2 em	issions ·	– Individ	lual heat	ing syste	ems inclu	uding mi	cro-CHF)					
						Fn	erav			Fmiss	ion fact	tor	Fmissions	
						k٧	/h/year			kg CO	2/kWh		kg CO2/yea	r
Space	heating	(main s	ystem 1)		(21	1) x			0.2	16	=	2330.15	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	535.64	(264)
Space	and wa	ter heati	ng			(26	1) + (262)	+ (263) + (264) =	·			2865.79	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	38.93](267)
Electric	city for li	ghting				(23)	2) x			0.5	19	=	247.8	_ (268)
Total C	:02, kg/	'year							sum o	f (265)(2	271) =		3152.51	(272)
Dwelli	ng CO2	Emissi	on Rate	•					(272)	÷ (4) =			34.29	(273)
EI ratir	ıg (secti	on 14)											69	(274)

			User D	etails:						
Assessor Name:	George Farr			Strom	a Num	ber:		STRO	028460	
Software Name:	Stroma FSAP 20	012		Softwa	are Ver	sion:		Versic	on: 1.0.4.6	
		P	roperty <i>i</i>	Address:	Flat 3 -	Base				
Address :										
1. Overall dwelling dime	nsions:									
Ground floor			Area	a(m²) 6.27	(1a) x	Av. He i	i ght(m) .35	(2a) =	Volume(m ³) 179.23	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1r	ı)7	6.27	(4)			-		
Dwelling volume			L		(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	179.23	(5)
2. Ventilation rate:										
Number of chimneys	main heating 0 +	secondar heating	у] + [other 0] = [total	x 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fai	าร					3	x ′	10 =	30	(7a)
Number of passive vents					Ē	0	x ′	10 =	0	(7b)
Number of flueless gas fi	es					0	x 4	40 =	0	(7c)
								Air ch	anges per ho	_ ur
Infiltration due to chimne	s flues and fans -	(6a)+(6b)+(7)	'a)+(7b)+('	7c) =	Г	20		. (5) -	0.47	
If a pressurisation test has be	een carried out or is inter	ided, procee	d to (17), c	otherwise c	continue fro	30 om (9) to (16)	÷ (0) –	0.17	
Number of storeys in th	e dwelling (ns)								0	(9)
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or timbe	er frame or	0.35 for	masonr	y constr	uction			0	(11)
if both types of wall are pr deducting areas of openin	esent, use the value corr as): if equal user 0.35	esponding to	the great	er wall are	a (after					
If suspended wooden f	oor, enter 0.2 (unse	aled) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ent	er 0.05, else enter ()							0	(13)
Percentage of windows	and doors draught	stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value,	q50, expressed in c	ubic metre	s per ho	our per so	quare m	etre of e	nvelope	area	15	(17)
If based on air permeabili	ty value, then (18) =	[(17) ÷ 20]+(8	3), otherwi	se (18) = (16)				0.92	(18)
Air permeability value applies	s if a pressurisation test l d	as been dor	e or a deg	gree air pei	rmeability i	is being us	sed			
Shelter factor	u			(20) = 1 -	[0.075 x (1	9)] =			1	(19)
Infiltration rate incorporati	ng shelter factor			(21) = (18)) x (20) =				0.92](21)
Infiltration rate modified for	or monthly wind spe	ed							0.02	
Jan Feb	Mar Apr Ma	y Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7]	
Wind Factor (22a)m = (22	2)m ÷ 4									
(22a)m= 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter an	d wind s	speed) =	(21a) x	(22a)m			-	_	
	1.17	1.15	1.12	1.01	0.99	0.87	0.87	0.85	0.92	0.99	1.03	1.08		
Calcula If me	ate ette	<i>ctive air</i> al ventila	change	rate for t	he appli	cable ca	se							(232)
If exh	aust air h	eat pump	usina App	endix N. (2	3b) = (23a	i) × Fmv (e	equation (1	N5)) . othe	rwise (23b) = (23a)			0	(23b)
If bala	anced wit	h heat reco	overy: effic	ciency in %	allowing f	or in-use f	actor (fron	n Table 4h) =	, (,			0	(23c)
a) If	halance	d mech	anical ve	entilation	with he	at recove	≏rv (M\/I	HR) (24a	′ a)m – (2	2h)m + (23h) x [[,]	1 – (23c)) <u>-</u> 1001	(200)
(24a)m=					0	0]	(24a)
().if	halance	d mech	l anical ve		without	heat rec	noverv (N	1 MV/) (24H	1 - (2)	2h)m + ('	23h)]	
(24b)m=	0			0	0	0					0	0	1	(24b)
) c) If	whole h		I tract ver	LI	or positiv	l ve input v	l ventilatio	I on from (L	<u> </u>	1		1	
i i	f (22b)r	n < 0.5 ×	(23b), t	then (24c	c) = (23b); otherv	vise (24	c) = (22	o) m + 0	.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positiv	/e input	ventilatio	on from I	loft	<u>.</u>			3	
i	f (22b)r	n = 1, th	en (24d))m = (22t	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			-	
(24d)m=	1.17	1.15	1.12	1.01	0.99	0.88	0.88	0.86	0.92	0.99	1.03	1.08		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in bo	x (25)				-	
(25)m=	1.17	1.15	1.12	1.01	0.99	0.88	0.88	0.86	0.92	0.99	1.03	1.08		(25)
3. He	at losse	s and he	eat loss	paramete	er:									
ELEN	IENT	Gros	SS (m ²)	Openin	gs 2	Net Ar	ea n²	U-val	ue	A X U	K)	k-valu	к e	A X k
Doors		arca	(11)			1.80		16		3 024		N0/111 -	IX .	(26)
Window	ws Type	1				1.09		/[1/(31)+	- 0.041 -	00.45				(20)
Window						0.14		/[1/(31)+	0.04]	22.40				(27)
Floor	wsiype	52				12.82	<u>2</u> X1	/[//(3.1)+	0.04] =	35.36	╡╷			(27)
						5.62		0.22	=	1.2364			\dashv	(28)
	гурет	49.9	96	20.96	5	29	×	0.3	=	8.7	╡╎		\dashv	(29)
vvalis	i ype∠	24.4	17	1.89		22.58	3 ×	0.25	=	5.64			\dashv	(29)
Roof		13.3	31	0		13.31	x	0.18	=	2.4				(30)
l otal a	rea of e	elements	, m²			93.36	3							(31)
Party v	vall					51.46	3 X	0	=	0				(32)
Party fl	loor					70.66	3							(32a)
Party c	eiling					62.97	7							(32b)
* for wind ** includ	dows and le the area	l roof wind as on both	ows, use e sides of ii	effective wil nternal wall	ndow U-va 's and part	alue calcul titions	ated using	g formula 1	/[(1/U-valı	ue)+0.04] a	as given in	paragrapl	h 3.2	
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)) + (32) =				78.81	(33)
Heat ca	apacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	10474.7	'9 (34)
Therma	al mass	parame	ter (TMI	P = Cm ÷	- TFA) in	n kJ/m²K			Indica	ative Value	: Medium		250	(35)
For desig	gn asses Ised inste	sments wh ad of a de	ere the de tailed calc	etails of the ulation.	constructi	ion are not	t known pr	recisely the	e indicative	e values of	TMP in Ta	able 1f		
Therma	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						14	(36)
if details	of therma	al bridging	are not kr	10wn (36) =	= 0.15 x (3	1)							L	` ´
Total fa	abric he	at loss							(33) +	- (36) =			92.81	(37)

Ventila	ation hea	at loss ca	alculated	d monthl	у	-	-		(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	69.18	67.83	66.47	59.69	58.34	52.04	52.04	50.87	54.46	58.34	61.04	63.76		(38)
Heat t	ransfer c	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	161.99	160.64	159.28	152.5	151.15	144.85	144.85	143.68	147.27	151.15	153.85	156.57		
Heatle		motor (l	ער ים ור	/~21/				-	(40)~	Average =	Sum(39)1.	12 /12=	152.31	(39)
	2 12		$1 \square P$, W	/m²ĸ	1.09	1.0	1.0	1 99	(40)m	= (39)m -	2.02	2.05		
(40)11=	2.12	2.11	2.09	2	1.90	1.9	1.9	1.00	1.95	Average -	Sum(40),	2.05	2	(40)
Numb	er of day	s in mo	nth (Tab	le 1a)						Wordgo -	Cum(40)		<u> </u>	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
				-		-	-	-						
4. Wa	ater heat	ing ene	rgy requ	irement:								kWh/ye	ear:	
A			NI											(10)
Assum if TF	A > 13.9	ipancy, i 9. N = 1	N + 1.76 x	(1 - exp	(-0.0003	849 x (TF	- A -13.9)2)] + 0.()013 x (⁻	ΓFA -13.	2. .9)	39		(42)
if TF	A £ 13.9	9, N = 1	-		(- (, ,]		-				
Annua	l averag	e hot wa	ater usa	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36	o torgot o	90	.92		(43)
not mor	e that 125	litres per	not water person pe	r day (all w	ater use, l	hot and co	ld)	to acriieve	a water us	se largel o	1			
	lan	Fob	Mor	Apr	May	lun	, Iul	Δυσ	Son	Oct	Nov	Dec		
Hot wat	er usage ii	n litres per	r day for e	Api ach month	Vd,m = fa	ctor from T	Table 1c x	(43)	Sep	001	NOV	Dec		
(44)m-	100.01	96.38	92 74	89.1	85.47	81.83	81.83	85.47	80.1	92 74	96 38	100.01		
(44)11-	100.01	30.30	52.74	03.1	00.47	01.00	01.05	00.47	03.1	JZ.14	m(44)	100.01	1091.06	(44)
Energy	content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	n x nm x D	OTm / 3600) kWh/mor	oth (see Ta	ables 1b, 1	- c, 1d)	1031.00	
(45)m=	148.32	129.72	133.86	116.7	111.98	96.63	89.54	102.75	103.98	121.17	132.27	143.64		
										Fotal = Su	m(45) ₁₁₂ =	=	1430.55	(45)
lf instan	taneous w	ater heati	ng at poin	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)					_
(46)m=	22.25	19.46	20.08	17.51	16.8	14.49	13.43	15.41	15.6	18.18	19.84	21.55		(46)
vvater	storage	IOSS:	includir		alar ar M		storago	within or				450		(47)
Siorag		e (illes)		ig any so		///IK3	slorage	WILLIN Se	ame ves	sei		150		(47)
Otherv	munity n vise if no	eating a	no no ta hot wate	ank in av er (this ir	/elling, e ncludes i	nter 110 nstantar	nitres in Neous co	(47) mbi boil	ers) ente	er '0' in <i>(</i>	47)			
Water	storage	loss:	not wat			notantai								
a) If m	nanufact	urer's de	eclared	loss fact	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature fa	actor fro	m Table	e 2b								0		(49)
Energ	y lost fro	m water	· storage	e, kWh/y	ear			(48) x (49)) =		1	50		(50)
b) If m	nanufact	urer's de	eclared	cylinder	loss fact	or is not	known:							
Hot wa	ater stora	age loss	factor f	rom Tab	le 2 (kW	h/litre/da	ıy)				0.	.01		(51)
If com	munity h	eating s	ee secti	on 4.3										(50)
Tempe	e lactor	actor fro	bie za m Table	2h							0.	.93 54		(52)
Enorm	/ loot fro	m watar			oor			$(47) \times (51)$	(F2) y (E2) _	0.	.54		(53)
Energ	(50) or (111 water (54) in (F	501age	; KVV[1/Y	zdi			(47) X (51)	x (22) X (us) =	0.	67		(54) (55)
Water	storade		culated	for each	month			((56)m - (55) x (41)	m	L0.	01		(00)
(50)=-		10.00 001				00.0	20.00				00.0	00.00		(56)
=m(ac)	∠0.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88		(00)

If cylinde	er contair	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88		(57)
Primar	y circui	t loss (ar	nual) fro	om Table	93	-	-		-	-		0		(58)
Primar	y circui	t loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mod	dified by	y factor fi	rom Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	192.46	169.59	178	159.42	156.12	139.35	133.68	146.89	146.69	165.31	174.99	187.78		(62)
Solar DH	IW input	calculated	using App	endix G oı	· Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	192.46	169.59	178	159.42	156.12	139.35	133.68	146.89	146.69	165.31	174.99	187.78		_
								Outp	out from wa	ater heate	r (annual)₁	12	1950.27	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	84.63	75.03	79.82	72.98	72.55	66.3	65.08	69.48	68.75	75.6	78.15	83.07		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal g	ains (see	e Table 5	5 and 5a):									
Metabo	olic gaiı	ns (Table	e 5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 oi	r L9a), a	lso see	Table 5					
(67)m=	23.57	20.93	17.02	12.89	9.63	8.13	8.79	11.42	15.33	19.47	22.72	24.22		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5				
(68)m=	211.47	213.66	208.13	196.36	181.5	167.53	158.2	156.01	161.54	173.31	188.17	202.14		(68)
Cookin	ng gains	s (calcula	ted in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5	-			
(69)m=	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94		(69)
Pumps	and fa	ns gains	(Table §	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. e	vaporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53		(71)
Water	heating	gains (T	able 5)											
(72)m=	113.75	111.65	107.29	101.36	97.51	92.09	87.48	93.38	95.48	101.62	108.55	111.66		(72)
Total i	nterna	l gains =				(66)	m + (67)m	n + (68)m +	⊦ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	410.61	408.07	394.27	372.43	350.47	329.58	316.3	322.64	334.17	356.22	381.26	399.84		(73)
6. Sol	lar gain	s:		•				•						
Solar g	ains are	calculated	using sola	r flux from	Table 6a	and associ	iated equa	itions to co	onvert to th	e applicat	le orientat	ion.		
Orienta	ation:	Access F	actor	Area		Flu	х		g_		FF		Gains	

Table 6b

Table 6c

Table 6a

Table 6d

m²

(W)

Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	1	1.28	x		0.63	x	0.7		=	44.21	(75)
Northea	ast <mark>0.9x</mark>	0.77	,	(12.8	32	x	2	2.97	X		0.63	×	0.7		=	89.98	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	4	1.38	×		0.63	x	0.7		=	162.12	(75)
Northea	ast <mark>0.9x</mark>	0.77)	(12.8	32	x	6	7.96	×		0.63	×	0.7		=	266.25	(75)
Northea	ast <mark>0.9x</mark>	0.77)	(12.8	32	x	9	1.35	×		0.63	x	0.7		=	357.89	(75)
Northea	ast <mark>0.9x</mark>	0.77)	(12.8	32	x	9	7.38	×		0.63	x	0.7		=	381.55	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x		91.1	×		0.63	x	0.7		=	356.93	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	7	2.63	×		0.63	x	0.7		=	284.55	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	5	0.42	x		0.63	×	0.7		=	197.55	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	2	8.07	×		0.63	x	0.7		=	109.97	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x		14.2	x		0.63	×	0.7		=	55.62	(75)
Northea	ast <mark>0.9x</mark>	0.77)	•	12.8	32	x	9	9.21	x		0.63	×	0.7		=	36.1	(75)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	3	6.79]		0.63	x	0.7		=	91.53	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	6	2.67]		0.63	x	0.7		=	155.91	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	8	5.75]		0.63	x	0.7		=	213.33	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	1	06.25]		0.63	x	0.7		=	264.32	(79)
Southw	est <mark>0.9x</mark>	0.77)	(8.1	4	x	1	19.01]		0.63	x	0.7		=	296.06	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	1	18.15]		0.63	×	0.7		=	293.92	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	1	13.91]		0.63	×	0.7		=	283.37	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	1(04.39]		0.63	×	0.7		=	259.69	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	9	2.85]		0.63	x	0.7		=	230.99	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	6	9.27]		0.63	x	0.7		=	172.32	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	4	4.07]		0.63	×	0.7		=	109.63	(79)
Southw	est <mark>0.9x</mark>	0.77)	•	8.1	4	x	3	1.49]		0.63	×	0.7		=	78.33	(79)
Solar g	ains in	watts, ca	alculate	d	for each	n mont	h			(83)r	n = Sı	um(74)m	.(82)m		<u> </u>			(00)
(83)m=	135.74	245.89	375.45	Ţ	530.57	653.95		675.47	640.3	544	1.24	428.53	282.28	3 165.26	114	1.43		(83)
10tal g				л Т	$\frac{(04)(0)}{002}$	1004.4	1+ 	(03)III		0.00		760 74	620 5	546 52	51/	1.07		(84)
(04)111=	546.34	053.90	769.71		903	1004.4	-2	1005.05	956.6	800	0.00	762.71	030.3	540.52	514	. ∠/		(04)
7. Me	an inter	nal temp	perature	e (heating	seaso	on)									-		_
Temp	erature	during h	eating	pe	eriods in	the liv	ving	g area f	rom Tal	ble 9	, Th	1 (°C)					21	(85)
Utilisa	ation fac	tor for g	ains for	· lir T	ving are	a, h1,	m (see Ta	ble 9a)	<u> </u>								
(00)	Jan	Feb	Mar	╉	Apr	May	4	Jun	Jul		ug	Sep	Oct	Nov)ec		(96)
(86)m=	1	0.99	0.98		0.95	0.88		0.74	0.6	0.	66	0.87	0.97	0.99		1		(00)
Mean	interna	l temper	ature ir	n li	iving are	ea T1 ((foll	ow ste	ps 3 to 7	7 in ⁻	Fable	e 9c)		1				
(87)m=	18.74	18.97	19.36		19.95	20.44		20.8	20.93	20).9	20.62	19.98	19.3	18	.76		(87)
Temp	erature	during h	eating	pe	eriods in	rest c	of d	welling	from Ta	able	9, Tł	n2 (°C)		-				
(88)m=	19.25	19.26	19.28		19.33	19.35		19.4	19.4	19	.41	19.38	19.35	19.32	19	9.3		(88)
Utilisa	ation fac	tor for g	ains for	re	est of d	velling	i, hź	2,m (se	e Table	9a)								
(89)m=	0.99	0.99	0.97		0.93	0.82		0.62	0.41	0.	48	0.78	0.95	0.99	0.	99		(89)

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	17.29	17.52	17.92	18.53	18.99	19.32	19.39	19.39	19.18	18.58	17.9	17.34		(90)
									1	fLA = Livin	ig area ÷ (4	4) =	0.48	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	llina) = f	LA x T1	+ (1 – fL	A) x T2					
(92)m=	17.99	18.22	18.62	19.22	19.69	20.04	20.13	20.12	19.88	19.26	18.58	18.03		(92)
Apply	v adjustn	nent to t	he mear	n interna	temper	i ature fro	n m Table	4e, whe	ere appro	opriate				
(93)m=	17.99	18.22	18.62	19.22	19.69	20.04	20.13	20.12	19.88	19.26	18.58	18.03		(93)
8. Sp	ace hea	ting requ	uirement	t			<u> </u>	•		•	•			
Set T	i to the r	mean int	ernal te	mperatu	re obtain	ed at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	tilisation	factor fo	or gains	using Ta	ble 9a	-		_			,			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:			-	-		-	-			
(94)m=	0.99	0.98	0.97	0.93	0.83	0.67	0.5	0.57	0.81	0.95	0.99	0.99		(94)
Usefu	ul gains,	hmGm	, W = (9	4)m x (84	4)m		_	_	-	_	_			
(95)m=	541.54	643.64	745.17	835.81	838.38	676.15	482.4	491.22	619.99	607.28	538.55	510.62		(95)
Mont	hly aver	age exte	rnal terr	perature	e from Ta	able 8	-	-						
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm,W:	=[(39)m	x [(93)m	– (96)m]	-			
(97)m=	2217.57	2139.78	1930.5	1573.12	1207.99	787.68	512	534.87	850.88	1308.8	1765.71	2164.82		(97)
Spac	e heatin	g require	ement fo	r each n	nonth, k\	Nh/mon	th = 0.02	24 x [(97)m – (95	5)m] x (4	1)m			
(98)m=	1246.96	1005.41	881.88	530.86	274.99	0	0	0	0	521.93	883.55	1230.73		
							-	Tota	l per year	(kWh/year	r) = Sum(9	8)15,912 =	6576.31	(98)
Spac	e heatin	a reauire	ement in	kWh/m²	/vear								86.22	(99)
	orauroa		sto Ind	ividual b	ooting o	votomo i	noludino	, mioro (חחי			l		
Sa. LI	o hostir	a	ns – mu	iviuuai ri	eating s	ystems i	nciuumg	f micro-c	21 IF)					
Fract	ion of sc	ig. bace hea	at from s	econdar	v/supple	mentarv	v svstem						0	(201)
Fract	ion of sr	ace hes	at from n	nain evet	om(s)	,	-)	(202) = 1	- (201) =				1	
Final				iairi syst				(204) (2	(201) =	(202)]				
Fract	ion of to	tal neati	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =		-	1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								86.9	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g systen	า, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Spac	e heatin	g require	ement (c	alculate	d above))		L Č						
-	1246.96	1005.41	881.88	530.86	274.99	0	0	0	0	521.93	883.55	1230.73		
(211)n	n = {[(98)m x (20	1 14)1 } x 1	$100 \div (20)$)6)		1	1		1	1			(211)
()	1434.94	1156.97	1014.82	610.89	316.45	0	0	0	0	600.61	1016.75	1416.25		()
								Tota	l I (kWh/yea	ar) =Sum(2	211)	=	7567 68	(211)
Snoo	a haatin	a fuel (e	aaandar		month					,	/ 15, 1012		1001.00	(= ,
	m x (20)	y iuei (S)1)] \ v 1	$00 \pm (20)$	y), KVVII/ 181	monun									
(215)m=					0	0	0	0	0	0	0	0		
()///-	Ŭ		l	l			l	Tota	l (kWh/ve:	I ar) =Sum()	1 215).		0	(215)
\\/ <u>-</u> +-~	ha-1!									,(- <i>1</i> 15,1012		U	
Output	from w) ator boo	tor (colo	ulated el	hove									
Julpu	192.46	169.59	178	159.42	156.12	139.35	133.68	146.89	146.69	165.31	174.99	187.78		
Efficie	ncy of w	ater hea	ıter	I	L	I	I	I	I	I	I	I	76.8	(216)
	,													· · · ·

