GEO-ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

FOR

254 KILBURN HIGH ROAD, LONDON NW6 2BS

Report Title : Geo-environmental and Geotechnical Ground Investigation for

254 Kilburn High Road, London

Report Status : Final v1.0

Job No : P8591J338

Date : November 2014

Quality Control: Previous Release

Version	Date	Issued By

Prepared by: JOMAS ASSOCIATES LTD For: AITCH GROUP

Prepared by Marc Williams BSc (Hons), AIEMA, FGS
Principal Consultant

Checked by Andrew Garnham BSc (Hons) MSc FGS Senior Engineer

Approved by Roni Savage BEng (hons), MSc, SiLC, CGeol, MCIWM, FGS
Technical Director

Should you have any queries relating to this report, please contact

Roni Savage

Jomas Associates Ltd

• www.jomasassociates.com

2 0843 289 2187

 \boxtimes info@jomasassociates.com

CONTENTS

	Page
EX	ECUTIVE SUMMARY 1
1	INTRODUCTION
1.1	Terms of Reference
1.2	Objectives
1.3	Scope of Works
1.4	Limitations
2	SITE SETTING
2.1	Site Information
2.2	Desk Study Overview7
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation
3.2	Scope of Ground Investigation
3.3	Standard Penetration Tests (SPTs)10
3.4	In Situ CBR Measurements10
3.5	Sampling Rationale10
3.6	Laboratory Analysis11
4	GROUND CONDITIONS
4.1	Soil
4.2	Hydrogeology13
4.3	Physical and Olfactory Evidence of Contamination13
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK
5.1	Context and Objectives14
5.2	Analytical Framework – Soils14

5.3	Analytical Framework – Groundwater and Leachate	15
6	GENERIC QUANTITATIVE RISK ASSESSMENT	18
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment	18
6.2	Statistical Analysis	19
6.3	Asbestos in Soil	20
6.4	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth	21
6.5	Waste Disposal	21
7	SOIL GAS RISK ASSESSMENT	22
7.1	Soil Gas Results	22
7.2	Screening of Results	22
8	SUMMARY OF RESULTS	24
8.1	Risk Assessment - Land Quality Impact Summary	24
8.2	Review of Pollutant Linkages Following Site Investigation	25
9	GEOTECHNICAL ENGINEERING RECOMMENDATIONS	27
9.1	Ground Investigation Summary	27
9.2	Hand Excavated Trial Pits	30
9.3	Foundations	30
9.4	In Situ CBR Measurements	31
9.5	Concrete in the Ground	31
9.6	Ground Bearing Slabs	31
9.7	Excavations	31
9.8	Groundwater Control	32
10	REFERENCES	33

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 - EXPLORATORY HOLE RECORDS

APPENDIX 3 - CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 - GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 - STATISTICAL ANALYSIS RESULTS

APPENDIX 6 - SOIL GAS MONITORING RECORDS

APPENDIX 7 - IN SITU CBR RESULTS

EXECUTIVE SUMMARY

Aitch Group (the client) commissioned Jomas Associates Ltd ('JAL') to undertake a Geoenvironmental and Geotechnical ground investigation at a site on site 254 Kilburn High Road, London.

The principle objectives of the study were as follows:

- To determine the nature and where possible, the extent of contaminants potentially present at the site:
- To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);
- To obtain documentary or other information to assess whether the land appears to be contaminated land, under the definition set out in Part IIA of the Environmental Protection Act 1990:
- To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action; and.
- To obtain geotechnical parameters to inform preliminary foundation design.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

Site History and Ground Investigation

Site History Overview

A Desk Study report produced for the site has been issued separately.

A review of historical maps indicates that the site was originally (1866) occupied by gardens to the rear of a row of properties on Edgware Road, with a building noted as Stanmore terrace encroaching on the south-eastern edge of the site. A further building is present in the north-eastern part of the site in 1866. Further buildings are constructed on site by 1893. The structures on site are subsequently modified over the years, with the site appearing similar to the present day by 1995. The site is labelled as a Timber yard in 1935, a Motor Units Factory in 1953, and a Warehouse from 1976.

Historically, the surrounding area has been utilised for a variety of uses, with several industrial uses noted from 1871. Notable industrial uses within the surrounding area include railway lines, garage (60m SE and 220m NW), engineering works (150m N, 175m E), gas works (125m NW).

Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial or superficial deposits are reported within the site.

The deposits directly underlying the site are identified as Unproductive.

There is no groundwater abstraction license within 500m. The nearest borehole is reported 1794m east of the site for spray irrigation sourced from Thames Groundwater. There are no surface water abstractions reported within 2km of the site.

The site is not reported to lie within a Zone 2 or 3 floodplain.

Intrusive Investigation

The ground investigation was undertaken on 09 - 16 October 2014, and consisted of the following:

- 5No. window sampling boreholes, drilled up to 4.45m below ground level (bgl), with associated in situ testing and sampling;
- 2No. cable percussive boreholes, drilled up to 25m bgl with associated in situ testing and sampling;
- 7No. hand excavated trial pits, excavated up to 1.7m bgl, with associated in situ testing and sampling
- 3No. in situ CBR measurements undertaken to depths of up to 0.9m bgl;
- Laboratory analysis for chemical and geotechnical purposes,

Ground Conditions

The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.

No obvious evidence of contamination was observed during the investigation.

Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was note recorded during return monitoring.

Environmental Considerations

It is understood that the proposed development comprises demolition of the existing building and construction of a new mixed use development, with commercial ground floor units and residential apartments on upper floors. No private gardens or significant areas of soft landscaping are anticipated.

Following generic risk assessments and statistical analysis, the upper ninety fifth percentile values for Lead, Mercury and Naphthalene were found to exceed their respective criteria, with the presence of statistical outliers or isolated hotspots of contamination indicated in the case of Mercury and Naphthalene. Individual exceedances of Benzo(a)pyrene and Arsenic were reported, although the upper ninety fifth percentile value for these contaminants did not exceed the respective criteria.

No other contaminants were reported above their respective criteria, and no asbestos fibres were detected.

Where the site is to be overlain by either proposed building footprint or areas of hardstanding, these concentrations are no considered to pose a significant risk to human health, as the building / surfacing will provide a suitable barrier to potential receptors. Where areas of soft landscaping are proposed, the risks to end users will be controlled by use of a capping layer. This should comprise a minimum 300mm thickness of imported clean topsoil.

The desk study identified the site to be directly underlain by unproductive deposits (London Clay), with no significant controlled water receptors identified. As a result these concentrations are not considered to pose a potential risk to controlled waters.

The results of waste acceptance criteria testing indicated the Made Ground to be acceptable for disposal as a non-hazardous material, with the underlying natural ground suitable for disposal as inert material.

The results of soil gas monitoring undertaken to date indicate the site to be classified as Characteristic Situation 2, where basic gas protection measures are required. It will be necessary to complete the proposed monitoring in order to confirm this assessment.

As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out, and caution must be exercised during construction works. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

The above conclusions are made subject to approval by the statutory regulatory bodies.

Geotechnical Considerations

The desk study report indicates that the site is directly underlain by solid deposits of the London Clay Formation. The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.

Based upon the information obtained to date, it is considered that deep trench fill foundations, constructed at a depth of 3.0m bgl within the underlying London Clay may be designed with an allowable bearing capacity of 120kPa. Alternatively a piled foundation solution within the underlying London Clay should be devised for the proposed development.

The London Clay deposits have been identified as being of moderate to high volume

change potential, and this will require consideration when designing foundations for the proposed development, in conjunction with the presence of any existing or proposed trees. Potential for heave should be considered.

The results of in situ CBR testing provided indicative measurements of between 1.2% and 28.4%.

Based on the results the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1.

To allow for potential volume change within the underlying London Clay, and due to the thickness of Made Ground deposits encountered, all floor slabs should be designed as suspended floors.

Deep excavations will be required at the site during the construction works. These are anticipated to remain stable for the short term only. It is recommended that the stability of all excavations should be assessed during construction. The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.

Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was note recorded during return monitoring. Any groundwater encountered should be readily dealt with by conventional pumping from a sump or other suitable method.

The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer.

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Aitch Group ("The Client") has commissioned Jomas Associates Ltd ('JAL'), to assess the risk of contamination posed by the ground conditions at a site on 254 Kilburn High Road, London, and to provide indicative recommendations for foundation design prior to the redevelopment of the site. It is understood that the redevelopment of the site is to comprise construction of a new mixed use development, with ground floor commercial units and residential apartments on upper floors. No private gardens or significant areas of soft landscaping are anticipated.
- 1.1.2 To this end a Desk Study has been produced for the site and issued separately, followed by an intrusive investigation (detailed in this report). The scope of works is defined in Jomas' fee proposal dated 09 October 2014.

1.2 Objectives

- 1.2.1 The objectives of JAL's investigation were as follows:
 - To present a description of the present site status, based upon the published geology, hydrogeology and hydrology of the site and surrounding area;;
 - To provide an assessment of the environmental sensitivity at the site and the surrounding area, in relation to any suspected or known contamination which may significantly affect the site and the proposed development;
 - To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;
 - To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11: and.
 - To obtain geotechnical parameters to inform preliminary foundation design.

1.3 Scope of Works

- 1.3.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained:
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.4 Limitations

1.4.1 Jomas Associates Ltd ('JAL') has prepared this report for the sole use of Aitch Group in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of JAL. No other third party warranty, expressed or implied, is made as to

the professional advice included in this report. This report must be used in its entirety.

- 1.4.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless JAL has actual knowledge to the contrary, information obtained from public sources or provided to JAL by site personnel and other information sources, have been assumed to be correct. JAL does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.4.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.4.4 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report as Figure 1.

Table 2.1: Site Information

Name of Site	-
Address of Site	254 Kilburn High Road, London, NW6 2BS
Approx. National Grid Ref.	524975, 184276
Site Ownership	Unknown
Site Occupation	Office accommodation with associated warehouse and vehicle parking
Local Authority	London Borough of Camden
Proposed Site Use	Mixed use development with commercial ground floor units and residential apartments on upper floors. No private gardens or significant areas of soft landscaping anticipated.

2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site and issued separately. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- A review of historical maps indicates that the site was originally (1866) occupied by gardens to the rear of a row of properties on Edgware Road, with a building noted as Stanmore Terrace encroaching on the south-eastern edge of the site. A further building is present in the north-eastern part of the site. Further buildings are constructed on site by 1893. The structures on site are subsequently modified over the years, with the site appearing similar to the present day by 1995. The site is labelled as a Timber yard in 1935, a Motor Units Factory in 1953, and a Warehouse from 1976.
- 2.2.3 Historically, the surrounding area has been utilised for a variety of uses, with several industrial uses noted from 1871. Notable industrial uses within the surrounding area include railway lines, garage (60m SE and 220m NW), engineering works (150m N, 175m E), gas works (125m NW), etc.
- 2.2.4 Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial or superficial deposits are reported within the site.
- 2.2.5 The deposits directly underlying the site are identified as Unproductive.
- 2.2.6 There is no groundwater abstraction license within 500m. The nearest borehole is reported 1794m east of the site for spray irrigation sourced from Thames Groundwater. There are no surface water abstractions reported within 2km of the site.
- 2.2.7 The site is not reported to lie within a Zone 2 or 3 floodplain.

- 2.2.8 The conceptual site model provided within the report identifies the following potential sources, pathways and receptors. The report indicates the following potential sources of contamination:
 - Potential Made Ground associated with previous developments on and off site
 - Potential for asbestos in soil from demolition of previous buildings on site (S2)
 - Former Timber Yard on site (S3)
 - Former Motor Units Factory on site (S4)
 - Current industrial use on site (S5)
 - Current and previous industrial sites and consents/depots/works off site (S6)
- 2.2.9 The conceptual site model identifies the following potential pathways:
 - Ingestion and dermal contact with contaminated soil (P1)
 - Inhalation or contact with potentially contaminated dust and vapours (P2)
 - Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3)
 - Horizontal and vertical migration of contaminants within groundwater (P4)
 - Accumulation and Migration of Soil Gases (P5)
- 2.2.10 The conceptual site model identifies the following potential receptors:
 - Construction workers (R1)
 - Maintenance workers (R2)
 - Neighbouring site users (R3)
 - Future site users (R4)
 - Building foundations and on site buried services (water mains, electricity and sewer) (R5)
- 2.2.11 Depending on ground conditions encountered i.e., thickness of made ground and depth to London clay deposits, a programme of soil gas monitoring may be required in accordance with CIRIA C665:2007.

