

Ground and Water Limited
2 The Long Barn
Norton Farm
Selborne Road
Alton
Hampshire
GU34 3NB
Tel: 0333 600 1221

E-mail: enquiries@groundandwater.co.uk

Via e-mail only: john@oakleyhough.co.uk

FAO: John Hough

Friday, 31st March 2107

Our Ref: GWPR2012

Dear John,

Re: 49 Fitzjohn's Avenue, Hampstead, London NW3 6PH

We are writing with regard to the Ground Investigation Works and Chemical Laboratory Testing undertaken on the above-named site. The details of the investigation undertaken, along with chemical test results, are detailed within this letter report.

1.0 INTRODUCTION

1.1 General

Ground and Water Limited were instructed by the Jetty Properties Limited c/o SD Investment and Management Limited to undertake a Contamination Assessment at 49 Fitzjohn's Avenue, Hampstead, London NW3 6PH. The scope of the investigation was detailed within the Ground and Water Limited email fee proposal dated 10th February 2017.

1.2 Aims of the Investigation

The aim of the investigation was to supply the client and their designers with information regarding the ground conditions underlying the rear garden, in the western portion of the site, to assist them in preparing an appropriate scheme for remediation, if required.

The techniques adopted for the investigation were chosen considering the anticipated ground conditions and development proposals on-site, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

Included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified, as detailed in the Conceptual Site Model (CSM) within the Ground and Water Limited Desk Study (ref. GWPR1943/DS/February 2017) or the revised CSM within this report.

This contamination assessment must be read in conjunction with the Ground Investigation report ref. GWPR921/GIR/September 2014 and the Desk Study Report (ref. GWPR1943/DS/February 2017).

2.0 SITE SETTING

2.1 Site Location

The site comprised a ~0.13ha (1300m²) approximately rectangular plot of land, orientated in an east to west direction, located on the western side of Fitzjohn's Avenue, ~90m south of its junction with Akenside Road and Lyndhurst Road. The site was located in Hampstead, north-west of London, within the London Borough of Camden.

The national grid reference for the centre of the site was approximately TQ 26531 85124. A site location plan is given within Figure 1 and a plan. A plan showing the site area is given within Figure 2.

2.2 Site Description

A Site Walkover was undertaken in January 2017, the site comprised a large residential building in the eastern section of the site, with a large rear garden to the west. To the east of the residential building was a tarmac driveway. The rear garden to the west of the building comprised mainly grassed soft landscaping, with paving along the sides of the building and hardstanding, overgrown with shrubs, noted in the north-eastern corner.

An aerial view of the site is provided within Figure 3.

2.3 Proposed Development

At the time of reporting, March 2017, the proposed development was understood to comprise the rear extension of the existing property, including basement, and the conversion of the property to residential flats. It is understood that as part of the proposed development a single storey side extension will be demolished.

A plan of the proposed development can be seen in Figure 4.

2.4 Geology

The BGS Geological Map (Solid and Drift) for the Hampstead area (North London Sheet No. 256), revealed that the site was underlain by bedrock deposits of the Claygate Member of the London Clay Formation. The bedrock deposits of the Bagshot Formation was noted ~300m north of the site. The bedrock deposits of the London Clay Formation were noted ~150m south of the site. Areas with the propensity for superficial Head Deposits were noted where the bedrock deposits of the London Clay Formation were noted. No Made Ground, Worked Ground or Infilled Land was noted within 250m of the site.

Bagshot Formation

Bagshot Beds comprise mainly fine to medium grained yellow, pink and brown sand with ferruginous concretions. Beds of grey clay "pipe clay" occur frequently as do beds of black flint gravel.

Claygate Member of the London Clay Formation

The Claygate Member of the London Clay Formation comprises alternating layers of clayey sand and sandy clays. The sands usually overlie the clays. The clays are typically brown to mauve mottled and are overconsolidated. The bed is transitional and overlays the undivided London Clay Formation. It has been used extensively for brick making. It has a typical thickness of ~16m.

London Clay Formation

The London Clay Formation comprises stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of Gypsum (Selenite) are often found within the weathered part of the London Clay Formation, and precautions against sulphate attack to concrete are sometimes required. The lowest part of the formation is a sandy bed with black rounded gravel and occasional layers of sandstone and is known as the Basement Bed.

Ground and Water Limited undertook a ground investigation on the site in May 2014, the results of which were issued within their Ground Investigation report ref. GWPR921/GIR/September 2014.

Fieldwork was undertaken on the 8th May 2014 and comprised the drilling of one Premier Windowless Borehole (BH1) at the front of the property to a depth of 12.45m bgl, one window sampler borehole (WS2) at the rear of the property to a depth of 4.00m bgl and the hand excavation of two trial pit foundation exposures (TP/FE1 and TP/FE2).

The previous Ground Investigation Report (ref. GWPR921/GIR/ September 2014) revealed the following ground condition:

• Made Ground was encountered from ground surface in each of the trial holes to a depth between 0.45 - 1.25m bgl.

The Made Ground was described as a dark brown clayey gravelly sand to 0.40m bgl where a light brown sandy gravelly clay was noted to a depth of 0.65m bgl. The sand was fine to coarse grained and the gravel was occasional, fine to coarse, sub-angular to sub-rounded flint and brick. Rare glass was noted between ground level and 0.40m bgl.

- Soils described as Head Deposits were encountered underlying the Made Ground for the remaining depth of TP/FE1, a depth of 1.20m bgl, and to a proved depth of 1.60m bgl in WS2. The soils generally comprised an orange brown, with light brown to grey brown mottling, gravelly sandy silty clay. The sand was fine grained and the gravel was rare, fine, sub-angular to sub-rounded flint.
- Soils described as Claygate Member of the London Clay Formation were encountered underlying
 the Made Ground in BH1 and the Head Deposits in WS2. The soils generally comprised an
 orange brown to light brown and grey mottled, becoming dark grey with depth, silty sandy clay
 was for the remaining depth of BH1, a depth of 12.45m bgl, and WS2, a depth of 4.00m bgl. The
 sand was fine grained.
- A groundwater strike was noted in BH1 at 5.70m bgl. Groundwater was not encountered in the remaining trial holes. A return site visit on the 20th June 2014 revealed that the groundwater was standing at a depth of 4.60m bgl within the standpipe installed in BH1.
- Roots were noted to a depth of 2.60m bgl in BH1 and 1.00m bgl in WS2. Decaying, assumed to be relic, roots were also noted to ~2.00m bgl in WS2.

2.5 Hydrogeology and Hydrology

The Desk Study revealed the site to be located on a **Secondary A Aquifer** relating to the bedrock deposits of the Claygate Member of the London Clay Formation.

Secondary A Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow of rivers. These are generally aquifers formerly classified as minor aquifers.

Examination of the Environment Agency records showed that the site **did not** fall within a Groundwater Source Protection Zone as classified in the Policy and Practice for the Protection of Groundwater.

No surface water features were noted within 250m of the site. The nearest surface water feature was a series of ponds associated with Hampstead Heath ~1km north-east.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at depth (>6m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a southerly direction in alignment with the local topography towards the River Thames.

Examination of the Environment Agency records showed that the site **was not** situated in an Environment Agency Flood Zone and **not** situated within an area benefitting from flood defences.

2.6 Radon

BRE 211 (2015) Map 5 of the London, Sussex and west Kent area revealed the site was located within an area where mandatory protection measures against the ingress of Radon were **unlikely to be** required. The site **was not** located within an area where a risk assessment was required.

3.0 ENCOUNTERED GROUND CONDITIONS

3.1 Soil Conditions

Fieldwork was undertaken on the 28th February 2017 and comprised the hand auguring of 3No. Hand Auger Boreholes (HA1 - HA3) to a depth of 0.80m bgl. The borehole logs are given within Appendix B with a borehole location plan provided within Figure 5.

All boreholes were logged by Andrew Denton of Ground and Water Limited generally in accordance with BS EN 14688 'Geotechnical Investigation and Testing – Identification and Classification of Soil'.

3.2 Ground Conditions

The ground conditions encountered within the boreholes constructed on the site did generally conform to that anticipated from examination of the geology map.

The ground conditions encountered during the investigation are described in this section and are tabulated below. For the purposes of discussion the succession of conditions encountered in the trial holes in descending order can be summarised as follows:

Made Ground (HA1 - HA3)

Made Ground

Made Ground was encountered for the total depth of all boreholes (0.80m bgl) and generally comprised a dark brown to mid brown sandy silty gravelly clay to gravelly sandy silty clay. The sand was fine to coarse grained and the gravel was rare to occasional, fine to medium, sub-angular to sub-rounded flint, brick and concrete.

3.2 Roots Encountered

The depth of root penetration observed within each trial hole is tabulated below.

Depth of Root Penetrated Soils Observed Within Trial Holes					
Trial Hole	Depth of Fresh Root Penetration (m bgl)	Depth of Dark Brown/Black Friable Rootlets (m bgl)			
HA1 - HA3	0.20	Unknown			

It must be noted that the chance of determining actual depth of root penetration through a narrow diameter borehole is low. Roots may be found to greater depths at other locations on the site, particularly close to trees and/or trees that have been removed both within the site and its close environs.

3.3 Groundwater Conditions

No groundwater was encountered in the boreholes undertaken during the investigation.

Changes in groundwater level occur for a number of reasons including seasonal effects and variations in drainage. Exact groundwater levels may only be determined through long term measurements from monitoring wells installed on-site. The investigation was undertaken in February 2017 when groundwater levels are likely to be close to their annual maximum (i.e. highest level).