_						-		-	_	_	-	_	_	
(217)m=	85.4	85.28	85.02	84.34	82.95	76.8	76.8	76.8	76.8	84.24	85.05	85.41		(217)
Fuel for	r water	heating,	kWh/mo	onth										
(219)m (219)m=	<u>= (64)</u> 225.37	m x 100) ÷ (217) 209.36	m 189.02	188.21	181.44	174.06	191.26	191.01	196.25	205.74	219.85	1	
								Tota	l = Sum(2	19a) ₁₁₂ =			2370.43	(219)
Annua	l totals	;								k	Wh/year	-	kWh/year	
Space	heating	j fuel use	ed, main	system	1						•		7567.68]
Water h	neating	fuel use	d										2370.43	Ī
Electric	ity for p	oumps, fa	ans and	electric l	keep-ho	t								-
centra	I heatir	ng pump:	:									30]	(230c)
boiler	with a f	fan-assis	ted flue									45	j	(230e)
Total el	lectricit	y for the	above, k	(Wh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	ity for I	ighting											416.18	(232)
														_
12a. C	CO2 em	nissions -	– Individ	ual heati	ng syste	ems inclu	uding mi	cro-CHF	,					
12a. C	CO2 em	nissions -	– Individ	ual heati	ng syste	ems inclu En kW	uding mi ergy /h/year	cro-CHF	,	Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ar
12a. C Space	CO2 em	nissions - g (main s	- Individ ystem 1)	ual heati)	ng syste	ems inclu En kW (21 [,]	uding mi ergy /h/year I) x	cro-CHF		Emiss kg CO	ion fac 2/kWh 16	tor =	Emissions kg CO2/yea 1634.62	ar](261)
12a. C Space Space	CO2 em heating heating	iissions -) (main s) (seconc	- Individ ystem 1) dary)	ual heati	ng syste	ems inclu En kW (21 (21	uding mi ergy /h/year I) x 5) x	cro-CHF		Emiss kg CO 0.2	ion fac 2/kWh 16	tor = =	Emissions kg CO2/yea 1634.62	ar](261)](263)
12a. C Space Space Water H	CO2 em heating heating neating	iissions -) (main s) (second	- Individ ystem 1) dary)	ual heati	ng syste	ems inclu En kW (21 (21) (21)	uding mil ergy /h/year I) x 5) x 9) x	cro-CHF		Emiss kg CO 0.2 0.5	ion fac 2/kWh 16 19 16	tor = = =	Emissions kg CO2/yea 1634.62 0 512.01	ar](261)](263)](264)
12a. C Space Space Water H Space	CO2 em heating heating neating and wa	issions -) (main s) (second iter heati	- Individ ystem 1) dary) ng	ual heati	ng syste	ems inclu En kW (21 ² (21) (21) (26)	uding mil ergy /h/year 1) x 5) x 9) x 1) + (262) ·	cro-CHF + (263) + ((264) =	Emiss kg CO 0.2 0.5	ion fac 2/kWh 16 19 16	tor = = =	Emissions kg CO2/yea 1634.62 0 512.01 2146.63	ar](261)](263)](264)](265)
12a. C Space Space Water H Space	heating heating heating and wa	issions -) (main s) (second ter heati pumps, fa	- Individ ystem 1) dary) ng ans and	electric l	ng syste	ems inclu En kW (21 ² (21) (21) (21) (26 ² t (23)	uding mil ergy /h/year 1) x 5) x 9) x 1) + (262) · 1) x	cro-CHF + (263) + ((264) =	Emiss kg CO 0.2 0.5 0.2	ion fac 2/kWh 16 19 16	tor = = =	Emissions kg CO2/yea 1634.62 0 512.01 2146.63 38.93	ar](261)](263)](264)](265)](267)
12a. C Space Space Water h Space Electric	heating heating heating and wa ity for p	issions - (main s (second ter heati bumps, fa ighting	- Individ ystem 1) dary) ng ans and	electric l	ng syste	ems inclu En kW (21 ² (21) (21) (21) (23) t (23)	uding mil ergy /h/year 1) x 5) x 9) x 1) + (262) · 1) x 2) x	cro-CHF + (263) + ((264) =	Emiss kg CO 0.2 0.5 0.2	ion fac 2/kWh 16 19 16	tor = = = =	Emissions kg CO2/yea 1634.62 0 512.01 2146.63 38.93 216	ar](261)](263)](264)](265)](267)](268)
12a. C Space I Space I Space I Electric Electric Total C	heating heating heating and wa sity for p sity for I	issions - (main s (second ter heati bumps, fa ighting /year	- Individ ystem 1) dary) ng ans and	electric l	ng syste	ems inclu En kW (21 ² (21) (21) (21) (23) t (23)	uding mil ergy /h/year 1) x 5) x 9) x 1) + (262) · 1) x 2) x	cro-CHF + (263) + ((264) = sum o	Emiss kg CO 0.2 0.5 0.5 0.5 f (265)(2	ion fac 2/kWh 16 19 16 19 19 19 271) =	tor = = = =	Emissions kg CO2/yea 1634.62 0 512.01 2146.63 38.93 216 2401.55	ar (261) (263) (264) (265) (267) (268) (272)
12a. C Space I Space I Space I Electric Electric Total C Dwellir	heating heating heating and wa sity for p sity for l :O2, kg, ng CO2	issions - (main s) (second ter heati bumps, fa ighting /year 2 Emissi	- Individ ystem 1) dary) ng ans and on Rate	electric l	ng syste	ems inclu En kW (21 ² (21) (21) (21) (23) t (23)	uding mil ergy /h/year 1) x 5) x 9) x 1) + (262) 1) x 2) x	cro-CHF + (263) + ((264) = sum o (272)	Emiss kg CO. 0.2 0.5 0.5 (0.5 f (265)(2 \div (4) =	ion fac 2/kWh 16 19 16 19 19 19 271) =	tor = = =	Emissions kg CO2/yes 1634.62 0 512.01 2146.63 38.93 216 2401.55 31.49	ar (261) (263) (264) (265) (265) (267) (268) (272) (273)
12a. C Space I Space I Space I Electric Electric Total C Dwellir El ratin	heating heating heating and wa sity for p sity for I :O2, kg, ng CO2 g (secti	issions - (main s (second ter heati bumps, fa ighting /year 2 Emissi ion 14)	- Individ ystem 1) dary) ng ans and on Rate	electric l	ng syste	ems inclu En kW (211 (211 (211 (211) (212)	uding mil ergy /h/year I) x 5) x 9) x 1) + (262) · 1) x 2) x	cro-CHF + (263) + ((264) = sum o (272)	Emiss kg CO. 0.2 0.5 0.5 f (265)(2) \div (4) =	ion fac 2/kWh 16 19 16 19 19 271) =	tor = = =	Emissions kg CO2/yes 1634.62 0 512.01 2146.63 38.93 216 2401.55 31.49 73	ar] (261)] (263)] (264)] (265)] (267)] (268)] (272)] (273)] (274)

							User D	Details:							
Asses	sor N	ame:	Ge	orge Fa	rr			Strom	a Num	ber:		STRC	028460		
Softw	are Na	ame:	Str	oma FS	AP 201	2		Softwa	are Ver	rsion:		Versio	on: 1.0.4.6		
						Р	roperty	Address	: Flat 4 -	Base					
Addre	ss :														
1. Ove	Area(m²)Av. Height(m)ound floor 5.28 $(1a) \times$ 2.55 $(2a) =$ at floor 76.37 $(1b) \times$ 2.1 $(2b) =$														
							Are	a(m²)		Av. He	ight(m)	-	Volume(m ³)	-	
Ground	l floor							5.28	(1a) x	2	.55	(2a) =	13.46	(3a)	
First flo	or						7	76.37	(1b) x	2	2.1	(2b) =	160.38	(3b)	
Total flo	oor area	TFA =	(1a)+(1l	o)+(1c)+	(1d)+(1e	e)+(1n	i) [31.65	(4)			-		_	
Dwellin	g volum	e							(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	173.84	(5)	
2. Ver	tilation	rate:													
				main heating	se h	econdar neating	у	other		total			m ³ per hour		
Numbe	r of chir	nneys	Г	0	+	0] + [0	=	0	X 4	40 =	0	(6a)	
Numbe	r of ope	n flues	Ē	0	_ + [0	ī + Ē	0	- -	0	x 2	20 =	0	(6b)	
Numbe	r of inte	rmittent	fans							3	× ′	10 =	30	(7a)	
Numbe	r of pas	sive ver	nts						Г	0	x ^	10 =	0	(7b)	
Numbe	r of flue	less ga	s fires						Ē	0	x 4	40 =	0	(7c)	
		-							L						
												Air ch	hanges per hou	ur	
Infiltrati	on due	to chim	neys, flu	es and f	ans = <mark>(6</mark>	a)+(6b)+(7	a)+(7b)+((7c) =	Г	30	· [÷ (5) =	0.17	(8)	
lf a pr	essurisati	on test ha	s been ca	rried out o	r is intende	ed, proceed	d to (17),	otherwise o	continue fr	om (9) to ((16)			-	
Num	ber of si	toreys ir	n the dw	elling (n	S)						(0)		0	(9)	
Addi	ional ini	iltration	0.05 fo	r otool o	r timbor	frama ar	0.25 fo	r 20000	n conotr	uction	[(9)-	-1]x0.1 =	0		
Struc if b	oth types	of wall ar	: 0.25 10 e present.	r steel o	r timber due corres	ponding to	the great	r masoni ter wall are	y constr a (after	uction			0	(11)	
dec	lucting are	eas of ope	enings); if	equal user	0.35	portainig to	une grea		a faiter						
lf sus	spendec	woode	n floor, o	enter 0.2	(unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)	
lf no	draught	lobby,	enter 0.0	05, else	enter 0								0	(13)	
Perce	entage o	of windo	ws and	doors di	aught st	ripped							0	(14)	
Wind	low infilt	ration						0.25 - [0.2	2 x (14) ÷ 1	= [00]	(0	(15)	
Infiltr	ation ra	te				_		(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)	
Air p	ermeabi	ility valu	e, q50,	expresse	ed in cub	oic metre	s per ho	our per s	quare m	etre of e	nvelope	area	15	(17)	
If base	d on air	permea	bility val	lue, then	(18) = [(1	7) ÷ 20]+(8	s), otnerw	1Se(18) = ((10)	ia haina w	and		0.92	(18)	
Numbe	r of side	es shelte	ered	เธรรณกรสแ	Un lest nas	s been don	e or a de	giee all pe	тпеаршку	is being us	seu		0	7(19)	
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(10)	
Infiltrati	on rate	incorpo	rating sł	nelter fac	ctor			(21) = (18) x (20) =				0.92	(21)	
Infiltrati	on rate	modifie	d for mo	nthly wir	nd speed	ł								<u> </u>	
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]		
Monthly	/ averag	ge wind	speed f	rom Tab	le 7								-		
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7			

Wind Factor (22a)m = (22)m \div 4							
(22a)m= 1.27 1.25 1.23 1.1 1.08	0.95 0.95	0.92 1	1.08	1.12	1.18		
Adjusted infiltration rate (allowing for shelter an	d wind speed)	= (21a) x (22a)m	า				
1.18 1.15 1.13 1.01 0.99	0.88 0.88	0.85 0.92	0.99	1.04	1.08		
Calculate effective air change rate for the applic	cable case	• •	•				1 2-1
If exhaust air heat pump using Appendix N. (23b) = (23a) × Fmv (equation	(N5)) . otherwise (23	3b) = (23a)			0 (2	.5a) 235)
If balanced with heat recovery: efficiency in % allowing for	or in-use factor (fr	om Table 4h) =				0 (2	.30) 23c)
a) If balanced mechanical ventilation with hea	at recoverv (M)	VHR) (24a)m = (22b)m + ()	23b) × [⁻	∟ ÷ (23c) – 1	(.00)
(24a)m= 0 0 0 0 0	0 0	0 0	0	0		(2	24a)
b) If balanced mechanical ventilation without	heat recovery	(MV) (24b)m = (22b)m + (2	23b)			
(24b)m= 0 0 0 0 0	0 0	0 0	0	0	0	(2	:4b)
c) If whole house extract ventilation or positiv	e input ventila	tion from outside					
if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (2	24c) = (22b) m +	0.5 × (23b)			
(24c)m= 0 0 0 0 0	0 0	0 0	0	0	0	(2	:4c)
 d) If natural ventilation or whole house positivity if (22b)m = 1, then (24d)m = (22b)m other 	ve input ventila rwise (24d)m :	tion from loft = $0.5 + [(22b)m^2]$	x 0.5]				
(24d)m= 1.18 1.15 1.13 1.01 0.99	0.88 0.88	0.86 0.93	0.99	1.04	1.08	(2	:4d)
Effective air change rate - enter (24a) or (24b) or (24c) or (2	24d) in box (25)	•				
(25)m= 1.18 1.15 1.13 1.01 0.99	0.88 0.88	0.86 0.93	0.99	1.04	1.08	(2	25)
3. Heat losses and heat loss parameter:							
ELEMENT Gross Openings area (m ²) m ²	Net Area A ,m²	U-value W/m2K	A X U (W/I	()	k-value kJ/m²·K	A X k kJ/K	
Doors	1.89	× 1.6 =	3.024	<i>,</i>		(2	26)
Windows Type 1	5.92	x1/[1/(1.6)+ 0.04] =	8.9			(2	27)
Windows Type 2	5.92	x1/[1/(1.6)+ 0.04] =	8.9			(2	27)
Rooflights	4.3	x1/[1/(1.6) + 0.04] =	6.88000	1		(2	27b)
Floor	9.73	x 0.22 =	2.1406] [(2	28)
Walls Type1 36.78 0	36.78	× 0.28 =	10.3	F i) [2	29)
Walls Type2 8.55 1.89	6.66	× 0.25 =	1.66	F i) [2	29)
Walls Type3 56.27 11.84	44.43	× 0.28 =	12.44	F i) [2	29)
Roof 46.19 4.3	41.89	x 0.18 =	7.54	i F		(3	30)
Total area of elements, m ²	157.52					, (3	31)
Party wall	38.99	x 0 =	= 0] [](3	32)
Party floor	71.82		L] [](3	32a)
* for windows and roof windows, use effective window U-va	lue calculated usi itions	ing formula 1/[(1/U-va	alue)+0.04] a	L Is given in	paragraph 3	.2	
Fabric heat loss, $W/K = S (A \times U)$		(26)(30) + (32) =	=		Г	61.38 (3	33)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

Heat capacity $Cm = S(A \times k)$

(34)

(35)

7839.35

250

((28)...(30) + (32) + (32a)...(32e) =

Indicative Value: Medium

can be u	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						23.63	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			85.01	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y		_		(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	67.48	66.16	64.83	58.22	56.9	50.72	50.72	49.57	53.1	56.9	59.54	62.19		(38)
Heat ti	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	152.49	151.16	149.84	143.22	141.9	135.72	135.72	134.58	138.1	141.9	144.55	147.19		
Heat lo	oss para	ameter (H	HLP). W/	/m²K					/ (40)m	Average = = (39)m ÷	Sum(39)1. - (4)	12 /12=	143.03	(39)
(40)m=	1.87	1.85	1.84	1.75	1.74	1.66	1.66	1.65	1.69	1.74	1.77	1.8		
(-)				_						Average =	Sum(40)₁	12 /12=	1.75	(40)
Numbe	er of day	/s in mo	nth (Tab	le 1a)						, , , , , , , , , , , , , , , , , , ,				
Average = Sum(40)112 /12=Number of days in month (Table 1a)JanFebMarAprMayJunJulAugSepOctNovDec(41)m=312831303130313130313031														
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
										•	-			
4. Wa	ater hea	tina ene	rav reau	irement:								kWh/ve	ear:	
			37 10 10											
Assum		upancy, I	N 1 7 0 M	14	(0.000	10 v /Tr	- 42.0		040 x /-		2.	49		(42)
if TF	A > 13. A £ 13	9, $N = 1$ 9, $N = 1$	+ 1.76 X	[1 - exp	(-0.0003	649 X (1F	-A -13.9)2)] + 0.0	JU13 X (IFA -13	.9)			
Annua	l averag	je hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		93	.42		(43)
Reduce	the annua	al average	hot water	usage by a	5% if the a	lwelling is	designed t	o achieve	a water us	se target o	of			
not mor	e that 125	litres per	berson per	r day (all w	ater use, l	hot and co	ld)					i		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
Hot wat	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)				-		
(44)m=	102.76	99.02	95.29	91.55	87.81	84.08	84.08	87.81	91.55	95.29	99.02	102.76		
_								- (-	Total = Su	m(44) ₁₁₂ =	=	1121.03	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,n	n x nm x L	01m / 3600	kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	152.39	133.28	137.54	119.91	115.05	99.28	92	105.57	106.83	124.5	135.9	147.58		_
15 :	(· · - · ·				. h . t t	(antan O in	haven (40	-	Total = Su	m(45) ₁₁₂ =	=	1469.84	(45)
it instan	taneous v	vater neatli	ng at point	or use (no	not water	storage),	enter 0 in	boxes (46)	1 to (61)	r			I	
(46)m=	22.86	19.99	20.63	17.99	17.26	14.89	13.8	15.84	16.02	18.68	20.39	22.14		(46)
Storage		1055. Da (litras)	includir		alar or M		storada	within sa	mavas	ما		450		(47)
If com	munity k		nd no to	ng any so		ntor 110	litroc in	(47)		501		150		(47)
Otherv	vise if n	nealing a	hot wate	r (this in	venny, e Indes i	nstantar		(47) mbi boili	ers) ente	r 'O' in <i>(</i>	(47)			
Water	storage	loss:	not wate			notantai				51 0 111	,			
a) If m	nanufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b			• /					0		(49)
Energy	/ lost fro	om water	storage	. kWh/ve	ear			(48) x (49)	=		1	50		(50)
b) If m	nanufact	turer's de	eclared of	cylinder l	oss fact	or is not	known:							()
Hot wa	ater stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)				0.	01		(51)
If com	munity ł	neating s	ee secti	on 4.3										
Volum	e factor	from Ta	ble 2a								0.	93		(52)
Tempe	erature f	actor fro	m Table	2b							0.	54		(53)

Energy	/ lost fro	om water	r storage	, kWh/ye	ear			(47) x (51) x (52) x (53) =	0.	.67	(5	54) 55)
Wator	ctorago			for oach	month			((56)m - 1)	(55) v (11)	m	0.	.07	(6	13)
vvalei	Sillaye							((50))) = ((41)				l /-	- 0)
(56)m=	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(t	<i>i</i> 6)
II Cylinde	er contains			rage, (57)	m = (00)m	x [(50) – (c) - [(117	0), eise (5	7)m = (56)	m where (
(57)m=	20.88	18.86	20.88	20.2	20.88	20.2	20.88	20.88	20.2	20.88	20.2	20.88	(5	57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0	(5	;8)
Primar	y circuit	loss cal	lculated t	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	there is s	solar wat	ter heati	ng and a	a cylinde	r thermo	stat)	i		
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(5	; 9)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0	(6	51)
Total h	eat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	: 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	196.53	173.15	181.68	162.62	159.19	142	136.14	149.71	149.55	168.64	178.62	191.72	(6	52)
Solar Di	-IW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0	(6	3 3)
Output	t from w	ater hea	ter				!							
(64)m=	196.53	173.15	181.68	162.62	159.19	142	136.14	149.71	149.55	168.64	178.62	191.72		
			1					Out	out from wa	ater heate	r (annual)₁	12	1989.56 (6	<u>54)</u>
Heat g	ains fro	m water	heating.	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)n	ר 1] + 0.8 א	(46)m	+ (57)m	+ (59)m	1	
(65)m=	85.98	76.21	81.04	74.04	73.57	67.18	65.9	70.41	69.7	76.71	79.36	84.38	. (6	35)
inclu	ude (57)	n in cal	ulation of	u of (65)m	only if c	vlinder i	s in the o	dwellina	or hot w	ater is fr	om com	n munity h	i Jeating	
5 Int	ternal or	ains (see	Table 5	and 5a).	,							g	
Matak														
wetab	olic gain	IS (TADIE	<u>5), vvat</u> Mar		May	lun		Διια	Sen	Oct	Nov	Dec	l	
(66)m =	124 67	124 67	124 67	124 67	124.67	124 67	124 67	124.67	124 67	124 67	124 67	124 67	(6	6)
Lightin							r 00) 0			121.01	121.07	12		,
Lignun					L, equal		1 L9a), a	12.05		20.52	22.06	25.54	(e	57)
(07)11=	24.05	22.07		13.59		0.00	9.27	12.05		20.00	23.90	23.34		,
Applia	nces ga	ins (caid	ulated in		dix L, eq	uation L	13 or L1	3a), aisc			400.0			20)
(68)m=	222.85	225.17	219.34	206.93	191.27	176.55	166.72	164.41	170.24	182.64	198.3	213.02	(6)0)
Cookir	ng gains	(calcula	ated in A	ppendix I	L, equat	tion L15	or L15a)), also se	ee Table	5			I	
(69)m=	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	(6	;9)
Pumps	s and fai	ns gains	(Table §	5a)									L	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	(7	'0)
Losses	s e.g. ev	aporatic	on (nega	tive valu	es) (Tab	le 5)								
(71)m=	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	(7	'1)
Water	heating	gains (1	Table 5)											
(72)m=	115.57	113.41	108.93	102.84	98.88	93.31	88.58	94.64	96.8	103.1	110.22	113.42	(7	'2)
Total i	nternal	gains =				(66))m + (67)m	n + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72))m	-	
(73)m=	426.68	424.05	409.62	386.76	363.72	341.85	327.97	334.5	346.61	369.68	395.89	415.39	(7	'3)
6 So	lar gains	3.		•				•	•				•	