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance. If required, further targeted investigations and remedial option appraisal would be dependent on the findings of this site investigation.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on 09 16 October 2014.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 The investigation focused on collecting data on the following:
 - Quality of Made Ground/ natural ground within the site boundaries;
 - Presence of groundwater beneath the site (if any), perched or otherwise;
- 3.2.4 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, are offered in Table 3.1 below.

Table 3.1 –Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
Window Sample Boreholes	5	WS1 - 5	Up to 4.45m bgl	Assess ground conditions and obtain samples for contamination testing and geotechnical analysis.
Cable Percussive boreholes	2	BH1 - 2	Up to 25m bgl	Obtain deeper ground profile and samples for geotechnical analysis
Hand Excavated trial pits	7	TP1 - 7	Up to 1.7m bgl	Obtain shallow samples from areas of restricted access
In Situ CBR Measurements	3	CBR1 - 3	Up to 0.9m bgl	Provide initial value for road pavement design
Installation of combined gas and groundwater monitoring wells	2	BH2, WS3	Up to 20m bgl	Permit return visits to site to monitor soil gas and groundwater levels.

3.2.5 The exploratory holes were completed to allow soil samples to be taken in the areas of interest identified in Table 3.1 above. In all cases, all holes were logged in accordance with BS5930:1999. 3.2.6 Exploratory hole positions were measured in using tape and reel, as shown in the exploratory hole location plan presented in Appendix 1. The exploratory hole records are included in Appendix 2. Where no monitoring wells were installed, the exploratory holes were backfilled with 3.2.7 the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left. 3.3 **Standard Penetration Tests (SPTs)** 3.3.1 In-situ standard/cone penetration tests were undertaken in the boreholes in accordance with BS EN ISO 22476-2 'Methods of Test on Soils for Engineering Purposes (Part 9)'; to determine the relative density of the underlying, and therefore give an indication of soil 'strength'. 3.3.2 The results are presented on the individual exploratory hole records in Appendix 2. 3.4 In Situ CBR Measurements 3.4.1 A total of 3No. in situ CBR measurements were undertaken to provide indicative CBR values for pavement design. The results are presented as Appendix 7, and discussed in Section 9 of this report. 3.4.2 3.5 Sampling Rationale 3.5.1 Our soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR). 3.5.2 The exploratory holes were positioned by applying a combined non-targeted sampling strategy, as well as sample locations positioned with reference to sources identified from the desk study. 3.5.3 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs. 3.5.4 JAL's engineers normally collect samples at appropriate depths based on field observations such as: appearance, colour and odour of the strata and other materials, and changes in these:

the presence or otherwise of sub-surface features such as pipework, tanks,

foundations and walls; and,

areas of obvious damage, e.g. to the building fabric.

3.5.5	A number of the samples were taken from the top 0-1m to aid in the assessment of the pollutant linkages identified at the site. In addition, some deeper samples were taken to aid in the interpretation of fate and transport of any contamination identified.
3.5.6	Samples were stored in cool boxes ($<4^{\circ}\text{C}$) and preserved in accordance with laboratory guidance.
3.5.7	Bulk samples were collected for geotechnical analysis.
3.5.8	Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.
3.6	Laboratory Analysis
3.6 3.6.1	Laboratory Analysis A programme of chemical laboratory testing, scheduled by JAL, was carried out on selected samples of Made Ground and natural strata.
	A programme of chemical laboratory testing, scheduled by JAL, was carried out on
	A programme of chemical laboratory testing, scheduled by JAL, was carried out on selected samples of Made Ground and natural strata.

Table 3.2: Chemical Tests Scheduled

Test Suite	No. of tests	
	Made Ground	Natural
Basic Suite 2	9	1
Total Organic Carbon	4	2
Water Soluble Sulphate	9	9
Asbestos Screen	4	-

3.6.4 The determinands contained in the basic suite are as detailed in Table 3.3 below:

Table 3.3: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	5	Y (MCERTS)	ICPMS
Cadmium	0.5	Υ	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	2	N	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.5	Υ	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	PENDING	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.5	PENDING	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.01ug/l	Υ	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated PAH	0.5	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	5	Y (MCERTS)	Gas Chromatography

- 3.6.5 To support the derivation of appropriate tier 1 screening values, 6 No. samples were also analysed for total organic carbon.
- 3.6.6 Laboratory test results are summarised in Section 6, with raw laboratory data included in Appendix 3.

Geotechnical Laboratory Testing

- 3.6.7 In addition to the contamination assessment, soil samples were submitted to the UKAS Accredited laboratory of PSL for the following assessment.
 - 5No. samples for Moisture Content and Atterberg Limit Determination in accordance with BS 1377
 - 11No. sample for Quick Undrained Triaxial Compression Tests in accordance with BS 1377
- 3.6.8 The results of the geotechnical laboratory testing are presented as Appendix 4 and discussed in Section 9 of this report.

4 GROUND CONDITIONS

4.1 Soil

4.1.1 Ground conditions were logged in accordance with the requirements of BS5930:1999. Detailed exploratory hole logs are provided in Appendix 2. The ground conditions encountered are summarised in Table 4.1 below, based on the strata observed during the investigation.

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
TARMAC and CONCRETE over MADE GROUND – Brown/black/orange sandy gravelly clay to clayey gravelly sand. Gravel is of brick, concrete, flint, mortar, ash and glass.	0.0	0.7 – 2.1	0.7 – 2.1
Orange brown sandy to silty patched blue grey CLAY with occasional flints, becoming predominantly blue grey with depth Encountered to base of window sample and cable percussive boreholes.	0.7 – 2.1	>25.0	>24.3

4.2 Hydrogeology

4.2.1 Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was not recorded during return monitoring.

4.3 Physical and Olfactory Evidence of Contamination

4.3.1 No visual or olfactory evidence of potential contamination was reported during the course of the investigation.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

5.1 Context and Objectives

- 5.1.1 This section seeks to evaluate the level of risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the site investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against screening level generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.1.3 It should be noted that the statistical tests carried out in this report in accordance with CL:AIRE and CIEH (2008) recommendations, are for guidance purposes only and the conclusions of this report should be approved by the local authority prior to any redevelopment works being undertaken.

5.2 Analytical Framework – Soils

- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source Pathway Receptor linkages.
- The CLEA model provides a methodology for quantitative assessment of the long term risks posed to human health by exposure to contaminated soils. Toxicological data have been used to calculate Soil Guideline Values (SGV) for individual contaminants, based on the proposed site use; these represent minimal risk concentrations and may be used as screening values.
- In the absence of any published SGVs for certain substances, or where the assumptions made in generating the SGVs do not apply to the site, JAL have derived Tier 1 screening values for initial assessment of the soil, based on available current UK guidance including the LQM/CIEH generic assessment criteria. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 CLEA requires a statistical treatment of the test results to take into account the normal variations in concentration of potential contaminants in the soil and allow comparisons to be made with published guidance.
- 5.2.5 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Table 5.1: Selected Assessment Criteria - Contaminants in Soils

Substance Group	Determinand(s)	Assessment Criteria Selected	
Organic Substances			
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	LQM/CIEH	
	Total Phenols	CLEA v1.06	
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benz(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene	LQM/CIEH	
Volatile Organic Compounds (VOCs/sVOCs).	Toluene, Ethylbenzene	CLEA v1.06	
	Benzene, Xylenes	CLEA v1.06	
Inorganic Substances			
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium	CLEA v1.06	
	Copper, Zinc	LQM/CIEH	
Cyanides	Free Cyanide	CLEA v1.06	
Sulphates	Water Soluble Sulphate	BRE Special Digest 1:2005	

BRE

- 5.2.6 The BRE Special Digest 1:2005, 'Concrete in Aggressive Ground' is used with soluble sulphate and pH results to assess the aggressive chemical environment of future underground concrete structures at the site.
- 5.3 Analytical Framework Groundwater and Leachate
- 5.3.1 The groundwater quality assessment is undertaken in accordance with the EA P20 Document.
- 5.3.2 The criteria used by JAL in the assessment of groundwater and leachate quality are shown in Table 5.2.

Table 5.2: Selected Assessment Criteria - Contaminants in Water

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Copper, Cyanide, Mercury, Nickel, Lead, Zinc, Chromium	EQS/DWS
	Selenium	DWS/WHO
PAHs (Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene)		DWS
PAHs	Anthracene, Benzo(a)pyrene, Fluoranthene, Naphthalene	EQS
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic >C7-C8, Aromatic >C7-C8, Aromatic >C10-C12, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C16-C21,	Dutch Intervention Values/DWS/WHO
Benzene	Benzene	DWS
Toluene	Toluene	EQS
Ethylbenzene	Ethylbenzene	EQS
Xylene	Xylene	EQS
Oxygen Demand	Chemical Oxygen Demand and Biological Oxygen Demand	Urban Waste Water Treatment (England and Wales) Regulations

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

Lowest Effect Concentration (LEC)

These criteria relate to the concentration of PAHs in groundwater. They are taken from the EA R&D Technical Report P45 – Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development (2001).

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (1984). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' - Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2006,

Dutch Intervention Values (DIV)

The Dutch Institute and Human Toxicology data are used for speciated TPH. Whilst they do not have force of law in the UK, they are recognised as a valid source of information by the EA. For example, they are recommended in the EA document 'Biological Test Methods for Assessing Contaminated Land'.

<u>Urban Waste Water Treatment (England and Wales) Regulations - UWWT Regs</u> The Urban Waste Water Treatment (England and Wales) Regulations SI/1994/2841 as amended by SI/2003/1788 sets down minimum standards for the discharge of treated effluent from wastewater treatment works to inland surface waters, groundwater, estuaries or coastal waters. Standards of (125mg/L) COD and (25mg/L) BOD have been set.

Site Specific Criteria

5.3.3 The criteria adopted in the selection of correct screening criteria from published reports as previously described, are provided within Tables 5.3.

Table 5.3: Site Specific Data

Input Details	Value
Land Use	Residential without plant uptake
Soil Type	Clay
рН	8
Soil Organic Matter	2.5%

- 5.3.4 A pH value of '8' has been used for the derivation of generic screening criteria as 8.11 was the mean pH value of samples analysed.
- 5.3.5 As the published reports only offer the option of selecting an SOM value of 1%, 2.5% or 6%, an SOM value of 2.5% has been used for the generation of generic assessment criteria, as 2.09% was the mean value obtained from laboratory analysis.
- 5.3.6 It is understood that the redevelopment of the site is to comprise a mixed use development, with commercial ground floor units and residential apartments on upper floors. No private gardens or significant areas of soft landscaping are anticipated. Consequently, the site has been assessed as Residential without Plant Uptake.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Screening of Soil Chemical Analysis Results – Human Health Risk Assessment

- 6.1.1 To focus on the contaminants of potential concern (COPC), the results have been compared with the respective SGV/GAC. Those contaminants which exceed the SGV/GAC are considered to be the COPC. Those which do not exceed the respective SGV/GAC are not considered to be COPC and as such do not require further assessment in relation to the proposed development of the site.
- 6.1.2 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 3.

Table 6.1: Soil Laboratory Analysis Results - Metals, Metalloids, TPH

Table	Table 0.1. Soil Laboratory Ariarysis Results – Metals, Metallolus, 1FH										
Determinand	Unit	No. samples tested	Screening Criteria				Min	Max	No of Exceedences		
Arsenic	mg/kg	10	32 CLEA v1.06		10.6	33.7	1 (WS4 @1.0m bgl)				
Cadmium	mg/kg	10	10	CLEA v1.06	<0.5	1.3	0				
Chromium	mg/kg	10	35	CLEA v1.06	15.9	48.4	0				
Hexavalent Chromium	mg/kg	10			<0.8	<0.8	0				
Lead ^A	mg/kg	10	400	400 CLEA v1.06		2530	6				
Mercury	mg/kg	10	1	CLEA v1.06	<0.5	2.3	5				
Nickel	mg/kg	10	130	CLEA v1.06	15.7	36	0				
Copper	mg/kg	10	1570	CLEA v1.06	21.2	204	0				
Zinc	mg/kg	10	1915	CLEA v1.06	54.5	837	0				
Total Cyanide B	mg/kg	10	33	CLEA v1.06	<1	<1	0				
Selenium	mg/kg	10	350	CLEA v1.06	<1	2.2	0				
Boron Water Soluble	mg/kg	10	291	CLEA v1.06	1.4	5.1	0				
Phenols	mg/kg	10	389	CLEA v1.06	<5	<5	0				

Notes: A SGV screening criteria for Lead using the SEGH model.

^B Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Analysis Results - Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening Criteria		Screening Criteria		Min	Max	No. Exceeded
Naphthalene	mg/kg	10	LQM GAC	3.7	<0.5	10.7	1 (WS1 @1.0m)		
Acenaphthylene	mg/kg	10	LQM GAC	400	<0.5	<0.5	0		
Acenaphthene	mg/kg	10	LQM GAC	480	<0.5	1.9	0		
Fluorene	mg/kg	10	LQM GAC	380	<0.5	0.6	0		
Phenanthrene	mg/kg	10	LQM GAC	200	<0.5	2.2	0		
Anthracene	mg/kg	10	LQM GAC 4900		<0.5	1.6	0		
Fluoranthene	mg/kg	10	LQM GAC 460		<0.5	2.5	0		
Pyrene	mg/kg	10	LQM GAC	1000	<0.5	2.2	0		
Benzo(a)anthracene	mg/kg	10	LQM GAC	4.7	<0.5	1.7	0		
Chrysene	mg/kg	10	LQM GAC	8.0	<0.5	1.9	0		
Benzo(b)fluoranthene	mg/kg	10	LQM GAC	6.5	<0.5	1.1	0		
Benzo(k)fluoranthene	mg/kg	10	LQM GAC	9.6	<0.5	1.8	0		
Benzo(a)pyrene	mg/kg	10	LQM GAC	LQM GAC 0.94		1.7	2 (WS4 @0.5m & 1.0m)		
Indeno(123-cd)pyrene	mg/kg	10	LQM GAC	3.9	<0.5	0.9	0		
Dibenz(ah)anthracene	mg/kg	10	LQM GAC	0.86	<0.5	<0.5	0		
Benzo(ghi)perylene	mg/kg	10	LQM GAC	46	<0.5	0.8	0		
Total PAH	mg/kg	10	-		<2.0	18.0			

Table 6.3: Soil Laboratory Analysis – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening Criteria		Min	Max	No. Exceeded		
C ₈ -C ₁₀	mg/kg	10	LQM GAC	46	<1.0	8.1	0		
>C ₁₀ -C ₁₂	mg/kg	10	LQM GAC	118	<1.0	55.6	0		
>C ₁₂ -C ₁₆	mg/kg	10	LQM GAC 59		<1.0	135	1 (WS1 @1.0m)		
>C ₁₆ -C ₂₁	mg/kg	10	LQM GAC	480	<1.0	77.8	0		
>C ₂₁ -C ₃₅	mg/kg	10	LQM GAC	1100	2.1	32.8	0		
Total TPH	mg/kg	10			2.1	314	-		
Note: *The low	Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected								

6.2 Statistical Analysis

Where samples tested exceeded the selected screening criteria, and the minimum numbers of samples were more than six, statistical analyses of the dataset are undertaken.

- The CL:AIRE/CIEH Guidance 'Guidance on Comparing Soil Contamination Data with a Critical Concentration' (2008) describes the new approach to statistical analysis of datasets generated through the investigation of contaminated land. This includes differing statistical methodologies for the analysis of normally and non-normally distributed data. Different approaches to datasets being analysed under Part IIA and under the planning regime are also presented.
- 6.2.3 Chemical data from the laboratory testing has been assessed in accordance with the CL:AIRE/CIEH Guidance under a planning scenario. The purpose of the assessment is to determine if the land is suitable for the proposed development. Under the planning scenario, the key question is 'is there sufficient evidence that the true mean concentration of the contaminant within the data set (μ) is less than the critical concentration (Cc, in this instance the derived GAC). This is assessed by calculation of the upper confidence limit (UCL). The statistical test assesses the 95th percentile of contaminant populations across a site, and compares this value against the relevant GAC. Furthermore, the test determines statistically whether contaminants exceeding the soil guideline value could be regarded as outliers. Outliers are contaminant values which indicate a localised area of contamination or error in sampling, and may not be a member of the underlying population.
- 6.2.4 The statistical tests were run for:
 - Arsenic
 - Lead
 - Mercury
 - Naphthalene
 - Benzo(a)pyrene
- 6.2.5 The results of statistical tests are presented in Appendix 5. Table 6.4 below provides the summary of statistical tests.

Table: 6.4 Statistical Test Results

Determinand	95% UCL	Cc/GAC	GAC Exceeded
Arsenic	23.7	32	N
Lead	1561	400	Υ
Mercury	1.507	1	Υ
Napthalene	5.96	3.7	Y
Benzo(a)pyrene	0.916	0.94	N

6.3 Asbestos in Soil

- 4No. random samples of the made ground were screened in the laboratory for the presence of asbestos. These comprised samples taken from;
 - WS1 0.50m bgl
 - WS3 0.50m bgl
 - WS3 1.50m bgl
 - WS4 0.50m bgl
- 6.3.2 No asbestos fibres were detected.

6.4 Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth

- 6.4.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS3882:2007.
- Adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis, the following is noted;
 - Zinc concentrations revealed by this investigation ranged from 54.5mg/kg to 837mg/kg, with 3No. samples exceeding the threshold of 300mg/kg.
 - Copper concentrations revealed by this investigation ranged from 21.2mg/kg to 204mg/kg, with 1No. sample (WS1 @0.5m bgl) exceeding the threshold of 200mg/kg.
 - Nickel concentrations revealed by this investigation ranged from 15.7mg/kg to 36mg/kg, below the threshold of 110mg/kg.

6.5 Waste Disposal

- 6.5.1 In order to provide an assessment of likely disposal requirements for site spoil, 1No. sample of the Made Ground and 1No. sample of the underlying natural ground were submitted for Waste Acceptance Criteria testing.
- 6.5.2 The results of the testing would indicate the underlying natural ground to be classified as Inert for the purposes of disposal, with the Made Ground classified as Nonhazardous.

7 SOIL GAS RISK ASSESSMENT

7.1 Soil Gas Results

- 7.1.1 A total of 3No. return monitoring visits to site have been undertaken to the site.
- 7.1.2 The results of the monitoring undertaken to date are summarised in Table 7.1 below, with the monitoring records presented in Appendix 6.

Table 7.1: Summary of Gas Monitoring Data

Hole Nr.	CH4 (%)	CO2 (%)	O2(%)	H2S (ppm)	Atmospheric Pressure (mb)	VOCs	Flow Rate (I/hr)	Depth to water	Depth of hole
WS3	<0.1	8.4 – 9.4	9.9 – 11.0	<0.1	983 - 1009	<0.1 – 0.3	0.2 – 0.8	Dry	2.54
BH2	<0.1	0.5 - 0.7	20.0 – 20.5	<0.1	983 - 1009	<0.1 – 0.3	0.2 – 0.4	Dry	18.54

7.2 Screening of Results

- 7.2.1 As shown in Table 7.1, no methane has been recorded to date. Carbon dioxide has been reported to a maximum concentration of 9.4% v/v. Oxygen concentrations varied between 9.9% and 20.5%, with volatile organic compounds reported to a maximum concentration of 0.3ppm. A maximum flow rate of 0.8l/hr has been reported.
- 7.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, CIRIA document C665 (2007) identifies two types of development, termed Situation A and Situation B.
- 7.2.3 Situation A relates to all development types except low rise housing. Situation B relates to low rise housing with gardens. Situation A has been adopted as the relevant category for the proposed development.
- 7.2.4 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 7.2.5 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 7.2.6 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.
- 7.2.7 To accord with C665, worst case conditions are used in the calculation of GSVs for the site.
- 7.2.8 A worst case flow rate of 0.8l/hr (maximum reported) will be used in the calculation of GSVs for the site.

For carbon dioxide and methane, the worst-case conditions and the corresponding GSV is presented below.

• Conservative flow rate: 0.8 I/hr flow rate

Highest CO₂ concentration:
 9.4% v/v

• GSV Value: 0.0752I/hr i.e. CS2

• Highest CH₄ concentration: 0.1% v/v

• GSV Value: 0.0008l/hr i.e. CS1

7.2.9 The result of the calculation would indicate that the site may be classified as Characteristic Situation 2, where basic gas protection measures are required.

7.2.10 The basic gas protection measures may comprise

- a. Reinforced concrete cast *in situ* floor slab (suspended, non-suspended or raft) with at least 1200 g damp proof membrane and underfloor venting; or
- b. Beam and block or pre-cast concrete and 2000 g DPM/reinforced gas membrane and underfloor venting.

All joints and penetrations must be sealed.

8 SUMMARY OF RESULTS

8.1 Risk Assessment - Land Quality Impact Summary

- 8.1.1 Following the quantitative risk assessments, the following is noted:
 - It is understood that the proposed development comprises demolition of the
 existing building and construction of a new mixed use development, with
 commercial ground floor units and residential apartments on upper floors. No
 private gardens or significant areas of soft landscaping are anticipated.
 - Following generic risk assessments and statistical analysis, the upper ninety fifth percentile values for Lead, Mercury and Naphthalene were found to exceed their respective criteria, with the presence of statistical outliers or isolated hotspots of contamination indicated in the case of Mercury and Naphthalene. Individual exceedances of Benzo(a)pyrene and Arsenic were reported, although the upper ninety fifth percentile value for these contaminants did not exceed the respective criteria.
 - No other contaminants were reported above their respective criteria and no asbestos fibres were detected.
 - Where the site is to be overlain by either proposed building footprint or areas
 of hardstanding, these concentrations are no considered to pose a significant
 risk to human health, as the building / surfacing will provide a suitable barrier
 to potential receptors. Where areas of soft landscaping are proposed, the
 risks to end users will be controlled by use of a capping layer. This should
 comprise a minimum 300mm thickness of imported clean topsoil.
 - The desk study identified the site to be directly underlain by unproductive deposits (London Clay), with no significant controlled water receptors identified. As a result these concentrations are not considered to pose a potential risk to controlled waters.
 - The results of waste acceptance criteria testing indicated the Made Ground to be acceptable for disposal as a non-hazardous material, with the underlying natural ground suitable for disposal as inert material.
 - The results of soil gas monitoring undertaken to date indicate the site to be classified as Characteristic Situation 2, where basic gas protection measures are required.
 - As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out, and caution must be exercised during construction works. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.
- 8.1.2 The above conclusions are made subject to approval by the statutory regulatory bodies.

SECTION 8 SUMMARY OF RESULTS

8.2 Review of Pollutant Linkages Following Site Investigation

8.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 8.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

SECTION 8 SUMMARY OF RESULTS

Table 8.1: Plausible Pollutants Linkages Summary

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential Made Ground associated with previous developments – on and off site Potential for asbestos in soil from demolition of previous buildings – on site (S2) Former Timber Yard – on site (S3) Former Motor Units Factory – on site (S4) Current industrial use – on site (S5) Current and previous industrial sites and consents/depots/works – off site (S6) 	 Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff. (P3) Horizontal and vertical migration of contaminants within groundwater (P4) Accumulation and Migration of Soil Gases (P5) 	 Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5) 	X (if measures are implemented)	The findings of this report should be included in the construction health and safety plan, so that adequate measures can be taken for the protection of construction and maintenance workers. Based on the results the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1.

9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.1 Ground Investigation Summary

- 9.1.1 No detailed structural engineering design information, with respect to the type of construction and associated structural loadings, was provided at the time of preparing this report.
- 9.1.2 Consequently, a detailed discussion of all the problems that may arise during the proposed redevelopment scheme is beyond the scope of this report. Practical solutions to the difficulties encountered, both prior to, and during construction, are frequently decided by structural constraints or economical factors. For these reasons, this discussion is predominantly confined to remarks of a general nature, which are based on site conditions encountered during the intrusive investigations.
- 9.1.3 It is understood that the proposed development will comprise demolition of the existing buildings and construction of a new mixed use development, with commercial ground floor units and residential apartments on upper floors. No private gardens or significant areas of soft landscaping are anticipated.
- 9.1.4 The desk study report indicates that the site is directly underlain by solid deposits of the London Clay Formation. The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.
- 9.1.5 A summary of ground conditions obtained from the ground investigation and subsequent laboratory testing, is provided in Table 9.1 and 9.2 overleaf.

Table 9.1: Ground Conditions Encountered

Stratum and Description	Encountered from (m bgl)	Base of strata (m bgl)	Thickness range (m)
TARMAC and CONCRETE over MADE GROUND – Brown/black/orange sandy gravelly clay to clayey gravelly sand. Gravel is of brick, concrete, flint, mortar, ash and glass.	0.0	0.7 – 2.1	0.7 – 2.1
Orange brown sandy to silty patched blue grey CLAY with occasional flints, becoming predominantly blue grey with depth Encountered to base of window sample and cable percussive boreholes.	0.7 – 2.1	>25.0	>24.3

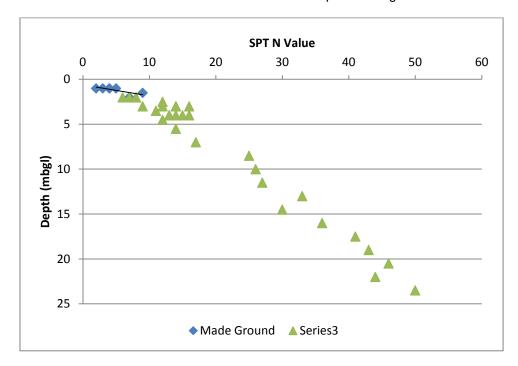


Table 9.2 – Preliminary Geotechnical Parameters

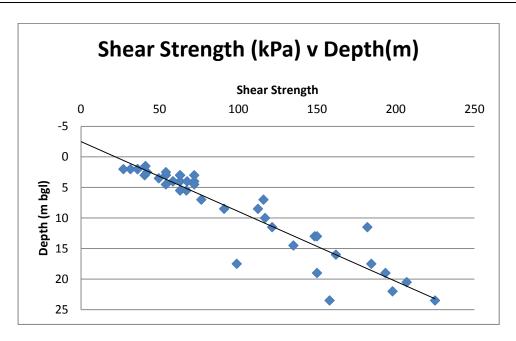
Strata	SPT 'N' Value	Shear Strength (kPa)	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (plasticity term)	Particle Size Distribution (% passing 0.425mm)	NHBC Volume Change Classification
TARMAC and CONCRETE over MADE GROUND – Brown/black/orange sandy gravelly clay to clayey gravelly sand. Gravel is of brick, concrete, flint, mortar, ash and glass.	2 - 9	-	-	-	-	-	-	-
Orange brown sandy to silty patched blue grey CLAY with occasional flints, becoming predominantly blue grey with depth Encountered to base of window sample and cable percussive boreholes.	6 - >50	27 - 225	26 - 31	54 - 77	25 - 30	29 - 47	100	Moderate - High

9.1.6 The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.

9.1.7 The shear strength of the London Clay varies with depth, and is shown in Figure below. This shows the results of the triaxial testing and the undrained shear strength inferred by the correlation suggested by Stroud (1974),

 $c_u = f1 \times N$ can be applied,

in which


c_u= mass shear strength (kN)

f1 = constant (use value of 4.5 for London Clay Formation)

N = SPT Value achieved during boring operations

9.1.8 The graph below shows the shear strength profile of the London Clay Formation encountered at the site, based on the SPT to shear strength correlation described above, as well as the results of undrained triaxial tests on undisturbed samples taken from the boreholes.

9.2 Hand Excavated Trial Pits

9.2.1 Hand pits excavated to expose the existing foundations of the building on site, revealed traditional foundations extending up to 1.6mbgl.

9.3 Foundations

- 9.3.1 Based upon the information obtained to date, an allowable bearing capacity in the order of 120kPa has been calculated for foundations constructed at a depth of 3.0m bgl within the underlying London Clay. A piled foundation end bearing in the Clay is anticipated for the proposed development.
- 9.3.2 The piled foundations will carry their working load in a combination of skin friction along the sides of the pile and end bearing at the base of the pile, with the former likely to provide the greater part of the allowable load. The piles should be designed by a specialist piling contractor using a factor of safety of 3.0 and with the settlement at working load specified to meet any structural requirements. Table 11.3 below provides some indicative capacities for a single pile for the diameter and depths shown.

 Table 11.3 – Indicative Piles Capacities (kN)

 Pile diameter (m)
 0.45
 0.6
 0.9

 Pile length (m)
 330
 470
 800

 20m
 530
 760
 1260

1070

1750

9.3.3 Should any loading be placed directly on the ground which cause the ground to settle relative to the piles then additional negative skin friction loads could be imposed on the piles.

760

25m

9.3.4 The London Clay deposits have been identified as being of moderate to high volume change potential, and this will require consideration when designing foundations for the proposed development, in conjunction with the presence of any existing or proposed trees. The potential for heave should be considered. 9.3.5 The above comments are indicative only based on limited ground investigation data. Foundations should be designed by a suitably qualified Engineer. 9.4 In Situ CBR Measurements 9.4.1 In order to provide indicative CBR measurements for road pavement design, a total of 3No. in situ CBR measurements were taken across the site at depths of up to 0.9m bgl. 9.4.2 The results of the testing provided indicative measurements of between 1.2% and Concrete in the Ground 9.5 9.5.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix. 9.5.2 In accordance with BRE Special Digest 1, in a data set where there are more than 10No. results available, assessment should be made against the mean value of the maximum 20% of concentrations obtained. 9.5.3 18No. samples were analysed for water soluble sulphate concentration, with a mean 20% concentration of 537.5mg/l calculated. Associated pH concentrations ranged from 7.1 to 11.1. 9.5.4 Based on the results the required concrete class for the site is DS-2 assuming an Aggressive Chemical Environment for Concrete classification of AC-2 in accordance with the procedures outlined in BRE Special Digest 1. 9.6 **Ground Bearing Slabs** 9.6.1 Formations of the structures should be inspected by a competent person. Any loose or soft material should be removed and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced. 9.6.2 To allow for potential volume change within the underlying London Clay, and due to the thickness of Made Ground deposits encountered, suspended floor slabs are recommended. 9.7 **Excavations** 9.7.1 Deep excavations will be required at the site during the construction works. These are anticipated to remain stable for the short term. It is recommended that the stability of all excavations should be assessed during construction. 9.7.2 The sides of any excavations into which personnel are required to enter, should be assessed and where necessary fully supported or battered back to a safe angle.

SECTION 9 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

9.8	Groundwater Control
9.8.1	Groundwater was reported during intrusive works as standing at a depth of 1.3m bgl within trial pit TP1. Groundwater was not reported within the remaining exploratory holes. Groundwater was not recorded during return monitoring.
9.8.2	Any groundwater encountered should be readily dealt with by conventional pumping from a sump.

10 REFERENCES

BRE Report BR211; Radon: Protective measures for new dwellings, 2007

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (1999) BS 5930:1999 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) Guidance on comparing soil contamination data with a critical concentration. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) *Model procedures for the management of land contamination*. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) Guidance for the safe development of housing on land affected by contamination. R & D Publication 66. London: Environment Agency

Jeffries, J. (2009) *CLEA Software (Version 1.05) handbook.* Science report: SC050021/SR4. Bristol: Environment Agency

Jeffries, J. & Martin, I. (2009) *Updated Technical Background to the CLEA Model.* Science Report No. SC050021/SR3. Bristol: Environment Agency.

Environment Agency Technical Report P45 "Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environment Quality Standard Development

Gething, J. Tetramethyl lead absorption: a report of human exposure to a high level of tetramethyl lead.1: Br J Ind Med. 1975 Nov; 32(4): 329-33

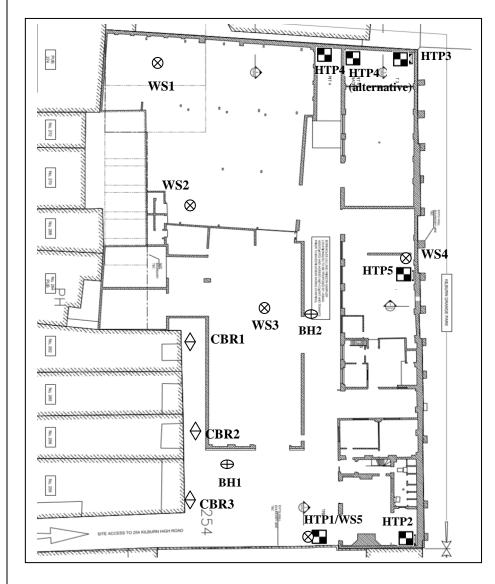
Grubb, F. E. et al, Extension of Samples Sizes and Percentage Points for Significance Tests of Outlying Observation. Technometrics, Vol 14, No. 4, November 1972

http://risk.lsd.ornl.gov/cgi-bin/tox/TOX 9801 - USEPA online toxicity and chemical parameters database

LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment 2nd Edition. LQM, 2009

National Planning Policy Framework. Department for Communities and Local Government, March 2012

APPENDICES



APPENDIX 1 - FIGURES

Project Name	Kilburn High Road, London	Client	Aitch Group
Title	Exploratory Holes	Dwg No.	P8591J338 - October 2014

Project Name	254 Kilburn High Road	Client	Aitch Group
Title	TP & WS Photo log	Dwg No.	P8591J338

Photo 1: TP1

Photo 3: TP2

Photo 2 TP2

Photo 4: TP3

Project Name	254 Kilburn High Road	Client	Aitch Group
Title	TP & WS Photo log	Dwg No.	P8591J338

Photo 5: TP4

Photo 7: TP6

Photo 6: TP6

Photo 8: TP7

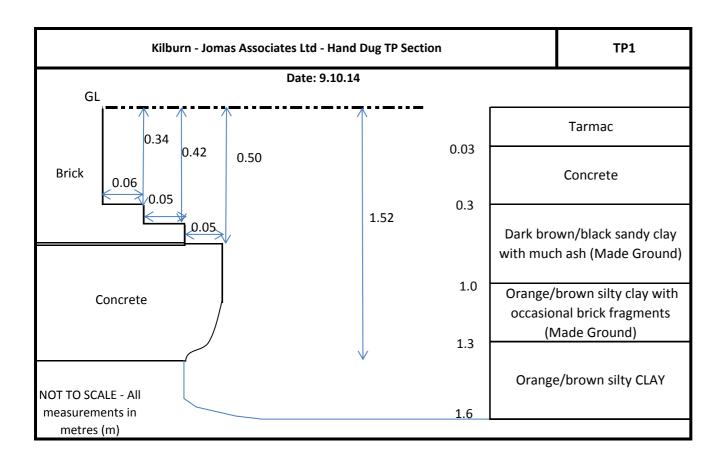
Project Name	254 Kilburn High Road	Client	Aitch Group
Title	TP & WS Photo log	Dwg No.	P8591J338

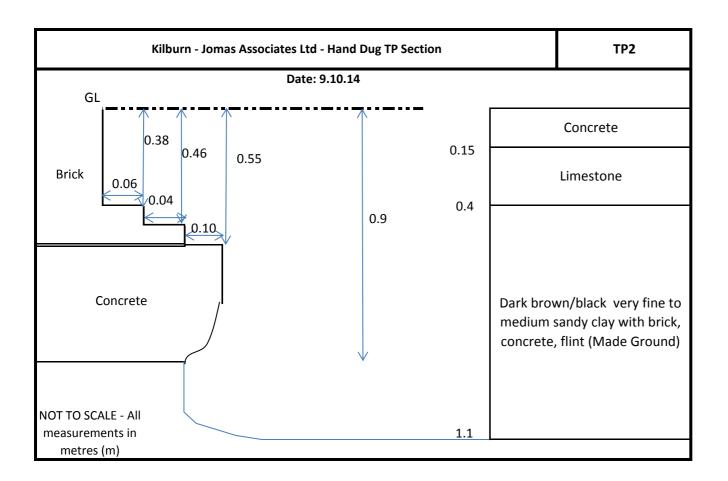
Photo 9: WS1

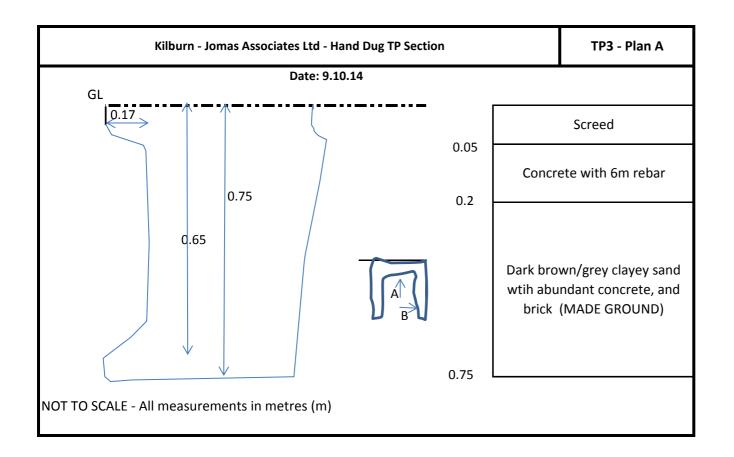
Photo 11: WS3

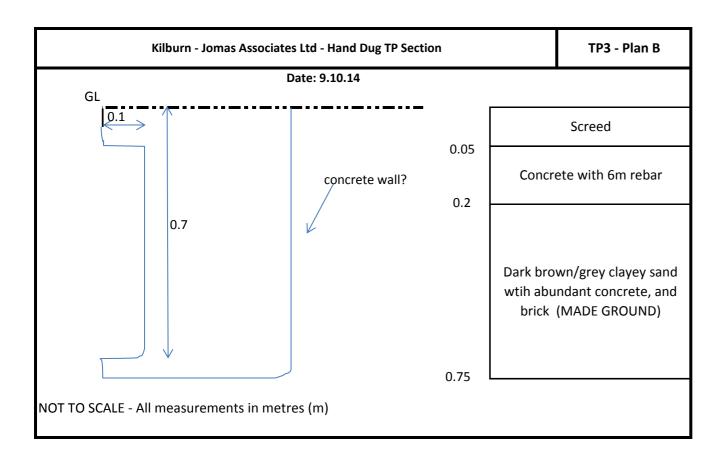
Photo 10: WS2

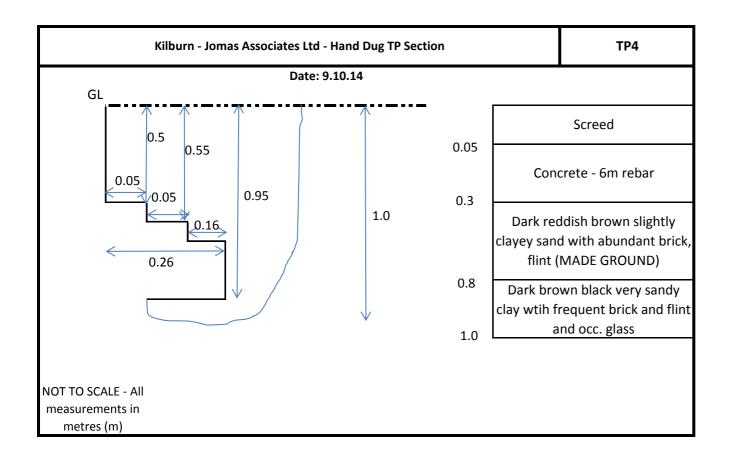
Photo 12: WS4

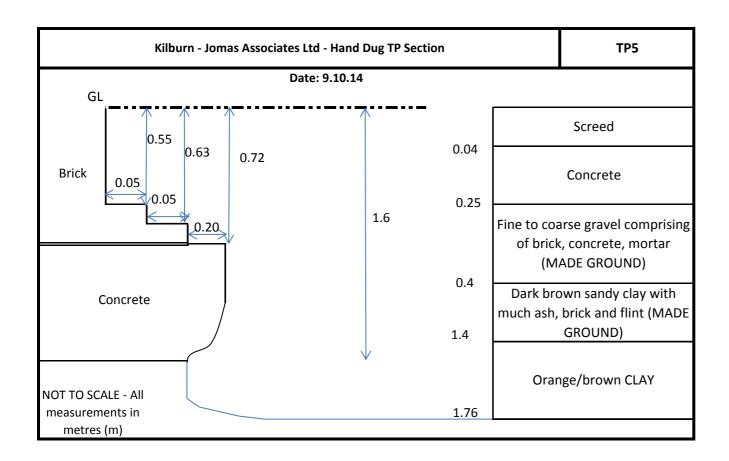


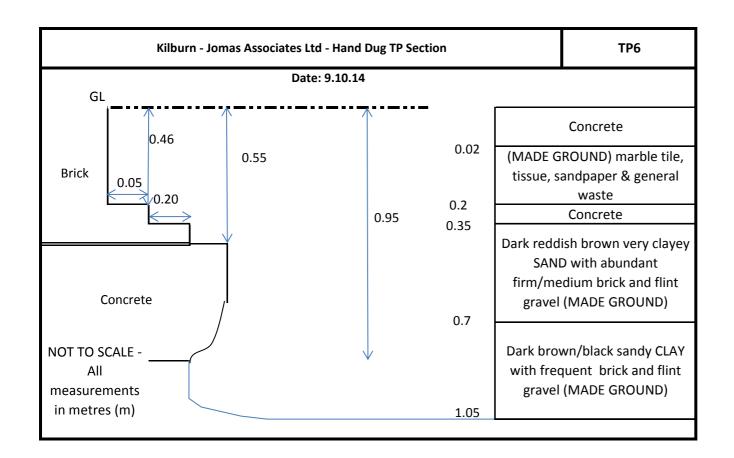


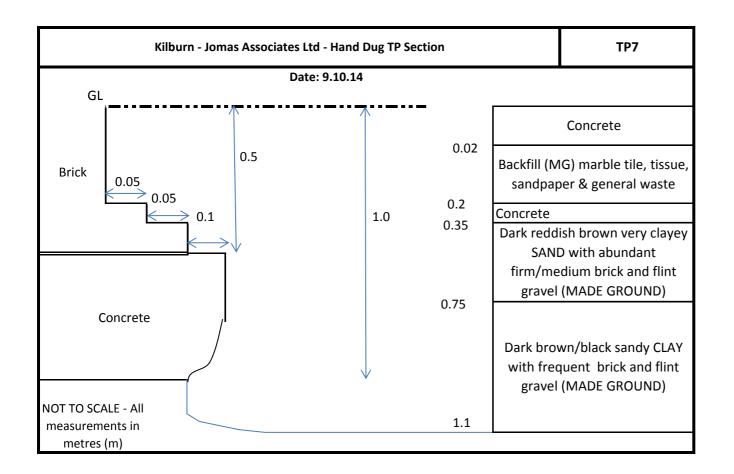

Project Name	254 Kilburn High Road	Client	Aitch Group
Title	TP & WS Photo log	Dwg No.	P8591J338


Photo 13: WS5









APPENDIX 2 – EXPLORATORY HOLE RECORDS

Specialists in the inves	stigation & reclamatio	Exploratory Ho	BH1					
Site Address		Kilburn High F	Road	Project No		P8591J338		
Client		Aitch Group		Ground Level				
Site Personnel		SK BD		Commenced		15/10/2014		
				Completed		16/10/2014		
Type and diameter of equipm	ent:	DANDO 1						
Water levels recorded during	boring, m							
Date								
Hole Depth								
Casing Depth								
Water Level on strike								
Water Level after 20mins								
Remarks								
1. 150m diameter bor	ehole to 25mbgl							
2.								
3.								

		Samp	oles	or Te	sts					Si	trata	
Туре	Depth			R	tesul	ts						Strata Description
.,,,,	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
									0.20			CONCRETE
												MADE GROUND - Brick
									0.70			
												Firm to stiff brown grey CLAY
U	1.5-1.95	35										
S	2.5-2.95	2	3	3	3	3	3	12				
3	2.5 2.55	_					,	12				
D	2.2											
U	3.2											
U	3.5-3.95	40										
S	4.5-4.95	2	3	3	3	3	3	12				
-												
D	5.2									\vdash		
U	5.5-5.95	50										
c		١	_	_	_		_	4-				
S	7-7.45	3	3	4	4	4	5	17		\vdash		
D	8.0											
U	8.5-8.95	60										
										\vdash		
S	10-10.45	4	5	6	6	7	7	26				
			l	l		l					lí l	

D - Small Disturbed W - Water

(U*) Non recovery of Sample

Specialists in the inve	stigation & reclamatic	Exploratory Ho	BH1				
Site Address		Kilburn High F	Road	Project No		P8591J338	
Client		Aitch Group		Ground Level			
Site Personnel		SK BD		Commenced		15/10/2014	
				Completed		16/10/2014	
Type and diameter of equipm	ent:		DANDO 1	75			
Water levels recorded during	boring, m						
Date							
Hole Depth							
Casing Depth							
Water Level on strike							
Water Level after 20mins							
Remarks							
1.							
2.							
3.							
1,							

3. 4												
	9	Samp	oles d	or Te	sts					S	trata	
Туре												Strata Description
	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
D	11.0								11.30			Continued from previous page
U	11.5-11.95	55										Stiff blue grey CLAY
S	13-13.95	5	7	8	8	8	9	33				
D	14									_		
U	14.5-14.95	65										
S	16-16.45	7	7	8	9	9	10	36				
D	17											
U	17.5-17.95	85										
S	19-19.45	8	9	10	10	11	12	43				
D	20.0											

D - Small Disturbed W - Water

(U*) Non recovery of Sample

Specialists in the inves	stigation & reclamation	Exploratory Ho	BH1						
Site Address		Kilburn High R	oad	Project No		P8591J338			
Client		Aitch Group		Ground Level					
Site Personnel		SK BD		Commenced		15/10/2014			
				Completed		16/10/2014			
Type and diameter of equipment: DANDO 175									
Water levels recorded during	boring, m								
Date									
Hole Depth						I			
Casing Depth						ı			
Water Level on strike						l			
Water Level after 20mins						ı			
Remarks									
1.									
2.									
3.									
4									
Samples or Te	sts	St	trata						

4												
		Samp	oles	or Te	sts						Strata	
Туре	Depth				esul							Strata Description
	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
U	20.5-20.95	120	NR									Continued from previous page
S	22-22.45	10	10	10	11	11	12	44				
D	23.0											
U	23.5-23.95	140										
D	25.0											

Specialists in the inves	stigation & reclamation		es	Exploratory Ho	ole No	BH2
Site Address		Kilburn High R	oad	Project No		P8591J338
Client		Aitch Group		Ground Level		
Site Personnel		SK BD		Commenced		15/10/2014
				Completed		16/10/2014
Type and diameter of equipm	ent:		DANDO 1	75		
Water levels recorded during	boring, m					
Date						
Hole Depth						
Casing Depth						
Water Level on strike						
Water Level after 20mins						
Remarks						

1. Monitoring well installed to 20mbgl. Plain with bentonite surround to 1mbgl, slotted to 20m with gravel surround

3.

4												
		Samp	oles d	or Te	sts					St	trata	
Туре	Depth			R	esul	ts						Strata Description
	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
									0.30			CONCRETE
									0.50			Sand, Gravel of brick (MADE GROUND)
S	1.5-1.95	2	3	2	2	3	2	9				
D	2-2.2								2.00			Firm to stiff brown grey CLAY
l												6 4, 4
U	2.5-2.95	30										
										Ш		
S	3.5-3.95	2	2	2	3	3	3	11				
D	4.2											
U	4.5-4.95	35										
										H		
S	5.5-5.95	3	3	3	3	4	4	14				
D	6.5											
U	7-7.45	45										
										H		
S	8.5-8.95	4	6	6	6	6	7	25				
3	8.3-8.95	4	0	٥	٥	O	′	23				
										Щ		
D	9.5											
U	10-10.45	45										

Specialists in the invest	igation & reclamation of brow	vnfield sites	Exploratory Hole	No	BH2
Site Address	Kilburr	n High Road	Project No		P8591J338
Client	Aitch G	Group	Ground Level		
Site Personnel	SK BD		Commenced		15/10/2014
			Completed		16/10/2014
Type and diameter of equipme	ent:	DANDO :	175		
Water levels recorded during b	oring, m				
Date					
Hole Depth					
Casing Depth					
Water Level on strike					
Water Level after 20mins					
Remarks					
1.					
2.					
3.					
4					

3. 4												
		Samp	oles d	or Te	sts					S	trata	
Туре	Depth			R	esul	ts						Strata Description
Type	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
S	11.5-11.95	4	6	6	7	7	7	27	11.90			Continued from previous sheet
D	125											Stiff blue grey CLAY
U	13-13.45	65										
S	14.50-14.5	4	5	8	7	7	8	30				
D	15.5											
U	16-16.45	65										
S	17.5-17.95	7	10	10	10	10	11	41				
D	18.5											
U	19-19.45	80										
S	20.5-20.95	8	10	11	11	12	12	46				

	Specialists in the inve	stigation & reclamation	n of brownfield site	es	Exploratory Ho	ole No	BH2
Site A	ddress		Kilburn High R	oad	Project No		P8591J338
Client	<u> </u>		Aitch Group		Ground Level		
Site Pe	ersonnel		SK BD		Commenced		15/10/2014
					Completed		16/10/2014
Гуре апо	d diameter of equipm	ient:		DANDO 1	75		
Water le	evels recorded during	boring, m					
Date							
Hole Dep	oth	1					
Casing D	epth	ļ	l				
Water Le	evel on strike	1					
Water Le	evel after 20mins		<u> </u>		<u> </u>		
Remarks	5						
1.							
2.							
3.							
4							
	Samples or Te	sts	St	rata			
Туре	Depth	Results				Strata Descriptio	on
	(m) 75 75 75	75 75 75 N	.I)enth (m)I!	Legend			

4		Samp	oles o	or Te	sts					S	trata	
Туре	Depth			R	esul	ts						Strata Description
Турс	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	
D	21.5											
U	22-22.45	85										
S	23.5-23.95	11	12	12	13	13	12 59mm	50 n				
D	25.0								25.00			

