

Project ID : 17 Branch Hill, London NW3 7NA

Structure element : Flat roof

Description : Flat roof - bonded File reference : 1E13AD7503.FCF

Calculated 'U' value = 0.13W/m²K (Calculated in accordance with BS EN ISO 6946:2007)

	Element	Thermal	Thermal	Vapour	Vapour	Mean	Delta
Element Description	Thickness	Conductivity	Resistance	Resistivity	Resistance	T	T
·	(mm)	(W/mK)	(m²K/W)	(MNs/gm)	(MNs/g)	(K)	(K)
Outside surface resistance	-	-	0.040	-	-	80.73	0.05
BALLAST (gravel / paving slabs on support)	50.0	0.000	0.000	0.00	0.00	80.76	0.00
SINGLE PLY MEMBRANE (adhered)	1.5	0.160	0.009	-	138.00	80.76	0.01
KINGSPAN THERMAROOF TR27 LPC / FM	25.0	0.026	0.962	300.00	7.50	81.34	1.14
KINGSPAN OPTIM-R (VACUUM INSULATED PANELS) bridged with 20.0% FLEX (T) infill panels where runs of OPTIM-R panel do not accurately fit dimension of roof (40.0mm)	40.0	0.007	5.714	-	100.00	85.29	6.77
KINGSPAN OPTIM-R (VACUUM INSULATED PANELS) bridged with 20.0% FLEX (T) infill panels where runs of OPTIM-R panel do not accurately fit dimension of roof (25.0mm)	25.0	0.007	3.571	-	100.00	90.79	4.23
RECOMMENDED PROTECTION LAYER 3mm rubber crumb	3.0	0.000	0.000	0.00	0.00	92.91	0.00
VAPOUR CHECK BITUMINOUS	3.0	0.230	0.013	0.00	300.00	92.92	0.02
REINFORCED CONCRETE (2% STEEL)	225.0	2.500	0.090	659.00	148.28	92.98	0.11
Inside surface resistance	-	-	0.100	-	-	93.09	0.12

Detailed U-value Calculation Results

Construction includes 2 bridged layers.

Non-bridged layers

Outside surface resistance 0.040 m²K/W SINGLE PLY MEMBRANE (adhered) 0.009 m²K/W KINGSPAN THERMAROOF TR27 LPC / FM 0.962 m²K/W VAPOUR CHECK BITUMINOUS 0.013 m²K/W REINFORCED CONCRETE (2% STEEL) 0.090 m²K/W Inside surface resistance 0.100 m²K/W Resistance of non-bridged layers, R_{NB}= 1.214 m²K/W

Detailed U-value Calculation Results (continued)

Resistance of heat flow paths

$$R_{P1} = R_{NB} + R_{L1} = 1.214 + 9.286 = 10.500 \text{ m}^2\text{K/W} \text{ F}_{P1} = 80.000\%$$

 $R_{P2} = R_{NB} + R_{L2} = 1.214 + 2.500 = 3.714 \text{ m}^2\text{K/W} \text{ F}_{P2} = 20.000\%$

Fraction of face area of materials

KINGSPAN OPTIM-R (VACUUM INSULATED PANELS) bridged with, F_{1.1} = 80.0%

FLEX (T) infill panels where runs of OPTIM-R panel do not accurately fit dimension of roof, $F_{\rm B1} = 20.0\%$

Upper resistance limit

$$R_{upper} = 1 / ((F_{P1}/R_{P1}) + (F_{P2}/R_{P2}))$$

 $R_{upper} = 1 / ((0.800/10.500) + (0.200/3.714)) = 7.690 \text{m}^2 \text{K/W}$

$$R_{lower} = R_{NB} + 1 / ((F_{L_1}/R_{L_1}) + (F_{B_1}/R_{B_1}))$$

 $R_{lower} = 1.214 + 1 / ((0.8000/9.2857) + (0.2000/2.5000)) = 7.232 m2K/W$

Total resistance of roof

$$R_T = (R_{upper} + R_{lower}) / 2 = (7.690 + 7.232) / 2 = 7.461 \text{ m}^2\text{K/W}$$

(Correction for mechanical fasteners, Delta Uf = $0.0000W/m^2K$ | Correction for air gaps, Delta Ug = $0.0000W/m^2K$) (Alpha 0.0 m^{-1} | Fasteners per square metre 0.0000)