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	5.92	×	11.28	×	0.63	x	0.7] =	20.41	(75)
Northeast 0.9x	0.77	x	5.92	x	22.97	x	0.63	x	0.7	j =	41.55	(75)
Northeast 0.9x	0.77	x	5.92	×	41.38	×	0.63	x	0.7	j =	74.86	(75)
Northeast 0.9x	0.77	x	5.92	x	67.96	×	0.63	x	0.7	i =	122.95	(75)
Northeast 0.9x	0.77	x	5.92	x	91.35	x	0.63	x	0.7	i =	165.27	(75)
Northeast 0.9x	0.77	x	5.92	×	97.38	×	0.63	x	0.7	j =	176.19](75)
Northeast 0.9x	0.77	x	5.92	×	91.1	×	0.63	x	0.7	i -	164.82	(75)
Northeast 0.9x	0.77	x	5.92	x	72.63	×	0.63	x	0.7	j =	131.4	(75)
Northeast 0.9x	0.77	x	5.92	x	50.42	×	0.63	x	0.7	j =	91.22	(75)
Northeast 0.9x	0.77	x	5.92	×	28.07	×	0.63	x	0.7	i =	50.78	(75)
Northeast 0.9x	0.77	x	5.92	x	14.2	x	0.63	x	0.7	=	25.69	(75)
Northeast 0.9x	0.77	x	5.92	×	9.21	×	0.63	x	0.7	j =	16.67	(75)
Southwest0.9x	0.77	x	5.92	×	36.79	İ	0.63	x	0.7	i =	66.57	(79)
Southwest0.9x	0.77	x	5.92	x	62.67	İ	0.63	x	0.7	j =	113.39	(79)
Southwest0.9x	0.77	x	5.92	×	85.75	İ	0.63	x	0.7	j =	155.15	– (79)
Southwest0.9x	0.77	x	5.92	×	106.25	İ	0.63	x	0.7	i =	192.23	(79)
Southwest0.9x	0.77	x	5.92	×	119.01	İ	0.63	x	0.7	i =	215.32	_ (79)
Southwest0.9x	0.77	x	5.92	x	118.15	İ	0.63	x	0.7	i =	213.76	_ (79)
Southwest0.9x	0.77	x	5.92	×	113.91	İ	0.63	x	0.7	j =	206.09	(79)
Southwest0.9x	0.77	x	5.92	×	104.39	İ	0.63	x	0.7	j =	188.87	(79)
Southwest0.9x	0.77	x	5.92	×	92.85	İ	0.63	x	0.7] =	167.99	(79)
Southwest0.9x	0.77	x	5.92	×	69.27	Ì	0.63	x	0.7] =	125.32	(79)
Southwest0.9x	0.77	x	5.92	×	44.07		0.63	x	0.7] =	79.73	(79)
Southwest0.9x	0.77	x	5.92	×	31.49	1	0.63	x	0.7] =	56.97	(79)
Rooflights 0.9x	1	x	4.3	x	26	x	0.63	x	0.8] =	50.71	(82)
Rooflights 0.9x	1	x	4.3	x	54	×	0.63	x	0.8	=	105.33	(82)
Rooflights 0.9x	1	x	4.3	x	96	x	0.63	x	0.8] =	187.25	(82)
Rooflights 0.9x	1	x	4.3	x	150	x	0.63	x	0.8] =	292.57	(82)
Rooflights 0.9x	1	x	4.3	x	192	×	0.63	x	0.8] =	374.49	(82)
Rooflights 0.9x	1	x	4.3	x	200	x	0.63	x	0.8] =	390.1	(82)
Rooflights 0.9x	1	x	4.3	x	189	x	0.63	x	0.8] =	368.64	(82)
Rooflights 0.9x	1	x	4.3	×	157	×	0.63	x	0.8] =	306.23	(82)
Rooflights 0.9x	1	x	4.3	x	115	x	0.63	x	0.8] =	224.31	(82)
Rooflights 0.9x	1	x	4.3	×	66	×	0.63	x	0.8] =	128.73	(82)
Rooflights 0.9x	1	x	4.3	x	33	×	0.63	x	0.8	=	64.37	(82)
Rooflights 0.9x	1	x	4.3	x	21	×	0.63	x	0.8] =	40.96	– (82)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m			
(83)m=	137.69	260.27	417.26	607.75	755.08	780.05	739.55	626.49	483.52	304.83	169.78	114.6	(83)
Total g	otal gains – internal and solar (84)m = (73)m + (83)m , watts												
(84)m=	564.37	684.32	826.88	994.52	1118.79	1121.89	1067.52	960.99	830.12	674.51	565.68	529.99	(84)

Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (65) Utilisation factor for gains for living area, h1,m (see Table 9a) 30 $Apr Apr May Jun Jul Aug Sep Oct Nov Dec (66) (86)m= 1 0.99 0.98 0.94 0.85 0.68 0.53 0.6 0.84 0.97 0.99 1 (66) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (67) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88) (89) (89) (89) 19.21 19.45 19.5 19.5 19.47 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89) (89) 0.99 0.99 0.99 0.99 1 (89) (80)m= 17.65 17.88 18.27 19.57 19.56 19.57 19.41 18.87 18.22 17.7 (90) (80)m= 17.65 17.88 18.27 19.27 19.52 19.57 19.41 18.87 18.22 17.7 (90) (Pa) (Pa) $
Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)me 1 0.99 0.98 0.94 0.85 0.68 0.53 0.6 0.84 0.97 0.99 1 (66) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)me 18.98 19.21 19.61 20.17 20.61 20.89 20.97 20.95 20.73 20.15 19.5 19 (67) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (80)me 19.42 19.43 19.5 19.51 19.57 19.58 19.55 19.51 19.47 (68) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (80)me 0.99 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.95 0.99 1 (69) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90) 11.4 18.38 18.77 19.35 <
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
(86)m= 1 0.99 0.98 0.94 0.85 0.68 0.53 0.6 0.84 0.97 0.99 1 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.98 19.21 19.61 20.17 20.61 20.89 20.97 20.95 20.73 20.15 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.51 19.42 19.43 19.45 19.5 19.57 19.58 19.55 19.51 19.49 19.47 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.95 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.65 17.88 18.28 18.77 19.35 19.77 19.41 18.87 18.22 17.7 (90) (9
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 18.98 19.21 19.61 20.17 20.61 20.89 20.97 20.95 20.73 20.15 19.5 19 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.42 19.43 19.45 19.5 19.57 19.57 19.55 19.51 19.49 19.47 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.95 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.65 17.88 18.28 18.87 19.27 19.56 19.57 19.41 18.87 18.22 17.7 (90) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 (92) 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (92) Apply adjustment to the mean internal temp
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.42 19.43 19.45 19.5 19.51 19.57 19.58 19.55 19.51 19.47 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.95 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.65 17.88 18.28 18.87 19.27 19.56 19.57 19.41 18.87 18.22 17.7 (90) (IA = Living area \div (4) = 0.37 0.31 20.08 19.9 19.34 18.69 18.18 (92) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 (92)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)me 18.14 18.30
$\begin{array}{c} \text{(88)} \text{m} = & 19.42 & 19.43 & 19.45 & 19.5 & 19.51 & 19.57 & 19.57 & 19.58 & 19.55 & 19.51 & 19.49 & 19.47 \\ \text{(88)} \text{m} = & 0.92 & 0.99 & 0.97 & 0.91 & 0.78 & 0.56 & 0.37 & 0.43 & 0.75 & 0.95 & 0.99 & 1 \\ \text{(89)} \text{m} = & 0.99 & 0.99 & 0.97 & 0.91 & 0.78 & 0.56 & 0.37 & 0.43 & 0.75 & 0.95 & 0.99 & 1 \\ \text{(89)} \text{m} = & 0.99 & 0.99 & 0.97 & 0.91 & 0.78 & 0.56 & 0.37 & 0.43 & 0.75 & 0.95 & 0.99 & 1 \\ \text{(80)} \text{m} = & 17.65 & 17.88 & 18.28 & 18.87 & 19.27 & 19.52 & 19.56 & 19.57 & 19.41 & 18.87 & 18.22 & 17.7 & (90) \\ \text{(90)} \text{m} = & 17.65 & 17.88 & 18.28 & 18.7 & 19.27 & 19.52 & 19.56 & 19.57 & 19.41 & 18.87 & 18.22 & 17.7 & (91) \\ \text{Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 \\ \text{(92)} \text{m} = & 18.14 & 18.38 & 18.77 & 19.35 & 19.77 & 20.03 & 20.08 & 20.08 & 19.9 & 19.34 & 18.69 & 18.18 & (92) \\ \text{Apply adjustment to the mean internal temperature from Table 4e, where appropriate \\ \text{(93)} \text{m} = & 18.14 & 18.38 & 18.77 & 19.35 & 19.77 & 20.03 & 20.08 & 20.08 & 19.9 & 19.34 & 18.69 & 18.18 & (93) \\ \textbf{8. Space heating requirement} \\ \text{Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a \\ \hline \text{Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec} \\ \text{Utilisation factor for gains, hm:} \\ \text{(94)} \text{m} = & 0.99 & 0.99 & 0.97 & 0.91 & 0.79 & 0.6 & 0.43 & 0.49 & 0.77 & 0.95 & 0.99 & 0.99 & (94) \\ \text{Useful gains, hmGm, W = (94)m x (84)m} \\ \text{(95)} \text{m} = & 560.16 & 674.27 & 798.89 & 905.88 & 88.93 & 677.43 & 400.38 & 475.18 & 643.02 & 639.43 & 558.24 & 526.87 & (95) \\ \end{array}$
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.95 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.65 17.88 18.28 18.87 19.27 19.52 19.56 19.57 19.41 18.87 18.22 17.7 (90) (90)m= 17.65 17.88 18.28 18.87 19.27 19.52 19.56 19.57 19.41 18.87 18.22 17.7 (90) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 (92)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93) 8 . Space heating requirement (93) 8. Space heating requirement Utilisation factor for gains, hm: (94) Aug Sep Oct Nov Dec
(B9)m= 0.99 0.97 0.91 0.78 0.56 0.37 0.43 0.75 0.99 1 (B9) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m= 17.65 17.88 18.28 18.87 19.27 19.52 19.56 19.57 19.41 18.87 18.22 17.7 (90) (90)m= 17.65 17.88 18.28 18.87 19.27 19.52 19.56 19.57 19.41 18.87 18.22 17.7 (90) (92)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (92) (93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (93) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 1
(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
Mean internal temperature in the rest of dwelling 12 (follow steps 3 to 7 in Table 9c)(90)m=17.6517.8818.2818.8719.2719.5219.5619.5719.4118.8718.2217.7(90)fLA = Living area \div (4) =0.37(91)Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2(92)m=18.1418.3818.7719.3519.7720.0320.0819.919.3418.6918.18(92)Apply adjustment to the mean internal temperature from Table 4e, where appropriate(93)m=18.1418.3818.7719.3519.7720.0320.0819.919.3418.6918.18(93)8. Space heating requirementSet Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9aJanFebMarAprMayJunJulAugSepOctNovDecUtilisation factor for gains, hm:(94)m=0.990.990.970.910.790.60.430.490.770.950.990.99(94)Useful gains, hmGm, W = (94)m x (84)m(95)m=560.16674.27798.89905.88888.93677.43460.38475.18643.02639.43558.24526.87(95)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (93) September 18.14 18.38 18.77 19.35 19.77 20.03 20.08 19.9 19.34 18.69 18.18 (93) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m=
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m=18.1418.3818.7719.3519.7720.0320.0820.0819.919.3418.6918.18(92)Apply adjustment to the mean internal temperature from Table 4e, where appropriate(93)m=18.1418.3818.7719.3519.7720.0320.0820.0819.919.3418.6918.18(93)8. Space heating requirementSet Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculatethe utilisation factor for gains using Table 9aUtilisation factor for gains, hm:(94)m =0.990.990.970.910.790.60.430.490.770.950.990.99(94)Useful gains, hmGm, W = (94)m x (84)m(95)m=560.16674.27798.89905.88888.93677.43460.38475.18643.02639.43558.24526.87(95)
(92)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 20.08 19.9 19.34 18.69 18.18 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 20.08 19.9 19.34 18.69 18.18 (92) (93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 20.08 19.9 19.34 18.69 18.18 (93) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m= 560.16 674.27 798.89 905.88 888.93 677.
Apply adjustment to the mean internal temperature from Table 4e, where appropriate $(93)m=$ 18.1418.3818.7719.3519.7720.0320.0820.0819.919.3418.6918.18(93)8. Space heating requirementSet Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9aJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecUtilisation factor for gains, hm:(94)m=0.990.970.910.790.60.430.490.770.950.990.99(94)Useful gains, hmGm, W = (94)m x (84)m(95)m= 560.16674.27798.89905.88888.93677.43460.38475.18643.02639.43558.24526.87(95)
(93)m= 18.14 18.38 18.77 19.35 19.77 20.03 20.08 20.08 19.9 19.34 18.69 18.18 (93) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.99 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
8. Space nearing requirementSet Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9aJanFebMarAprMayJunJulAugSepOctNovDecUtilisation factor for gains, hm:(94)m= 0.99 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94)Useful gains, hmGm, W = (94)m x (84)m(95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
Set 11 to the mean internal temperature obtained at step 11 of Table 9b, so that $\Pi, m=(76)m$ and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.99 0.99 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Utilisation factor for gains, hm: $(94)m =$ 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
(94)m= 0.99 0.99 0.97 0.91 0.79 0.6 0.43 0.49 0.77 0.95 0.99 0.99 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
Useful gains, hmGm , W = $(94)m \times (84)m$ (95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
(95)m= 560.16 674.27 798.89 905.88 888.93 677.43 460.38 475.18 643.02 639.43 558.24 526.87 (95)
Monthly average external temperature from Table 8
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m]
$ \begin{array}{c} (97) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$
(30)III 1153.07 915.75 775.9 425.72 190.42 0 0 0 0 0 4447.04 604.61 1159.26
$1 \text{ otal per year } (kvvn/year) = \text{Sum}(98)_{15,912} = 5850.57 \tag{90}$
Space heating requirement in kWh/m²/year 71.65 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)
Space heating:
Fraction of space heat from secondary/supplementary system 0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)
Efficiency of main analysis heating system 1
Enciency of main space heating system 1 86.9 (200)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heatin	g require	ement (o	calculate	d above))	1		1	1	1		I	
	1153.67	915.73	773.9	425.72	190.42	0	0	0	0	447.04	804.81	1139.28		
(211)m	$1 = \{[(98)]$)m x (20	94)] } x ´	100 ÷ (20)6)	0		0		E14 40	026.14	1211.02		(211)
	1327.59	1053.77	890.57	469.69	219.13	0	0	U Tota	l (kWh/vea	r) = Sum(2)	211)	=	6722.52	7(211)
Space	e heatin	a fuel (s	econdar	·v) kWh/	month						/15,1012		0732.33](=)
= {[(98])m x (20)1)]}x1	00 ÷ (20)8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	ıl (kWh/yea	ar) =Sum(2	215) _{15,1012}	F	0	(215)
Water	heating	J												
Output	196.53	ater hea 173.15	ter (calc 181.68	ulated a	bove) 159.19	142	136.14	149.71	149.55	168.64	178.62	191.72		
Efficier	L ncy of w	L ater hea	I iter						I	I	I		76.8	(216)
(217)m=	85.27	85.12	84.78	83.85	81.99	76.8	76.8	76.8	76.8	83.88	84.87	85.28		」 (217)
Fuel fo	r water	heating,	kWh/m	onth							•			
(219)m (219)m=	1 = (64) 230.49	m x 100 203.42) <u>÷ (217</u> 214.29)m 193.94	194.16	184.89	177.27	194.94	194.72	201.06	210.46	224.8		
			I					Tota	l II = Sum(2	19a) ₁₁₂ =			2424.44	(219)
Annua	I totals									k	Wh/year		kWh/year	_
Space	heating	fuel use	ed, main	system	1								6732.53	
Water	heating	fuel use	d										2424.44]
Electric	city for p	oumps, fa	ans and	electric	keep-ho	t								
centra	al heatin	g pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	/ for the	above,	kWh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ghting											438.92	(232)
12a. (CO2 em	issions -	– Individ	lual heat	ing syste	ems incl	uding mi	cro-CHF)					
						Fn	erav			Fmiss	ion fac	tor	Fmissions	
						k٧	/h/year			kg CO	2/kWh		kg CO2/yea	r
Space	heating	(main s	ystem 1)		(21	1) x			0.2	16	=	1454.23	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	523.68	(264)
Space	and wa	ter heati	ng			(26	1) + (262) ·	+ (263) + ((264) =				1977.91	(265)
Electric	city for p	oumps, fa	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	38.93	(267)
Electric	city for li	ghting				(23	2) x			0.5	19	=	227.8	(268)
Total C	CO2, kg/	'year							sum o	of (265)(2	271) =		2244.63	(272)
Dwelli	ng CO2	Emissi	on Rate	;					(272)	÷ (4) =			27.49	(273)
El ratir	ng (secti	on 14)											76	(274)

eJ7°

Appendix B

SAP 2012 Dwelling Emission Rate Outputs

"Be Lean"

							User [Details:						
Asses Softw	ssor N vare Na	ame: ame:	Ge Str	orge Fa oma FS	irr SAP 201	2	roportu	Strom Softwa	a Num are Vei	ber: rsion:		STRO Versic	028460 on: 1.0.4.6	
Addro	ee :					Γ.	openy	Address	. Flat I					
1. Ove	erall dw	ellina diı	mension	S:										
							Are	a(m²)		Av. Hei	ight(m)		Volume(m ³))
Ground	d floor							52.41	(1a) x	2	.95	(2a) =	154.61	(3a)
First flo	or							44.88	(1b) x	3	.25	(2b) =	145.86	(3b)
Total fl	oor area	a TFA =	(1a)+(1l	o)+(1c)+	(1d)+(1e	e)+(1n)	97.29	(4)			•		
Dwellin	ıg volum	ne							(3a)+(3b)+(3c)+(3d	l)+(3e)+	.(3n) =	300.47	(5)
2. Ver	ntilation	rate:												
				main heating	se h	econdar neating	у	other		total			m ³ per hou	•
Numbe	er of chir	nneys		0	+	0] + [0] = [0	X 4	40 =	0	(6a)
Numbe	er of ope	en flues	Γ	0	+	0] + [0] = [0	x 2	20 =	0	(6b)
Numbe	er of inte	rmittent	fans							3	x ^	10 =	30	(7a)
Numbe	er of pas	sive ver	nts						Ē	0	x ^	10 =	0	(7b)
Numbe	er of flue	less ga	s fires						Ē	0	x 4	40 =	0	(7c)
												Air ch	nanges per ho	ur
Infiltrati	ion due	to chim	neys, flu	es and f	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Г	30	<u> </u>	÷ (5) =	0.1	(8)
lf a pr	essurisati	on test ha	s been ca	rried out o	r is intende	ed, proceed	d to (17),	otherwise	continue fr	rom (9) to ((16)			
Num	ber of s	toreys ir	n the dw	elling (n	s)								0	(9)
Addi	tional in	filtration									[(9)-	-1]x0.1 =	0	(10)
Struc	ctural inf	filtration	: 0.25 fo	r steel o	r timber i	frame or	0.35 fo	r mason	ry constr	uction			0	(11)
if b dec	oth types ducting ar	of wall are eas of ope	e present, enings); if	use the va equal user	lue corres • 0.35	ponding to	the grea	ter wall are	a (after					
If sus	spendeo	d woode	n floor, e	enter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)
lf no	draught	t lobby,	enter 0.0	05, else	enter 0								0	(13)
Perc	entage	of windo	ows and	doors di	aught st	ripped							0	(14)
Winc	low infil	tration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltr	ation ra	te						(8) + (10)	+ (11) + (1	12) + (13) -	+ (15) =		0	(16)
Air p	ermeab	ility valu	ie, q50, i	expresse	ed in cub	bic metre	s per h	our per s	quare m	etre of e	envelope	area	15	(17)
If base	d on air	permea	bility val	lue, then	(18) = [(1	7) ÷ 20]+(8	s), otherw	/ISE (18) = ((16) vrmoobilitu	ia haina u	and		0.85	(18)
Numbe	er of side	es shelte	ered	เธรรณกรสแ	Un lest nas	s been don	e or a ue	gree all pe	THEADINY	is being us	seu		0	(19)
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltrati	ion rate	incorpo	rating sh	nelter fac	ctor			(21) = (18) x (20) =				0.85	(21)
Infiltrati	ion rate	modifie	d for mo	nthly wir	nd speed	ł							L	
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthl	y avera	ge wind	speed f	rom Tab	le 7								_	
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rat	e (allowi	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
•	1.08	1.06	1.04	0.93	0.91	0.81	0.81	0.79	0.85	0.91	0.96	1		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	ise	_ !		!		 г		
IT ME	ecnanica		ition:	ondix N (2	(25) = (22)		oquation	(NE)) othe	nuico (22h	(220)		Ļ	0	(23a)
If hale	aust all the	heat reco	overv: effic	viency in %	allowing f	or in-use f	factor (fro	m Table 4h) =) – (23a)			0	(230)
a) If	halance	d mach	anical ve	antilation	with he	at recov			-) — -) m — (2)	2h)m + ((23h) v [_ 1 _ (23c)	0 · 1001	(230)
(24a)m=									$\frac{1}{0}$			1 - (230)	- 100]	(24a)
() b) If	halance	d mech	l anical ve	I	without	heat rec		 M\/) (24ł	1 - (2)	1 2h)m + ((23h)			,
(24b)m=	0			0	0	0					0	0		(24b)
c) If	whole h	ouse ex	I tract ver	L ntilation o	L or positiv	L /e input :	I ventilati	 on from (L outside	I	Į	<u> </u>		
i i	if (22b)n	n < 0.5 >	(23b), 1	then (24	c) = (23k	o); other	wise (24	4c) = (22	b) m + 0	.5 × (23	c)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	ve input	ventilat	ion from	loft	-	-			
i	if (22b)n	n = 1, th	en (24d)	m = (22l	b)m othe	erwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]		· · · · · ·		(- · · ·
(24d)m=	1.08	1.06	1.04	0.94	0.92	0.83	0.83	0.81	0.86	0.92	0.96	1		(24d)
Effe	ctive air	change	rate - er	nter (24a	i) or (24k	o) or (24	c) or (24	4d) in bo	x (25)			<u> </u>		(05)
(25)m=	1.08	1.06	1.04	0.94	0.92	0.83	0.83	0.81	0.86	0.92	0.96	1		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros area	ss (m²)	Openin rr	igs 1 ²	Net Ar A ,r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²⋅K	A k	AXk J/K
Doors						1.89	x	1.4	=	2.646				(26)
Windo	ws Type	e 1				9.96	x	1/[1/(1.4)+	0.04] =	13.2				(27)
Windo	ws Type	2				21.89	э х	1/[1/(1.4)+	- 0.04] =	29.02				(27)
Rooflig	phts					3.12	x	1/[1/(1.4) +	0.04] =	4.368				(27b)
Floor						52.4	1 ×	0.14	=	7.3374	 ↓ _ [7	(28)
Walls -	Type1	45.3	39	0		45.39	э х	0.18	=	8.17	= i		i —	(29)
Walls -	Гуре2	45.5	55	31.8	5	13.7	· x	0.22	=	3.01	= i		i —	(29)
Walls -	ГуреЗ	21.8	39	1.89		20	×	0.2	=	4.02			i —	(29)
Roof		12.5	53	3.12	2	9.41	x	0.14	=	1.32			i —	(30)
Total a	rea of e	lements	, m²			177.7	7	L			เ		J	(31)
Party v	vall					42.43	3 ×	0		0				(32)
Party of	eiling					39.88	3	L			L		╡ ├──	(32b)
* for win	dows and	roof wind	ows, use e	effective wi	indow U-va	alue calcul	lated usin	g formula 1	1/[(1/U-valu	ue)+0.04] a	L as given in	paragraph	ы Царана 3.2	
Fabric	heat los	as on doth ss W/K	sides of if = S (A v	uernai wal	is and par	แแบกร		(26)(30) + (32) =			Г	70 07	(22)
Heat c	apacity	Cm = S((A x k)	-,					((28).	(30) + (3	2) + (32a).	(32e) =	12446.8	(34)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