	Speci	alists) inve					n of brownfiel	ld si	Exploratory Hole No	WS1
Site A	ddress								254 Kilbur	n R	Project No	P8592J338
Client									Aitch Grou		Ground Level	
Site P	ersonne	1							TC, LP		Commenced	13.10.14
									,		Completed	13.10.14
ype an	d diame	ter c	of eq	uipm	ent:						nier 110	•
	evels red						n					
ate												
lole De	pth											
asing [epth											
/ater L	evel on s	strike	9									
ater L	evel afte	er 20	mins									
emark												
	9	Samp	oles o	or Te	sts							
					esult	ŀc.					Strata Doscri	ntion
Туре	Depth										Strata Descri	ption
	(m)	75	75	75	75	75	75	Ν	Depth (m)		d	
									0.15		CONCRETE	
											Black fine to medium ashy SAND (MAD	E GROUND)
											///	
Р	0.5										///	
											///	
											///	
											///	
P	1.0				_			_			///	
SPT	1.0	1	1	1	2	1	1	5	1.00	4	///	
											Soft dark brown/black sandy CLAY with	frequent fine to medium
											flints and brick fragments (MADE GROU	JND)
									1.40		///	
D	1.5										Firm to stiff orange brown patched blue	e grey silty CLAY
										_		
_	2.0										19191	
D SPT	2.0 2.0	1	2	2	2	1	2	7			14141	
J	2.0	1	_	_	_	_	_	'				
											11111	
											::::::I	
										L	1999	
											11111	
											1999	
	i l	I									: F : F : F	
D Spt	3.0	า	1	2	2	2	2	a				
D SPT	3.0 3.0	2	1	2	3	2	2	9				

3 2

4 13

4.00

4

D SPT 4.0 4.0

D - Small Disturbed W - Water

(U*) Non recovery of Sample

Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com

	Spec	ialists	in the) e inve	stigati	ion &	reclar	mation	n of brownfiel	d sites		Exploratory Hole No	WS2
Site A	ddress									Road, London		Project No	P8592J338
Client									Aitch Grou			Ground Level	F 65323336
	ersonne	<u> </u>							TC, LP	<u> </u>		Commenced	13.10.14
									-, -			Completed	13.10.14
Type an	d diame	eter o	of eq	uipn	nent:				•	Pre	emier 11		
	evels re						n						
Date													
Hole De	pth												
Casing [
	evel on												
	evel afte	er 20	mins	:									
Remark	S												
1. 2. 3. 4		•	_		_					6 11			
		Sam _l	oles (Strata			
Туре	Depth (m)	75	75		result		75	N	Depth (m)	Lege	nd	Strata De	escription
											////	Reinforced CONCRETE	
									0.20			Fine to coarse GRAVEL comprising	of flint brick and concrete (MAI
Р	0.4								0.50			GROUND)	
												Soft dark brown/black sandy CLAY flints and brick fragments (MADE (with frequent fine to medium GROUND)
P SPT	1.0 1.0	1	0	1	0	1	2	4					
51 1	1.0	1		-		-	_	-		H////			
		L			L			L	1.20			<u> </u>	
												Soft orange brown fine sandy CLA	Υ
D	1.5												
D	1.5												
D SPT	2.0 2.0	1	2	2	3	2	1	8					
J1 1	2.0	1				_	_			H			
									2.20				
												Firm to stiff orange brown patched	d blue grey silty CLAY
										H			
D	3.0	١.		_	١,	١,							
SPT	3.0	2	2	3	4	3	4	14					
D	4.0												
SPT	4.0	2	4	4	5	3	4	16					
									4.45	H			
		t		I				 	4.45				
	1	1		l	1		I	I	I				

D - Small Disturbed W - Water

(U*) Non recovery of Sample

Specialists in the investigation & r	eclamation of brownfield sites	Exploratory Hole No	WS3
Site Address	254 Kilburn Road, London	Project No	P8591J338
Client	Aitch Group	Ground Level	
Site Personnel	TC, LP	Commenced	13.10.14
		Completed	13.10.14
Type and diameter of equipment:	Premier 1	10	
Water levels recorded during boring, m			
Date			
Hole Depth			
Casing Depth			
Water Level on strike			
Water Level after 20mins			
Remarks			
1. Installed 50mm pipe	to 2.50m		
2.			
3.			

4		C	alaa a	T.	-4-					Chunha	
	; 	Samp	oies c							Strata	
Туре	Depth				esul						Strata Description
	(m)	75	75	75	75	75	75	N	Depth (m)	Legend	CONCRETE
Р	0.2								0.15		CONCRETE Light brown slightly clayey fine to medium SAND with frequent fine
									0.30		to medium angular flints (MADE GROUND)
Р	0.5										Dark brown GRAVEL comprising of lean mix concrete, brick, flint and ash in a fine sand (MADE GROUND)
P SPT	1.0 1.0	1	1	1	0	1	0	2	4.30		
P	1.5								1.20		Soft dark brown fine sandy CLAY with frequent fine to medium flints and brick fragments (MADE GROUND)
P SPT	2.0 2.0	1	2	1	2	2	2	7	2.10		
D	2.5								2.10		Firm to stiff orange brown patched blue grey silty CLAY
D SPT	3.0 3.0	2	3	4	4	3	5	16			
D SPT	4.0 4.0	2	2	4	3	3	4	14			
									4.45		

D - Small Disturbed W - Water

(U*) Non recovery of Sample

Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com

		7)	É				5			Exploratory Hole No	WS4
Cit- A		ialists	in the) inve	stigat	ion &	reciar	natio	n of brownfield				202021000
	ddress										ad, London	Project No	P8592J338
Client									Aitch Grou	p		Ground Level	10.10.11
Site P	ersonne	91							TC, LP			Commenced	13.10.14
T	م ما ام		-f								Premier 11	Completed	13.10.14
Type an Water I							· ·				Premier 11	0	
Date	eveis rec	corae	ea at	aring	DON	ng, n	11		1			Т	
Hole De	nth												
Casing D Water L		ر ا ا د	_										
Water L													
Remark		21 20	1111115		<u> </u>								
	.5												
1.													
2. 3.													
3. 4													
4		Samı	nles	or To	sts						Strata		
	•	Jaili	vies (Juata		
Туре	Depth			R	esul	ts						Strata Descrip	otion
. , , , ,	(m)		75	75	75	75	75	N	Depth (m)	Ħ	Legend		
	,,				Ť		Ť		,, ()		111111111111111111111111111111111111111	CONCRETE	
										1	///////		
										1		1	
<u> </u>	0.5	<u> </u>							0.40	L	44444		
Р	0.5											Soft dark brown/black sandy CLAY with f	
												flints and brick fragments (MADE GROUI	ND)
Р	1.0												
SPT	1.0	1	0	1	1	1	0	3					
												1	
D	1.5								1.50			1	
	1.5								1.50		///////////	Firm to stiff orange brown patched blue	grev silty CLAY
													0 - 77 -
D SPT	2.0			١,	1	١,	1	_					
321	2.0	1	2	2	1	2	1	6					
6													
D SPT	3.0 3.0	2	3	3	4	2	3	12					
31 1	3.0		3		~	-		12					
										_			
D	4.0												
D SPT	4.0	1	3	3	4	4	4	15					
										Т			
		<u> </u>							4.45				
										\vdash			
										1			

	Speci	alists	in the	inve	stigati	ion &	reclar	natio	n of brownfie	ld si	es	Exploratory Hole No	WS5		
Site A	ddress								254 Kilbur	n R	oad, London	Project No	P8592J338		
Clien	:								Aitch Grou		•	Ground Level			
Site P	ersonne	l							TC, LP			Commenced	13.10.14		
												Completed	13.10.14		
	d diame										Premier 11	10			
	evels red	cord	ed du	ıring	bori	ng, n	n		ı						
Date Hole De	nth														
Casing [
	evel on s	strike	2												
	evel afte														
Remark	s												•		
1.															
2.															
3.															
1		Sami	aloc (or Te	ctc						Strata				
	· · · · · ·	Jann	nes (Strata	Strata Description			
Туре	Depth			R	esul	ts						Strata Desc	cription		
	(m)	75	75	75	75	75	75	N	Depth (m)		Legend				
									0.05	┡	<i>///////</i>	BLACKTOP			
Р	0.3								0.20	╟		CONCRETE			
												Soft dark brown/black sandy CLAY w flints and brick fragments (MADE GR			
Р	0.5											mints and brick fragments (MADE GK	OUND		
												2			
												4			
Р	1.0			_	_		_	_				1			
SPT	1.0	1	0	0	1	2	1	4		 		4			
									1.20			1			
									1.20	┢		:			
_												Firm orange brown silty CLAY with fir	ne to medium angular flint		
D	1.5									-					
												:			
D SPT	2.0			2	,	1	2	8							
	2.0	1	1		3	1	_	ŏ		⊩		:			
JF I		l													
3F1								i i		0-					
Jr i															
JF1									2.40						
Jr I									2.40			Firm to stiff orange brown patched b	lue grey silty CLAY		

Sampling Code: U- Undisturbed B - Large Disturbed

D - Small Disturbed W - Water (U*) Non recovery of Sample

Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com

4.45

3.0 3.0

4.0 4.0

2 3

3 3

3

4 13

D SPT

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 14-01039

Issue: 1

Date of Issue: 03/11/2014

Contact: Roni Savage

Customer Details: Jomas Associates Limited

Lakeside House 1 Furzeground Way

Quotation No: Q14-00127

Order No: P8592

Customer Reference: J338-08

Date Received: 23/10/2014

Date Approved: 03/11/2014

Details: Kilbum High Road

Approved by:

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

Sample Summary

Report No.: 14-01039

Elab No.	Client's Ref.	Date Sampled	Date Schedule	d Description	Deviations
7108	WS1 P 0.50	13/10/2014	24/10/2014	Sandy silty loam	cfg
7109	WS1 P 1.00	13/10/2014	24/10/2014	Silty loam	cfg
7110	WS2 P 1.00	13/10/2014	24/10/2014	Silty clayey loam	cfg
7111	WS2 D 1.50	13/10/2014	24/10/2014	Silty clayey loam	cfg
7112	WS3 P 0.50	13/10/2014	24/10/2014	Stone/ Concrete	cfg
7113	WS3 P 1.00	13/10/2014	24/10/2014	Sandy silty loam	cfg
7114	WS3 P 1.50	13/10/2014	24/10/2014	Silty loam	cfg
7115	WS3 D 3.00	13/10/2014	24/10/2014	Clayey loam	cfg
7116	WS4 P 0.50	13/10/2014	24/10/2014	Silty loam	cfg
7117	WS4 P 1.00	13/10/2014	24/10/2014	Silty loam	cfg
7118	WS5 P 0.30	13/10/2014	24/10/2014	Silty loam	cfg
7119	WS5 P 1.00	13/10/2014	24/10/2014	Silty loam	cfg
7120	BH1 D6 5.20	13/10/2014	24/10/2014	Clay	
7121	BH1 D9 8.00	13/10/2014	24/10/2014	Clayey loam	
7122	BH1 D15 14.00	13/10/2014	24/10/2014	Clayey loam	
7123	BH1 D18 17.00	13/10/2014	24/10/2014	Clay	
7124	BH2 D2 2.20	13/10/2014	24/10/2014	Silty clayey loam	
7125	BH2 D5 4.20	13/10/2014	24/10/2014	Clayey loam	
7126	BH2 D14 12.50	13/10/2014	24/10/2014	Clay	
7127	BH2 D26 25.00	13/10/2014	24/10/2014	Clayey loam	
7128	WS1 1.50	13/10/2014	24/10/2014		
7129	WS1 2.00	13/10/2014	24/10/2014		
7130	WS1 3.00	13/10/2014	24/10/2014		
7131	WS1 4.00	13/10/2014	24/10/2014		
7132	WS2 0.40	13/10/2014	24/10/2014		
7133	WS2 2.00	13/10/2014	24/10/2014		
7134	WS2 3.00	13/10/2014	24/10/2014		
7135	WS2 4.00	13/10/2014	24/10/2014		
7136	WS3 0.20	13/10/2014	24/10/2014		
7137	WS3 2.00	13/10/2014	24/10/2014		
7138	WS3 2.50	13/10/2014	24/10/2014		
7139	WS3 4.00	13/10/2014	24/10/2014		
7140	WS4 1.50	13/10/2014	24/10/2014		
7141	WS4 2.00	13/10/2014	24/10/2014		
7142	WS4 3.00	13/10/2014	24/10/2014		
7143	WS4 4.00	13/10/2014	24/10/2014		
7144	WS5 0.50	13/10/2014	24/10/2014		
7145	WS5 1.50	13/10/2014	24/10/2014		
7146	WS5 2.00	13/10/2014	24/10/2014		
7147	WS5 3.00	13/10/2014	24/10/2014		
7148	WS5 4.00	13/10/2014	24/10/2014		