(Fasteners cross-sectional area 0.000 mm² | Thermal conductivity of fastener 0.00 W/mK)

(Delta Uf + Delta Ug) is less than 3% of (1 / Rt) so U = (1 / Rt) = 0.13W/m²K

For further information on the specified products, e.g. literature or specification clauses, please follows the links below:-

Thermaroof TR27 LPC / FM

Optim-R

Whilst the information and/or specification contained herein is to the best of our knowledge true and accurate we specifically exclude any liability for errors, omissions or otherwise arising therefrom. Details, practices, principles, values and calculations should be verified as to accuracy and suitability for the required purpose for use.

Project ID : 17 Branch Hill, London NW3 7NA

Structure element : Flat roof

Description : Flat roof - bonded

File reference : 1E13AD7503.FCF

Humidity Class: 3 - Dwellings with low occupancy
Location: 5a England SE & Central South

Condensation calculations performed in accordance with BS5250: 2011

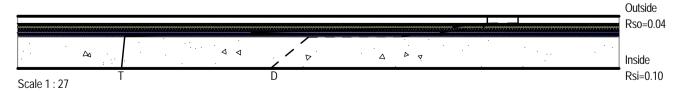
Condensation is occuring at the following layers interfaces:-

Interface 1: SINGLE PLY MEMBRANE (adhered) / KINGSPAN THERMAROOF TR27 LPC / FM

Month	Int	Int	Ext	Ext	Interface 1		
	(°C)	(%RH)	(°C)	(%RH)	Gc (Kg/m²)	Ma (Kg/m²)	
Jan	20.0	61.5	1.5	90.0	0.00	0.00	
Feb	20.0	60.4	1.8	86.5	0.00	0.00	
Mar	20.0	59.7	3.7	84.0	0.00	0.00	
Apr	20.0	59.1	6.0	81.0	0.00	0.00	
May	20.0	61.0	9.3	81.0	0.00	0.00	
Jun	20.0	63.8	12.4	80.0	0.00	0.00	
Jul	20.0	67.3	14.5	80.5	0.00	0.00	
Aug	20.0	68.0	14.1	82.5	0.00	0.00	
Sep	20.0	66.2	11.8	85.5	0.00	0.00	
Oct	20.0	63.9	8.7	88.0	0.00	0.00	
Nov	20.0	61.8	4.4	89.5	0.00	0.00	
Dec	20.0	61.7	2.5	90.5	0.00	0.00	

Gc = Monthly moisture accumulation per area at an interface

Ma = Accumulated moisture content per area at an interface


Peak accumulated moisture content per area at interface (Ma) = 0.00 Kg/m^2 Annual moisture accumulation (Ma) = 0.00 Kg/m^2

Peak moisture build-up month: January

Internal conditions : 20.0°C @ 61.5%RH External conditions : 1.5°C @ 90.0%RH

InternalExternal61.5%RH90.0%RH

25°C 20°C 15°C 10°C 5°C 0°C -5°C

	Structure Description		External Wall U Value Calculation			
A/A	Material	Material Thickenss d (m)	Materials Thermal Conductivity \lambda (W/mK)	Materials Thermal Resistance R (m²K/W)	Typical Drawing Detail	
1	EWI Topcoat	0.001	0.700	0.00143		
2	StarContactWhite	0.005	0.800	0.006		
3	ResolutionTherm	0.100	0.022	4.545		
4	StarContactWhite	0.005	0.800	0.006		
5		0.000	1.000	0.000		
6	Ytong Block	0.215	0.110	1.955		
7	Air Gap (If Exists)	0.000		0.000		
8	0	0.000	1.000	0.000	N/A	
9	0	0.000	0.840	0.000		
10	Plasterboard	0.012	0.190	0.063		
11						
12						
13			1.000	0.000		
14			1.000	0.000		
15			1.000	0.000		
The	rmal Flow	Hor	izontal		U Value	
Rsi ((m ² K/W)	0.	130	(W/m ² K)		
Rse	(m ² K/W)	0.040 0.1482				
	Notes	Only the yellow boxes need to be filled in. You only need to know the thickness and the λ value of the materials. If a material does not exist in your case you leave the d value as zero (0) and the λ value as one (1). You can also replace a material of the list by just renaming ones. If there is no Air Gap then we replace the R of Air with zero(0).				

LIBRAR	<u>Y</u>
Material	λ (W/Mk)
Mortars	3
OpenContact	0.8
StarContact	0.8
MultiContact 55 W	0.93
TopCoat	
SilikonTop	0.7
NanoporTop	0.5
GranoporTop	0.7
StyleTop	0.7
SilikatTop	0.7
Insulation B	oards
OpenTherm Reflectair	0.031
Star Therm EPS Grey	0.031
Pro Therm EPS White	0.038
Star Therm Mineral	0.038
Resolution Therm	0.022
Star Therm Nature	0.045
Other	
Bricks, Outer	0.84
Block, Dense	0.034
Concrete, Outer	1.4
GypsumBoard	0.19
CementBoard	0.79
	l

R denoted by the thermal resistance of a building material, and the units are measured in (m2.k / w) For each building material that participates in a cross section we calculate the thermal resistance R separately This is given by the quotient d/λ (where d is the thickness of the material and k the thermal conductivity coefficient d is measured in meters (m) and lamda (λ) is measured in (w/m.k) So by calculating all individual R of the materials in the order shall contribute we find the total R-sectional

according to th formula Rges=Rsi+R1+R2+...Rn+Rsa
Rsi=1/c1 is called Internal Thermal Transfer Resistance and is measured in (m2.k/w)
Accordingly Rsα=1/α2 is called External Thermal Transfer Resistance and measured in (m2.k/w)
α1 and α2 are Thermal Transfer factors and measured in (w/m2.k), they indicate the Thermal Transfer

on the surface of the building materials. Finally, U value is calculated by the formula U=1/Rges $\sigma\epsilon$ (w/m2.k) and indicates the flow of energy per unit of time

		Branch	Hill U Value	Branch Hill U Values 14-1-17							
Position	Quantity	Uf	Ug	psi'	Area	W/m²K					
01	1 Pcs	2.89 W/m²K	0.50 W/m²K	0.031 W/mK	0.746 m²	1.31 W/m²K					
02	1 Pcs	2.89 W/m²K	0.50 W/m²K	0.031 W/mK	0.746 m²	1.31 W/m²K					
03	1 Pcs	2.91 W/m²K	0.50 W/m²K	0.031 W/mK	0.677 m²	1.35 W/m²K					
04	1 Pcs	2.91 W/m²K	0.50 W/m²K	0.031 W/mK	0.677 m²	1.35 W/m²K					
05	1 Pcs	2.91 W/m²K	0.50 W/m²K	0.031 W/mK	0.765 m²	1.25 W/m²K					
06	1 Pcs	2.91 W/m²K	0.50 W/m ² K	0.031 W/mK	0.765 m²	1.25 W/m ² K					
07	1 Pcs	2.90 W/m ² K	0.50 W/m ² K	0.031 W/mK	1.930 m²	1.09 W/m²K					
08	1 Pcs	3.04 W/m ² K	1.10 W/m²K	0.036 W/mK	6.714 m²	1.42 W/m ² K					
10	1 Pcs	2.89 W/m²K	0.50 W/m ² K	0.031 W/mK	0.746 m²	1.31 W/m ² K					
11	1 Pcs	2.90 W/m ² K	0.50 W/m ² K	0.031 W/mK	2.189 m²	1.05 W/m ² K					
12	1 Pcs	3.08 W/m ² K	1.00 W/m²K	0.036 W/mK	4.557 m²	1.42 W/m²K					
13	1 Pcs	3.08 W/m ² K	1.00 W/m²K	0.036 W/mK	4.557 m²	1.42 W/m²K					
14	1 Pcs	2.90 W/m ² K	0.50 W/m ² K	0.031 W/mK	2.189 m²	1.05 W/m²K					
15	1 Pcs	2.89 W/m²K	0.50 W/m²K	0.031 W/mK	0.746 m²	1.31 W/m²K					
16	1 Pcs	2.90 W/m²K	0.50 W/m²K	0.031 W/mK	1.052 m²	1.28 W/m²K					
17	1 Pcs	2.90 W/m²K	0.50 W/m ² K	0.031 W/mK	3.513 m²	1.25 W/m²K					
18	1 Pcs	1.46 W/m²K	1.00 W/m²K	0.035 W/mK	9.720 m²	1.21 W/m²K					
19	1 Pcs	1.18 W/m²K	1.00 W/m²K	0.055 W/mK	29.520 m²	1.23 W/m²K					
20	1 Pcs	2.89 W/m²K	0.50 W/m ² K	0.031 W/mK	1.296 m²	1.13 W/m²K					
21	1 Pcs	2.89 W/m²K	0.50 W/m ² K	0.031 W/mK	0.935 m²	1.33 W/m²K					
22	1 Pcs	2.91 W/m²K	0.50 W/m ² K	0.031 W/mK	0.860 m²	1.25 W/m²K					
23	1 Pcs	2.91 W/m²K	0.50 W/m ² K	0.031 W/mK	0.860 m²	1.25 W/m²K					
24	1 Pcs	2.90 W/m²K	0.50 W/m ² K	0.031 W/mK	2.132 m²	1.07 W/m²K					
25	1 Pcs	3.05 W/m ² K	1.00 W/m²K	0.036 W/mK	7.563 m²	1.32 W/m²K					
27	1 Pcs	5.50 W/m²K	1.00 W/m²K	0.036 W/mK	2.498 m²	2.82 W/m²K					
28	1 Pcs	5.50 W/m ² K	1.00 W/m²K	0.036 W/mK	2.498 m²	2.82 W/m²K					
29	1 Pcs	3.08 W/m ² K	1.00 W/m²K	0.036 W/mK	4.251 m ²	1.43 W/m²K					
30	1 Pcs	3.33 W/m ² K	1.00 W/m²K	0.036 W/mK	9.406 m²	1.37 W/m²K					
31	1 Pcs	3.33 W/m ² K	1.00 W/m²K	0.036 W/mK	9.299 m²	1.37 W/m²K					
33	1 Pcs	3.08 W/m ² K	1.00 W/m²K	0.036 W/mK	4.482 m²	1.43 W/m²K					
34	1 Pcs	1.69 W/m²K	1.00 W/m²K	0.042 W/mK	2.287 m²	1.39 W/m²K					
35	1 Pcs	3.24 W/m ² K	1.00 W/m²K	0.042 W/mK	8.276 m²	1.36 W/m²K					
36	1 Pcs	3.32 W/m²K	0.50 W/m²K	0.031 W/mK	4.919 m²	1.25 W/m²K					
37	1 Pcs	3.30 W/m²K	1.00 W/m²K	0.036 W/mK	7.361 m²	1.40 W/m²K					
38	1 Pcs	2.90 W/m²K	1.00 W/m²K	0.042 W/mK	4.919 m²	1.38 W/m²K					
Total Amount	35 Pcs	3.01 W/m ² K	0.73 W/m²K	0.034 W/mK	145.651 m²	1.36 W/m²K					

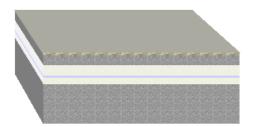
The thermal transmission coefficients were calculated for insertion elements and windows (Uw) according to EN ISO 10077-1:2006 and for curtain walls (Ucw) in compliance with EN ISO 12631:2012. Notice: Uw Kernel V1.0

Remarks:

This calculation is only for information.

Notice: Using this design tool doesn't entitle you to enforce any claim by legal action!

Documentation of the component Thermal transmittance (U-value)


Source: own catalogue - 779 Branch Hill

Component: F01

INSIDE

30. June 2016 Page 1/2

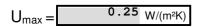
OUTSIDE

Assignment: Ground floor

	Manufacturer	Name	Thickness [m], number	Lambda [W/(mK)]	Q	R [m²K/W]
	Rsi					0.1700
₹ 1	BS EN 12524	Limestone, extra hard & Mortar outer leaf (f = 0.000 / automatic disregarding acc. BRE 4.4.3)	0.0200	2.300	D	0.0087
₹ 2	Generic Building Materials	Concrete screed	0.0100	1.150	D	0.0087
▼ 3	Generic Building Materials	Concrete screed	0.0650	1.150	D	0.0565
₹ 4	Kingspan	Kooltherm K3 Floorboard	0.0800	0.020	E	4.0000
▽ 5	BS EN ISO 6946	Unventilated air layer: 15 mm, downwards heat flow	0.0150	0.088	D	0.1705
▼ 6	Kingspan	Styrozone H350R	0.0500	0.029	E	1.7241
7	BS EN 12524 Rse	Concrete, Reinforced (with 2% of steel)	0.3000	2.500	D	0.1200 0.0000

0.5400

$U = 0.13 \text{ W/(m}^2\text{K})$


Explanation see next page

Q .. The physical values of the building materials has been graded by their level of quality. These 5 levels are the following
A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.
B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party

.. C: Data is entered and validated by the manufacturer or supplier.

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

6.26 m²K/W

779 Branch Hill Basement Floor

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: F01

30. June 2016 Page 2/2

Slab-on-ground floor according to BS EN ISO 13370

Input data:

λ	Thermal conductivity [W/(mK)]	2.00	(Thermal conductivity of the ground)
Α	Floor area [m²]	200.00	
_	Cyronon and recording about [red]	75.50	

P Exposed perimeter [m] 75.50

 R_f Thermal resistance [m²K/W] 6.089 (see construction layer list)

w Thickness of walls [m] 0.30

Kind of edge insulation: no edge insulation

 $\begin{array}{lll} D & Depth \ of \ insulation \ [m] & 0.80 \\ d_n & Thickness \ of \ insulation \ [m] & 0.08 \\ R_n & Thermal \ resistance \ [m^2K/W] & 2.0 \\ \end{array}$

Intermediate results:

12.897
0.131
0.000

U = 0.13 W/(m²K) Thermal Transmittance
L_s = 26.1 W/K Steady-state thermal coupling coefficient

30. June 2016


Page 1/3

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: W3

OUTSIDE INSIDE

This illustration of inhomogeneous layers is provided only to assist in visualising the arrangement.

Assignment: Basement wall

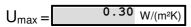
-	Manufacturer	Name	Thickness	Lambda	Q	R
			[m],	[W/(mK)]		$[m^2K/W]$
			number			
	Rse					0.0000
₹ 1	BS EN 12524	Concrete, High density	0.3500	2.000	D	0.1750
▼ 2	BS EN 12524	Concrete, Reinforced (with 2% of steel)	0.2750	2.500	D	0.1100
▼ 3	BS EN ISO 6946	Unventilated air layer: 10 mm, horiz. heat flow	0.0100	0.067	D	0.1493
₹ 4	Inhomogeneous material layer	consisting of:	0.0800	ø 0.020		3.9287
4a	Kingspan	Kooltherm K12 Framing	99.67 %	0.020	E	-
4b	BS EN 12524	Softwood Timber [500 kg/m³]	00.33 %	0.130	D	-
▽ 5	Fermacell	Fermacell 15mm Gypsum Fibreboard	0.0150	0.300	D	0.0500
	Rsi	••				0.1300

0.7300

$U = 0.16 \text{ W/(m}^2\text{K})$

Explanation see next page

2 .. The physical values of the building materials has been graded by their level of quality. These 5 levels are the following


A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.

B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party

C: Data is entered and validated by the manufacturer or supplier.

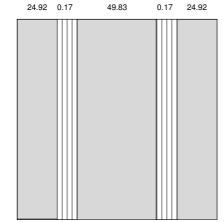
D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

.. E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

 $U = 0.16 \text{ W/(m^2K)}$

R_T=[

4.56 _{m²K/W}


Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: W3

30. June 2016 Page 2/3

Draft of the component (portion in %):

The inhomogeneous layer consists of two zones (A, B). The portion is given in %.

Upper limit of the thermal transfer resistance R

$$U_{A} [W/(m^{2}K)] = \frac{1}{(\Sigma R_{i,A}) + R_{si} + R_{se}} = \frac{1}{4.48 + 0.13 + 0} = 0.22$$

$$U_{B} [W/(m^{2}K)] = \frac{1}{(\Sigma R_{i,B}) + R_{si} + R_{se}} = \frac{1}{1.10 + 0.13 + 0} = 0.81$$

$$R_T$$
 ' = $\frac{1}{A \, ^* \, U_A + \, B \, ^* \, U_B} = 4.57 \, \, m^2 K/W$

Lower limit of the thermal transfer resistance R

R _{se} [m²K/W]		= 0
R_1 " [m ² K/W] = d ₁ / λ_1 =	0.3500 / 2.000	= 0.18
$R_2''[m^2K/W] = d_2/\lambda_2 =$	0.2750 / 2.500	= 0.11
$R_3''[m^2K/W] = d_3/\lambda_3 =$	0.0100 / 0.067	= 0.15
R_4 " [m ² K/W] = $d_4/(\lambda_{4a} * A + \lambda_{4b} * B) =$	0.0800 /(0.020 * 99.67% + 0.130 * 0.33%)	= 3.93
$R_5'' [m^2 K/W] = d_5 / \lambda_5 =$	0.0150 / 0.300	= 0.05
R_{si} [m ² K/W]		= 0.13

$$R_T$$
" = ΣR_i " + R_{si} + R_{se} = 4.54 $m^2 K/W$

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: W3

30. June 2016 Page 3/3

Wall of a heated basement according to BS EN ISO 13370

Input data:

 λ Thermal conductivity [W/(mK)] 1.50 (Thermal conductivity of the ground)

P Exposed perimeter [m] 28.50

 $\begin{array}{lll} R_w & \text{Thermal resistance } [m^2 \text{K/W}] & \text{4.428 (see construction layer list)} \\ w & \text{Thickness of walls } [m] & 0.730 & \text{(see construction layer list)} \end{array}$

R_f Thermal resistance [m²K/W] 2.000 (thermal resistance of basement floor)

z Basement of depth [m] 2.00

Intermediate results:

 $\begin{array}{lll} d_t & \text{Equivalent thickness [m]} & 4.045 \\ d_w & \text{Equivalent thickness [m]} & 6.897 \\ U_{bw} & \text{Thermal transmittance [W/(m²K)]} & 0.162 \\ \end{array}$

U = 0.16 W/(m²K) Thermal Transmittance
L_s = 9.2 W/K Steady-state thermal coupling coefficient

30. June 2016

Page 1/1

Documentation of the component

Thermal transmittance (U-value) according to BS EN ISO 6946

Source: own catalogue - 779 Branch Hill

Component: W2

OUTSIDE INSIDE

Assignment: External wall

		Manufacturer	Name	Thickness	Lambda	Q	R
				[m],	[W/(mK)]		$[m^2K/W]$
				number	. , ,,		
		Rse					0.0400
굣	1	BS EN 12524	Render, cement and sand	0.0100	1.000	D	0.0100
~ ▼	2	Kingspan	Kooltherm K5 External Wall Board	0.1000	0.020	E	5.0000
		Fixings	Vertical Twist stainless steel No./m ² :	2.5/m ²	17.000	D	-
		Fixings	equivalent diameter: 0.0101 m / alpha: 0.800				
		Air gaps	Level 1: dU" = 0.01 W/(m ² K)				
~ .	3	BS EN ISO 6946	Unventilated air layer: 7 mm, horizontal heat flow	0.0070	0.054	D	0.1296
	4	Generic Building Materials	Plaster dabs -Gypsum [1200 kg/m ³]	0.0015	0.430	D	0.0035
₹	5	Xella	YTONG 3.6 Standard Block & Mortar outer leaf (f	0.2150	0.122	E	1.7594
			= 0.015)				
	6	Generic Building Materials	Plaster dabs -Gypsum [1200 kg/m ³]	0.0015	0.430	D	0.0035
┍	7	Generic Building Materials	Standard wallboard plasterboard	0.0150	0.210	D	0.0714
		Rsi					0.1300
				0.3500			

 $R_T = R_{si} + \Sigma R_i + R_{se} = 7.15 \text{ m}^2 \text{K/W}$

Correction to U-value for	according to	delta U
	•	$[W/(m^2K)]$
Mechanical fasteners	BS EN ISO 6946 Annex D	0.019
Air gaps	BS EN ISO 6946 Annex D	0.005
		0.024

 $U = 1/R_T + \Sigma \Delta U = 0.16 \text{ W/(m}^2\text{K)}$

Q .. The physical values of the building materials has been graded by their level of quality. These 5 levels are the following

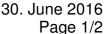
A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.

B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party

.. C: Data is entered and validated by the manufacturer or supplier.

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

 E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.



Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: F02

INSIDE

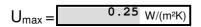
OUTSIDE

Assignment: Ground floor

	Manufacturer	Name	Thickness	Lambda	Q	R
			[m],	[W/(mK)]		$[m^2K/W]$
			number	- \ /-		
	Rsi					0.1700
₹ 1	BS EN 12524	Limestone, semi-hard & Mortar outer leaf (f =	0.0200	1.400	D	0.0143
_		0.000 / automatic disregarding acc. BRE 4.4.3)			_	
▼ 2	Generic Building Materials	Concrete screed	0.0200	1.150	D	0.0174
▼ 3	BS EN 12524	Concrete, Reinforced (with 2% of steel)	0.3000	2.500	D	0.1200
₹ 4	Kingspan	Styrozone H350R	0.0800	0.029	E	2.7586
	Rse	-				0.0000
'			0.4200			

$U = 0.25 \text{ W/(m}^2\text{K})$

Explanation see next page


The physical values of the building materials has been graded by their level of quality. These 5 levels are the following

.. A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.

B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party
C: Data is entered and validated by the manufacturer or supplier.

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

0.25 W/(m²K)

3.08 m²K/W

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: F02

30. June 2016 Page 2/2

Slab-on-ground floor according to BS EN ISO 13370

Input data:

 λ Thermal conductivity [W/(mK)] 1.50 (Thermal conductivity of the ground)

A Floor area [m²] 42.00 P Exposed perimeter [m] 34.00

 R_f Thermal resistance [m²K/W] 2.910 (see construction layer list)

w Thickness of walls [m] 0.30

Kind of edge insulation: no edge insulation

 $\begin{array}{lll} D & Depth \ of \ insulation \ [m] & 0.80 \\ d_n & Thickness \ of \ insulation \ [m] & 0.08 \\ R_n & Thermal \ resistance \ [m^2K/W] & 2.0 \\ \end{array}$

Intermediate results:

d _t Equivalent thickness [m]	4.980
U ₀ Thermal transmittance [W/(m ² K)]	0.246
$\Delta\Psi$ Correction term [W/(mK)]	0.000

 $U = 0.25 \text{ W/(m}^2\text{K})$ Thermal Transmittance $L_s = 10.3 \text{ W/K}$ Steady-state thermal coupling coefficient

30. June 2016

Page 1/2

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: W1

OUTSIDE INSIDE

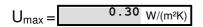
Assignment: Basement wall

	Manufacturer	Name	Thickness [m], number	Lambda C [W/(mK)]	R [m²K/W]
7 1 7 2	Rse Kingspan BS EN 12524 Rsi	Styrozone H350R Concrete, Reinforced (with 2% of steel)	0.0800 0.2500	0.029 2.500	
			0.3300		

$U = 0.23 \text{ W/(m}^2\text{K})$

Explanation see next page

Q .. The physical values of the building materials has been graded by their level of quality. These 5 levels are the following


.. A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.

B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party

C: Data is entered and validated by the manufacturer or supplier.

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

 $U = \begin{bmatrix} 0.23 & W/(m^2K) \end{bmatrix}$

R_T=[

2.99 m²K/W

Documentation of the component Thermal transmittance (U-value)

Source: own catalogue - 779 Branch Hill

Component: W1

30. June 2016 Page 2/2

Wall of a heated basement according to BS EN ISO 13370

Input data:

 λ Thermal conductivity [W/(mK)] 1.50 (Thermal conductivity of the ground)

P Exposed perimeter [m] 34.00

 $\begin{array}{lll} R_w & \text{Thermal resistance } [m^2 \text{K/W}] & 2.859 & \text{(see construction layer list)} \\ w & \text{Thickness of walls } [m] & 0.330 & \text{(see construction layer list)} \end{array}$

R_f Thermal resistance [m²K/W] 2.000 (thermal resistance of basement floor)

z Basement of depth [m] 2.00

Intermediate results:

d_t	Equivalent thickness [m]	3.645
d_{w}	Equivalent thickness [m]	4.543
U_{bw}	Thermal transmittance [W/(m²K)]	0.230

 $U = 0.23 \text{ W/(m}^2\text{K})$ Thermal Transmittance $L_s = 15.7 \text{ W/K}$ Steady-state thermal coupling coefficient