250

(35)

Indicative Value: Medium

can be l	used inste	ad of a de	tailed calc	ulation.										
Therm	used instead of a detailed oxiduation. Ial bridges : S (L x Y) calculated using Appendix K $(28, 1)$ abric heat loss calculated using Appendix K $(33) + (39) = (28, 57)$ (36) is diama bridging are not known (39) = 0.15 x (31) abric heat loss calculated monthly $(38)n = 0.33 \times (25)n \times (5)$ 107.44 + 106.33 + 103.23 + 29.9 + 90.96 + 81.88 + 81.89 + 90.21 + 85.38 + 90.96 + 94.9 + 99.01 (38) ransfer coefficient, W/K $(39)n = (37) + (38)m200.97 + 204.86 + 202.76 + 192.44 + 190.49 + 181.42 + 181.42 + 179.75 + 184.92 + 190.49 + 194.43 + 190.49 + 192.37 (39) or sparameter (HLP), W/m2K (40)n - (30)n + (4)2.13 - 2.11 - 2.08 + 1.98 + 1.96 + 1.86 + 1.86 + 1.85 + 1.9 + 1.96 + 2 - 2.04 + 0.000 + $													
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
can be used instead of a detailed calculation. 26.67 Thermal bridges : S (L x Y) calculated using Appendix K 26.67 if details of thermal bridging are not known (36) = 0.15 x (31) (3) + (36) = 99.53 Vontilation heat loss calculated monthly (38) m = 0.33 x (25) m x (5) 99.53 Ventilation heat loss calculated monthly (39) m = 0.33 x (25) m x (5) 99.53 (38)m= 107.44 105.33 103.23 92.9 90.96 81.89 81.89 80.21 85.38 90.96 94.9 99.01 Heat transfer coefficient, W/K (39)m = (37) + (38)m (39)m = (37) + (38)m 90.96 181.42 181.42 179.75 184.92 190.49 194.43 198.54 Heat toss parameter (HLP), W/m?K (40)m = (37) + (38)m 196 1.86 1.86 1.85 1.9 1.96 2 2.04 (40)m = (2.13 2.11 2.08 1.98 1.96 1.86 1.85 1.9 1.96 2 2.04 (41)m = 1 1.91 2.03 1.92 1.91 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1													(37)	
Ventila	ation hea	at loss ca	alculated	I monthly	y				(38)m	= 0.33 × (25)m x (5)			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
(38)m=	107.44	105.33	103.23	92.9	90.96	81.89	81.89	80.21	85.38	90.96	94.9	99.01		(38)
Heat t	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	206.97	204.86	202.76	192.44	190.49	181.42	181.42	179.75	184.92	190.49	194.43	198.54		
Heat lo	oss para	meter (F	HP)W	′m²K			1		(40)m	Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	192.37	(39)
(40)m=	2.13	2.11	2.08	1.98	1.96	1.86	1.86	1.85	1.9	1.96	2	2.04		
(10)	2.10		2.00	1.00	1.00	1.00	1.00	1.00	1.0	Average =	- Sum(40)	 10/12=	1 98	(40)
Numb	er of day	/s in moi	nth (Tab	le 1a)			-			worugo –			1.00	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	tina enei	rav reau	rement:								kWh/ve	ear:	
		9	3, 10 1											
Assumed occupancy, N 2.71 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 98.63 (43)														
Annua	if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = $(25 \times N) + 36$ Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of (43)													
Reduce	if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = $(25 \times N) + 36$ 98.63 (43) Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of that more that 125 litres per perpendent day (all water use, hot and cold)													
normon	Water heating energy requirement:kWh/year:essumed occupancy, N 2.71 (42)if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) 98.63 (43)if TFA £ 13.9, N = 1 $1000000000000000000000000000000000000$													
11-4	If TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = $(25 \times N) + 36$ Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of ot more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Not water usage in litres per day for each month Vd,m = factor from Table 1c x (43)													
HOT WAT	er usage i	n litres per	r day for ea	acn month	va,m = ta	ctor from 1	able 1c x	(43)					1	
(44)m=	108.5	104.55	100.61	96.66	92.72	88.77	88.77	92.72	96.66	100.61	104.55	108.5		
Energy	content of	^t hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600	• kWh/mor	Total = Su oth (see Ta	m(44) ₁₁₂ = ables 1b, 1	= c, 1d)	1183.6	(44)
(45)m=	160.9	140.72	145.21	126.6	121.48	104.82	97.13	111.46	112.79	131.45	143.49	155.82		
16 :				- [Total = Su	m(45) ₁₁₂ =	-	1551.89	(45)
it instan	taneous v	vater neatli	ng at point I	or use (no	o not water	storage),	enter 0 in	boxes (46)	10 (61)	r			1	
(46)m=	24.13	21.11	21.78	18.99	18.22	15.72	14.57	16.72	16.92	19.72	21.52	23.37		(46)
Storage		IUSS.	includir		alar or M		etorado	within ea	mayas	sol		0	l	(47)
Sillay				iy any su				(47)		501		0		(47)
Otherw	munity r viso if n	neating a	hot wate	nk in aw ar (this in	vening, e veludes i	nter 110 nstantar		(47) mbi boil	ore) onte	ar 'O' in (47)			
Water	storage	loss.	not wate		iciuues i	instantai								
a) If m	nanufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/dav):					0		(48)
Tempe	erature f	actor fro	m Table	2b		,	,					0		(49)
Energy	/ lost fro	m water	storage	k\//h/\/	ar			(48) x (49)	-			0		(50)
b) If m	nanufac	turer's de	eclared of	ylinder l	oss fact	or is not	known:	(40) X (40)	_			0		(50)
Hot wa	ater stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
	nunity f	from To	ble 22	UN 4.3								0	l	(50)
Tempe	erature f	actor fro	m Table	2b								0		(52) (53)
p												0		(00)

Energy	y lost fro	m water	r storage	, kWh/ye	ear			(47) x (51) x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	55)	-								0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = ((55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – ((H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	v circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m =	(58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wa	ter heatii	ng and a	a cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 3	65 × (41))m						
(61)m=	12.79	11.53	12.72	12.23	12.58	12.1	12.46	12.54	12.17	12.66	12.32	12.77		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	173.69	152.25	157.93	138.83	134.05	116.93	109.6	124	124.97	144.11	155.81	168.59		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)			-		
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter											
(64)m=	173.69	152.25	157.93	138.83	134.05	116.93	109.6	124	124.97	144.11	155.81	168.59		
								Out	out from wa	ater heate	r (annual)	12	1700.76	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)n	n] + 0.8 >	(46)m	+ (57)m	+ (59)m]	
(65)m=	56.7	49.67	51.46	45.15	43.53	37.88	35.41	40.2	40.55	46.87	50.79	55		(65)
inclu	ude (57)	m in cale	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. In	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	<u>olic gair</u>	<u>is (Table</u>	e 5), Wat	ts			-							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65	135.65		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	22.45	19.94	16.22	12.28	9.18	7.75	8.37	10.88	14.61	18.55	21.65	23.08		(67)
Applia	nces ga	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	251.87	254.48	247.9	233.88	216.18	199.54	188.43	185.82	192.4	206.42	224.12	240.76		(68)
Cookir	ng gains	(calcula	ated in A	ppendix	L, equat	tion L15	or L15a)), also se	ee Table	5				
(69)m=	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56	36.56		(69)
Pumps	s and fa	ns gains	(Table s	5a)			_	-	-			-		
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	on (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52	-108.52		(71)
Water	heating	gains (T	Table 5)											
(72)m=	76.2	73.92	69.17	62.71	58.51	52.61	47.6	54.03	56.32	63	70.54	73.93		(72)
Total i	internal	gains =				(66))m + (67)m	n + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72))m		
(73)m=	417.22	415.04	399.98	375.56	350.57	326.6	311.09	317.42	330.02	354.67	383.01	404.46		(73)
6. So	lar gains	S:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.3	x	21.89	×	11.28) ×	0.63	x	0.7	=	29.41	(75)
Northeast 0.9x	0.3	x	21.89	x	22.97	x	0.63	x	0.7	=	59.86	(75)
Northeast 0.9x	0.3	x	21.89	x	41.38	x	0.63	x	0.7	=	107.85	(75)
Northeast 0.9x	0.3	x	21.89	x	67.96	x	0.63	x	0.7	=	177.12	– (75)
Northeast 0.9x	0.3	x	21.89	x	91.35	x	0.63	x	0.7	=	238.09	– (75)
Northeast 0.9x	0.3	x	21.89	×	97.38	x	0.63	x	0.7	=	253.83	(75)
Northeast 0.9x	0.3	x	21.89	×	91.1	x	0.63	x	0.7	=	237.45	(75)
Northeast 0.9x	0.3	x	21.89	x	72.63	x	0.63	x	0.7	=	189.3	– (75)
Northeast 0.9x	0.3	x	21.89	x	50.42	x	0.63	x	0.7	=	131.42	– (75)
Northeast 0.9x	0.3	x	21.89	x	28.07	x	0.63	x	0.7	=	73.16	(75)
Northeast 0.9x	0.3	x	21.89	×	14.2	x	0.63	x	0.7	=	37	(75)
Northeast 0.9x	0.3	x	21.89	x	9.21	x	0.63	x	0.7	=	24.02	(75)
Southwest0.9x	0.77	x	9.96	×	36.79	i	0.63	x	0.7	=	112	(79)
Southwest0.9x	0.77	x	9.96	×	62.67	ĺ	0.63	x	0.7	=	190.77	(79)
Southwest0.9x	0.77	x	9.96	×	85.75	i	0.63	x	0.7	=	261.02	- (79)
Southwest0.9x	0.77	x	9.96	x	106.25	i	0.63	x	0.7	=	323.42	– (79)
Southwest0.9x	0.77	x	9.96	×	119.01	ĺ	0.63	x	0.7	=	362.26	(79)
Southwest0.9x	0.77	x	9.96	×	118.15	i	0.63	x	0.7	=	359.64	– (79)
Southwest0.9x	0.77	x	9.96	x	113.91	i	0.63	x	0.7	=	346.73	(79)
Southwest0.9x	0.77	x	9.96	×	104.39	1	0.63	x	0.7	=	317.75	– (79)
Southwest0.9x	0.77	x	9.96	×	92.85	1	0.63	x	0.7	=	282.63	– (79)
Southwest0.9x	0.77	x	9.96	x	69.27	i	0.63	x	0.7	=	210.84	(79)
Southwest0.9x	0.77	x	9.96	×	44.07	ĺ	0.63	x	0.7	=	134.15	– (79)
Southwest0.9x	0.77	x	9.96	x	31.49	i	0.63	x	0.7	=	95.85	– (79)
Rooflights 0.9x	1	x	3.12	×	26	x	0.63	x	0.8	=	36.8	(82)
Rooflights 0.9x	1	x	3.12	×	54	x	0.63	x	0.8	=	76.42	(82)
Rooflights 0.9x	1	x	3.12	×	96	x	0.63	x	0.8	=	135.86	(82)
Rooflights 0.9x	1	x	3.12	×	150	x	0.63	x	0.8	=	212.28	(82)
Rooflights 0.9x	1	x	3.12	×	192	x	0.63	x	0.8	=	271.72	(82)
Rooflights 0.9x	1	x	3.12	×	200	x	0.63	x	0.8	=	283.05	(82)
Rooflights 0.9x	1	x	3.12	x	189	x	0.63	x	0.8	=	267.48	(82)
Rooflights 0.9x	1	x	3.12	×	157	x	0.63	x	0.8	=	222.19	(82)
Rooflights 0.9x	1	x	3.12	×	115	×	0.63	x	0.8	=	162.75	(82)
Rooflights 0.9x	1	x	3.12	×	66	×	0.63	x	0.8	=	93.41	(82)
Rooflights 0.9x	1	x	3.12	×	33	×	0.63	×	0.8	=	46.7	(82)
Rooflights 0.9x	1	x	3.12	x	21	İ x	0.63	x	0.8	=	29.72	– (82)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m			
(83)m=	178.2	327.06	504.74	712.83	872.07	896.51	851.66	729.24	576.8	377.4	217.85	149.58	(83)
Total g	otal gains – internal and solar (84)m = (73)m + (83)m , watts												
(84)m=	595.43	742.1	904.72	1088.39	1222.64	1223.11	1162.75	1046.66	906.82	732.07	600.86	554.04	(84)

7. Me	an interi	nal temp	perature	(heating	season)								
Temp	erature	during h	neating p	eriods ir	n the livir	ng area t	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	tion fac	tor for g	ains for	iving are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.96	0.89	0.76	0.62	0.68	0.89	0.98	0.99	1		(86)
Mean	internal	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.65	18.89	19.31	19.92	20.42	20.8	20.93	20.9	20.6	19.94	19.24	18.69		(87)
Temp	erature	durina h	eating p	eriods ir	n rest of	dwellina	from Ta	ble 9. Tl	n2 (°C)					
(88)m=	19.25	19.26	19.28	19.35	19.36	19.43	19.43	19.44	19.4	19.36	19.33	19.31		(88)
ا د siliti	tion fac	tor for a	ains for	rest of du	velling	h2 m (sc	a Tabla	(a)						
(89)m=	1	0.99	0.98	0.94	0.83	0.63	0.43	9 a) 0.49	0.8	0.96	0.99	1		(89)
			- 4	44					7 in Tabl	. 0)				
	Internal	temper	ature in			ng 12 (f		ps 3 to 1	10.00	e 9C)	17.15	16.22		(90)
(90)11=	10.25	10.01	17.22	10.13	10.02	19.5	19.4	19.4	19.09	10.17	17.10	10.33	0.42	
											g arca ÷ (-	-	0.43	(91)
Mean	internal	temper	ature (fo	r the wh	ole dwe	lling) = fl	LA x T1	+ (1 – fL	A) × T2	i				()
(92)m=	17.27	17.58	18.11	18.89	19.5	19.94	20.05	20.04	19.73	18.92	18.04	17.33		(92)
Apply	adjustn	nent to t	he mear	internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				(00)
(93)m=	17.27	17.58	18.11	18.89	19.5	19.94	20.05	20.04	19.73	18.92	18.04	17.33		(93)
8. Spa	ace hear	ting requ	urement			! -! -!				4 T : /*	70)			
the ut	to the r ilisation	factor fo	ernal ter or dains	nperatur using Ta	e obtain Ible 9a	ied at ste	epitor	i able 90	o, so tha	t 11,m=(76)m an	d re-caic	ulate	
[Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec		
Utilisa	ition fac	tor for g	u ains, hm	:			I			I				
(94)m=	0.99	0.99	0.97	0.93	0.84	0.68	0.51	0.57	0.82	0.96	0.99	1		(94)
Usefu	l gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	591.54	732.41	878.66	1011.32	1026.62	830.64	590.77	600.58	747.98	701.78	594.32	551.28		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	oss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m·	– (96)m]				()
(97)m=	2684.97	2597.78	2353.57	1922.93	1486.34	968.48	626.56	654.29	1041.29	1585.68	2127.25	2607.76		(97)
Space	e heating	g require	ement fo	r each m	nonth, k	Nh/mont	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m	4500.00		
(98)m=	1557.51	1253.53	1097.34	656.36	342.03	0	0	0	0	657.63	1103.71	1530.03		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	8198.12	(98)
Space	e heating	g require	ement in	kWh/m ²	/year								84.26	(99)
9a. Ene	ergy req	uiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
Space	e heatin	ng:			, .							,		-
Fracti	on ot sp	ace hea	at from s	econdary	y/supple	mentary	system						0	(201)
Fraction	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fraction	on of to	tal heatii	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	n, %					ĺ	0	(208)
												-		

Spage	Jan	Feb	Mar Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ır
Space	1557.51	1253.53	1097.34	656.36	342.03) 0	0	0	0	657.63	1103.71	1530.03		
(211)m	$h = \{[(98)]$)m x (20	I)4)] } x 1	1 00 ÷ (20)6)									(211)
()	1671.15	1344.99	1177.4	704.25	366.98	0	0	0	0	705.61	1184.23	1641.66		`
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	-	8796.27	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month									-
= {[(98)m x (20)1)]}x1	00 ÷ (20	(8)									l	
(215)m=	0	0	0	0	0	0	0	U Tota	U 0 (kWh/ve	or) =Sum(2	0 (15)	0	0	1 (215)
Wator	heating							1010		ai) – C uiri(1			0	
Output	from wa	, ater hea	ter (calc	ulated a	bove)									
·	173.69	152.25	157.93	138.83	134.05	116.93	109.6	124	124.97	144.11	155.81	168.59		_
Efficier	ncy of w	ater hea	ater										87.3	(216)
(217)m=	89.9	89.88	89.82	89.68	89.36	87.3	87.3	87.3	87.3	89.66	89.83	89.9		(217)
Fuel fo	r water a = (64)	heating, m x 100	, kWh/mo) ∸ (217)	onth										
(219)m=	193.2	169.4	175.82	154.81	150.01	133.94	125.54	142.04	143.15	160.72	173.45	187.52		
							-	Tota	al = Sum(2	19a) ₁₁₂ =			1909.6	(219)
Annua	I totals	()								k	Wh/year	,	kWh/year	- -
Space	heating	fuel use	ed, main	system	1								8796.27	ļ
Water	heating	fuel use	ed										1909.6	
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatin	ig pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	/ for the	above, I	kWh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ghting											396.55	(232)
12a. (CO2 em	issions ·	– Individ	ual heat	ing syste	ems incl	uding mi	cro-CHF	þ					-
						En				Emico	ion foo	101	Emissions	
						kW	Vh/year			kg CO	2/kWh		kg CO2/yea	r
Space	heating	(main s	ystem 1)		(21	1) x			0.2	16	=	1899.99	(261)
Space	heating	(second	darv)	, ,		(21	5) x			0.5	19	=	0] (263)
Water	heating	(,			(21	9) x			0.0	16	=	412.47	$\frac{1}{(264)}$
Snace	and wa	ter heati	na			(26	1) + (262)	+ (263) + ((264) =	0.2			2212.47	(265)
Electric	and wa		anc and	oloctric	kaan ha	+ (23	1) x	(/)	(-)		10	_	2312.47	
		abtina	ans anu	electric	кеер-по	(22)	2) v			0.5	19		38.93	
		gnung				(23)	<i>~</i> /			0.5	19	=	205.81](268)]
I otal C	.02, kg/	year	_						sum o	א (∠05)(ג) גע	271) =		2557.2	(272)
Dwelli	ng CO2	Emissi	on Rate	9					(272)	÷ (4) =			26.28	(273)
EI ratir	ig (secti	on 14)											76	(274)

