

JOB 15168 - 18 GROVE TERRACE Title BASEVENT WOLL

Date SEPT 16 Page

By FISI? Chkd I 5

Project	roject				Job no.	
18 Grove Terrace				15168		
Calcs for				Start page no./Revision		
	Rear Retaining Wall			1		
Calcs by FDP	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date	

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.01

Retaining wall details

Stem type Cantilever $h_{stem} = 1500 \text{ mm}$ Stem height t_{stem} = **250** mm Stem thickness Angle to rear face of stem α = **90** deg Stem density $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Toe length $I_{toe} = 1250 \text{ mm}$ Base thickness t_{base} = **350** mm Base density $\gamma_{base} = 25 \text{ kN/m}^3$ $h_{ret} = 1500 \text{ mm}$ Height of retained soil Angle of soil surface $\beta = 0 \deg$ $d_{cover} = 0 \text{ mm}$ Depth of cover Height of water $h_{water} = 500 \text{ mm}$ Water density $\gamma_{w} = 9.8 \text{ kN/m}^{3}$

Retained soil properties

Base soil properties

Soil type Organic clay Soil density $\gamma_b = 18 \text{ kN/m}^3$ Characteristic effective shear resistance angle $\phi'_{b,k} = 18 \text{ deg}$ Characteristic wall friction angle $\delta_{b,k} = 9 \text{ deg}$ Characteristic base friction angle $\delta_{bb,k} = 12 \text{ deg}$ Presumed bearing capacity $\rho'_{bearing} = 125 \text{ kN/m}^2$

Loading details

Variable surcharge load Surcharge Q = 1.5 kN/m^2

	Project				Job no.	
	18 Grove Terrace				15168	
-	Calcs for			Start page no./Revision		
	Rear Retaining Wall			2		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	FDP	30/09/2016	IJ			

Calculate retaining wall geometry

Base length

Saturated soil height

Moist soil height

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Using Coulomb theory

Active pressure coefficient

Passive pressure coefficient

Bearing pressure check

Vertical forces on wall

 $F_{\text{stem}} = A_{\text{stem}} \times \gamma_{\text{stem}} = \textbf{9.4 kN/m}$ Wall base $F_{\text{base}} = A_{\text{base}} \times \gamma_{\text{base}} = \textbf{13.1 kN/m}$

 $I_{base} = I_{toe} + t_{stem} = 1500 \text{ mm}$

 $h_{sat} = h_{water} + d_{cover} = \textbf{500} \ mm$

 $h_{moist} = h_{ret} - h_{water} = \textbf{1000} \ mm$

 $I_{\text{sur}} = I_{\text{heel}} = \boldsymbol{0} \ mm$

 $x_{sur_v} = I_{base} - I_{heel} / 2 = 1500 \text{ mm}$

 $h_{\text{eff}} = h_{\text{base}} + d_{\text{cover}} + h_{\text{ret}} = \textbf{1850} \ mm$

 $x_{sur_h} = h_{eff} / 2 = 925 \text{ mm}$

 $A_{stem} = h_{stem} \times t_{stem} = \textbf{0.375} \ m^2$

 $x_{stem} = I_{toe} + t_{stem} / 2 = 1375 \text{ mm}$

 $A_{base} = I_{base} \times t_{base} = 0.525 \text{ m}^2$

 $x_{base} = I_{base} / 2 = 750 \text{ mm}$

 $K_A = sin(\alpha + \phi'_{r.k})^2 \, / \, (sin(\alpha)^2 \times sin(\alpha - \delta_{r.k}) \times [1 \, + \, \sqrt[]{sin(\phi'_{r.k} + \delta_{r.k})} \times sin(\phi'_{r.k} + \delta_{r.k}) \times sin(\phi'_{r.k} + \delta_$

 $-\beta) / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]]^2) = \mathbf{0.483}$

