246-248 KILBURN HIGH ROAD NW6 2BS LONDON BOROUGH OF CAMDEN

SUSTAINABLE DRAINAGE SYSTEMS ASSESSMENT

Studio 246 Media Ltd

PROJECT NUMBER: 17025 ISSUE DATE: MAY 2017 STATUS: FINAL REV A

Water Environment Limited 6 Coppergate Mews 103 Brighton Road Surbiton London KT6 5NE

Tel: 0208 545 9720

www.WaterEnvironment.co.uk

This Sustainable Drainage Systems (SuDS) Assessment was commissioned by andmoreplanning on behalf of Studio 246 Media Ltd in April 2017 to develop and assess a sustainable drainage strategy for the site at 246-248 Kilburn High Road in the London Borough of Camden.

Prepared by:

Claire Burroughs MSc DIC MEng (Hons) MCIWEM

Reviewed by:

Guy Laister MScEng BScEng (Civil) CEng CEnv C.WEM MCIWEM

Approved by:

Guy Laister Director

) or sole

for and on behalf of Water Environment Limited

Copyright © 2017 Water Environment Limited

No part of this document may be distributed, copied, adapted or transmitted in any form, without prior permission from Water Environment Limited.

CONTENTS

1.	Glossary	.1
1	Introduction	. 2
	General Information	. 2
	Scope of Study	. 2
2	Site Description	.3
	Location	. 3
	Existing Development	. 3
	Existing Site Levels	. 3
	Existing Surface Water Infrastructure	.4
	Proposed Development	.4
3	Planning Policy	. 5
	National Planning Policy Framework	. 5
	National Guidance	. 5
	London Plan	
	Local Planning Policy	
	Camden Development Policies (2010)	
	DP23 Water	.6
4	Surface Water Management	. 8
	Existing Site Runoff	. 8
	Existing Site Drainage	. 8
	Greenfield Runoff Rate	. 8
	Ground Conditions	
	Climate Change	
	Proposed Site Runoff	
	Sustainable Drainage Principles	
	Proposed Surface Water Drainage System	
	SuDS Management and Maintenance	
	Summary1	
	pendix A – Drawings1	
Ap	pendix B – Calculations1	19
Ap	pendix C – LBC SUDS PRO FORMA	20

LIST OF FIGURES

Figure 1 – Location of the Development	3
Figure 2 – The multi-functional benefits of SuDS	11

LIST OF TABLES

Table 1-Peak rainfall intensity allowance in small and urban catchments	9
Table 2 – Application of SuDS hierarchy to proposed development	3

LIST OF DRAWINGS

Drawing 1 – Existing site plan	. 17
Drawing 2 – Topographic Survey	
Drawing 3 – Existing Site Drainage	
Drawing 4 – Proposed ground floor plan	
Drawing 5 – Proposed site plan	. 17
Drawing 6 – Proposed landscape plan	
Drawing 7 – Site Investigation Borehole Records	. 17
Drawing 8 – Thames Water Assets	. 18
Drawing 9 – SuDS Strategy	

1. GLOSSARY

AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Survey
DEFRA	Department for Environment Food and Rural Affairs
DTM	Digital Terrain Model
CDA	Critical Drainage Area
EA	Environment Agency
FEH	Flood Estimation Handbook
FRA	Flood Risk Assessment
LBC	London Borough of Camden
Lidar	Light Detection And Ranging
LLFA	Lead Local Flood Authority
LPA	Local Planning Authority
NPPF	National Planning Policy Framework
OS	Ordnance Survey
PFRA	Preliminary Flood Risk Assessment
PPG	Planning Practise Guide
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage Systems
SWMP	Surface Water Management Plan

1 INTRODUCTION

General Information

- 1.1 The proposed development is located at 246-248 Kilburn High Street in the London Borough of Camden (LBC).
- 1.2 The Development proposes more than ten dwellings and therefore in accordance with The Town and Country Planning Order 2015 the development is considered 'Major' and a Sustainable urban Drainage System (SuDS) Assessment has to be prepared to accompany the planning application.

Scope of Study

- 1.3 The main objectives of this study are to:
 - Contact relevant statutory authorities and Thames Water to gather information on local drainage systems;
 - Consideration of the pre- and post-development drainage schemes and calculation of pre- and post- development runoff rates based on standard methodologies;
 - Provide design details for drainage system elements and appropriate connection locations;
 - Confirmation of future management and maintenance requirements for proposed SuDS elements,
 - Provide advice on the site layout and design that will ensure safe operation of the site in an extreme flood event, and
 - Provide advice and guidance on the management of surface water runoff at the site to ensure the risk of surface water flooding on the site and on nearby sites does not increase following development.

2 SITE DESCRIPTION

Location

2.1 The Development is located at 246-248 Kilburn High Road in the LBC shown along with the site boundary in Figure 1.

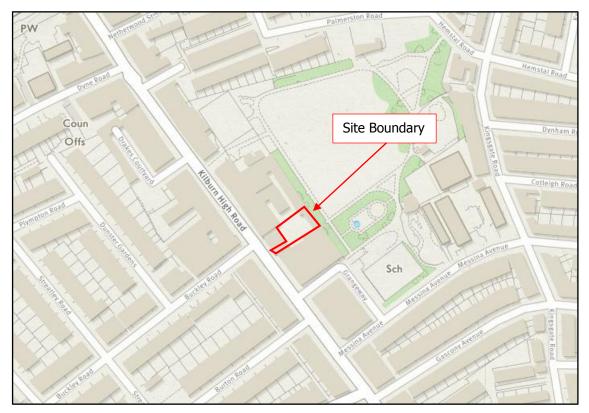


Figure 1¹ – Location of the Development

Existing Development

- 2.2 The existing development on the site contains an existing dwelling. See Appendix A for the existing site layout.
- 2.3 A previous planning application in 2015 (2014/2662/P) at 248 Kilburn High Road was to construct 14 dwellings at the site which gain approval but was never built out. This application is a variation of the proposals.
- 2.4 The site (0.08ha) is completing hard standing at present and there are no SuDS features on the site.

Existing Site Levels

- 2.5 A topographic survey has been undertaken by CPB surveys in October 2011 for the site. It shows levels to be mostly flat on the site. The site has a threshold level of 42.35m AOD before falling to 42.14m AOD at the rear of the site.
- 2.6 The topographic survey can be found in the Appendix.

¹ © Crown copyright and database rights 2017 Ordnance Survey Retrieved 24/05/2017

Existing Surface Water Infrastructure

- 2.7 There are a number of sewers running close to the site. Thames Water asset data shows there is a combined sewer within Kilburn High Road. This sewer is a brick lined egg shaped sewer with dimension 1219x838mm.
- 2.8 In addition, the combined 1600mm dimeter Ranelagh sewer (West Hampstead Branch) is found to be north east of the site.
- 2.9 There are no surface water sewers located within close proximity of the site. The Thames Water Asset Plan can be found in Appendix A.
- 2.10 All the sewers serving the site flow into the sewers within Kilburn High Road. An onsite drainage survey shows that the existing site drainage connects into the Thames Water sewers within Kilburn High Road. The onsite drainage survey also shows that surface water is connected to the foul pipes on the site. A layout of the existing onsite drainage is shown within the Appendix A.

Proposed Development

- 2.11 The proposals are to demolish all existing buildings and construct a residential development comprising 27 residential units within two buildings with facilities e.g. bike storage.
- 2.12 Four of the proposed dwellings will be located adjacent to Kilburn High Road in the building to be known as the Street Block. While the other dwellings will be located to the east of the site in the block to be known as the Courtyard Block.
- 2.13 The proposed impermeable area is 0.02ha.
- 2.14 There are no basements proposed for the development.
- 2.15 The proposed plans are provided in Appendix A.
- 2.16 The proposals are considered 'Major Development' since there are more than 10 dwellings in the scheme, meaning a suitable SuDS is required with the application submission.

3 PLANNING POLICY

National Policy

National Planning Policy Framework

- 3.1 The National Planning Policy Framework² (NPPF) was published in March 2012 and sets out the Governments' planning policies for England and how these are expected to be applied.
- 3.2 In accordance with the NPPF, as a minimum requirement, run-off rates and volumes should not increase from any site following development, to prevent an increase in flood risk elsewhere as a result of the development.

The Town and Country Planning Order 2015

- 3.3 According to The Town and Country Planning (Development Management Procedure) (England) Order 2015, the Lead Local Flood Authority is now the statutory consultee regarding surface water drainage of a major development. The Lead Local Flood Authority for Kilburn High Road is the London Borough of Camden (LBC).
- 3.4 The proposed development falls under the classification of 'Major Development', as it involves the provision of more than 10 dwellings.
- 3.5 The development is therefore required to undertake a SuDS Assessment.

National Guidance

- 3.6 The Non-statutory Technical Standards for Sustainable Drainage Systems³ was published in March 2015, to be used in conjunction with NPPF and Planning Practice Guidance⁴ (PPG).
- 3.7 The document sets out the requirements for the provision of sustainable drainage within development, from design to construction and maintenance. The specific technical criteria considered within this SUDS strategy are as follows:

Peak Flow Control

52 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event. (Not applicable as existing site developed)

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Volume Control

² Communities and Local Government, National Planning Policy Framework, 2012

³ Department for Environment, Food and Rural Affairs, Sustainable Drainage Systems - Non-statutory Technical Standards for Sustainable Drainage Systems, 2015

⁴ Communities and Local Government, Planning Practice Guidance, 2014

S4-Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event. (Not applicable as existing site developed)

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

3.8 The wording of the requirements are such that the post development runoff rates and volumes, over the lifetime of the development, need to be considered against the present day conditions.

London Plan

3.9 As the site is within The Greater London Authority, the London Plan⁵ 2011 (as revised in March 2015), is applied, which states within Policy 5.13 that:

"Development should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

- store rainwater for later use
- use infiltration techniques, such as porous surfaces in non-clay areas
- attenuate rainwater in ponds or open water features for gradual release
- attenuate rainwater by storing in tanks or sealed water features for gradual release
- discharge rainwater direct to a watercourse
- discharge rainwater to a surface water sewer/drain"

Local Planning Policy

3.10 The site is located within the LBC. This existing adopted policy related to SuDS is:

Camden Development Policies (2010)

DP23 Water

'The Council will require developments to reduce their water consumption, the pressure on the combined sewer network and the risk of flooding by:

• a) incorporating water efficient features and equipment and capturing, retaining and re-using surface water and grey water on-site;

⁵ Greater London Authority, The London Plan – Spatial development strategy for Greater London, July 2011 Revised March 2015

- b) limiting the amount and rate of run-off and waste water entering the combined storm water and sewer network through the methods outlined in part a) and other sustainable urban drainage methods to reduce the risk of flooding;
- c) reducing the pressure placed on the combined storm water and sewer network from foul water and surface water run-off and ensuring developments in the areas identified by the North London Strategic Flood Risk Assessment and shown on Map 2 as being at risk of surface water flooding are designed to cope with the potential flooding;'
- 3.11 LBC emerging Local Plan due to be adopted in June 2017 states:

`...developments to utilise Sustainable Drainage Systems (SuDS), to achieve greenfield run-off rates, unless demonstrated that this is not feasible. Surface water should be managed as close to its source as possible, in line with the drainage hierarchy in the London Plan. Where it is not possible to achieve greenfield run-off rates it should be as close to this as possible....'

'Major developments will be required to constrain runoff volumes for a 1 in 100 year, 6 hour rainfall event, where feasible.'

'A drainage report should be submitted with all major applications, basement developments and other vulnerable development in areas identified at risk of flooding. This should include:

- identification of flood risk;
- assessment of existing run-off rates;
- calculation of greenfield run-off rates;

• identification of measures, in line with the drainage hierarchy, to reduce runoff rates; and

• calculation of proposed run-off rates'

4 SURFACE WATER MANAGEMENT

Existing Site Runoff

- 4.1 The site boundary encloses an area of 0.08 ha and consists of previously developed land. The existing site layout has been assumed to be completed hard paved and there are no SuDS features on the site.
- 4.2 The existing peak storm runoff for the 1% (1 in 100 year) annual probability rainfall event on the site was estimated to be 35.9 l/s. The calculation was based on the Wallingford Procedure⁶ and the resulting runoff was calculated using the Modified Rational Method with a 5 minute critical storm (using M5-60 of 20mm and an 'R' value of 0.4) and a critical rainfall intensity of 169.1 mm/hr.
- 4.3 The rainfall runoff volume for the 1% (1 in 100 year) annual probability, 6 hour duration storm from the existing site is estimated to be 16.2 m³.
- 4.4 The calculation output is provided in Appendix B.

Existing Site Drainage

- 4.5 Thames Water asset plans indicate that there are only combined sewers within the area around the site.
- 4.6 Onsite drainage assessment confirms that the sewers connect to the Thames Water combined sewer within Kilburn High Road.

Greenfield Runoff Rate

- 4.7 The Greenfield runoff rates from the site were calculated using the UK SuDS online tool⁷ and the Institute of Hydrology (IoH) 124 methodology (Appendix B).
- 4.8 The 1-year, 30-year and 100-year return period events result in a discharge rate of 0.3 l/s, 0.8 l/s and 1.11 l/s respectively.

Ground Conditions

- 4.9 According to the British Geological Survey (BGS) online geology maps, shows the bedrock geology at the site to be impermeable London Clay. The BGS mapping holds are no records of superficial deposits at the site.
- 4.10 The BGS borehole log data shows a couple of boreholes close to the site. Both boreholes show the bedrock of London Clay is close to the surface. These borehole logs can be found within the Appendix.
- 4.11 The Environment Agency hold no groundwater or geology information for the site.
- 4.12 An onsite ground investigation has been undertaken at the site. This was undertaken site Analytical Services Ltd in November 2015. Two boreholes were completed on the site to a depth of 15m below ground level. The boreholes confirm the site comprised of made ground underlain by London Clay. No groundwater was noted in the boreholes.