							User D	Details:							
Asses	ssor N	ame:	Ge	orge Fa	arr			Strom	a Num	ber:		STRO	028460		
Softw	are Na	ame:	Str	oma FS	SAP 201	2		Softwa	are Vei	rsion:		Versic	on: 1.0.4.6		
						Р	roperty	Address	: Flat 2						
Addre	SS :														
1. Ove	oftware Name: Stroma FSAP 2012Software Version: Version: 1.0.4.6Property Address: Flat 2cddress :ddress :1. Overall dwelling dimensions:Area(m²)Av. Height(m)Volume(m³)iround floor $52.41 (1a) \times 2.95 (2a) = 154.61 (3a)$ iround floor $52.41 (1a) \times 2.95 (2a) = 154.61 (3a)$ iround floor $52.41 (1a) \times 2.95 (2b) = 128.47 (3b)$ iround floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 91.94 (4)welling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 283.08 (5)$ C. Ventilation rate:naming heating heating $+ 0 + 0 = 0 \times 40 = 0 (6a)$ lumber of chimneys0 $+ 0 + 0 = 0 \times 40 = 0 (6a)$ 1umber of open flues $0 + 0 + 0 = 0 \times 20 = 0 (6b)$ 1umber of intermittent fans $x 10 = 30 (7a)$														
User Details:Assessor Name:George FarrStroma Number:STR002846Software Name:Stroma FSAP 2012Software Version:Version: 1.0Property Address: Flat 2Address :Image: Colspan="2">Av. Height(m)VoltGround floorSize (2a) =1First floorSize (2a) =1Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)91.94(4)Dwelling volumeSecondaryothertotalNumber of chimneys0+0=0Number of passive vents0+0=0x40 =Number of flueless gas fires0x 10 =3x 10 =Air changesInfiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =30 \pm (5) =1															
Ground	l floor						Ę	52.41	(1a) x	2	.95	(2a) =	154.61	(3a)	
First flo	or						;	39.53	(1b) x	3	.25	(2b) =	128.47	(3b)	
Total flo	oor area	a TFA =	(1a)+(1	b)+(1c)+	(1d)+(1e	e)+(1n	i)	91.94	(4)			-		_	
Dwellin	g volum	ne							(3a)+(3b)+(3c)+(3d	l)+(3e)+	.(3n) =	283.08	(5)	
2. Ventilation rate:Main heatingsecondary heatingothertotalm³Number of chimneys 0 $+$ 0 $+$ 0 $=$ 0 $x 40 =$ Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x 20 =$															
				main heating	se h	econdar leating	у	other		total			m ³ per hour		
Numbe	umber of chimneys 0 + 0 + 0 = 0 x 40 =umber of open flues 0 + 0 + 0 = 0 x 20 =umber of intermittent fans 10 10 10 10 10 10														
Numbe	r of ope	n flues	Ē	0	- + -	0	<u> </u> + [0	_ _ = _	0	x 2	20 =	0	(6b)	
Numbe	r of inte	rmittent	fans						- Ē	3	x ′	10 =	30	(7a)	
Numbe	r of pas	sive ver	nts						Ē	0	x ′	10 =	0	(7b)	
Numbe	r of flue	less gas	s fires						Г	0	x 4	40 =	0	(7c)	
									L						
												Air ch	anges per ho	ur	
Infiltrati	on due	to chim	neys, flu	ies and f	ans = <mark>(6</mark>	a)+(6b)+(7	a)+(7b)+((7c) =	Γ	30	· [÷ (5) =	0.11	(8)	
lf a pr	essurisati	on test ha	is been ca	rried out o	r is intende	ed, proceed	d to (17),	otherwise	continue fr	om (9) to ((16)			٦	
Num	ber of si	toreys Ir	n the dw	elling (n	S)						(0)	41-0-4	0	(9)	
Addi	uonai ini	iltration	· 0 25 fo	r ctool o	r timbor	frama ar	0 25 fo	r macani	av constr	uction	[(9)-	-1]x0.1 =	0		
if b	oth types	of wall are	. 0.25 10 e present.	use the va	alue corres	pondina to	the area	ter wall are	a (after	uction			0	(11)	
dec	ducting are	eas of ope	enings); if	equal user	0.35		5							_	
If sus	spendec	l woode	n floor,	enter 0.2	? (unseal	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)	
lf no	draught	lobby,	enter 0.0	05, else	enter 0								0	(13)	
Perc	entage (of windo	ows and	doors di	raught st	ripped							0	(14)	
Wind	low infilt	ration						0.25 - [0.2	2 x (14) ÷ 1	= [00]	(4.5)		0	(15)	
Infiltr	ation ra	te						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)	
Airp	ermeab	ility valu	ie, q50,	expresse		oic metre	s per ho	our per s	quare m	etre of e	nvelope	area	15	(17)	
If base	d on air rmoobility	permea	idility va	lue, then	(10) = [(1)	$() \div 20] + (c)$	o or o do	$rac{10}{10} = 0$	rmoobility	is boing u	ood		0.86	(18)	
Numbe	r of side	es shelte	ered	1033011380	01110311143	s been don	eoraue	giee all pe	ineability	is being us	360		0	(19)	
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(20)	
Infiltrati	on rate	incorpo	rating sł	nelter fac	ctor			(21) = (18) x (20) =				0.86	(21)	
Infiltrati	on rate	modifie	d for mo	onthly wir	nd speed	ł									
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Monthly	y averaç	ge wind	speed f	rom Tab	le 7										
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7			

Wind F	actor (2	2a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
•	1.09	1.07	1.05	0.94	0.92	0.81	0.81	0.79	0.86	0.92	0.96	1.01		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	ise	_ !		Į				
IT ME	echanica			ondix N (2	(25) = (22)		oquation	(NE)) otho	nuico (22h	(220)		l	0	(23a)
If hale	aust all the	heat reco	overv: effic	viency in %	allowing f	or in-use f	factor (fro	m Table 4h) =) – (23a)			0	(230)
a) If	halance	d mach	anical ve	antilation	with he	at recov			-) — -) m — (2)	2h)m + ((23h) v [1 _ (23c)	0 · 1001	(230)
(24a)m=									$\frac{1}{0}$			1 - (230)	÷ 100]	(24a)
() b) If	halance	d mech	l anical ve	I	without	heat rec		 M\/) (24ł	1 - (2)	1 2h)m + ((23h)		I	,
(24b)m=	0			0	0	0					0	0		(24b)
c) If	whole h	ouse ex	I tract ver	L ntilation (L or positiv	L /e input :	I ventilati	 on from (L outside	I	Į		1	
i i	if (22b)n	ו < 0.5 א	< (23b), 1	then (24	c) = (23k	o); other	wise (24	4c) = (22l	b) m + 0	.5 × (23	c)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	ve input	ventilat	ion from	loft	-	-			
i	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	erwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]			I	(- · · ·
(24d)m=	1.09	1.07	1.05	0.94	0.92	0.83	0.83	0.81	0.87	0.92	0.96	1.01	l	(24d)
Effe	ctive air	change	rate - er	nter (24a	i) or (24k	o) or (24	c) or (24	4d) in bo	x (25)				l	(05)
(25)m=	1.09	1.07	1.05	0.94	0.92	0.83	0.83	0.81	0.87	0.92	0.96	1.01	l	(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros area	ss (m²)	Openin rr	igs 1 ²	Net Ar A ,r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²·ł	у А К k	∖Xk J/K
Doors						1.89	x	1.4	=	2.646				(26)
Windo	ws Type	e 1				7.24	. x	1/[1/(1.4)+	- 0.04] =	9.6				(27)
Windo	ws Type	2				21.89	э х	1/[1/(1.4)+	- 0.04] =	29.02				(27)
Rooflig	phts					3.12	x x	1/[1/(1.4) +	0.04] =	4.368				(27b)
Floor						52.4	1 ×	0.14	=	7.3374	 ↓ [一 「一	(28)
Walls -	Гуре1	45.3	39	0		45.39	 э х	0.18	=	8.17			i —	(29)
Walls -	Гуре2	42.	3	29.1	3	13.17	7 X	0.22	=	2.9			i –	(29)
Walls -	Гуре3	23.5	58	1.89)	21.69	х	0.2	=	4.36			i –	(29)
Roof		12.8	39	3.12	2	9.77	· ×	0.14		1.37			\dashv	(30)
Total a	rea of e	lements	s, m²	L		176.5	57	L			I			(31)
Party v	vall					42.43	3 X	0	=	0			_	(32)
Party c	eiling					35.5	5			-	I 		╡	` ´ ´ (32b)
* for win	dows and	roof wind	ows, use e	effective wi	indow U-va	alue calcul	lated usin	g formula 1	1/[(1/U-valu	ue)+0.04] a	L as given in	paragraph	 3.2	(```'
Fabric	heat los	s, W/K	= S (A x	U)	is and par			(26)(30) + (32) =			[69 53	(33)
Heat c	apacity	Cm = S((Axk)	,					((28).	(30) + (3	2) + (32a).	(32e) =	12389.74	(34)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

(35)

250

Indicative Value: Medium

can be i	used inste	ad of a de	tailed calc	ulation.											
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						26.49	(36)	
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)									
Total f	be used instead of a detailed calculation. simal bridges : S (L x Y) calculated using Appendix K (3) = (36) tails of thematibinging are not known (36) = 0.15 x (31) al fabric heat loss (31) = (35) (33) + (36) = (37) (33) tail fabric heat loss calculated monthly (38) = 0.33 x (25)m x (5) mage 101.95 99.95 97.95 88.12 86.26 77.59 77.59 77.59 80.93 88.26 90.02 93.96 (38) at transfer coefficient, W/K (39)m = (37) + (38)m mage 197.97 195.97 193.97 184.14 182.28 173.61 173.61 172.01 176.55 182.28 186.04 189.98 Average = Sum(39) /12= (184.07 (39)m = (4)) mage 2.15 2.13 2.11 2 1.98 1.89 1.87 1.92 1.98 2.02 2.07 Average = Sum(40) r/12= (40) mber of days in month (Table 1a) mage 1 2.15 2.13 3.01 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 (41) Water heating energy requirement: kWh/year: transfer coccupancy, N TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2] + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2] + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 13.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.0013 x (TFA - 1.3.9) TFA 5 13.9, N = 1 (1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2]) + 0.001														
Ventila	ation hea	at loss ca	alculated	monthl	y	-	-	-	(38)m	= 0.33 × (25)m x (5)		_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(38)m=	101.95	99.95	97.95	88.12	86.26	77.59	77.59	75.99	80.93	86.26	90.02	93.96]	(38)	
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m				
(39)m=	197.97	195.97	193.97	184.14	182.28	173.61	173.61	172.01	176.95	182.28	186.04	189.98			
Heat lo	uss nara	meter (l	HP) W	/m²K					(40)m	Average = = (39)m ÷	Sum(39)1	12 /12=	184.07	(39)	
(40)m=	2 15	2 13	2 11	2	1.98	1 89	1 89	1.87	1.92	1.98	2.02	2.07	1		
(40)11-	2.10	2.10	2.11	2	1.50	1.00	1.00	1.07	1.52		Sum(40).	2.07 m /12-	2	(40)	
Numb	er of day	ys in mo	nth (Tab	le 1a)	-	-	-			-verage –	Oum(+0)1		2		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)	
			•					•			•	•			
4 Wa	ater hea	tina ene	rav reau	irement [.]								kWh/ve	ear:		
	Water heating energy requirement: kWh/year: ssumed occupancy, N if TEA > 13.9, N = 1 + 1.76 x [1 = oxp(.0.000240 x (TEA = 13.0)2)] + 0.0013 x (TEA = 13.0) (42)														
Assum	. Water heating energy requirement: kWh/year: sumed occupancy, N 2.65 (42)														
	A > 13. A £ 13	9, $N = 1$ 9, $N = 1$	+ 1.76 x	[1 - exp	(-0.0003	349 X (1F	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	.9)				
Annua	l averaç	ae hot wa	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		97	.17]	(43)	
Reduce	the annu	al average	hot water	usage by	5% if the a	lwelling is	designed t	to achieve	a water us	se target o	f		1		
not mor	(40)m = (39)m ÷ (4) (40)m = (39)m ÷ (4) Mar Apr May 1.89 1.89 1.87 1.92 1.98 2.02 2.07 Average = Sum(40) ₁₋₁₉ /12= 2 (40) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (40) (40) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (40) (40) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (40) (40) (40) (40) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (41) Water heating energy requirement: KWh/year: sumed occupancy, N (1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) (42) The base in litres per day Vd, average = (25 x N) + 36 mual average hot water usage by 5% if the dwelling is designed to achieve a water use target of more that 125 litres per person per day (all water use, hot and cold) Total = Sum(44) ₁₋₁₀ = Total = Sum(44) ₁₋₁₀ = <th col<="" td=""></th>														
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
Hot wat	er usage i	in litres per	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)					_		
(44)m=	106.89	103	99.11	95.23	91.34	87.45	87.45	91.34	95.23	99.11	103	106.89			
_										Total = Su	m(44) ₁₁₂ =	=	1166.04	(44)	
Energy	content of	f hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x C	0Tm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)			
(45)m=	158.51	138.63	143.06	124.72	119.67	103.27	95.69	109.81	111.12	129.5	141.36	153.51			
						<i>.</i>				Total = Su	m(45) ₁₁₂ =	=	1528.86	(45)	
it instan	taneous v	vater neati	ng at point I	t of use (no	o not water	r storage),	enter 0 in	boxes (46)) to (61)	· · · · · ·			1		
(46)m=	23.78	20.8	21.46	18.71	17.95	15.49	14.35	16.47	16.67	19.43	21.2	23.03		(46)	
Stores	storage	IOSS:	includir		olor or M		otorogo	within or	mayoa				1	(47)	
Siorag				ig any so					ame ves	Sei		0	J	(47)	
Othory	munity r	neating a	and no ta	INK IN AW	/eiling, e	nter 110	iltres in	(47) mbi boil	ore) onto	or 'O' in ((17)				
Water	storane		not wate	51 (1115 11	iciuues i	nstantai					47)				
a) If m	nanufact	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/dav):					0	1	(48)	
Tempe	erature f	actor fro	m Table	2b		,	, , , , , , , , , , , , , , , , , , ,					0]	(49)	
Energy	/ lost fro	m water	storage	_~ k\//b/\/	ar			$(48) \times (49)$	_			0]	(50)	
b) If m	nanufac	turer's de	eclared of	cylinder l	loss fact	or is not	known:	(40) X (40)	_			0	J	(50)	
Hot wa	ater stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)					0]	(51)	
If com	munity ł	neating s	ee secti	on 4.3											
Volum	e factor	from Ta	ble 2a									0	ļ	(52)	
Tempe	erature f	actor fro	m Table	2b								0	J	(53)	

	1			1.1.4/1./				((50) (1	
Energy	y lost fro	om watei	r storage	, KVVN/y	ear			(47) X (51) x (52) x (53) =		0		(54)
	(50) 01	(34) 11 (3		(((50)				0	l	(55)
vvater	storage			ior each	month	1		((00))) = (55) × (41)	n		1	I	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m -	x [(50) – ((H11)] ÷ (5 -	0), else (5	7)m = (56) -	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	lculated	for each	month (59)m =	(58) ÷ 36	65 × (41)	m				'	
(mo	dified by	/ factor f	rom Tab	le H5 if t	there is s	solar wa	ter heati	ng and a	a cylinde	r thermo	stat)	-		
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41)m						
(61)m=	12.78	11.52	12.71	12.21	12.56	12.09	12.45	12.52	12.16	12.65	12.31	12.76		(61)
Total h	heat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	: 0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	171.29	150.16	155.76	136.94	132.24	115.36	108.14	122.33	123.28	142.15	153.67	166.27		(62)
Solar DI	HW input	L calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	on to wate	r heating)	1	
(add a	dditiona	I lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter										1	
(64)m=	171.29	150.16	155.76	136.94	132.24	115.36	108.14	122.33	123.28	142.15	153.67	166.27		
		1	1		1	1	1	Out	Dut from wa	ater heatei	∙ (annual)₁	12	1677.58	(64)
Heat o	ains fro	m water	heating.	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)n	nl + 0.8 x	(46)m	+ (57)m	+ (59)m	1	
(65)m=	55.9	48.98	50.74	44.52	42.93	37.36	34.93	39.64	39.99	46.22	50.08	54.23	1	(65)
inclu	L	l m in calı	L	L of (65)m	I only if c	l vlinder i	l s in the (l	I or bot w	ater is fr		I munity h	l	
5 10).	ymraer r		awening	or not w			indiney i	cating	
5. 11	iemai ya) and 5a).									
Metab	olic gair	is (Table	<u>e 5), Wat</u>	ts Anr	Max	lun	L 1. 1	A.1.9	San	Oct	Nov		1	
(66)m-	Jan 122.57	122.57	122.57	Api 122.57	122.57	122.57	Jui 122.57	Aug	3ep	122.57	122.57	122.57		(66)
(00)11=	132.37	(132.57	132.37	132.37	132.57	132.37	132.37	Table 5	132.37	132.37	132.37	İ	(00)
Lightin	ig gains		ted in Ap		L, equat		r L9a), a I	Iso see	Table 5	47.07	00.05	00.00	I	(67)
(67)m=	21.63	19.21	15.62	11.83	8.84	7.46	8.07	10.48	14.07	17.87	20.85	22.23		(07)
Applia	nces ga	ins (calc	ulated in	n Appeno	dix L, eq	uation L	13 or L1	3a), also I	o see Ta	ble 5			I	(00)
(68)m=	242.6	245.12	238.78	225.27	208.22	192.2	181.49	178.98	185.32	198.83	215.87	231.9		(68)
Cookir	ng gains	calcula	ated in A	ppendix	L, equa	tion L15	or L15a)), also se	ee Table	5			1	
(69)m=	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26	36.26		(69)
Pumps	s and fa	ns gains	(Table &	5a)					-			-		
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	on (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05	-106.05		(71)
Water	heating	gains (1	Table 5)											
(72)m=	75.13	72.88	68.2	61.84	57.7	51.89	46.95	53.28	55.54	62.12	69.56	72.89		(72)
Total i	internal	gains =	:	•		. (66))m + (67)m	• n + (68)m ·	• + (69)m +	(70)m + (7	1)m + (72))m	1	
(73)m=	405.13	402.98	388.37	364.71	340.54	317.32	302.28	308.51	320.7	344.59	372.05	392.79		(73)
6. So	lar gains	s:		1	<u> </u>		<u> </u>	1	1					

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.3	x	21.89	×	11.28	×	0.63	x	0.7] =	29.41	(75)
Northeast 0.9x	0.3	x	21.89	x	22.97	×	0.63	x	0.7	=	59.86	(75)
Northeast 0.9x	0.3	x	21.89	×	41.38	×	0.63	×	0.7	=	107.85	(75)
Northeast 0.9x	0.3	x	21.89	x	67.96	×	0.63	x	0.7	i =	177.12	(75)
Northeast 0.9x	0.3	x	21.89	x	91.35	x	0.63	x	0.7	i =	238.09	(75)
Northeast 0.9x	0.3	x	21.89	×	97.38	×	0.63	×	0.7	i =	253.83	(75)
Northeast 0.9x	0.3	x	21.89	x	91.1	×	0.63	x	0.7	i =	237.45	(75)
Northeast 0.9x	0.3	x	21.89	×	72.63	x	0.63	×	0.7	=	189.3	(75)
Northeast 0.9x	0.3	x	21.89	x	50.42	×	0.63	x	0.7	i =	131.42	(75)
Northeast 0.9x	0.3	x	21.89	x	28.07	×	0.63	x	0.7	=	73.16	(75)
Northeast 0.9x	0.3	x	21.89	×	14.2	x	0.63	×	0.7	=	37	(75)
Northeast 0.9x	0.3	x	21.89	×	9.21	×	0.63	×	0.7	=	24.02	(75)
Southwest0.9x	0.77	x	7.24	×	36.79	İ	0.63	×	0.7	=	81.41	(79)
Southwest0.9x	0.77	x	7.24	×	62.67	İ	0.63	×	0.7	=	138.67	(79)
Southwest0.9x	0.77	x	7.24	x	85.75	İ	0.63	x	0.7	i =	189.74	(79)
Southwest0.9x	0.77	x	7.24	×	106.25	İ	0.63	×	0.7	=	235.1	(79)
Southwest0.9x	0.77	x	7.24	×	119.01	İ	0.63	×	0.7	=	263.33	(79)
Southwest0.9x	0.77	x	7.24	x	118.15	İ	0.63	×	0.7	i =	261.42	(79)
Southwest0.9x	0.77	x	7.24	×	113.91	İ	0.63	x	0.7	=	252.04	(79)
Southwest0.9x	0.77	x	7.24	×	104.39	İ	0.63	x	0.7	=	230.98	(79)
Southwest0.9x	0.77	x	7.24	×	92.85	İ	0.63	×	0.7	=	205.45	(79)
Southwest0.9x	0.77	x	7.24	×	69.27	Ì	0.63	×	0.7	=	153.26	(79)
Southwest0.9x	0.77	x	7.24	×	44.07	Ì	0.63	x	0.7	=	97.51	(79)
Southwest0.9x	0.77	x	7.24	×	31.49	İ	0.63	×	0.7	=	69.67	– (79)
Rooflights 0.9x	1	x	3.12	×	26	x	0.63	×	0.8	=	36.8	(82)
Rooflights 0.9x	1	x	3.12	×	54	×	0.63	×	0.8] =	76.42	(82)
Rooflights 0.9x	1	x	3.12	×	96	×	0.63	×	0.8	=	135.86	(82)
Rooflights 0.9x	1	x	3.12	×	150	x	0.63	×	0.8	=	212.28	(82)
Rooflights 0.9x	1	x	3.12	×	192	x	0.63	×	0.8	=	271.72	(82)
Rooflights 0.9x	1	x	3.12	×	200	×	0.63	×	0.8	=	283.05	(82)
Rooflights 0.9x	1	x	3.12	x	189	x	0.63	x	0.8	=	267.48	(82)
Rooflights 0.9x	1	x	3.12	x	157	×	0.63	x	0.8	=	222.19	(82)
Rooflights 0.9x	1	x	3.12	×	115	×	0.63	×	0.8	=	162.75	(82)
Rooflights 0.9x	1	x	3.12	×	66	×	0.63	×	0.8	=	93.41	(82)
Rooflights 0.9x	1	x	3.12	×	33	×	0.63	×	0.8	=	46.7	(82)
Rooflights 0.9x	1	x	3.12	x	21	×	0.63	x	0.8	i =	29.72	– (82)

Solar g	ains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m			
(83)m=	147.62	274.96	433.45	624.5	773.14	798.3	756.97	642.47	499.62	319.82	181.22	123.41	(83)
Total g	ains – ir	nternal a	ind solar	⁻ (84)m =	= (73)m -	+ (83)m	, watts						
(84)m=	552.75	677.94	821.82	989.21	1113.68	1115.62	1059.25	950.98	820.32	664.41	553.27	516.2	(84)

7. Me	an inter	nal temp	oerature	(heating	season)								
Temp	erature	during h	neating p	eriods ir	n the livir	ng area t	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	tion fac	tor for g	ains for	living are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.99	0.96	0.9	0.77	0.64	0.7	0.9	0.98	1	1		(86)
Mean	internal	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.62	18.85	19.26	19.87	20.38	20.78	20.92	20.89	20.57	19.9	19.21	18.66		(87)
Temp	erature	durina h	eating p	eriods ir	n rest of	dwellina	from Ta	ble 9. Tl	n2 (°C)					
(88)m=	19.23	19.25	19.26	19.33	19.34	19.41	19.41	19.42	19.38	19.34	19.32	19.29		(88)
ا د siliti	ution fac	tor for a	ains for	rest of du	velling	h2 m (sc	n Tahla	(a)						
(89)m=	1	0.99	0.98	0.94	0.85	0.65	0.44	9 a) 0.51	0.82	0.97	0.99	1		(89)
` l	intornol					L			7 in Tabl					
	16 10	16.53	ature in		OF OWEIII	ng 12 (f		10 38		e 9C)	17.00	16.27		(90)
(30)11-	10.13	10.55	17.15	10.00	10.70	19.27	19.00	19.50	13.04	LA = Livin	$q area \div (4$	10.27	0.41	(00) – (91)
											9 4.04 . (.,	0.41	
Mean	interna	temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2	10.05				(00)
(92)m=	17.19	17.49	18.01	18.8	19.43	19.89	20.02	20	19.67	18.85	17.96	17.26		(92)
Apply	adjustn		he mear		tempera	ature fro	m Table	4e, whe	ere appro		17.00	17.00		(03)
(93)m=	17.19	ting rogu	uiromont	10.0	19.43	19.69	20.02	20	19.07	10.00	17.90	17.20		(33)
Sot Ti	to the r	mean int	arnal to	moratu	e obtain	od at st	on 11 of	Tahla Ok	n so tha	t Ti m-('	76)m an	d ro-calc	ulata	
the ut	ilisation	factor fo	or gains	using Ta	ible 9a		50 11 01		, so ina	u 11,111–(r ojin an		ulate	
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	tion fac	tor for g	ains, hm	1:										
(94)m=	0.99	0.99	0.97	0.93	0.85	0.69	0.52	0.59	0.84	0.96	0.99	1		(94)
Usefu	l gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	549.25	669.73	800.17	924.86	947.02	775.19	554.98	562.3	687.51	639.32	547.57	513.67		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	oss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m	4500.05	0004.00	0.400.04		(07)
(97)m= [2552.06	2466.62	2232.57	1823.15	1408.87	918.30	593.13	619.35	985.46	1502.95	2021.02	2480.21		(97)
(98)m=	1490 09	1207 51	1065.7	646 77	343.62		11 = 0.02	4 X [(97)	0)111] X (4	1060.88	1463 11		
(00)	1100.00	1201.01	1000.1	010.11	010.02	Ů	Ŭ	Tota	l per vear	(kWb/year	r = Sum(9)	8),	7920 23	(98)
Snoor	haatin	a roquir		14\1/b/m2	hicor			, ota	i poi you	(norm your) – Cu iii(0)	G)15,912 —	00.45	
Space	e neaung	grequire	ementin	KVVII/III-	year								86.15	(99)
9a. Ene	ergy req	luiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	(HP)					
Space Fraction	e heatir on of sp	ig: bace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fraction	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	n, %						0	(208)

	lan	F ab	Max	A	Mari	L. us		A	0.00	Ort	New	Dee		
Space	Jan e heatin	require	ement (c	alculate	d above	Jun	Jui	Aug	Sep	Oct	INOV	Dec	Kvvn/yea	ar
Opuol	1490.09	1207.51	1065.7	646.77	343.62	0	0	0	0	642.54	1060.88	1463.11		
(211)m	n = {[(98)m x (20)4)]}x 1	100 ÷ (20									1	(211)
. ,	1598.81	1295.62	1143.46	693.95	368.69	0	0	0	0	689.42	1138.29	1569.86		
				-				Tota	al (kWh/yea	ar) =Sum(2	211) _{15,1012}		8498.1	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month									
$= \{[(98)]$)m x (20	01)]}x1	$\frac{00 \div (20)}{0}$)8) 	0	0	0	0	0	0	0	0]	
(210)11-	Ū	0	Ů	Ů	Ů	Ů	Ů	Tota	l (kWh/yea	ar) =Sum(2	215) _{15 1012}	=	0	(215)
Water	heating	1], ,
Output	from w	, ater hea	ter (calc	ulated a	bove)								1	
	171.29	150.16	155.76	136.94	132.24	115.36	108.14	122.33	123.28	142.15	153.67	166.27		-
Efficier	ncy of w	ater hea	ater	00.00	00.07	07.0	07.0	07.0	07.0	00.00	00.00	00.0	87.3	(216)
(217)m=	89.89	89.87	89.82	89.68	89.37	87.3	87.3	87.3	87.3	89.66	89.82	89.9		(217)
(219)m	1 = (64)	m x 100	$2 \div (217)$	<u>)</u> m	-	-		-	-	-	-			
(219)m=	190.55	167.08	173.42	152.69	147.96	132.14	123.88	140.13	141.21	158.54	171.09	184.95		-
_								Tota	al = Sum(2)	19a) ₁₁₂ =			1883.64	(219)
Annua Space	l i totals beating	fueluse	ed main	system	1					k	Wh/year	,	kWh/year	T
Water	heating	fueluse	d	oyotom									1002.04] T
			u ana and	alaatria	liaan ha								1003.04	
Electric	ity for p	umps, i	ans and	electric	кеер-по	ι							1	
centra	al heatin	g pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e) _
Total e	lectricity	/ for the	above, l	kWh/yea	ır			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ghting											381.96	(232)
12a. (CO2 em	issions ·	– Individ	lual heat	ing syste	ems incl	uding mi	cro-CHF)					
						En kV	ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ır
Space	heating	(main s	system 1)		(21	1) x			0.2	16	=	1835.59	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	406.87	_](264)
Space	and wa	ter heati	ing			(26	1) + (262)	+ (263) + ((264) =	L			2242.46	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	38.93] (267)
Electric	city for li	ahtina				(23)	2) x			0.5	10	=	108.24	$\frac{1}{268}$
Total C	CO2 ka/	vear				x -			sum a	of (265)(2	271) =		2470.62](272)
Dwelli		Fmicei	on Rate	`					(272)	÷ (4) =	,		2413.02	$\int_{(272)}^{(-1/2)}$
El rotia		on 14)		•					()	- 17			20.97	$\int_{1}^{(273)}$
	iy (secti	011 14)											76	(274)

			User D	etails:						
Assessor Name:	George Farr			Strom	a Num	ber:		STRO	028460	
Software Name:	Stroma FSAP 20	12		Softwa	are Ver	sion:		Versio	on: 1.0.4.6	
		P	roperty <i>i</i>	Address:	Flat 3					
Address :										
1. Overall dwelling dimen	isions:									
0			Area	a(m²)		Av. Hei	ight(m)	-	Volume(m ³)	-
Ground floor			7	6.27	(1a) x	2.	.35	(2a) =	179.23	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1	e)+(1r	I) 7	6.27	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	179.23	(5)
2. Ventilation rate:										
	main heating	secondar heating	у	other		total			m ³ per hour	
Number of chimneys	0 +	0	+ [0] = [0	x 4	40 =	0	(6a)
Number of open flues	0 +	0	<u> </u> + [0] = [0	x2	20 =	0	(6b)
Number of intermittent fan	s				 -	3	×	10 =	30	(7a)
Number of passive vents						0	x	10 =	0	(7b)
Number of flueless gas fire	es				Г	0	x 4	40 =	0	(7c)
								Air ch	anges per hou	
Infiltration due to obimpour		(6a) (6b) (7	'a) (7b) ((70) -	–					
In Intration due to chimney	s, nues and rans = en carried out or is inten	ded, procee	d to (17), c	otherwise c	continue fro	30 om (9) to (· 16)	÷ (5) =	0.17	(8)
Number of storeys in the	e dwelling (ns)		()/				,		0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel or timbe	r frame or	0.35 for	masonr	y constr	uction			0	(11)
if both types of wall are pre	sent, use the value corre	esponding to	the great	er wall area	a (after					
If suspended wooden flo	or. enter 0.2 (unse	aled) or 0.	1 (seale	d). else	enter 0				0	7(12)
If no draught lobby, ente	er 0.05, else enter 0	,	(.,,					0	(13)
Percentage of windows	and doors draught	stripped							0	(14)
Window infiltration	-			0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value, c	50, expressed in cu	ubic metre	s per ho	our per so	quare m	etre of e	nvelope	area	15	(17)
If based on air permeabilit	y value, then (18) = [(17) ÷ 20]+(8	3), otherwi	se (18) = (16)				0.92	(18)
Air permeability value applies	if a pressurisation test h	as been dor	e or a deg	gree air pei	rmeability i	is being us	sed			-
Number of sides sheltered				(20) = 1 - 1	0.075 x (1	9)] =			0	(19)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x(20) =	-/]			0.02	(20)
Infiltration rate modified fo	r monthly wind spec	he		() ()	, (=0)				0.92	(21)
Jan Feb N	Mar Apr Ma	/ Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7	I			·					
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
		1							I	
VVIND Factor (22a)m = (22) (22a)m 1.27 1.25 1)m÷4	0.05	0.05	0.02	1	1.02	1 1 2	1 1 2	l	
	.23 1.1 1.08	0.95	0.90	0.92	I	1.00	1.12	1.10		

Adjuste	ed infiltr	ation rat	e (allowi	ing for sh	elter an	d wind s	speed) =	: (21a) x	(22a)m				_	
	1.17	1.15	1.12	1.01	0.99	0.87	0.87	0.85	0.92	0.99	1.03	1.08		
Calcula If me	ate ette	ctive air	change	rate for t	he appli	cable ca	Se							(232)
lf exha	aust air h	eat pump	usina App	endix N. (2	3b) = (23a) × Fmv (e	equation (N5)) . othe	rwise (23b	(23a) = (23a)			0	(23b)
lf bala	nced wit	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h	i) =	/ (/			0	(23c)
a) If I	halance	n mech	anical ve	entilation	with he	at recove	erv (MV	HR) (24:	′ a)m – (2	2h)m + ((23h) x [1 – (23c)	$\downarrow 0$ $\downarrow 1001$	(200)
(24a)m=	0				0	0]	(24a)
b) If I	halance	d mech	anical ve	entilation	without	heat rec	covery (I	1 MV/) (24h	1 = (2)	1 2h)m + ((23b)]	
(24b)m=	0	0		0	0	0				0	0	0]	(24b)
c) If y	whole h	I IOUSE EX	I tract ver	ntilation c	or positiv	re input v	I ventilatio	I on from (L outside]	
il	f (22b)r	n < 0.5 >	< (23b), 1	then (24c	c) = (23b); other	wise (24	c) = (22	b) m + 0	.5 × (23ł	c)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If i	natural	ventilati	on or wh	ole hous	e positiv	e input	ventilati	on from	loft					
it r	f (22b)r	n = 1, th	en (24d)	m = (22t)m othe	rwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]	-		1	
(24d)m=	1.17	1.15	1.12	1.01	0.99	0.88	0.88	0.86	0.92	0.99	1.03	1.08]	(24d)
Effec	tive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	ld) in bo	x (25)			i	1	
(25)m=	1.17	1.15	1.12	1.01	0.99	0.88	0.88	0.86	0.92	0.99	1.03	1.08]	(25)
3. Hea	at losse	s and he	eat loss	paramete	er:									
ELEM	IENT	Gros area	ss (m²)	Openin m	gs ²	Net Ar A ,r	rea m²	U-val W/m2	ue 2K	A X U (W/	K)	k-value kJ/m²⊷	э К	A X k kJ/K
Doors						1.89	x	1.4	=	2.646				(26)
Window	vs Type	e 1				8.14		/[1/(1.4)+	0.04] =	10.79				(27)
Window	vs Type	e 2				12.82	<u></u>	/[1/(1.4)+	0.04] =	17				(27)
Floor						5.62	x	0.14	=	0.7868	 3] [(28)
Walls T	ype1	49.9	96	20.96	3	29	×	0.25		7.25	= i		\dashv	(29)
Walls T	ype2	24.4	17	1.89	=	22.58	3 ×	0.2		4.54	= 1		\dashv	(29)
Roof	51	13.3	31			13.31		0.14		1.86			\dashv	(30)
Total a	rea of e	elements	5. m ²			93.36					L			(31)
Party w	all		,			51.46		0		0				(32)
Party fl	oor					70.66				0	L		\dashv	(32a)
Party c	eilina					62.07	7				L		\dashv	(32b)
* for wind	dows and	l roof wind	ows, use e	effective wi	ndow U-va	alue calcul	lated using	g formula 1	1/[(1/U-valu	ue)+0.04] a	L as given in	paragraph	L h 3.2	(320)
** include	e the area	as on both	sides of ir	nternal wall	s and part	itions		(00) (00)) . (00)					
Fabric	heat los	ss, W/K	= S (A x	U)				(26)(30) + (32) =	(0.0) (0		(22.)	44.87	, (33)
Heat ca	apacity	Cm = Si	(AXK)		TC A \ '.	1.1/			((28).	(30) + (3	2) + (32a).	(32e) =	10474.	79 (34)
Inerma	al mass	parame	eter (1M	$- = Cm \div$	• IFA) In	i кJ/m²K	4 l/no	rooioch - 4-	Indica	ative Value		abla df	250	(35)
ror desig	yn asses sed inste	ad of a de	tailed calc	ulation.	constructi	un are noi	ı known pi	ecisely the	ə indicative	e values oi	пирів Га	adie 11		
Therma	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix I	K						14	(36)
<i>if details</i> Total fa	<i>of therma</i> abric he	al bridging at loss	are not kr	nown (36) =	: 0.15 x (3	1)			(33) +	- (36) =			58.86	3 (37)
													L	` ′

Ventila	ation hea	at loss ca	alculated	d monthl	у				(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	69.18	67.83	66.47	59.69	58.34	52.04	52.04	50.87	54.46	58.34	61.04	63.76		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	128.06	126.7	125.35	118.56	117.21	110.91	110.91	109.75	113.34	117.21	119.92	122.63		
Heat lo	oss para	meter (H	HLP). W	/m²K					(40)m	Average = = (39)m ÷	- Sum(39)₁. - (4)	12 /12=	118.38	(39)
(40)m=	1.68	1.66	1.64	1.55	1.54	1.45	1.45	1.44	1.49	1.54	1.57	1.61		
Numb	er of day	vs in mo	nth (Tab	le 1a)	1	1	1	1		Average =	Sum(40)1.	12 /12=	1.55	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			1				1							
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF Annua Reduce not mor	The docculor $A > 13.9$ The factor $A \ge 13.9$ The factor $A \ge 13.9$ The annual state of the annual state of the annual state of the st	ipancy, I 9, N = 1 9, N = 1 ie hot wa al average litres per j	N + 1.76 > ater usay hot water person pe	c [1 - exp ge in litre usage by r day (all w	(-0.0003 es per da 5% if the c vater use, l	349 x (TF ay Vd,av Iwelling is hot and co	FA -13.9 erage = designed i ld))2)] + 0.((25 x N) to achieve	0013 x (⁻ + 36 a water us	TFA -13. se target o	2. .9) 	39 0.92		(42) (43)
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aua	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres per	r day for e	ach month	Vd,m = fa	ctor from	Table 1c x	(43)				- • •		
(44)m=	100.01	96.38	92.74	89.1	85.47	81.83	81.83	85.47	89.1	92.74	96.38	100.01		
Energy	content of	hot water	used - ca	lculated m	onthly = 4.	190 x Vd,r	m x nm x D) DTm / 3600) kWh/mor	Total = Su hth (see Ta	m(44) ₁₁₂ = ables 1b, 1	- c, 1d)	1091.06	(44)
(45)m=	148.32	129.72	133.86	116.7	111.98	96.63	89.54	102.75	103.98	121.17	132.27	143.64		
lf instan	taneous w	ater heati	ng at poin	t of use (no	hot wate	r storage),	enter 0 in	boxes (46) to (61)	Total = Su	m(45) ₁₁₂ =	-	1430.55	(45)
(46)m=	22.25	19.46	20.08	17.51	16.8	14.49	13.43	15.41	15.6	18.18	19.84	21.55		(46)
Water	storage	loss:	I	I	I	I	I	I						
Storag	je volum	e (litres)) includir	ng any s	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If com Otherv Water	munity h vise if no storage	eating a stored	and no ta hot wate	ank in dw er (this ir	velling, e ncludes i	nter 110 nstantar) litres in neous co	i (47) ombi boil	ers) ente	er '0' in ((47)			
a) If n	nanufact	urer's de	eclared	loss fact	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	e 2b		,	• /					0		(49)
Energy	y lost fro	m water	storage	e, kWh/ye	ear loss fact	or is not	known:	(48) x (49)) =			0		(50)
Hot wa	ater stora	age loss	factor f	rom Tab	le 2 (kW	h/litre/da	ay)					0		(51)
If com	munity h	eating s	ee secti	on 4.3										
Volum	e factor	from Ta	ble 2a	0								0		(52)
Tempe	erature f	actor fro	m Table	e 2b								0		(53)
Energy	y lost fro	m water	storage	e, kWh/y	ear			(47) x (51)	x (52) x (53) =		0		(54)
	(SU) OF ((04) III (0	oulotod	for oash	month			((56)~ (55) - (AA)	m		0		(55)
vvater	siorage							((oo))) = (55) × (41)					
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinde	er contair	ns dedicated	d solar sto	rage, (57)r	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (57	7)m = (56)	m where (H11) is fro	m Append	ix H		
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)	
Primary circuit loss (annual) from Table 3												0		(58)	
Primar	Primary circuit loss calculated for each month $(59)m = (58) \div 365 \times (41)m$														
(mod	dified b	y factor fr	om Tab	le H5 if t	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)				
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)	
Combi	loss ca	alculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m							
(61)m=	12.73	11.46	12.63	12.15	12.5	12.04	12.4	12.47	12.1	12.58	12.25	12.71		(61)	
Total h	eat rec	uired for	water h	eating ca	alculated	for eacl	n month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m		
(62)m=	161.05	141.18	146.49	128.85	124.48	108.67	101.94	115.22	116.08	133.75	144.52	156.35		(62)	
Solar DH	- IW input	calculated	using App	endix G or	Appendix	H (negativ	ve quantity	/) (enter '0'	' if no sola	r contribut	ion to wate	er heating)			
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)															
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)	
Output from water heater															
(64)m=	161.05	141.18	146.49	128.85	124.48	108.67	101.94	115.22	116.08	133.75	144.52	156.35		_	
								Outp	out from w	ater heate	r (annual)₁	12	1578.59	(64)	
Heat g	ains fro	om water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	x [(46)m	+ (57)m	+ (59)m]		
(65)m=	52.5	46	47.67	41.84	40.36	35.14	32.87	37.28	37.6	43.43	47.04	50.94		(65)	
inclu	de (57)m in calc	culation	of (65)m	only if c	ylinder is	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating		
5. Int	ernal g	ains (see	Table 5	5 and 5a)):										
Metabo	olic gai	ns (Table	5), Wat	ts											
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(66)m=	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41	119.41		(66)	
Lightin	g gains	(calculat	ted in Ap	opendix l	L, equati	ion L9 oı	[.] L9a), a	lso see -	Table 5						
(67)m=	18.85	16.74	13.62	10.31	7.71	6.51	7.03	9.14	12.26	15.57	18.18	19.38		(67)	
Appliar	nces ga	ains (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		_			
(68)m=	211.47	213.66	208.13	196.36	181.5	167.53	158.2	156.01	161.54	173.31	188.17	202.14		(68)	
Cookin	ig gain:	s (calcula	ted in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5	-				
(69)m=	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94	34.94		(69)	
Pumps	and fa	ins gains	(Table s	5a)											
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)	
Losses	Losses e.g. evaporation (negative values) (Table 5)														
(71)m=	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53	-95.53		(71)	
Water	heating	gains (T	able 5)												
(72)m=	70.56	68.45	64.07	58.11	54.25	48.8	44.18	50.11	52.22	58.38	65.34	68.47		(72)	
Total i	nterna	l gains =				(66)	m + (67)m	n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m			
(73)m=	362.71	360.68	347.64	326.61	305.28	284.67	271.24	277.08	287.85	309.09	333.51	351.8		(73)	
6. Sol	lar gain	IS:									•				
Solar g	ains are	calculated	using sola	r flux from	Table 6a a	and associ	ated equa	tions to co	nvert to th	ne applicat	le orientat	ion.			
Orienta	ation:	Access F Table 6d	actor	Area m²		Flu Tat	x ble 6a	Т	g_ able 6b	Та	FF able 6c		Gains (W)		

Northea	ast <mark>0.9x</mark>	0.77	×		12.82		×	11.28	x	(0.63	×	0.7		=	44.21	(75)
Northea	ast 0.9x	0.77	×	Ē	12.82		x	22.97	x	(0.63	×	0.7		=	89.98	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	Ē	12.82		×	41.38	x	(0.63	×	0.7		=	162.12	(75)
Northea	ast <mark>0.9x</mark>	0.77	x		12.82		×	67.96	x	(0.63	×	0.7		=	266.25	(75)
Northea	ast <mark>0.9x</mark>	0.77	×	Ē	12.82		×	91.35		(0.63	×	0.7		=	357.89	(75)
Northea	ast <mark>0.9x</mark>	0.77			12.82		×	97.38	x	(0.63	×	0.7		=	381.55	(75)
Northea	theast 0.9x 0.77		x	Ē	12.82		×	91.1	x	(0.63	×	0.7		=	356.93	(75)
Northea	ast 0.9x 0.77		x		12.82		×	72.63	x	(0.63	×	0.7		=	284.55	(75)
Northea	heast 0.9x 0.77		x		12.82		x	50.42	x	(0.63	x	0.7		=	197.55	(75)
Northea	neast 0.9x 0.77		×		12.82		x	28.07	x	(0.63	×	0.7		=	109.97	(75)
Northea	Northeast 0.9x 0.77		x	-	12.82	.82 ×		14.2	x	(0.63	x	0.7		=	55.62	(75)
Northea	ortheast 0.9x 0.77		x		12.82	×		9.21	x	(0.63	×	0.7		=	36.1	(75)
Southw	ithwest0.9x 0.77		x		8.14		×	36.79		(0.63	×	0.7		=	91.53	(79)
Southw	outhwest0.9x 0.77		x		8.14	x		62.67		(0.63	×	0.7		=	155.91	(79)
Southw	hwest _{0.9x} 0.77		x		8.14		×	85.75]	(0.63	×	0.7		=	213.33	(79)
Southw	uthwest _{0.9x} 0.77		×	Ē	8.14		×	106.25]	0.63		×	0.7		=	264.32	(79)
Southw	uthwest _{0.9x} 0.77		x	Ē	8.14		×	119.01		(0.63	×	0.7		=	296.06	(79)
Southw	outhwest _{0.9x} 0.77		x	E	8.14		x	118.15		(0.63	x	0.7		=	293.92	(79)
Southw	Southwest _{0.9x} 0.77		x		8.14		×	113.91		(0.63	×	0.7		=	283.37	(79)
Southw	outhwest _{0.9x} 0.77		x		8.14		×	104.39		0.63		×	0.7		=	259.69	(79)
Southwest0.9x 0.77		x	Ē	8.14		×	92.85]	(0.63	×	0.7		=	230.99	(79)	
Southwest _{0.9x}		0.77	×	Ē	8.14		×	69.27		(0.63	×	0.7		=	172.32	(79)
Southwest _{0.9x}		0.77	×	Ē	8.14		x	44.07]	(0.63	×	0.7		=	109.63	(79)
Southwest0.9x		0.77	x		8.14	н х З		31.49]	(0.63	×	0.7		=	78.33	(79)
Solar g	ains in	watts, ca	alculate	d fo	or each m	nonth			(83)r	n = Sun	m(74)m	.(82)m		1			
(83)m=	135.74	245.89	375.45	375.45 530.57 653.95		675.	675.47 640.3		544.24 428		282.28	165.26	114.43			(83)	
Total g	ains – i	is – internal and solar (84)m = (73)m + (- (83)	m , watts					1	77 466 04			(0.4)
(84)m=	498.45	606.58	723.09	1	357.18 95	59.23	960.	14 911.54	821	1.32	716.38	591.37	498.77	466.2	24		(84)
7. Me	an inter	nal temp	perature	(h	eating se	eason))										_
Temp	erature	during h	eating	per	riods in th	ne livir	ng are	ea from Ta	ble 9), Th1	(°C)					21	(85)
Utilisa	ation fac	tor for g	ains for	livi	ing area,	h1,m	(see	Table 9a)									
	Jan	Feb	Mar		Apr	May	Ju	n Jul	A	ug	Sep	Oct	Nov	De	с		
(86)m=	1	0.99	0.98		0.94 0	0.85	0.6	.67 0.52		58	0.84	0.97	0.99	1			(86)
Mean	interna	l temper	ature in	liv	ring area	T1 (fo	llow	steps 3 to	7 in ⁻	Table	9c)		-				
(87)m=	19.16	19.38	19.75		20.28 2	0.68	20.9	2 20.98	20	.97	20.79	20.26	19.66	19.19			(87)
Temp	erature	during h	eating	per	riods in re	est of	dwell	ing from Ta	able	9, Th2	2 (°C)			_			
(88)m=	19.56	19.57	19.58		19.65 1	9.66	19.7	2 19.72	19	.73	19.7	19.66	19.63	19.6	1		(88)
Utilisa	ation fac	tor for g	ains for	re	st of dwel	lling, ł	ח2,m	(see Table	9a)								
(89)m=	1	0.99	9 0.97 0.92 0.1		0.79	0.5	6 0.38	0.	44	0.75	0.96	0.99	1			(89)	
			-	•					•					-			

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)
(90)m=	17.16	17.49	18.03	18.83	19.36	19.67	19.72	19.72	19.54	18.82	17.94	17.24		(90)
									1	fLA = Livin	g area ÷ (4	4) =	0.48	(91)
Mear	interna	l temper	ature (fo	or the wh	ole dwe	llina) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	18.12	18.41	18.86	19.53	20	20.28	20.33	20.32	, 20.14	19.52	18.77	18.18		(92)
Apply	v adjustn	nent to t	he mear	n interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.12	18.41	18.86	19.53	20	20.28	20.33	20.32	20.14	19.52	18.77	18.18		(93)
8. Sp	ace hea	ting requ	uirement	t			•	•		•				
Set T	i to the i	mean int	ernal te	mperatu	re obtain	ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	tilisation	factor fo	or gains	using Ta	ble 9a	-	•	-		, (,	-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	n:			-	-		-				
(94)m=	0.99	0.99	0.97	0.92	0.81	0.61	0.44	0.51	0.79	0.95	0.99	1		(94)
Usefu	ul gains,	hmGm	, W = (9	4)m x (8-	4)m									
(95)m=	495.38	598.81	701.52	787.91	773.3	587.99	404.99	416.8	563.07	563.65	493.26	464.06		(95)
Mont	hly aver	age exte	ernal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	- =[(39)m	x [(93)m	– (96)m]				
(97)m=	1770.4	1711.29	1549.78	1260.85	973.03	629.83	413.4	430.75	684.85	1045.21	1400.06	1714.38		(97)
Spac	e heatin	g require	ement fo	r each n	honth, k	Nh/moni	th = 0.02	24 x [(97)m – (95	5)m] x (4	1)m			
(98)m=	948.62	747.58	631.1	340.51	148.59	0	0	0	0	358.28	652.9	930.24		
								Tota	l per year	(kWh/year	.) = Sum(9	8)15,912 =	4757.82	(98)
Spac	e heatin	g require	ement in	kWh/m²	/year								62.38	(99)
9a Fn	erav rea	uiremer	nts – Ind	ividual h	eating s	vstems i	ncluding	umicro-C	HP)					
Snac	e heatir	na.		i viadai ii	outing o	yotorno i	rioraanig		, ,					
Fract	ion of sp	ace hea	at from s	econdar	y/supple	mentary	v system						0	(201)
Fract	ion of sr	ace hea	at from n	nain svst	em(s)	-	-	(202) = 1 ·	- (201) =				1	(202)
Erect	ion of to		na from	moin ov	otom 1			(204) - (2)	02) ~ [1 _	(203)] -		·		
				inain sys				(204) - (2	02) ~ [1	(200)] =		-		(204)
Efficie	ency of i	main spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	า, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Spac	e heatin	g require	ement (c	alculate	d above))								
	948.62	747.58	631.1	340.51	148.59	0	0	0	0	358.28	652.9	930.24		
(211)n	n = {[(98)m x (20)4)] } x 1	00 ÷ (20)6)		•	•		•				(211)
(,	1017.83	802.13	677.15	365.36	159.43	0	0	0	0	384.42	700.53	998.11		
				I			I	I Tota	l I (kWh/yea	I ar) =Sum(2	L 211), 540 42	=	5104 96	(211)
Snac	o hootin	a fuol (c	ocondor	w) k\//b/	month						1		0.0.000	
	m x (20)	y iuei (S)1)] \ x 1	$00 \div (20)$	y), KVVII/ 181	monun									
(215)m=					0	0	0	0	0	0	0	0		
()	<u> </u>				<u> </u>	Ŭ		Tota	l (kWh/vea	ar) =Sum(2	215)	=	0	(215)
\ N/ _4 =	h = = 1 ¹	_								.,	· · · / 15,1012		U	(213)
outout	neating) ator has	tor (colo	ulated a										
Juipu	161.05	ater nea	146.49	128.85	124.48	108.67	101.94	115.22	116.08	133.75	144.52	156.35		
Efficie		ater hea	L	L									87.3	(216)
													07.5	(=·•)

(217)m=	89.77	89.73	89.64	89.38	88.85	87.3	87.3	87.3	87.3	89.39	89.66	89.77		(217)
Fuel for	r water	heating,	kWh/mo	onth										
(219)m (219)m=	<u>= (64)</u> 179.41	m x 100 157.35) ÷ (217) 163.42	m 144.15	140.1	124.48	116.78	131.98	132.96	149.62	161.19	174.17]	
				I				Tota	l = Sum(2	19a) ₁₁₂ =			1775.6	(219)
Annual	l totals									k	Wh/year	•	kWh/year	
Space I	heating	fuel use	ed, main	system	1								5104.96	
Water h	neating	fuel use	d										1775.6	
Electric	ity for p	oumps, fa	ans and	electric l	keep-ho	t								_
centra	l heatin	ig pump:										30		(230c)
boiler	with a f	an-assis	ted flue									45	j	(230e)
Total el	ectricity	y for the	above, ł	<wh td="" yea<=""><td>r</td><td></td><td></td><td>sum</td><td>of (230a).</td><td>(230g) =</td><td></td><td></td><td>75</td><td>(231)</td></wh>	r			sum	of (230a).	(230g) =			75	(231)
Electric	ity for li	ighting											332.94	(232)
120 0	`O2 em	issions -	- Individ	ual heati	na svste	ems inclu	ıdina mi	cro-CHF)					
12a. C														
12a. C						En kW	ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ar
Space I	heating	(main s	ystem 1))		En kW (211	ergy /h/year I) x			Emiss kg CO	ion fac 2/kWh 16	tor =	Emissions kg CO2/yea	ar](261)
Space I Space I	heating	(main s	ystem 1) lary))		En kW (211 (215	ergy /h/year I) x 5) x			Emiss kg CO 0.2	ion fac 2/kWh 16	tor = =	Emissions kg CO2/yea 1102.67	ar](261)](263)
Space I Space I Water h	heating heating	(main sı (secono	ystem 1) lary))		En kW (211 (215	ergy /h/year I) x 5) x 9) x			Emiss kg CO 0.2 0.5	ion fac 2/kWh 16 19	tor = = =	Emissions kg CO2/yes 1102.67 0 383.53	ar](261)](263)](264)
Space I Space I Water h Space a	heating heating neating and wa	(main s (seconc ter heati	ystem 1) lary) ng)		En kW (211 (211 (211) (211)	ergy /h/year 1) x 5) x 9) x 1) + (262)	+ (263) + ((264) =	Emiss kg CO. 0.2 0.5	ion fac 2/kWh 16 19 16	tor = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2	ar](261)](263)](264)](265)
Space I Space I Water I Space a Electric	heating heating neating and wa	(main s (second ter heatin pumps, fa	ystem 1) lary) ng ans and) electric l	keep-ho	En kW (211 (211 (211 (211) (261) (261)	ergy /h/year 1) x 5) x 2) x 1) + (262) (1) x	+ (263) + ((264) =	Emiss kg CO. 0.2 0.5 0.2	ion fac 2/kWh 16 19 16	tor = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2 38.93	ar](261)](263)](264)](265)](267)
Space I Space I Water h Space a Electric Electric	heating heating neating and wa ity for p	(main s (second ter heatin pumps, fa	ystem 1) lary) ng ans and) electric l	keep-ho	En kW (211 (215 (215 (264) t (234) (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) (1) x 2) x	+ (263) + ((264) =	Emiss kg CO. 0.2 0.5 0.2	ion fac 2/kWh 16 19 16 19 19	tor = = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2 38.93 172.8	ar](261)](263)](264)](265)](267)](268)
Space I Space I Water H Space a Electric Electric Total C	heating heating and wa ity for p ity for li O2, kg/	(main s (second ter heatin pumps, fa ighting /year	ystem 1) lary) ng ans and) electric I	keep-ho	En kW (211 (215 (215 (264 t (234) (232	ergy /h/year 1) x 5) x 2) x 1) + (262) (1) x 2) x	+ (263) + ((264) = sum o	Emiss kg CO. 0.2 0.5 0.2 0.5 f (265)(2	ion fac 2/kWh 16 19 16 19 19 19 19 271) =	tor = = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2 38.93 172.8 1697.92	ar] (261)] (263)] (264)] (265)] (267)] (268)] (272)
Space I Space I Water I Space a Electric Electric Total C	heating heating neating and wa ity for p ity for li O2, kg/	(main s (second ter heatin pumps, fa ighting /year	ystem 1) lary) ng ans and on Rate) electric I	keep-ho	En kW (211 (215 (215 (264) t (234) (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) (1) x 2) x	+ (263) + ((264) = sum o (272)	Emiss kg CO. 0.2 0.5 0.5 (265)(2 \div (4) =	ion fac 2/kWh 16 19 16 19 19 19 271) =	tor = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2 38.93 172.8 1697.92 22.26	ar] (261)] (263)] (264)] (265)] (267)] (268)] (272)] (273)
Space I Space I Water I Space a Electric Electric Total C Dwellin El rating	heating heating neating and wa ity for p ity for li O2, kg/ ng CO2 g (secti	(main sy (second ter heatin oumps, fa ghting /year 2 Emissi a on 14)	ystem 1) dary) ng ans and on Rate) electric I	keep-ho	En kW (211 (215 (215 (264 t (234) (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) (1) x 2) x	+ (263) + ((264) = sum o (272)	Emiss kg CO. 0.2 0.5 0.5 (265)(2)	ion fac 2/kWh 16 19 16 19 19 19 271) =	tor = = =	Emissions kg CO2/yea 1102.67 0 383.53 1486.2 38.93 172.8 1697.92 22.26 81	ar] (261)] (263)] (264)] (265)] (267)] (268)] (272)] (273)] (274)

							User [Details:						
Asses Softw	ssor N vare Na	ame: ame:	Ge Str	orge Fa oma FS	irr SAP 201	2	roportu	Strom Softwa	a Num are Vei	ber: rsion:		STRO Versio	028460 on: 1.0.4.6	
Addro						Γ.	openy	Address	. Flat 4					
1. Ove	erall dw	ellina diı	mension	S:										
							Are	a(m²)		Av. Hei	ight(m)		Volume(m ³))
Ground	d floor							5.28	(1a) x	2	.55	(2a) =	13.46	(3a)
First flo	or							76.37	(1b) x	2	2.1	(2b) =	160.38	(3b)
Total flo	oor area	a TFA =	(1a)+(1l	o)+(1c)+	(1d)+(1e	e)+(1n)	81.65	(4)			-		
Dwellin	ıg volum	ne							(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	173.84	(5)
2. Ver	ntilation	rate:												
				main heating	se h	econdar leating	у	other		total			m ³ per hou	•
Numbe	er of chir	nneys		0	+	0] + [0	=	0	X 4	40 =	0	(6a)
Numbe	er of ope	en flues		0	+	0] + [0] = [0	× 2	20 =	0	(6b)
Numbe	er of inte	rmittent	fans							3	x ^	10 =	30	(7a)
Numbe	er of pas	sive ver	nts						Γ	0	x ^	10 =	0	(7b)
Numbe	er of flue	less ga	s fires						Ē	0	x 4	40 =	0	(7c)
												Air ch	nanges per ho	ur
Infiltrati	ion due	to chim	neys, flu	es and f	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Г	30	<u> </u>	÷ (5) =	0.17	(8)
lf a pr	essurisati	on test ha	s been ca	rried out o	r is intende	ed, proceed	d to (17),	otherwise	continue fr	om (9) to ((16)			
Num	ber of s	toreys ir	n the dw	elling (n	s)								0	(9)
Addit	tional in	filtration									[(9)-	-1]x0.1 =	0	(10)
Struc	ctural ini	filtration	: 0.25 fo	r steel o	r timber i	frame or	0.35 fo	r masoni	ry constr a (after	ruction			0	(11)
dec	ducting ar	eas of ope	enings); if	equal user	0.35	ponung to	ino grou		u (unor					_
lf sus	spendeo	d woode	n floor, o	enter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)
lf no	draught	t lobby,	enter 0.0	05, else	enter 0								0	(13)
Perc	entage	of windo	ows and	doors di	aught st	ripped		0.05 10.0		0.01			0	(14)
Wind		tration						0.25 - [0.2	X (14) ÷ 1	[00] =			0	(15)
Infiltr	ation ra	te				••••••		(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air p	ermeab	nity valu	le, q50, i	expresse	ed in cub (18) - [(1	7) : 201 (S	s per n	our per s	quare m	etre of e	nvelope	area	15	(17)
II Dase	u on air Irmeability	permea value an	DIIIty Va Nies if a n	iue, men ressurisati	(10) = [(1)	7) - 20j+(C	e or a de	aree air ne	rmeahility	is heina u	bod		0.92	(18)
Numbe	er of side	es shelte	ered	1000011000	01110311140			gree an pe	incability	is being ut	500		0	(19)
Shelter	factor							(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltrati	ion rate	incorpo	rating sh	nelter fac	ctor			(21) = (18) x (20) =				0.92	(21)
Infiltrati	ion rate	modifie	d for mo	nthly wir	nd speed	ł								_
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthl	y avera	ge wind	speed f	rom Tab	e 7								_	
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind Factor $(22a)m = (22)r$	n ÷ 4								
(22a)m= 1.27 1.25 1.2	23 1.1 1.08	0.95	0.95 0.92	1	1.08	1.12	1.18		
Adjusted infiltration rate (all	owing for shelter ar	nd wind spe	ed) = (21a) x	(22a)m					
1.18 1.15 1.1	3 1.01 0.99	0.88	0.88 0.85	0.92	0.99	1.04	1.08		
Calculate effective air chan	ge rate for the appl	icable case)				——— Г		
If exhaust air heat pump using	Appendix N. (23b) = (23	a) x Fmv (equ	ation (N5)) . othei	wise (23b) = (23a)			0	(23a)
If balanced with heat recovery:	efficiency in % allowing	for in-use fact	or (from Table 4h)) =	, (,		L	0	(23c)
a) If balanced mechanica	al ventilation with he	at recovery	/ (MVHR) (24a	ı)m = (22	2b)m + (2	23b) × [′	L - (23c) –	 ÷ 100]	(200)
(24a)m= 0 0 0	0 0	0	0 0	0	0	0	0	-	(24a)
b) If balanced mechanica	al ventilation without	heat recov	/ery (MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m= 0 0 0	0 0	0	0 0	0	0	0	0		(24b)
c) If whole house extract	ventilation or positi	ve input ver	ntilation from c	outside	F (00)	、			
(24c)m = 0 + 0 + 0	b), then $(24c) = (23)$	$\frac{1}{1}$	se(24C) = (22C)) m + 0.	5 × (230)			(24c)
d) If natural ventilation or			ntilation from I	oft	0	0	Ů		(210)
if $(22b)m = 1$, then $(2b)m = 1$	(22b)m = (22b)m oth	erwise (24d	f(1) = 0.5 + [(2)]	2b)m ² x	0.5]				
(24d)m= 1.18 1.15 1.1	3 1.01 0.99	0.88	0.88 0.86	0.93	0.99	1.04	1.08		(24d)
Effective air change rate	- enter (24a) or (24	b) or (24c)	or (24d) in box	(25)					
(25)m= 1.18 1.15 1.1	3 1.01 0.99	0.88	0.88 0.86	0.93	0.99	1.04	1.08		(25)
3. Heat losses and heat lo	ss parameter:								
ELEMENT Gross area (m ²)	Openings m ²	Net Area A ,m²	u U-valu W/m2	le K	A X U (W/ł	<)	k-value kJ/m²⋅K		A X k kJ/K
Doors		1.89	x 1.4	=	2.646	, 			(26)
Windows Type 1		5.92	x1/[1/(1.4)+	0.04] =	7.85				(27)
Windows Type 2		5.92		0.04] =	7.85				(27)
Rooflights		4.3	x1/[1/(1.4) +	0.04] =	6.02				(27b)
Floor		9.73	x 0.14	= [1.3622			7	(28)
Walls Type1 36.78	0	36.78	× 0.15		5.52	ה ה		i 📛	(29)
Walls Type2 8.55	1.89	6.66	x 0.2	= [1.34	ן ר		i 📛	(29)
Walls Type3 56.27	11.84	44.43	× 0.15	= [6.66	ן ר		i 📛	(29)
Roof 46.19	4.3	41.89	x 0.14	= [5.86			i 📛	(30)
Total area of elements, m ²		157.52						J	(31)
Party wall		38.99	x 0		0			7	(32)
Party floor		71.82	- <u> </u>	L		L		i 🚞	(32a)
* for windows and roof windows, L	ise effective window U-v	alue calculate	d using formula 1.	/[(1/U-valu	ıe)+0.04] a	∟ s given in	paragraph 3	3.2	
Fabric heat loss, $W/K = S$ (A x U)		(26)(30)	+ (32) =				44.79	(33)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

Heat capacity $Cm = S(A \times k)$

(34)

(35)

7839.35

250

((28)...(30) + (32) + (32a)...(32e) =

Indicative Value: Medium

can be l	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						23.63	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			68.42	(37)
Ventila	ation hea	at loss ca	alculated	I monthly	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	67.48	66.16	64.83	58.22	56.9	50.72	50.72	49.57	53.1	56.9	59.54	62.19		(38)
Heat t	ransfer (coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	135.9	134.58	133.25	126.64	125.32	119.14	119.14	117.99	121.52	125.32	127.96	130.61		
Heat lo	oss para	ameter (H	· HLP), W/	′m²K					(40)m	Average = = (39)m ÷	Sum(39)₁. · (4)	12 /12=	126.45	(39)
(40)m=	1.66	1.65	1.63	1.55	1.53	1.46	1.46	1.45	1.49	1.53	1.57	1.6		
			I							Average =	Sum(40)1.	₁₂ /12=	1.55	(40)
Numb	er of day	ys in mo	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
											•			
4 Wa	ater hea	tina ene	rav reau	rement.								kWh/ve	ear:	
		ang ono	gy roqu											
Assum if TF	A > 13.	upancy, 9, N = 1	N + 1.76 x	[1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.()013 x (⁻	TFA -13	2. .9)	49		(42)
Annua	l averaç	9, N = 1	ater usag	ge in litre	es per da	y Vd,av	erage =	(25 x N)	+ 36		93	.42		(43)
Reduce	the annua e that 125	al average litres per	hot water person per	usage by : day (all w	5% if the a rater use. I	welling is	designed (Id)	to achieve	a water us	se target o	f		-	
notmor													l	
Hot wat	Jan		Mar day for ea	Apr	May Vd m – fa	Jun	Jul Table 1c x	Aug	Sep	Oct	Nov	Dec		
not wat	er usage i	T T			vu,iii – ia			(+3) I			1		1	
(44)m=	102.76	99.02	95.29	91.55	87.81	84.08	84.08	87.81	91.55	95.29	99.02	102.76		- 1
Energy	content of	^f hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600) kWh/mor	Total = Su hth (see Ta	m(44) ₁₁₂ = ables 1b, 1	c, 1d)	1121.03	(44)
(45)m=	152.39	133.28	137.54	119.91	115.05	99.28	92	105.57	106.83	124.5	135.9	147.58		
lf instan	taneous v	vater heati	na at point	of use (no	hot water	storage)	enter () in	boxes (46	-) to (61)	Total = Su	m(45) ₁₁₂ =		1469.84	(45)
(46)-	22.96	10.00	20.62	17.00	17.06	14.90	12.0	15.94	16.02	10.60	20.20	22.14		(46)
Water	storage	loss:	20.03	17.99	17.20	14.09	13.0	15.64	10.02	10.00	20.39	22.14		(40)
Storac	e volum	ne (litres)	includir	iq any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If com	munity k	neating a	ind no ta	nk in dw	ellina e	nter 110	litres in	(47)				0		()
Otherv	vise if n	o stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water	storage	loss:		,					,	·				
a) If m	nanufac	turer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
Energ	y lost fro	om water	· storage	, kWh/ye	ear			(48) x (49)	=			0		(50)
b) If n	nanufac	turer's de	eclared o	ylinder l	oss fact	or is not	known:							
Hot wa	ater stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
	munity h	from To	ee secti blo 20	on 4.3										
Tempe	e lacior	actor fro	ule za m Tahlo	2h								0		(52)
, on po		20101 110										0		(00)

Energy Enter	y lost fro (50) or	om watei (54) in (5	⁻ storage 55)	e, kWh/y₀	ear			(47) x (51) x (52) x (53) =		0		(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = ((55) × (41)	m			I	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	l d solar sto	rage, (57)	n = (56)m	x [(50) – (I [H11)] ÷ (5	0), else (5	1 7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41))m Novlindo	r thormo	ctat)		'	
(110) (59)m=											0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 x (41))m	1	I	1	1		
(61)m=	12.75	11.49	12.66	12.18	12.53	12.06	12.42	12.49	12.12	12.6	12.28	12.73		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	: 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	165.14	144.78	150.19	132.08	127.58	111.34	104.42	118.06	118.95	137.11	148.19	160.31		(62)
Solar DI	-IW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	i if no sola	r contribut	ion to wate	r heating)	1	
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter		•	•	•		•				I	
(64)m=	165.14	144.78	150.19	132.08	127.58	111.34	104.42	118.06	118.95	137.11	148.19	160.31		
								Out	out from w	ater heate	r (annual)₁	12	1618.16	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)n	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	53.86	47.19	48.9	42.91	41.39	36.03	33.7	38.22	38.55	44.55	48.26	52.25		(65)
inclu	ıde (57)	m in cale	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	is (Table	e 5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	124.67	124.67	124.67	124.67	124.67	124.67	124.67	124.67	124.67	124.67	124.67	124.67		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	19.88	17.66	14.36	10.87	8.13	6.86	7.41	9.64	12.94	16.42	19.17	20.44		(67)
Applia	nces ga	ins (calc	ulated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5			'	
(68)m=	222.85	225.17	219.34	206.93	191.27	176.55	166.72	164.41	170.24	182.64	198.3	213.02		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	ee Table	5			I	
(69)m=	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47	35.47		(69)
Pumps	s and fa	ns gains	(Table	5a)									I	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	vaporatio	n (nega	tive valu	es) (Tab	le 5)	•		•				I	
(71)m=	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74	-99.74		(71)
Water	heating	gains (1	able 5)										1	
(72)m=	72.39	70.22	65.72	59.6	55.63	50.04	45.29	51.38	53.54	59.88	67.03	70.23		(72)
Total i	internal	gains =	:	-	-	(66))m + (67)m	n + (68)m ·	+ (69)m +	(70)m + (7	1)m + (72)	m	1	
(73)m=	378.53	376.45	362.82	340.81	318.43	296.85	282.83	288.82	300.12	322.34	347.9	367.09		(73)
6. So	lar gains	S:						•				•		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b	FF Table 6c			Gains (W)	
Northeast 0.9x	0.77	x	5.92	×	11.28	x	0.63	x	0.7	=	20.41	(75)
Northeast 0.9x	0.77	x	5.92	x	22.97	×	0.63	x	0.7	i =	41.55	(75)
Northeast 0.9x	0.77	x	5.92	×	41.38	×	0.63	x	0.7	i =	74.86	(75)
Northeast 0.9x	0.77	x	5.92	x	67.96	x	0.63	x	0.7	i =	122.95	– (75)
Northeast 0.9x	0.77	x	5.92	x	91.35	x	0.63	x	0.7	i =	165.27	(75)
Northeast 0.9x	0.77	x	5.92	×	97.38	×	0.63	×	0.7	i =	176.19	– (75)
Northeast 0.9x	0.77	x	5.92	x	91.1	x	0.63	x	0.7	i =	164.82	– (75)
Northeast 0.9x	0.77	x	5.92	x	72.63	x	0.63	x	0.7	i =	131.4	(75)
Northeast 0.9x	0.77	x	5.92	×	50.42	×	0.63	×	0.7	i =	91.22	(75)
Northeast 0.9x	0.77	x	5.92	x	28.07	×	0.63	x	0.7	i =	50.78	(75)
Northeast 0.9x	0.77	x	5.92	×	14.2	x	0.63	×	0.7	=	25.69	(75)
Northeast 0.9x	0.77	x	5.92	×	9.21	×	0.63	×	0.7	=	16.67	(75)
Southwest0.9x	0.77	x	5.92	×	36.79	İ	0.63	×	0.7	=	66.57	(79)
Southwest0.9x	0.77	x	5.92	x	62.67	İ	0.63	x	0.7	=	113.39	(79)
Southwest0.9x	0.77	x	5.92	x	85.75	İ	0.63	x	0.7	i =	155.15	(79)
Southwest0.9x	0.77	x	5.92	x	106.25	İ	0.63	x	0.7	i =	192.23	(79)
Southwest0.9x	0.77	x	5.92	x	119.01	İ	0.63	x	0.7	i =	215.32	(79)
Southwest0.9x	0.77	x	5.92	x	118.15	İ	0.63	×	0.7	i =	213.76	(79)
Southwest0.9x	0.77	x	5.92	×	113.91	İ	0.63	×	0.7	=	206.09	(79)
Southwest0.9x	0.77	x	5.92	×	104.39	İ	0.63	×	0.7	=	188.87	(79)
Southwest0.9x	0.77	x	5.92	×	92.85	İ	0.63	×	0.7	=	167.99	(79)
Southwest0.9x	0.77	x	5.92	x	69.27	İ	0.63	x	0.7	=	125.32	(79)
Southwest0.9x	0.77	x	5.92	×	44.07	Ì	0.63	×	0.7] =	79.73	(79)
Southwest0.9x	0.77	x	5.92	×	31.49	İ	0.63	×	0.7	=	56.97	(79)
Rooflights 0.9x	1	x	4.3	x	26	x	0.63	x	0.8] =	50.71	(82)
Rooflights 0.9x	1	x	4.3	x	54	x	0.63	x	0.8	=	105.33	(82)
Rooflights 0.9x	1	x	4.3	x	96	×	0.63	x	0.8	=	187.25	(82)
Rooflights 0.9x	1	x	4.3	x	150	×	0.63	x	0.8	=	292.57	(82)
Rooflights 0.9x	1	x	4.3	×	192	×	0.63	×	0.8] =	374.49	(82)
Rooflights 0.9x	1	x	4.3	×	200	×	0.63	×	0.8] =	390.1	(82)
Rooflights 0.9x	1	x	4.3	x	189	×	x 0.63 x 0.8 =		=	368.64	(82)	
Rooflights 0.9x	1	x	4.3	×	157	×	x 0.63 x 0.8 = 306.23			306.23	(82)	
Rooflights 0.9x	1	x	4.3	×	115	×	0.63	×	0.8] =	224.31	(82)
Rooflights 0.9x	1	x	4.3	×	66	×	0.63	×	0.8	=	128.73	(82)
Rooflights 0.9x	1	x	4.3	×	33	×	0.63	x	0.8] =	64.37	(82)
Rooflights 0.9x	1	x	4.3	x	21	x	0.63	x	0.8	=	40.96	_ (82)

Solar g	ains in	watts, ca	alculated	for eacl	h month			(83)m = S	um(74)m .	(82)m			
(83)m=	137.69	260.27	417.26	607.75	755.08	780.05	739.55	626.49	483.52	304.83	169.78	114.6	(83)
Total g	ains – ir	nternal a	nd solar	(84)m =	= (73)m -	+ (83)m	, watts						
(84)m=	516.22	636.72	780.08	948.56	1073.5	1076.9	1022.38	915.32	783.64	627.18	517.69	481.69	(84)

7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	leating p	eriods ir	n the livir	ng area i	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	living are	ea, h1,m	(see Ta	ble 9a)	-						_
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.94	0.83	0.65	0.5	0.56	0.83	0.97	0.99	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	19.15	19.38	19.77	20.31	20.71	20.93	20.98	20.97	20.8	20.25	19.65	19.18		(87)
Temp	erature	durina h	eating n	eriods ir	rest of	dwelling	from Ta	ble 9 Tl	n2 (°C)					
(88)m=	19.57	19.58	19.59	19.65	19.66	19.72	19.72	19.73	19.7	19.66	19.64	19.61		(88)
Litilion	tion foo	tor for a	oine for	root of d	volling	L		()						
(89)m=		0.99	0.97	0.91	0 77	0.54		9a) 0.42	0 74	0.96	0.99	1		(89)
(00)		0.00						0.12		0.00	0.00			()
Mean	interna	temper	ature in	the rest	of dwelli	ng T2 (f	ollow ste	ps 3 to 7	7 in Tabl	e 9c)	47.00	47.00		(00)
(90)m=	17.16	17.5	18.07	18.87	19.39	19.68	19.71	19.72	19.54	18.82	17.93	17.23	0.07	
									1		y alea ÷ (*	+) =	0.37	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	17.9	18.2	18.7	19.41	19.88	20.14	20.18	20.18	20.01	19.35	18.57	17.95		(92)
Apply	adjustn	nent to t	he mear	internal	temper	ature fro	m Table	4e, whe	ere appro	opriate				(00)
(93)m=	17.9	18.2	18.7	19.41	19.88	20.14	20.18	20.18	20.01	19.35	18.57	17.95		(93)
8. Spa	ace hea	ting requ	urement							· T ' · · · · /·	70)		1-1-	
the ut	i to the r ilisation	nean int factor fo	ernal ter or gains	nperatur using Ta	e obtain Ible 9a	ied at ste	ep 11 of	I able 90	o, so tha	t II,m=(76)m an	d re-caic	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	<u> </u>		I								
(94)m=	0.99	0.99	0.97	0.91	0.78	0.58	0.41	0.48	0.77	0.95	0.99	1		(94)
Usefu	I gains,	hmGm	W = (94	4)m x (84	4)m									
(95)m=	513.23	628.66	755.09	861.8	839.24	624.21	420.36	434.93	601.48	596.88	512.21	479.59		(95)
Month	nly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m : I	x [(93)m·	– (96)m]				
(97)m=	1848.41	1789.73	1625.2	1330.52	1025.12	660.25	426.93	446.38	717.82	1096.61	1467.37	1795.9		(97)
Space	e heatin	g require	ement fo	r each m	nonth, k	/Vh/mont	h = 0.02	24 x [(97))m – (95)m] x (4′	1)m	070.00		
(96)11=	993.30	760.24	047.30	337.40	130.29	0	0	U 	0	371.0	007.72	979.33	1005.0	
								lota	i per year	(kvvn/year) = Sum(9	8)15,912 =	4935.6	(90)
Space	e heatin	g require	ement in	kWh/m ²	/year								60.45	(99)
9a. Ene	ergy rec	luiremer	nts – Ind	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
Space	e heatir	ng:			1							ı		
⊢racti	on of sp	ace hea	it from s	econdar <u>.</u>	y/supple	mentary	system	(0.05)					0	(201)
Fracti	on of sp	ace hea	it from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heatii	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	n, %						0	(208)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heatin	g require	ement (o	alculate	d above))		r	1		1		I	
	993.38	780.24	647.36	337.48	138.29	0	0	0	0	371.8	687.72	979.33		
(211)m	1 = {[(98)m x (20	(4)] } x 1	$100 \div (20)$)6)					000.00	707.00	4050 70	l	(211)
	1065.86	837.17	694.59	362.1	148.38	0	0	0 Tota		398.93	737.89 211)	1050.79	5005 74	1 (211)
Snace	a hoatin	a fuol (e	econdar	ייי) אין אין אין אין אין אין אין אין אין אין	month			Tota					5295.71	
= {[(98])m x (20)1)]}x1	00 ÷ (20)8)	monun									
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
				-				Tota	ll (kWh/yea	ar) =Sum(2	2 15) _{15,1012}		0	(215)
Water	heating	J												
Output	from w	ater hea	ter (calc	ulated a	bove)	111 34	104.42	118.06	118.95	137 11	148 19	160 31		
Efficier	ncv of w	ater hea	ter	102.00	127.00	111.04	104.42	110.00	110.00	107.11	140.15	100.01	87.3	1 (216)
(217)m=	89.77	89.73	89.64	89.36	88.78	87.3	87.3	87.3	87.3	89.4	89.67	89.78		(217)
Fuel fo	r water	heating,	kWh/m	onth										
(219)m	<u>1 = (64)</u>	m x 100) ÷ (217))m		407.54		405.04	400.00	450.00	405.00	470.50	l	
(219)m=	183.95	161.34	167.55	147.8	143.7	127.54	119.61	135.24 Tota	136.26	153.36	165.26	178.56	1920.17	
Annua	l totals									k	Wh/vear	,	kWh/vear](219)
Space	heating	fuel use	ed, main	system	1					K	, year		5295.71]
Water	heating	fuel use	ed										1820.17	ī
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								J
centra	al heatir	ig pump	:		-							30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	/ for the	above,	kWh/yea	ır			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ghting	·										351.14	_ (232)
12a. (CO2 em	issions ·	– Individ	lual heat	ing syste	ems inclu	uding mi	cro-CHF)					7
						Г.,				F mion	lon foo	1	Freissiana	
						⊏n kW	h/year			kg CO	2/kWh	tor	kg CO2/yea	r
Space	heating	(main s	system 1)		(21	1) x			0.2	16	=	1143.87	(261)
Space	heating	(second	dary)			(21	5) x			0.5	19	=	0	(263)
Water	heating					(21	9) x			0.2	16	=	393.16	(264)
Space	and wa	ter heati	ng			(26	1) + (262)	+ (263) + ((264) =				1537.03	(265)
Electric	city for p	oumps, f	ans and	electric	keep-ho	t (23	1) x			0.5	19	=	38.93	(267)
Electric	city for li	ghting				(23	2) x			0.5	19	=	182.24	(268)
Total C	CO2, kg/	year							sum o	of (265)(2	271) =		1758.19	(272)
Dwelli	ng CO2	Emissi	on Rate)					(272)	÷ (4) =			21.53	(273)
El ratir	ng (secti	on 14)											81	(274)

ej7°

Appendix C

Part G Water Use calculations

hrealohal	
Job no:	17282
Date:	19th May 2017
Assessor name:	Neil Ingham
Registration no:	STRO010493
Development name:	13-15 Johns Mews
Issue Date:	19th May 2017
Rainwater Gr	reywater Results

WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS

(for use with the Code for Sustainable Homes issues Wat 1 for the May 2009 and subsequent versions)

Dwelling Description Typical 2 bed 2 bath Flat

1st step - Select from options below:

No	Is a Rain and/or Greywater system specified?
Yes	Is a shower AND bath present?
No	Has a washing machine been specified?
No	Has a dishwasher been specified?

2nd step - Build spreadsheet (click button below)

BUILD SPREADSHEET

As soon as this button is pressed the spreadsheet will change according to the options selected previously in the 1st step. Scroll down to see the changes.

3rd step - Enter consumption details for the specified fittings

TAPS (excluding kitchen taps)		Fitting type	Flow rate (litres/min)	Number of fittings
	1	Basin Taps	4.50	2
	2			
	3			
	4			
		Proportionate flow rate (litres/min)		3.15
		Consumption / person / day (Litres)		8.69

CSH Wat Tool May 09

BATHS		Fitting type	Capacity to overflow (litres)	Number of fittings
	1	Main Bath	155.00	1
	2			
	3			
	4			
		Proportionate of	apacity to overflow (litres)	108.50
		Consump	otion / person / day (Litres)	17.05
SHOWERS		Fitting type	Flow rate (litres/min)	Number of fittings
	1	Shower	9.00	2
	2			
	3			
	4			
		Proporti	onate flow rate (litres/min)	6.30
		Consumption / person / day (Litres)		39.33
DISHWASHER				
Where no dishwasher is specified, a default consumption figure of 1.25 litres per place setting is used.				
		Consump	otion / person / day (Litres)	4.50
				Number of
WASHING MACHI	NES			<i>fittin m</i> =

fittings

CSH Wat Tool May 09

us	sed.				
Whe	Where no washing machines have been specified but plumbing for future				
	34	spiy or give			
			Consump	17.16	
WC's	Fitting Ty	/pe	Flush Type	Volume**	Number of fittings
	Duel Flu		Full Flush	4.50	0
	Dual Flu	sn	Part Flush	3.00	2
			Full Flush		
			Part Flush		
3			Full Flush		
			Part Flush		
4			Full Flush		
			Part Flush		
			Average effective flushing volume (litres)		3.50
			Consump	otion / person / day (Litres)	15.47
KITCHE	N SINK T	APS	Fitting Type	Flow rate (litres/minute)	Number of fittings
		1	Kitchen Tap	5.50	1
		2			
		3			
		4			
	Proportionate flow rate (litres/min)			3.85	
	Consumption / person / day (Litres)			12.78	
WASTE DISPOSAL UNIT					

Is a waste disposal unit specified for the dwelling?		No	
	Consumption / person / day (Litres) 0.00		0.00
WATER SOFTENER			
	Water Softener in use? No		
Total capacity used per regeneration (%)			

Water consumed per regeneration (litres)	
Average number of regeneration cycles per day (No.)	
Number of occupants served by the system (No.)	
Water consumed beyond 4% person / day (Litres)	0.00

4th step - Analyse Results

Go to Start

INTERNAL WATER CONSUMPTION				
NET INTERNAL WATER CONSUMPTION	(litres/person/day)	114.98		
RAINWATER ONLY COLLECTION SAVING	(litres/person/day)	0.00		
GREYWATER ONLY RECYCLING SAVING	(litres/person/day)	0.00		
RAIN/GREYWATER COLLECTION SAVING (combined system)	(litres/person/day)	0.00		
NORMALISATION FACTOR	(litres/person/day)	0.91		
TOTAL WATER CONSUMPTION	(litres/person/day)	104.6		
	3			
(Level 3/4			

17. K COMPLIANCE			
EXTERNAL WATER USE	(litres / person / day)	5.00	
TOTAL WATER CONSUMPTION	(litres / person / day)	109.6	
	17. K COMPLIANCE?	Yes	

BRE Global 2010. BRE Certification is a registered trademark owned by BRE Global and may not be

used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 75% (maximum)