 $K_P = sin(90 - \phi'_{b.k})^2 / \left(sin(90 + \delta_{b.k}) \times [1 - \sqrt{[sin(\phi'_{b.k} + \delta_{b.k}) \times sin(\phi'_{b.k})} / (sin(\phi'_{b.k}) \times sin(\phi'_{b.k}) \times sin(\phi'_{b.k}) / (sin(\phi'_{b.k}) \times sin(\phi'_{b.k}) / (sin(\phi'_{b.k})$

 $(\sin(90 + \delta_{b.k}))]^2) = 2.359$

Project				Job no.	
18 Grove Terrace			15168		
Calcs for			Start page no./Revision		
Rear Retaining Wall			3		
Calcs by FDP	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date

Total	$F_{total \ v} = F_{ste}$	m + Fbase -	$+ F_{water_v} = 22.5 \text{ kN/r}$	n

Horizontal forces on wall

Surcharge load $F_{sur_h} = K_A \times cos(\delta_{r.d}) \times Surcharge_Q \times h_{eff} = 1.3 \text{ kN/m}$

Saturated retained soil $F_{sat_h} = K_A \times cos(\delta_{r,d}) \times (\gamma_{sr'} - \gamma_{w'}) \times (h_{sat} + h_{base})^2 / 2 = 1.4 \text{ kN/m}$

Water $F_{\text{water }h} = \gamma_{\text{w}}' \times (h_{\text{water}} + d_{\text{cover}} + h_{\text{base}})^2 / 2 = 3.5 \text{ kN/m}$

Moist retained soil $F_{\text{moist_h}} = K_A \times \cos(\delta_{\text{r.d}}) \times \gamma_{\text{mr}} \times ((h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{moist_h}} + h_{\text{moist_h}}) \times (h_{\text{mois$

 $(h_{sat} + h_{base})) = 11.6 \text{ kN/m}$

 $F_{pass_h} = -K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -2.6 \text{ kN/m}$ Total $F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 15.3 \text{ kN/m}$

Moments on wall

 $\begin{aligned} \text{Wall stem} & \qquad \qquad & \qquad \qquad & \qquad \qquad \\ \text{Wall base} & \qquad & \qquad & \qquad \qquad \\ \text{Mbase} & = F_{\text{base}} \times x_{\text{base}} = \textbf{9.8 kNm/m} \\ \text{Surcharge load} & \qquad & \qquad & \qquad \\ \text{Surr} & = -F_{\text{sur_h}} \times x_{\text{sur_h}} = -\textbf{1.2 kNm/m} \\ \text{Saturated retained soil} & \qquad & \qquad & \qquad \\ \text{Msat} & = -F_{\text{sat_h}} \times x_{\text{sat_h}} = -\textbf{0.4 kNm/m} \\ \text{Water} & \qquad & \qquad & \qquad & \qquad \\ \text{Mwater} & = -F_{\text{water_h}} \times x_{\text{water_h}} = -\textbf{1 kNm/m} \\ \text{Moist retained soil} & \qquad & \qquad & \qquad \\ \text{Mmoist} & = -F_{\text{moist_h}} \times x_{\text{moist_h}} = -\textbf{8.2 kNm/m} \\ \end{aligned}$

Total $M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{water} + M_{sur} = 11.9 \text{ kNm/m}$

Check bearing pressure

Propping force $F_{prop_base} = F_{total_h} = 15.3 \text{ kN/m}$ Distance to reaction $\overline{x} = M_{total} / F_{total_v} = 530 \text{ mm}$ Eccentricity of reaction $e = \overline{x} - I_{base} / 2 = -220 \text{ mm}$ Loaded length of base $I_{load} = I_{base} = 1500 \text{ mm}$

Bearing pressure at toe $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = \textbf{28.2 kN/m}^2$ Bearing pressure at heel $q_{heel} = F_{total_v} / I_{base} \times (1 + 6 \times e / I_{base}) = \textbf{1.8 kN/m}^2$

Factor of safety $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 4.431$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure