

17 BRANCH HILL, HAMPSTEAD, LONDON, NW3 7NA

RENEWABLE ENERGY STATEMENT AND SUSTAINABILITY REPORT FOR THE M&E SERVICES

JB/594: June 2015 Rev A

ME7 Ltd, Unit 2, Rays Farm Barns, Roman Road, Ingatestone, Essex, CM4 9EH Tel: +44(0)1277 353225 MB: +44(0)7412 601472 Web: www.me7.eu Email: jb@me7.eu

M&E Consultants

Energy Consultants

Please consider the environment before printing this document

17 BRANCH HILL, HAMPSTEAD, LONDON, NW3 7NA

RENEWABLE ENERGY STATEMENT AND SUSTAINABILITY REPORT FOR THE M&E SERVICES

CONTENTS

Section	Description	Page No
	Contents	2
	Introduction	4
1.0	Renewable Energy Statement	6
	Executive Summary	10
1.1	Introduction	12
1.2	Planning Framework	12
1.3	Baseline Energy Demand and CO ₂ Emissions	13
1.4	Passive Design Measures/Efficient Services	15
1.5	On-Site Renewable Energy Sources	17
2.0	Mechanical Services	22
2.1	Incoming Utility Services	23
2.2	Design Conditions	23
2.3	Building Regulations Part L1A (2013)	23
2.4	Heating	24
2.5	Water Services	24
2.6	Domestic Cold water	24
2.7	Domestic Hot Water	25
2.8	Recycled Rainwater	25
2.9	Natural Ventilation	25
2.10	Fresh Air Systems	25
2.11	Bathrooms, Cloakroom and Kitchen Ventilation	25
2.12	Pool Environment	25
2.13	Plantroom/Store Ventilation	25
2.14	Cooling	25
2.15	Automatic Controls	26
2.16	Above Ground Drainage	26
2.17	Rainwater Drainage	26
2.18	Underground Drainage	26
3.0	Electrical Services	28
3.1	Incoming Utility Supply	29
3.2	Sub – Main Distribution	29
3.3	Final Circuit Distribution	29
3.4	Small Power Installation	29
3.5	Interior Lighting Installations	29
3.6	Exterior Lighting Installations	30
3.7	Audio Visual Systems	30
3.8	Security System	30
3.9	Fire Detection and Alarm System	30
3.10	Earthing and Bonding	31
3.11	Lightning Protection	31
3 12	Flectrical Appliances and Mechanical System Equipment	31

Sectio	n Description	Page No
4.0 4.1 4.2 4.3 4.4 4.5 4.6	M&E Sustainability Items Daylighting Recyclable Materials Salvage/Reuse of Existing Materials Life Cycle Costing Noise and Vibration Solar Gains	32 33 33 33 33 34 35
	Appendices:	
(i)	BRE Code for Sustainable Homes Level 4 Design Stage Report/Assessment and certificate	36
(ii)	SAP L1A 2013 Regulations Compliance Report (Standard Case DER)	46
(iii)	SAP L1A 2013 Regulations Compliance Report (Proposed House DER)	65
(iv)	SAP L1A 2013 Regulations Compliance Report (SAP Proposed House Checklist)	84
(v)	SAP L1A 2013 Regulations Compliance Report (Proposed House SAP Worksheets)	88
(vi)	PEA – Predicted Energy Assessment (PRE-EPC)	108
(vii)	Energy RSU	110
5.0	Disclaimer	112

INTRODUCTION

Our client is applying for planning permission to re-construct this family home and as part of the process; he is taking the opportunity to significantly enhance the sustainability of the rest of the house; including the potential for renewable technologies. 17 Branch Hill is proposed to be a new residential building which is to be constructed as a sustainable low carbon residential development, finished to a high quality and standard.

This report has been prepared by ME7 Ltd, to demonstrate how the development will achieve a low carbon status and covers the proposed sustainable design measures related to the building fabric and mechanical and electrical services.

The proposed building has been modelled using an accredited calculation methodology (SAP2012) and by an accredited energy assessor. Through use of appropriate passive and building fabric design as key points/measures below and energy saving measures, it is shown that the building will release lower net annual CO₂ emissions against baseline levels and satisfies the current Building Regulation Part L 2013, The London Plan requirements and Camden's Development Control DPD Policies; DP22 and DP23 plus Core Strategy document CS13 and CPG3.

Key points/measures proposed:

- A CO₂ reduction of 36.0% (Cumulative), for the site over the baseline; confirming that the proposed dwelling exceeds the requirements of Camden: Strategic Policies, The London Plan 2011 and the National Planning Policy Framework.
- A 38.0% DER/TER improvement over the minimum Part L 2013 Building Regulations (Regulated).
- 52.7 KW/Hr/M2 FEE Fabric Energy Efficiency rating.
- Corresponding NOx emission reduction and inclusion of new efficient heating plant.
- A Code Sustainable Homes score of 68.32% achieving Level 4 Design Stage certification from BRE; confirming the proposed house is a very sustainable dwelling.
- Reusing/recycling and salvage existing materials where possible.
- Greater than 50% reduction in surface water runoff from the site to the local sewer.
- Reducing water consumption through rainwater harvesting and flow restrictors.
- Utilisation of natural shading, orientation and planting.
- Fully insulating the building and providing double glazed windows to all windows low U values.
- CO2 reduction CHP for heat and power production.
- 87% of the space heating and hot water production to be provided by a low CO2 emitting CHP
- Increase in air tightness to the building fabric figure of 5M3/M2/Hr@50Pa.
- Heat recovery ventilation to some basement areas 90% efficiency.
- New materials to be responsibly sourced and life cycle reviewed.
- Inclusion of a renewable energy system, providing 27% CO2 reduction.
- Data logging/internal digital metering/control for efficient management of the building.

Owing to the above improvements over the minimum Part L requirements, the PEA (Predicted Energy Assessment – Outline EPC), the efficiency rating is Grade B (88) and the CO₂ impact rating is Grade B (90).

Included within the report is an appraisal of various renewable technologies, demonstrating their viability and appropriateness to the environment and nature of the development.

It is proposed that a gas fired CHP system will be suitable for providing lead heating and electricity to the occupied areas/hot water production, with gas boilers for back up and domestic hot water production/ main load. This combination will significantly reduce CO2 emissions and be well matched to the building, other renewable sources are not effective or suitable for the building.

The CHP system will reduce the CO₂ emissions, thereby increasing the PEA. All renewable and heat technologies are eligible for government backed FIT (Feed In Tariffs) payments for a period of 20 years. RHI details TBC for CHP.

Cooling is proposed to some parts of the house and only at peak ties, this will be provided by high efficiency ASHP (Air Source Heat Pump) with minimum efficiencies of 3.61 COP/3.01 EER.

A detailed description of the proposed electrical and mechanical systems is also included within the report, detailing the energy efficient and sustainable design measures to be incorporated.

Full assessment modelling/calculations/reports demonstrating compliance, including energy statement, SAP L1A and PEA (Pre-EPC); can be found in the main sections and appendices of this report.

The M&E proposals outlined in this report are in line with the London Plan Plan 2011, the National Planning Policy Framework, Camden's Development Control DPD Policies; DP22 and DP23, Core Strategy document CS13 and CPG3. The proposals also have regard to the guidance contained within CPG Sustainability (April 2011) and Building Regulations.

Section 1.0 RENEWABLE ENERGY STATEMENT

17 Branch Hill, **LONDON NW3 7NA**

ENERGY STATEMENT

OG: June 2015

ME7 Ltd, Unit 2, Rays Farm Barns, Roman Road, Ingatestone, Essex, CM4 9EH Tel: +44(0)1277 353225 MB: +44(0)7412 601472 Web: www.me7.eu Email: jb@me7.eu

M&E Consultants

Energy Consultants

Please consider the environment before printing this document

17 Branch Hill, LONDON NW3 7NA

ENERGY STATEMENT

This Document has been prepared to confirm the Energy and Sustainability solutions for the related M&E Building Services.

For details of the proposed Development refer to Architect drawings and details.

Ondrej Gajdos

04/06/2015

ME7

ME7 Ltd Unit 2, Rays Farm Barns, Roman Road Ingatestone, CM4 9EH

ME7 Ltd are committed to providing Sustainable and Environmental solutions for Building Engineering Services

INDEX

ITEM	DESCRIPTION	PAGE NO.
	EXECUTIVE SUMMARY	4
1.	INTRODUCTION	6
2.	PLANNING FRAMEWORK	6
3.	BASELINE ENERGY DEMAND AND CO ₂ EMISSIONS	7
4.	PASSIVE DESIGN MEASURES AND EFFICIENT SERVICES	9
5.	COMBINED HEAT AND POWER	10
6.	ON-SITE RENEWABLE ENERGY SOURCES	11

DISCLAIMER

The findings, conclusions and recommendations of this report are based on the information supplied. ME7 Ltd disclaims responsibility in respect of incorrect information imparted to them or for the actual performance of any of the building services installations.

This Report is prepared for the use of 17 Branch Hill; a duty of care is not owed to other parties.

EXECUTIVE SUMMARY

ME7 Ltd have been appointed to provide an Energy Statement for the proposed development.

This statement covers possible active and passive measures including renewable energy sources to make this development sustainable and environmentally friendly.

Specific requirements of London Plan on Energy Efficiency and Renewable Energy will be met through a combination of passive design features, energy efficient building services and low carbon energy sources. The target is to achieve reduction in regulated CO2 emissions of at least 35%. This is to comply fully with the London Plan Policies, to meet mandatory credits for CSH Level 4 and to ensure, that the "Energy Hierarchy" is followed. This document has been prepared in line with the GLA Energy Team Guidance on Planning Energy Assessments.

Baseline and all estimated energy consumptions have been calculated using full SAP 2012 assessment of the development in accordance with Part L procedures.

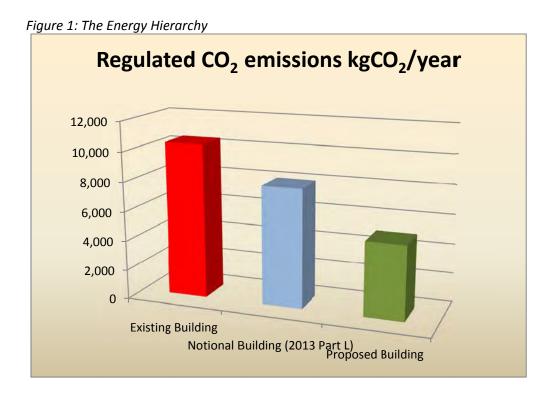

The table below shows a summary of energy requirements for baseline scheme and reduction proposed to be achieved by passive measures, efficient services and on-site renewable energy sources.

Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy

	Carbon dioxide emissions			
	(kg CO2 per annum)			
	Regulated Unregulated Total			
Existing Building	10,458	3,495	13,953	
Notional Building				
(2013 Part L				
compliant)	7,232	3,936	11,168	
Proposed Building	4,989	3,936	8,925	

Table 2: Carbon Dioxide Savings from each stage of the Energy Hierarchy

	Carbon dioxide savings (kg CO2 per annum)		Carbon diovide sovings (9/)	
	(kg CO2 per ar	mum)	Carbon dioxide savings (%)	
	Regulated	Total	Regulated	Total
Savings from energy				
demand reduction	3,225	2,785	30.8	20.0
Savings from CHP	2,243	2,243	31.0	20.1
Total Cumulative Savings	5,468	5,028	52.3	36.0

Recommended passive design measures and energy efficiency measures to reduce CO₂ emissions will include:

 Enhanced fabric and materials of exposed thermal elements. The thermal efficiency of the building is a major consideration by the applicants and designers. It is intended that the Uvalues of the external thermal elements shall be targeted toward following values:

External walls: 0.16 W/m²K Basement walls: 0.16 W/m²K

Roofs: 0.13 W/m²K

Basement floor: 0.13 W/m²K

Windows and rooflights: 1.3 W/m²K

Entrance doors: 1.0 W/m²K

Air Permeability Rate: 5 m³/h/m² (@50 Pa)

Accredited construction details where applicable, lintels with linear heat loss coefficient (Psi value) of 0.05 W/mK (e.g. Keystone Hi-Therm lintels or similar)

· Efficient services, including:

Heat recovery ventilation with demand control, where applicable (PIR and CO2 sensors) High efficiency condensing boilers, minimum 89% SEDBUK 2009 seasonal efficiency Heating with time and temperature zone control and weather compensation control

Further reduction in CO2 emissions will be achieved by CHP (1 No Viessmann Vitobloc EM-5/13). The above specification will achieve 37.8% reduction in DER against TER under 2013 Part L1A.

1. INTRODUCTION

1.1 Background

ME7 Ltd have been appointed to provide an Energy Statement for the proposed development.

This statement covers possible active and passive measures including renewable energy sources to make this development sustainable and environmentally friendly.

1.2 Description of the Site

The proposals include the demolition of the existing house on site, and the erection of a new, high quality single family 6-bedroom dwelling with basement, lower ground, ground, first and second floor.

2. PLANNING FRAMEWORK

3.1 National Policy

Joining over 170 other nations the UK has committed to reduction of carbon dioxide emissions, with consequent constraints to its energy policy. The UK produced four percent of the world's greenhouse gases as of 2003. The long term reduction goal for carbon emissions is 60 percent decrease by the year 2050. According to Energy Review issued by Government in 2002 it was recommended that renewable sources should contribute 20% of energy generation by 2020. These figures were incorporated in Planning Policy Statement Note 22: Renewable Energy (2004) which became a base for local planning policies.

3.2 The London Plan

The London Plan is the name given to the Mayor's spatial development strategy. The aim is to develop London as an exemplary sustainable world city, based on three interwoven themes.

- Strong, diverse long term economic growth
- Social inclusivity to give all Londoners the opportunity to share in London's future success
- Fundamental improvements in London's environment and use of resources.

Specific requirements on development sustainability are set out in policy 5.2 of the London Plan

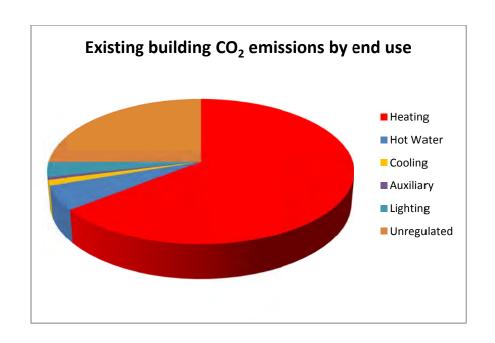
Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

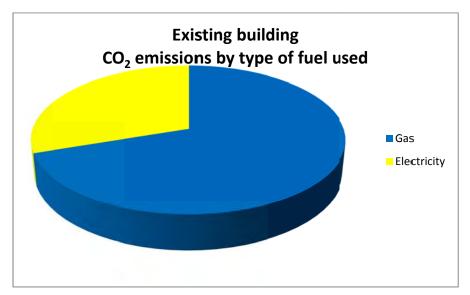
Be lean: use less energy

Be clean: supply energy efficiently Be green: use renewable energy

From 2013 it is required that new developments achieve 35% reduction in emission rates against the 2013 building regulations TER (target emission rate)

3. BASELINE ENERGY CONSUMPTION AND CO₂ EMISSIONS


Energy assessment using SAP 2012 has been carried out for the existing house with the following input data (values are typical for a house built under 2002 building regulations)

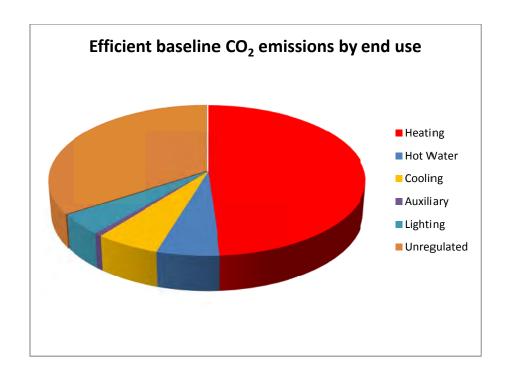

External walls:	0.35
Basement walls: 0.35	
Roofs: 0.25	
Basement floor: 0.25	
Windows, rooflights and external doors:	2.00
Enhanced and Accredited construction details where applicable	No
Air Permeability	10
Main Space Heating	Gas boiler with 88% seasonal efficiency, programmer, room thermostat and TRV's
DHW System	500 L indirect DHW cylinder
Space Cooling System	A-rated multi-split ASHP with variable speed compressor
Ventilation System	Natural
Energy Efficient Lighting	25%

As a result of the existing house assessment, the following values of energy and CO_2 emissions have been obtained. SAP 2012 carbon emission factors have been used for CO_2 emissions calculation.

Existing building energy consumption and CO₂ emissions by end use

		Delivered		Faciaciona
		Energy		Emissions
		kWh/annum	Fuel	kgCO ₂ /annum
Heating		41,614	Gas	8,989
Hot Water		3,501	Gas	756
Cooling		333	Electricity	173
Auxiliary		165	Electricity	86
Lighting		876	Electricity	455
Unregulated		6,734	Electricity	3,495
	Total:	53,222		13,953

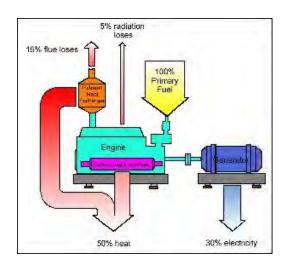
4. PASSIVE DESIGN MEASURES AND EFFICIENT SERVICES (BE LEAN)


Number of passive design measures and measures improving energy efficiency of building services are proposed for the newly constructed house to help to reduce the CO2 emissions:

External walls:	0.16
Basement walls:	0.16
Roofs:	0.13
Basement floor:	0.13
Windows, rooflights and external doors:	1.40
Enhanced and Accredited construction details where applicable	Yes, Lintels with linear heat loss coefficient Psivalue of 0.05 W/mK
Air Permeability	5
Main Space Heating	High efficiency condensing boilers, minimum 90% seasonal efficiency, time and temperature zone control and weather compensation control
DHW System	500 L indirect DHW cylinder
Space Cooling System	A-rated multi-split ASHP with variable speed compressor
Ventilation System	Natural
Energy Efficient Lighting	100%

Following figures have been obtained as a result of modelling the building with all the above mesures incorporated. The building with the above specification complies with 2013 Part L1A.

Efficient Baseline energy consumption and CO₂ emissions by end use


Emoioric Bassimis smargy	,	1		
	Delivered		Emissions	
	Energy		LIIIISSIUIIS	
	kWh/annum	Fuel	kgCO ₂ /annum	
Heating	27,640	Gas	5,970	
Hot Water	3,254	Gas	703	
Cooling	1,395	Electricity	724	
Auxiliary	165	Electricity	86	
Lighting	1,057	Electricity	548	
Unregulated	8,055	Electricity	4,180	
Total:	41,566		12,212	

5. COMBINED HEAT AND POWER (BE CLEAN)

• General information

Although not using any renewable energy source, gas CHP helps to reduce CO2 emissions by delivering heat and electricity locally and reducing the losses that normally occur by conventional power plants. Produced electricity can be exported to grid if the on-site demand is lower than production.

Ceramic fuel cells deliver the same benefit as CHP's, i.e. decentralised low carbon electricity. However, they work on a different principle than gas engine CHP's and achieve significantly higher electrical efficiency.

· Recommendations specific to this development

A head led micro CHP Viessmann Vitobloc EM-5/13 (alternatively LoadTracker XRGi6) which will provide heat for space heating and DHW will represent the best solution to reduce the CO2 emissions. 1 No CHP unit will be capable of providing 87% of the annual space heating and DHW energy demand.

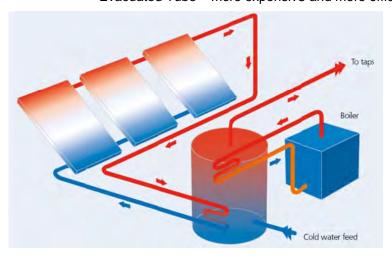
This solution will achieve a 37% reduction in regulated CO2 compared to 2013 Building Regulations TER.

Proposed building energy consumption and CO₂ emissions by end use

Emissions
EIIIISSIOIIS
kgCO ₂ /annum
8,417
950
724
548
4,180
-5,617
9,203

6. ON-SITE RENEWABLE ENERGY SOURCES (BE GREEN)

Following systems have been considered:


a. SOLAR HOT WATER (SHW)

• General information

Solar hot water systems for dwellings use collector which provides a separate heating circuit for hot water cylinder. This is usually backed up by electric immersion heater or other source of heat.

Two types of collectors are available:

- Flat Plate less expensive, less efficient
- Evacuated Tube more expensive and more efficient

Recommendations specific to this development

Solar hot water panels are not possible due to overshading of the surrounding trees.

b. AIR SOURCE HEAT PUMPS (ASHP)

General information

An air source heat pump extracts heat from the outside air in the same way that a fridge extracts heat from its inside. It can extract heat from the air even when the outside temperature is as low as minus 15° C.

On 17 December 2008, the European Parliament adopted the EU Directive on promoting the use of energy from renewable sources. For the first time however, in addition to geothermal energy, aerothermal and hydrothermal energy are also recognised as renewable energy sources.

There are two main types of ASHP:

 Air-to-water system uses the heat to warm water. Heat pumps heat water to a lower temperature than a standard boiler system would, so they are more suitable for underfloor heating systems than radiator systems. Although some ASHP systems are capable of heating the water to the higher temperature, the efficiency is higher when using low temperature underfloor heating or low temperature fan convectors.

• Air-to-air system uses the heat to warm the indoor air. The air is heated through individual fan-coils or centrally and then distributed to rooms via ductwork

Recommendations specific to this development

It is not advisable to use heat pumps along with CHP as these two low carbon technologies would "compete". The proposed CHP unit will achieve higher CO2 savings than potential air source heat pump.

c. SOLAR PHOTOVOLTAICS (PV)

General information

This system uses semi-conductor cells to convert solar energy into electricity. Two main types of PV panels are available:

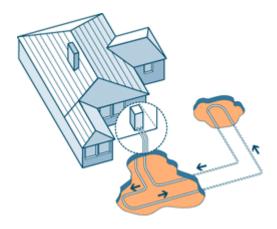
- Monocrystalline More expensive and more efficient
- Polycrystalline Less expensive and less efficient

Depending on type, the output of 1 kWp (kilowatt peak) can be achieved by panels with area between 8 and 20 m^2 .

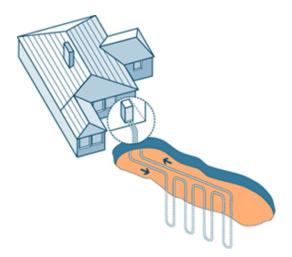
The use of PV panels generally requires relatively large unshaded roof area where they can be mounted facing south, ideally having between 30° and 40° inclination.

The cost per tonne of CO₂ saved would be between £550 and £1,100

Recommendations specific to this development


Photovoltaic system is not feasible due to overshading from the surrounding trees.

d. GROUND SOURCE HEAT PUMPS (GSHP)


General information

Ground source heat pumps use a buried ground loop which transfers heat from the ground into the building through heating distribution system. GSHP technology can be used both for heating and cooling. Two main types of GSHP are available:

 Horizontal loop is suitable for applications where sufficient area is available to accommodate horizontally buried pipes.

 Vertical loop system can be used where ground space is limited, but will require boreholes typically 15-150m deep, and is consequently more expensive to install than horizontal systems.

• Recommendations specific to this development

It is not advisable to use heat pumps along with CHP for heating as these two low carbon technologies would "compete". CHP will achieve higher CO2 savings than potential ground source heat pump.

e. **BIOMASS / BIOFUELS**

• General information

Producing energy from biomass has both environmental and economic advantages. It is a carbon neutral process as the CO_2 released when energy is generated from biomass is balanced by that absorbed during the fuel's production.

There are two main ways of using biomass to heat a domestic property:

- Stand alone stoves providing space heating for a room. These can be fuelled by logs or
 pellets but only pellets are suitable for automatic feed. Generally they are 6-12 kW in
 output, and some models can be fitted with a back boiler to provide water heating.
- Boilers connected to central heating and hot water systems. These are suitable for pellets, logs or chips, and are generally larger than 15 kW.

Recommendations specific to this development

Biofuels have been considered, but are ruled out due to negative impact on air quality and environmental issues surrounding liquid biofuels as currently there are no established standards relating to the sustainability of biofuels.

f. WIND ENERGY

General information

Wind power is a clean, renewable source of energy which produces no carbon dioxide emissions or waste products. The turbines can have horizontal or vertical axis (Darrieus type). Wind turbines use the wind's lift forces to rotate aerodynamic blades that turn a rotor which creates electricity. Most small wind turbines generate direct current (DC) electricity and are not connected to the national grid. A special inverter and controller is required to convert DC electricity to AC at a quality and standard acceptable to the grid if the turbine is to be connected to national grid.

• Recommendations specific to this development

Wind energy systems will not be considered due to negative visual effects, interference, flicker and noise risk. Exposure to wind would be limited by surrounding buildings.

Section 2.0 MECHANICAL SERVICES

2.0 MECHANICAL SERVICES

2.1 Incoming Utility Services

New gas and water utility supplies/meters will be provided to the building. The gas meter will be external to the building in a ventilated space and the water meter externally in an underground pit. (Soil conditions will confirm the water pipe material).

These will be sized to meet the demands of the building.

An additional KW/Hr gas sub-meter will be provided with a remote visual display installed to assist in energy monitoring and management as part of the audio visual system.

An additional water flow meter (L/S) will be provided with a remote visual display installed to assist in water monitoring and management as part of the audio visual system.

2.2 Design Conditions

External temperatures:

Winter -8°C saturated Summer 32°C (DB) 20°C (WB)

Internal Temperatures:

Living Rooms	22°C
Kitchen/Dining	21°C
Bedrooms	19°C
Bathrooms	22°C
Hall/Circulation	19°C
Stores/Plant	16°C

2.3 Building Regulations Part L1A (2013)

The current part 'L1A' of the Building Regulations (2013), consists of minimum requirements for dwellings, briefly consisting of the following:

- Walls, roofs and ceilings need to have adequate resistance to loss of heat.
- Sufficient control needs to be provided for occupants to vary lighting levels, to avoid unnecessary energy use and maximise natural daylight.
- Adequate user control should be available for heating and cooling to avoid unnecessary energy use and maximise passive measures.

Part 'L1A' of the Building Regulations (2013), is also concerned with the conservation of fuel and power and its aim is to maximum the possible contribution that can be made to the Government's target for reducing CO2 production whilst allowing flexibility for designers. This philosophy will be followed in our designs.

The measures to be implemented/ investigated to reduce energy consumption are:

- Specifying an efficient heating system and if gas boilers utilised, these are to be high
 efficiency condensing boilers with very low NOX levels.
- Optimising the boiler selection for the building occupancy and reducing energy consumption through controls and management.
- Installing responsive controls and sub-zoning of the building to allow the part load, low energy and economical use of the system. (Adaptive to user occupancy).
- Review of thermal insulation techniques, limits and air tightness.
- Review of renewable energy sources to comply with the limits dictated by The Local Planning Authority and The London Plan.
- Minimising the effect of solar gain in a passive manner, to provide comfort conditions.
- Limiting fan power usage to noted requirements.

- Reviewing extract fan systems and utilising heat recovery and passive natural ventilation where possible.
- If cooling is utilised, to provide through a very efficient system and utilised only at peak times.

2.4 Heating

The main lead space heating system will be a gas fired CHP unit with buffer tank.

The secondary system will be high efficiency condensing boilers with ultra low NOX levels (eg Broag Remeha Quinta Pro).

The CHP/boiler system will serve LTHW pressurised supplies to the majority of underfloor heating systems in the principal living and bedroom areas (High thermal mass floors) and the pool heat sink. Radiators to secondary areas and towel rails to bathrooms will be served a separate summer circuit. LTHW supplies will also provide the secondary backup heating medium for the HWS system (Initial primary source is via the CHP unit. The CHP will provide 87.0% of the yearly space heating and HWS requirements.

The CHP will be the lead unit – ensuring maximum run time and electricity production, with the boilers being arranged on a load sharing/part duty basis to ensure efficient use of fuel (eg. one boiler will be fully utilised for demand before another boiler is energised, thus ensuring optimum performance and condensing action with limited boiler starts). Controls will also be weather compensated and user occupation closely programmed and managed. Valved connections will be included for a future heat network.

All pipework to be copper insulated and pex to underfloor systems.

All flues to pass directly to roof level by balanced flues/ separate flues. Fresh air and plantroom cooling via louvers at basement level.

All heating zones/spaces will be provided with zone valves, re-heaters, thermostat control or TRV's (Thermostatic radiator valves), to ensure efficient energy use.

All heating zones/spaces will also be controlled by user interface controls to programme occupancy, holiday periods and set back times; again to ensure efficient energy use.

2.5 Water Services

A fully pressurised water system will be provided throughout the property to ensure continuity of supply. If after testing a mains water pressure system is acceptable; this will be adopted. The system is to be installed in copper pipework to the sanitary/kitchen appliances.

The general pressure available throughout the system will be approximately 3 bar at the mixers/taps with flow rates accommodated to the sanitary appliances and shower mixer valves in accordance with the Part 'G' calculator and Code for Sustainable Homes; low flow/restrictors.

The system will operate on a variable speed pump principle to maintain a constant pressure throughout the system and limit energy use. Pressure regulating devices will be required to some areas. All sanitary fittings/plant will be individually and zone valved. All pipework to be copper insulated.

Consideration will be given to a leak detection system to provide early warning of any leaks in the systems, to minimise any water loss.

2.6 Domestic Cold Water

Sufficient cold water will be stored and boosted to provide continuity of supply. Filtered mains drinking water will be provided to the main kitchens and the basins within each principle en-suite bathroom.

Back up cold water mains supplies will be provided to the plantrooms for general swimming pool filter back washing and filling, primary source via rainwater recovery.

A full base exchange water softener will be provided within the main basement plantroom providing softened water to the hot water generator/cylinder, as well as all the baths and shower

accommodation. (Softened water will ensure optimum energy performance due to limiting scale build up in plant/pipework).

2.7 Domestic Hot Water

Hot water cylinder/generators located in the basement plantroom will be provided with boosted and softened cold water. The hot water generators shall be hot water cylinders complete with a small buffer storage cylinder, hot water cylinder system to be complete with a pumped return system. This combination of system minimises energy losses by not storing a large amount of hot water, yet has the advantage of ensuring that all peak demands will still be met from the CHP plant – maximising efficiency and CHP run time.

Hot water production shall be strictly controlled by weather compensation, timeclock control for occupancy holiday times and maximisation of plant duty. (Softened water will ensure optimum performance due to limiting scale build up in plant/pipework).

All basins, baths and sinks will be protected by TMV2 valves (Thermostatic mixing valves), above the minimum Part 'G' requirements.

2.8 Recycled Rainwater

The rainwater recycling drainage system (see 2.21), will provide recycled rain water for irrigation supplies, pool replenishment and backwashes. This will reduce the reliance on treated mains water.

Filters/ UV unit shall be provided to the system.

2.9 Natural Ventilation

Background habitable room ventilation is generally to be provided by trickle vents incorporated into windows or walls for some of the building.

Rapid ventilation to spaces will be provided by openable windows/continuous ventilation.

Consideration will be given to a PSV (Passive stack ventilation), system to bathrooms (wet areas), with humidity controlled trickle vents to habitable spaces.

2.10 Fresh Air Systems

Fresh air fan units (MVHR's) with thermal heat recovery (90%), are to be provided to some of the basement areas.

To provide ducted fresh air/extract to spaces, to fully comply with Part 'F' of the Building Regulations. Ductwork to be pre-insulated PVC and galvanised steel with insulation or Kool duct.

2.11 Bathrooms, Cloakrooms and Kitchen Ventilation

MVHR supply and extract ventilation units will be provided for the purposes of sanitary accommodation and utility ventilation. These dedicated fan systems shall comprise of isolated (low noise) ducted fan units located either within plant areas and discharge to the main roof areas. Ductwork to be pre-insulated PVC and galvanised steel with insulation or Kool duct.

2.12 Pool Environment

Due to the specialist nature of these spaces, there are very specific requirements when it comes to temperature/ humidity. A separate AHU is to be provided fed from the lead CHP unit for both water and airside heating with 70% heat recovery.

2.13 Plantroom/Store Ventilation

The plantroom will be provided with supply and extract ducts from roof level and or fans suitably sized to provide fresh air and control heat build up.

2.14 Cooling

Firstly, the building has been designed to limit heat gains by; orientation, thermal mass, provision of green roofs, tree shading, semi underground spaces and overhanging slabs/roofs.

Cooling may also be considered to rooms/spaces for peak cooling only.

This is proposed to be via a very high efficiency air source heat pumps (3.61 COP).

The type of cooling for each room will be provided by fancoils mounted either within joinery or false wall/ceiling details.

Pre-insulated discharge ductwork will be attached to these units to discharge through high induction linear grilles incorporated within joinery and wall finishes at high level. The system will have very low noise levels, which is generally to be targeted at NR30 throughout the building.

A refrigerant gas sensor system will be incorporated to provide safety/protection in accordance with FGAS requirements, to all bedrooms and other rooms/spaces. Internal pipework to be copper insulated.

Each room/space will have individual control via a remote room controller to each fan coil, controlled via a discrete room sensor for operation or modification to the set point of the controllers. Cooling and heating will be automatically controlled to ensure no system fighting and undue energy use (interlocked). Overall occupancy and holiday controls to also be provided to ensure efficient energy use and management.

2.15 Automatic Controls

Automatic control systems will be provided for all of the mechanical services. It is anticipated this will be installed as a complete BMS/ DDC electronic system supervised by a touch screen control/PC positioned within the basement plantroom.

The client will also have the facility for zoned overrun of various systems and time switch control separate to the main plantroom, via a PC interlink situated within the study.

Full remote off site access will also be provided via a modem to this system enabling an ongoing maintenance contract to be provided with the system installers and for the occupiers to efficiently control the systems.

The system will have remote interface modules which will allow the client operation of the heating and cooling, lighting and other systems via the audio visual keypads. Where this is not provided, individual room control will be provided with more basic visual/manual controls.

Controls are to be zoned to provide more efficiency, occupancy control and management.

2.16 Above Ground Drainage

The above ground drainage system shall be provided to serve all the sanitaryware accommodation.

It is anticipated that either HDPE acoustic pipe or cast iron pipework will be provided, fully insulated for both thermal and acoustic reasons, with individual local run-outs individual to the sanitary accommodation being in good quality UPVC drainage pipework.

Installation of leak detection systems will be considered to detect leaking water hidden in areas such as voids and shower trays etc. This is being considered to protect the building fabric and internal fixtures and fittings.

2.17 Rainwater Drainage

All rainwater pipes will be routed from roof level to drain points at ground/lower ground floor levels. All roof outlets will be sized to take a rainfall intensity of 108 mm per hour. All pipes shall have access before connecting to underground drains. All external rainwater stacks are to be either aluminium or cast iron and where installed internally. All internal stacks shall be thermally/acoustically insulated.

2.18 Underground Drainage

Underground rainwater harvesting tank/s will be provided within the surface water drainage system to collect water from the main roof areas for recycling for external irrigation and pool backwash replenishment.

The surface rainwater system will not only include these reservoir retention devices but also provide sufficient SUDS storage to limit the outfall to 50% below the rainwater discharge that currently exists for the site.

A surface water retention tank shall be provided as part of the harvesting tank to reduce outflow to the sewer. A hydrobrake will be utilised to limit outflow. It is intended to drain the rear half of the house (RWP's and gullies), to the retention tank, to reduce peak outflows to 50% below the existing level; with 20% factor for climate change based on a 1:100 year storm.

This combined with infiltration trenches/ soakaways, a permeable surface to the front area drive and other pavedareas, green roofs and natural percolation to grassed/ soft areas.

All external drainage shall be Upvc or clayware, cast iron under the building.

Section 3.0 ELECTRICAL SERVICES

3.0 ELECTRICAL SERVICES

3.1 Incoming Utility Supply

A new main incoming TP&N supply connection will be provided to serve the new property which will be sized to suit the anticipated maximum building load.

The incoming supply will be grid tied with the CHP, allowing excess power to be exported to the grid network when not being utilised. The clients' Energy Supplier will install a suitable meter to facilitate energy export of the generated electricity.

The energy usage at the incoming position will be measured and inter-linked to the AV system providing the end-user with accurate power consumption data displayed on a visual display screen. This facility will provide the owner with a user-friendly interface for energy monitoring and management within the house.

3.2 Sub-main Distribution

Sub-main distribution boards will be installed to serve various areas within the building. This will reduce cable material costs and installation time.

The local sub-distribution boards will incorporate suitably rated MCBs and RCBOs to suit the circuit type and loading.

Separate dedicated feeds will be supplied to life safety systems, such as fire alarm equipment in suitable fire rated cabling.

Sub-main distribution cabling will be multi-core armoured with XLPE outer sheath and LSF inner sheath with copper conductors.

Adequate spare capacity will be provided within the distribution network for any future expansion of the system, avoiding the need for any significant re-modification works at a later period.

3.3 Final Circuit Distribution

Final circuit distribution cabling will be multi-core flat twin & earth XLPE/LSF sheathed copper conductors and will not be of the PVC/PVC type.

The XLPE (cross-linked polyethylene) cable material offers superior electrical performance to PVC and the LSF insulation produces 'low smoke and fumes' when exposed to fire.

RCBOs will be used which combine Residual Current and Overcurrent protection within a single device. Consequently each circuit will be individually RCD protected avoiding any nuisance tripping of unaffected circuits as would be the case if a split load distribution arrangement were adopted whereby many circuits are protected by a single RCD.

Either a battery backed UPS system or generator for minor supplies will be installed.

3.4 Small Power Installations

Single and twin 13A Switched Socket outlets will be provided at various positions within the property for general purpose use and to serve fixed electrical equipment.

The outlets will be positioned to offer the greatest flexibility for different interior space planning options and will be mounted at a suitable height for ease of access conforming to the Building Regulation Part M requirements.

Where the room/spaces are used as 'home offices' (e.g. where computers, printers etc. are installed causing potential earth leakage currents) then socket outlets will be of the Dual Earth connection type. 13A switched/un-switched fused connection units with neon lamps will be installed to serve various fixed items of electrical equipment.

All small power faceplate outlets will be sourced from a reputable manufacturer such as 'MK Electric' incorporating the required electrical safety standards and allowing ease of installation.

3.5 Interior Lighting Installations

The lighting scheme will utilise the latest low energy compact fluorescent and long life LED/CFL lighting technologies in order to achieve a minimum of 100% low energy lighting throughout the property, exceeding the requirement as stipulated in the Building Regulations Part L.

Dimming control will be provided to the majority of the lighting systems in the form of pre-set scene setting controlled from individual wall plates in each room/space and via a wireless/ hardwired visual display screen as part of the AV control system.

Consideration is also being given to allow energy usage from the lighting system to be monitored via the AV system.

In room/spaces with sufficient natural lighting, day-linked control of the artificial lighting is also being evaluated. Computational daylight investigation will be carried to principle living areas to ascertain the benefit of day-linked dimming controls.

Room/spaces which are not lit by natural daylight, in particular escape routes, will incorporate emergency standby lighting with up to 3hr battery back-up. Consideration for additional emergency lighting to all escape routes/pool side will be taken.

Special attention will be made to bathrooms and the pool area lighting scheme, ensuring the correct level of Ingress Protection (IP) rating is provided in accordance with the 'zoning' requirements of the IEE Regulations.

3.6 Exterior Lighting Installations

The external lighting installation will comprise of a combination of low energy compact fluorescent, LED, and Metal Halide lamp lighting. (Light outputs will not exceed Regulations). Luminaires will be building facade mounted for night time perimeter security lighting and will be of the wall-wash type to avoid direct light pollution into the neighbouring community. Ground recessed and low level ground mounted garden and pool amenity lighting will also be provided which will be limited in numbers to avoid excessive lighting and light pollution. All external lighting will be daylight-linked via an adjustable external photocell and only switch on during periods of insufficient daylight. Manually adjustable time-clock control will also be provided to allow the occupier to adjust the time period and to switch off the lighting when not required.

3.7 Audio Visual Systems

The Audio Visual installation will generally include the following systems:

- 1. Lighting control and management via user-friendly wireless/hardwired touch screen visual display panels located throughout building to occupiers requirement.
- 2. Building energy monitoring via touch screen panels with scope for split monitoring of various loads e.g. lighting & power.
- 3. Heating, comfort cooling and ventilation control via touch screen panels.
- 4. Terrestrial and Satellite TV installation and control. For signal reception each TV will receive a single CAT 5e/6 cable input allowing multi-service viewing. Conventional coax cabling will not be installed saving on material and installation cost.
- 5. Hardwired broadband and telephone service in CAT 5e/6 cabling.
- 6. CCTV security monitoring around the vicinity of the building in CAT 5e/6 cabling with digital recording facility.
- 7. Audio and visual access control system to main building entrance(s)

3.8 Security System

A wired intruder alarm system will be provided comprising suitable room/space movement detectors, magnetic contacts to perimeter doors and window/door break glass detection. The system will be linked to a 24hr central monitoring station via a dedicated BT Redcare line and GSM. The design and installation will conform to ACPO policy and DD243 requirements for police response service.

3.9 Fire Detection and Alarm System

The building may come under the requirements of BS5839 Part 6. The final installation design will be agreed with the relevant parties, including the Local Fire Office (Fire Brigade) and Local Council District Surveyor.

To provide the highest degree of life and property protection a 'Type L1' category system may be employed and be appropriately zoned, allowing the local fire brigade to promptly identify the location/source of fire occurrence.

The system will have the appropriate level of standby battery back-up to operate under mains power failure.

All cabling will be fire rated to the appropriate required standard.

Generally smoke detectors, incorporating base sounder units will be installed throughout the premises except within the kitchen area, plant spaces and gallery – these will be heat detectors; to avoid nuisance alarm conditions. The plant room/kitchen areas will also have carbon monoxide (CO) detectors installed.

Consideration will be given to an 'lon' based (Air sampling), detection system in some principal areas.

3.10 Earthing & Bonding

All extraneous conductive parts will be bonded to the main building earth terminal with main equipotential and supplementary earth bonds as required.

Supplementary earth bonding will be provided to areas of increased electric shock risk including bathrooms, shower rooms, swimming pool area and plant rooms.

A separate additional earth electrode system will be provided for earth bonding of the swimming pool areas as required by the IEE Regulations.

3.11 Lightning Protection

A lightning protection system will be installed to prevent damage to the building structure and mitigate; injury to people, physical damage (e.g. fire, explosion) and failure of internal electrical systems. The system will be designed to intercept the lightning strike and safely discharge the high voltage current to earth via a network of lightning rods and metal conductors connected to an earth electrode designed to provide a low resistance path to earth.

To protect sensitive electronic equipment within the property from damage and failure resulting from transient over voltages (surges), caused by lightning strikes; a suitable surge arrester will be installed at the main supply intake and on data/phone lines and for sensitive equipment.

3.12 Electrical Appliances & Mechanical System Equipment

Most 'white goods', including the refrigerator/freezer, cooker, microwave oven, washing machine/dryer and dishwasher will be 'A' rated (or higher) energy efficient items under the EU energy label classification.

Other major electrical plant, including condenser units and water booster pumps sets will be selected where available and or practicable to incorporate energy efficient motors and intelligent energy saving controls.

Section 4.0

M&E SUSTAINABILITY ITEMS

4.0 M&E SUSTAINABILITY ITEMS

The main sustainable items are covered under the Code for Sustainable Homes pre-assessment in Appendix (i)

4.1 Daylighting

The proposed house has high levels of natural daylighting due to the glazing areas.

This is specifically covered in the Code for Sustainable Homes (CSH) pre-assessment in Appendix (i), HEA1 (Health and Well Being).

All main habitable rooms (Living rooms, kitchen and study), will achieve the minimum daylight factors and view of the sky for CSH.

4.2 Recyclable Materials

Each product/material for the M&E services shall be evaluated against Environmental impacts and life cycle costing. The following is a typical list of proposed M&E materials/products that will be utilised;

Water pipework - Copper (Recyclable).

Drainage pipework - Cast iron/Aluminium (Recyclable).

Valves - Brass (Recyclable).

Electrical cables
 PVC twin & earth (XLPE/LSF) (Recyclable)

Pipework insulation
 Pipework Insulation
 Rock wool (Recyclable)
 Phenolic foam – (Recyclable)

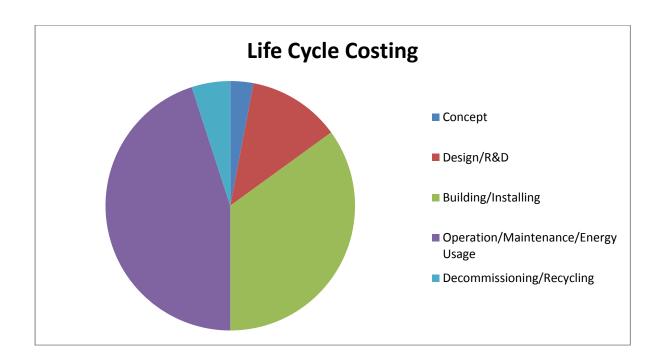
• Concrete - Portland cement based - (Recyclable)

• Light fittings – LED's/compact fluorescent - (Recyclable)

4.3 Salvage/Reuse of Existing Materials

Each existing material/product will be evaluated for possible salvage/reuse when existing items/materials are removed for the proposed works.

Reuse will have priority over salvage; an economic, viability and safety assessment will be made for each item/material.


4.4 Life Cycle Costing

Each product/material proposed shall be evaluated on a life cycle costing basis. Recyclable materials shall be utilised where possible in preference to non-Recyclable.

The particular areas of the life cycle to be addressed for M&E Services are:

Building & Installing the system/product, Operation/Maintenance, Energy Usage and finally, Decommissioning/Recycling.

Below is a graph indicating the lift cycle phases;

Typically the majority of the life of a material/product is spent in the Operation/Maintenance phase. It is in this phase that it creates the value contribution but also absorbs the vast proportion of the costs through maintenance and energy usage.

Products/materials shall be selected on the basis of particularly reducing the impact of this phase, for example, a pump, by selecting long term reliability and low energy usage over initial cost.

The ease and speed of building/installing different products/systems shall also be compared to reduce this phase.

4.5 Noise & Vibration

Noise and vibration associated with moving mechanical services plant, e.g. Pumps, fans, condensers, pipes/ducts, lifts and boilers shall be limited to acceptable levels as follows;

Pumps: Inverter drives providing slow low impact start/stop cycles, intelligent controls, anti-vibration couplings/supports, dense block wall constructed plantrooms.

Fans/Condensors : Low speed intermittent ventilation fans, flexible duct connections, remote plantroom/cupboard mounting, attenuators and anti-vibration fixings.

CHP units: Low noise units, internally mounted within plant areas with acoustic enclosures, anti-vibration mounts and wall/ceiling acoustic lining.

Boilers: Low noise units and internally mounted within plant areas.

Pipes: Anti-vibration/flexible couplings to plant, expansion joints/anchors and smooth bends/straight lines.

Ducts: Inline attenuators, anti-vibration/flexible couplings to plant, and smooth bends/straight lines.

An Acoustic Consultant shall further advise on noise, vibration and acoustic items.

4.6 Solar Gains

In compliance with the new Part 'L' of the Building Regulations (April 2010 edition) solar gains shall be reduced by the building being designed to limit heat gains by; orientation, thermal mass, provision of green roofs, tree shading, semi underground spaces, overhanging slabs/roofs and higher performance double or triple glazed windows with solar tinting/low emissivity coating and Argon gas filled cavities to the South, East & West Elevations.

Additionally, internal blinds to the South, East & West Elevations may be provided as part of the development for occupiers to assist in compliance with Solar Gains.

APPENDIX (i)

BRE CODE FOR SUSTAINABLE

HOMES LEVEL 4

PRE-ASSESSMENT REPORT AND SCORE

17 Branch Hill Hampstead London NW3 7NA

Report Demonstrating Compliance

Code for Sustainable Homes

Code Level 4

PRE-ASSESSMENT

DMW/JB/594: June 2015

AUTHOR: Dudley Walker
ASSESSMENT ORGANISATION: ME7 Ltd
Licensed BREEAM Assessor No. 1698

ME7 Ltd, Unit 2, Rays Farm Barns, Roman Road, Ingatestone, Essex, CM4 9EH Tel: +44(0)1277 353225 MB: +44(0)7769 866462 Web: www.me7.eu Email: dw@me7.eu

M&E Consultants

200

Energy Consultants

17 Branch Hill Hampstead London NW3 7NA

Report Demonstrating Compliance

Code for Sustainable Homes

Code Level 4

PRE- ASSESSMENT

CONTENTS

Description	Page No
Executive Summary & Proposals	2
The Code for Sustainable Homes Level 4 Pre-Assessment Summary	3 – 6
Appendices	
(i) BREEAM Pre-Assessment Calculation Summary	7

Executive Summary

- The proposed redevelopment of 17 Branch Hill can achieve CSH Level 4, based on the requirements of the Code for Sustainable Homes, November 2010 Version incorporating Code Addendum 2014
- Based on the assumptions of this Assessment the proposed development can satisfy all the mandatory sections within the Energy, Water & Materials Categories and achieve Code Level 4 status with a predicted overall score of 68.3%
- From the following Pre- Assessment Report, it can be seen that the proposed development at 17Branch Hill is an excellent example of sustainability in a residential dwelling.
- This Pre-Assessment is based on early design information and is intended to provide guidance upon which the design team can rely in order to achieve Certification to Code Level 4 at Design and Final Construction Stage subject to verification by the BRE following accepted independent documentation, calculations and reports.

The Proposals

The proposed development at 17 Branch Hill comprises a considerable property containing 4 family bedrooms, a Guest Bedroom and Staff Bedroom. General living accommodation above ground extends into semi and basement areas providing social and leisure facilities together with storage and plant rooms for the property

The purpose of this report is to demonstrate compliance with the Code to achieve Level 4 in support of the Planning Application for the site.

The Code for Sustainable Homes BRE Global Pre–Assessment Calculation Summary sheet is attached in Appendix (i) in confirmation of the achievable Code Level

The Code for Sustainable Homes is divided into nine main elements;

- Energy
- Water
- Materials
- Surface Water
- Waste
- Pollution
- Health and Wellbeing
- Management
- Ecology

Overleaf, we show how in each Category the proposed development at Branch Hill can achieve Level 4 under the November 2010(Addendum 2014) version of the Code.

Code for Sustainable Homes Level 4 Pre – Assessment Summary

Category 1: Energy

- Ene 1: Dwelling Emission Rate The mandatory element of this category to achieve Code Level 4 requires a 19% improvement of Dwelling Emission Rate (DER) over the Target Emission Rate (TER) as defined in Approved Document Part L1A 2013. However, the London Plan requires reduction of 35% in regulated CO² emissions. Design Draft SAP calculations prepared based on enhanced fabric values, efficient services and the incorporation of a Combined Heat and Power plant reveal that this enhanced requirement is met by achieving a 37.8% improvement achieving Code Level 4 and contributing 4.5 Credits to the overall score.
- **Ene 2: Fabric Energy Efficiency** Design Draft SAP calculations reveal the specification for the proposed development achieves a FEE rating of 52.7 Wh/m2/year contributing **4.7 Credits** to the overall score
- Ene 3: Energy Display Devices –EDD's can be provided that will allow the occupants to monitor fuel consumption related to primary heating and current electricity enabling them to reduce energy use contributing 2 Credits to the overall score
- Ene 4: Drying Space Externally secure drying facilities can be provided comprising a minimum 6m+ line length in accordance with the requirements of a 3+ bedroomed dwelling contributing 1 Credit to the overall score.
- Ene 5: Energy Labelled White Goods A+ Fridge/Freezers and A rated Washing Machines and Dishwashers should be supplied together with EU Efficiency Labelling advice contributing 2 Credits to the overall score
- Ene 6: External and Security Lighting Low energy fittings should be provided with PIR or DtD controls in line with Code requirements contributing 2 Credits to the overall score
- Ene 7: Low or Zero Carbon (LZC) Technologies The CHP technologies being proposed will supply a significant proportion of energy demand, reducing CO² emissions as a result by at least 15%. Draft SAP calculations reveal 27% reduction in CO² emissions contributing 2 Credits to the overall score
- Ene 8: Cycle Storage It is assumed that secure space for the storage of minimum 2 No. cycles can be provided within the garage providing direct access to the public highway contributing 1 Credits to the overall score
- Ene 9: Home Office A Study has been incorporated within the design complete with Code compliant services, adequate ventilation and is assumed to achieve an average daylight factor of 1.5% contributing 1 Credit to the overall score

Category 2: Water

- Wat 1: Internal Potable Water Use The provision of Dual flush WC's, attention to bath size and restricted flow to showers, basins and kitchen taps will ensure that water consumption will be restricted to 105 litres/person/day achieving the mandatory requirement for Code Level 4 and contributing 3 Credits to the overall score
- Wat 2: External Potable Water Use Water storage for external irrigation purposes and top-up provision for the swimming pool is proposed within the overall drainage

Category 3: Materials

- Mat 1: Environmental Impact of Materials The mandatory requirement of the Code that specifies at least three of the five key building elements have to achieve BRE Green Guide 2008 ratings of A+ to D should be met on the assumption that the property will be of traditional construction comprising timber/slate roof, cavity brick/block external walls, timber upper floors, timber double glazed windows & timber or metal stud internal walls. It is assumed at this stage that a minimum 10 Credits (of the 15 available) are achievable
- Mats 2&3: Responsible Sourcing of Basic Building & Finishing Materials It is a requirement in these Categories that suppliers of building materials will need to have compliant certified Environmental Management Systems in place in respect of the Key Process and Supply Chain, and that Timber will need to be sourced through FSC or similar schemes in order to be compliant with the Code. Experience has shown that reliance on Credits achievable in these Categories at early Design Stage should be avoided unless critical to the overall score as Contractors are reluctant to pursue suppliers to produce the requisite EMS Certification from their suppliers. Consequently, no Credits have been assumed to contribute to the Code score at this time

Category 4: Surface Water Run-Off

- Sur 1: Reduction of Surface Water Run-Off Peak rate of run off from the development is to be reduced by 50% post development compared to pre-development satisfying mandatory requirements in this Category. The surface water design also takes advantage of SUDs techniques such as infiltration, permeable areas, irrigation reuse and green roofs to ensure that the first 5mm of any rainfall is dealt with on-site and that any discharge from the site is appropriately treated in order to minimise the risk of pollution of the receiving waters contributing 2 Credits to the overall score
- Sur 2: Flood Risk A Flood Risk Assessment will be required to justify the assumption but for the purposes of this Assessment it is assumed that the development is in a low flood risk area contributing 2 Credits to the overall score

Category 5: Waste

- Was 1: Household Waste Storage In order that mandatory requirements are met and maximum Credits obtained for waste, dedicated internal storage will need to be provided with minimum 30 litre capacity to be located in the kitchen and external space provided for waste bins with min 450 litre capacity in compliance with minimum Code requirements related to a 6 Bedroomed property. Access to the storage area will need to be in compliance with Inclusive Design Principles . Local Authority weekly collections for waste and recyclable materials is assumed. Waste Storage provisions as described will contribute 4 Credits to the overall score
- Was 2: Site Waste Management The Contractor will need to operate a Site Waste Management Plan to include procedures for monitoring and minimising site waste, recycling and sorting waste generated as a result of the construction work ensuring that a minimum of 85% of waste generated will be diverted from landfill contributing 3 Credits to the overall score.
- Was 3: Composting Either the Local Authority responsible for waste collections provides

a green and kitchen waste service and/or an individual composting facility can be provided that satisfies this Category and contributes **1 Credit** to the overall score.

Category 6:Pollution

- Pol 1: Global Warming Potential of Insulants All insulation materials to be used in the Development to have a Global Warming Potential (GWP) of less than 5 contributing 1 Credit to the overall score.
- **Pol 2: Nox Emissions** Primary space and hot water energy to be provided by a Boiler providing dry NOx emissions ≤ 40mg/kWh contributing **3 Credits** to the overall score

Category 7:Health and Wellbeing

- Hea 1: Daylighting In due course a Daylight Factor Analysis will be required to justify Credits claimed but a cursory inspection of the design proposals suggests that the development could achieve the minimum 1.5% daylight factor, over min 80% of the working plane required in the Living & Dining Rooms and achieve 2% required in the Kitchen contributing 3 Credits to the overall score
- **Hea 2: Sound Insulation** A detached dwelling is proposed for the development of the site satisfying the Code default case in this Category contributing **4 Credits** to the overall score
- Hea 3: Private Space The garden area proposed for the property is in excess of the Code requirement related to this Category. However, for Credits to be achieved it will need to be accessible in accordance with Inclusive Design Principles. The patio area to the rear of the Family Lounge is of adequate size and access in accordance with IDP can be designed in to the proposals allowing the contribution of 1 Credit to the overall score
- **Hea 4: Lifetime Homes** It is assumed that all the principles of Lifetime Homes that are applicable to the dwelling can be included within the design contributing **4 Credits** to the overall score.

Category 8:Management

- Man 1: Home User Guide Maximum credits can be achieved by provision of a home user guide incorporating information relating to the site and its surroundings contributing 3 Credits to the overall score.
- Man 2: Considerate Constructors Scheme The Contractor employed will need to register the site with the Considerate Constructors Scheme and will require to meet Best Practice standards of the Scheme contributing 1 Credit to the overall score
- Man 3: Construction Site Impacts The Contractor will need to pursue procedures that cover 4 or more best practice policies in respect of energy use, CO² production, water consumption, water pollution and air (dust) pollution contributing 2 Credits to the overall score
- Man 4: Security An ALO/CPDA from local Police Force will need to be consulted with recommendations incorporated into the design to comply with Section 2 Physical Security from 'Secured by Design New Homes' contributing 2 Credits to the overall score.

Category 9: Ecology

- **Eco 1-4: Ecological Value, Enhancement & Protection** At this stage no Credits have been assumed to be available in any of these Categories principally as it appears that a number of trees that can be considered to be of ecological value are proposed for removal. It is possible that an SQE could provide sufficient evidence to justify the awarding of some Credits relating to Enhancement and Change in Site Value but such information is not available at preparation of this pre-assessment
- **Eco 5: Building Footprint** It is anticipated that the ratio of Net Internal Floor Area to Net Internal Ground Floor Area exceeds 2.5:1 contributing **1 Credit** to the overall score

APPENDIX (i)

PRE-ASSESSMENT SUMMARY SHEET DEMONSTRATING CSH LEVEL 4 COMPLIANCE

breglobal

Results

Development Name: 17 Branch Hill Hampstead W3 7NA

Dwelling Description: Detached Dwelling

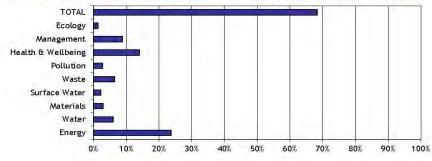
Name of Company: ME7 Ltd

Code Assessor's Name: Dudley Walker - Assessor No. BREAM-1698

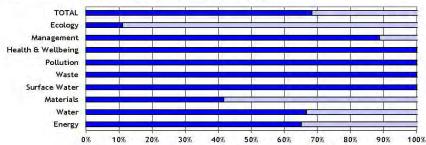
Company Address:

Unit 2 Rays Farm Barns Roman Road Ingatestone Essex CM4 9EH

Notes/Comments:


Pre Assessment 2.0 - Planning Submission

PREDICTED RATING - CODE LEVEL: 4


Mandatory Requirements: All Levels

% Points: 68.32% - Code Level: 4
Breakdown: Energy - Code Level: 4
Water - Code Level: 4

Graph 1: Predicted contribution of individual sections to the total score and percentage of total achievable score

Graph 2: Predicted percentage of credits achievable: Total and by Category

NOTE: The rating obtained by using this Pre Assessment Estimator is for guidance only. Predicted ratings may differ from those obtained through a formal assessment, which must be carried out by a licensed Code assessor.

© BRE Global Ltd, 2010. The BRE Global name and logo are registered trademarks owned by BRE Global Ltd and may not be used without BRE Global's written permission. Permission is given for this estimator to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out, Whilst every care is taken in preparing this estimator, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the estimator tool.

APPENDIX (ii)

SAP L1A 2010 REGULATIONS COMPLIANCE REPORT (STANDARD CASE DER)

Assessor Name:	One	drej Ga	idos			Strom	a Num	ber:			STRC	0006629	
Software Name:			AP 201	2		Softwa	re Ve	rsion	÷		Version	n: 1.0.1.21	
				F	roperty	Address	Standa	ard Ca	se				
Address :	_		Hill, LON	NDON, 1	1W3 7N	A							
1 Overall dwelling dim	ensions	3				(2)						Malana	
Basement					Are	a(m²) 230	(1a) x	AV. F	leight	(m)	(2a) =	Volume(m	(3a
Ground floor					-	164.6	(1b) x	-	3.6	=	(2b) =	592.56	(3b
First floor					-	142.2	(1c) x	\vdash	3.1	=	(2c) =	440.82	(3c
Total floor area TFA = (ta)+(1b)+(1c)+	(1d)+(1e	1)+ (1)		536.8	(4)	_	3.1	-	(20)	440.02	100
Dwelling volume		1.1.9/	(,.(1	″ L	555.5	(3a)+(3b	o)+(3c)+	(3d)+(3e	:)+	(3n) =	1654.38	(5)
2 Venillation rate													
		main leating		econda eating	гу	other		tota	d			m³ per hou	ır
Number of chimneys	Ĺ	0	□ * Ĕ	0	*	0] = [.0		x 4	= 0	0	(6a
Number of open flues	Ē	0	7 • F	3	Ī÷Ī	0	- [-3	N.	x 2	20 =	60	(6b
Number of intermittent fa	ans						Ť	1	0	x 1	0 =	100	(7a
Number of passive vent	S						Ĩ	0	0	x 1	0 =	0	(7b
Number of flueless gas	fires						Ť	.0		x 4	0 =	0	(7c
							-					nanges per h	_
Infiltration due to chimne If a pressurisation test has	A STATE OF THE STA						ontinue fi	16 rom (9)	7		(5) =	0,1	(8)
Number of storeys in				a, procee	0 10 (1.1)		onunee n	(5)				0	(9)
Additional infiltration										[(9)-	1]x0.1 =	0	(10
Structural infiltration:	0.25 for	steel o	r timber	frame o	0.35 fo	r masoni	y const	ruction	i .			0	(11
if both types of wall are p deducting areas of open				ponding to	the grea	ter wall are	a (after						
If suspended wooden	-			led) or 0	1 (seale	ed), else	enter 0					0	(12
If no draught lobby, er	nter 0.0	5, else	enter 0		1							0	(13
Percentage of window	s and	doors d	raught st	ripped								0	(14
Window infiltration						0.25 - [0.2	x (14) +	100] =				0	(15
Infiltration rate						(8) + (10)	+ (11) + (12) + (1	3) + (15)	=		0	(16
Air permeability value	, q50, e	xpresse	ed in cub	oic metre	es per h	our per s	quare m	netre o	f envel	ope	area	5	(17
If based on air permeab	ility valu	ue, then	(18) = [(1	7) + 20]+(8), otherw	ise (18) = (16)					0.35	(18
Air permeability value appli	es if a pr	essurisati	on test has	s been do	ne or a de	gree air pe	meability	is being	used				=
Number of sides shelter	ed					Wanted at a						- 1	(19
Shelter factor						(20) = 1 -		446				0.92	(20
Infiltration rate incorpora						(21) = (18	x (20) =					0.32	(21
Infiltration rate modified	for mor	nthly wir	nd speed	1				,					
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oc	t N	lov	Dec		
Monthly average wind s	_		_									r.	
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4	.5	4.7		

Stroma FSAP 2012 Version: 1.0.1.21 (SAP 9.92) - http://www.stroma.com

Wind Factor ((22a)m =	(22)11			,		_	_	_				
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infilt	tration rat	te (allowi	ng for sl	helter ar	nd wind s	speed) =	(21a) x	(22a)m					
0.41	0.4	0.39	0.35	0.34	0.3	0.3	0.3	0.32	0.34	0.36	0.38		
Calculate ette If mechanic			rate for t	he appli	icable ca	se							(23a
If exhaust air I			endix N. (2	23b) = (23a	a) × Fmv (equation (f	N5)) othe	rwise (23b) = (23a)			0	(23b
If balanced wi											- 4	0	(230
a) If balanc	ed mech	anical ve	entilation	with he	at recov	ery (MVI	HR) (24a	a)m = (2:	2b)m+(23b) × [1 – (23c)		
24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a
b) If balance	ed mech	anical ve	entilation	without	heat red	covery (N	MV) (24b	o)m = (2:	2b)m + (23b)		2.6	
(24b)m= 0	0	0	0	0	0	0	0	Ó	0	0	0		(24b
c) If whole	house ex	tract ver	ntilation	or positiv	ve input	ventilatio	on from o	outside					
and the second	m < 0.5	T	_		1		T						10.1
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c
d) If natura if (22b)	l ventilati m = 1, th								0.51				
(24d)m= 0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(240
Effective ai	r change	rate - er	nter (24a	or (24	b) or (24	c) or (24	d) in bo	x (25)	4.97.0			l	
(25)m= 0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(25)
-	0.58	0.58	0.56	j. 4 A42	0.55		1	0.55	0.56	0.57	0.57		(25)
3 Heat loss	0.58 es and h	0.58 eat loss	0.56 caramel Openir	er	0.55 Net Ar	0.55 ea	1	ue	0.56 A X U (W/		0.57 k-value kJ/m²-k		(25) X k J/K
3 Heal loss ELEMENT	0.58 es and h	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar	0.55 ea	0.54 U-val	ue	AXU		k-value		X k J/K
3 Heat loss ELEMENT Doors Windows Typ	Gro area	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,r	0.55 rea m²	U-val W/m2	ue 2K	A X U (W/		k-value		X k J/K (26)
3 Heat loss ELEMENT Doors Windows Typ	Gro area	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,r	0.55	U-val W/m2	ue 2K = 0.04] =	A X U (W/I		k-value		X k J/K (26)
3 Heat loase ELEMENT Doors Windows Typ	Gro area oe 1	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67	0.55	0.54 U-vali W/m2 1 /(1/(1.3)+	ue 2K = 0.04] =	A X U (W// 2 5.77		k-value		X k J/K (26) (27)
3 Heat loase ELEMENT Doors Windows Typ Windows Typ Windows Typ	Gro area oe 1 oe 2 oe 3	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25	0.55	0.54 U-vall W/m2 1 /(1/(1.3)+	0.04] = 0.04] = 0.04] =	A X U (W/I 2 5.77 2.78		k-value		(26) (27) (27) (27)
3 Heat loase ELEMENT Doors Windows Typ Windows Typ Windows Typ Windows Typ	Gro area oe 1 oe 2 oe 3 oe 4	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25	0.55	0.54 U-val W/m2 1 /(1/(1.3)+ /(1/(1.3)+	0.04] = 0.04] = 0.04] = 0.04] =	A X U (W// 2 5.77 2.78 2.08		k-value		(26) (27) (27) (27) (27)
3 Heat loase ELEMENT Doors Windows Typ Windows Typ Windows Typ Windows Typ Windows Typ	Gro area oe 1 oe 2 oe 3 oe 4 oe 5	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A , r 2 4.67 2.25 1.68	ea m² x 1. x1. x1. x1. x1.	U-val W/m2 1 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+	ue 2K = 0.04] = 0.04] = 0.04] = 0.04] =	A X U (W// 2 5.77 2.78 2.08 1.24		k-value		Xk
A Heat loase ELEMENT Doors Vindows Typ Vindows Typ Vindows Typ Vindows Typ Vindows Typ Vindows Typ	Groarea De 1 De 2 De 3 De 4 De 5 De 6	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A , 1 2 4.67 2.25 1.68	0.55	U-val W/m2 1 M1/(1.3)+ /(1/(1.3)+ /(1/(1.3)+	Ue 2K = 0.04]	A X U (VV/I) 2 5.77 2.78 2.08 1.24		k-value		(26) (27) (27) (27) (27) (27)
The I loase Coors Windows Typ	o.58 es and hi Groarea oe 1 oe 2 oe 3 oe 4 oe 5 oe 6 oe 7	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 0.4	ea m² x 1. x1. x1. x1. x1. x1. x1. x1. x1. x1	0.54 U-val W/m2 1 //// 1.3)+ //// 1.3)+ //// 1.3)+ //// 1.3)+	UE 2K = (0.04] = (0.0	A X U (W// 2 5.77 2.78 2.08 1.24 1.24 0.49		k-value		(26) (27) (27) (27) (27) (27) (27)
The Items The Items	O.58 es and III Gro area De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 1 0.4 13.33	0.55 ea m² x1.	U-val W/m2 1 M1% 1.3)+ M1% 1.3)+ M1% 1.3)+ M1% 1.3)+ M1% 1.3)+	Ue 2K = 0.04]	A X U (W// 2 5.77 2.78 2.08 1.24 0.49 16.47		k-value		(26) (27) (27) (27) (27) (27) (27) (27) (27
Coors Vindows Typ	o.58 es and in Groarea oe 1 oe 2 oe 3 oe 4 oe 5 oe 6 oe 7 oe 8 oe 9	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 0.4 13.33	ea m² x 1. x1. x1. x1. x1. x1. x1. x1. x1. x1	U-val W/m2 1 1/1/(1.3)+ /1/(1.3)+ /1/(1.3)+ /1/(1.3)+ /1/(1.3)+ /1/(1.3)+	0.04] = 0.04]	A X U (W// 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79		k-value		(26) (27) (27) (27) (27) (27) (27) (27) (27
A Heat loase ELEMENT Doors Vindows Typ	0.58 es and III Gro area De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8 De 9 De 10	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97	ea m² x 1. x1. x1. x1. x1. x1. x1. x1. x1. x1	0.54 U-val W/m2 1 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+	ULE 2K = 0.04]	A X U (W// 2 5.77 2.78 2.08 1.24 0.49 16.47 0.79 9.85		k-value		(27) (27) (27) (27) (27) (27) (27) (27)
The Items The Items	0.58 Caro area De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8 De 9 De 10 De 11	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A , 1 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97	0.55 ea m² x1	U-val W/m2 1 M1/(1.3)+ M1/(1.3)+	0.04] = 0.04]	A X U (VV/I) 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34		k-value		(26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat loase ELEMENT Doors Windows Typ	0.58 es and In Groarea De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8 De 9 De 10 De 11 De 12	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 0.4 13.33 0.64 7.97 7.56 4.32	ea m² x1	0.54 U-val W/m2 1 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+	UE 2K = (0.04] = (0.0	A X U (VV/II) 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34 5.34		k-value		(26 (27 (27 (27 (27 (27 (27 (27 (27 (27) (27)
I Heat lease ELEMENT Doors Windows Typ	0.58 es and III Gro area De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8 De 9 De 10 De 11 De 12 De 13	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A , 1 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97 7.56 4.32	0.55 ea m² x1 x	0.54 U-val W/m2 1 //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+ //// (1.3)+	0.04] = 0.04]	A X U (VV/) 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34 5.34 12.77		k-value		(26) (27) (27) (27) (27) (27) (27) (27) (27
-	0.58 es and in Groarea De 1 De 2 De 3 De 4 De 5 De 6 De 7 De 8 De 9 De 10 De 11 De 12 De 13 De 14	0.58 eat loss)	0.56 caramel Openir	er ngs	Net Ar A ,1 2 4.67 2.25 1.68 1 0.4 13.33 0.64 7.97 7.56 4.322 10.33	ea m² x 1. x1. x1. x1. x1. x1. x1. x1. x1. x1	U-val W/m2 1 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+ 1/1/(1.3)+	UE 2K = 0.04]	A X U (VV/I) 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34 12.77 12.11		k-value		(26) (27) (27) (27) (27) (27) (27) (27) (27

Stroma FSAP 2012 Version: 1.0.1.21 (SAP 9.92) - http://www.stroma.com

39)m= 797.43	795.66	793.92	785.76	784,24	777.13	777.13	775.81	779.87	784.24	787.32	790.55			(3
Heat transfer			705 75	70.00	777.15	777.15	775.57	_	= (37) + (700 00			
38)m= 318.61	316.84	315,1	306.95	305.42	298.31	298.31	297	301.05	305.42	308.51	311.74			(3
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			12
/entilation he										(25)m x (5)				
otal fabric he									(36) =			478	.82	(3
details of therm	Contract Value													
hermal bridg				using Ap	pendix l	<					1	68	37	(3
or design asses an be used inste				construct	ion are no	t known pr	ecisely the	indicative	values of	TMP in Ta	able 1f			
hermal mass	parame	ter (TMF	= Cm -	TFA) ir	ı kJ/m²K			Indica	tive Value	: Medium		25	i0	(3
leat capacity	Cm = S(Axk)						((28)	.(30) + (3	2) + (32a).	(32e) =	()	(3
Fabric heat lo							(26)(30	+ (32) =				410	.45	(3
for windows and include the are						ated using	formula 1	/[(1/U-valu	e)+0.04] a	as given in	paragraph	3.2		
Total area of e					1060.0	_								(3
Roof Type3	142.		27.9	В	114.2	2 ×	0.15	=	17.13			J [(3
Roof Type2	21.9	9	0		21.9	X	0.15	-	3.29					(3
Roof Type1	61.	1	8.71		52.39	x	0.15		7.86] [(3
Walls Type2	503.	39	193.8	13	309.5	6 ×	0.16		49.53] [(2
Walls Type1	100.	34	2		98.34	×	0.16	□ * i	15.73			J [(2
Floor Type 2					1.1	x	0.13	-	0.143] [(2
Floor Type 1					230	×	0,13	=	29.9					(2
Rooflights Typ	e 5				0.7	x1.	/(1/(1.3) +	0.04] =	0,91					(2
Rooflights Typ	e 4				2,58	x1	/(1/(1.3) +	0.04] =	3.354					(2
Rooflights Typ	e 3				5.22	x1	/(1/(1.3) +	0.04] =	6.78599	9				(2
Rooflights Typ	e 2				3.49	x1.	/[1/(1.3) +	0.04] =	4.537	7.7				(2
Rooflights Typ	e 1				24	x1	/(1/(1.3) +	0.04] =	31.2	TO I				(2
Windows Type	e 29				4.51	x1.	/(1/(1.3)+	0.04] =	5.57	Ti .				(2
Windows Type	28				12.1	x1.	/(1/(1.3)+	0.04] =	14.95	2				(2
Vindows Type	e 27				12.37	=	/[1/(1.3)+	0.04] =	15.29					(2
Windows Type	e 26				11.61	= .	/[1/(1.3)+	0.04] =	14.35	11				(2
Windows Type					0.32	x1,	/[1/(1.3)+	0.04] =	0.4					(2
Nindows Type					2.21	×1.	/[1/(1.3)+	0.04] =	2.73					(2
Nindows Type					0.64	=	/(1/(1.3)+	0.04] =	0.79					(2
Vindows Type					0.36		/[1/(1.3)+	Service and	0.44	=				(2
Vindows Type					2.24	=	/(1/(1.3)+		2.77	=				(2
Nindows Type					4.9	=	/[1/(1.3)+	Jan 16	6.06					(2
Vindows Type					2.65	= .	/[1/(1.3)+	Sugar S	3.27	=				(2
Windows Type	18				6.63	×1.	/[1/(1.3)+	0.041 =	8.19	=				(2

ALC: U	parameter	(HLP), W	/m²K					(40)m	= (39)m +	(4)			
(40)m= 1	49 1.48	1.48	1.46	1.46	1.45	1.45	1.45	1.45	1.46	1.47	1.47		
lumbar a	f days in a	nonth (Tab	lo dol					17	Average =	Sum(40)	12 /12=	1.46	(40
	an Fe	1	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Land I	31 28	31	30	31	30	31	31	30	31	30	31		(41
	7 1 23	-						4,4		.00			- 34
4 Water	heating er	nergy requ	irement								kWh/ye	ar	
													140
	occupano 13.9, N =	1 + 1.76 ×	[1 - exp	(-0.0003	49 x (T	A -13.9	(2)] + 0.0	0013 x (TFA -13.		44		(42
	13.9, N =						/OF N.	. 20					
		water usag ge hot water							se target o		5.89		(43
not more tha	t 125 litres p	er person pe	r day (all w	ater use, h	ot and co	ld)							
	an Fe	- In the state of	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		per day for ea					2.0	1.00000000					
44)m= 12	7.48 122.8	5 118.21	113,58	108.94	104.31	104.31	108,94	113.58	118.21	122.85	127.48	1141.61	1
Energy conto	ent of hot wa	ter used - ca	culated me	onthly = 4.	190 x Vd,I	n x nm x D	Tm/3600			m(44), 12 = ables 1b, 1		1390.73	(44
45)m= 18	9.06 165.3	5 170.63	148.76	142.73	123.17	114.13	130.97	132,53	154.46	168.6	183.09		
100	-18-4	- 1/2 - 2/2	1.1/100.00	10.00	D. Sacción	1.000	1125-31811		11242	m(45)=	1227	1823.47	(45
f instantane	ous water he	ating at poin	of use (no	hot water	storage),	enter 0 in	boxes (46)				_		
46)m= 28	3.36 24.8	25.59	22.31	21.41	18.48	17.12	19.65	19.88	23.17	25.29	27.46		(48
Nater stor			50.50	A 5.34	****	reko ebo l		las illusore	0.				
		es) includir				000		me ves	sei		150		(47
	And the second second	g and no ta ed hot wate						ers) ente	er '0' in (47)			
	rage loss:	G 1101 1741	or famous	.0.0000	notal ital	,0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0,0,0,0	-1 - 111				
a) If manu	ufacturer's	declared l	oss facto	or is kno	wn (kWl	n/day):					0		
Temperati	ure factor	rom Table	2b								0		(48
	st from wa	ter storage	kWh/ve	aar							U		
50.1							(48) x (49)	=		_	50		(48
b) If mani		declared	cylinder	loss facto		known:	(48) x (49)	=		15	50		(48
b) If mani Hot water	storage lo	ss factor f	cylinder l rom Tabl	loss facto		known:	(48) x (49)	=		15			(45
b) If manu lot water f commur	storage lo	ss factor fo g see secti	cylinder l rom Tabl	loss facto		known:	(48) x (49)			0.	02		(45 (50 (51
b) If manumentd) If manumente) If manument	storage lo nity heating ctor from	ss factor fo g see secti	cylinder rom Tab on 4.3	loss facto		known:	(48) x (49)	=		0.	50		(50 (51 (52
b) If manu Hot water If commun Volume fa Temperate	storage lo nity heating ctor from ure factor	ss factor fi g see secti Fable 2a	cylinder from Table on 4.3	loss facto le 2 (kVVI		known: ay)	(48) x (49)		53) =	0. 0.	02 93		(50 (51 (52 (53
b) If manu Hot water f commur Volume fa Femperati Energy los	storage lo nity heating ctor from ure factor	ss factor fi g see secti Fable 2a from Table ter storage	cylinder from Table on 4.3	loss facto le 2 (kVVI		known: ay)			53) =	0. 0. 0.	93 54		(50) (51) (52) (53)
b) If manu- lot water if commur Volume fa Temperati Energy los Enter (50	storage lo nity heating ctor from ure factor t st from wa) or (54) in	ss factor fi g see secti Fable 2a from Table ter storage	cylinder l rom Tab on 4.3 2b kWh/ye	ioss facto le 2 (kWl ear		known: ay)		× (52) × (0. 0. 0.	93 54		(50 (51 (52 (53 (54
b) If manu- lot water f commure f commure folume fa Femperate Energy los Enter (50) Water stor	storage lo nity heating ctor from ure factor t st from wa) or (54) in	ss factor fi g see secti Fable 2a from Table ter storage (55) calculated	cylinder l rom Tab on 4.3 2b kWh/ye	ioss facto le 2 (kWl ear		known: ay)	(47) x (51)	× (52) × (0. 0. 0.	93 54		(48) (50) (51) (52) (53) (54) (55)
b) If manument of the state of	storage lo nity heating ctor from ure factor l st from wa) or (54) in rage loss of 1.53 40.23	ss factor fi g see secti Fable 2a from Table ter storage (55) calculated	cylinder from Table on 4.3 2b 2b kWh/ye for each 43.09	oss factorie 2 (kW) ear month 44.53	n/litre/da	known: ay)	(47) x (51) ((56)m = (44.53	(\$2) x (52) x (41) (43.09)	m 44.53	0. 0. 0. 1. 1. 43.09	93 54 44 44 44	:H	(49 (50 (51 (52 (53 (54 (55
b) If manuments of community of the comm	storage lo nity heating ctor from ure factor l st from wa) or (54) in rage loss of 1.53 40.23	ss factor from see section of the se	cylinder from Table on 4.3 2b 2b kWh/ye for each 43.09	oss factorie 2 (kW) ear month 44.53	n/litre/da	known: ay)	(47) x (51) ((56)m = (44.53	(\$2) x (52) x (41) (43.09)	m 44.53	0. 0. 0. 1. 1. 43.09	93 54 44 44 44	:Н	(48) (50) (51) (52) (53) (54) (55)
b) If mani- lot water f commure folume fa Femperation (50) Water stored for community for stored fo	storage lo nity heating ctor from ure factor l st from wa) or (54) in rage loss of 1.53 40.23 ntains dedict	ss factor from see section of the se	cylinder from Table on 4.3 com 2b compared kWh/ye for each 43.09 compared 43.00 c	ear month 44.53 m = (56)m	43.09 × [(50) – (known: ay) 44.53 H11)] + (50	((47) x (51) (((56)m = (44.53 0), else (5	55) × (41) 43.09 7)m = (56)	m 44.53 m where (1: 0. 0. 0. 1. 1. 43.09 H11) is fro	93 54 44 44 44 44.53 m Appendix	:Н	(48) (50) (51) (52) (53) (54) (55) (56)
b) If manu- Hot water If commure Volume fa Temperate Energy los Enter (50 Water stor If cylinder co 57)m= 44 Primary ci	storage lo ity heating ctor from ure factor f st from wa) or (54) in rage loss of 1.53 40.22 reuit loss (ss factor from see section of the se	cylinder from Table on 4.3 2b kWh/ye for each 43.09 orage, (57) 43.09 om Table	ear month 44.53 m = (56)m 44.53	43.09 × [(50) – (43.09	44.53 H11)]+ (50 44.53	((47) x (51) (((56)m = (44.53 0), else (53 44.53	43.09 43.09 43.09 43.09	m 44.53 m where (1: 0. 0. 0. 1. 1. 43.09 H11) is fro	93 54 44 44 44.53 m Appendix	¢Н	(49) (50) (51) (52) (53) (54) (55) (56)
b) If manument of the state of	storage lo nity heating ctor from ure factor f st from wa) or (54) in rage loss o 1.53 40.2: ntains dedicate rouit loss o rouit loss o	ss factor from see section of the se	cylinder from Table on 4.3 2b k kWh/ye for each 43.09 om Table for each	ear month 44.53 m = (56)m 44.53 e 3 month (50)	43.09 x [(50) - (43.09	44.53 H11)] + (50 44.53	((47) x (51) (((56)m = (44.53 0), else (53 44.53	43.09 43.09 43.09	44.53 m where (19 0. 0. 0. 0. 1. 1. 1. 43.09 43.09	93 54 44 44 44.53 m Appendix	: H	(48) (50) (51) (52) (53) (54) (55) (56) (57) (58)

Stroma FSAP 2012 Version: 1.0.1.21 (SAP 9.92) - http://www.stroma.com

(61)m= 0 Total heat ro (62)m= 256.0	0	0	0	0	0	0	0	0	0	0	0		(61
(62)m= 256.8												(EO) 1 (CA)	
	_	238.42	214.36	210.52		181.92	198.76	198.14	222.25	234.2	250.88	(59)m+(61)m 	(62
	201 200 2002	202020	3	PENTAL A				727	1792.3			ų.	102
Solar DHW inp (add additio									ii contribut	ion to wate	er neating)		
(63)m= 0	0	0	0	0	o 0	0	0	0	0	0	0		(63
		- 51	_	, Y		7				4.	4	₀	100
Output from (64)m= 256.8		238.42	214.36	210.52	188.77	181.92	198.76	198.14	222.25	234.2	250.88	1	
	ONL PERSONS	EARTHIE!	(47 1111)		11000	11.00	111111111111111111111111111111111111111		ater heate		Plate Fals.	2621.65	(64
Heat gains t	from water	heating	k\/\h/m/	onth 0.2	5 10 85	× (45)m							_
(65)m= 117.0		110.97	101.94	101.69	93.44	92.18	97.78	96.55	105.59	108.54	115.11	1	(65
	174	CONT.	-2/3/A/95/A.	-007.1139.01	1000	II AC INVE		100000			11.44.5.51	anting	102
	7)m in cal				yiii ider i	s in the t	uwening	OF HOLW	aler is if	OITI COM	irriuriity f	eating	
5 Internal	gains (see	Table 5	and 5a)							_		
Metabolic g	11 1 1 2 2 2 2 2		F 5 5 m					1	É -	T N T N		0	
Jai		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 171.9		171,99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99		(68
Lighting gai	ns (calcula	ted in Ap	pendix	L, equat		r L9a), a	lso see	Table 5			-		
(67)m= 56.1	8 49.9	40.58	30.72	22.96	19.39	20.95	27.23	36.55	46.4	54.16	57.74		(67
Appliances	gains (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m= 630.	13 636.67	620.19	585.11	540.83	499.21	471.41	464.87	481.35	516.43	560.71	602.33		(68
Cooking gai	ns (calcula	ited in Ap	ppendix	L, equat	ion L15	or L15a), also se	ee Table	5				
(69)m= 40.3	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2		(69
Pumps and	fans gains	(Table 5	ia)								75.0		
(70)m= 10	10	10	10	10	10	10	10	10	10	10	10		(70
Losses e.g.	evaporatio	n (negat	ive valu	es) (Tab	le 5)								
(71)m= -137.	59 -137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59		(71
Water heati	ng gains (1	able 5)											
(72)m= 157.3	38 154.71	149.15	141.59	136.68	129.77	123.9	131.42	134.1	141.92	150.75	154.72	1	(72
Total interr	al gains =				(66)	m + (67)m	+ (68)m -	(69)m +	(70)m + (7	1)m.+ (72)m	U	
(73)m= 928.3		894.51	842.02	785.07	732.97	700,86	708.12	736.59	789.35	850.22	899.38	1	(73
6 Solar ga			10,000,000	0.00		5-24-52		1000000				-	

Northeast 0.9x	0.77	x	1.68] x [22.97	x	0.63	x	0.7	1 - F	23.58	(75)
Northeast 0.9x	0.54	×	4.67	×	41.38	1 x	0.63	x	0.7		41.42	(75)
Northeast 0.9x	0.54	×	2.25	1 x	41.38	x	0.63	ī x ī	0.7	i - i	19.95	(75)
Northeast 0.9x	0.77	×	1,68	×	41,38	×	0.63	x	0.7	1 = [42.49	(75)
Northeast 0.9x	0.54	x	4.67	×	67.96	x	0.63	x	0.7	=	68.02	(75)
Northeast 0.9x	0.54	x	2.25	T x	67.96	x	0.63	x	0.7		32.77	(75)
Northeast 0.9x	0.77	x	1.68	7 x [67.96	x	0.63	×	0.7	2	69.78	(75)
Northeast 0.9x	0.54	×	4.67	×	91.35] x [0.63	x	0.7		91.43	(75)
Northeast 0.9x	0.54	x	2.25	×	91.35	x	0.63	×	0.7	=	44.05	(75)
Northeast 0.9x	0.77	×	1.68] x [91.35	×	0.63	х	0.7	= [93.8	(75)
Northeast 0.9x	0.54] x [4.67	×	97,38] x [0.63	x	0.7] = [97.47	(75)
Northeast 0.9x	0.54	×	2.25	х	97.38	x	0.63	х	0.7	=	46.96	(75)
Northeast 0.9x	0.77	×	1.68	x	97.38	x	0.63	×	0.7	(=	100	(75)
Northeast _{0,9x}	0.54] x [4.67	x	91.1	x	0.63	x	0.7] = [91.18	(75)
Northeast 0.9x	0.54] x	2.25] x [91.1	x	0.63	×	0.7	= [43.93	(75)
Northeast 0.9x	0.77	×	1.68	x	91.1	×	0.63	X	0.7	= [93.55	(75)
Northeast 0.9x	0.54	×	4.67	×	72.63	x	0.63	x	0.7] = [72.69	(75)
Northeast 0.9x	0.54	x	2.25	х	72.63	x	0.63	х	0.7	= [35.02	(75)
Northeast 0.9x	0.77	x	1.68	x	72.63	x	0.63	х	0.7	=	74.58	(75)
Northeast 0.9x	0.54	×	4,67	_ x [50,42	×	0.63	×	0.7	= [50.47	(75)
Northeast 0.9x	0.54] x [2.25] x [50.42	×	0.63	x	0.7] = [24.31	(75)
Northeast 0.9x	0.77	x.	1.68	x	50.42	x	0.63	x	0.7] = [51.77	(75)
Northeast 0.9x	0.54	×	4.67	×	28.07	x	0.63	X	0.7	3	28.09	(75)
Northeast 0.9x	0.54	x [2.25	_ x [28.07	x	0.63	х	0.7] = [13.53	(75)
Northeast 0.9x	0.77	x	1.68	_ x [28.07	x	0.63	x	0.7] = [28.82	(75)
Northeast 0.9x	0.54	x	4.67	×	14.2	×	0.63	X	0.7		14.21	(75)
Northeast 0.9x	0.54	x	2,25	×	14.2	x	0.63	x	0.7	1 =	6.85	(75)
Northeast 0.9x	0.77	_ x	1,68	x	14.2	x	0.63	×	0.7		14.58	(75)
Northeast 0.9x	0.54	×	4.67	×	9.21	x	0.63	×	0.7		9.22	(75)
Northeast 0.9x	0.54	×	2.25	×	9.21	x	0.63	x	0.7		4.44	(75)
Northeast 0.9x	0.77] x [1.68	x	9.21	x	0.63	х	0.7	=	9.46	(75)
Southeast 0.9x	0.77	×	t	_ x [36.79) x	0.63	x	0.7	7 =	11.24	(77)
Southeast 0.9x	0.77	× [30.15	x	36,79	×	0.63	×	0.7] = [339.03	(77)
Southeast 0.9x	0.77	х	6.63	x	36.79	x	0.63	x	0.7] = [74.55	(77)
Southeast 0.9x	0.77	x	2.65	x	36.79	x	0.63	x	0.7		29.8	(77)
Southeast 0.9x	0.77	×	4.9	×	36.79	×	0.63	×	0.7] = [55.1	(77)
Southeast 0.9x	0.77	_ x [2.24	×	36.79	×	0.63	×	0.7	= [25.19	(77)
Southeast 0.9x	0.77	×	0.36	x	36.79	x	0.63	x	0.7	= [4.05	(77)
Southeast 0.9x	0.77	×	0.64	×	36,79	x	0.63	X	0.7	*	21.59	(77)
Southeast 0.9x	0.77	х	2.21	×	36.79	×	0.63	X	0.7	(=)	24.85	(77)
Southeast 0.9x	0.77	x	0.32	х	36.79	X	0.63	x	0.7	(#E)	3.6	(77)

Southeast 0.9x	0.77	x	1	х	62.67	x	0,63	x	0.7] = [19.15	(77)
Southeast 0.9x	0.77	х	30.15	х	62.67	x	0.63	х	0.7	-	577.49	(77)
Southeast 0.9x	0.77	×	6.63	×	62.67	x	0.63	x	0.7	Ī = [126.99	(77)
Southeast 0.9x	0.77	х	2.65	×	62.67	×	0.63	×	0.7	- [50.76	(77)
Southeast 0.9x	0.77	x	4.9	х	62.67	x	0.63	×	0.7	=	93.85	(77)
Southeast 0.9x	0.77	×	2.24	×	62.67	x	0.63	x	0.7	=	42.9	(77)
Southeast 0.9x	0.77	x	0.36	x	62.67	x	0.63	x	0.7] = [6.9	(77)
Southeast 0.9x	0.77	x	0.64	x	62.67	x	0.63	x	0.7	=	36,78	(77)
Southeast 0.9x	0.77	х	2.21	X	62.67	X	0.63	х	0.7	=	42.33	(77)
Southeast 0.9x	0.77	x	0.32	x	62.67	x	0.63	х	0.7	7 [6.13	(77
Southeast 0.9x	0.77	х	1	x	85.75	x	0.63	x	0.7	#	26.21	(77)
Southeast 0.9x	0.77	х	30,15	х	85.75	x	0.63	х	0.7	=	790.14	(77)
Southeast 0.9x	0.77	х	6,63	×	85.75	x	0.63	x	0.7	= [173,75	(77)
Southeast 0.9x	0.77	х	2.65	х	85.75	x	0.63	x	0.7] = [69.45	(77)
Southeast 0.9x	0.77	x	4.9	x	85.75	x	0.63	x	0.7	=	128.41	(77)
Southeast 0.9x	0.77	x	2.24	х	85.75	x	0.63	×	0.7] = [58.7	(77)
Southeast 0.9x	0.77	х	0.36	х	85.75	х	0.63	x	0.7	#	9,43	(77)
Southeast 0.9x	0.77	×	0.64	X	85.75	x	0.63	×	0.7] = [50.32	(77
Southeast 0.9x	0.77	x	2,21	×	85.75	x	0.63	×	0.7] = [57,92	(77)
Southeast 0.9x	0.77	х	0.32	х	85.75	x	0.63	х	0.7	-	8.39	(77)
Southeast 0,9x	0.77	х	1	x	106.25	х	0.63	x	0.7] = [32,47	(77
Southeast 0.9x	0.77	x	30.15	x	106,25	x	0.63	x	0.7	=	979.03	(77)
Southeast 0.9x	0.77	х	6.63	x	106.25	X	0,63	x	0.7] = [215.29	(77)
Southeast 0.9x	0.77	х	2.65	х	106.25	x	0.63	×	0.7	= [86.05	(77
Southeast 0.9x	0.77	X	4.9	X	106.25	х	0.63	×	0.7		159.11	(77)
Southeast 0.9x	0.77	Х	2.24	×	106.25	X	0.63	x	0.7	=	72.74	(77)
Southeast 0.9x	0.77	х	0.36	x	106.25	х	0.63	x	0.7	=	11.69	(77
Southeast 0.9x	0.77	X	0.64	х	106.25	х	0,63	x	0.7	#	62.35	(77
Southeast 0.9x	0.77	Х	2.21	х	106.25	X	0.63	х	0.7	=	71.76	(77
Southeast 0.9x	0.77	X	0.32	×	106.25	x	0.63	х	0.7	=	10.39	(77
Southeast 0.9x	0.77	х	1	X	119.01	х	0.63	х	0.7	<u> </u>	36.37	(77
Southeast 0.9x	0.77	х	30.15	X	119.01	X	0.63	х	0.7		1096.59	(77
Southeast 0.9x	0.77	х	6.63	х	119.01	x	0.63	х	0.7	=	241.14	(77
Southeast 0.9x	0.77	х	2.65	х	119.01	X	0.63	x	0.7		96.38	(77
Southeast 0.9x	0.77	х	4.9	Х	119.01	х	0.63	х	0.7	=	178.22	(77
Southeast 0.9x	0.77	х	2.24	x	119.01	x	0.63	х	0.7] = [81.47	(77
Southeast 0.9x	0.77	X	0.36	x	119.01	x	0.63	x,	0.7	/#	13.09	(77
Southeast 0.9x	0.77	x	0,64	х	119.01	x	0,63	×	0.7	=	69.83	(77
Southeast 0.9x	0.77	Х	2.21	х	119.01	х	0.63	х	0.7	=	80.38	(77
Southeast 0.9x	0.77	х	0.32	X	119.01	х	0.63	×	0.7		11.64	(77)
Southeast 0.9x	0.77	х	1	х	118.15	х	0.63	x	0.7	=	36.11	(77)

Southeast 0.9x	0.77	х	30.15] x [118.15	х	0.63	Х	0.7	= [1088,66	(77)
Southeast 0.9x	0.77	×	6.63	x	118.15	x	0.63	х	0.7	= [239.4	(77)
Southeast 0.9x	0.77	×	2.65	x	118.15	x.	0.63	x	0.7	(=)	95.69	(77)
Southeast 0.9x	0.77	x	4.9	×	118.15	x	0.63	х	0.7	=	176.93	(77)
Southeast 0.9x	0.77	x	2.24	x	118.15	х	0.63	х	0.7] = [80.88	(77)
Southeast 0.9x	0.77	x	0.36	×	118.15	X.	0.63	x	0.7		13	(77)
Southeast 0.9x	0.77	x	0.64	x	118.15	х	0.63	х	0.7] = [69,33	(77)
Southeast 0.9x	0.77	×	2.21	x	118.15	X	0.63	x	0.7] = [79.8	(77)
Southeast 0.9x	0.77	x	0.32	×	118.15	X.	0.63	X	0.7] = [11.55	(77)
Southeast 0.9x	0.77	x	9	x	113.91	х	0.63	x	0.7] = [34.81	(77)
Southeast 0.9x	0.77	x [30.15	x	113.91	х	0.63	x	0.7		1049.59	(77)
Southeast 0.9x	0.77	×	6.63	×	113,91	X.	0.63	X	0.7	(=)	230.8	(77)
Southeast 0.9x	0.77	X	2.65	x	113,91	х	0.63	X	0.7	=	92.25	(77)
Southeast 0.9x	0.77	×	4.9	_ x [113.91	х	0.63	x	0.7] = [170.58	(77)
Southeast 0.9x	0.77	x	2.24	x	113,91	x	0.63	×	0.7] = [77,98	(77)
Southeast 0.9x	0.77	х	0.36	x	113.91	х	0.63	х	0.7	=	12.53	(77)
Southeast 0.9x	0.77	×	0.64	x	113.91	х	0.63	×	0.7	= [66.84	(77)
Southeast 0.9x	0.77	X	2.21	x	113.91	×	0.63	x	0.7		76.93	(77)
Southeast 0.9x	0.77	х	0.32	x	113.91	х	0.63	X	0.7	=	11.14	(77)
Southeast 0.9x	0.77	×	_1_	x	104.39	×	0.63	x	0.7	=	31.9	(77)
Southeast 0.9x	0.77	x	30.15	х	104.39	X.	0.63	х	0.7	= [961.88	(77)
Southeast 0.9x	0.77	х	6.63	x	104.39	х	0.63	Х	0.7	=	211.52	(77)
Southeast 0.9x	0.77	×	2.65] x [104.39	×	0.63	x	0.7	=	84.54	(77)
Southeast 0.9x	0.77	x	4.9	x	104.39	×	0.63	X	0.7	= [156.33	(77)
Southeast 0.9x	0.77	х	2.24	x	104.39	х	0.63	X	0.7	=	71.46	(77)
Southeast 0.9x	0.77	×	0.36	х	104.39	x	0.63	x	0.7	=	11.49	(77)
Southeast 0.9x	0.77	×	0.64	×	104.39	x	0.63	×	0.7	= [61.25	(77)
Southeast 0.9x	0.77	х	2.21] x [104.39	x	0.63	x	0.7	=	70.51	(77)
Southeast 0.9x	0.77	X	0.32	x	104.39	×	0.63	X	0.7	=	10.21	(77)
Southeast 0.9x	0.77	×	1	×	92.85	x	0.63	X	0.7	= [28.38	(77)
Southeast 0.9x	0.77	X	30.15	х	92.85	X	0.63	x	0.7	=	855.56	(77)
Southeast 0.9x	0.77	x	6.63	×	92.85	×	0.63	Х	0.7	<u> = </u>	188.14	(77)
Southeast 0.9x	0.77	×	2.65] x [92.85	x	0.63	Х	0.7	=	75.2	(77)
Southeast 0.9x	0.77	×	4.9	х	92,85	x	0.63	x	0.7	(a)	139.05	(77)
Southeast 0.9x	0.77	X	2.24	х	92.85	X	0.63	X	0.7	_ = [63,56	(77)
Southeast 0.9x	0.77	х	0.36	x	92.85	x	0.63	X	0.7	=	10.22	(77)
Southeast 0.9x	0.77	x	0.64	x	92.85	х	0.63	х	0.7	= [54.48	(77)
Southeast 0.9x	0.77	×	2.21	x	92.85	×	0.63	X	0.7	= [62.71	(77)
Southeast 0.9x	0.77	×	0.32	x	92.85	x	0.63	х	0.7	=	9.08	(77)
Southeast 0.9x	0.77	x	1	x	69.27	х	0.63	х	0.7	= [21.17	(77)
Southeast 0.9x	0.77	×	30.15	×	69.27	×	0.63	×	0.7	=	638.25	(77)

Southeast 0.9x	0.77	x	6.63	x	69.27	x [0.63	х	0.7] = [140.35	(77)
Southeast 0.9x	0.77	×	2.65	×	69.27	x	0.63	x	0.7	- [56.1	(77)
Southeast 0.9x	0.77	x	4.9	×	69.27	ī x [0.63	x	0.7	ī - [103,73	(77)
Southeast 0.9x	0.77	x	2.24	×	69.27	x	0.63	x	0.7] = [47.42	(77)
Southeast 0.9x	0.77	x	0.36	×	69.27	x	0.63	x	0.7	=	7.62	(77)
Southeast 0.9x	0.77	x	0.64	×	69.27	x	0.63	×	0.7	= [40.64	(77)
Southeast 0.9x	0.77	x	2.21	x	69.27	x	0.63	×	0.7	=	46.78	(77)
Southeast 0.9x	0.77	х	0.32	x	69.27	х	0.63	x	0.7] = [6.77	(77)
Southeast 0.9x	0.77	x	4	×	44.07	×	0.63	×	0.7] = [13.47	(77)
Southeast 0.9x	0.77	x	30.15	x	44.07	x	0.63	x	0.7] = [406.08	(77)
Southeast 0.9x	0.77	x	6.63	×	44.07	х	0.63	x	0.7] = [89,3	(77)
Southeast 0.9x	0.77	x	2.65	x	44.07	x	0.63	×	0.7	=	35.69	(77)
Southeast 0.9x	0.77	x	4.9	×	44.07	x	0.63	x	0.7	= [66	(77)
Southeast 0.9x	0.77	x	2.24	×	44.07	_ x [0.63	x	0.7] = [30.17	(77)
Southeast 0.9x	0.77	×	0.36	×	44.07	x	0.63	х	0.7] = [4.85	(77)
Southeast 0.9x	0.77	×	0.64	x	44.07	x	0.63	X	0.7	1 10	25.86	(77)
Southeast 0.9x	0.77	×	2.21	х	44.07	х	0.63	×	0.7	= [29.77	(77)
Southeast 0.9x	0.77	х	0.32	×	44.07	x	0.63	x	0.7	= [4.31	(77)
Southeast 0.9x	0.77	x	1	x	31.49	х	0.63	x	0.7	= [9,62	(77)
Southeast 0.9x	0.77	x	30.15	×	31,49	x	0.63	x	0.7	= [290.14	(77)
Southeast 0.9x	0.77	x	6.63	×	31.49	х	0.63	x.	0.7	= [63.8	(77)
Southeast 0.9x	0.77	х	2.65	х	31.49	x	0.63	x	0.7	=	25.5	(77)
Southeast 0.9x	0.77	×	4.9	x	31,49	x	0.63	x	0.7] = [47.15	(77)
Southeast 0.9x	0.77	x	2.24	×	31.49	х	0.63	х	0.7	=	21.56	(77)
Southeast 0.9x	0.77	х	0.36	×	31.49	х	0.63	x	0.7	=	3.46	(77)
Southeast 0.9x	0.77	×	0.64	×	31.49	_ x [0.63	x	0.7	=	18,48	(77)
Southeast 0.9x	0.77	х	2.21	×	31.49	×	0.63	x	0.7] = [21.27	(77)
Southeast 0.9x	0.77	x	0.32	x	31.49	x	0.63	x	0.7	= [3.08	(77)
Southwest _{0.9x}	0.77	X	7.97	×	36.79] [0.63	X	0.7	= [89.62	(79)
Southwest _{0.9x}	0.77	x	7.56	×	36.79] [0.63	×	0.7] = [85.01	(79)
Southwesto.9x	0.77	x	4.32	×	36,79] [0.63] x [0.7] = [48.58	(79)
Southwesto,9x	0.77	x	10.33	×	36.79] [0.63	x	0.7	=	232.31	(79)
Southwesto.9x	0.77	x	9.8	х	36.79] [0.63	x	0.7	= [110.2	(79)
Southwest _{0.9x}	0.77	х	9.87	х	36.79		0.63	x	0.7] = [110.98	(79)
Southwesto.9x	0.77	х	10.12	x	36.79] [0.63	х	0.7	= [113.8	(79)
Southwest _{0.9x}	0.77	х	11.61	x	36.79] [0.63	×	0.7	=	130.55	(79)
Southwesto.9x	0.77	×	12.37	x	36.79] [0.63	x	0.7] = [139,1	(79)
Southwesto.9x	0.77	×	12.1	x	36.79	j Ē	0.63] x	0.7	= [136.06	(79)
Southwesto.9x	0.77	x	4.51	x	36.79] [0.63	x	0.7	=	50.71	(79)
Southwest _{0.9x}	0.77	×	7.97	х	62.67		0.63	x	0.7] = [152.66	(79)
Southwesto.9x	0.77	x	7.56	×	62.67	j f	0.63	×	0.7	=	144.8	(79)

Southwesto.9x	0.77	Х	4.32	×	62.67	0.63	х	0.7	=	82.74	(79)
Southwesto.9x	0.77	x	10.33] x	62.67	0.63	x	0,7	=	395.72	(79)
Southwesto.9x	0.77	×	9.8	x	62.67	0.63	×	0.7	= [187.71	(79)
Southwesto.9x	0.77	×	9.87] × [62.67	0.63	x	0.7	=	189.05	(79)
Southwesto.9x	0.77	X	10.12	x	62.67	0.63	×	0.7] ⇒	193.84	(79)
Southwesto,9x	0.77	×	11.61	×	62.67	0.63	×	0.7	=	222.38	(79)
Southwesto.9x	0.77	x	12.37	_ x [62.67	0.63	x	0.7	=	236.93	(79)
Southwesto.9x	0.77	х	12.1	×	62.67	0.63	x	0,7	=	231.76	(79)
Southwest _{0.9x}	0.77	X.	4.51	×	62.67	0.63	x	0.7] = [86.38	(79)
Southwesto.9x	0.77	x	7.97	x	85.75	0.63	x	0.7] = [208.87	(79)
Southwesto.9x	0.77	X	7.56	x	85.75	0.63	x	0.7	=	198.13	(79)
Southwesto.9x	0.77	X	4.32	х	85.75	0.63	x	0.7	= [113.21	(79)
Southwesto.9x	0.77	x	10.33	x	85.75	0.63	×	0.7] = [541.44	(79)
Southwesto.9x	0.77	х	9,8	х	85.75	0.63	X	0.7] = [256.83	(79)
Southwesto,9x	0.77	x	9.87	х	85.75	0.63	x	0.7	= [258,66	(79)
Southwesto.9x	0.77	×	10.12	х	85.75	0.63	×	0.7	= [265.22	(79)
Southwesto.9x	0.77	X	11.61	x	85.75	0.63	x	0.7	3	304.26	(79)
Southwest _{0.9x}	0.77	x	12.37	_ × [85.75	0.63	x	0.7] = [324.18	(79)
Southwesto.9x	0.77	х	12.1	×	85.75	0.63	×	0.7] = [317.11	(79)
Southwesto.9x	0.77	х	4.51] × [85.75	0.63	x	0.7	= [118.19	(79)
Southwesto.9x	0.77	х	7.97	х	106.25	0.63	x	0.7	= [258.8	(79)
Southwesto.9x	0.77	x	7:56	х [106.25	0.63	х	0.7	=	245.49	(79)
Southwesto.9x	0.77	X	4.32	_ x [106.25	0.63	x	0.7	= [140.28	(79)
Southwesto.9x	0.77	x	10.33	×	106.25	0.63	х	0.7	=	670.87	(79)
Southwesto.9x	0.77	X	9.8	x	106.25	0.63	x	0.7	(=)	318.22	(79)
Southwesto.9x	0.77	X	9.87	x	106.25	0.63	x	0.7	=	320.5	(79)
Southwesto.9x	0.77	×	10.12	×	106.25	0.63	х	0.7	=	328.62	(79)
Southwesto.9x	0.77	X	11.61	х	106.25	0.63	x	0.7] = [377	(79)
Southwesto.9x	0.77	X	12.37	X	106.25	0.63	х	0.7	(=)	401.68	(79)
Southwesto.9x	0.77	x	12.1	X	106.25	0.63	×	0.7	= [392.91	(79)
Southwesto.9x	0.77	×	4.51	X	106.25	0.63	x	0.7] 🔻	146.45	(79)
Southwesto.9x	0.77	X	7.97	X	119.01	0.63	x	0.7	= [289.88	(79)
Southwesto_9x	0.77	x	7.56	х	119.01	0.63	x	0.7] = [274.97	(79)
Southwest _{0.9x}	0.77	X	4.32	x	119.01	0.63	x	0.7] = [157.12	(79)
Southwesto.9x	0.77	X	10.33	х	119.01	0.63	x	0.7	=	751.43	(79)
Southwesto.9x	0.77	х	9.8	x	119.01	0.63	×	0.7	_ = [356.44	(79)
Southwesto.9x	0.77	X	9.87	_ x [119.01	0.63	x	0.7	=	358.98	(79)
Southwest _{0,9x}	0.77	х	10.12	×	119.01	0.63	x	0.7	=	368,08	(79)
Southwesto,9x	0.77	x	11.61	×	119.01	0.63	x	0.7	=	422.27	(79)
Southwesto.9x	0.77	х	12.37	x	119.01	0.63	х	0.7	=	449.91	(79)
Southwesto.9x	0.77	x	12.1	×	119.01	0.63	x	0.7	-	440.09	(79)

Southwesto 9x	0.77	1 x [4.51	1 x l	119.01	0.63	1 × F	0.7	T = F	164.03	(79
Southwesto.9x	0.77	×	7.97	i x	118.15	0.63	×	0.7	i	287.78	(79
Southwesto.9x	0.77	1 × F	7.56	×	118.15	0.63	1 × F	0.7	= =	272.98	(79
Southwesto.9x	0.77	×	4.32	×	118.15	0.63	×	0.7	=	155.99	(79
Southwesto.9x	0.77	x	10.33	×	118.15	0.63	1 × F	0.7	Ħ∍F	746	(79
Southwesto,9x	0.77	×	9.8	×	118.15	0.63	1 × F	0.7	i . F	353.86	(79
Southwesto.9x	0.77	1 x F	9.87	×	118.15	0.63	i . F	0.7	1	356.39	(79
Southwesto.9x	0.77	= × =	10.12	×	118.15	0.63	i x F	0.7	1	365.41	(79
Southwesto.9x	0.77	x	11.61	×	118.15	0.63	×F	0.7	= =	419.22	(79
Southwesto.9x	0.77	- x	12.37	×	118.15	0.63	×	0.7	T = F	446.66	(79
Southwesto.9x	0.77	x	12.1	×	118.15	0.63	×	0.7		436.91	(79
Southwesto.9x	0.77	T x T	4.51	×	118.15	0.63	i x F	0.7	ī - ī	162.85	(79
Southwest _{0.9x}	0.77	x	7.97	×	113,91	0.63	i x F	0.7	i ₌ ۲	277,45	(79
Southwesto.9x	0.77	x	7.56	х	113.91	0.63	×	0.7	ī	263.18	(79
Southwesto,9x	0.77	x	4.32	х	113.91	0.63	x	0.7	7 = [150.39	(79
Southwesto.9x	0.77	×	10.33	×	113.91	0.63	×	0.7	ī = [719.22	(79
Southwesto.9x	0.77	x	9.8	x	113.91	0.63	×	0,7	3	341.16	(79
Southwest _{0.9x}	0.77	x	9.87	×	113,91	0.63	×	0.7	ī - Ē	343,6	(79
Southwesto.9x	0.77	х	10,12	×	113.91	0.63] × [0.7] = [352,3	(79
Southwesto.9x	0.77	x	11.61	×	113.91	0.63	x	0.7	=	404.17	(79
Southwesto.9x	0.77	х	12.37	х	113.91	0.63	x	0.7	=	430.63	(79
Southwesto.9x	0.77	х	12.1	x	113,91	0.63	x	0.7	=	421.23	(79
Southwesto.9x	0.77	x	4.51	x	113.91	0.63	x	0.7] =	157	(79
Southwesto.9x	0.77	x	7.97	х	104,39	0.63	×	0.7	=	254.27	(79
Southwest _{0.9x}	0.77	x	7,56	×	104.39	0.63	×	0.7	(E)	241.19	(79
Southwesto.9x	0.77	x	4.32	x	104.39	0.63	x	0.7] = [137,82	(79
Southwesto.9x	0.77	x	10.33	×	104.39	0.63	x	0.7	=	659.12	(79
Southwesto.9x	0.77	x	9.8	x	104.39	0.63	×	0.7	=	312.65	(79
Southwest _{0.9x}	0.77	X	9.87	X	104.39	0.63	х	0.7	(=)	314.88	(79
Southwesto.9x	0.77	х	10.12	×	104.39	0.63	×	0.7	=	322.86	(79
Southwesto.9x	0.77	×	11.61	х	104.39	0.63	×	0.7] = [370.39	(79
Southwesto.9x	0.77	х	12.37	X	104,39	0.63	×	0.7	=	394,64	(79
Southwesto.9x	0.77	x	12.1	х	104.39	0.63	x	0.7	=	386.03	(79
Southwest _{0.9x}	0.77	X	4.51	x	104.39	0.63	х	0.7	=	143.88	(79
Southwest _{0.9x}	0.77	X	7.97	x	92.85	0.63	х	0.7	=	226.16	(79
Southwest _{0.9x}	0.77	х	7.56	x	92.85	0.63	×	0,7	=	214.53	(79
Southwesto.9x	0.77	×	4.32	х	92.85	0.63	x	0.7	=	122.59	(79
Southwesto,9x	0.77	x	10.33	х	92.85	0.63	х	0.7	=	586,26	(79
Southwesto.9x	0.77	х	9.8	х	92.85	0.63	x	0.7	=	278.09	(79
Southwesto.9x	0.77	х	9.87	х	92.85	0.63	х	0.7	=	280.08	(79
Southwest _{0.9x}	0.77	x	10.12	х	92.85	0.63	x	0.7	=	287.17	(79

Southwesto.9x	0.77	×	11.61	х	92.85		0.63	х	0.7] = [329.45	(79
Southwesto.9x	0.77	x	12,37	×	92.85	īi	0.63	x	0.7	=	351.02	(79
Southwesto.9x	0.77	×	12,1	×	92.85	ī	0.63	×	0.7	=	343,36	(79
Southwesto,9x	0.77	×	4.51	×	92.85	Ī	0.63	×	0.7] = [127.98	(79
Southwesto,9x	0.77	×	7.97	×	69.27	1	0.63	х	0.7	=	168.72	(79
Southwest _{0.9x}	0.77	×	7.56	×	69.27	ĪĪ	0.63	×	0.7	=	160.04	(79
Southwesto.9x	0.77	×	4.32	×	69.27	ĪĒ	0.63	×	0.7	=	91.45	(79
Southwesto.9x	0.77	×	10,33	×	69.27	ĪĪ	0.63	х	0.7		437,35	(79
Southwest _{0.9x}	0.77	×	9.8	×	69.27] [0.63	×	0.7	=	207.46	(79
Southwesto.9x	0.77	x	9.87	×	69.27] [0.63	x	0.7	=	208.94	(79
Southwesto.9x	0.77	x	10.12	×	69.27	j [0.63	x	0.7	= [214.23	(79
Southwesto.9x	0.77	x	11.61	×	69.27] [0.63	x	0.7	=	245,77	(79
Southwest _{0.9x}	0.77	х	12,37	×	69.27] [0.63	×	0.7	=	261,86	(79
Southwesto.9x	0.77	х	12.1	х	69.27] [0.63	х	0.7	=	256.15	(79
Southwesto.9x	0.77	x	4.51	×	69.27	ī [0.63	x	0.7	=	95.47	(79
Southwesto.9x	0.77	х	7.97	x	44.07	ĪĪ	0.63	x	0.7] = [107.34	(79
Southwesto.9x	0.77	х	7.56	x	44.07	ĵ	0.63] x	0.7	=	101.82	(79
Southwest _{0.9x}	0.77	×	4.32	x	44.07	ĪĪ	0.63	x	0.7] = [58.18	(79
Southwesto.9x	0.77	×	10.33	×	44.07	ĪĪ	0.63	×	0,7] ≠ [278.26	(79
Southwesto.9x	0.77	x	9.8	x	44.07	ī	0.63	x	0.7	= [131.99	(79
Southwesto.9x	0.77	х	9.87	×	44.07	ĪĪ	0.63	x	0.7	=	132.93	(79
Southwesto.9x	0.77	х	10.12	×	44.07	ĪĪ	0.63	х	0.7	=	136,3	(79
Southwesto.9x	0.77	x	11.61	x	44.07	j [0.63] x [0.7] = [156,37	(79
Southwesto.9x	0.77	×	12.37	x	44.07	ĪĒ	0.63	×	0.7	=	166.61	(79
Southwest _{0.9x}	0.77	×	12.1	×	44.07	ĪĪ	0.63	x	0.7	=	162.97	(79
Southwesto.9x	0.77	x	4.51	×	44.07		0.63	x	0.7] = [60.74	(79
Southwesto.9x	0.77	х	7.97	x	31.49] [0.63	X	0.7	=	76.7	(79
Southwesto,9x	0.77	(x)	7.56	×	31,49] [0.63	x	0.7	=	72.75	(79
Southwesto.9x	0.77	х	4.32	x	31.49] [0.63	x	0.7] = [41.57	(79
Southwesto.9x	0.77	×	10.33	×	31.49	ĪĪ	0.63	×	0.7] = [198.81	(79
Southwesto.9x	0.77	×	9.8	×	31.49] [0.63	х	0.7] = [94.31	(79
Southwesto.9x	0.77	х	9.87	×	31.49		0.63	х	0.7	=	94.98	(79
Southwesto.9x	0.77	х	10.12	х	31.49] [0.63	x	0.7	=	97.39	(79
Southwest _{0.9x}	0.77	x	11.61	x	31,49] [0.63	x	0.7	=	111.72	(79
Southwesto,9x	0.77	х	12.37	×	31.49	1 I	0.63	x	0.7] = [119.04	(79
Southwesto.9x	0.77	×	12.1	х	31.49	jį	0.63] x	0.7	= [116.44	(79
Southwesto.9x	0.77] x [4.51	x	31,49	i C	0.63	x	0.7] = [43.4	(79
Northwest 0.9x	0.77	×	1	ī × [11,28] x [0.63] x [0.7	Ī = [3,45	(81
Northwest 0.9x	0.77	х	0.4	×	11,28	x	0.63] × [0.7] = [1.38	(81
Northwest 0.9x	0.77	×	13.33	x	11.28	×	0.63	x	0.7] = [45.96	(81
Northwest 0.9x	0.77	T x	0.64	ī × Ī	11.28	×	0.63	×	0.7	ī <u>-</u> ī	11.03	(81

Northwest 0.9x	0.54	x	2.35	х	11.28	×	0.63	x	0.7] = [5.68	(81)
Northwest 0.9x	0.77	x	- 1	х	22.97	x	0.63	x	0.7	= [7.02	(81)
Northwest 0.9x	0.77	x	0.4	x	22.97	x	0.63	×	0.7] = [2.81	(81)
Northwest 0.9x	0.77	x	13.33	х	22.97	x	0.63	x	0,7	=	93.56	(81)
Northwest 0.9x	0.77	x	0.64	×	22.97	x	0.63	_ x [0.7) ÷	22.46	(81)
Northwest 0,9x	0.54	×	2.35	х	22.97	x	0.63	x	0.7] = [11.57	(81)
Northwest 0.9x	0.77	x	1] x [41.38	x	0.63	x	0.7] = [12.65	(81)
Northwest 0.9x	0.77	×	0.4	×	41.38	х	0.63	x	0.7	3	5.06	(81)
Northwest 0.9x	0.77	x	13.33	х	41.38	х	0.63	x	0.7	= [168.57	(81)
Northwest 0.9x	0.77	x	0.64	x	41.38	x	0.63	x	0,7] = [40.47	(81)
Northwest 0.9x	0.54	x	2.35	_ x [41.38	х	0.63	x	0.7] = [20.84	(81)
Northwest 0.9x	0.77	x	1	x	67.96	х	0.63	x	0.7	=	20,77	(81)
Northwest 0.9x	0.77	×	0.4	×	67.96	х	0.63	х	0,7] = [8.31	(81)
Northwest 0.9x	0.77	x	13.33	×	67.96	х	0.63	х	0.7	=	276.84	(81)
Northwest 0.9x	0.77	x	0.64	x [67.96	x	0.63] x [0.7	= [66.46	(81)
Northwest 0.9x	0.54	×	2.35	×	67.96	(X)	0.63	x	0.7] = [34.23	(81)
Northwest 0.9x	0.77	х	1	х	91.35	X	0.63	x	0.7	= [27.92	(81)
Northwest 0.9x	0.77	x	0.4	×	91.35	х	0.63	x	0.7] = [11.17	(81)
Northwest 0.9x	0.77	×	13,33	×	91,35	×	0,63	×	0,7	= [372.13	(81)
Northwest 0.9x	0.77	x	0.64	x	91.35	x	0.63	x	0.7] = [89.33	(81)
Northwest 0.9x	0.54	x	2.35	x	91.35	х	0.63	x	0.7] = [46.01	(81)
Northwest 0.9x	0.77	х	1	x	97.38	X	0.63	x	0.7	=	29.76	(81)
Northwest 0.9x	0.77	x	0.4	x	97.38	х	0.63	×	0.7] = [11.9	(81)
Northwest 0.9x	0.77	x	13.33	×	97.38	х	0.63	x	0.7	=	396.73	(81)
Northwest 0.9x	0.77	×	0.64	×	97.38	х	0.63	x	0.7	=	95.24	(81)
Northwest 0.9x	0.54	х	2.35	х	97.38	х	0.63	x	0.7	=	49.05	(81)
Northwest 0.9x	0.77	x	1	х	91.1	X	0.63	х	0.7	=	27.84	(81)
Northwest 0.9x	0.77	х	0.4	×	91.1	X	0.63	x	0.7	=	11.14	(81)
Northwest 0.9x	0.77	х	13.33	х	91.1	x	0.63	х	0.7	=	371.13	(81)
Northwest 0.9x	0.77	x	0.64	×	91.1	x	0.63	Х	0.7	= [89.09	(81)
Northwest 0.9x	0.54	x	2.35	×	91.1	х	0.63	×	0.7	1	45.88	(81)
Northwest 0.9x	0.77	х	1	×	72.63	х	0.63	х	0.7	=	22.2	(81)
Northwest 0.9x	0.77	х	0.4	x	72.63	х	0.63	х	0.7	=	8.88	(81)
Northwest 0.9x	0.77	x	13,33	x	72.63	х	0.63	х	0.7	=	295.87	(81)
Northwest 0.9x	0.77	х	0.64	х	72.63	Х	0.63	х	0.7	= [71.03	(81)
Northwest 0,9x	0.54	×	2.35	х	72.63	х	0.63	х	0.7	= [36.58	(81)
Northwest 0.9x	0.77	×	1	×	50.42	x	0.63	×	0.7] = [15.41	(81)
Northwest 0.9x	0.77	х	0.4	x	50.42	×	0.63	×	0.7	=	6.16	(81)
Northwest 0,9x	0.77	х	13.33	х	50.42	х	0.63	x	0.7	=	205.4	(81)
Northwest 0.9x	0.77	x	0.64	х	50.42	X.	0.63	x	0.7	=	49.31	(81)
Northwest 0.9x	0.54	x	2.35	×	50.42	×	0.63	x	0.7	=	25.4	(81)

Northwest 0.5x	0.77	x	1	×	28.07	x	0.63	X	0.7] = [8.58	(81
Northwest 0.9x	0.77	х	0.4	x	28.07	x	0.63	X	0.7	9	3.43	(81
Northwest 0.9x	0.77	x	13.33	x	28.07	x	0.63	x	0.7		114.34	(81
Northwest 0.9x	0.77	х	0.64	x	28.07	x	0.63	X	0.7	=	27.45	(81
Northwest 0.9x	0.54	X	2.35	x	28.07	x	0.63	Х	0.7] ≈ [14.14	(81
Northwest 0.9x	0.77	х	1	х	14.2	x	0.63	х	0.7	=	4.34	(81
Northwest 0.9x	0.77	х	0.4	х	14.2	x	0.63	X	0.7	=	1.74	(81
Northwest 0.9x	0.77	х	13.33	x	14.2	x	0.63	х	0.7	=	57.84	(81
Northwest 0.9x	0.77	X	0.64	x	14.2	x	0.63	x	0.7		13.88	(81
Northwest 0.9x	0.54	x	2.35	X	14.2	x	0.63	x	0.7] = [7.15	(81
Northwest 0.9x	0.77] x [1	_ x [9.21	x	0.63	x	0.7] = [2.82	(81
Northwest 0.9x	0.77	×	0.4	х	9.21	x	0.63	x	0.7	=	1.13	(81
Northwest 0.9x	0.77	x	13.33	_ x [9.21	x	0,63	x	0.7	=	37.54	(81
Northwest 0,9x	0.77	х	0.64	_ x [9.21	X	0.63	X	0.7	= [9.01	(81
Northwest 0.9x	0.54	x	2.35] x [9.21	x	0.63	x	0.7	= [4.64	(81
Rooflights 0.9x	1	x	24	x	26	X	0.63	X	0.8	= [283.05	(82
Rooflights 0.9x	1	x	3.49] x	26	x	0.63	×	0.8] = [41.16	(82
Rooflights 0.9x	j	x	5.22] x [26	х	0,63	х	0.8] = [61.56	(82
Rooflights 0.9x	1	х	2.58	x	26	x	0.63	х	0.8	=	30.43	(82
Rooflights 0.9x	1	×	0.7] x	26	x	0.63	×	0.8	= [16.51	(82
Rooflights 0.9x	Ĵ	x	24	×	54	x	0.63	x	0.8	=	587.87	(82
Rooflights 0.9x	1	x	3.49	x	54	x	0.63	Х	0.8	=	85.49	(82
Rooflights 0.9x	1	×	5.22	x	54	х	0.63	X	0.8	a	127.86	(82
Rooflights 0.9x	1	х	2.58] x	54	x	0.63	х	0.8	=	63.2	(82
Rooflights 0.9x	1	х	0.7	x	54	x	0.63	X	0.8	3 (2)	34.29	(82
Rooflights 0.9x	1	x	24	×	96	x	0.63	X	0.8		1045.09	(82
Rooflights 0.9x	1	x	3.49] x [96	x	0.63	x	0.8] = [151.97	(82
Rooflights 0.9x	1	×	5.22	x	96	x	0.63	x	0.8		227.31	(82
Rooflights 0.9x	1	x	2.58	x	96	x	0.63	×	0.8	=	112.35	(82
Rooflights 0.9x	1 -	×	0.7	×	96	x	0.63	x	0.8] = [60.96	(82
Rooflights 0.9x	1	х	24	х	150	х	0.63	x	8.0	=	1632.96	(82
Rooflights 0.9x	1	x	3.49] x [150	x	0.63	x	0.8	7	237.46	(82
Rooflights 0.9x	1	×	5,22	x	150	x	0.63	X	0.8	=	355.17	(82
Rooflights 0.9x	1	x	2.58	x	150	x	0.63	x	0.8	=	175.54	(82
Rooflights 0.9x	1	x	0.7	x	150	x	0.63	x	0.8	=	95.26	(82
Rooflights 0.9x	1	x	24] x [192	х	0.63	x	0.8] = [2090.19	(82
Rooflights 0.9x	1	x [3,49] x	192	x	0.63	×	0.8	Ī = [303.95	(82
Rooflights 0.9x	1] x [5.22	j × [192	x	0.63	x	0.8	j = [454.62	(82
Rooflights 0.9x	1	x	2.58	x	192	x	0.63	x	0.8] = [224.7	(82
Rooflights 0.9x	-1	х	0.7] × [192	×	0.63	x	0.8		121.93	(82
Rooflights 0.9x	1	x	24	ī x Ē	200	1 x [0.63	1 x	0.8	ī - Ē	2177.28	(82

a of lights	- 1	x	3.49	x	200	x	0.63	x	0.8	=	316.61	(82
ooflights 0.9x	4	×	5.22	×	200	×	0.63	T _x	0.8	- [473,56	(82
ooflights 0.9x	1 -	i x E	2.58	×	200	×	0.63	x	0.8		234.06	(82
ooflights 0.9x	4	×	0.7	×	200	×	0.63	T x	0.8		127.01	(82
ooflights 0.9x	1	x	24	×	189	x	0.63	х	0.8	=	2057.53	(82
ooflights 0.9x	1	×	3.49	x	189	×	0.63	x	0.8	=	299.2	(82
ooflights 0.9x	1	×	5.22	x	189	x	0.63	×	0.8	=	447.51	(83
ooflights 0.9x	1	×	2.58	x	189	x	0.63	x	0.8	= [221.18	(8)
ooflights 0.9x	1	x	0.7	×	189	×	0.63	x	0.8	=	120.02	(8
ooflights 0.9x	1	x	24	x	157	х	0.63] x [0.8	= 1	1709.16	(8:
ooflights 0.9x	1	×	3.49	×	157	x	0.63	x	0.8	=	248,54	(82
ooflights 0.9x	1	x	5.22	x	157	x	0.63	×	0.8	=	371.74	(8)
ooflights 0.9x	1	x	2.58	×	157	x	0.63	×	0.8	- [183.74	(8)
ooflights 0.9x	1	×	0.7	×	157	х	0.63	x	0.8	=	99.7	(8)
ooflights 0.9x	1	×	24	×	115	x	0.63	x	8.0	=	1251.94	(8)
ooflights 0.9x	1	×	3.49	x	115	x	0.63	X	8,0		182.05	(8
ooflights 0.9x	4	x	5.22	x	115	х	0.63	x	0.8	= [272.3	(8
ooflights 0.9x	1	x	2.58	х	115	х	0.63	х	0.8	=	134.58	(8
ooflights 0.9x	1	×	0.7	x	115	x	0.63	x	0.8	= [73.03	(8
ooflights 0.9x	1	x	24	×	66	x	0.63	x [0.8	=	718,5	(8
ooflights 0.9x	1	x [3.49	x	66	x	0.63	x	0.8	= [104.48	(8
ooflights 0.9x	4	×	5.22	х	66	x	0.63	X	0.8	=	156:27	(8
ooflights 0.9x	1	×	2.58	x	66	x	0.63	x	0.8		77.24	(8
ooflights 0.9x	4	х	0.7	x	66	х	0.63	х	0.8	=	41.91	(8
ooflights 0.9x	1	х	24	×	33	x	0.63	x	0.8	=	359.25	(8:
ooflights 0.9x	-1	×	3.49	×	33	×	0.63	x	8.0	-	52.24	(8)
ooflights 0.9x	1	×	5.22	x	33	x	0.63	x	0.8	=	78.14	(8
ooflights 0.9x	1	x	2.58	x	33	x	0.63	x	0,8	=	38,62	(8)
ooflights 0.9x	1	×	0.7	x	33	х	0.63	X	0.8	=	20,96	(8
ooflights 0.9x	1	×	24	x	21	x	0.63	×	0.8	- [228.61	(8
ooflights 0.9x	1	×	3,49	×	21	×	0.63	x [0.8	=	33.24	(8:
ooflights 0.9x	1) × [5.22	x	21	x	0.63	x	0.8	=	49.72	(8
ooflights 0.9x	1	×	2.58	x	21	x	0.63	×	8.0	- 1	24.58	(8
ooflights 0.9x	1	x	0.7	х	21	x	0.63	×	0.8	=	13.34	(8

86)m=	1	0.99	0.94	0.82	0.63	0.45	0.33	0.39	0.64	0.92	0.99	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	eps 3 to 1	7 in Table	e 9c)					
37)m=	19.35	19.72	20.21	20.68	20.91	20.98	21	20,99	20.93	20.5	19.8	19.28		(87)
Temr	oraturo	during	neating r	periode i	n rest of	dwelling	from Ta	able 9, Ti	h2 (°C)					
18)m=	19.7	19.7	19.7	19.71	19.72	19.73	19.73	19.73	19.72	19.72	19.71	19.71		(88)
		Attended				V	37.7	A 7	3,0.52					******
			ains for		1		_			D 2000	0.000			(0.0)
39)m=	1	0.98	0.92	0.77	0.56	0.37	0.24	0.28	0.54	0.89	0.99	1		(89)
Mean	interna	I tempe	rature in	the rest	of dwell	ing T2 (f	follow ste	eps 3 to 7	in Tabl	le 9c)				
90)m=	18.21	18.59	19.06	19.49	19.67	19.72	19,73	19.73	19,69	19.36	18.68	18.16		(90)
									,	fLA = Livin	g area + (4) =	0.09	(91)
Mean	interna	l tempe	ature (fo	or the wh	nole dwe	lling) = f	I A × T1	+ (1 – fL	Δ) × T2					
	18.32	18.7	19.17	19.6	19.78	19.84	19.84	19.84	19.81	19.46	18.78	18.26		(92)
7	_		L	- A-1/A-1			om Table	e 4e, whe	200					
0.000	18.32	18.7	19.17	19.6	19.78	19.84	19.84	19.84	19.81	19,46	18.78	18.26		(93)
		lina ren	urement	A										
					re obtair	ned at st	ep 11 of	Table 9	so tha	rt Ti m=(76)m an	d re-calci	ulate	
			or gains			iou ut ot	cp 1101	Tuble 5	5, 50 tha	it fame y	, ojin an	u 10 00101	aldic.	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	ctor for g	ains, hm	n's										
4)m=	1	0.98	0.92	0.77	0.56	0.37	0.24	0.29	0.55	0.88	0.99	1		(94
Jsefu	Il gains,	hmGm	W = (9	4)m x (8	4)m									
(5)m=	3277.55	5023.98	6519.76	7073.15	6025.07	4026,74	2514.97	2660.81	4249.78	4932.44	3667,12	2890.13		(95
Monti	nly aver	age exte	rnal tem	peratur	e from T	able 8								
)6)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16,4	14.1	10.6	7.1	4.2		(96
Heat	loss rat	e for me	an intern	al temp	erature,	Lm, W	=[(39)m	x [(93)m	- (96)m	1				
97)m=	11179.04	10976.28	10055.45	8404.16	6337.4	4069.38	2520.13	2671.54	4449.56	6950.39	9197,24	11117.81		(97
Space	e heatir	ng requir	ement fo	r each r	month, k	Wh/mon	th = 0.02	24 x [(97	m – (95)m] x (4	1)m			
	5878.71	1		958.33	232.38	0	0	0	0	1501,35		6121.4		
	_							Tota	per year	(kWh/year) = Sum(9	8) 34.12 =	25304.34	(98)
Snar	a haatir	a requir	ement in	W/h/m	2h/oar					OCTO-GIA		ř	47.44	(99)
		9.00			/year							L	47.14	(33)
			ulremer											
Calcu	111111111111111111111111111111111111111	T-70-70	July and	4 TANKS 1	- 100	100	- 6.0	1.14.15	27.1		100			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
					_		_	and exte						
00)m=		0	0	0	0	7305.01	5750.75	5896.18	0	0	0	0		(10)
	tion Em.	ctor for lo							-					16.0
											0	0		(10
01)m=	0	0	0	0	0	0.95	0.97	0.96	0	0	Ü			
01)m= Usefu	0 Il loss, l	nmLm (V	Vatts) = ((100)m	x (101)m			254.37						100
101)m= Usefu 102)m=	0 ul loss, l	nmLm (V	Vatts) = ((100)m :	x (101)m	6944.87	5599.72	5652.82	0	0	0	0		(10
101)m= Usefu 102)m= Gains	0 ul loss, l 0 s (solar	nmLm (V 0 gains ca	Vatts) = (0 lculated	(100)m : 0 for appl	x (101)m 0 icable w	6944.87 eather re	5599.72 egion, se	5652.82 ee Table	0	0	0	0		
101)m= Usefu 102)m= Gains 103)m=	0 ul loss, l 0 s (solar	nmLm (V 0 gains ca 0	Vatts) = (0 lculated 0	(100)m : 0 for appl 0	x (101)m 0 icable w	6944.87 eather re 12261.85	5599.72 egion, se 11724.02	5652.82 ee Table 10461.7	0 10) 0	0	0	0		
Usefu Usefu 102)m= Gains 103)m=	0 ll loss, l 0 s (solar 0 e coolin	omLm (V gains ca o g require	Vatts) = (0 lculated 0 ement fo	(100)m o o for appl o or month	(101)m 0 icable w 0 whole o	6944.87 eather re 12261.85	5599.72 egion, se 11724.02	5652.82 ee Table 10461.7	0 10) 0	0	0	0	(41)m	
Usefu Usefu 102)m= Gains 103)m=	0 ll loss, l 0 s (solar 0 e coolin 04)m to	omLm (V gains ca o g require	Vatts) = (0 lculated 0	(100)m o o for appl o or month	(101)m 0 icable w 0 whole o	6944.87 eather re 12261.85	5599.72 egion, se 11724.02 continu	5652.82 ee Table 10461.7	0 10) 0	0	0	0	(41)m	(103

Stroma FSAP 2012 Version: 1.0.1.21 (SAP 9.92) - http://www.stroma.com

Cooled	fractio	n							fC=	cooled	area ÷ (4) =	0.75	(105)
Intermit	tency f	actor (Ta	able 10	(b)										
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		
Conno	on alina	roquiro	mont fo	r mooth -	- (10.1)m	w /40EV	× /406\	-	Tota	l = Sum	(104)	-	0	(106)
(107)m=	o 0	require	o	r month =	0	713.16	848.82	666.51	0	1 0	0	0		
L. Server	-	1.00	_	1 *	1	7 15.15	510.52			I = Sumi		=	2228.49	(107)
Space	cooling	require	ment in	kWh/m²/	vear) ÷ (4) =		-	4.15	(108)
		2322		dividual r		vatems i	neiudine	miero-C		6				
Space	heati	ng:	va. I	secondar									Ö	(201)
	1000			main sys		, norman		(202) = 1	- (201) =			(F	1	(202)
				n main sy				(204) = (2		(203)] =		-	1	(204)
			Property of					12017 (VE/10 (1)	(2007)		÷		(206)
	. 1			ating syst		a auatan	. 04					-	88.9	1 200
				olementa	i .	y system	1, 70					-	0	(208)
Coolin				ciency Ra									4.32	(209)
_ [Jan	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	ear
		g require 3999.95		(calculate 5 958.33	232.38	0	0	0	0	1501.35	3981.68	6121.4		
	THOUGH				16 m 1 m	F 600				1501.55	390 1.00	0121.4		10111
	75.4	4499.38	-	210)m } x	1	06)	0	0	0	1888 81	4478.83	6885.71		(211)
L	0012.72	4435,30	2333	1077.50	201.33	U	U		1 1 1 1	ar) =Sum(A-3-2	A 105 PAR A	20402.00	(211)
Cnaar	baatin	a fuel /e	ooonde	ary), kWh	/month			100	a (average	ary -curin,	- 1 1/1 5,10	12	28463.82	(211)
				x 100 = (
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
								Tota	l (kWh/ye	ar) =Sum(215),_500	ē.	0	(215)
Water I	neating	3												
Output	17.5727			iculated a										
	256.85	226.58	238,42	214.36	210.52	188.77	181.92	198.76	198,14	222:25	234.2	250.88		
		ater hea	_	· Province of			-	True and	Tomaco e	E EU ST	To a size 5	3.77.0	78.8	(216)
(217)m=	88.43	88.29	87,96	1000	83.79	78.8	78.8	78.8	78.8	87.45	88.27	88.45		(217)
		heating, m x 100												
		256.62		_	251.24	239.56	230.87	252,23	251.44	254.13	265.32	283.63		
								Tota	d = Sum(2	(19a), ,; =			3093.33	(219)
Space (221)m	coolin = (107	g fuel, k)m÷ (20	Wh/m (9)	onth.										
(221)m=	0	0	0	0	0	165.08	196.49	154.28	0	0	0	0		
								Tota	I = Sum(2	21), , =			515.85	(221)
Annua										k	Wh/yea	r	kWh/yea	ır
Space I	heating	fuel use	ed, mai	n system	1								28463.82	
Water h	neating	fuel use	ed										3093.33	
Space	cooling	fuel use	ed									Ī	515.85	

Electricity for pumps, fans and electric keep-hot				
central heating pump:		10.0	120	(230c
boiler with a fan-assisted flue			45	(230e
Total electricity for the above, kWh/year	su	m of (230a)(230g) =	165	(231)
Electricity for lighting			992.	09 (232)
12a CO2 emissions – Individual heating system	s including micro-Ci-	IP		
	Energy kWh/year	Emission facto kg CO2/kWh	A	sions 02/year
Space heating (main system 1)	(211) x	0.216	6148	(261)
Space heating (secondary)	(215) x	0.519	0	(263)
Water heating	(219) x	0.216	668.	16 (264)
Space and water heating	(261) + (262) + (263) +	+ (2 64) =	6816	.34 (265)
Space cooling	(221) x	0.519	267.	73 (266)
Electricity for pumps, fans and electric keep-hot	(231) ×	0.519	85.6	(267)
Electricity for lighting	(232) x	0.519	514.	.9 (268)
Total CO2, kg/year		sum of (265)(271) =	7684	4.6 (272)
Dwelling CO2 Emission Rate		(272) + (4) =	14.3	32 (273)
El rating (section 14)			82	(274)

APPENDIX (iii)

SAP L1A 2010 REGULATIONS COMPLIANCE REPORT (PROPOSED HOUSE DER)

			User	Details						
Assessor Name: Software Name:	Ondrej Ga Stroma FS			Stroma Softwa				2000	006629 n: 1.0.1.21	
			Propert	Address:	Proposi	ed Hous	E			
Address :	17, Branch	Hill, LONDON	N, NW3 71	NA						
 Overall dwelling dim 	ensions	0.00			_					
Basement			Ar	ea(m²)	4.4	Av. Hei	-	l _{max} = [Volume(m³	_
			100		1a) x	2	.7	(2a) =	621	(36
Ground floor				164.6	1b) x	3	.6	(2b) =	592.56	(3t
First floor				142.2	1c) x	3	.1	(2c) =	440.82	(30
Total floor area TFA = (1a)+(1b)+(1c)+	+(1d)+(1e)+	(1n)	536.8	4)					
Owelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	1654.38	(5)
2. Ventilation rate:				T. 100		-			-	
	main heating	secon heatir		other		total			m³ per hou	ır
Number of chimneys	0	+ 0	+	0	- F	0	x ·	40 =	0	(68
Number of open flues	0	+ 3	-	0	= -	3	×	20 =	60	(6)
Number of intermittent f	ans	-			· F	10	= x	10 = [100	(7a
Number of passive vent					F		= x	10 =		=
					F	0	_	40 =	0	(71
Number of flueless gas	Tires				L	0	× .	40 -	0	(70
								Air ch	anges per ho	our
nfiltration due to chimne	evs. flues and	fans = (6a)+(6b)+(7a)+(7b)	+(7c) =	Г	160	1	+ (5) =	0.1	(8)
If a pressurisation test has					ontinue fro		200		10.1	
Number of storeys in	the dwelling (r	ns)							Ő	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10
Structural infiltration:						uction			0	(11
if both types of wall are p deducting areas of open	영어 등 기술 기술 시시하는 사람들이다.	and the second second second	ig to the gre	ater wall area	(atter					
If suspended wooden			r 0.1 (sea	led), else e	enter 0			1	0	(12
If no draught lobby, e	nter 0.05, else	enter 0						j	0	(13
Percentage of window	vs and doors o	Iraught strippe	d					Ī	0	(14
Window infiltration				0.25 - [0.2	x (14) + 1	00] =		Ī	0	(15
Infiltration rate				(8) + (10) +	(11) + (1	2) + (13) +	(15) =		0	(16
Air permeability value	, q50, express	ed in cubic me	etres per l	nour per so	uare m	etre of e	nvelope	area	5	(17
f based on air permeab	ility value, the	n(18) = [(17) + 26]	0]+(8), other	wise (18) = (1	6)				0.35	(18
Air permeability value appli	ies if a pressurisa	tion test has been	done or a d	egree air peri	neability i	s being us	ed			
Number of sides shelter	ed								1	(19
Shelter factor				(20) = 1 - [0		9)]=			0.92	(20
nfiltration rate incorpora	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. ((21) = (18)	x (20) =			I.	0.32	(2
nfiltration rate modified			-							
	Mar Apr	May Ju	in Jul	Aug	Sep	Oct	Nov	Dec		
Jan Feb										
Jan Feb Monthly average wind s		ole 7								

(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infiltr	ation rat	e (allowi	na for st	nelter an	d wind s	need) =	(21a) v	(22a)m					
0.41	0.4	0.39	0.35	0.34	0.3	0.3	0.3	0.32	0.34	0.36	0.38	7	
Calculate effec		the second second	rate for t	he appli	cable ca	se					1		
If mechanica			and the season of	¥01 144					c - 8555			0	(23a
If exhaust air h						1			(23a)			C	(23b
If balanced with		Vietna											(230
a) If balance	1	anical ve						1		(23b) × [1	;) ÷ 100]	/246
(24a)m≡ 0	0		0	0	0	0	0	0	0		0	J	(24a
b) If balance	o mecn	anicai ve		1	neat red	overy (I	VIV) (24	T	2b)m + (0	1	(24b
			0	0		5745.00		0	0	0	1 0	1	(240
c) If whole h				100000				outside (b) m + 0	5 x 123	h)			
(24c)m= 0	0	0	0	0	0	0	0	1 0	0	0	0	1	(24c
d) If natural	ventilati	on or wh	ole hous	se positiv	ve input	ventilatio	on from	loft	_		-	_	
								22b)m² x	0.5]				
(24d)m= 0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(24d
Effective air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	ld) in bo	x (25)					
										_		_	A 200 Mar 2
(25)m= 0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(25)
3 Heat losse	s and h	eat loss p	paramet	er							V 5.0./		(25)
	s and h	eat loss p		er igs	0.55 Net Ar A ,r	ea	U-va W/m:	lue	0.56 A X L (W/		k-valu kJ/m²		A X k kJ/K
3 Heat losse	s and h	eat loss p	paramet Openir	er igs	Net Ar	ea	U-va	lue	AXL		k-valu		AXk
3 Heat losse ELEMENT	s and he Gros area	eat loss p	paramet Openir	er igs	Net Ar A ,r	rea m² x	U-va W/m:	lue 2K	AXL (W/		k-valu		A X k kJ/K
3 Heat losse ELEMENT Doors	Gros area	eat loss p	paramet Openir	er igs	Net Ar A ,r	rea m² x x1	U-va W/m: 1 /(1/(1.3)-	lue 2K	AXL (W/		k-valu		A X k kJ/K (26)
3 Heat losse ELEMENT Doors Windows Type	Grovarea	eat loss p	paramet Openir	er igs	Net Ar A ,r 2	rea m² x x1	U-va W/m: 1 /[1/(1.3)-	lue 2K = + 0.04] =	A X L (W/ 2 5.77		k-valu		A X k kJ/K (26) (27)
3 Heat losse ELEMENT Doors Windows Type Windows Type	s and he Gros area e 1 e 2 e 3	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67	rea m² x 1 x1 x1	U-va W/m; 1 /(1/(1.3)- /(1/(1.3)-	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78		k-valu		A X k kJ/K (26) (27)
3 Heat losse ELEMENT Doors Windows Type Windows Type Windows Type	Gros area	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25	rea m² x 1 x1 x1 x1	U-va W/m: 1 /[1/(1.3)· /[1/(1.3)· /[1/(1.3)·	lue 2K = + 0.04] = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08		k-valu		A X k kJ/K (26) (27) (27) (27)
3 Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type	Groarea e 1 e 2 e 3 e 4	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68	rea m² x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1	U-va W/m/ 1 1/(1/3)- /(1/(1/3)- /(1/(1/3)- /(1/(1/3)-	lue 2K = + 0.04] = + 0.04] = + 0.04] = + 0.04] =	A X L (W) 2 5.77 2.78 2.08		k-valu		A X k kJ/K (26) (27) (27) (27) (27)
3 Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type	Gros area e 1 e 2 e 3 e 4 e 5 e 6	eat loss p	paramet Openir	er igs	Net Ar A ,1 2 2 4.67 2.25 1.68	ea m² x x1 x1 x1 x1 x1 x1	U-val W/m2 1 1/1/(1.3): //1/(1.3): //1/(1.3): //1/(1.3):	lue 2K = + 0.04] = + 0.04] = + 0.04] = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24	I (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27)
3 Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Growarea 1 2 2 2 3 4 4 6 5 6 6 6 7	eat loss p	paramet Openir	er igs	Net Ar A ,1 2 2 4.67 2.25 1.68 1 1 0.4 13.33	rea m² x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	U-va W/m/ 1 1/(1.3)- 1/1/(1.3)- 1/1/(1.3)- 1/1/(1.3)- 1/1/(1.3)- 1/1/(1.3)-	lue 2K = + 0.04] = + 0.04] = + 0.04] = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49	I (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
3 Heat losse ELEMENT Doors Windows Type	Gros area 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33	ea m² x 1 x1	U-val W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K = + 0.04] = + 0.04] = + 0.04] = + 0.04] = + 0.04] = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47	I (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
3 Heat losses ELEMENT Doors Windows Type	Gros area 1 2 2 3 4 4 5 5 6 6 7 6 8 9 9	eat loss p	paramet Openir	er igs	Net Ar A ,1 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97	rea m² x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	U-va W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 9.85	I (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat losses ELEMENT Doors Windows Types	Gros area 1	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97	ea m² x 1 x1	U-vai W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85	I (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat losses ELEMENT Doors Windows Type	s and hr Gros area e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97 7.56 4.32	ea m² x 1 x1	U-val W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34		k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat losses ELEMENT Doors Windows Types	s and hi Gros area e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11 e 12	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97 7.566 4.32	ea m² x1	U-vai W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34 5.34	ı (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat losses ELEMENT Doors Windows Type	s and hr Gros area e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11 e 12 e 13	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97 7.56 4.32 10.33	ea m² x 1 x1	U-val W/m2 1 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3): 1/1/(1.3):	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 0.49 16.47 0.79 9.85 9.34 12.77	ı (K)	k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
3 Heat losses ELEMENT Doors Windows Types	s and hi Gros area e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11 e 12 e 13 e 14	eat loss p	paramet Openir	er igs	Net Ar A ,r 2 4.67 2.25 1.68 1 1 0.4 13.33 0.64 7.97 7.566 4.32	ea m² x 1 x1	U-vai W/m/ 1 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3) 1/(1.3)	lue 2K = + 0.04] = + 0.04] =	A X L (W/ 2 5.77 2.78 2.08 1.24 1.24 0.49 16.47 0.79 9.85 9.34 5.34		k-valu		A X k kJ/K (26) (27) (27) (27) (27) (27)

Heat transfer of	2500.000	The second			777.13								
Transport of the last	coefficier	nt, W/K						(39)m	= (37) + (38)m			
(38)m= 318.61	316.84	315.1	306.95	305.42	298.31	298.31	297	301.05	305.42	308.51	311.74		(3
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Ventilation hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × ((25)m x (5)		Jul Stor.	
<i>if details of therma</i> Total fabric he		are not kn	own (36) =	0.15 x (3	1)			(33) +	(36) =		Ė	478.82	(3
Thermal bridge						<						68.37	(3
can be used inste						and the			1000000				
Thermal mass For design assess	* A A						ecisely the		tive Value values of		able 1f	250	(3
Heat capacity			0 - Cm	TEAL	k 1/m21/					2) + (32a).	(32e) =	0	(3
Fabric heat los			U)				(26)(30	10.00	(20)	n) + (nn-	(270)	410.45	(3)
** include the area	as on both	sides of in	ternal wal							g., e., m			_
* for windows and			ffective wi	ndow U-vs			formula 1	A(1/U-vali	re)+0.041 s	as given in	paragraph 1	3.2	12
Roof Type3 Total area of e	lements		27.9		1060.0	=	0.15		17.13			-	(3)
	21.9	=	0		21.9	=	0.15	=	3.29	믁 ¦			(3)
Roof Type1 Roof Type2	61.	=	8.71	-	52.39	=	0.15		7.86	-		1 =	(3)
Walls Type2	503.		193.8		309.5		0.16	- 7	49.53	-		-	(2)
Walls Type1	100.3	=	2	_	98.34	=	0.16		15.73	=		-	(2)
Floor Type 2	-				1.1	×	0.13	=	0.143	= 7		4 📙	(2)
Floor Type 1					230	×	0.13	=	29.9	<u> </u>		1	(2
Rooflights Typ	e 5				0.7		/[1/(1.3) +	_	0.91	٠,			(2)
Rooflights Typ					2.58		/[1/(1.3) +	573 C	3.354				(2
Rooflights Typ					5.22	=	/[1/(1.3) +	423	6.78599	9			(2
Rooflights Typ					3.49	= 0	/[1/(1.3) +		4.537	_			(2)
Rooflights Typ					24		/[1/(1.3) +		31.2				(2
Windows Type					4.51	=	/[1/(1.3)+		5.57				(2
Windows Type					12.1	=	/[1/(1.3)+	VEZ.IV.	14.95				(2)
Windows Type					12.37	=	/[1/(1.3)+		15.29				(2)
Windows Type					11.6	x1	/[1/(1.3)+	0.04] =	14.35				(2
Windows Type	25				0.32	x1	/[1/(1.3)+	0.04] =	0.4				(2
Windows Type	24				2.21	x1	/[1/(1.3)+	0.04] =	2.73				(2
Windows Type	23				0.64	x1	/[1/(1.3)+	0.04] =	0.79				(2)
Windows Type	22				0.36	x1	/[1/(1,3)+	0.04] =	0.44				(2
Windows Type	21				2.24	x1	/[1/(1.3)+	0.04] =	2.77				(2
Windows Type	20				4.9	x1	/[1/(1.3)+	0.04] =	6.06				(2
Windows Type	19				2.65	х1	/(1/(1.3)+	0.04] =	3.27				(2
	18				6.63	x1	/[1/(1.3)+	0.04] =	8.19				(2
	18				6.63	x1	/[1/(1.3)+	0.04] =	8 19				(2

10)m=	s para	meter (F	HLP), W/	m²K					(40)m	= (39)m +	(4)			
_	1.49	1.48	1.48	1_46	1.46	1.45	1.45	1.45	1.45	1.46	1.47	1.47		
lumber i	of day	s in mor	nth (Tabi	le 1a)					,	Average =	Sum(40)	12/12=	1.46	(4
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(1)m=	31	28	31	30	31	30	31	31	30	31	30	31		(4
					0,1		1			01				
4. Wate	r hear	ina ener	av regui	rement						-		kWhive	ar.	
											_			
if TFA				[1 - exp	/-O 0003	49 x (TE	A -13.9	2)1+0.0	0013 x /	ΓFA -13		44		(4
ifTFA:				The mode	,			/-/1			-/			
							erage =					5.89		(4
			hot water person per				designed t ld)	o achieve	a water us	e target o	f			
Е	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
							Table 1c x				1,01			
4)m= 1:	27,48	122.85	118.21	113.58	108.94	104.31	104.31	108.94	113.58	118.21	122.85	127.48		
_										Total = Su	m(44)+_12=		1390,73	(4
nergy con	tent of	hot water	used - cal	culated mo	onthly = 4	190 x Vd,r	n x nm x D	Tm/3600	kWh/mon	ith (see Ta	ables 1b, 1	c, 1d)		
5)m= 1	89.06	165.35	170.63	148.76	142.73	123.17	114.13	130,97	132.53	154.46	168.6	183.09		
instantan	eous w	ater heatir	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		Total = Su	m(45) ₁₋₁₂ =		1823.47	(-
_	28.36	24.8	25.59	22.31	21.41	18.48	17.12	19.65	19.88	23.17	25.29	27,46		(-
ater sto	1422.4	9,000		The state of	1 10 10 10	13103	0.00	11345	14130	435.00	35157	active.		
torage \	volum	e (litres)	includin	g any so	olar or W	WHRS	storage	within sa	me ves	sel		500		(
commi	unity h	eating a	nd no ta	nk in dw	elling, e	nter 110	litres in	(47)						
201111110	- :F	stored	hot wate	er (this in	cludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in ((47)			
	e ii no													
therwis later sto	orage	loss:					Sour B.							
therwis later sto	orage	loss:	eclared l	oss facto	or is kno	wn (kWh	n/day):				3	.5		(
therwise later story) If man	orage nufacti	loss: urer's de			or is kno	wn (kVVI	n/day):					.6		
therwise Vater sto i) If mar empera nergy Io	orage nufacti iture fa ost froi	loss: urer's de actor fro m water	eclared lo m Table storage	2b , kWh/ye	ear			(48) x (49)	-		0			(
otherwise Vater sto (a) If mar empera nergy Io (a) If mar	orage nufacti iture fa ost froi nufacti	loss: urer's de actor fro m water urer's de	eclared lo m Table storage eclared c	2b , kWh/ye cylinder l	ear oss facto	or is not	known.	(48) x (49)	=		2	.6		(
therwise Vater sto I) If mare empera nergy Io I) If mare ot wate	orage nufacti iture fa ost froi nufacti ir stora	loss: urer's de actor fro m water urer's de age loss	eclared lo m Table storage eclared of factor fr	2b , kWh/ye glinder l om Tabl	ear oss facto	or is not	known.	(48) x (49	=		2	.6		(
therwise /ater sto) If mar empera nergy lo) If mar ot wate commu	orage nufacti iture fa ost froi nufacti ir stora unity h	loss: urer's de actor fro m water urer's de age loss	eclared lo m Table storage eclared of factor fr ee section	2b , kWh/ye glinder l om Tabl	ear oss facto	or is not	known.	(48) x (49	=		2	.6		e e
therwise later stone) If man empera nergy lone) If man ot wate communications	orage nufacti iture fa ost froi nufacti r stora inity h	loss: urer's de actor fro m water urer's de age loss eating s from Tal	eclared lo m Table storage eclared of factor fr ee section	2b , kWh/ye cylinder I om Tabl on 4.3	ear oss facto	or is not	known.	(48) x (49	÷		2	.6		(
therwise /ater storal in If man empera nergy low in If man ot wate communications communications communications empera	orage nufacto st from nufactor r stora unity he factor fature fa	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro	eclared lom Table storage eclared of factor free section to the Table m Table	2b , kWh/ye cylinder I om Tabl on 4.3	ear oss facto e 2 (kVVI	or is not	known:			53) =	2	0 0 0		(4
therwise /ater stock) If marempera nergy Ico) If mare ot wate communications communic	orage nufactor from the storage of t	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water	eclared lom Table storage eclared of factor fr ee section ble 2a m Table storage	2b , kWh/ye cylinder I om Tabl on 4.3	ear oss facto e 2 (kVVI	or is not	known:) = () x (52) x (53) =	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6
therwise /ater sto) If marempera mergy Io) If mare ot wate communications of communications of com	orage nufaction ture factor r stora unity he factor f ture factor of ture factor	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5	eclared lom Table storage eclared of factor free section to the Earth Table storage (55)	2b , kWh/ye cylinder I om Tabl on 4.3 2b , kWh/ye	ear oss facto e 2 (kWi	or is not	known:	(47) x (51)) x (52) x (2	0 0 0		6
therwise later storn) If mar- empera- nergy Ic) If mar- ot wate- commu- blume fi- empera- nergy Ic inter (50 later storn	orage nufaction ture fa post from ufaction tactor fa ture fa post from ture fa post from 0) or (fa porage	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale	eclared lom Table storage eclared of factor free section Table storage (55)	2b , kWh/ye ylinder I om Tabl on 4.3 2b , kWh/ye	ear oss facto e 2 (kWl ear month	or is not n/litre/da	known:	(47) x (51) ((56)m = () x (52) x (55) × (41)r	n	2	0 0 0 0 0 0 1		000000000000000000000000000000000000000
therwise /ater sto) If mare empera nergy Io) If mare ot wate communications communic	orage nufaction nufaction nufaction r stora unity he actor f ture fa best from 0) or (6 brage	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale	eclared lom Table storage eclared of factor free section m Table storage (55) culated f	2b , kWh/ye ylinder I om Tabl on 4.3 2b , kWh/ye for each	ear oss facto e 2 (kWl ear month	or is not n/litre/da	known:	(47) x (51) ((56)m = (65.1	55) × (41)r 63	n 65.1	2	.6 .1 .0 .0 .0 .1	Н	(0)
therwise /ater sto) If mar- empera nergy lo i) If mar- ot wate commu- olume fi- empera nergy lo enter (50 /ater sto cylinder c	orage outactor outact	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale 58.8	eclared lom Table storage eclared of factor free section ble 2a m Table storage (55) culated feet a storage of the factor free storage (55) culated feet a storage of the factor	2b , kWh/ye cylinder I om Tabl on 4.3 2b , kWh/ye for each 63 rage, (57)r	ear oss fact e 2 (kW) ear month 65.1 n = (56)m	or is not n/litre/da 63 × [(50) – (known: ey) 65.1 H11)] + (50	((47) x (51) ((56)m = (65.1 0), else (5	55) × (41)r 63 7)m = (56)	n 65.1 m where (2 2 63 H11) is fro	.6 .1	Н	
therwise /ater sto	orage nufaction of the control of th	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale 58.8	eclared lem Table storage eclared of factor free section (and table storage (b)) culated from 65.1 disolar storage (65.1)	2b , kWh/ye ylinder I om Tabl on 4.3 2b , kWh/ye or each 63 rage, (57)r	ear oss factor e 2 (kW) ear month 65.1 n = (56)m	or is not n/litre/da	known:	(47) x (51) ((56)m = (65.1	55) × (41)r 63	n 65.1	63 H11) is fro	.6 .1	н	
wherevise value of the community of the	orage outactor outact	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale 58.8 loss (an	eclared lom Table storage eclared of factor free section (and table storage (b)) culated free factor factor free section (b) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	2b, kWh/ye cylinder I com Table con 4.3 2b, kWh/ye cor each 63 rage, (57)r	ear oss factor e 2 (kW) ear month 65.1 n = (56)m 65.1	63 x [(50) – (65.1 H11)] + (5	(47) x (51) ((56)m = (65.1 0), else (5)	55) × (41)r 63 7)m = (56)	n 65.1 m where (63 H11) is fro	.6 .1	Н	
wherwise vater sto i) If mar empera nergy lo i) If mar ot wate commu olume fi empera nergy lo commu olume fo empera nergy lo commu commu olume fo empera nergy lo commu commu commu commu olume fi empera nergy lo commu co	orage outactive factor in ture facto	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale 58.8 loss (an loss cale	eclared lom Table storage eclared of factor free section ble 2a m Table storage (55) culated f (65.1 d solar storage) for the factor free storage (65.1 annual) froculated free culated for the factor	2b, kWh/ye cylinder I com Table con 4.3 2b, kWh/ye cor each 63 rage, (57)r 63 com Table cor each cor e	ear oss factor e 2 (kW) ear month 65.1 n = (56)m 65.1	63 × [(50) – (65.1 H11)] ÷ (56 65.1	(47) x (51) ((56)m = (65.1 0), else (5) 65.1	63 63 7)m = (56) 63	m 65.1 m where (65.1	63 H11) is fro	.6 .1	Н	
otherwise Vater sto If mar empera nergy lo If mar lot wate commu colume fi empera nergy lo commu colume fi empera nergy lo commu colume fi empera nergy lo colume sto colume colume sto colume colume sto colume colume sto col	orage outactive factor in ture facto	loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water 54) in (5 loss cale 58.8 loss (an loss cale	eclared lom Table storage eclared of factor free section ble 2a m Table storage (55) culated f (65.1 d solar storage) for the factor free storage (65.1 annual) froculated free culated for the factor	2b, kWh/ye cylinder I com Table con 4.3 2b, kWh/ye cor each 63 rage, (57)r 63 com Table cor each cor e	ear oss factor e 2 (kW) ear month 65.1 n = (56)m 65.1	63 × [(50) – (65.1 H11)] + (5	(47) x (51) ((56)m = (65.1 0), else (5) 65.1	63 63 7)m = (56) 63	m 65.1 m where (65.1	63 H11) is fro	.6 .1	Н	

Combi	loss ca	lculated	for each	month	(61)m=	(60) ÷ 30	35 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m+	(46)m+	(57)m+	(59)m + (61)m	
(62)m=	277.42	245.16	258.99	234.27	231.1	208.68	202.5	219.33	218.05	242.82	254.11	271.45		(62)
Solar Di	W input	calculated	using App	endix G o	Appendix	H (negati	ve quantity	y) (enter '0	if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WHRS	applies	see Ap	pendix 0	3)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	277.42	245.16	258.99	234.27	231.1	208.68	202.5	219.33	218.05	242.82	254.11	271.45		2
								Outp	out from w	ater heate	r (annual)	1.12	2863.87	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 [0,85	× (45)m	+ (61)m	1]+0.8	k [(46)m	+ (57)m	+ (59)m	1	
(65)m=	133.55	118.83	127.42	117.87	118.15	109.36	108.64	114.24	112.48	122.05	124.47	131.57		(65)
inclu	de (57)	m in calc	culation o	of (65)m	only if o	ylinder i	s in the	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal ga	ins (see	Table 5	and 5a):			-300		_				
Metabo	olic gair	s (Table	5). Wat	ts				_						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99	171.99		(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L. equat	ion L9 o	r L9a), a	lso see	Table 5				Č.	
(67)m=	56.18	49.9	40.58	30.72	22.96	19.39	20.95	27.23	36.55	46.4	54.16	57.74		(67)
Applia	nces ga	ins (calc	ulated in	Append	dix L. ea	uation L	13 or L1	3a), also	see Ta	ble 5			4	
	630.13	636.67	620.19	585.11	540.83	499.21	471.41	464.87	481.35	516.43	560.71	602.33		(68)
Cookir	no gains	(calcula	ted in A	ppendix	Leguat	ion I 15	or I 15a) also se	e Table	5	127 1820 1		r	
(69)m=	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	l ·	(69)
	and fa	ne naine	(Table 5	ia)	1 2 4 7 2 2	100000	20.00		1 2 2 2 3			11 = 50000 - 1	et.	
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
	_		n (negat						_171	171			P	1000
	-137.59	_	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59	-137.59		(71)
		100000	The second second	-107.00	-107,00	-101.00	-101.00	-107.00	-107.00	-107,00	-101.00	-101.00	1	10.17
	179.5	gains (T	171.27	163,71	158.8	151.89	146.02	153.55	156.22	164.04	172.87	176.84	P	(72)
(72)m=		F		103.71	130.0		45.00		a contract of	79			Į.	1/2/
		gains =		05144	707.40	-		+ (68)m +						1721
(73)m=		937.99	906.63	854.14	797.19	745.09	712.98	720.24	748.71	801.47	862.34	911.5		(73)
	ar gain:		using sola	- flux from	Table 6a	and acces	inted nave	tions to be	nuart to th	o applicat	do oriental	ion		
		Access F		Area		FIL		mons to co	3	ic applicat	FF	ion:	Gains	
Orienta		able 6d		m²			ble 6a	Т	g_ able 6b	T	able 6c		(W)	
Northea	ast 0.9x	0.54	x	1	27	x. 1	1.28	1 × F	0.63	T × F	0.7	-		(75)
	ast 0.9x			2.2			1.28	×		= ° ⊨	0.7	-	11.29	(75)
	ast 0.9x	0.54	×					X	0.63	- × -		=	5.44	=
	ast 0.9x	0.77	X	1.6	=		1.28	×	0.63	- * -	0.7		11.59	(75)
	an establish	0.54	X	4.6			22.97	X	0.63	- × -	0.7	-	22.99	(75)
Northea	ast 0.9x	0.54	X	2.2	25	x2	2.97	x	0.63	×	0.7	-	11.08	(75)

Northeast 0.9x	0.77	X	1.68	х	22.97	x	0.63	X	0.7	= [23.58	(75)
Northeast 0.9x	0.54	х	4.67	х	41.38	x	0.63	х	0.7	#	41.42	(75)
Northeast 0.9x	0.54	x	2.25	×	41.38	x	0.63	x	0.7		19.95	(75)
Northeast 0.9x	0.77	x	1.68	х	41.38	x	0.63	х	0.7		42.49	(75)
Northeast 0.9x	0.54	×	4.67	×	67.96	x	0.63	x	0.7	=	68.02	(75)
Northeast 0.9x	0.54	x	2.25	×	67.96	x	0.63	x	0.7	=	32.77	(75)
Northeast 0.9x	0.77	x	1.68	x	67.96	х	0.63	х	0.7	#	69.78	(75)
Northeast 0.9x	0.54	×	4.67	×	91.35	×	0.63	X.	0.7	(2)	91.43	(75)
Northeast 0.9x	0.54	x	2.25	×	91.35	X	0.63	x	0.7	2	44.05	(75)
Northeast 0.9x	0.77	×	1.68	×	91.35	х	0.63	х	0.7	=	93.8	(75)
Northeast 0.9x	0.54	X	4.67	×	97.38	x	0.63	X	0.7	=	97.47	(75)
Northeast 0.9x	0.54	х	2.25	x	97.38	x	0.63	X	0.7] × [46.96	(75)
Northeast 0.9x	0.77	×	1.68	×	97.38	x	0.63	×	0.7] *[100	(75)
Northeast 0.9x	0.54	х	4.67	x	91.1	х	0.63	x	0.7] • [91.18	(75)
Northeast 0.9x	0.54	x	2.25	×	91.1	х	0.63	x	0.7] • [43.93	(75)
Northeast 0.9x	0.77	х	1.68	х	91.1	х	0.63	X	0.7] = [93.55	(75)
Northeast 0.9x	0.54	X	4.67	X.	72.63	x	0.63	x	0.7] = [72.69	(75)
Northeast 0.9x	0.54	х	2.25	x	72.63	х	0.63	x	0.7	= [35.02	(75)
Northeast 0.9x	0.77	X	1.68	X	72.63	X	0.63	X	0.7	=	74.58	(75)
Northeast 0.9x	0.54	×	4.67	×	50.42	х	0.63	X	0.7	=	50.47	(75)
Northeast 0.9x	0.54	Х	2.25	х	50.42	х	0.63	Х	0.7	= [24.31	(75)
Northeast 0.9x	0.77	×	1.68	x	50.42	x	0.63	x	0.7	=	51.77	(75)
Northeast 0.9x	0.54	х	4.67	×	28.07	x	0.63	X	0.7	=	28.09	(75)
Northeast 0.9x	0.54	х	2.25	x	28,07	х	0.63	X	0.7	=	13.53	(75)
Northeast 0.9x	0.77	×	1.68	×	28.07	×	0.63	X	0.7	=	28.82	(75)
Northeast 0.9x	0.54	х	4.67	х	14.2	х	0.63	X	0.7	5 ¥	14.21	(75)
Northeast 0.9x	0.54	X	2.25	×	14.2	x	0.63	×	0.7		6.85	(75)
Northeast 0.9x	0.77	х	1.68	x	14.2	х	0.63	X	0.7	9	14.58	(75)
Northeast 0.9x	0.54	х	4.67	х	9.21	х	0.63	X	0.7	= [9.22	(75)
Northeast 0.9x	0.54	Х	2.25	×	9.21	x	0.63	X	0.7	٠	4.44	(75)
Northeast 0.9x	0.77	X	1.68	x	9.21	х	0.63	X	0.7	=	9.46	(75)
Southeast 0.9x	0.77	Х	1	х	36.79	Х	0.63	Х	0.7	=	11.24	(77)
Southeast 0.9x	0.77	х	30.15	×	36.79	х	0.63	х	0.7] = [339.03	(77)
Southeast 0.9x	0.77	х	6.63	X.	36.79	х	0.63	Х	0.7		74.55	(77)
Southeast 0.9x	0.77	х	2.65	х	36.79	х	0.63	X	0.7	#	29.8	(77)
Southeast 0.9x	0.77	х	4.9	х	36.79	х	0.63	х	0.7	=	55.1	(77)
Southeast 0.9x	0.77	×	2.24	x	36.79	х	0.63	X	0.7	=	25.19	(77)
Southeast 0.9x	0.77	x	0.36	х	36.79	х	0.63	X	0.7		4.05	(77)
Southeast 0.9x	0.77	X	0.64	×	36.79	X	0.63	X	0.7		21.59	(77)
Southeast 0.9x	0.77	х	2.21	×	36.79	х	0.63	x	0.7		24.85	(77)
Southeast 0.9x	0.77	x	0.32	×	36.79	х	0.63	x.	0.7	=	3.6	(77)

Southeast 0.9x	0.77	х	1	х	62.67	x	0.63	х	0,7	=	19.15	(77
Southeast 0.9x	0.77	х	30.15	x	62.67	x	0.63	x [0.7	=	577.49	(77
Southeast 0.9x	0.77	x	6.63	х	62.67	х	0.63	x	0.7		126.99	(77
Southeast 0.9x	0.77	x	2.65	х	62.67	x	0,63	x	0.7	#	50.76	(77
Southeast 0.9x	0.77	х	4.9	Х	62.67	X	0.63	х	0.7	- [93.85	(77
Southeast 0.9x	0.77	x	2.24	х	62.67	x	0.63	x	0.7	3	42.9	(77
Southeast 0.9x	0.77	х	0.36	x	62.67	х	0,63	x	0.7] = [6.9	(77
Southeast 0.9x	0.77	х	0.64	х	62.67	х	0.63	x	0.7		36.78	(7.7
Southeast 0.9x	0.77	Х	2.21	х	62.67	x	0.63	x	0.7	= [42.33	(77
Southeast 0,9x	0.77	х	0.32	x	62.67	x	0.63	x	0.7] = [6.13	(77
Southeast 0.9x	0.77	Х	1	х	85.75	_ x [0.63	×	0.7	=	26.21	(77
Southeast 0.9x	0.77	X	30,15	х	85.75	x	0.63	х	0.7	7	790,14	(77
Southeast 0.9x	0.77	х	6.63	х	85.75	х	0.63	х	0.7] = [173,75	(77
Southeast 0.9x	0.77	х	2.65	×	85.75	×	0.63] x [0.7		69.45	(77
Southeast 0.9x	0.77	x	4.9	×	85.75	x	0.63	x	0.7	-	128.41	(77
Southeast 0.9x	0.77	Х	2.24	х	85.75	x	0.63	х	0.7		58.7	(77
Southeast 0.9x	0.77	x	0.36	x	85.75	x	0.63	×	0.7	=	9.43	(77
Southeast 0.9x	0.77	X	0.64	X	85.75	x	0,63	х	0.7		50.32	(77
Southeast 0.9x	0.77	Х	2.21	х	85.75	x	0.63	x	0.7	#	57.92	(77
Southeast 0.9x	0.77	х	0.32	×	85.75	×	0.63	x	0.7	= [8.39	(77
Southeast 0,9x	0.77	х	140	x	106.25	x	0.63	х	0.7	=	32.47	(77
Southeast 0.9x	0.77	х	30.15	х	106.25	x	0.63	x	0.7		979.03	(77
Southeast 0.9x	0.77	x	6,63	×	106.25	x	0.63	х [0.7] = [215,29	(77
Southeast 0.9x	0.77	X	2.65	X	106.25	x	0.63	×	0.7	= [86.05	(77
Southeast 0.9x	0.77	x	4.9	х	106.25	_ x [0.63	х	0.7	=	159.11	(77
Southeast 0.9x	0.77	x	2.24	х [106.25	x	0.63	×	0.7	= [72.74	(77
Southeast 0.9x	0.77	x	0.36	×	106.25	x	0.63	x	0.7] = [11.69	(77
Southeast 0.9x	0.77	x	0.64	x	106.25	x	0.63	x	0.7	#	62.35	(77
Southeast 0.9x	0.77	х	2,21	×	106.25	x	0.63	X	0.7	= [71.76	(77
Southeast 0.9x	0.77	х	0.32	x	106.25	×	0.63	Х	0.7] + [10.39	(77
Southeast 0.9x	0.77	х	1	×	119.01	Х	0.63	×	0.7	#	36.37	(77
Southeast 0.9x	0.77	Х	30.15	X	119.01	x	0.63	х	0.7	=	1096.59	(77
Southeast 0.9x	0.77	x	6.63	_ x [119.01	×	0.63	x	0.7] = [241.14	(7.7
Southeast 0.9x	0.77	X	2.65	х	119.01	×	0.63	x	0.7	#	96.38	(77
Southeast 0.9x	0.77	X	4.9	_ × [119,01	×	0.63	x	0.7	=	178.22	(77
Southeast 0.9x	0.77	x	2.24	×	119.01	×	0.63	x	0.7] = [81.47	(77
Southeast 0.9x	0.77	Х	0.36	x	119.01	x	0.63	х	0.7	#	13.09	(77
Southeast 0.9x	0.77	×	0,64	x	119.01	×	0.63] x [0.7	= [69.83	(77
Southeast 0.9x	0.77	x	2,21	x	119.01	×	0.63	x	0.7] = [80.38	(77
Southeast 0.9x	0.77	х	0.32	х	119.01	x	0.63	х	0.7	-	11.64	(77
Southeast 0.9x	0.77	×	1	×	118,15	l x	0.63	×	0.7		36.11	(77

Southeast 0.9x	0.77	х	30.15	x	118.15	x	0.63	×	0.7] = [1088.66	(77)
Southeast 0.9x	0.77	х	6.63] x	118.15	x	0.63	x	0.7] = [239.4	(77)
Southeast 0.9x	0.77	×	2.65	×	118.15	×	0.63	×	0.7	3	95.69	(77)
Southeast 0.9x	0.77	x	4.9	×	118.15	×	0.63	×	0.7	- [176.93	(77)
Southeast 0.9x	0.77	х	2.24	x	118,15	х	0.63	×	0.7] = [80.88	(77)
Southeast 0.9x	0.77	×	0.36	×	118.15	x	0.63	×	0.7	=	13	(77)
Southeast 0.9x	0.77	X.	0.64] × [118.15	x	0.63	x	0.7] = [69.33	(77)
Southeast 0.9x	0.77	x	2.21	x	118.15	х	0.63	x	0.7	=	79.8	(77)
Southeast 0.9x	0.77	X	0.32	x	118.15	х	0,63	х	0.7	=	11.55	(77)
Southeast 0.9x	0.77	х	1	×	113.91	x	0,63	x	0.7	=	34.81	(77)
Southeast 0.9x	0.77	x	30.15	x	113,91	х	0.63	x	0.7	=	1049.59	(77)
Southeast 0.9x	0.77	×	6.63	×	113.91	х	0.63	x	0.7	7	230.8	(77)
Southeast 0.9x	0.77	×	2.65	×	113,91	x	0,63	×	0.7] = [92.25	(77)
Southeast 0.9x	0.77	х	4.9	х	113.91	X	0.63	x	0.7	=	170.58	(77)
Southeast 0.9x	0.77	x	2.24	x	113.91	x	0.63	x	0.7	= [77.98	(77)
Southeast 0.9x	0.77	x	0.36	×	113.91	×	0.63	×	0.7	= [12.53	(77)
Southeast 0.9x	0.77	х	0.64	х	113.91	х	0.63	х	0.7	= [66.84	(77)
Southeast 0.9x	0.77	х	2.21	×	113.91	x	0.63	х	0.7] = [76,93	(77)
Southeast 0.9x	0.77	×	0.32	×	113,91	×	0.63	x	0.7	= [11,14	(77)
Southeast 0.9x	0.77	х	-1	х	104.39	x	0.63	x	0.7	= [31.9	(77)
Southeast 0.9x	0.77	х	30.15	х	104.39	х	0.63	х	0.7] = [961.88	(77)
Southeast 0.9x	0.77	х	6.63	×	104.39	х	0.63	x	0.7	= [211.52	(77)
Southeast 0.9x	0.77	х	2.65	х	104,39	х	0,63	x	0.7] = [84.54	(77)
Southeast 0.9x	0.77	x	4.9	x	104.39	×	0.63	×	0.7	= [156.33	(77)
Southeast 0.9x	0.77	x	2.24	x	104.39	x	0,63	x	0.7] = [71.46	(77)
Southeast 0.9x	0.77	x	0.36	×	104.39	x	0.63	_ x [0.7] = [11.49	(77)
Southeast 0.9x	0.77	х	0.64	x	104.39	x	0.63	×	0.7	=	61.25	(77)
Southeast 0.9x	0.77	х.	2.21	×	104.39	×	0.63	x	0.7	= [70.51	(77)
Southeast 0.9x	0.77	X	0.32	x	104.39	×	0.63	х	0.7		10.21	(77)
Southeast 0.9x	0.77	×	1	x	92.85	x	0.63	×	0.7] = [28.38	(77)
Southeast 0.9x	0.77	x	30.15	x	92.85	×	0.63	х	0.7	=	855.56	(77)
Southeast 0.9x	0.77	х	6.63	х	92,85	х	0.63	х	0.7	3	188.14	(77)
Southeast 0.9x	0.77	X	2.65	х	92.85	х	0.63	_ x [0.7	= [75.2	(77)
Southeast 0.9x	0.77	X	4.9	х	92.85	х	0.63	х	0.7	=	139.05	(77)
Southeast 0.9x	0.77	х	2.24	х	92.85	х	0.63	Х	0.7	=	63.56	(77)
Southeast 0.9x	0.77	×	0.36	×	92.85	х	0.63	×	0.7] = [10.22	(77)
Southeast 0.9x	0.77	х	0.64	×	92.85	x	0.63	x	0.7	=	54.48	(77)
Southeast 0.9x	0.77	x	2.21	x	92.85	x	0.63	× [0.7	=	62.71	(77)
Southeast 0.9x	0.77	х	0.32	x	92.85	х	0.63	_ x [0.7	= [9.08	(77)
Southeast 0.9x	0.77	X	4	x	69.27	х	0.63	x	0.7	= [21.17	(77)
Southeast 0,9x	0.77	x	30.15	×	69.27	x	0.63	×	0.7	=	638.25	(77)

Southeast 0.9x	0.77	X	6.63	х	69.27	x	0.63	x	0.7] = [140.35	(77)
Southeast 0.9x	0.77	x	2.65	x	69.27	x	0.63	x	0.7	= [56.1	(77)
Southeast 0.9x	0.77	x	4.9	×	69.27	x	0.63	x	0.7	=	103,73	(77)
Southeast 0.9x	0.77	x	2.24	х	69.27	x	0.63	x	0.7		47.42	(77)
Southeast 0.9x	0.77	×	0.36	×	69.27	×	0.63	×	0.7	=	7.62	(77)
Southeast 0.9x	0.77	X	0.64	x	69.27	x	0.63] x	0.7	=	40.64	(77)
Southeast 0.9x	0.77	х	2.21	×	69.27	x	0.63	x	0.7	#	46.78	(77)
Southeast 0.9x	0.77	х	0.32	×	69.27	×	0.63	х	0.7	=	6.77	(77)
Southeast 0.9x	0.77	x	4	×	44.07	х	0.63	x	0.7	- [13.47	(77)
Southeast 0.9x	0.77	х	30.15	×	44.07	х	0.63	x	0.7	a	406.08	(77)
Southeast 0.9x	0.77	Х	6.63	х	44.07	×	0.63	х	0.7	#	89.3	(77)
Southeast 0.9x	0.77	х	2.65	х	44.07	×	0.63	x	0.7	- [35.69	(77)
Southeast 0.9x	0.77	x	4.9	х	44.07	×	0.63	×	0.7] = [66	(77)
Southeast 0.9x	0.77	х	2.24	х	44.07	x	0.63	х	0.7] = [30.17	(77)
Southeast 0.9x	0.77	x	0.36	×	44.07	x	0.63	x	0.7] = [4.85	(77)
Southeast 0.9x	0.77	х	0.64	х	44.07	×	0.63	_ x [0.7	=	25,86	(77)
Southeast 0.9x	0.77	X	2,21	×	44.07	×	0.63	x	0.7	=	29,77	(77)
Southeast 0.9x	0.77	x	0.32	х	44.07	х	0.63	x	0.7	# [4.31	(77)
Southeast 0.9x	0.77	Х	1	x	31.49	x	0.63	x	0.7	=	9,62	(77)
Southeast 0.9x	0,77	X	30.15	×	31.49	×	0.63	×	0.7	=	290.14	(77)
Southeast 0.9x	0.77	х	6.63	х	31.49	x	0.63	x	0.7	#	63.8	(77)
Southeast 0.9x	0.77	х	2.65	X	31.49	x	0.63	x	0.7	= [25,5	(77)
Southeast 0.9x	0.77	x [4.9	х	31.49	×	0.63	×	0.7] = [47.15	(77)
Southeast 0.9x	0.77	х	2.24	х	31,49	х	0.63	х	0.7	=	21.56	(77)
Southeast 0,9x	0.77	×	0.36	×	31.49	×	0.63	×	0.7] = [3.46	(77)
Southeast 0.9x	0.77	×	0.64	X	31.49	х	0.63	x	0.7	=	18.48	(77)
Southeast 0,9x	0.77	x	2.21	×	31.49	х	0.63	x	0.7	= [21.27	(77)
Southeast 0.9x	0.77	X	0.32	X	31.49	x	0.63	_ x [0.7	#	3.08	(77)
Southwesto 9x	0.77	х	7.97	×	36.79] [0.63	х	0.7	-	89.62	(79)
Southwesto.9x	0.77	X	7.56	×	36.79] [0.63	x	0.7	=	85.01	(79)
Southwesto.9x	0.77	X	4.32	×	36.79] [0.63	x	0.7	=	48.58	(79)
Southwesto.9x	0.77	Х	10.33	х	36.79] [0.63	x	0.7	=	232.31	(79)
Southwesto,9x	0.77	Х	9.8	Х	36.79] [0.63	x	0.7	=	110.2	(79)
Southwesto,9x	0,77	Х	9.87	х	36.79] [0.63	х	0.7	#	110.98	(79)
Southwesto.9x	0.77	X	10.12	х	36.79] [0.63	х	0.7	=	113,8	(79)
Southwesto,9x	0.77	X	11.61	x	36.79		0.63	х	0.7	=	130.55	(79)
Southwesto,9x	0.77	X	12.37] x [36.79] [0.63	_ x [0.7] = [139.1	(79)
Southwesto,9x	0.77	Х	12.1	x	36.79] [0.63	x	0.7	#	136.06	(79)
Southwesto,9x	0.77	x	4,51	X	36.79] [0.63	×	0.7	= [50.71	(79)
Southwest _{0.9x}	0.77	х	7.97	х	62.67] [0.63	×	0.7] + [152.66	(79)
Southwesto,9x	0.77	х	7.56	x	62.67		0.63	x	0.7	÷	144.8	(79)

Southwesto,9x	0.77	х	4,32	х	62.67	0,63	x	0.7	=	82.74	(79)
Southwesto.9x	0.77	x	10.33	x	62.67	0.63	×	0.7	=	395.72	(79)
Southwesto.9x	0.77	x	9.8	x	62.67	0.63] x [0.7	0	187.71	(79)
Southwesto,9x	0.77	×	9.87	x	62.67	0,63	×	0.7	- [189.05	(79)
Southwesto.9x	0.77	x	10.12	×	62.67	0.63	x	0.7	- [193.84	(79)
Southwesto.9x	0.77	x	11.61	х	62.67	0.63	×	0.7		222.38	(79)
Southwesto,9x	0.77	x	12.37	x	62.67	0,63	x	0.7	= [236.93	(79)
Southwesto.9x	0.77	х	12.1	х	62.67	0.63	×	0.7	=	231.76	(79)
Southwesto.9x	0.77	х	4.51	х	62.67	0.63	x	0.7	#	86.38	(79
Southwest _{0.9x}	0.77	x	7.97	x	85.75	0.63	x	0.7] = [208,87	(79
Southwesto.9x	0.77	x	7.56	х	85.75	0.63	×	0.7	=	198.13	(79)
Southwesto.9x	0.77	x	4.32	х	85.75	0,63	×	0.7	- [113.21	(79)
Southwesto,9x	0.77	x	10,33	x	85.75	0.63	x	0.7	=	541.44	(79
Southwest _{0.9x}	0.77	×	9.8	х	85.75	0.63] x [0.7] = [256.83	(79)
Southwesto.9x	0.77	x	9,87	×	85.75	0.63	x	0.7		258,66	(79
Southwesto.9x	0.77	х	10.12	х	85.75	0.63	x	0.7		265.22	(79)
Southwesto.9x	0.77	×	11.61	x	85.75	0.63	×	0.7	=	304.26	(79
Southwesto.9x	0.77	X	12.37	×	85.75	0,63	х	0.7		324.18	(79
Southwesto.9x	0.77	х	12.1	х	85.75	0.63	x	0.7	#	317.11	(79
Southwesto,9x	0.77	×	4.51	x	85.75	0.63	×	0.7	=	118.19	(79
Southwest _{0,9x}	0.77	х	7.97	x	106.25	0.63	х	0.7	=	258.8	(79
Southwesto.9x	0.77	х	7.56	X	106.25	0.63	x	0.7		245.49	(79
Southwesto.9x	0.77	X	4.32	x	106.25	0.63	x	0.7	=	140,28	(79
Southwesto.9x	0.77	X	10.33	х	106.25	0.63	×	0.7	=	670.87	(79
Southwesto.9x	0.77	x	9.8	х	106.25	0.63	x	0.7	=	318.22	(79
Southwesto.9x	0.77	×	9.87	x	106.25	0.63	x	0.7	=	320,5	(79
Southwesto.9x	0.77	x	10.12	×	106.25	0.63	x	0.7] = [328,62	(79
Southwesto.9x	0.77	_ x [11.61	х	106.25	0.63	×	0.7] = [377	(79
Southwesto,9x	0.77	×	12,37	×	106.25	0.63	x	0.7] = [401.68	(79
Southwesto.9x	0.77	x	12.1	×	106.25	0.63	_ x _	0.7] + [392.91	(79
Southwest _{0.9x}	0.77	x	4.51	х	106.25	0.63	×	0.7] = [146.45	(79
Southwesto.9x	0.77	x	7.97	×	119.01	0.63	x	0.7	=	289.88	(79
Southwesto.9x	0.77	x	7.56	×	119.01	0.63	×	0.7	= [274.97	(79
Southwest _{0.9x}	0.77	x	4.32	X	119.01	0.63	×	0.7	#	157.12	(79
Southwesto.9x	0.77	x	10.33	×	119,01	0.63	_ x [0.7	-	751.43	(79
Southwesto.9x	0.77	х	9.8	х	119.01	0.63	x	0.7	=	356.44	(79
Southwesto,9x	0.77	x	9.87	x	119.01	0.63] x [0.7	(#)	358.98	(79
Southwesto,9x	0.77	×	10.12] x	119.01	0.63] x [0.7	9	368.08	(79
Southwesto.9x	0.77	x	11,61	х	119.01	0,63	×	0.7] = [422.27	(79
Southwesto.9x	0.77	х	12.37	х	119.01	0.63	х	0.7	(449.91	(79)
Southwesto.9x	0.77	×	12,1	×	119.01	0.63	ī×Ē	0.7	=	440.09	(79)

Southwesto.9x	0.77	х	4.51	x	119.01	0.63	x	0.7] = [164.03	(79)
Southwesto.9x	0.77	×	7.97	×	118.15	0.63	×	0.7] = [287.78	(79)
Southwesto.9x	0.77	×	7,56	x	118.15	0.63	×	0.7	= [272.98	(79)
Southwesto.9x	0.77	х	4.32	х	118.15	0.63	×	0.7	#	155.99	(79)
Southwesto.9x	0.77	х	10.33	x	118.15	0.63] x [0.7	=	746	(79)
Southwesto.9x	0.77	X	9.8	х	118.15	0.63	x	0.7	3	353.86	(79)
Southwesto.9x	0.77	X	9.87	х	118.15	0.63	х	0.7	=	356.39	(79)
Southwest _{0.9x}	0.77	х	10,12	х	118,15	0.63	x	0.7	(4)	365.41	(79)
Southwesto.9x	0.77	х	11.61	х	118.15	0.63	х	0.7] ≈ [419.22	(79)
Southwesto.9x	0.77	X	12.37	x	118.15	0.63] x	0.7	=	446.66	(79)
Southwesto.9x	0.77	x	12.1	x	118.15	0.63	x	0.7] = [436.91	(79)
Southwesto.9x	0.77	х	4.51	x	118.15	0.63	x	0.7] = [162.85	(79)
Southwesto.9x	0.77	×	7.97	×	113.91	0.63	×	0.7] = [277.45	(79)
Southwest _{0.9x}	0.77	х	7.56	х	113.91	0.63	х	0.7	= [263.18	(79)
Southwesto.9x	0.77	х	4.32	×	113.91	0.63	x	0.7	- [150.39	(79)
Southwesto.9x	0.77	X	10,33	x	113.91	0.63	x	0.7	= [719.22	(79)
Southwesto.9x	0.77	X	9.8	×	113.91	0.63	x	0.7	- [341.16	(79)
Southwesto.9x	0.77	x	9.87	х	113.91	0.63	x	0.7		343.6	(79)
Southwesto.9x	0.77	x	10.12	×	113.91	0.63	X	0.7	=	352.3	(79)
Southwesto_9x	0.77	x	11.61	X.	113.91	0.63	×	0.7] = [404.17	(79)
Southwesto.9x	0.77	х	12.37	х	113.91	0.63	х	0.7	=	430.63	(79)
Southwesto.9x	0.77	X	12.1	х	113.91	0.63	х	0.7	=	421.23	(79)
Southwesto.9x	0.77	x	4.51	×	113.91	0.63	×	0.7] - [157	(79)
Southwesto.9x	0.77	х	7.97	X	104.39	0.63	X.	0.7] = [254.27	(79)
Southwest _{0.9x}	0.77	x	7.56	x	104.39	0.63] × [0.7	= [241.19	(79)
Southwesto.9x	0.77	x	4.32	×	104.39	0.63	х	0.7	= [137.82	(79)
Southwesto.9x	0.77	x	10,33	X	104.39	0.63	X	0.7] = [659.12	(79)
Southwesto.sx	0.77	X	9.8	x	104.39	0.63	x	0.7	=	312.65	(79)
Southwesto.9x	0.77	X	9.87	×	104.39	0.63	×	0.7	=	314.88	(79)
Southwesto.9x	0.77	X	10.12	х	104.39	0.63	x	0.7	=	322.86	(79)
Southwesto.9x	0.77	X	11.61	х	104.39	0.63	×	0.7	=	370.39	(79)
Southwesto.9x	0.77	X	12.37	×	104.39	0.63	X	0.7	9	394.64	(79)
Southwesto.9x	0.77	х	12.1	х	104.39	0.63	x	0.7	*	386.03	(79)
Southwest _{0,9x}	0.77	×	4.51	×	104.39	0.63	×	0.7	= [143.88	(79)
Southwest _{0.9x}	0.77	×	7.97	X.	92.85	0.63	X	0.7] = [226.16	(79)
Southwesto.9x	0.77	х	7.56	X	92.85	0.63	x	0.7] = [214.53	(79)
Southwesto.9x	0.77	×	4.32	×	92.85	0.63	×	0.7] = [122.59	(79)
Southwesto.9x	0.77	x	10.33	x	92.85	0.63	×	0.7	- [586.26	(79)
Southwest _{0.9x}	0.77	х	9.8	х	92.85	0.63	×	0.7] *[278.09	(79)
Southwesto,9x	0.77	×	9.87	X	92.85	0.63	×	0.7] = [280.08	(79)
Southwesto.9x	0.77	×	10.12	X.	92.85	0.63	x	0.7	= [287.17	(79)

Southwesto,9x	0.77	х	11.61	х	92.85] [0.63] x [0.7	=	329.45	(79)
Southwesto,9x	0.77	х	12.37	×	92.85	Ī	0.63	×	0.7	=	351.02	(79)
Southwest _{0.9x}	0.77	×	12.1	×	92.85	Ī	0.63	×	0.7] - [343.36	(79)
Southwesto.9x	0.77	х	4.51	x	92.85	ī	0.63	x	0.7	±	127.98	(79)
Southwesto.9x	0.77	x	7.97	x	69.27	ĪĪ	0.63] x [0.7	=	168.72	(79)
Southwesto,9x	0.77	×	7.56	x	69.27	j i	0.63] × [0.7		160.04	(79)
Southwesto,9x	0.77	x	4.32	×	69.27] [0.63	x	0.7	=	91,45	(79)
Southwest _{0.9x}	0.77	X	10.33	×	69.27] [0.63	x	0.7	#	437,35	(79)
Southwesto.9x	0.77	х	9.8	x	69.27] [0.63	x	0.7	- [207.46	(79)
Southwesto,9x	0.77	X	9,87	×	69.27] [0.63	x	0.7	=	208.94	(79)
Southwest _{0.9x}	0.77	x	10.12	x	69.27] [0,63	x	0.7	=	214.23	(79)
Southwesto.9x	0.77	x	11.61	x	69.27] [0.63	x	0.7	=	245.77	(79)
Southwesto,9x	0.77	X	12.37	×	69.27] [0.63	x	0.7	= [261.86	(79)
Southwest _{0.9x}	0.77	х	12.1	х	69.27] [0.63	х	0.7	= [256.15	(79)
Southwesto,9x	0.77	Х	4.51	x	69.27] [0.63	x	0.7	=	95.47	(79)
Southwesto.9x	0.77	х	7.97	×	44.07] [0.63	x	0.7	#	107.34	(79)
Southwesto.9x	0.77	×	7.56	х	44.07] [0.63	x	0,7	=	101.82	(79)
Southwest _{0.9x}	0.77	х	4.32	х	44.07] [0.63] x [0.7		58.18	(79)
Southwesto,9x	0.77	x	10,33	×	44.07] [0.63	x	0.7] = [278.26	(79
Southwest _{0.9x}	0.77	х	9.8	×	44.07] [0.63	x	0.7] ≄ [131.99	(79
Southwesto,9x	0.77	х	9.87	x	44.07] [0.63	х	0.7	=	132.93	(79)
Southwesto.9x	0.77	х	10.12	×	44.07] [0.63	х	0.7	- [136.3	(79
Southwesto,9x	0.77	х	11.61	×	44.07] [0.63	x	0.7	=	156.37	(79
Southwest _{0.9x}	0.77	X	12.37	×	44.07] [0.63	x	0.7	=	166,61	(79
Southwest _{0,9x}	0.77	x	12.1	x	44.07] [0.63	x	0.7	=	162.97	(79
Southwesto,9x	0.77	x	4.51	x	44.07] [0.63	x	0.7	- [60.74	(79
Southwesto,9x	0.77	Х	7.97	х	31.49] [0,63	x	0.7		76,7	(79
Southwesto.9x	0.77	×	7.56	×	31.49] [0.63	×	0.7	# [72.75	(79
Southwesto.9x	0.77	×	4.32	×	31.49] [0.63	x	0.7	=	41.57	(79)
Southwest _{0.9x}	0.77	Х	10.33	x	31.49] [0,63	x [0.7	= [198.81	(79
Southwesto,9x	0.77	x	9.8] × [31.49] [0.63	x	0.7	4	94.31	(79)
Southwesto.9x	0.77	x	9.87] x [31.49] [0.63	×	0.7	9	94.98	(79)
Southwesto,9x	0.77	х	10.12	х	31.49] [0.63	x	0.7	=	97.39	(79)
Southwest _{0.9x}	0.77	x	11.61	×	31.49		0.63	x	0.7	=	111.72	(79)
Southwesto.9x	0.77	х	12.37	ж	31.49] [0,63	x	0.7	=	119.04	(79
Southwest _{0.9x}	0.77	x	12.1	x	31.49] [0,63	x	0.7] = [116.44	(79)
Southwesto,9x	0.77	×	4.51] × [31.49] [0.63] × [0.7] = [43.4	(79)
Northwest 0.9x	0.77	х	_1] x	11.28] × [0.63	×	0.7	=	3.45	(81)
Northwest 0.9x	0.77	_ × [0.4] x	11.28] × [0.63] x [0.7] = [1,38	(81)
Northwest 0,9x	0.77	х	13.33	x	11.28	×	0.63	×	0.7	=	45.96	(81)
Northwest 0.9x	0.77	x	0.64	T x	11.28	- x	0.63	×	0.7	T = F	11.03	(81)

Northwest 0.9x	0.54	X	2.35	х	11.28	x	0.63	X	0.7	- [5.68	(81)
Northwest 0.9x	0.77	×	_ 1 -	х	22.97	х	0.63	х	0.7	- T	7.02	(81)
Northwest 0.9x	0.77	x	0.4	×	22.97	x	0.63	x	0.7	=	2,81	(81)
Northwest 0.9x	0.77	x	13.33	х	22,97	х	0.63	х	0.7	- [93.56	(81)
Northwest 0.9x	0.77	x	0.64	×	22.97	x	0.63	×	0.7		22.46	(81)
Northwest 0.9x	0.54	x	2.35	×	22.97	x	0.63	x	0.7	= [11.57	(81)
Northwest 0.9x	0.77	x	1	х	41.38	х	0.63	х	0.7		12.65	(81)
Northwest 0.9x	0.77	×	0.4	×	41.38	×	0.63	X	0.7	=	5.06	(81)
Northwest 0.9x	0.77	x	13.33	х	41.38	×	0.63	к	0.7	= [168.57	(81)
Northwest 0.9x	0.77	×	0.64	х	41.38	x	0.63	x	0.7	=	40.47	(81)
Northwest 0.9x	0.54	x	2.35	x	41.38	x	0.63	x	0.7	Ð	20.84	(81)
Northwest 0.9x	0.77	х	1	х	67.96	х	0.63	X	0.7] = [20.77	(81)
Northwest 0.9x	0.77	×	0.4	×	67.96	x	0.63	×	0.7	=	8.31	(81)
Northwest 0.9x	0.77	х	13.33	х	67.96	х	0.63	x	0.7] • [276,84	(81)
Northwest 0.9x	0.77	x	0.64	×	67.96	х	0.63	×	0.7	- [66.46	(81)
Northwest 0.9x	0.54	x	2.35	х	67.96	x	0.63	x	0.7	=	34.23	(81)
Northwest 0.9x	0.77	x	1	x	91.35	x	0.63	x	0.7	=	27.92	(81)
Northwest 0.9x	0.77	x	0.4	х	91.35	х	0.63	х	0.7] = [11.17	(81)
Northwest 0.9x	0.77	×	13.33	x	91.35	X	0.63	×	0.7	= [372.13	(81)
Northwest 0.9x	0.77	×	0.64	×	91.35	X	0.63	x	0.7	= [89.33	(81)
Northwest 0.9x	0.54	Х	2.35	х	91.35	х	0.63	х	0.7] = [46.01	(81)
Northwest 0.9x	0.77	×	1	х	97.38	x	0.63	x	0.7	=	29.76	(81)
Northwest 0.9x	0.77	х	0.4	х	97.38	х	0.63	x	0.7] = [11.9	(81)
Northwest 0.9x	0.77	х	13.33	x	97,38	х	0.63	х	0.7] = [396.73	(81)
Northwest 0.9x	0.77	×	0.64	×	97.38	×	0.63	X	0.7] = [95.24	(81)
Northwest 0.9x	0.54	x	2,35	х	97.38	х	0.63	×	0.7	<u> </u>	49.05	(81)
Northwest 0.9x	0.77	×	1	×	91.1	x	0.63	x	0.7	ė	27.84	(81)
Northwest 0.9x	0.77	х	0.4	x	91.1	х	0.63	X	0.7	#	11.14	(81)
Northwest 0.9x	0.77	х	13.33	х	91.1	x	0.63	x	0.7] = [371.13	(81)
Northwest 0.9x	0.77	х	0.64	x	91.1	x	0.63	х	0.7		89.09	(81)
Northwest 0.9x	0.54	×	2.35	x	91.1	x	0.63	X	0.7	= [45.88	(81)
Northwest 0.9x	0.77	х	- 1 -	х	72.63	x	0.63	х	0.7	= [22.2	(81)
Northwest 0.9x	0.77	X	0.4	x	72.63	х	0.63	х	0.7	=	8.88	(81)
Northwest 0.9x	0.77	x	13.33	X.	72.63	х	0.63	х	0.7	- [295.87	(81)
Northwest 0.9x	0.77	x	0.64	х	72.63	X	0.63	X	0.7	=	71.03	(81)
Northwest 0.9x	0.54	x	2.35	x	72.63	x	0.63	х	0.7	=	36.58	(81)
Northwest 0.9x	0.77	х	1	x	50.42	x	0.63	x	0.7	=	15.41	(81)
Northwest 0.9x	0.77	x	0.4	х	50.42	х	0.63	x	0.7	#	6.16	(81)
Northwest 0.9x	0.77	×	13.33	×	50.42	×	0.63	X	0.7] = [205.4	(81)
Northwest 0.9x	0.77	х	0.64	×	50.42	х	0.63	x	0.7] = [49.31	(81)
Northwest 0.9x	0.54	x	2.35	×	50.42	x	0.63	x	0.7	=	25.4	(81)

Northwest 0.9x	0.77	_ x [1] x [28.07	x	0.63	x	0.7] = [8.58	(81)
Northwest 0.9x	0.77	×	0.4	x	28.07	x	0.63	x	0.7	=	3.43	(81)
Northwest 0.9x	0.77	х	13,33	×	28.07	x	0.63	x	0.7	- [114.34	(81)
Northwest 0.9x	0.77	x	0.64	×	28.07	x	0.63	x	0.7] = [27.45	(81)
Northwest 0.9x	0.54	x	2.35	х	28.07	x	0.63	x	0.7	4	14.14	(81)
Northwest 0.9x	0.77	x	11	×	14.2	x	0.63	x	0.7		4.34	(81)
Northwest o.9x	0.77	x	0.4	×	14.2	x	0.63	x	0.7	=	1.74	(81)
Northwest 0.9x	0.77	x	13.33	х	14.2	x	0.63	х	0.7	- [57.84	(81)
Northwest 0,9x	0.77	x	0.64	x	14.2	x	0.63	x	0.7	4	13.88	(81)
Northwest 0.9x	0.54	x	2.35	x	14.2	x	0.63	x	0.7	#	7.15	(81)
Northwest 0.9x	0.77	x	1	x	9.21	X	0.63	x	0.7] = [2.82	(81)
Northwest 0,9x	0.77	x	0.4	×	9.21	x	0.63	x	0.7	=	1.13	(81)
Northwest 0.9x	0.77	х	13,33	X	9.21	x	0,63	х	0.7	8	37,54	(81)
Northwest 0.9x	0.77	X	0.64	х	9.21	x	0.63	x	0.7	=	9.01	(81)
Northwest 0,9x	0.54	×	2.35	×	9.21	x	0.63	x	0.7	= [4.64	(81)
Rooflights 0.9x	1	x	24	х	26	x	0.63	х	8.0	=	283.05	(82)
Rooflights 0,9x	- 1	×	3.49	x	26	×	0.63	х	0.8	-	41.16	(82)
Rooflights 0.9x	1	x	5.22	х	26	x	0.63	x	0.8		61.56	(82)
Rooflights 0.9x	1	х	2.58	x	26	x	0.63	х	0.8	=	30.43	(82)
Rooflights 0.9x	1	×	0.7	×	26	x	0.63	×	0.8		16.51	(82)
Rooflights 0.9x	11	x	24	X	54	x	0.63	х	0.8	=	587.87	(82)
Rooflights 0.9x	4	x	3.49	×	54	x	0.63	х	0.8		85.49	(82)
Rooflights 0.9x	1	_ x [5.22	x	54	x	0.63	x	0.8	= [127.86	(82)
Rooflights 0.9x	1	х	2.58	x	54	x	0,63	х	0.8		63.2	(82)
Rooflights 0.9x	1	x	0.7	х	54	х	0.63	х	0.8	=	34.29	(82)
Rooflights 0.9x	3)	x	24	x	96	x	0,63	x	0.8	#	1045.09	(82)
Rooflights 0.9x	1	x	3.49	X	96	х	0.63	х	0.8	#	151.97	(82)
Rooflights 0.9x	7	×	5.22	×	96	x	0.63	х	0.8	=	227.31	(82)
Rooflights 0.9x	1	x	2.58	х	96	x	0.63	x	0.8] = [112.35	(82)
Rooflights 0.9x	4	x	0.7	X	96	x	0.63	х	0.8	â	60.96	(82)
Rooflights 0.9x	1	X	24	X	150	x	0.63	x	0.8	#	1632.96	(82)
Rooflights 0.9x	1	х	3.49	X	150	x	0.63	х	0.8	= [237.46	(82)
Rooflights 0.9x	1	x	5.22	X	150	x	0.63	x	8.0	=	355.17	(82)
Rooflights 0.9x	1	x	2.58	×	150	х	0.63	x	0.8] = [175.54	(82)
Rooflights 0.9x	1	x	0.7	х	150	х	0.63	x	0.8] # [95.26	(82)
Rooflights 0.9x	-1-	x	24	х	192	x	0.63	×	0.8] ≠ [2090.19	(82)
Rooflights 0.9x	- 1	х	3.49	х	192	x	0.63	x	0.8	=	303.95	(82)
Rooflights 0.9x	1	х	5.22	x	192	х	0.63	x	0.8	=	454.62	(82)
Rooflights 0.9x	1	_ x _	2.58	×	192	x	0.63	x	0.8		224.7	(82)
Rooflights 0.9x	-1	х	0.7	х	192	×	0.63	x	0.8	-	121.93	(82)
Rooflights 0.9x	1	x	24	1 x	200	x	0.63	×	0.8	7 - F	2177.28	(82)

ooflights 0.9x	1	X	3.49	x	200	x	0.63	X	0.8	3	316.61	(82
	1	×	5.22	х	200	х	0.63	×	0.8		473.56	(82
ooflights 0.9x	1	×	2.58	7 x [200	x	0.63	x	0.8	-	234.06	(83
ooflights 0.9x	1	х	0.7	x	200	x	0.63	х	0.8		127.01	(8:
ooflights 0.9x	1	×	24	×	189] x [0.63	×	0.8	=	2057.53	(8)
ooflights 0.9x	1	x	3.49	×	189	x	0.63	x	0.8	-	299.2	(8
ooflights 0.9x	1	×	5.22	×	189	x	0.63	×	0.8	=	447.51	(8
ooflights 0.9x	1	×	2.58	×	189	x	0.63	×	0.8	=	221.18	(8
ooflights 0.9x	1	x	0.7	х	189	Х	0.63	X	0.8	=	120.02	(8
ooflights 0.9x	1	×	24	×	157	x	0.63	х	0.8	-	1709.16	(8
ooflights 0.9x	1	x	3.49	x	157	x	0.63	x	0.8	-	248.54	(8
ooflights 0.9x	1	х	5.22	х	157	x	0.63	X	0.8	-	371.74	(8
ooflights 0.9x	1	×	2.58	×	157	x	0.63	×	0.8	=	183.74	(8
ooflights 0.9x	1	x	0.7	x	157	x	0.63	x	0.8		99.7	(8
ooflights 0.9x	1	×	24	x	115	x	0.63	×	0.8	=	1251.94	(8
ooflights 0.9x	1	x	3.49	x	115	x	0.63	X	8.0	=	182.05	(8
ooflights 0.9x	1	x	5.22	x	115	×	0.63	X	0.8	8	272.3	(8
ooflights 0.9x	1	x	2.58	х	115	x	0.63	x	0.8	=	134.58	(8
ooflights 0.9x	1	×	0.7	x	115	x	0.63	×	8.0	=	73.03	(8
ooflights 0.9x	-1	×	24	×	66	x	0.63	×	0.8	=	718.5	(8
ooflights 0.9x	1	x	3.49	x	66	x	0.63	x	0.8	=	104.48	(8
ooflights 0.9x	1	×	5.22	x	66	x	0.63	x	0.8	=	156.27	(8
ooflights 0.9x	-1	x	2.58	×	66	x	0.63	x	0.8	-	77.24	(8
ooflights 0.9x	1	x	0.7	x	66	х	0.63	х	0.8	-	41.91	(8
ooflights 0.9x	1	×	24	×	33	×	0.63	X	0.8	=	359.25	(8
ooflights 0.9x	1	х	3.49	х	33	х	0.63	x	0.8	= [52.24	(8
ooflights 0.9x	1	x	5.22	×	33	x	0.63	x	0.8		78.14	(8
ooflights 0.9x	1	x	2.58	x	33	x	0.63	x	8.0	#	38.62	(8
ooflights 0,9x	1	x	0.7	x	33	х	0.63	×	0.8	-	20.96	(8
ooflights 0.9x	1	x	24	x	21	x	0.63	X	8.0		228.61	(8
ooflights 0.9x	1	×	3.49	×	21	х	0.63	X	0.8	· ·	33.24	(8
ooflights 0.9x	1	x	5.22	x	21) x	0.63	x	8.0	=	49.72	(8
ooflights 0.9x	1	x	2.58	×	21	x	0.63	х	8.0	=	24.58	(8
ooflights 0.9x	- 1	x	0.7	7 x.	21	T x	0.63	×	0.8		13.34	(8

Stroma FSAP 2012 Version: 1.0.1.21 (SAP 9.92) - http://www.stroma.com