⁶ HR Wallingford (200) The Wallingford Procedure for Europe – Best Practise Guide to urban drainage modelling (CD)

⁷ <u>http://www.uksuds.com/drainage-calculation-tools/surface-water-storage</u> retrieved 28/04/2017

4.13 The information found for the site and surrounding areas indicates that the site geology is impermeable and therefore infiltration SuDS would not be compatible with the site.

Climate Change

- 4.14 The current best practice for climate change allowance is the National Planning Policy Framework (NPPF), which defers to the Environment Agency website to specify climate change allowances. The Environment Agency recommends an increase of river flows and an increase in rainfall intensity depending on which river basin district the site lies in and the type of development.
- 4.15 The range of allowances is based on percentiles. A percentile is a measure used in statistics to describe the proportion of possible scenarios that fall below an allowance level. The 50th percentile is the point at which half of the possible scenarios for peak flows fall below it and half fall above it. The:
 - central allowance is based on the 50th percentile
 - higher central is based on the 70th percentile
 - upper end is based on the 90th percentile
- 4.16 The Environment Agency anticipated changes in extreme rainfall intensity in small and urban catchments are shown in Table 1 below.

Applies across all of England	Total potential change anticipated for the `2020s' (2015 to 2039)	Total potential change anticipated for the `2050s' (2040 to 2069)	Total potential change anticipated for the `2080s' (2070 to 2115)	
Upper End	10%	20%	40%	
Central	5%	10%	20%	

Table 1-Peak rainfall intensity allowance in small and urban catchments

- 4.17 The planned lifetime for the proposed development is assumed to be 100 years, in accordance with the PPG⁸ for Flood Risk and Coastal Change.
- 4.18 The proposed development is classified as 'More Vulnerable' within Flood Zone 1 the 'Upper End' allowance is recommended⁹. A 3% increase in peak rainfall intensities has been adopted as the allowance for climate change as this is the average of the 'Upper End' and 'Central' allowances.

Proposed Site Runoff

4.19 The proposed development at the site comprised of a building footprint of 0.40 ha with a green roof with a substrate of 60-100mm. In addition, the site is incorporating 0.003ha of permeable landscaping post development.

⁸http://planningguidance.communities.gov.uk/blog/guidance/flood-risk-and-coastal-change/the-exception-test/what-isconsidered-to-be-the-lifetime-of-development-in-terms-of-flood-risk-and-coastal-change/ 20140306 Retrieved 18/05/2017.

⁹ https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances Retrieved 24/05/2017

- 4.20 It is proposed to limit the peak storm runoff for the 1% (1 in 100) annual probability rainfall event plus 30% allowance for future climate change to 3.3 l/s. This is equivalent to three times the Greenfield 1% (1 in 100) annual probability peak runoff rate; a significant reduction on the existing runoff rate of 35.9 l/s, and is in line with the requirements of London Plan.
- 4.21 From our calculation we have concluded that with the proposed green roof discharging at a conservative value of 50% (runoff coefficient of 0.5) in addition to the proposed permeable landscaping the site would need to attenuate 12.5m³ of surface water to ensure surface water runoff was at 3.3l/s. This means the site will need to implement additional SuDS features.
- 4.22 The additional SuDS feature will be in the form of permeable paving across the hard standing areas (0.0145ha) of the development with a granular drainage blanket. With a porosity of 0.3 and 300mm depth of subbase, the drainage blanket would be able to attenuate 13m³.
- 4.23 For lower return period events, runoff rate will be controlled to proportional rates subject to detailed design of flow control device.
- 4.24 Analysis has been undertaken in order to calculate the required attenuation storage for the proposed SuDS strategy. Calculation sheets are provided in Appendix B and details of the SuDS are described in the following sub-sections.
- 4.25 The rainfall runoff volume for the 1% (1 in 100) annual probability + 20% allowance for climate change, 6 hour duration storm from the proposed development is estimated to be 18.7 m³.
- 4.26 The site does not lie in a Critical Drainage Area (CDA), known to suffer from surface water volume issues, nor is it served by a public sewer which experiences tide locking. As such it is considered that the restriction of the post-development runoff rates will be sufficient to mitigate any potentially negative impacts of this increase in runoff volume and therefore not adversely affect flood risk.

Sustainable Drainage Principles

- 4.27 The aim of SuDS is to emulate natural processes with the result that watercourses and storage areas receive the hydrological profiles under which they evolved, and that water quality in local ecosystems is protected or improved. The best practice guide states that a sustainable drainage system will¹⁰:
 - reduce the impact of additional urbanisation on the frequency and size of floods;
 - protect or enhance river and groundwater quality;
 - be sympathetic to the needs of the local environment and community; and
 - encourage natural groundwater recharge
- 4.28 The LBC Strategic Flood Risk Assessment¹¹ encourages that SuDS measures be specified to maximise the aforementioned multi-functional benefits by following the hierarchy in Figure 2.
- 4.29 The drainage design will instead aim to meet the objectives of the LBC by a number of SuDS elements to allow the attenuation of surface water runoff rates to three times the Greenfield runoff rate. This is in accordance with the requirements of the London Plan and a peak rate of 3.3l/s is the lowest reasonably practicable rate for ensuring self-cleansing velocities in the

¹⁰ CIRIA C523 – Sustainable Urban Drainage Systems – Best Practice Manual

¹¹ Mouchel, 2008, North London Strategic Flood Risk Assessment

system. The application of the SuDS hierarchy to the proposed development is summarised in Table 2.

Most sustainable	SUDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
	Green roofs	~	~	~
	Basins and ponds 1. Constructed wetlands	~	~	~
	 Balancing ponds Detention basins Retention ponds 			
	Filter strips and swales	~	~	~
	Infiltration devices 5. Soakaways	~	~	~
	 Infiltration trenches and basins 			
	Permeable surfaces and filter drains 7. Gravelled areas	~	~	
	8. Solid paving blocks			
Least	9. Porous paviors Tanked systems			
sustainable	10. Over-sized pipes/ tanks	~		
	11. Box storage systems			

Figure 2¹² – The multi-functional benefits of SuDS

- 4.30 The ground conditions at the site are not appropriate for infiltration SuDS. Space on site is also very limited, so attenuation using open water features is not practicable.
- 4.31 The site is small, compact and in an established urban area. It is proposed to discharge surface water to the Thames Water sewer. For all these reasons, the site does not lead itself to basins, ponds or swales.
- 4.32 The site is proposing flats roofs on both buildings with photovoltaics. This makes the roof ideal for green roofs. To ensure that structural redesign is not required for the building at substrate of 60-150mm.
- 4.33 In addition, external hard standing areas will be constructed using permeable/porous surfaces underlain by a gravel drainage blanket. Although ground conditions are not suitable for infiltration in the form of a formal soakaway, there are no known contamination issues which preclude infiltration into the ground. Therefore, the base and sides of the drainage blanket will not be lined with an impermeable liner. Surface water percolating through the

¹² Source: Environment Agency 2006

permeable/porous surface and drainage blanket will be allowed to infiltrate into the ground. This infiltration is not included in the calculations of surface water runoff rates and any infiltration is considered a bonus.

Table 2 – Application of SuDS hierarchy to proposed development.

Most Sustainable	SuDS Technique	Suitability	Justification
JUSLAIIIADIE	Living Roofs		
	1. Green Roofs	~	Sufficient space and flat roofs proposed.
	2. Brown Bio-Diverse Roofs	~	Sufficient space and flat roofs proposed.
	Basins and ponds		
	3. Constructed wetlands	×	Insufficient space
	4. Balancing ponds	×	Insufficient space
	5. Detention basins	×	Insufficient space
	6. Retention ponds	×	Insufficient space
	Filter strips and swales	×	Inappropriate ground conditions, insufficient space and discharge to the Thames Water sewer.
	Infiltration devices		
	7. Soakaways	×	Inappropriate ground conditions.
	8. Infiltration trenches & basins	×	
	Permeable surfaces and filter drains	Permeable surfaces	Permeable surfaces
	9. Gravelled areas	✓	Sufficient space
Least Sustainable	10. Solid block paving	~	Sufficient space
Sustamable	11. Porous paviors	~	Sufficient space
	Tanked Systems		
	12. Over-sized pipes/tanks	~	Sufficient space
	13. Box storage systems	~	Sufficient space

Proposed Surface Water Drainage System

- 4.34 The following design principles have been agreed for the strategic assessment:
 - External site levels assumed flat throughout the courtyard and access road;
 - Connection to Thames Water combined sewer in Kilburn High Road;
 - HydroBrake control (or similar) to restrict flow for the 1-year, 30-year and 100-year return period storm in accordance with London Plan policy;
 - All roof and hard standing drainage to discharge via silt traps to granular sub-base beneath access road and courtyard on the site, and
 - No requirement for oil interceptors by virtue of permeably paved construction beneath courtyard and access road.
- 4.35 With the following design principles and constraints, a strategic design has been completed which includes:
 - Green roofs with an extensive substrate of 60-150mm (e.g. Bauder extensive substrate) across both proposed building accounting for 0.04 ha;
 - Green roof overflow is to be connected to permeable paving and granular sub base to control surface water runoff from the roofs;
 - Porous asphalt or permeable block paving (e.g. Formpave Aquaflow) within the proposed courtyard (150mm build up) eliminating the need for road gullies and reducing maintenance requirements;
 - Lined granular sub-base (300mm depth and porosity of 0.3) beneath the courtyard (storage volume of 13 m³);
 - Lined granular sub-base linked design to collect and be discharged via hydrobrake to the Thames Water sewer in Kilburn Road; and
 - Permeable landscaping totals 0.003 ha and courtyard permeable paving to be 145m² minimum.
- 4.36 The proposed strategic SuDS strategy can be seen within the drawings in Appendix A.
- 4.37 The proposed SuDS system has a number of elements including green roof, permeable paving and a granular subbase. These elements help to clean the surface water and increase the water quality that is discharged from the site.
- 4.38 Green roofs are compatible with photovoltaics on flat roofs. The presence of vegetation beneath the photovoltaic has been shown to increase their efficiency. This is because the use of vegetation reduces ambient temperature around the photovoltaic. Photovoltaics work best in cooler temperatures and start to be inefficient in higher temperatures.
- 4.39 The proposed finished ground levels will be designed to ensure that runoff is contained on the site during the 1 in 100 year plus climate change rainfall event. This is so that surface water can be discharged via the controlled methods mentioned in the SuDS strategy without flowing onto adjoining land.
- 4.40 The surface water system will be designed in detail in accordance with local planning policy and will be designed such that the 1 in 100 year plus climate change allowance is fully retained on

the site and discharged at the controlled rate. Full drainage design will be undertaken at detail design stages.

- 4.41 The design principles set out above are subject to review at detailed design stage but serve to demonstrate a feasible drainage solution for the purpose of this assessment.
- 4.42 A checklist of LBC drainage strategy requirements is located within Appendix C.

SuDS Management and Maintenance

- 4.43 Management and maintenance of the drainage network will be the responsibility of the freeholder of the site. Management and maintenance agreements and plans will be arranged prior to completion of development.
- 4.44 Management and maintenance of the SuDS elements should be carried out in accordance with the supplier's guidance and specification at detailed design.

5 SUMMARY

- 5.1 The proposed development of 27 residential dwellings within two buildings with associated amenities and landscaping. The proposed development will be increasing building footprint on the site post development. The site will be implementing permeable areas as part of landscaping and amenity areas.
- 5.2 Although the site is increasing permeable areas at the site, surface water runoff rates postdevelopment and the development must include an uplift for climate change over the lifetime of the development. Therefore the development must incorporate SuDS to ensure that the proposed development does not increase surface water runoff rates across the lifetime of the building.
- 5.3 As the site is located within the jurisdiction of the London Plan, the development must ensure that runoff rates post development are no larger than three times the Greenfield runoff rate of the site. It was found that the 1% AEP Greenfield runoff rates was 1.1l/s and therefore three times the Greenfield runoff would be 3.3l/s.
- 5.4 The most appropriate SuDS option identified for the development with the required discharge rate and storage is for the proposed development to include green roofs with a sub-base of 60-150mm and permeable paving with granular subbase.
- 5.5 Management and maintenance of the proposed SuDS strategy outlined in this report should be carried out in accordance with the supplier's guidance and specification.
- 5.6 Infiltration devices are not viable at the site due to the local geology consisting of impermeable London Clay. London Clay is impermeable and therefore cannot percolate and infiltrate surface water effectively.
- 5.7 The SuDS strategy is considered compliant with the DEFRA SuDS guidance, issued in March 2015, the NPPF, London Plan, LBC policy and emerging policy.
- 5.8 A checklist of LBC drainage strategy requirements is included in the Appendix.

APPENDIX A - DRAWINGS

Drawing 1 – Existing site plan

Inside Out Architecture Drawing No. P1512/P/101

Existing site plan.

Drawing 2 – Topographic Survey

CPS Surveys Drawing No. 2083/01 dated October 2011.

Plan of the existing levels on the site.

Drawing 3 – Existing Site Drainage

Inside Out Architecture Drawing No. P1512/P/200

Plan of the existing site drainage on site.

Drawing 4 – Proposed ground floor plan

Inside Out Architecture Drawing No. P1512/P/200

Proposed ground floor plan showing levels.

Drawing 5 – Proposed site plan

Inside Out Architecture Drawing No. P1512/P/102

Proposed site plan showing the green roofs.

Drawing 6 – Proposed landscape plan

Inside Out Architecture Drawing No. P1512/P/210

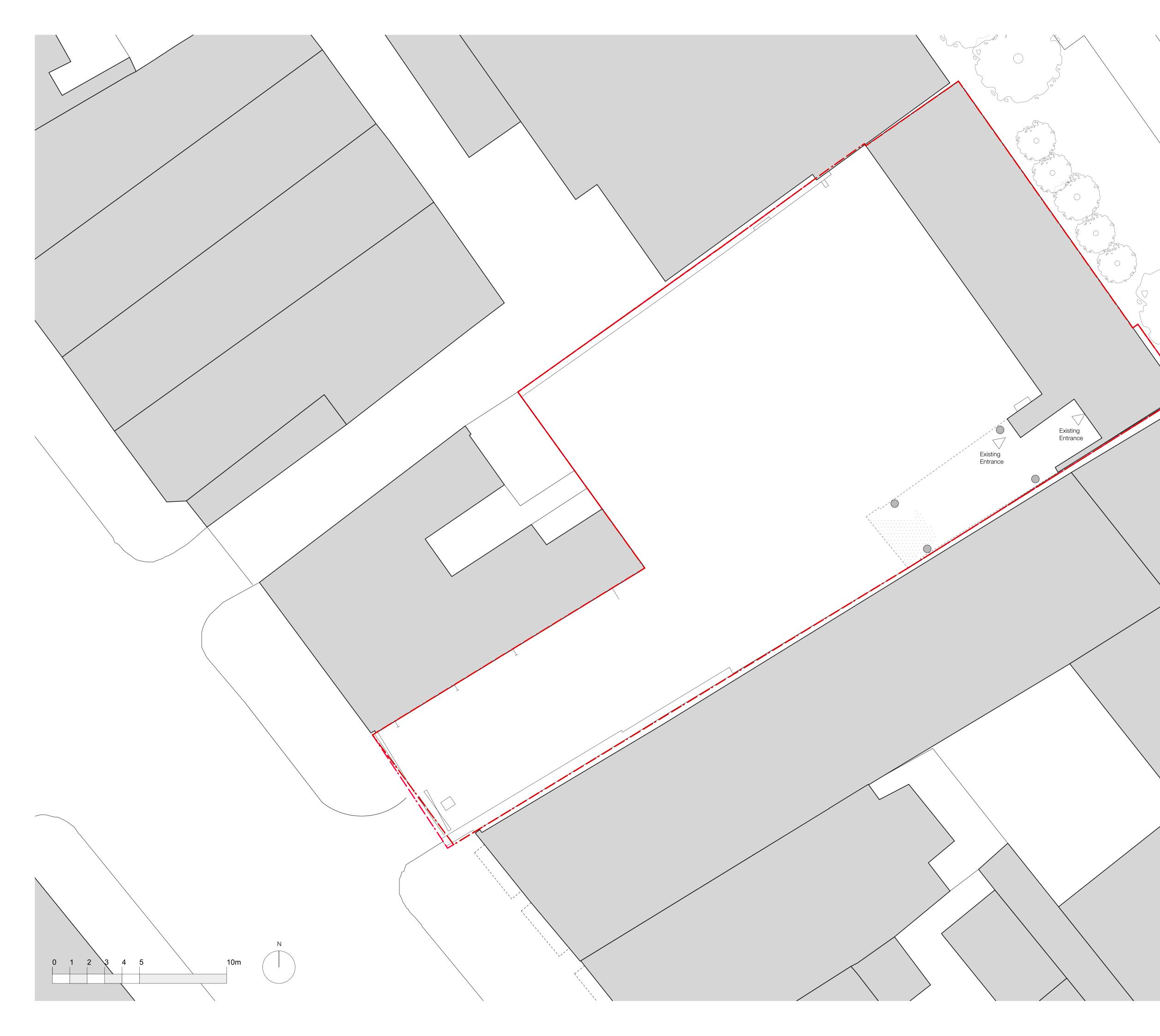
Proposed landscape plan showing surface treatments.

Drawing 7 – Site Investigation Borehole Records

Site Analytical Services Ltd borehole record for 248 Kilburn High Road.

Onsite ground investigation.

Drawing 8 – Thames Water Assets


Thames Water Asset Plans ALS/ALS Standard/2017 3576711

Plans of Thames Water assets around the site.

Drawing 9 – SuDS Strategy

Water Environment Ltd, Drawing No. 17025 SK01

Proposed layout of SuDS elements

<text>

<

 \bigcirc

0000

500

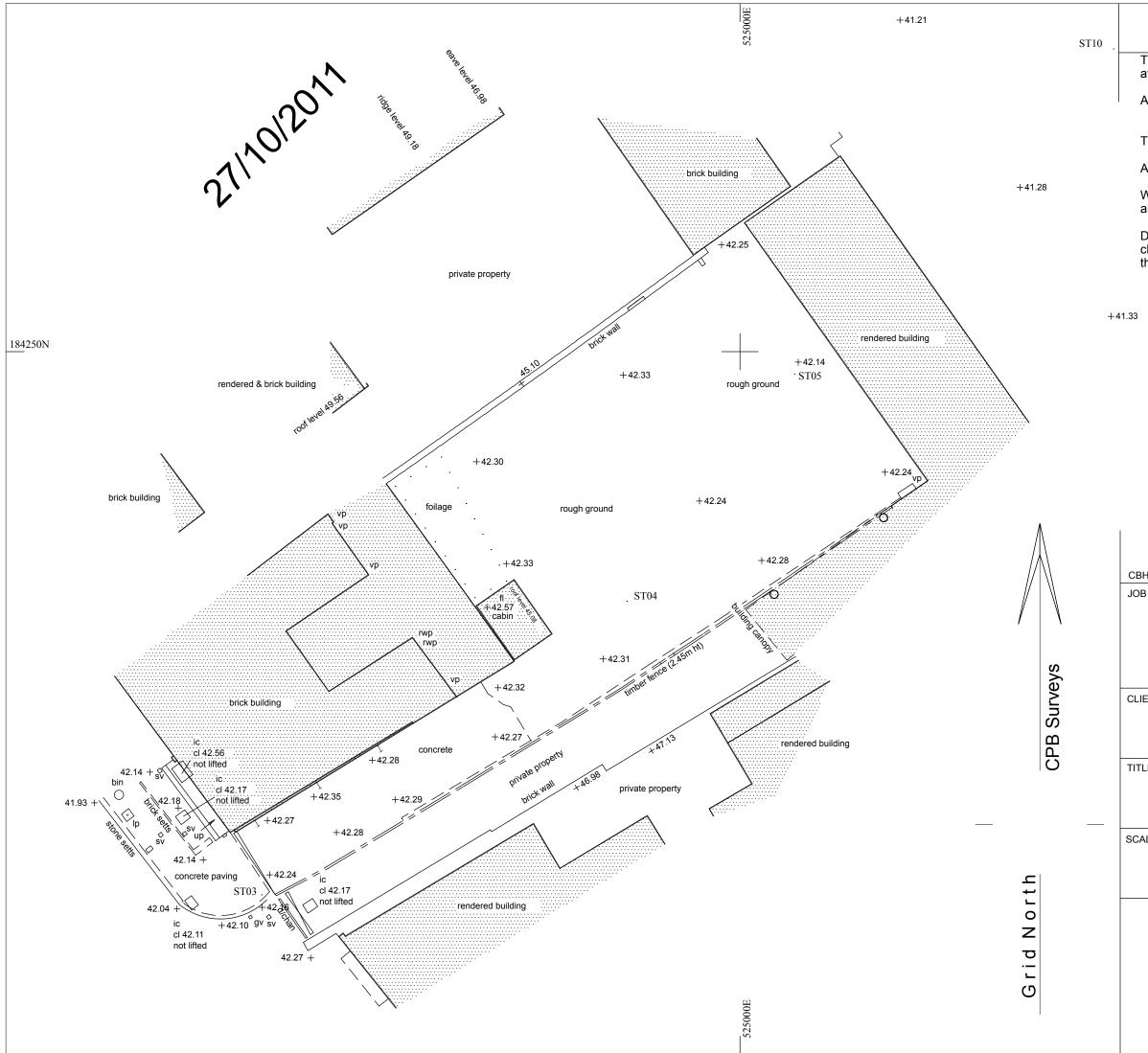
 \bigcirc

~ 8 "

 \bigcirc

6-8 Cole Street London SE1 4YH t 020 7367 6831 w www.io-a.com Project:

246-248 Kilburn High Road London NW6


^{Client:} Studio 246 Media Ltd

Drawing:

Planning Submission - DRAFT Existing Plan Drawing Number: R

P1512_F_101

Date: May 16 Scale: 1:100@A1

Notes

This plot has been prepared with a scaling accuracy for a plot at a scale of 1/200

All levels are in metres and related to GPS.

The co-ordinate grid is based on GPS values.

All tree heights and spreads are approximate.

We have tried to identify tree types, however if tree species are critical specialist advice should be gained.

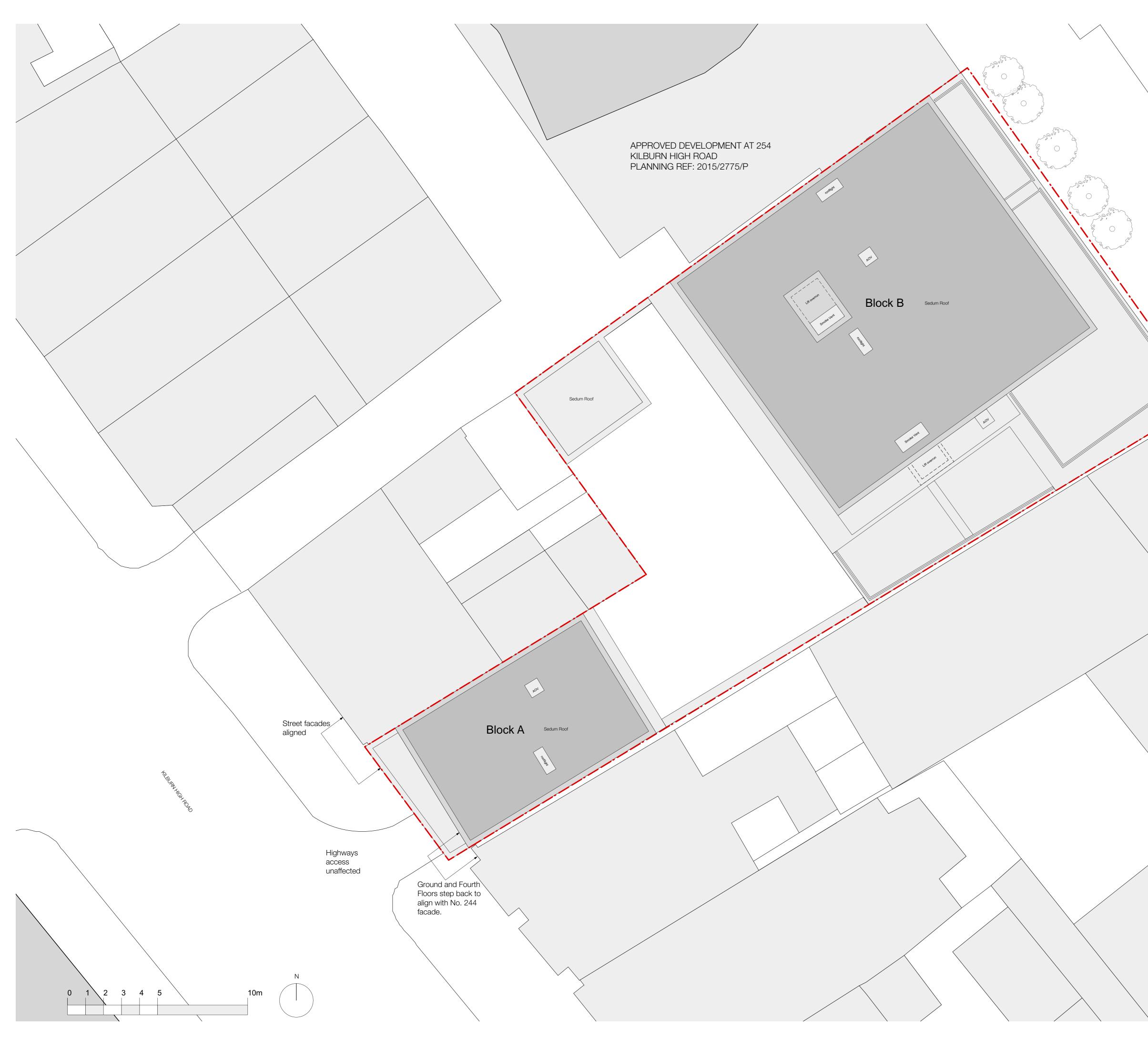
Drainage pipe sizes have been measured from the surface, chamber access has not been gained for safety reasons, therefore sizes should be regarded as approximate.

Station	Easting	Northing	Level	
ST01	Easting 524960.115	Northing 184210.215	42.222	
ST03	524973.589	184220.012	42.197	
ST04	524993.757	184236.212	42.315	
ST05	525003.019	184248.759	42.155	184250N
ST10	525020.625	184266.711	40.710	_

bed level
cover level
invert level
threshold level
unable to lift
water level
water filled chamber

CBH/SKH

©CPB Surveys Ltd.


A/CAD

246a/248 Kilburn High Road London NW6 2BS

CLIENT

Inside Out Architecture Ltd

TLE	DWG No
Land Survey	2083/01
CALE	DATE
1/200 @ A3	October 2011
	CPB Surveys
MEASU	TOPOGRAPHICAL AND RED BUILDING SURVEYORS
	: 4256, Leamington Spa, CV31 9BZ 1926 429565 FAX: 01926 429565
E-M	MAIL: info@cpbsurveys.com

\bigcirc DA \bigcirc

Do not scale off this drawing. All trade contractors to be responsible for taking and checking their own site dimensions. Any errors or omissions to be reported to InsideOut immediately, prior to work being carried out. All site dimensions shown are based upon the measured survey of the property carried out by independent surveyors. The accuracy of this information is not the responsibility of InsideOut. InsideOut also accept no responsibility for the accuracy of any structural and servicing information shown on this drawing. This information provided by the consulting structural engineers, consulting M&E engineers, client representatives, and/or specialist subcontractors respectively. Reference should always be made to engineers and subcontractors current drawings and specifications. This drawing and design is the copyright of InsideOut and is not to be used for any purpose without their consent.

Status: Planning Submission

Project:

248 Kilburn High Rd, London NW6

^{Client:} Studio 246 Media Ltd

Drawing: Proposed Site Plan

Drawing Number: P1512_P_102

^{Date:} May 2017

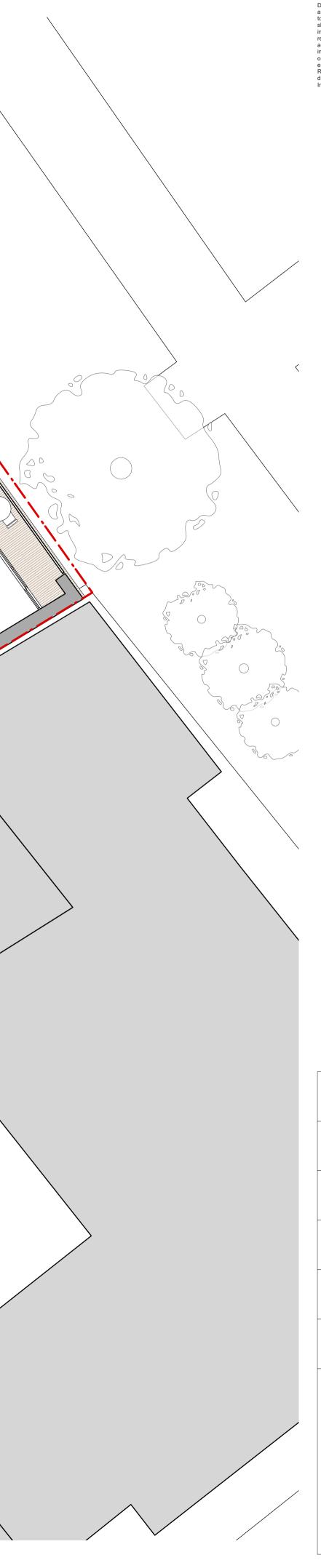
Scale: 1:100@A1

Rev:

-

+44 (0)20 7367 6831 Inside Out Architecture 6-8 Cole Street London SE1 4YH

io-a.com


APPROVED DEVELOPMENT AT 254 KILBURN HIGH ROAD PLANNING REF: 2015/2775/P

FFL 42.400

GRÈEN WALL CONSISTING OF VERTICAL TIMBER CLADDING FINS WITH CONCEALED PLANTER BOX

FLANK WINDOWS TO 244 KILBURN HIGH ROAD

FFL 42.400

€^{FFL} 42.400

Do not scale off this drawing. All trade contractors to be responsible for taking and checking their own site dimensions. Any errors or omissions to be reported to InsideOut immediately, prior to work being carried out. All site dimensions shown are based upon the measured survey of the property carried out by independent surveyors. The accuracy of this information is not the responsibility of InsideOut. InsideOut also accept no responsibility for the accuracy of any structural and servicing information shown on this drawing. This information provided by the consulting structural engineers, client representatives, and/or specialist subcontractors respectively. Reference should always be made to engineers and subcontractors current drawings and specifications. This drawing and design is the copyright of InsideOut and is not to be used for any purpose without their consent.

Status: Planning Submission

Project:

248 Kilburn High Rd, London NW6

Client: Studio 246 Media Ltd

Drawing:

Rev:

Scale:

1:100@A1

Inside(

-

Proposed Ground Floor Plan

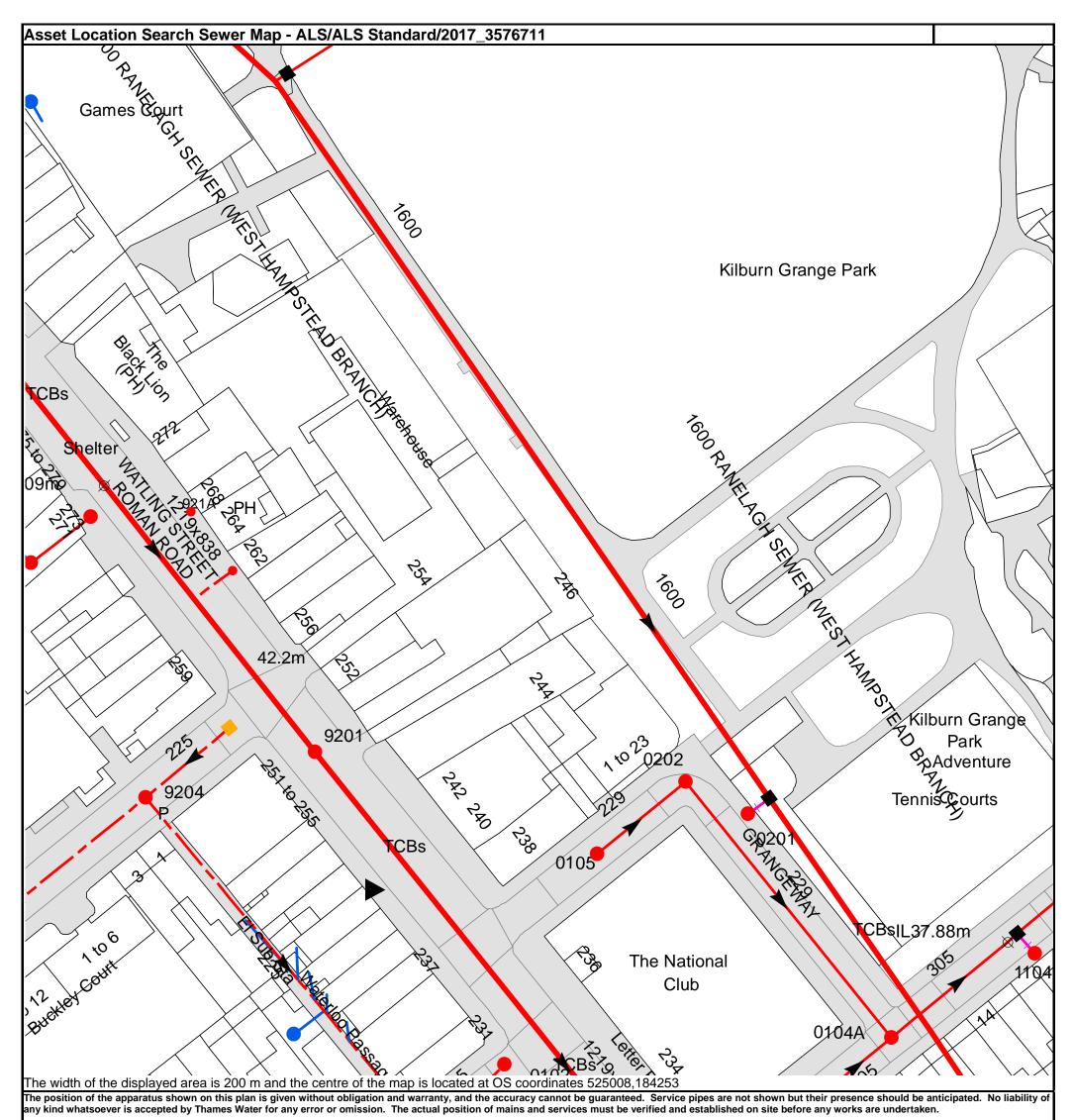
Drawing Number: P1512_P_200

Date:

May 2017

+44 (0)20 7367 6831 Inside Out Architecture 6-8 Cole Street London SE1 4YH

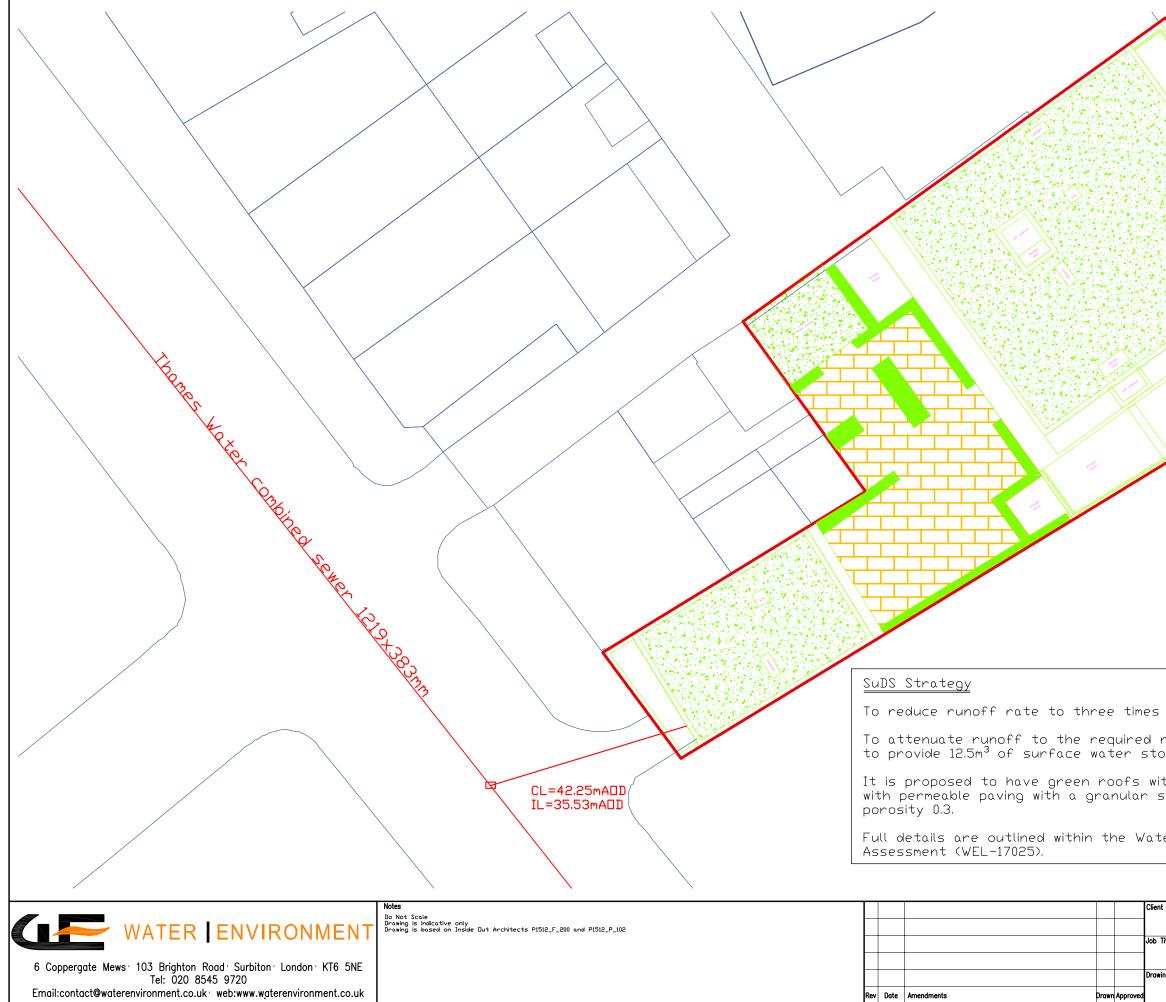
io-a.com


Dut

Boring Method ROTARY PERCUSSIVE				Ground Level (mOD) Client Mr CHRIS BEECH			Job Number 1524419	
		Location TQ249842		Dates 30/10/2015		Architect INSIDE OUT ARCHITECTURE		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.25 0.50 0.75 1.00-1.45 1.00	D1 D2 D3 SPT(C) N=3 D4 D5		DRY	1,0/1,0,1,1		(0.40) (0.30) (0.30) (0.30) (1.55) (1.55)	MADE GROUND: Concrete MADE GROUND: Soft clay with scattered peices of brick, ash and concrete MADE GROUND: Soft mottled grey black silty sandy clay.	
2.00-2.45 2.75 3.00-3.45 3.00	U1 D6 SPT N=17 D7		DRY	40 blows 3,3/4,4,4,5			Sift mottled brown, light grey, blue silty sandy fissured CLAY with occassional gypsum crystals	
3.75 4.00-4.45	D8 U2			65 blows				
4.75 5.00-5.45 5.00	D9 SPT N=23 D10		DRY	4,5/6,5,6,6				× · · · · · · · · · · · · · · · · · · ·
6.00 6.50-6.95	D11 U3			100 blows				
7.50 8.00-8.45 8.00	D12 SPT N=30 D13		DRY	5,7/8,7,7,8				
9.00 9.50-9.95	D14 U4			120 blows			Very stiff dark grey, blue silty sandy fissured CLAY, with	× · · · · · · · · · · · · · · · · · · ·
Remarks D= Disturbed	sample				<u> </u>	E	occassional gypsum crystals and claystone Scale (approx	Logged By
SPT= Standa	d sample andard Penetration 7 bed 100mm diamete ard Penetration Test rom 0.00 to 1.00mm						1:50 Figure	МН

Boring Meth ROTARY PE	lod	Casing	Diamete	Servic		Level (mOD)	248 KILBURN HIGH ROAD, LONDON, NW6 2BS Client Mr CHRIS BEECH	Job Num 1524	11 ber
		Locatio TC	n)249842		Dates 30	0/10/2015	Architect INSIDE OUT ARCHITECTURE	Shee 2/	t
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	D D
10.50 11.00-11.45 11.00	D15 SPT N=47 D16		DRY	9,10/15,10,10,12			Very stiff dark grey, blue silty sandy fissured CLAY, with occassional gypsum crystals and claystone		L - L - I - L - I - L - I - L - I - L
12.00 12.50-12.95	D17 U5			130 blows		(5.00)			<u>h' L + L' L + L' L + L' - L' - L' - L' - </u>
13.75	D18							× · · · · × · · · · × · · · · · × ·	<u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>
14.55-15.00	SPT N=58 D19		DRY	10,13/14,13,15,16			Complete at 15.00m		
Remarks)= Disturbed SPT (C)= Star J= Undisturbe	sample ndard Penetration Ti ed 100mm diameter	est (Cone)	 				Scale (appro)) Logge By	⊥ ≱d
SPT= Standar	rd Penetration Test	-					1:50 Figure	MH No. 524419.1	

Boring Meth ROTARY PE		Casing 128		r ed to 0.00m	Ground	Level (mOD)	Client Mr CHRIS BEECH	Job Numbe 152441
		Location TQ	n 249842		Dates 29	9/10/2015	Architect INSIDE OUT ARCHITECTURE	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.25 0.50	D1 D2					(0.90)	MADE GROUND: Grey granite chippings over brick rubble with a silty sand cement fill	
0.75 1.00	D3 D4					0.90 (0.40) (0.40)	MADE GROUND: Soft grey black silty sandy clay.	
1.75 2.00-2.45	D5 U1			30 blows			Firm mottled brown light grey, blue silty sandy fissured CLAY, with occasional gypsum crystals and claystones	× · · · · · · · · · · · · · · · · · · ·
2.75 3.00-3.45 3.00	D6 SPT N=17 D7		DRY	3,4/4,4,4,5				× × × × × × × × × × × × × × × × × × ×
3.75 4.00-4.45	D8 U2			65 blows				× × · · · · · · · · · · · · · · · · · ·
4.75 5.00-5.45 5.00	D9 SPT N=19 D10		DRY	5,6/6,6,1,6				× · · · · · · · · · · · · · · · · · · ·
6.00	D11							× · · · · · · · · · · · · · · · · · · ·
6.50-6.95	U3			90 blows				× · · · · · · · · · · · · · · · · · · ·
7.50	D12							× × ×
3.00-8.45 3.00	SPT N=30 D13		DRY	5,6/7,7,8,8				× × · · · · · · · · · · · · · · · · · ·
9.00	D14							× × · · · · · · · · · · · · · · · · · ·
9.50-9.95	U4			110 blows				× · · · · · · · · · · · · · · · · · · ·
Remarks D=Disturbed SPT (C)= Sta	sample andard Penetration T	est (Cone))		<u></u>	<u>F</u>	Scale (approx)	Logged By
U= Undisturb SPT= Standa	bed 100mm diameter ard Penetration Test rom 0.00m to 1.00m	rsample					1:50 Figure	MH No.


Site	Analy	/tic		Servic	es	Ltd.	Site 248 KILBURN HIGH ROAD, LONDON, NW6 2BS		Borehole Number BH2
Boring Meth ROTARY PE			Diamete 8mm cas	er sed to 0.00m	Ground	Level (mOE)) Client Mr CHRIS BEECH		Job Number 1524419
		Locatio T(on 2249842		Dates 29	9/10/2015	Architect INSIDE OUT ARCHITECTURE		Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description		Legend A
						10.00) Firm mottled brown light grey, blue silty sandy fissured CLAY, with occasional gypsum crystals and claystones	i s [× · · · · · · · · · · · · · · · · · · ·
10.50	D15					يل ن ا	Very stiff dark grey, blue silty sandy fissured CLAY, with occasional gypsum and claystones		× ×
11.00-11.45 11.00	SPT N=43 D16		DRY	8,9/10,10,11,12					× · · · · · · · · · · · · · · · · · · ·
12.00	D17								×
12.50-12.95	U5			130 blows		(4.80)			× × ×
13.50	D18							-	· · · · · · · · · · · · · · · · · · ·
14.55-15.00 14.55	SPT N=57 D19		DRY	9,10/13,13,15,16			Complete at 15.00m		× · · · · · · · · · · · · · · · · · · ·
						-1-			
				i					
Remarks							Sc	cale prox)	Logged By
								prox) :50	ву
								gure No 15244) .

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

n/a	n/a
	il/a
n/a	n/a
n/a	n/a
43.02	39.44
n/a	n/a
n/a	n/a
42.25	35.53
42.13	39.27
41.71	39.18
n/a	n/a
n/a	n/a
42.62	40.72
41.82	38.66
n/a	n/a
	n/a 43.02 n/a n/a 42.25 42.13 41.71 n/a 1/a 42.62 41.82

∧ \ \	
	\`
4	
<u>KEY</u>	
Green roof with substrate of 60-150mm	
Permeable paving with granular sub-base of 300mm and porosity 0.3	
Permeable Landscaping	
Thames Water Foul Sewer	
Greenfield Rate 3.3l/s.	
rate the development will need prage on the site.	
th a substrate of 60-150mm sub-base of 300mm with	
er Environment SuDS	
4	Drawing No
t Studio 246 Media Ltd	17025-SK01 Rev
Title 17025 246-248 Kilburn High Road	Scale _{DNS} Date 31/05/17
ing Title SuDS Strategy	Drawn by CB Checked by _{Cl}
	Approved by GL

APPENDIX B – CALCULATIONS

Calculations of rainfall runoff and volume

6 Coppergate Mews: 103 Brighton Road: Surbiton: London: KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

ANNEX A: CALCULATI	IONS		CO	/ER SHEET
lob No.	17025			
lob Name	Kilburn High S	Street		
Engineer	Claire Burroud	ihs	СВ	
Checked By	Guy Laister	•	GL	
Date	30-05-2017			
Site Characteristics				
Site Area (ha)	0.0804			
	Ove			arging from site
Existing Pervious Surfaces (ha)	0	0%	0	β 0%
Existing Impervious Surfaces (ha)	0.0804	100%	0.0804	α 100%
	otal: 0.0804	Total:	0.0804	
	Ove	rall	Disch	arging from site
Proposed Pervious Surfaces (ha)	0.0032	4%	0.0032	β 100%
Proposed Impervious Surfaces (ha)	0.0369	46%	0.0369	α 100%
Proposed Green Roof	0.0403	50%	0.02015	γ 50%
Тс	otal: 0.0804	Total:	0.06025	
Green Roof T	ype: Sedum-moss-	herhaceous n	lants	>6-10 cm Course Depth
Construction De			of up to	
Peak Rate of Runoff	-			·
Existing Site	BROWNFIELD			
Detailed Modelling Used?	No		ainage, Hydro	oCAD, Multiple Catchments
Runoff Calculation Method (Existing)	Wallingford/M			
Carion calculation realise (Existing)	wannigiora/m	oumed Ration	nal	Calculation Sheets Attached
Runoff Calculation Method (Proposed)	Wallingford/M	odified Ratior		Calculation Sheets Attached Calculation Sheets Attached
Runoff Calculation Method (Proposed) Allowance for Future Climate Change	Wallingford/M To 2115	odified Ratior 30%		
Runoff Calculation Method (Proposed)	Wallingford/M	odified Ratior 30%		
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy	Wallingford/M To 2115 Attenuated or 1yr	odified Ratior 30%	nal 100yr	Calculation Sheets Attached
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate	Wallingford/M To 2115 Attenuated or 1yr 12.0	odified Ratior 30% Site <u>30yr</u> 28.4	100yr 35.9	Calculation Sheets Attached
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site)	Wallingford/M To 2115 Attenuated or 1yr	odified Ratior 30% Site 30yr	100yr 35.9 1.1	Calculation Sheets Attached I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate For Greenfield Discharge Rate (full site) Detailed modelling output/FEH:	Wallingford/M To 2115 Attenuated or 1yr 12.0	odified Ratior 30% Site <u>30yr</u> 28.4	100yr 35.9 1.1	Calculation Sheets Attached I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate For Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3	odified Ratior 30% Site <u>30yr</u> 28.4 0.8	100yr 35.9 1.1 35.9	Calculation Sheets Attached I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate For Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output:	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3	odified Ratior 30% Site 30yr 28.4 0.8 28.4 17.2	100yr 35.9 1.1 35.9 21.8	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate for Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5	odified Ratior 30% Site 30yr 28.4 0.8 28.4 17.2 22.4	100yr 35.9 1.1 35.9 21.8 28.4	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate For Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0	odified Ratior 30% Site 30yr 28.4 0.8 28.4 17.2 22.4 28.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate for Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5	odified Ratior 30% Site 30yr 28.4 0.8 28.4 17.2 22.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: Including allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9	odified Ratior 30% Site 30yr 28.4 0.8 28.4 17.2 22.4 28.4 28.4 2.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 2.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate:	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 2.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 0.9 4.1	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 2.4	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 0.9 4.1	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 9.8	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required Volume of Runoff Additional Volume (above Greenfield) of Ru	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 0.9 4.1	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 9.8	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate oH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: imiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required Volume of Runoff Additional Volume (above Greenfield) of Ru Existing Site	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 0.9 4.1 10.2 0.9 0.9 4.1 10.2 0.9 0.9 4.1 10.2 0.3 10.2 0 0.9 10.2 0 0.0 0 0.9 10.2 0 0.0 0 0.9 10.2 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 9.8	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate oH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: imiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required Volume of Runoff Additional Volume (above Greenfield) of Ru Existing Site Proposed Site (unmitigated)	Wallingford/M To 2115 Attenuated or 1 yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 0.9 4.1 unoff Generated 16.2 20.3	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 9.8	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s
Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy Existing Discharge Rate ToH Greenfield Discharge Rate (full site) Detailed modelling output/FEH: Limiting Discharge Rate Post-Development Discharge Rate Detailed modelling output: ncluding allowance for climate change Proposed Discharge Rate Bespoke Limiting Discharge Rate Design discharge rate: Minimum Storage Required Volume of Runoff Additional Volume (above Greenfield) of Ru Existing Site Proposed Site (unmitigated) Rainwater retained on-site for re-use (where limited	Wallingford/M To 2115 Attenuated or 1yr 12.0 0.3 12.0 7.3 9.5 12.0 0.9 0.9 4.1 16.2 20.3 ed) 0.0 4.0	odified Ratior 30% Site 28.4 0.8 28.4 17.2 22.4 28.4 2.4 2.4 2.4 9.8 9.8	100yr 35.9 1.1 35.9 21.8 28.4 35.9 3.3 3.3 3.3	Calculation Sheets Attached I/s I/s I/s I/s I/s I/s I/s I/s

6 Coppergate Mews• 103 Brighton Road• Surbiton• London• KT6 5NE Tel: 020 8545 9720

IH124 : Greenfield Peak Runoff			n High Street
	Calculations By: Cl	3 Checked By: GL	
Catchment Area	AREA	ha	0.0804
	SAAR		638
Standard average annual rainfall 1941 - 1970		mm	0.47
Soil Index (from FSR or Wallingford Procedure WRAP maps) ³	SOIL		0.47
DIL is the SPR for the soil type, and for larger sites is a weighted su site, where: $L = \frac{0.1A_{SOIL1} + 0.3A_{SOIL2} + 0.37A_{SOIL3} + 0.47A_{SOIL4} + 0.53A_{SOIL5}}{AREA}$ smaller sites, use the SPR for the local soil type, as follows:	Im of the individual	soil classes for	
SOIL TYPE 1 2 3	4 5		
AREA 0 0 0 0.080		SOIL:	
SPR 0.1 0.3 0.37 0.4		0.47	
SFR 0.1 0.5 0.57 0.	47 0.55	0.47	
AR = 0.00108 . (0.01AREA) ^{0.89} . SAAR ^{1.17} . SOIL ^{2.17} he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted	QBAR/ha	l/s l/s/ha l/s	216.57 4.33 0.35
he site area is less than 50ha. Since the IoH124 methodology is no			4.33
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	QBAR/ha	l/s/ha	4.33
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	QBAR/ha	l/s/ha l/s	4.33 0.35
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	U QBAR/ha QBAR/ha QBAR/ha	l/s/ha l/s fig 4.2 Growth Factor (table 4.3)	4.33 0.35 6 Discharge rate
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	U QBAR/ha QBAR _{site} Hydrological Area Return Period (years) 1	I/s/ha I/s fig 4.2 Growth Factor (table 4.3) 0.85	4.33 0.35 6 Discharge rate I/s 0.30
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	U QBAR/ha QBAR _{site} Hydrological Area Return Period (years) 1 2	I/s/ha I/s fig 4.2 Growth Factor (table 4.3) 0.85 0.88	4.33 0.35 6 Discharge rate I/s 0.30 0.31
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	U QBAR/ha QBAR _{site} Hydrological Area Return Period (years) 1 2 10	l/s/ha l/s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62	4.33 0.35 6 Discharge rate <i>I/s</i> 0.30 0.31 0.56
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	A QBAR/ha QBAR _{site} Hydrological Area Return Period (years) 1 2 10 30	l/s/ha l/s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62 2.3	4.33 0.35 6 Discharge rate I/s 0.30 0.31 0.56 0.80
he site area is less than 50ha. Since the IoH124 methodology is no brated for sites less than 50ha in area, the calculation should be lertaken based on a 50ha site area and proportionately adjusted ed on the ratio of the site size to 50ha.	U QBAR/ha QBAR _{site} Hydrological Area Return Period (years) 1 2 10	l/s/ha l/s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62	4.33 0.35 6 Discharge rate <i>I/s</i> 0.30 0.31 0.56

6 Coppergate Mews- 103 Brighton Road- Surbiton- London- KT6 5NE Tel: 202 8545 9720 Email: contact@waterenvironment.co.uk- web: www.waterenvironment.co.uk

		Greenfield				
				Calculations By: CB	Checked By: GL	Date: 30-05
	Catchment Area	a		AREA	ha	0.0804
	Drained Area			AREA	ha	0.0804
	Standard average	-		SAAR	mm	638
	Soil Index (fron	n FSR or Wallin	gford Procedure WRAP maps)	soil		0.47
he site,	where:	ASOIL2 + 0.37/	or larger sites is a weighted so ASOIL3 + 0.47ASOIL5 + 0.53 AREA		soil classes for	
or smal	ler sites, use the	SPR for the loo	cal soil type, as follows:			
	SOIL TYPE	1	2 3	4 5		
	AREA	0				
		~	0 0 0.080	4 0	SOIL:	
	SPR	0.1	0.3 0.37 0.4		SOIL: 0.47	
The sit alibrate	= 0.00108 . (te area is less that d for sites less th	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted	7 0.53		216.57 4.33 0.35
The sit alibrate ndertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha	0.47 I/s	4.33
The sit alibrate	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{soha} QBAR/ha QBAR_{site}	0.47 /s /s/ha /s	4.33 0.35 6
The sit alibrate ndertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR_{site}	0.47 //s //s fig 4.2	4.33 0.35
The sit alibrate Indertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR _{site} ydrological Area Return Period (years) 1	0.47 I/s I/s/ha I/s fig 4.2 Growth Factor (table 4.3) 0.85	4.33 0.35 6 Discharge ra I/s 0.30
The sit alibrate Indertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR _{site} ydrological Area Return Period (years) 1 2	0.47 //s //s/ha //s fig 4.2 Growth Factor (table 4.3) 0.85 0.88	4.33 0.35 6 Discharge ra I/s 0.30 0.31
The sit alibrate Indertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR _{site} ydrological Area Return Period (years) 1 2 10	0.47 //s //s/ha //s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62	4.33 0.35 6 Discharge ra I/s 0.30 0.31 0.56
The sit alibrate Indertak	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR _{site} ydrological Area Return Period (years) 1 2 10 30	0.47 //s/ha //s/ha //s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62 2.3	4.33 0.35 6 Discharge ra I/s 0.30 0.31 0.56 0.80
The sit alibrate	= 0.00108 . (te area is less that d for sites less th ten based on a 5	0.1 0.01AREA) ^{0.} an 50ha. Since aan 50ha in are 0ha site area a	0.3 0.37 0.4 89. SAAR^{1.17}. SOIL^{2.17} the IoH124 methodology is no a, the calculation should be nd proportionately adjusted na.	7 0.53 t QBAR _{50ha} QBAR/ha QBAR _{site} ydrological Area Return Period (years) 1 2 10	0.47 //s //s/ha //s fig 4.2 Growth Factor (table 4.3) 0.85 0.88 1.62	4.33 0.35 6 Discharge ra I/s 0.30 0.31 0.56

Figures and table references from CIRIA C753 The SUDS Manual $\textcircled{}{}^{\odot}$ CIRIA 2015

6 Coppergate Mews: 103 Brighton Road: Surbiton: London: KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

ingford Procedure : Existing Peak Runoff	17025		High Street
Inglord Procedure : Existing Feak Runon	Calculations By: CB	Checked By: GL	Date: 30-05-1
Site Characteristics			
			0.0004
Site Area	AREA	ha	0.0804
Drained Catchment Area	AREA	ha	0.0804
Approximate Longest Drainage Path	L	m	10
Difference in Ground Levels	ΔH	m	0.1
Slope	Slope (S)		1: 100
Permeable Surfaces (Rational Method runoff coefficient = 0.4	1)	ha	0%
Impermeable Surfaces (Rational Method runoff coefficient =	0.95)	ha	100%
Area Weighted Rational Method Ru	unoff Coefficient		0.950
Site parameters from The Wallingford Procedure for Europe: drainage modelling, HR Wallingford, July 2000 (CD)	Best Practice Guide	to urban	
60minute, 5 year return period rainfall	M5-60	mm	20
Ratio of M5-60 to 2day, 5 year return period rainfall	r	-	0.40
Time of Concentration			
Recommended Tc Method: SCS: Sheet			
Tc Method Choice: SCS: Sheet	Flow		
Sheet Flow			
Surface Description	Concrete (Brok		
Slope		Shallow	
Roughness Coefficient (Manning's n)		0.035	
Flow Length, L	I	m 10	
M2-24hr	m	m 37.70	
Land Slope	m/ı	m 0.01000	
Тс	ł	nr 0.04	
Time of Concentration	T _c	min	2.4
Critical Storm Duration (minimum 5min)	T _{crit}	min	5.0
Critical Storm Rainfall and Runoff			
Z1 _{TC} 0.38 *Wallingford Procedure Figure 3.6			
M5-T _{crit} 7.7			Discharge Rat
C 0.950			Q = 2.78CiA
Return Period Z2*	Depth	Intensity	Discharge Rate
(years)	(mm)	(mm/hr)	l/s
1 0.6		56.7	12.03
2 0.7		72.7	15.43
10 1.2		110.6	23.48
30 1.4		133.6	28.36
50 1.6	0 12.2	146.8	31.18
100 1.8	4 14.1	169.1	35.91
	Procedure Table 3.2		

6 Coppergate Mewe: 103 Brighton Road: Surbiton: London: KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

Wallingford Pro	ocedure : Develope	ed Peak Runoff	17025		ligh Street
			Calculations By: CB	Checked By: GL	Date: 30-05-1
Site Charac	teristics				
Site Area			AREA	ha	0.0804
	chment Area		AREA	ha	0.06025
	e Longest Drainage Path		L	m	10
	n Ground Levels		ΔH	m	0.1
Slope			Slope (S)		1: 100
·					
	Surfaces (Rational Method			ha	5%
Impermeabl	e Surfaces (Rational Metho	od runoff coefficient =	0.95)	ha	61%
Green Roof	of gradient of up to	15°, and depth	of 60-100mm, C=	= 0.5 *	33%
	Area Weigh	ted Rational Method Ru	unoff Coefficient		0.77
*in line with 1	Table 10.1 of CIRIA C644				
	ters from The Wallingford odelling, HR Wallingford, Ju		Best Practice Guide	to urban	
60minute 5	year return period rainfall		M5-60	mm	20
	60 to 2day, 5 year return		r	-	0.40
					0.10
Time of Co	ncentration				
Recommend	led Tc Method:	SCS: Sheet	Flow		
Tc Method C	Choice:	SCS: Sheet	Flow		
		Sheet Flow			
Surface	Description		Pa	aving or Brick	
	Slope			Shallow	
Roughness	s Coefficient (Mannin	g's n)		0.018	
Flo	w Length, L		r	n 10	
	M2-24hr		mr	n 37.70	
	Land Slope		m/r	n 0.01000	
	Тс		h	r 0.02	
T (0			-		
Time of Con			T	min	1.4
Critical Storr	m Duration (minimum 5mi	n)	T _{crit}	min	5.0
Critical Sto	rm Rainfall and Runoff				
Z1 _{TC}	0.38 *Wallingford Pr	ocedure Figure 3.6			
M5-T _{crit}	7.7	-			Discharge Ra
C	0.770				Q = 2.78Ci
-					τ =./ σσπ
-	Return Period	Z2* Depth	Intensity	Discharge Rate	Future Rate
	(years)	(mm)	(mm/hr)	l/s	l/s
	1	0.62 4.7	56.7	7.31	9.51
-	2	0.79 6.1	72.7	9.38	12.19
	10	1.20 9.2	110.6	14.27	18.55
	30	1.45 11.1	133.6	17.23	22.41
	50	1.60 12.2	146.8	18.94	24.63
-	<u> </u>	1.84 14.1	169.1	21.82	28.36

*Wallingford Procedure Table 3.2

M 100 yoor	Event Storage Cal	culator	17025	Kilburn	High Stre	et
™ 100 year	Event Storage Cal	culator	Calculations By: CB	Checked By: GL	Date:	30-05-
Site Parameter	rs				_	
Drained Catchm	ont Aroa		AREA	ha	0.0	06025
	ngest Drainage Path		L	m	0.0	10
Difference in Gr			ΔΗ	m		0.1
Slope			Slope (S)		1: 1	-
·						
Permeable Surfa	aces (Rational Method runoff	coefficient = 0.4	ł)	ha		5%
	urfaces (Rational Method runo		-	ha		51%
Green Roof of g		and depth o		= 0.5 *		33%
	Area Weighted Rati				().77
*in line with the F	LL Guidelines on Planning, Execu	tion and Upkeep of	of Green Roof Sites, 20	002		
Site parameters	from The Wallingford Proced	ure for Europe	Bost Practico Guido	to urban		
	ing, HR Wallingford, July 200		Dest Flactice Guide			
-	r return period rainfall	- ()	M5-60	mm		20
	o 2day, 5 year return period	rainfall	r	-	().40
Time of Concent			T _c	min		1.4
$\begin{array}{l} C \\ Z2_{100} \\ M100-T_d \\ Intensity \\ Q_d \\ Q_{d, climate change} \\ Q_{limiting discharge} \end{array}$	0.77 1.97 *Wallingford Procedure 27.6 mm 82.9 mm/hr 10.7 l/s 13.9 l/s 3.3 l/s	Table 3.2				
5 5		Maximum st	torage required	m ³	-	12.5
44.0	Storage Requ	irements				
14.0						
12.0	***	+-+	-++-			
ີ 🔒 10.0	and					
li (i	, ***					
<u>لاہ</u> 8.0	****					
کم (0.0 –						
(m) 10.0 (m) 20.0 (m)						
2.0						
0.0	5 10 15 20 25	30 35 4	0 45 50 55	60		
0.0	J 10 1J 20 2J	Duration (mins)				

6 Cappergate Mews: 10.3 Rrightan Road: Surbitan: London: KT6 5NE Tel: 202 8545 9720 Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

RM 30 year Site Parameters Drained Catchme Approximate Lon Difference in Gro	S	j		Calculations By: CB	Checked By: GL	Date: 30-05
Drained Catchme Approximate Lon Difference in Gro						
Drained Catchme Approximate Lon Difference in Gro						
Approximate Lon Difference in Gro						
Difference in Gro	ent Area			AREA	ha	0.06025
	ngest Drain	age Path		L	m	10
	ound Levels	5		ΔH	m	0.1
Slope				Slope (S)		1: 100
Permeable Surfa	ces (Ratior	nal Method runof	f coefficient = 0	.4)	ha	5%
Impermeable Su	•				ha	61%
Green Roof of gr	-				= 0.5 *	33%
_	_			Runoff Coefficient		0.77
				o of Green Roof Sites, 200		
Site parameters f drainage modelli				e: Best Practice Guide t	o urban	
60minute, 5 year	r return pe	riod rainfall		M5-60	mm	20
Ratio of M5-60 to	o 2day, 5 y	ear return period	d rainfall	r	-	0.40
Time of Concent	ration			T _c	min	1.4
M30-T _d Intensity Q _d Q _{d,climate change} Q _{limiting discharge}	21.3 63.8 8.2 10.7 2.4	mm mm/hr I/s I/s I/s				
		, -	Maximur	n storage required	m ³	9.8
		Ctorogo Do]	
12.0		Storage Re	quirements			
10.0						
10.0		-+++- -++-	٠ <u>ـ</u>	·		
Storage Volume (m ³) 0.9 0.7 0.8		4r-4-				
m	م. جرم بر بر					
0.4 June 20	_					
-,						
2.0						
0.0						
0.0	5 10	15 20 2	5 30 35	40 45 50 55	60	
		Stor	m Duration (mins)		

6 Cappergate Mews: 10.3 Rrightan Road: Surbitan: London: KT6 5NE Tel: 202 8545 9720 Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

Site Parameters Drained Catchment Area AREA ha 0.060 Approximate Longest Drainage Path L m 10 Difference in Ground Levels ΔH m 0.1 Slope Slope (S) 1: 100 Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha 5% Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 61% Green Roof of gradient of up to 15°, and depth of 60-100mm , c= 0.5 * 33% Area Weighted Rational Method Runoff Coefficient 0.77 *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40	Site Parameters Drained Catchmen Approximate Long Difference in Grou Slope	s nt Area			Calculations By: CB	Checked By: GL	Date: 30-05
Drained Catchment Area AREA ha 0.060 Approximate Longest Drainage Path L m 10.10 Difference in Ground Levels AH m 0.1. Slope Slorfaces (Rational Method runoff coefficient = 0.4) ha 5% Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 6119 Green Roof of gradient of up to 15°, and depth of 60-100mm, c= 0.5 * 33% <u>Area Weighted Rational Method Runoff Coefficient 0.77</u> *in line with the FL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.44 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T ₄ 20.0 min Z1 _{TD} 0.70 *Wallingford Procedure Figure 3.6 M5-7 ₄ 14.0 mm C 0.77 Z2 ₁ 0.062 *Wallingford Procedure Figure 3.6 M5-7 ₄ 14.0 mm C 0.77 Z2 ₁ 0.062 *Wallingford Procedure Figure 3.6 M5-7 ₄ 3.3 Vs Q _{5.0mae} change 4.4 V/s Q _{1uning} acteage 0.9 Vs Maximum storage required m ³ 4.1	Drained Catchme Approximate Long Difference in Grou Slope	nt Area					
Drained Catchment Area AREA ha 0.060 Approximate Longest Drainage Path L m 10 Difference in Ground Levels AH m 0.1 Slope Slope (S) 1: 100 Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha 5% Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 6119 Green Roof of gradient <u>0 of up to 15°, and depth of 60-100mm , C 0.5 * 33%</u> <u>Area Weighted Rational Method Runoff Coefficient 0.77</u> *in line with the FL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.44 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min C 0.77 Z2 ₁ 0.62 * Wallingford Procedure Figure 3.6 M5-T _a 14.0 mm C 0.77 Z2 ₁ 0.62 * Wallingford Procedure Figure 3.6 M5-T _a 14.0 mm C 0.77 Z2 ₁ 0.62 * Wallingford Procedure Table 3.2 M1-T _a 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 U'S Quadmate change 4.4 U'S Quinting dicharge 0.9 U'S <u>Maximum storage required m³ 4.1</u>	Drained Catchme Approximate Long Difference in Grou Slope	nt Area					
Approximate Longest Drainage Path L m 10 Difference in Ground Levels ΔH m 0.1 Slope Slope (S) I: 100 Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha 5% Inpermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 61/9 Green Roof of gradient of up to 15°, and depth of 60-100mm, c= 0.5 * 33% <u>Area Weighted Rational Method Runoff Coefficient</u> 0.77 *in line with the FL Guidelines on Planning, Execution and Upkerp of Green Roof Sites, 2002 Site parameters from The Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min 21.0 0.77 Z2.1 0.62 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 Z2.1 0.62 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 1/5 Q _{dumberg} dicetarge 0.9 1/5 <u>Maximum storage required m³</u> 4.1	Approximate Long Difference in Grou Slope						_
Difference in Ground Levels AH m 0.1 Slope $Slope(S)$ 1: 100 Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha 5% Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 61% Green Roof of gradient <u>of up to 15°</u> , and depth of 60-100mm, c= 0.5 * 33% <u>Area Weighted Rational Method Runoff Coefficient</u> 0.77 *in line with the FL Guidelines on Planning. Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min 21 _{TD} 0.70 *Wallingford Procedure Figure 3.6 MS-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Figure 3.6 MS-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Figure 3.6 MS-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Figure 3.6 MS-T _d 4.4 1/5 Quinting dicharge 0.9 1/5 <u>Maximum storage required m³ 4.1</u> $f_{4.00}$ 0.9 1/5 <u>Maximum storage required m³ 4.1</u>	Difference in Grou Slope	gest Drair			AREA	ha	0.06025
Slope Slope (5) 1: 100 Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha 5% Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 61% Green Roof of gradient Rational Method Runoff Coefficient 0.77 **n line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 200 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.44 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 0.70 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _a dimite change 0.9 i/s Quanting duckange 0.9 i/s Maximum storage required m ³ 4.1	Slope		nage Path		L	m	10
Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha mpermeable Surfaces (Rational Method runoff coefficient = 0.95) ha Green Roof of gradient <u>of up to 15°, and depth of 60-100mm, c= 0.5 * 33%</u> <u>Area Weighted Rational Method Runoff Coefficient 0.77</u> *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.44 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min Z1 _m 0.70 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 1/5 Q _{4,00mm} 4.4 1/5 Q _{meting decharge} 0.9 1/5 <u>Maximum storage required m³ 4.1</u>	-	und Level	S		ΔH	m	0.1
Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 619 Green Roof of gradient $\frac{1}{10000000000000000000000000000000000$	Permeable Surfac				Slope (S)		1: 100
Impermeable Surfaces (Rational Method runoff coefficient = 0.95) ha 619 Green Roof of gradient $\frac{\sigma_{12}}{P_{12}}$ to 15°, and depth of 60-100mm, c= 0.5 * 339 339 Area Weighted Rational Method Runoff Coefficient 0.77 *In line with the FL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runofff Storage Volume (modified rational method) T 7 0.40 To 0.70 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Rot of X3.3 V/S V/S V Maximum storage required m ³ 4.1 0.40 mm VS Maximum storage required m ³ 4.1 0.500 0.9 V/S Maximum storage required m ³ 4.1 0.500 0.9		es (Ratio	nal Method runoff o	efficient = 0.4		ha	5%
Green Roof of gradient of up to 15°, and depth of 60:100mm, c= 0.5 * 33% Area Weighted Rational Method Runoff Coefficient 0.77 *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 60minute, 5 year return period rainfall M5-60 mm 20 7d atio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Maximum Storm Runoff Storage Volume (modified rational method) T - 0.40 Trag 0.70 *Wallingford Procedure Figure 3.6 - - 0.40 Maximum Storm Runoff Storage Volume (modified rational method) - - - 0.40 Trag 0.70 *Wallingford Procedure Figure 3.6 - - - - M1-T_d 8.7 mm -		•			95)		61%
Area Weighted Rational Method Runoff Coefficient 0.77 *in line with the FLL Guidelines on Planning, Execution and Upkeep of Green Roof Sites, 2002 Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 60minute, 5 year return period rainfall M5-60 mm 20 60minute, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _c min 1.4 Maximum Storm Runoff Storage Volume Figure 3.6 M5-T _d 1.4.0 mm C 0.77 Z1 ₁₀ 0.62 *Wallingford Procedure Figure 3.6 mm Q Q 3.3 ////////////////////////////////////		-			-		33%
Site parameters from The Wallingford Procedure for Europe: Best Practice Guide to urban drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min C 0.77 Z1 ₁ 0.70 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 <i>V</i> /s Q _{d,climate change} 4.4 <i>V</i> /s Q _{limiting} discharge 0.9 <i>V</i> /s Maximum storage required m ³ 4.1 $\int \frac{5.000}{4.500} \int 5.000$	j						0.77
drainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall M5-60 mm 20 Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min Z1 _{r0} 0.70 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 1/s Q _{d,climate change} 4.4 1/s Q _{limiting discharge} 0.9 1/s Maximum storage required m ³ 4.1 $\int \frac{1}{\sqrt{9}} \frac{1}{\sqrt{9}$							
Ratio of M5-60 to 2day, 5 year return period rainfall r - 0.40 Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T _d 20.0 min Z1 _{TD} 0.70 *Wallingford Procedure Figure 3.6 M5-T _d 14.0 mm C 0.77 Z2 ₁ 0.62 *Wallingford Procedure Table 3.2 M1-T _d 8.7 mm Intensity 26.0 mm/hr Q _d 3.3 1/s Q _{d,climate change} 4.4 1/s Q _{limiting discharge} 0.9 1/s Maximum storage required m ³ 4.1 $\int \frac{1}{\sqrt{9}} \int $			-		est Practice Guide to) urban	
Time of Concentration T _c min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T 1.4 T _d 20.0 min 1.4 Maximum Storm Runoff Storage Volume (modified rational method) T 1.4 T _d 20.0 min 1.4 Storage Requirements 0.70 *Wallingford Procedure Table 3.2 1.4 M1-T _d 8.7 mm Intensity 26.0 mm/hr Qd 3.3 1/s Qddefinition of the storage required m ³ 4.1 Maximum storage required m ³ 4.1 Maximum storage required m ³ 4.1 Storage Requirements Maximum storage required m ³ 4.1 Maximum storage required m ³ 4.1 <	60minute, 5 year	return pe	eriod rainfall		M5-60	mm	20
Maximum Storm Runoff Storage Volume (modified rational method) T_d 20.0 min $Z1_{TD}$ 0.70 *Wallingford Procedure Figure 3.6 MS-T_d 14.0 mm C 0.77 22.1 0.62 M1-T_d 8.7 mm Intensity 26.0 mm/hr Qa 3.3 1/s Qd,climate change 0.9 1/s Maximum storage required m ³ 4.1 5.000^{4} 5.000 4.4 1/s Quinting discharge 0.9 1/s 4.1		-		ainfall	r	-	0.40
Maximum Storm Runoff Storage Volume (modified rational method) T_d 20.0 min $Z1_{TD}$ 0.70 *Wallingford Procedure Figure 3.6 MS-T_d 14.0 mm C 0.77 22.1 0.62 M1-T_d 8.7 mm Intensity 26.0 mm/hr Qa 3.3 1/s Qd,climate change 4.4 1/s Quinting discharge 0.9 1/s Maximum storage required m ³ Maximum storage required m ³ 4.1 Maximum storage required m ³ 4.1					T _c	min	1.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Maximum storage required m ³ 4.1 Maximum storage required m ³ 4.1	M1-T _d Intensity Q _d Qd,climate change	8.7 26.0 3.3 4.4	mm mm/hr I/s I/s				
Storage Requirements 5.000 4.000 4.000 3.500 90 0.500 0.500 0.000 0 5 10 15 20 25 30 35 40 45 50 55 60	Qlimiting discharge	0.9	1/5	Maximum ct	forage required		4 1
5.000 4.500 4.000 5.000 4.000 5.000 9 3.500 9 3.000 1.500 1.500 0.500 0.500 0.500 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.000 0.500 0.000 0.500 0.000 0.000 0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000							
4.500 4.000 4.000 5.500 9 3.500 9 3.500 9 3.500 9 3.500 9 3.000 2.500 1.500 1.000 0.500 0.500 0.000 0 5 10 15 20 25 30 35 40 45 50 55 60	E 000		Storage Requi	irements			
4.000 (E) 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.50000 3.50000 3.5000000000000000000000000000000000000							
3.500 3.500 3.000 3.000 2.500 4.4444 0 5 1.000 0 0 5 10 15 0 5 10 15 20 25 30 35 40 45 50 55 60	4 000						
	2 500		the strength				
	9 2 000		· · · · ·				
		يتجع بعجبهم					
	5 2.000						
	0 1.500						
0.000 0 5 10 15 20 25 30 35 40 45 50 55 60	1.000						
0 5 10 15 20 25 30 35 40 45 50 55 60							
0 5 10 15 20 25 30 35 40 45 50 55 60 Storm Duration (mins)		Г 10	15 20 25	20 25 11			
	0	5 10	15 20 25 Storm I	30 35 40 Duration (mins)	y 45 50 55	60	
				(J	

6 Coppergate Mews• 103 Brighton Road• Surbiton• London• KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk• web: www.waterenvironment.co.uk

SUDS Manual Volume Calculation (Existing)	17025		ligh Street
	Calculations By: CB	Checked By: GL	Date: 30-05-17
Site Characteristics			
Site Area	AREA	ha	0.0804
Permeable Surfaces (Existing Case) Proportion discharging to sewer network or local watercourses *zero if all runoff collected from unpaved surfaces is retained on si	β ite or discharged to g	ground	0% 0%
Impermeable Surfaces (Existing Case) Proportion discharging to sewer network or local watercourses *zero if all runoff from paved surfaces remains on site or is collect	PIMP α ted and discharged t	o ground	100% 100%
Soil Index (from FSR or Wallingford Procedure WRAP maps)*	SOIL		0.47
*SOIL is the SPR for the soil type, and for larger sites is a weighted sum of the site, where: SOIL = $0.1A_{SOIL1} + 0.3A_{SOIL2} + 0.37A_{SOIL3} + 0.47A_{SOIL4} + 0.53A_{SOIL5}$ AREA For smaller sites, use the SPR for the local soil type, as follows: SOIL TYPE 1 2 3 4 AREA 0 0 0 0 0.0804 SPR 0.1 0.3 0.37 0.47 Site parameters from The Wallingford Procedure for Europe: Best P modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall Volume Calculation for the 100 year return period 6hr storm	Fractice Guide to urb M5-60 r	SOIL: 0.47	20 0.40
Z1 _{6hr} 1.55 *Wallingford Procedure FiguM5-6hr31.1Z2 _{100yr} 1.97 *Wallingford Procedure TableM100-6hr61.2			
Additional volume (m ³) of existing site runoff over Greenfield runo $Vol =$ "M100-6hr". <i>AREA</i> .10[<i>PIMP</i> /100 (0.8 α)+(1- <i>PIMP</i> /100)			
* EQ24.10 CIRIA C753 The SUDS Manual © CIRIA 2015 Additional Volume of Runoff (above Gree	enfield state):	m³	16.2

6 Cappergate Mews 103 Brighton Road Surbiton London KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk web: www.waterenvironment.co.uk

	nsed) –	17025		High Street
SUDS Manual Volume Calculation (Propo	Cal	culations By: CB	Checked By: GL	Date: 30-05
te Characteristics				
Site Area		AREA	ha	0.0804
Permeable Surfaces (Proposed Case)				4%
Proportion discharging to sewer network or local water	courses	β		100%
*zero if all runoff collected from unpaved surfaces is re		or discharged to	o ground	
Impermeable Surfaces (Proposed Case)		PIMP		96%
Proportion discharging to sewer network or local water	courses	α		100%
*zero if all runoff from paved surfaces remains on site	or is collected	and discharged	l to ground	
Soil Index (from FSR or Wallingford Procedure WRAP n	naps)*	SOIL		0.47
SOIL is the SPR for the soil type, and for larger sites is a weight e site, where: DIL = $\frac{0.1A_{SOIL1} + 0.3A_{SOIL2} + 0.37A_{SOIL3} + 0.47A_{SOIL4} + 0.53A_{SOIL4}}{AREA}$		e individual soil	classes for	
AREA or smaller sites, use the SPR for the local soil type, as follows:				
SOIL TYPE 1 2 3	4	5		
AREA 0 0 0		5		
	0.0804	0	SOIL:	
SPR 0.1 0.3 0.37	0.0804	0 0.53	SOIL: 0.47	
SPR 0.1 0.3 0.37 Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall olume Calculation for the 100 year return period 6hr stor Z1 _{6hr} 1.55 *Wallingford Procedure for Eudral M5-6hr 31.1 Z2 _{100yr} 1.97 *Wallingford Procedure for Eudral	0.47 urope: Best Pra	0.53 ctice Guide to u M5-60 r	0.47	20 0.40
SPR 0.1 0.3 0.37 Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall 8400 (CD) Olume Calculation for the 100 year return period 6hr stor Z1 _{6hr} 1.55 *Wallingford Procedure for Eugen M5-6hr 31.1 Z2 _{100yr} 1.97 *Wallingford Procedure for Eugen M100-6hr 61.2	0.47 urope: Best Pra	0.53 ctice Guide to u M5-60 r	0.47 Irban	-
SPR 0.1 0.3 0.37 Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall 8400 (CD) Olume Calculation for the 100 year return period 6hr stor Z1 _{6hr} 1.55 *Wallingford Procedure for Eugen M5-6hr 31.1 Z2 _{100yr} 1.97 *Wallingford Procedure for Eugen M100-6hr 61.2 With Climate Change 79.6	0.47 urope: Best Pra orm ocedure Figure 3	0.53 ctice Guide to u M5-60 r	0.47 Irban	-
SPR 0.1 0.3 0.37 Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall 8000000000000000000000000000000000000	0.47 urope: Best Pra orm ocedure Figure 3 ocedure Table 3 nfield runoff:	0.53 ctice Guide to u M5-60 r	0.47 Irban	-
SPR0.10.30.37Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD)60minute, 5 year return period rainfallRatio of M5-60 to 2day, 5 year return period rainfallOlume Calculation for the 100 year return period 6hr storZ1 _{6hr} 1.55 *Wallingford ProcM5-6hr31.1Z2 _{100yr} 1.97 *Wallingford ProcM100-6hr61.2With Climate Change79.630%dditional volume (m³) of development runoff over Gree $ol = M100-6hr. AREA. 10 [\frac{PIMP}{100}(0.8\alpha) + (1 - \frac{PIN}{100})$	0.47 urope: Best Pra orm ocedure Figure 3 ocedure Table 3 nfield runoff:	0.53 ctice Guide to u M5-60 r	0.47 Irban	-
SPR 0.1 0.3 0.37 Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD) 60minute, 5 year return period rainfall Ratio of M5-60 to 2day, 5 year return period rainfall 8000000000000000000000000000000000000	0.47 urope: Best Pra orm ocedure Figure 3 ocedure Table 3 nfield runoff:	0.53 ctice Guide to u M5-60 r	0.47 Irban	-
SPR0.10.30.37Site parameters from The Wallingford Procedure for Eudrainage modelling, HR Wallingford, July 2000 (CD)60minute, 5 year return period rainfallRatio of M5-60 to 2day, 5 year return period rainfallOlume Calculation for the 100 year return period 6hr storZ1 _{6hr} 1.55 *Wallingford ProcM5-6hr31.1Z2 _{100yr} 1.97 *Wallingford ProcM100-6hr61.2With Climate Change79.630%dditional volume (m³) of development runoff over Gree $ol = M100-6hr. AREA. 10 [\frac{PIMP}{100}(0.8\alpha) + (1 - \frac{PIN}{100})$	0.47 0.47 orope: Best Pra ocedure Figure 3 ocedure Table 3.3 nfield runoff: $\frac{MP}{00}$ SOIL . β	0.53 ctice Guide to u M5-60 r .6 2 - SOIL	0.47 Irban	-

6 Coppergate Mews• 103 Brighton Road• Surbiton• London• KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk• web: www.waterenvironment.co.uk

UDS Manual Vol	ume Calci	ulation (D)evelo	ped) H	17025		Kilburn I	T	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Calculations By:	CB Ch	ecked By: GL	Date: 30	0-05-
ite Characteristics									
								_	
Catchment Area					AREA		ha	0.080)4
Permeable Surfaces	· ·		mlonving	cito vio r	PGF		ha	4% 0.003	
Areas discharging to	o soakaway or	prevented from	mieaving	site via r	β		ha	92%	
					Ч			52 /	U
Impermeable Surface	ces (Proposed (Case)			PIMP			46%	, o
Areas discharging to	o soakaway or	prevented from	m leaving	ı site via r	nitigation		ha	0.014	15
					α			97%	ó
						Dauth		F00/	,
Green Roof Area (Pi							of Green Roof	50% 0.5	
Annual coefficient o *Inline with Table 3	-	nnina Evocut	tion and I	Inkoon of	Ψa Green-roof sit		•6-10 cm	0.5	
	, or the r LL Pld	unning, LXECUL	uun anu L	φητέτερ ΟΙ	GIECITIOUI SIL	<i>cs,</i> 2002			
Soil Index (from FS	R or Wallingfor	d Procedure V	VRAP mai	ps)*	SOIL			0.47	7
or smaller sites, use the S		REA al soil type, as	follows:						
or smaller sites, use the S SOIL TYPE AREA SPR		al soil type, as	5 follows: 3 0 0.37	4 0.0804 0.47	5 0 0.53		DIL: 47		
SOIL TYPE	5PR for the loca 1 0 0.1 m The Wallingford HR Wallingford	2 0 0.3 0.3 0.7 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	3 0 0.37 e for Euro CD)	0.47		0.	47	20 0.40)
SOIL TYPE AREA SPR Site parameters fror drainage modelling, 60minute, 5 year re	5PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD)	0.47 pe: Best I	Practice Guide	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 20	5PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor	0.47 pe: Best I	Practice Guide M5-60 r	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year re Ratio of M5-60 to 2 folume Calculation for t	5PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor	0.47 pe: Best I	Practice Guide M5-60 r	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 2 olume Calculation for t Z1 _{6hr}	5PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor	0.47 pe: Best l rm edure Figur	Practice Guide M5-60 r e 3.6	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 2 folume Calculation for t Z1 _{6hr} M5-6hr	5PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor	0.47 pe: Best l rm edure Figur	Practice Guide M5-60 r e 3.6	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 20 olume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr}	SPR for the loca 1 0 0.1 m The Wallingford HR Wallingford eturn period rain day, 5 year return the 100 year r	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor	0.47 pe: Best l rm edure Figur	Practice Guide M5-60 r e 3.6	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 20 Colume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr} M100-6hr	PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return the 100 year r	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall I 6hr stor gford Proce gford Proce	0.47 pe: Best l rm edure Figur	Practice Guide M5-60 r e 3.6	0.	47)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 2 olume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr} M100-6hr With Climate Change	SPR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return the 100	2 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	3 0 0.37 e for Euro CD) nfall ford Proce gford Proce 30% er Green	0.47 pe: Best l rm edure Figur edure Table field run	Practice Guide M5-60 r e 3.6 : 3.2 off:	0. to urban	47 mm -)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year ree Ratio of M5-60 to 2 olume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr} M100-6hr With Climate Change dditional volume (m ³) of	SPR for the loca 1 0 0.1 m The Wallingford turn period raid day, 5 year return the 100	2 0 0.3 ord Procedure d, July 2000 (nfall urn period rain return period 1.55 *Walling 31.1 1.97 *Walling 61.2 79.6 ent runoff ove 100 (0.8α)+	3 0 0.37 e for Euro CD) nfall ford Proce gford Proce 30% er Green -(PGF/1	0.47 pe: Best l rm edure Figur edure Table field run	Practice Guide M5-60 r e 3.6 : 3.2 off:	0. to urban	47 mm -)
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year regreation of M5-60 to 20 60lume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr} M100-6hr With Climate Change dditional volume (m ³) of a gradient of the second	SPR for the loca 1 0 0.1 m The Wallingford turn period raid day, 5 year return the 100	2 0 0.3 Ford Procedure d, July 2000 (nfall urn period rain return period 1.55 *Walling 31.1 1.97 *Walling 61.2 79.6 ent runoff ove 100 (0.8 α)+ DS Manual © CI	3 0 0.37 e for Euro CD) nfall I <u>6hr stor</u> gford Proce 30% er Green -(PGF/1 IRIA 2015	0.47 pe: Best l rm edure Figur edure Table field run 00) <i>SOII</i>	Practice Guide M5-60 r e 3.6 e 3.2 off: $\beta \cdot \beta + (PGR)$	0. to urban	47 mm -		
SOIL TYPE AREA SPR Site parameters from drainage modelling, 60minute, 5 year reg Ratio of M5-60 to 20 Olume Calculation for t Z1 _{6hr} M5-6hr Z2 _{100yr} M100-6hr With Climate Change dditional volume (m ³) of ol = "M100-6hr".AREA Modified from EQ24.10 CIR Additional	PR for the loca 1 0 0.1 m The Wallingford turn period rain day, 5 year return the 100 year r the 100 year r 10 f developme A.10 [<i>PIMP</i> /1 IA C753 The SUE	2 0 0.3 ord Procedure d, July 2000 (nfall urn period rain return period 1.55 *Walling 31.1 1.97 *Walling 61.2 79.6 ent runoff ove 100 (0.8 α)+ DS Manual © CI unoff (above G	3 0 0.37 c for Euro CD) nfall ford Proce gford Proce 30% er Green (PGF/1 IRIA 2015 Greenfield	0.47 pe: Best l rm edure Figur edure Table field run 00) <i>SOII</i> state) lea	Practice Guide M5-60 r e 3.6 e 3.2 off: $\beta \cdot \beta + (PGR)$ aving the site:	0. to urban	47 mm - -	0.40	

APPENDIX C – LBC SUDS PRO FORMA

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	246-248 Kilburn High Road
Address & post code or LPA reference	NW6 2BS
Grid reference	TQ24973 94208
Is the existing site developed or Greenfield?	Developed
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	Yes, located in Kingsgate LFRZ and Group 3_010 CDA
Total Site Area served by drainage system (excluding open space) (Ha)*	0.08 Ha

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)	0.08	0.02	0.06	If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method	Sewer	Infiltration &	N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)	001101	Sewer		the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed MicroDrainage calculations	Y		In SuDS Assessment	Please provide MicroDrainage calculations of existing and proposed run-off rates and volumes in accordance with a recognised methodology or the results of a full infiltration test (see line below) if infiltration is proposed.
Infiltration	Y		In SuDS Assessment	e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse		Ν		e.g. Is there a watercourse nearby?
To surface water sewer	Y		In SuDS Assessment	Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above	Y		In SuDS Assessment	e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal had regard to the SuDS hierarchy?	Y		In SuDS Assessment	Evidence must be provided to demonstrate that the proposed Sustainable Drainage strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
Layout plan showing where the sustainable drainage infrastructure will be located on site.	Y		In SuDS Assessment	Please provide plan reference numbers showing the details of the site layout showing where the sustainable drainage infrastructure will be located on the site. If the development is to be constructed in phases this should be shown on a separate plan and confirmation should be provided that the sustainable drainage proposal for each phase can be constructed and can operate independently and is not reliant on any later phase of development.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers	
Greenfield QBAR	0.35	N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.	
1 in 1	12.0	0.9	11.1	92.5	Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates	
1 in 30	28.4	2.4	26.0	91.5	for all corresponding storm events. As a minimum, peak discharge rates must be redu	
1in 100	35.9	3.3	32.6	90.8	by 50% from the existing sites for all corresponding rainfall events.	
1 in 100 plus climate change	N/A	3.3	N/A	N/A	The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.	

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

5. Calculate additional volumes for storage – The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume (m ³)	Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³) (Proposed-Existing)	Notes for developers
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour	N/A	16.2	N/A	N/A	minimum should be no greater than existing volumes for all corresponding storm events. Any increase in volume increases flood risk elsewhere. Where volumes are increased section 6 must be filled in.
1 in 100 6 hour plus climate change	N/A	N/A	20.3 unmitigated 9.8 with SuDS	N/A	The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as is reasonably practicable to the greenfield runoff volume wherever practicable. As a minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

		Notes for developers
Storage Attenuation volume (Flow rate control) required to	20.4m^3	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m ³)		Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	2.6m^3	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	2.011-5	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	12.5m^3	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as		above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)		previously developed sites, runoff rates should not be more than three times the
Three times Greenfield Runoff (London Plan)		calculated greenfield rate. Can't be used where discharge volumes are
Three times Greenneid Runon (London Flan)		increasing
Storage Attenuation volume (Flow rate control) required to	N/A	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)		used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	18% in Green Roofs	Percentage of attenuation volume which will be held above ground in
		swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

			Notes for developers
Infiltration	State the Site's Geology and known Source	London Clay bedrock with no superficial deposits notes	Avoid infiltrating in made ground. Infiltration rates are highly variable
Inintration	Protection Zones (SPZ)	No SPZ Category	and refer to Environment Agency website to identify and source protection zones (SPZ)
	Are infiltration rates suitable?	No, permable paving and unlined	Infiltration rates should be no lower than 1×10^{-6} m/s.
	State the distance between a proposed infiltration device base and the ground water (GW) level	drainage blanket will allow some infiltration. However, this has not be calculated to ensure the SuDS scheme could accomdate the worse case situation.	Need 1m (min) between the base of the infiltration device & the water table to protect Groundwater quality & ensure GW doesn't enter infiltration devices. Avoid infiltration where this isn't possible.

No SI, BGS borehole records show no groundwater in the area

	Were infiltration rates obtained by desk study or infiltration test?	N/A	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Unknown but SuDS scheme does not rely on infiltration.	Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	Not as the single solution, as part of a SuDS scheme, yes.	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

		Notes for developers
Please confirm what option has been chosen and how much storage is required on site.	Option 1	The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requirements are on site and how it will be achieved.

8. Please confirm

		Notes for developers
Which Drainage Systems measures have been used, including green roofs?	Green Roof, Permeable Paving, and Granualar Sub-base	SUDS can be adapted for most situations even where infiltration isn't feasible e.g. impermeable liners beneath some SUDS devices allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event without flooding	Yes	This a requirement for sewers for adoption & is good practice even where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm event? If no please demonstrate how buildings and utility plants will be protected.	Yes	National standards require that the drainage system is designed so that flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate change storm events will be safely contained on site.	Yes	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.
How will exceedance events be catered on site without increasing flood risks (both on site and outside the development)?	Yes, site levels rise 150mm across the site.	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.Exceedance events are defined as those larger than the 1 in 100 +CC event.
How are rates being restricted (vortex control, orifice etc)	Yes, via HydroBrake or similar	Detail of how the flow control systems have been designed to avoid pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage systems throughout the development. Please list all the owners.	Freeholder(s) of the site	If these are multiple owners then a drawing illustrating exactly what features will be within each owner's remit must be submitted with this Proforma.
How is the entire drainage system to be maintained?	To be organised by the freeholder(s) of the site. Freeholder(s) will also follow manufactors specifications.	If the features are to be maintained directly by the owners as stated in answer to the above question please answer yes to this question and submit the relevant maintenance schedule for each feature. If it is to be maintained by others than above please give details of each feature and the maintenance schedule. Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Section 2	SuDS Assessment	3 &4
Castion 2		
Section 3	SuDS Assessment	8-10
Section 4	SuDS Assessment	8-10
Section 5	SuDS Assessment	10
Section 6	SuDS Assessment	10
Section 7	SuDS Assessment	11 & 13
Section 8	SuDS Assessment	ALL
This form is comple drainage strategy of		5
	v. Claire Burroughs con responsible for signing off this pro-forma ^{MSc DIC, MEng (Hons), MCIWEM}	