Isolated pockets of around the site.	of groundwater	may be	perched	within an	y Made	Ground	found	at other	locations

4.0 PHASE 3 CONTAMINATION RISK ASSESSMENT

4.1 Results of the Phase 1 Risk Assessment (Conceptual Site Model)

The tabulated Conceptual Site Model developed by the Ground and Water Ground Investigation Report (ref. GWPR1943/DS/February 2017) is reproduced in this section and can be seen below.

Tabulated Conceptual Site Model – Plausible Pollutant Linkages Only					
Potential Sources	Potential Absorption Pathways	Potential Receptors			
Contaminants introduced on-site by historic demolition and construction activities on the site or present within Made Ground proved by ground investigation. • Heavy metals & semi-metals (incl. Arsenic, Cadmium, Chromium, Lead etc); • Combustion products (PAH's, benzo(a)pyrene, fluoranthene, dibenz(a,h)anthracene); • Organic compounds (fuel oils, ash, tar); • Asbestos (building material, pipe lagging).	Direct ingestion of soil and soil derived dust; Dermal contact of soil and soil derived dust; Ingestion of soil with elevated concentration of determinants; Dermal contact with impacted soils; Inhalation of impacted dust (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatile vapours (indoors and outdoors)	Construction workers Service and Maintenance Operatives. Site Occupiers.			
	with elevated concentration of determinants.				

4.2 Sampling Locations

The methodology for sampling locations of site works can be seen tabulated below. A trial hole location plan is given within Figure 5.

	Methodology for Sampling Locations and Chemical Laboratory Testing						
Trial Hole	Depth (m bgl)	Sampling Strategy	Anticipated Proposed End Use				
HA1	0.80	Random Sampling					
HA2	0.80	Strategy	Rear Garden				
HA3	0.80	Strategy					

The area investigated as part of the proposed development totals ~ 0.13 ha (1300m²) and with three sampling locations. Given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 650m² and a radius of approximately 14.38m would be encountered (CLR 4).

Sampling depths were chosen to reflect the receptor of concern, human health and typically comprised a surface or near surface sample and at approximately 0.8m depth, extending into the underlying natural soils. The human health receptors relevant to the sampling depths were as follows:

Near surface samples	Direct ingestion, dermal contact and dust inhalation. Protection of end-users and maintenance workers e.g. Landscape Gardeners. Protection of shallow rooted plants Perched Water/Surface Water Run-off
----------------------	---

The depth of soil sampling can be seen within the trial hole logs presented in Appendix B.

4.3 Chemical Laboratory Testing – Human Health Risk Assessment

A programme of chemical laboratory testing, scheduled by Ground and Water Limited, and carried out by QTS Environmental Limited, was undertaken on two samples of Made Ground (HA1/0.60m and HA2/0.20m bgl).

The samples tested and the reason for testing can be seen tabulated below.

Methodology for Sampling Locations and Chemical Laboratory Testing				
Trial Hole	Depth (m bgl)	Sampling Strategy		
HA1	0.60	Representative samples of Made Ground.		
HA2	0.20	nepresentative sumples of Made Ground.		

The analysis suite is presented below and comprised:

- Semi Metals and Heavy Metals incl. Arsenic, Cadmium, Chromium (incl. Hexavalent Chromium), Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc (HA1/0.60m and HA2/0.20m bgl);
- Asbestos Screen (HA1/0.60m and HA2/0.20m bgl);
- Polycyclic Aromatic Hydrocarbons (PAHs) incl. Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene (HA1/0.60m and HA2/0.20m bgl);
- Fuel Oils Speciated TPH including full aliphatic/aromatic split (HA2/0.20m bgl);
- BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and MTBE used as marker compounds for Volatile Organic Compounds (VOCs) (HA2/0.20m bgl).

The chemical laboratory results are presented in Appendix C.

4.3.1 Soil Assessment Criteria

The derivation of Soil Assessment Criteria used within this report can be seen within Appendix D.

4.3.2 Determination of Representative Contamination Concentration

At the time of reporting, March 2017, the proposed development was understood to comprise the rear extension of the existing property, including basement, and the conversion of the property to residential flats. It is understood that as part of the proposed development a single storey side extension will be demolished. The existing rear garden will therefore been converted to a communal garden area.

Therefore, the results of the chemical laboratory testing were compared to the LQM/CIEH Suitable 4 Use Levels (S4UL) for a "Residential without home-grown produce (RwoHP)" landuse scenario, as this was considered the most appropriate land-use scenarios. The C4SL LLTC for Lead was compared to a "Residential without home-grown produce (RwoHP)" land-use scenario.

Where no LQM/CIEH S4UL/C4SL LLTC was available for a particular determinant then preliminary reference was made to the laboratory detection limit of the determinant. If a positive concentration was noted then further risk assessment was undertaken.

For Cyanide, where no SGC/GAC or C4SL LLTC was available a Site Specific Assessment Criteria of 10mg/kg was adopted. This is based on ICRCL 59/83, TCL, ATRISK (SOIL) Screening Value and Dutch Intervention Value (ranging from 20 – 34mg/kg). Therefore, a SSAC of ~10mg/kg is considered conservative.

Where a contaminant of concern's LQM/CIEH S4UL/C4SL LLTC varies according to the Soil's Organic Matter (SOM), the SOM recorded for the soil sample was used to derive the appropriate SGV/GAC. The average SOM of the samples analysed was 2.55% (SOM ranged between 2.0 - 3.1%). The results showing comparison of the representative contaminant concentrations are presented in the table overleaf.

Chemical laboratory testing of the Made Ground revealed elevated levels of lead (450mg/kg) above the guideline levels for a "Residential without home-grown produce (RwoHP)" land-use scenario.

Soil Guid	deline Values and General Acceptance Criteria Results
Substance	Sample Location Where available LQM/CIEH S4UL and CSL4 LLTC were exceeded for relevant land-use scenario "Residential without home-grown produce (RwoHP)" Land-Use Scenario
Arsenic	None
Boron	None
Cadmium	None
Chromium (III)	None
Hexavalent Chromium (VI)	None
Copper	None
Lead	HA2/0.50m bgl
Mercury (Elemental)	None
Nickel	None
Selenium	None
Vanadium	None
Zinc	None
Cyanide (Total)	None
Total Phenol	None
Naphthalene	None
Acenapthylene	None
Acenapthene	None
Fluorene	None
Phenanthrene	None
Anthracene	None
Fluoranthene	None
Pyrene	None
Benzo(a)anthracene	None
Chrysene	None
Benzo(b)fluoranthene	None
Benzo(k)fluoranthene	None
Benzo(a)pyrene	None
Indeno(1,2,3-cd)pyrene	None
Dibenz(a,h)anthracene	None
Benzo(ghi)perylene	None
TPH C5 – C6 (aliphatic)	None
TPH C6 – C8 (aliphatic)	None
TPH C8 - C10 (aliphatic)	None
TPH C10 - C12 (aliphatic)	None
TPH C12 - C16 (aliphatic)	None
TPH C16 - C21 (aliphatic)	None None
TPH C21 - C34 (aliphatic) TPH C5 – C7 (aromatic)	None None
TPH C5 – C7 (aromatic) TPH C7 – C8 (aromatic)	None
TPH C8 - C10 (aromatic)	None
TPH C10 - C12 (aromatic)	None
TPH C12 - C16 (aromatic)	None
TPH C16 - C21 (aromatic)	None
TPH C21 - C35 (aromatic)	None
Benzene	None
Toluene	None
Ethylbenzene	None
Xylene (o, m & p)	None
MTBE	None
Asbestos Screen	None

In addition, the intrusive investigation did not reveal any visual or olfactory evidence to suggest any hydrocarbon-type contamination in the trial holes excavated on the site. The chemical laboratory results have verified that no elevated concentrations of aliphatic/aromatic hydrocarbons (C5-C35) or BTEX compounds are present in the soils underlying the site.

Given the limited number of samples tested, the use of CLAIRE Statistical Analysis on the results of chemical laboratory testing was considered inappropriate.

Based on the layout of the proposed development at the time of reporting, March 2017, HA2 was located within the rear private garden area and was therefore likely to pose a risk to endusers. The contamination identified was at shallow depth (0.20m bgl) and as such further testing and targeted sampling towards areas of the rear garden are recommended to further examine the distribution of Lead within the Made Ground prior to occupation of the site. This would allow for statistical analysis of the distribution to be undertaken and a remedial strategy to be identified.

In the absence of further analysis consideration should be given to remediation.

4.4 Groundwater Risk Assessment

The Desk Study revealed the site to be located on a **Secondary A Aquifer** relating to the bedrock deposits of the Claygate Member of the London Clay Formation.

Examination of the Environment Agency records showed that the site **did not** fall within a Groundwater Source Protection Zone as classified in the Policy and Practice for the Protection of Groundwater.

No surface water features were noted within 250m of the site. The nearest surface water feature was a series of ponds associated with Hampstead Heath ~1km north-east.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at depth (>6m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a southerly direction in alignment with the local topography towards the River Thames.

Examination of the Environment Agency records showed that the site **was not** situated in an Environment Agency Flood Zone and **not** situated within an area benefitting from flood defences.

Given the hydrogeological setting of the site, the groundwater (Secondary A Aquifers) underlying the site was considered to be a sensitive receptor.

No significantly elevated levels of determinants were noted within the chemical laboratory analysis that were considered likely to pose a risk to the groundwater quality underlying the site. Therefore, no remediation with respect to groundwater is considered necessary.

4.5 Re-Evaluated Phase 2 Conceptual Site Model

Following completion of the Phase 2 Site Investigation, the CSM within Section 4.1 of this report was re-evaluated and can be seen overpage. The plausible pollutant linkages remaining after risk assessment are shown and where risk assessment has indicated no unacceptable risk to sensitive receptors, the pollutant linkages have been crossed out.

The Made Ground encountered was shallow, however 1No. sample analysed showed an elevated concentration of lead.

Tabulated Conceptual Site Model – Plausible Pollutant Linkages Only					
Potential Sources	Potential Absorption Pathways	Potential Receptors			
	Direct ingestion of soil and soil derived dust;				
Contaminants introduced on-site by historic	Dermal contact of soil and soil derived dust;				
demolition and construction activities on the site or present within Made Ground proved by ground investigation.	Ingestion of soil with elevated concentration of determinants;	Construction workers			
	determinants,	Service and Maintenance			
Heavy metals & semi-metals (incl. Arsenic, Cadmium, Chromium, Lead etc);	Dermal contact with impacted soils;	Operatives.			
 Combustion products (PAH's, benzo(a)pyrene, 	Inhalation of impacted dust (indoors and outdoors)	Site Occupiers.			
fluoranthene, dibenz(a,h)anthracene); Organic compounds (fuel oils, ash, tar);	with elevated concentration of determinants.				
Asbestos (building material, pipe lagging).	Inhalation of volatile vapours (indoors and outdoors) with elevated concentration of determinants.				

4.6 Remediation Strategy

In the absence of further chemical analysis, based on the results **to-date** and given the risks posed to end-users, the following remediation is necessary for the areas of **soft landscaping**:

As the elevated concentration of lead detected in the Made Ground was not over six times its relevant C4SL LLTC for a 'Residential without home grown produce' land-use scenario, the BRE Cover Systems could be applied.

The BRE Cover Systems spreadsheet was based on a mixing zone of 500mm given the formation of communal soft landscaping areas. The lower the concentration of the elevated determinands in the imported Topsoil, the lesser the amount of clean cover will be required.

An **example cover thickness** has been calculated of ~150mm using an approximate assumed concentration of lead (50mg/kg) likely to be present in any imported Topsoil, which can be viewed in Appendix E.

The actual cover thickness would need to be calculated once a source of imported Topsoil was known with available chemical results certificates.

Excavation of the soft landscaped communal areas must be independently inspected to validate that the calculated depth has been achieved **before any Topsoil is imported onto the site**.

Complete removal of affected Made Ground has not been considered given the cost implications and that a simple capping system could be adopted. This would prevent needless lorry movements and prevent waste unnecessarily being sent to landfills with only a finite capacity.

4.7 Validation Strategy

The proposed source of Topsoil/Sub-soil should be identified and tested to determine the level of contaminants. The BRE Cover Systems should then be re-run based on the lead concentration of the proposed imported soils.

Samples should be taken from the Topsoil/Sub-soil following remediation to verify levels of contaminants are below guideline levels. Should contamination be identified then further risk assessment and remediation may be required.

Any remedial works undertaken on the site will need to be inspected and independently validated by a Ground and Water Limited Engineer. All remedial excavations will need to be inspected, documented and photographed.

4.8 Discovery Strategy

There may be areas of contamination that have not been identified during the course of the intrusive investigation.

Such occurrences may be discovered during the demolition and construction phases for the redevelopment of the site.

Groundworkers should be instructed to report to the Site Manager any evidence for such contamination; this may comprise visual indicators, such as fibrous materials within the soil, discolouration, or odours and emission. Upon discovery, advice must be taken from a suitably qualified person before proceeding, such that appropriate remedial measures and health and safety protection may be applied.

Should a new source of contamination be suspected or identified then the Local Authority will need to be informed.

4.9 Waste Disposal

Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all waste must be classified as;

- Inert;
- Non-hazardous, or;
- Hazardous.

The Environment Agency's Hazardous Waste Technical Guidance (WM2) document outlines the methodology for classifying wastes.

Once classified the waste can be removed to the appropriately licensed facilities, with some waste requiring pre-treatments prior to disposal.

Based on a risk phrase analysis of the remaining chemical laboratory test results, in accordance with EC Hazardous Waste Directive and undertaken by Ground and Water Limited, the samples of Made Ground encountered in the area investigated were classified as **NON-HAZARDOUS**. The results of the assessment are given within Appendix F.

It is important to note that whilst we consider our in-house assessment tool to be an accurate interpretation of the requirements of WM2, therefore producing an initial classification in accordance with the guidance, landfill operators have their own assessment tools and can often come to different conclusions. As a result, some landfill operators could refuse to take apparently suitable waste. It is recommended that the receiving landfill views the results of this assessment and the chemical laboratory results to determine their own classification.

4.10 Imported Material

Any soil which is to be imported onto the site must undergo chemical analysis to prove that it is suitable for the purpose for which it is intended.

The Topsoil must be fit for purpose and must either be supplied with traceable chemical laboratory test certificates or be tested, either prior to placing (ideally) or after placing, to ensure that the human receptor cannot come into contact with compounds that could be detrimental to human health. The compounds that are to be tested for are those given in the LQM S4UL's, which can be viewed in Appendix D of this report.

4.11 Duty of Care

Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust was generated as a result of construction activities.

The site should be securely fenced at all times to prevent unauthorised access. Washing facilities should be provided and eating restricted to mess huts.

Please feel free to contact us should you have any queries regarding the information enclosed within this letter report.

Yours sincerely

Mr. Andrew Denton

Graduate Geotechnical and Geo-Environmental Engineer

For and on behalf of Ground and Water Limited

Enc.	Figure 1	Site Location Plan

Figure 2 Site Development Area Figure 3 Aerial View of Site

Figure 4 Proposed Development Plan Figure 5 Trial Hole Location Plan

Appendix A Conditions and Limitations

Appendix B Trial Hole Logs

Appendix C Chemical Laboratory Results
Appendix D Soil Assessment Criteria

Appendix E BRE Cover Systems Spreadsheet Appendix F Waste Hazard Assessment

Appendix A Conditions and Limitations

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to the land in the tree protection area in the western area of the site at 49 Fitzjohn's Avenue, Hampstead, London NW3 6PH.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

Recipients are not permitted to publish this report outside of their organisation without our express written consent.

Appendix B Trial Hole Logs				

						Ground	l and Wat	er Ltd	Borehole N	
									Sheet 1 of	
	ect N					oject N		Co-ords: -	Hole Type	Э
		n's Avenu				NPR2	012	Co-ords	HA	
Loca	ation:	Hamps	tead,	London NW3 6F	PH			Level: -	Scale	
								Level	1:50	
Clie	ot:	letty Dr	onert	ies Ltd c/o SDIA	MItd			Dates: 28/02/2017	Logged By	y
Olici								Dates. 20/02/2017	AD	
Well	Water Strikes	Sample Depth (m)	es & In Type	Results	Depth (m)	Level (m AOD)	Legend	Stratum Description		
		0.20 0.40 0.60	0 0 0		0.50			MADE GROUND: Dark brown sandy silty gravelly clay. S to coarse grained. Gravel is occasional, fine to medium, sub-angular to sub-rounded flint, concrete and brick. MADE GROUND: Dark/mid brown mottled sandy gravelly is fine to medium grained. Gravel is rare, fine to medium	clay. Sand	-
(2)37/2)37/					0.80			sub-angular brick and flint.	, 	‡
								End of Borehole at 0.80 m		-1 [
										-2
										Ė
										-3
										-
										-4
										-
										-5 - -
										-
										-6 -
										-7
										
										-8
										-
										-9
										-
			Туре	Results						

Remarks: Groundwater not encountered. Roots noted to 0.20m bgl.

						Ground	l and Wat	er Ltd	Borehole N	
	ect Na	ame nn's Avenu	<u> </u>			oject N NPR20		Co-ords: -	Sheet 1 of Hole Type HA	
Loca	ation:	Hamps	tead,	London NW3 6F	PH			Level: -	Scale 1:50	
Clier	nt:	Jetty Pr	ropert	ies Ltd c/o SDIA	M Ltd			Dates: 28/02/2017	Logged By AD	y
Well	Water Strikes	Sample Depth (m)	es & In	Situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Description		
	Strikes	Depth (m) 0.20 0.40 0.60	Type D D D	Results	(m) 0.50 0.80	(m AOD)	Legend	MADE GROUND: Dark brown sandy sitly gravelly clay. St to coarse grained. Gravel is occasional, fine to medium, sub-angular to sub-rounded flint, concrete and brick. MADE GROUND: Dark/mid brown mottled sandy gravell is fine to medium grained. Gravel is rare, fine to medium sub-angular to sub-rounded brick and flint. End of Borehole at 0.80 m	v clav. Sand	-3
			Туре	Results	-					-

Remarks: Groundwater not encountered. Roots noted to 0.20m bgl..

						Ground	l and Wat	er Ltd	Borehole N	
Proi	ect N	ame			Pr	oject N	lo.		Sheet 1 of Hole Type	
-		n's Avenu	е			NPR2		Co-ords: -	HA	
	ation:			London NW3 6F					Scale	
			,					Level: -	1:50	
									Logged By	/
Clie	nt:	Jetty Pr	ropert	ies Ltd c/o SDIA	M Ltd			Dates: 28/02/2017	AD	
Well	Water	Sample Donth (m)	es & In	Situ Testing	Depth (m)	Level (m AOD)	Legend	Stratum Description		
well	Strikes	Depth (m) 0.20 0.40 0.60	Type D D D	Results	0.60 0.80	(m AOD)	Legend	Stratum Description MADE GROUND: Dark brown sandy gravelly silty clay. Sto medium grained. Gravel is rare to occasional, fine to medium, sub-angular to sub-rounded flint, brick and conditions in the sub-angular to sub-rounded brick and flint. End of Borehole at 0.80 m	rete.	
			Туре	Results						_

Remarks: Groundwater not encountered. Roots noted to 0.20m bgl.

Appendix C Chemical Laboratory Results

Andy Denton
Ground & Water Ltd
The Long Barn
Norton Farm
Selborne Road
Alton
Hampshire

GU34 3NB

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 17-56081

Site Reference: 49 Fitzjohns Avenue, London

Project / Job Ref: GWPR2012

Order No: None Supplied

Sample Receipt Date: 08/03/2017

Sample Scheduled Date: 08/03/2017

Report Issue Number: 1

Reporting Date: 13/03/2017

Authorised by:

Kevin Old

Associate Director of Laboratory

QTSE is the trading name of DETS Ltd, company registration number 03705645

Authorised by:

Russell Jarvis

Associate Director of Client Services

Soil Analysis Certificate					
QTS Environmental Report No: 17-56081	Date Sampled	28/02/17	28/02/17		
Ground & Water Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: 49 Fitzjohns Avenue, London	TP / BH No	HA1	HA2		
Project / Job Ref: GWPR2012	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	0.60	0.20		
Reporting Date: 13/03/2017	QTSE Sample No	256924	256925		

Determinand	Unit	RL	Accreditation			
Asbestos Screen	N/a	N/a	ISO17025	Not Detected	Not Detected	
рН	pH Units	N/a	MCERTS	7.5	7.0	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	70	27	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.07	0.03	
Organic Matter	%	< 0.1	MCERTS	2	3.1	
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.1	1.8	
Arsenic (As)	mg/kg	< 2	MCERTS	10	15	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.3	
Chromium (Cr)	mg/kg	< 2	MCERTS	24	30	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	23	42	
Lead (Pb)	mg/kg	< 3	MCERTS	92	450	
Mercury (Hg)	mg/kg	< 1	NONE	1.3	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	10	15	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	40	42	
Zinc (Zn)	mg/kg	< 3	MCERTS	50	634	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

 $The \ material \ description \ shall \ be \ regarded \ as \ tentative \ and \ is \ not \ included \ in \ our \ scope \ of \ UKAS \ Accreditation.$

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Graham Revell

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT'' with type(s).

Subcontracted analysis $^{(S)}$

Soil Analysis Certificate - Speciated PAHs	Soil Analysis Certificate - Speciated PAHs										
QTS Environmental Report No: 17-56081	Date Sampled	28/02/17	28/02/17								
Ground & Water Ltd	Time Sampled	None Supplied	None Supplied								
Site Reference: 49 Fitzjohns Avenue, London	TP / BH No	HA1	HA2								
Project / Job Ref: GWPR2012	Additional Refs	None Supplied	None Supplied								
Order No: None Supplied	Depth (m)	0.60	0.20								
Reporting Date: 13/03/2017	QTSE Sample No	256924	256925								

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	0.19		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.58		
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.49		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.16		
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	0.27		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.14		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.14		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded									
QTS Environmental Report No: 17-56081	Date Sampled	28/02/17							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 49 Fitzjohns Avenue, London	TP / BH No	HA2							
Project / Job Ref: GWPR2012	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.20							
Reporting Date: 13/03/2017	QTSE Sample No	256925							

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - BTEX / MTBE									
QTS Environmental Report No: 17-56081	Date Sampled	28/02/17							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 49 Fitzjohns Avenue, London	TP / BH No	HA2							
Project / Job Ref: GWPR2012	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.20							
Reporting Date: 13/03/2017	QTSE Sample No	256925							

Determinand	Unit	RL	Accreditation	
Benzene	ug/kg	< 2	MCERTS	< 2
Toluene	ug/kg	< 5	MCERTS	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2
MTBE	ug/kg	< 5	MCERTS	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 17-56081	
Ground & Water Ltd	
Site Reference: 49 Fitzjohns Avenue, London	
Project / Job Ref: GWPR2012	
Order No: None Supplied	
Reporting Date: 13/03/2017	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
256924	HA1	None Supplied	0.60	18.7	Brown clay
256925	HA2	None Supplied	0.20	17.1	Brown clay with vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

QTS Environmental Report No: 17-56081

Ground & Water Ltd

Site Reference: 49 Fitzjohns Avenue, London

Project / Job Ref: GWPR2012
Order No: None Supplied
Reporting Date: 13/03/2017

Soil				Method No
	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chlorida - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of chloride by extraction with water & analysed by for chromatography Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Compley	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	,	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	·	Gravimetrically determined through extraction with cyclohexane	E013
Soil	AR	, , ,	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	ITITTATION WITH ITON (11) SHINNATE	E010
Soil	D		Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR		Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	` '	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	, , ,	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	, , , , , , , , , , , , , , , , , , , ,	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D AR		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018
Soil	AR	SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TFM)	Gravimetrically determined through extraction with toluene	E011
			Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	
Soil	D		(II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001

D Dried AR As Received

Appendix D Soils Assessment Criteria

Appendix D Soil Guideline Values and Genera Assessment Criteria

D1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

D1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: *Updated technical background to the CLEA model.*
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.06 (2009)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.
- do not cover risks to the environment, such as groundwater, ecosystems or buildings.
- do not provide a definitive test for telling when human health risks are significant.
- are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

D1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

D1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., *The LQM/CIEH S4UL's for Human Health Risk Assessment*. **Land Quality Press**. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

D1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a

significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

"4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:

- (a) Land where no relevant contaminant linkage has been established.
- (b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.
- (c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.
- (d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).
- 4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made

that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

D1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, The Soil Generic Assessment Criteria for Human Health Risk Assessment. Contaminated Land: Applications in the Real Environment. 2009.

Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

D1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

- ⇒ Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.
- ⇒ Developing more accurate parameters using site data.

D1.8 Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

D1.9 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination — a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

Treatment of Hot-Spots

⇒ A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.

⇒ Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hotspot(s) may be excluded and the mean of the remaining data assessed.

D2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

C4SL Low Level of Toxicological Concern

	C4SL Low Level of Toxicological Concern									
Contaminant	RWHP RwoHP Allotment Commercial POSresi POSpark (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)									
Lead	<210	<330	<84	<6000	<760	<1400				

Phytotoxicity Recommendations

ICRCL 70/90 Restoration of metalliferous mining areas

Phytotoxicity (Harmful to Plants) Threshold Trigger Values								
Copper 250mg/kg								
Zinc	1000mg/kg							
Notes:								
Many cultivars and specifically	Many cultivars and specifically grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for							
neutral or near neutral pH. Site	e observation of plant vitality may give additional guidance.							

LQM CIEH Suitable 4 Use Levels (S4UL's)

LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals								
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Metals:								
Arsenic	37	40	43	640	79	170		
Beryllium	1.7	1.7	35	12	2.2	63		
Boron	290	11000	45	240000	21000	46000		
Cadmium	11	85	1.9	190	120	532		
Chromium (III)	910	910	18000	8600	1500	33000		
Chromium (VI)	6	6	1.8	33	7.7	20		
Copper	2400	7100	520	68000	12000	44000		
Elemental Mercury	1.2	1.2	21	58	16	30		
Inorganic Mercury	40	56	19	1100	120	240		
Methylmercury	11	15	6	320	40	68		
Nickel	180	180	230	980	230	3400		
Selenium	250	430	88	12000	1100	1800		
Vanadium	410	1200	91	9000	2000	5000		
Zinc	3700	40000	620	730000	81000	170000		

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds									
Contaminant	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
	1.0% SOM	0.087	0.38	0.017	27	72	90		
Benzene	2.5% SOM	0.170	0.70	0.034	47	72	100		
	6.0% SOM	0.370	1.40	0.075	90	73	110		
	1.0% SOM	130	880	22	56000	56000	87000		
Toluene	2.5% SOM	290	1900	51	110000	56000	95000		
	6.0% SOM	660	3900	120	180000	56000	100000		
	1.0% SOM	47	83	16	5700	24000	17000		
Ethylbenzene	2.5% SOM	110	190	39	13000	24000	22000		
	6.0% SOM	260	440	91	27000	25000	27000		
	1.0% SOM	60	88	28	6600	41000	17000		
o-Xylene	2.5% SOM	140	210	67	15000	42000	24000		
	6.0% SOM	330	480	160	33000	43000	33000		
		_							
	1.0% SOM	59	82	31	6200	41000	17000		
m-Xylene	2.5% SOM	140	190	74	14000	42000	24000		
	6.0% SOM	320	450	170	31000	43000	33000		
	4.00/.0014					44000	4=000		
	1.0% SOM	56	79	29	5900	41000	17000		
p-Xylene	2.5% SOM	130	180	69	14000	42000	23000		
	6.0% SOM	310	430	160	30000	43000	31000		
	The mo	ost nealth protectiv	e value in each	scenario for Xylene	is highlighted in bol	a.			

LQM/CIEH Suitable 4 Use Levels For TPH **RWHP RwoHP** Allotment Commercial **POSresi POSpark Aliphatic** (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 42 730 3,200 (304) so 570,000 (304) sol 95,000 (304) sol 1.0% SOM 42 5,900 (558) sol 130,000 (558) sol EC 5-6 2.5% SOM 78 78 1,700 590,000 12,000 (1150) sol 180,000 (1150) sol 6.0% SOM 3,900 600,000^l 160 160 7,800 (144) sol 150,000 (144) so 1.0% SOM 100 100 2,300 600,000 610,000 EC >6-8 2.5% SOM 230 230 5,600 17,000 (322) 220,000 (322) 40,000 (736) sol 320,000 (736) soi 6.0% SOM 530 530 13,000 620,000 2,000 (78) so 14,000 (78) sc 1.0% SOM 27 27 320 13,000 18,000 (118) vap 4,800 (118) vap EC >8-10 2.5% SOM 65 65 770 13,000 21,000 (451) vap 6.0% SOM 150 150 1,700 11,000 (451) 13,000 1.0% SOM 130 (48) vap 130 (48) vap 2,200 9,700 (48) so 13,000 21,000 (48) so 330 (118) vap 23,000 (118) vap 330 (118) vap 23,000 (118) vap 4,400 EC >10-12 2.5% SOM 13,000 760 (283) vap 770 (283) vap 47,000 (283) vap 24,000 (283) vap 7,300 6.0% SOM 13,000 1,100 (24) so 1,100 (24) sol 25,000 (24) sol 59,000 (24) sc 1.0% SOM 11,000 13,000 25,000 (59) sol 2,400 (59) so 2,400 (59) sc EC >12-16 2.5% SOM 13,000 82,000 (59) s 13,000 26,000 (142) sol 4,300 (142) so 4,400 (142) sol 90,000 (142) so 6.0% SOM 13,000 13,000 1.0% SOM 65,000 (8.48) 65,000 (8.48) so 260,000 1,600,000 250,000 450,000 EC >16-35 2.5% SOM 92,000 (21) s 92,000 (21) sol 270,000 1,700,000 250,000 480,000 6.0% SOM 110,000 110,000 270,000 1,800,000 250,000 490,000 65,000 (8.48) so 65,000 (8.48) so 1.0% SOM 260,000 1,600,000 250,000 450,000 92,000 (21) sol EC >35-44 2.5% SOM 92,000 (21) 270,000 1,700,000 250,000 480,000

270,000

1,800,000

6.0% SOM

110,000

110,000

Cont'd Overleaf:

250,000

490,000

LQM/CIEH Suitable 4 Use Levels For TPH								
Aroma	atic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
505.7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 ^{sol}	
EC 5-7	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol	
(Benzene)	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol	
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) sol	
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol	
(Toluelle)	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) val	
					wan			
	1.0% SOM	34	47	8.6	3,500 (613) vap	5,000	7,200 (613) ^{vap}	
EC >8-10	2.5% SOM	83	110	21	8,100 (1500) vap	5,000	8,500 (1500) vap	
	6.0% SOM	190	270	51	17,000 (3850) ^{vap}	5,000	9,300 (3580) ^{vap}	
	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) ^{sol}	
EC >10-12	2.5% SOM	180	590	31	28,000 (899) ^{sol}	5,000	9,700 (889) sol	
LC >10-12	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000	
	0.070 301VI	300	1,200	/ -	34,000 (2130)	3,000	10,000	
	1.0% SOM	140	1,800	23	36,000 (169) ^{sol}	5,100	10,000	
EC >12-16	2.5% SOM	330	2,300 (419) ^{sol}	57	37,000	5,100	10,000	
	6.0% SOM	660	2,500	130	38,000	5,000	10,000	
	1.0% SOM	260	1,900	46	28,000	3,800	7,600	
EC >16-21	2.5% SOM	540	1,900	110	28,000	3,800	7,700	
	6.0% SOM	930	1,900	260	28,000	3,800	7,800	
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800	
EC >21-35	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800	
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900	
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800	
EC >35-44	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800	
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900	
	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800	
EC >44-70	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800	
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900	

SOM = Soil Organic Matter Content (%)

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

Determinant	s	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	210	3,000 (57.0) sol	34	84,000(57.0) sol	15,000	29,000
Acenapthene	2.5% SOM	510	4,700(141) sol	85	97,000(141) sol	15,000	30,000
	6.0% SOM	1100	6,000(336) sol	200	100,000	15,000	30,000
	1.0% SOM	170	2,900(86.1) sol	28	83,000(86.1) sol	15,000	29,000
Acenapthylene	2.5% SOM	420	4,600(212) sol	69	97,000(212) sol	15,000	30,000
	6.0% SOM	920	6,000(506) sol	160	100,000	15,000	30,000
	1.0% SOM	2,400	31,000(1.17) vap	380	520,000	74,000	150,000
Anthracene	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
	1.0% SOM	7.20	11	2.90	170	29	49
Benzo(a)anthracene	2.5% SOM	11	14	6.50	170	29	56
	6.0% SOM	13	15	13	180	29	62
	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(a)pyrene	2.5% SOM	2.70	3.20	2.00	35	5.70	12
	6.0% SOM	3.00	3.20	3.50	36	5.70	13
	1.0% SOM	2.60	3.90	0.99	44	7.10	13
Benzo(b)flouranthene	2.5% SOM	3.30	4.00	2.10	44	7.20	15
	6.0% SOM	3.70	4.00	3.90	45	7.20	16
	1.0% SOM	320	360	290	3,900	640	1,400
Benzo(ghi)perylene	2.5% SOM	340	360	470	4,000	640	1,500
	6.0% SOM	350	360	640	4,000	640	1,600
	1.0% SOM	77	110	37	1,200	190	370
Benzo(k)flouranthene	2.5% SOM	93	110	75	1,200	190	410
	6.0% SOM	100	110	130	1,200	190	440
	1.0% SOM	15	30	4.10	350	57	93
Chrysene	2.5% SOM	22	31	9.40	350	57	110
	6.0% SOM	27	32	19	350	57	120
	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
Dibenzo(ah)anthracene	2.5% SOM	0.28	0.32	0.27	3.60	0.57	1.30
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

Determinan	nts	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	280	1,500	52	2,3000	3,100	6,300
Flouranthene	2.5% SOM	560	1,600	130	2,3000	3,100	6,300
	6.0% SOM	890	1,600	290	2,3000	3,100	6,300
	1.0% SOM	170	2,800 (30.9) sol	27	63,000(30.9) sol	9,900	20,000
Flourene	2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000
	6.0% SOM	860	4,500(183) sol	160	71,000	9,900	20,000
	1.0% SOM	27	45	9.50	500	82	150
Indeno(123-cd)pyrene	2.5% SOM	36	46	21	510	82	170
	6.0% SOM	41	46	39	510	82	180
	1.0% SOM	2.30	2.6	4.10	190 [†] (76.4) ^{sol}	4,900 ^f	1,200 ^f (76.4)
Napthalene	2.5% SOM	5.60	5.6	10	460 ^f (183) ^{sol}	4,900 [†]	1,900 ^f (183)
	6.0% SOM	13	13	24	1,100 ^f (432) sol	4,900 [†]	3,000
	1.0% SOM	95	1,300(183) sol	18	22,000	3,100	6,200
Phenanthrene	2.5% SOM	220	1,500	38	22,000	3,100	6,200
	6.0% SOM	440	1,500	90	23,000	3,100	6,300
	1.0% SOM	620	3,700	110	54,000	7,400	15,000
Pyrene	2.5% SOM	1200	3,800	270	54,000	7,400	15,000
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000
Coal Tar	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40
(Benzo(a)pyrene used	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70
as marker compound	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

Cont'd Overleaf:

sol – GAC presented exceeds the soil saturation limit, which is presented in brackets.

LQM/CIEH Suitable 4 Use Levels (cont.)

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Chloroalkanes & alkenes						
1,2 Dichloroethane						
1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21
2.5% SOM	0.011	0.013	0.0083	0.97	29	24
6.0% SOM	0.019	0.023	0.016	1.70	29	28
1,1,2,2 Tetrachloroethane						
1.0% SOM	1.60	3.90	0.41	270	1,400	1,800
2.5% SOM	3.40	8.00	0.89	550	1,400	2,100
6.0% SOM	7.50	17	2.00	1,100	1,400	2,300
0.070 30111	7.50		2.00		=, : : :	_,
1,1,1,2 Tetrachloroethane						
1.0% SOM	1.20	1.50	0.79	110	1,400	1,500
2.5% SOM	2.80	3.50	1.90	250	1,400	1,800
6.0% SOM	6.40	8.20	4.40	560	1,400	2,100
Tetrachloroethene						rol .
1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)
2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 ^{sol} (951)
6.0% SOM	0.90	0.92	3.60	95	1,400	1,500
1,1,1 Trichloroethane						
1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)
2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)
6.0% SOM	39	40	240	3,000	140,000	100,000 vap(6392)
Tetrachloromethene						
1.0% SOM	0.026	0.026	0.45	2.90	890	190
2.5% SOM	0.056	0.056	1.00	6.30	920	270
6.0% SOM	0.130	0.130	2.40	14	950	400
Trichloroethene						
1.0% SOM	0.016	0.017	0.041	1.20	120	70
2.5% SOM	0.034	0.036	0.091	2.60	120	91
6.0% SOM	0.075	0.080	0.210	5.70	120	120
T. C. L. L. C.						
Trichloromethane	0.04	1.20	0.43	99	2.500	2.600
1.0% SOM	0.91	1.20	0.42		2,500	2,600
2.5% SOM	1.70	2.10	0.83	170	2,500	2,800
6.0% SOM	3.40	4.20	1.70	350	2,500	3,100
Vinyl Chloride						
1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80
2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00
6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

Volatile and Semi-Volatile Organic Compounds									
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Explosives									
2,4,6 Trinitrotoluene									
1.0% SOM	1.60	65	0.24	1,000	130	260			
2.5% SOM	3.70	66	0.58	1,000	130	270			
6.0% SOM	8.10	66	1.40	1,000	130	270			
RDX (Hexogen/Cyclonite/1,3,5- trinitro-1,3,5- triazacyclonexane)				240.000	25.000	40 000440 7150			
1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}			
2.5% SOM	250	13,000	38	210,000	26,000	51,000			
6.0% SOM	540	13,000	85	210,000	27,000	53,000			
HMX (Octogen/1,3,5,7- tetrenitro-1,3,5,7- tetrazacyclo-octane)									
1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}			
2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}			
6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}			
Atrazine									
1.0% SOM	3.30	610	0.50	9,300	1,200	2,300			
2.5% SOM	7.60	620	1.20	9,400	1,200	2,400			
6.0% SOM	17.40	620	2.70	9,400	1,200	2,400			
0.070 30101	17.40	020	2.70	3,400	1,200	2,400			
Pesticides									
Aldrin									
1.0% SOM	5.70	7.30	3.20	170	18	30			
2.5% SOM	6.60	7.40	6.10	170	18	31			
6.0% SOM	7.10	7.50	9.60	170	18	31			
Dieldrin									
1.0% SOM	0.97	7.00	0.17	170	18	30			
2.5% SOM	2.00	7.30	0.41	170	18	30			
6.0% SOM	3.50	7.40	0.96	170	18	31			
Dichlorus									
Dichlorvos	0.033	6.40	0.0040	140	16	36			
1.0% SOM	0.032	6.40	0.0049	140 140	16 16	26 26			
2.5% SOM 6.0% SOM	0.066 0.140	6.50 6.60	0.0100 0.0220	140	16	26			
51070 50111	0.1 10	0.00	0.0220	2.0					
Alpha - Endosulfan									
1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400			
2.5% SOM	18	280(0.007) ^{vap}	2.90	7,400(0.007) ^{vap}	1,200	2,400			
6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0.016) ^{vap}	1,200	2,400			
					- · · · -				

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Pesticides								
Beta - Endosulfan								
1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6,300(0.00007) ^{vap}	1,200	2,400		
2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002) ^{vap}	1,200	2,400		
6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1,200	2,500		
Alpha -								
Hexachlorocyclohexanes								
1.0% SOM	0.23	6.90	0.035	170	24	47		
2.5% SOM	0.55	9.20	0.087	180	24	48		
6.0% SOM	1.20	11	0.210	180	24	48		
Beta -								
Hexachlorocyclohexanes	0.00=	0.70	0.040	C.F.	0.40	4.5		
1.0% SOM	0.085	3.70	0.013	65	8.10	15		
2.5% SOM	0.200	3.80	0.032	65	8.10	15		
6.0% SOM	0.460	3.80	0.077	65	8.10	16		
Gamma -								
Hexachlorocyclohexanes								
1.0% SOM	0.06	2.90	0.0092	67	8.2	14		
2.5% SOM	0.14	3.30	0.0230	69	8.2	15		
6.0% SOM	0.33	3.50	0.0540	70	8.2	15		
0.078 30141	0.55	3.30	0.0540	70	0.2	15		
Chlorobenzenes								
Chlorobenzene								
1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675) ^{sol}		
2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520) ^{sol}		
6.0% SOM	2.40	2.40	32	290	14,000	2,900		
			-		,	,		
1,2-Dichlorobenzene								
1.0% SOM	23	24	94	2,000 (571) sol	90,000	24,000(571) ^{sol}		
2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36,000(1370 ^{)sol}		
6.0% SOM	130	130	540	11,000 (3240) sol	98,000	51,000(3240) ^{sol}		
1,3-Dichlorobenzene								
1.0% SOM	0.40	0.44	0.25	30	300	390		
2.5% SOM	1.00	1.10	0.60	73	300	440		
6.0% SOM	2.30	2.50	1.50	170	300	470		
1,4-Dichlorobenzene								
1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000 ^g	36,000 (224) ^{vap}		
2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}		
6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (1280) ^{vap}		
1,2,3,-Trichlorobenzene								
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)vap}		
2.5% SOM	3.60	3.70	12	250	1,800	1,100(330) ^{vap}		
6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}		

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds RwHP RwoHP **POSresi POSpark** Commercial Allotment (mg/kg) **Contaminant** (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Chlorobenzenes 1.2.3.-Trichlorobenzene 1.800 770(134)^{vap} 102 1.0% SOM 1.50 1.50 4.70 1,100(330^{)vap} 250 1,800 2.5% SOM 3.60 3.70 12 1,600(789)^{vap} 6.0% SOM 8.80 590 1,800 8.60 28 1,2,4,-Trichlorobenzene 1,700(318)^{vap} 220 15,000 2.60 55 1.0% SOM 2.60 2.5% SOM 6.40 6.40 140 530 17,000 2,600(786)^{vap} 1,300 19,000 4,000(1880)^{vap} 6.0% SOM 15 320 15 1,3,5,-Trichlorobenzene 1,700 380(36.7)^{vap} 1.0% SOM 0.33 0.33 4.70 23 590(90.8)^{vap} 0.81 55 1,700 2.5% SOM 0.81 12 1,800 860(217)^{vap} 130 6.0% SOM 1.90 1.90 140 1,2,3,4,-Tetrachlorobenzene 1,700(122)vap 1,500(122)^{vap} 4.40 830 1.0% SOM 15 24 2.5% SOM 36 56 11 3,080(304)^{vap} 830 1,600 4,400(728)^{vap} 830 1,600 6.0% SOM 26 78 120 1,2,3,5,-Tetrachlobenzene 49(39.4)^{vap} 110(39)^{vap} 1.0% SOM 0.66 0.75 0.38 78 0.90 120(98.1)^{vap} 79 120 2.5% SOM 1.60 1.90 240(235)^{vap} 79 130 2.20 6.0% SOM 3.70 4.30 1,2,4, 5,-Tetrachlobenzene 42(19.7)^{so} 0.73 0.06 13 25 1.0% SOM 0.33 72(49.1)^{sol} 0.16 13 26 2.5% SOM 0.77 1.70 6.0% SOM 96 1.60 3.50 0.37 13 26 Pentachlrobenzene 5.80 1.20 640(43.0)^{sol} 100 190 1.0% SOM 19 770(107)^{sol} 3.10 100 190 2.5% SOM 12 30 7.00 830 100 190 6.0% SOM 22 38 Hexachlorobenzene 110(0.20)^{va} 1.80(0.20)^{vap} 4.10 (0.20) var 1.0% SOM 0.47 16 30 3.30(0.50)^{vap} 5.70 (0.50)^{vap} 1.10 120 2.5% SOM 16 30 6.70 (1.2)^{vap} 4.90 2.50 120 16 30 6.0% SOM

	LQI	VI CIEH Ge	neral Assessm	ent Criteria:					
	Volatile and Semi-Volatile Organic Compounds								
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Phenols & Chlorophenols									
Phenols									
1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,000)	760 ^{dir} (8,600)			
2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11,000)	1,500 ^{dir} (9,700)			
6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11,000)	3,200 ^{dir} (11,000)			
Chlorophenols (4 Congeners)									
1.0% SOM	0.87	94	0.13	3,500	620	1,100			
2.5% SOM	2.00	150	0.30	4,000	620	1,100			
6.0% SOM	4.50	210	0.70	4,300	620	1,100			
Pentachlorophenols									
1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110			
2.5% SOM	0.52	29	0.08	400	60	120			
6.0% SOM	1.20	31	0.19	400	60	120			
Others									
Carbon Disulphide									
1.0% SOM	0.14	0.14	4.80	11	11,000	1,300			
2.5% SOM	0.29	0.29	10	22	11,000	1,900			
6.0% SOM	0.62	0.62	23	47	12,000	2,700			
Hexachloro-1,3- Butadiene									
1.0% SOM	0.29	0.32	0.25	31	25	48			
2.5% SOM	0.70	0.78	0.61	68	25	50			
6.0% SOM	1.60	1.80	1.40	120	25	51			

Cont'd Overleaf:

CL:AIRE Soil Generic Assessment Criteria										
Contaminant	Residential (mg/kg) Residential without plant uptake (mg/kg) Residential without Allotment (mg/kg) Commercial (mg/kg)									
Metals:										
Antimony	ND	550	ND	7500						
Barium	ND	1300	ND	22000						
Molybdenum	ND	670	ND	17000						

ND – Not Derived. NA – Not Applicable

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential without Residential (mg/kg) Allotment (mg/kg) Commercial (mg/kg) **Contaminant** plant uptake (mg/kg) 1,1,2 Trichloroethane 0.60 0.88 0.28 94 1.0% SOM 2.5% SOM 1.20 1.8 0.61 190 6.0% SOM 2.70 3.9 1.40 400 1,1-Dichloroethane 2.40 2.50 9.20 280 1.0% SOM 2.5% SOM 3.90 4.10 17 450 6.0% SOM 7.40 7.70 35 850 1,1-Dichloroethene 0.23 0.23 2.80 1.0% SOM 26 2.5% SOM 0.40 0.41 5.60 6.0% SOM 0.82 0.82 12 92 1,2,4-Trimethylbenzene 0.41 0.35 0.38 42 1.0% SOM 2.5% SOM 0.85 0.99 0.93 99 6.0% SOM 2.00 2.30 2.20 220 1,2-Dichloropropane 1.0% SOM 0.024 0.024 0.62 3.3 2.5% SOM 0.042 0.042 1.20 5.9 6.0% SOM 0.084 0.085 2.60 12 2,4-Dimethylphenol 210 3.10 16000* 1.0% SOM 19 24000* 2.5% SOM 43 410 7.20 6.0% SOM 97 730 17 30000* 2,4-Dinitrotoluene 1.50 170* 0.22 3700* 1.0% SOM 3.20 0.49 3700* 2.5% SOM 170 6.0% SOM 7.20 170 1.10 3800* 2,6-Dinitrotoluene 1.0% SOM 0.12 1900* 0.78 78 2.5% SOM 1.70 0.27 1900* 84 1900* 6.0% SOM 3.90 87 0.61 2-Chloronapthalene 1.0% SOM 3.70 3.80 390* 40 2.5% SOM 9.20 9.30 98 960* 6.0% SOM 22 22 230 2200*

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential without Residential (mg/kg) Allotment (mg/kg) Commercial (mg/kg) Contaminant plant uptake (mg/kg) **Biphenyl** 66* 220* 18000* 1.0% SOM 14 2.5% SOM 160 500* 35 33000* 6.0% SOM 360 980* 83 48000* Bis (2-ethylhexyl) phthalate 280* 2700* 47* 85000* 1.0% SOM 2.5% SOM 610* 2800* 120* 86000* 6.0% SOM 1100* 2800* 280* 86000* Bromobenzene 0.87 97 1.0% SOM 0.91 3.2 2.5% SOM 2.0 2.1 7.6 220 6.0% SOM 4.7 4.9 18 520 Bromodichloromethane 0.019 0.016 0.016 2.1 1.0% SOM 2.5% SOM 0.030 0.034 0.032 3.7 6.0% SOM 0.061 0.070 0.068 7.6 **Bromoform** 1.0% SOM 2.8 5.2 0.95 760 2.5% SOM 5.9 11 2.1 1500 23 6.0% SOM 13 4.6 3100 **Butyl benzyl phthalate** 940000* 1400* 42000* 220* 1.0% SOM 940000* 3300* 44000* 550* 2.5% SOM 6.0% SOM 7200* 44000* 1300* 950000* Chloroethane 960 1.0% SOM 8.3 8.4 110 200 2.5% SOM 11 11 1300 6.0% SOM 380 2100 18 18 Chloromethane 1.0% SOM 0.0083 0.0085 0.066 1.0 2.5% SOM 0.0098 0.0099 0.13 1.2 6.0% SOM 0.013 0.013 0.23 1.6 Cis 1,2 Dichloroethene 0.11 0.12 0.26 1.0% SOM 14 2.5% SOM 0.19 0.20 0.50 24 6.0% SOM 0.37 0.39 1.0 47

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential without Residential (mg/kg) Allotment (mg/kg) Commercial (mg/kg) Contaminant plant uptake (mg/kg) Dichloromethane 0.58 2.10 0.10 270 1.0% SOM 2.5% SOM 0.98 2.80 0.19 360 6.0% SOM 1.70 4.50 0.34 560 **Diethyl Phthalate** 120* 1800* 19* 150000* 1.0% SOM 2.5% SOM 260* 3500* 41* 220000* 6.0% SOM 570* 6300* 94* 290000* Di-n-butyl phthalate 13* 15000* 450* 2.00 1.0% SOM 15000* 2.5% SOM 31* 450* 5.00 6.0% SOM 67* 450* 12 15000* Di-n-octyl phthalate 940* 89000* 2300* 3400* 1.0% SOM 2.5% SOM 2100* 89000* 2800* 3400* 89000* 6.0% SOM 3100* 3400* 3900* Hexachloroethane 1.0% SOM 0.20 0.22 0.27 22* 53* 2.5% SOM 0.48 0.54 0.67 6.0% SOM 1.10 1.30 1.60 120* Isopropylbenzene 32 1400* 11 12 1.0% SOM 3300* 2.5% SOM 27 28 79 6.0% SOM 64 67 190 7700* Methyl tert-butyl ether 49 73 23 7900 1.0% SOM 2.5% SOM 84 120 44 13000 6.0% SOM 160 220 90 24000 Propylbenzene 34 34 4100* 1.0% SOM 40 2.5% SOM 97 9700* 82 83 21000* 6.0% SOM 190 230 200 Styrene 8.10 1.60 3300* 1.0% SOM 35 2.5% SOM 19 78 3.70 6500* 6.0% SOM 43 170 8.70 11000*

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds											
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)							
Total Cresols (2-, 3-, and 4- methylphenol)											
1.0% SOM	80	3700	12	160000							
2.5% SOM	2.5% SOM 180		27	180000*							
6.0% SOM	400	6900	63	180000*							
Trans 1,2 Dichloroethene											
1.0% SOM	0.19	0.19	0.93	22							
2.5% SOM	0.34	0.35	1.90	40							
6.0% SOM	0.70	0.71	0.24	81							
Tributyl tin oxide											
1.0% SOM	0.25	1.40	0.042	130*							
2.5% SOM	0.59	3.10	0.100	180*							
6.0% SOM	1.30	5.70	0.240	200*							

Notes: *Soil concentration above soil saturation limit

Appendix E BRE Cover Systems Spreadsheet

Calculations based on mixed zone (M)	500	mm

Contaminant		Site	Data		Expres	sed as a Guidelir		[:] Target	Cover Thickness Required for Compliance to Specified Target Guideline Value			
	Contam Contam Target C		Soil / Target Guideline Value 1	Cover / Target Guideline Cover / Value 1	Soil / Target Guideline Value 2	Cover / Target Guideline Cover / Value 2	Target Guideline Value 1	Target Guideline Value 2				
	Ur	nits	Ur	its		Frac	ction		(m	m)		
Lead	450	50	330	330	1.4	0.2	1.4	0.2	150	150		

Summa	ry	
	Target Guideline Value 1	Target Guideline Value 2
Number of contaminants	1	1
Number of contaminants with no thickness calculation	0	0
Breakdown - Number for which no TV specfied	0	0
Breakdown - Number for which no soil specified	0	0
Breakdown - Number for which no cover specified	0	0
Breakdown - Number for which cover > TV	0	0
Number of contaminants with thickness calculation	1	1
Breakdown - Number for which no cover required	0	0
Breakdown - Number for which cover required	1	1

Overall thickness of cover required	150	150

Appendix F Waste Hazard Assessment

Waste Classification Report

Job name

GWPR2012

Description/Comments

Project

49 Fitzjohns Avenue, London

Site

Waste Stream Template

Ground and Water V2 PA

Classified by

Name: James Dalziel Date:

16/03/2017 09:32:46 UTC

Telephone: 0333 600 1221 Company: **Ground and Water** 2 The Long Barn

Norton Farm, Selborne Road

Alton GU34 3NB

Report

Created by: James Dalziel

Created date: 16/03/2017 09:32 UTC

Job summary

#	# Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	HA1	0.60	Non Hazardous		2
2	HA2	0.20	Non Hazardous		4

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	7
Appendix B: Rationale for selection of metal species	9
Appendix C: Version	9

Classification of sample: HA1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

HA1 Chapter:

Sample Depth:

0.60 m Entry:

Moisture content:

18.7%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18.7% No Moisture Correction applied (MC)

#		Determinand CLP index number	L P Nofe	User ente	liser entered data		entered data Conv. Factor Compound of		conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.5	рН		7.5	рН	7.5 pH			
2	₩.	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2	mg/kg	1.88	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>	
3	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		10	mg/kg	1.32	13.203	mg/kg	0.00132 %			
4	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4,		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>	
5	æ.	cadmium { cadmium sulfide }	1	<0.2	mg/kg	1.29	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>	
6	8	048-010-00-4 215-147-8 1306-23-6 Chromium (III) Sulphate 10101-53-8		24	mg/kg		24	mg/kg	0.0024 %			
7	4	chromium { chromium(VI) oxide } 024-001-00-0		<2	mg/kg	1.92	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>	
8	æ.	copper {		23	mg/kg	1.13	25.895	mg/kg	0.00259 %			
9	-	lead { lead chromate } 082-004-00-2	1	92	mg/kg	1.56	143.503	mg/kg	0.0092 %			
10	4	mercury { mercury dichloride } 080-010-00-X		1.3	mg/kg	1.35	1.76	mg/kg	0.000176 %			
11	4	nickel { nickel dihydroxide } 028-008-00-X		10	mg/kg	1.58	15.795	mg/kg	0.00158 %			
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3	mg/kg	2.55	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>	
		034-002-00-8										

HazWasteOnline™
Report created by James Dalziel on 16/03/2017

- maranadari	Target William	d warn	and the second		Barrella.
aeotechn	ıcai anı	n envi	ironmenta	i consii	itants

#		Determinand CLP index number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
13	4	vanadium { divanadium pentaoxide; va 023-001-00-8 215-239-8	nadium pentoxide }		40 mg/kg	1.79	71.407 mg/kg	0.00714 %		
14	æ 🎉	zinc { zinc oxide }	1314-13-2		50 mg/kg	1.24	62.236 mg/kg	0.00622 %		
15		phenol 604-001-00-2 203-632-7	108-95-2		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>
16		naphthalene 601-052-00-2 202-049-5	91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17	0	acenaphthylene 205-917-1	208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
18	0	acenaphthene	83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	fluorene 201-695-5	86-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	phenanthrene 201-581-5	85-01-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	anthracene 204-371-1	120-12-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	fluoranthene 205-912-4	206-44-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	pyrene 204-927-3	129-00-0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
24		benzo[a]anthracene 601-033-00-9 200-280-6	56-55-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0 205-923-4	218-01-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthene 601-034-00-4 205-911-9	205-99-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27		benzo[k]fluoranthene 601-036-00-5 205-916-6	207-08-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5	50-32-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyrene 205-893-2	193-39-5		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
30		dibenz[a,h]anthracene 601-041-00-2 200-181-8	53-70-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	191-24-2		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		F					Total:	0.0339 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Determinand defined by classifier (see Appendix A)

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: HA2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

HA2
Chapter:

Sample Depth:

0.20 m
Entry:

Moisture content:

17.1%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17.1% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7 pH		7 pH	7pH	_	
2	₫	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<2 mg/kg	1.88	<3.768 mg/kg	<0.000377 %		<lod< td=""></lod<>
3		arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		15 mg/kg	1.32	19.805 mg/kg	0.00198 %		
4	₫,	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		<1 mg/kg	13.43	<13.43 mg/kg	<0.00134 %		<lod< td=""></lod<>
5	-	cadmium { cadmium sulfide } 048-010-00-4	1	0.3 mg/kg	1.29	0.386 mg/kg	0.00003 %		
6	8	Chromium (III) Sulphate 10101-53-8		30 mg/kg		30 mg/kg	0.003 %		
7	_	chromium { chromium(VI) oxide } 024-001-00-0		<2 mg/kg	1.92	<3.846 mg/kg	<0.000385 %		<lod< td=""></lod<>
8	4	copper { * dicopper oxide; copper (I) oxide } 029-002-00-X		42 mg/kg	1.13	47.287 mg/kg	0.00473 %		
9	~	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	450 mg/kg	1.56	701.917 mg/kg	0.045 %		
10	~	mercury { mercury dichloride } 080-010-00-X 231-299-8		<1 mg/kg	1.35	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
11	4	nickel { nickel dihydroxide } 028-008-00-X		15 mg/kg	1.58	23.692 mg/kg	0.00237 %		
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<3 mg/kg	2.55	<7.661 mg/kg	<0.000766 %		<lod< td=""></lod<>

HazWasteOnline™ Report created by James Dalziel on 16/03/2017

geotechnical and environmental consultants

	Determinand		g Cor		Conv. Compound conc.			Classification =		Conc. Not			
#		CLP index number	EC Number	CAS Number	CLP Note	User entere	ed data	Factor	Compound	conc.	value	MC Applied	Used
					_디							ž	
13	4	-	215-239-8	nadium pentoxide }		42	mg/kg	1.79	74.978	mg/kg	0.0075 %		
	ď.	zinc { zinc oxide }	213-239-0	1314-02-1		004			====				
14	•		215-222-5	1314-13-2		634	mg/kg	1.24	789.149	mg/kg	0.0789 %		
15		phenol				<2	mg/kg		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2						mg/kg	10.0002 /0		1202
16		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-								
17	0	acenaphthylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	200 017 1	200 30 0									
18	,	•	201-469-6	83-32-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19			201-695-5	86-73-7		V 0.1	ilig/kg		ζ0.1	ilig/kg	<0.00001 /8		\LUD
20	0	phenanthrene				0.19	mg/kg		0.19	mg/kg	0.000019 %		
			201-581-5	85-01-8									
21	0	anthracene	bo 4 074 4	100 10 7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-7	\vdash								
22	0		205-912-4	206-44-0	-	0.58	mg/kg		0.58	mg/kg	0.000058 %		
		pyrene	200 012 1	200 11 0									
23		* *	204-927-3	129-00-0	1	0.49	mg/kg		0.49	mg/kg	0.000049 %		
24		benzo[a]anthracen	е			0.16	mg/kg		0.16	mg/kg	0.000016 %		
24		601-033-00-9	200-280-6	56-55-3		0.10	IIIg/kg		0.10	ilig/kg	0.000010 /8		
25		chrysene				0.27	mg/kg		0.27	mg/kg	0.000027 %		
			205-923-4	218-01-9						3 3			
26		benzo[b]fluoranthe		005 00 0		0.14	mg/kg		0.14	mg/kg	0.000014 %		
		601-034-00-4 benzo[k]fluoranther	205-911-9	205-99-2	-							\vdash	
27			205-916-6	207-08-9		0.14	mg/kg		0.14	mg/kg	0.000014 %		
		benzo[a]pyrene; be		207 00 0									
28			200-028-5	50-32-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5		VO.1			VO.1	mg/kg	<0.00001 70		\LOD
30		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-181-8	53-70-3	_				111g/kg	40.00001 70			
31	0	benzo[ghi]perylene		404.04.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzene	205-883-8	191-24-2	\vdash								
32			200-753-7	71-43-2	-	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
-		toluene		<u>, , , , , , , , , , , , , , , , , , , </u>	+	_			_		0.0007.00		
33			203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	0	ethylbenzene		*		<2	mg/kg		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4		~	y/kg		~_	g/kg	10.0002 /0		
		xylene											
35			202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]			3 3			3 3			
<u> </u>			215-535-7 [4]	1330-20-7 [4]	_								
			ne; [2] m-xylene; [3										
36			202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]									
			215-535-7 [4]	1330-20-7 [4]	-								
	0	diesel petroleum gr	ουρ	68334-30-5,	-								
37				68476-34-6,		<35	mg/kg	9	<35	mg/kg	<0.0035 %		<lod< td=""></lod<>
				94114-59-7, 1150170-26-0									
			+										
38	9	(30 to 040) p	coloum group	TPH	-	<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
		1	1	<u>,</u>						Total:	0.156 %		
											L		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
8	Determinand defined by classifier (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Page 6 of 10 JLBLJ-ZWPED-DR92K www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25/05/2015

Risk Phrases: None. Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Risk Phrases: None.

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14/12/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43

Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron

trichloride and boron trifluoride

Data source: N/A

Data source date: 06/08/2015

Risk Phrases: R14, T+ R26/28, C R34, C R35

Hazard Statements: EUH014, Acute Tox. 2 H330, Acute Tox. 2 H300, Skin Corr. 1A H314, Skin Corr. 1B H314

Chromium (III) Sulphate (CAS Number: 10101-53-8)

Description/Comments:
Data source: 10101-53-8
Data source date: 24/06/2015
Risk Phrases: None.
Hazard Statements: None.

dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X

Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 , N R50/53 >= 0.25 %

Additional Hazard Statement(s): None.

Reason for additional Hazards Statement(s)/Risk Phrase(s):

10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R22 , R26 , R27 , R36 , R37 , R38

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R36, R37, R38, N R50/53, N R51/53

 $Hazard\ Statements:\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Chronic\ 1\ H410\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Chronic\ 1\ H410\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Acute$

Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

 ${\tt Data\ source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06/08/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 06/08/2015

Risk Phrases: R22, R36, R37, R38, R40, R43, N R50/53

 $Hazard\ Statements:\ Acute\ Tox.\ 4\ H302\ ,\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Carc.\ 2\ H351\ ,\ Skin\ Sens.\ 1\ H317\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Acute\ 1\ H400\ ,$

, Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R36, R37, R38, R43, N R50/53

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic

Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21/08/2015 Risk Phrases: Xn R22, N R50/53

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21/08/2015

Risk Phrases: Xi R36/37/38 . N R50/53

Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06/08/2015

Risk Phrases: R40

Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23/07/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Risk Phrases: None.

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

diesel petroleum group (CAS Number: 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25/05/2015

Risk Phrases: R40, R51/53, R65, R66

 $Hazard\ Statements:\ Flam.\ Liq.\ 3\ H226\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ Acute\ Tox.\ 4\ H332\ ,\ Carc.\ 2\ H351\ ,\ Asp.\ Tox.\ 1\ H304\ ,\ STOT\ RE\ 2\ H373\ ,$

Aquatic Chronic 2 H411

Page 8 of 10 JLBLJ-ZWPED-DR92K www.hazwasteonline.com

" TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25/05/2015

Risk Phrases: R10, R45, R46, R51/53, R63, R65

Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d ,

Aquatic Chronic 2 H411

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

arsenic {arsenic trioxide}

Worst case species based on risk phrases

boron {boron tribromide/trichloride/trifluoride (combined)}

Worst case species based on risk phrases

cadmium {cadmium sulfide}

Worst case species based on risk phrases

chromium (chromium(VI) oxide)

Worst case species based on risk phrases

copper {dicopper oxide; copper (I) oxide}

Most likely common species

lead {lead chromate}

Worst case species based on risk phrases

mercury {mercury dichloride}

Worst case species based on risk phrases

nickel {nickel dihydroxide}

Worst case species based on risk phrases

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on risk phrases

vanadium {divanadium pentaoxide; vanadium pentoxide}

most common form

zinc {zinc oxide}

Chromium value not sufficient for Zinc Chromate species to be considered appropriate.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015

HazWasteOnline Classification Engine Version: 2017.55.3206.6376 (24 Feb 2017)

HazWasteOnline Database: 2017.55.3206.6376 (24 Feb 2017)

This classification utilises the following guidance and legislation:

WM3 - Waste Classification - May 2015

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 **6th ATP** - Regulation 605/2014/EU of 5 June 2014

oth ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Page 10 of 10 JLBLJ-ZWPED-DR92K www.hazwasteonline.com