Report No.: 14-01039

Report No.: 14-01039									
		ELAB	Reference	7108	7109	7110	7111	7112	7113
	Customer Reference						D	Р	Р
		;	Sample ID						
	Sample Type						SOIL	SOIL	SOIL
	Sample Location						WS2	WS3	WS3
	;	Sample	Depth (m)	0.50	1.00	1.00	1.50	0.50	1.00
		•		13/10/2014	13/10/2014		13/10/2014	13/10/2014	
Determinand	Codes		LOD	10/10/2011	10/10/2011	10/10/2011	10/10/2011	10/10/2011	10,10,2011
Metals									
Arsenic	M	mg/kg	1	13.8	17.5	17.4	14.3	^ 10.6	n/t
Cadmium	М	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	^ < 0.5	n/t
Chromium	М	mg/kg	5	15.9	27.8	26.9	36.3	^ 18.6	n/t
Copper	M	mg/kg	5	204	52.2	50.1	21.2	^ 57.9	n/t
Lead	M	mg/kg	5	190	351	478	38.4	^ 110	n/t
Mercury	M	mg/kg	0.5	< 0.5	0.7	1.7	< 0.5	^ < 0.5	n/t
Nickel	M	mg/kg	5	33.7	19.7	17.2	15.7	^ 36.0	n/t
Selenium	M	mg/kg	1	1.4	< 1.0	1.3	< 1.0	^ < 1.0	n/t
Zinc	M	mg/kg	45	94.0	88.1	69.8	54.5	^ 67.6	n/t
Anions									
Water Soluble Sulphate	M	g/l	0.01	0.23	0.06	0.04	0.02	^ 0.04	n/t
Inorganics									
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	n/t
Total Cyanide	M	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	^ < 1.0	n/t
Acid Soluble Sulphate (SO4)	U	%SO4	0.02	0.22	0.09	0.06	0.04	0.84	n/t
Water Soluble Boron	N	mg/kg	0.5	1.6	2.5	2.1	1.7	1.4	n/t
Miscellaneous									
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t	n/t	n/t	< 0.1
Loss Of Ignition (450°C)	N	%	0.01	n/t	n/t	n/t	n/t	n/t	1.4
рН	M	units	0.1	9.6	7.6	7.1	7.4	^ 11.1	8.7
Total Organic Carbon	N	%	0.01	n/t	1.8	n/t	0.39	5.2	3.0

Report No.: 14-01039									
		ELAB	Reference	7108	7109	7110	7111	7112	7113
	Р	Р	Р	D	Р	Р			
	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
	WS1	WS1	WS2	WS2	WS3	WS3			
	0.50	1.00							
	Sample Depth (m)					1.00	1.50	0.50	1.00
		Sam	pling Date	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014
Determinand	Codes	Units	LOD						
Organics									
>C8-C10 BCB	N	mg/kg	1	< 1.0	8.1	< 1.0	< 1.0	< 1.0	n/t
>C10-C12 BCB	N	mg/kg	1	< 1.0	55.6	< 1.0	< 1.0	< 1.0	n/t
>C12-C16 BCB	N	mg/kg	1	< 1.0	135	< 1.0	< 1.0	< 1.0	n/t
>C16-C21 BCB	N	mg/kg	1	< 1.0	77.8	< 1.0	< 1.0	< 1.0	n/t
>C21-C35 BCB	N	mg/kg	1	4.5	32.8	2.1	2.2	4.7	n/t
>C35-C40 BCB	N	mg/kg	1	< 1.0	4.5	< 1.0	< 1.0	< 1.0	n/t
Total (>C8-C40) BCB	N	mg/kg	1	4.5	314	2.1	2.2	4.7	n/t
Phenois									
Total Monohydric Phenols	N	mg/kg	5	c < 5	c < 5	c < 5	c < 5	c < 5	n/t
Polyaromatic hydrocarbon	S								
Naphthalene	М	mg/kg	0.5	c < 0.5	c 10.7	c < 0.5	c < 0.5	c^ < 0.5	n/t
Acenaphthylene	M	mg/kg	0.5	c < 0.5	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Acenaphthene	M	mg/kg	0.5	c < 0.5	c 1.9	c < 0.5	c < 0.5	c^ < 0.5	n/t
Fluorene	М	mg/kg	0.5	c < 0.5	c 0.6	c < 0.5	c < 0.5	c^ < 0.5	n/t
Phenanthrene	М	mg/kg	0.5	c 0.9	c 2.2	c < 0.5	c < 0.5	c^ < 0.5	n/t
Anthracene	M	mg/kg	0.5	c < 0.5	c 1.6	c < 0.5	c < 0.5	c^ < 0.5	n/t
Fluoranthene	M	mg/kg	0.5	c 1.6	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Pyrene	M	mg/kg	0.5	c 1.3	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Benzo (a) anthracene	M	mg/kg	0.5	c 0.9	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Chrysene	М	mg/kg	0.5	c 1.3	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Benzo (b) fluoranthene	M	mg/kg	0.5	c 0.9	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Benzo (k) fluoranthene	M	mg/kg	0.5	c 0.8	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Benzo (a) pyrene	M	mg/kg	0.5	c 0.7	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Indeno (1,2,3-cd) pyrene	M	mg/kg	0.5	c 0.6	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Dibenzo(a,h)anthracene	M	mg/kg	0.5	c < 0.5	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Benzo(ghi)perylene	M	mg/kg	0.5	c 0.6	c < 0.5	c < 0.5	c < 0.5	c^ < 0.5	n/t
Total PAH (Including Corpora)	M N	mg/kg	2	c 11	c 18 n/t	c < 2	c < 2	c^ < 2	n/t
Total PAH (Including Coronene)	IN	mg/kg	2.1	11/1	II/T	11/1	11/1	11/1	c < 2
BTEX									
Total BTEX	M	mg/kg	0.01	n/t	n/t	n/t	n/t	n/t	cfg < 0.01
Total Petroleum Hydrocark									
Mineral Oil	U	mg/kg	5	n/t	n/t	n/t	n/t	n/t	cfg < 5
PCB (ICES 7 congeners)									
PCB (Total of 7 Congeners)	М	mg/kg	0.03	n/t	n/t	n/t	n/t	n/t	c < 0.03

Report No.: 14-01039									
	ELAB	Reference	7114	7115	7116	7117	7118	7119	
	Cu	ıstomer	Reference	Р	D	Р	Р	Р	Р
			Sample ID						
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	WS3	WS3	WS4	WS4	WS5	WS5
			Depth (m)	1.50	3.00	0.50	1.00	0.30	1.00
		•							
				13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014
Determinand	Codes	Units	LOD						
Metals									
Arsenic	M	mg/kg	1	24.4	n/t	23.3	33.7	21.1	22.4
Cadmium	M	mg/kg	0.5	0.7	n/t	< 0.5	0.8	< 0.5	1.3
Chromium	M	mg/kg	5	27.7	n/t	32.0	34.4	48.4	31.1
Copper	M	mg/kg	5	82.0	n/t	91.2	111	63.2	90.9
Lead	M	mg/kg	5	848	n/t	1900	2530	585	555
Mercury	M	mg/kg	0.5	2.3	n/t	1.3	1.4	1.0	1.6
Nickel	M	mg/kg	5	26.7	n/t	28.4	33.6	34.7	28.1
Selenium	М	mg/kg	1	1.8	n/t	1.1	2.2	< 1.0	1.1
Zinc	М	mg/kg	45	837	n/t	413	593	277	119
Anions									
Water Soluble Sulphate	M	g/l	0.01	0.10	n/t	0.22	0.12	0.59	0.20
Inorganics									
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	< 0.8	< 0.8	< 0.8
Total Cyanide	M	mg/kg	1	< 1.0	n/t	< 1.0	< 1.0	< 1.0	< 1.0
Acid Soluble Sulphate (SO4)	U	%SO4	0.02	0.16	n/t	0.22	0.16	0.20	0.33
Water Soluble Boron	N	mg/kg	0.5	3.9	n/t	5.1	4.7	3.6	2.9
Miscellaneous									
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	< 0.1	n/t	n/t	n/t	n/t
Loss Of Ignition (450°C)	N	%	0.01	n/t	1.2	n/t	n/t	n/t	n/t
pH	М	units	0.1	7.5	8.1	7.2	7.2	8.0	7.5
Total Organic Carbon	N	%	0.01	n/t	0.26	n/t	n/t	1.9	n/t

ELAB Reference P	Report No.: 14-01039									
Sample Type Sample Type SOIL		7114	7115	7116	7117	7118	7119			
Sample Description Sample Description Solidaria Solid		Р	D	Р	Р	Р	Р			
Sample Description Sample Description Solidaria Solid										
Sample Depth (m) Sample Sample		SOII	SOII	SOIL	SOIL	SOIL	SOII			
Sample Depth (m) 1.50 3.00 0.50 1.00 0.30 1.00										
Determinand Code Units LOD Cognics Code Units LOD Cognics Code Units LOD Cognics Code Code		·								
Determinand Codes Units LOD										
Organics Sc8-C10 BCB		1		pling Date	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014
SCB-C10 BCB		Codes	Units	LOD						
Sc10-C12 BCB	Organics									
Sc12-C16 BCB	>C8-C10 BCB	N	mg/kg	1	cfg < 1.0	n/t	cfg < 1.0	cfg < 1.0	cfg < 1.0	cfg < 1.0
Sc16-C21 BCB	>C10-C12 BCB	N		1		n/t				
SC21-C35 BCB		N		1		n/t				cfg < 1.0
C35-C40 BCB				1						
Total (\$C8-C40) BCB										
Phenois			mg/kg	1		n/t	cfg < 1.0	cfg < 1.0		
Total Monohydric Phenols	Total (>C8-C40) BCB	N	mg/kg	1	cfg 2.4	n/t	cfg 4.1	cfg 4.1	cfg 5.0	cfg 2.5
Polyaromatic hydrocarbons	Phenois									
Naphthalene	Total Monohydric Phenols	N	mg/kg	5	c < 5	n/t	c < 5	c < 5	c < 5	c < 5
Acenaphthylene	Polyaromatic hydrocarbon	ıs								
Acenaphthene	Naphthalene	M	mg/kg	0.5	c < 0.5	n/t	c < 0.5	c < 0.5	c < 0.5	c < 0.5
Fluorene	Acenaphthylene	М	mg/kg	0.5	c < 0.5	n/t	c < 0.5	c < 0.5	c < 0.5	c < 0.5
Phenanthrene	Acenaphthene	M	mg/kg	0.5	c < 0.5	n/t	c < 0.5	c < 0.5	c < 0.5	c < 0.5
Anthracene	Fluorene	M	mg/kg	0.5	c < 0.5	n/t	c < 0.5	c < 0.5	c < 0.5	c < 0.5
Fluoranthene	Phenanthrene	M	mg/kg	0.5	c < 0.5	n/t	c 0.5	c 0.5	c < 0.5	c < 0.5
Pyrene	Anthracene	M	mg/kg	0.5	c < 0.5	n/t				
Benzo (a) anthracene	Fluoranthene	M		0.5	c < 0.5	n/t	c 1.5	c 2.5	c < 0.5	
Chrysene M mg/kg 0.5 c < 0.5 n/t c 1.2 c 1.9 c < 0.5 c < 0.5 Benzo (b) fluoranthene M mg/kg 0.5 c < 0.5	Pyrene	M	mg/kg	0.5	c < 0.5	n/t		c 2.2		c < 0.5
Benzo (b) fluoranthene										
Benzo (k) fluoranthene M mg/kg 0.5 c < 0.5 n/t c 1.1 c 1.8 c < 0.5 c < 0.5 Benzo (a) pyrene M mg/kg 0.5 c < 0.5										
Benzo (a) pyrene										
Indeno (1,2,3-cd) pyrene										
Dibenzo(a,h)anthracene		_								
Benzo(ghi)perylene		_								
Total PAH(16) Speciated M mg/kg 2 c < 2 n/t c 10 c 16 c < 2 c < 2 Total PAH (Including Coronene) N mg/kg 2.1 n/t c < 2	,									
Total PAH (Including Coronene) N mg/kg 2.1 n/t c < 2 n/t n/t n/t n/t BTEX Total BTEX M mg/kg 0.01 n/t cfg < 0.01										
BTEX Total BTEX M mg/kg 0.01 n/t cfg < 0.01										
Total BTEX M mg/kg 0.01 n/t cfg < 0.01 n/t n/t n/t n/t n/t Total Petroleum Hydrocarbons Mineral Oil U mg/kg 5 n/t cfg < 5		N	mg/kg	2.1	n/t	c < 2	n/t	n/t	n/t	n/t
Total Petroleum Hydrocarbons Mineral Oil U mg/kg 5 n/t cfg < 5										
Mineral Oil U mg/kg 5 n/t cfg < 5 n/t n/t n/t n/t PCB (ICES 7 congeners) <t< td=""><td></td><td></td><td>mg/kg</td><td>0.01</td><td>n/t</td><td>cfg < 0.01</td><td>n/t</td><td>n/t</td><td>n/t</td><td>n/t</td></t<>			mg/kg	0.01	n/t	cfg < 0.01	n/t	n/t	n/t	n/t
PCB (ICES 7 congeners)	Total Petroleum Hydrocarl									
	Mineral Oil	U	mg/kg	5	n/t	cfg < 5	n/t	n/t	n/t	n/t
PCB (Total of 7 Congeners) M mg/kg 0.03 n/t c < 0.03 n/t n/t n/t n/t	PCB (ICES 7 congeners)									
		M	mg/kg	0.03	n/t	c < 0.03	n/t	n/t	n/t	n/t

Ν

%

0.01

n/t

n/t

n/t

n/t

n/t

n/t

Results Summary

Report No.: 14-01039

Total Organic Carbon

Report No.: 14-01039									
		ELAB	Reference	7120	7121	7122	7123	7124	7125
	Cı	ıstomer	Reference	D6	D9	D15	D18	D2	D5
			Sample ID						
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			le Location	BH1	BH1	BH1	BH1	BH2	BH2
		•		5.20	8.00	14.00	17.00	2.20	4.20
			Depth (m)						
			pling Date	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014	13/10/2014
Determinand	Codes	Units	LOD						
Metals									
Arsenic	М	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
Cadmium	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Chromium	М	mg/kg		n/t	n/t	n/t	n/t	n/t	n/t
Copper	М	mg/kg	5	n/t	n/t	n/t	n/t	n/t	n/t
Lead	M	mg/kg	5	n/t	n/t	n/t	n/t	n/t	n/t
Mercury	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Nickel	M	mg/kg	5	n/t	n/t	n/t	n/t	n/t	n/t
Selenium	M	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
Zinc	M	mg/kg	45	n/t	n/t	n/t	n/t	n/t	n/t
Anions									
Water Soluble Sulphate	М	g/l	0.01	0.17	0.98	0.33	0.25	0.07	0.03
Inorganics									
Hexavalent Chromium	N	mg/kg	0.8	n/t	n/t	n/t	n/t	n/t	n/t
Total Cyanide	М	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
Acid Soluble Sulphate (SO4)	U	%SO4	0.02	n/t	n/t	n/t	n/t	n/t	n/t
Water Soluble Boron	N	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Miscellaneous									
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t	n/t	n/t	n/t	n/t
Loss Of Ignition (450°C)	N	%	0.01	n/t	n/t	n/t	n/t	n/t	n/t
рН	М	units	0.1	8.1	7.8	8.2	8.3	7.8	8.3
T		0/	0.04	- /-	1.	- 14	- 14	- /-	- /-

Report No.: 14-01039									
		ELAB	Reference	7120	7121	7122	7123	7124	7125
	D6	D9	D15	D18	D2	D5			
			Sample ID mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	BH1	BH1	BH1	BH1	BH2	BH2
			Depth (m)	5.20	8.00	14.00	17.00	2.20	4.20
		•	pling Date		13/10/2014		13/10/2014	13/10/2014	-
Determinand	Codes		LOD	10/10/2011	10/10/2011	10/10/2011	10/10/2011	10/10/2011	10/10/2011
Organics									
>C8-C10 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
>C10-C12 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
>C12-C16 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
>C16-C21 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
>C21-C35 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
>C35-C40 BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
Total (>C8-C40) BCB	N	mg/kg	1	n/t	n/t	n/t	n/t	n/t	n/t
Phenois									
Total Monohydric Phenols	N	mg/kg	5	n/t	n/t	n/t	n/t	n/t	n/t
Polyaromatic hydrocarbon	S								
Naphthalene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Acenaphthylene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Acenaphthene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Fluorene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Phenanthrene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Anthracene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Fluoranthene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Pyrene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Benzo (a) anthracene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Chrysene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Benzo (b) fluoranthene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Benzo (k) fluoranthene	М	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Benzo (a) pyrene	M	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Indeno (1,2,3-cd) pyrene	M	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Dibenzo(a,h)anthracene	M	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Benzo(ghi)perylene	M	mg/kg	0.5	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH(16) Speciated	M	mg/kg	2	n/t	n/t	n/t	n/t	n/t	n/t
Total PAH (Including Coronene)	N	mg/kg	2.1	n/t	n/t	n/t	n/t	n/t	n/t
BTEX									
Total BTEX	М	mg/kg	0.01	n/t	n/t	n/t	n/t	n/t	n/t
Total Petroleum Hydrocark	ons								
Mineral Oil	U	mg/kg	5	n/t	n/t	n/t	n/t	n/t	n/t
PCB (ICES 7 congeners)									
PCB (Total of 7 Congeners)	М	mg/kg	0.03	n/t	n/t	n/t	n/t	n/t	n/t

Report No.: 14-01039

ELAB Reference	7126	7127
Customer Reference	D14	D26
Sample ID		
Sample Type	SOIL	SOIL
Sample Location	BH2	BH2
Sample Depth (m)	12.50	25.00

		Sam	pling Date	13/10/2014	13/10/2014
Determinand	Codes	Units	LOD		
Metals					
Arsenic	M	mg/kg	1	n/t	n/t
Cadmium	М	mg/kg	0.5	n/t	n/t
Chromium	М	mg/kg	5	n/t	n/t
Copper	М	mg/kg	5	n/t	n/t
Lead	М	mg/kg	5	n/t	n/t
Mercury	М	mg/kg	0.5	n/t	n/t
Nickel	М	mg/kg	5	n/t	n/t
Selenium	M	mg/kg	1	n/t	n/t
Zinc	М	mg/kg	45	n/t	n/t
Anions					
Water Soluble Sulphate	M	g/l	0.01	0.25	0.20
Inorganics					
Hexavalent Chromium	N	mg/kg	0.8	n/t	n/t
Total Cyanide	М	mg/kg	1	n/t	n/t
Acid Soluble Sulphate (SO4)	U	%SO4	0.02	n/t	n/t
Water Soluble Boron	N	mg/kg	0.5	n/t	n/t
Miscellaneous					
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	n/t
Loss Of Ignition (450°C)	N	%	0.01	n/t	n/t
рН	M	units	0.1	8.3	8.4
Total Organic Carbon	N	%	0.01	n/t	n/t

PCB (ICES 7 congeners)

М

mg/kg

0.03

n/t

PCB (Total of 7 Congeners)

recount our minus					
Report No.: 14-01039					
		ELAB	Reference	7126	7127
	Cı	ustomer	Reference	D14	D26
			Sample ID		
			mple Type	SOIL	SOIL
			e Location		BH2
			Depth (m)	i	25.00
	_		pling Date	13/10/2014	13/10/2014
Determinand	Codes	Units	LOD		
Organics					
>C8-C10 BCB	N	mg/kg	1	n/t	n/t
>C10-C12 BCB	N	mg/kg	1	n/t	n/t
>C12-C16 BCB	N	mg/kg	1	n/t	n/t
>C16-C21 BCB	N	mg/kg	1	n/t	n/t
>C21-C35 BCB	N	mg/kg	1	n/t	n/t
>C35-C40 BCB	N	mg/kg	1	n/t	n/t
Total (>C8-C40) BCB	N	mg/kg	1	n/t	n/t
PhenoIs					
Total Monohydric Phenols	N	mg/kg	5	n/t	n/t
Polyaromatic hydrocarbor	าร				
Naphthalene	М	mg/kg	0.5	n/t	n/t
Acenaphthylene	М	mg/kg	0.5	n/t	n/t
Acenaphthene	М	mg/kg	0.5	n/t	n/t
Fluorene	M	mg/kg	0.5	n/t	n/t
Phenanthrene	M	mg/kg	0.5	n/t	n/t
Anthracene	M	mg/kg	0.5	n/t	n/t
Fluoranthene	M	mg/kg	0.5	n/t	n/t
Pyrene	M	mg/kg	0.5	n/t	n/t
Benzo (a) anthracene	M	mg/kg	0.5	n/t	n/t
Chrysene	M	mg/kg	0.5	n/t	n/t
Benzo (b) fluoranthene	M	mg/kg	0.5	n/t	n/t
Benzo (k) fluoranthene	M	mg/kg	0.5	n/t	n/t
Benzo (a) pyrene	M	mg/kg	0.5	n/t	n/t
Indeno (1,2,3-cd) pyrene	M	mg/kg	0.5	n/t	n/t
Dibenzo(a,h)anthracene	M	mg/kg	0.5	n/t	n/t
Benzo(ghi)perylene	M	mg/kg	0.5	n/t	n/t
Total PAH (16) Speciated	M	mg/kg	2	n/t	n/t
Total PAH (Including Coronene)	N	mg/kg	2.1	n/t	n/t
BTEX					
Total BTEX	M	mg/kg	0.01	n/t	n/t
Total Petroleum Hydrocar	bons				
Mineral Oil	U	mg/kg	5	n/t	n/t
DOD (IOCO 7					

Report No.: 14-01039

WAC Analysis									
Elab Ref:	7115						I Waste Ac Criteria Lim	•	
Sample Date:	13/10/201	4					Stable Non-		
Sample ID:	WS3 D						reactive		
Depth:	3					Inert	Hazardous	Hazardous	
Site:			Kilbum High	Road		Waste Landfill	waste in non-	Waste Landfill	
						Landilli	hazardous	Landini	
Determinand		Code	Units				Landfill		
Total Organic Carbon		N	%		0.3	3	5	6	
Loss on Ignition		М	%		1.2			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		< 5	500			
Total (of 17) PAHs		N	mg/kg		< 2	100			
pH	1	М			8.1		>6		
Acid Neutralisation Capacity	+	N	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis	+		2:1	8:1	10:1	Limit	values for cor		
Liuate Alialysis				-				EN 12457-3 at	
			mg/l	mg/l	mg/kg		L/S 10 I/kg		
Arsenic		N	< 0.005	< 0.005	< 0.05	0.5	2	25	
Barium		N	< 0.005	< 0.005	< 0.05	20	100	300	
Cadmium		N	< 0.001	< 0.001	< 0.01	0.04	1	5	
Chromium		N	< 0.005	< 0.005	< 0.05	0.5	10	70	
Copper		N	< 0.005	< 0.005	< 0.05	2	50	100	
Mercury		N	< 0.005	< 0.005	< 0.01	0.01	0.2	2	
Molybdenum		N	< 0.005	< 0.005	< 0.05	0.5	10	30	
Nickel		N	< 0.001	< 0.001	< 0.05	0.4	10	40	
Lead		N	< 0.001	< 0.001	< 0.05	0.5	10	50	
Antimony		N	< 0.005	< 0.005	< 0.05	0.06	0.7	5	
Selenium		N	< 0.005	< 0.005	< 0.05	0.1	0.5	7	
Zinc		N	< 0.005	< 0.005	< 0.05	4	50	200	
Chloride		N	28.000	8.000	104.00	800	15000	25000	
Fluoride		N	< 1	< 1	< 10	10	150	500	
Sulphate		N	98.000	8.000	183.00	1000	20000	50000	
Total Dissolved Solids		N	290.000	140.000	1570.00	4000	60000	100000	
Phenol Index		N	< 0.01	< 0.01	< 0.10	1	-	-	
Dissolved Organic Carbon		N	15.300	9.430	101.00	500	800	1000	
Leach Test Information	on								
Eluent Volume (ml)		N	195	1400					
рН		N	7.9	7.6					
Conductivity (uS/cm)		N	500	149					
Temperature (°C)		N	18	19					
Solid Information									
Dry mass of test portion (g)			175						
Moisture (%)			30						
	_								

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

Report No.: 14-01039

WAC Analysis									
Elab Ref:	7113						I Waste Ac Criteria Lim	•	
Sample Date:	13/10/201	4					Stable Non-		
Sample ID:	WS3 P						reactive		
Depth:	1					Inert	Hazardous	Hazardous	
Site:		ı	Kilbum High	Road		Waste Landfill	waste in non-	Waste Landfill	
						Landini	hazardous	Landini	
Determinand		Code	Units				Landfill		
Total Organic Carbon		N	%		3.0	3	5	6	
Loss on Ignition		М	%		1.4			10	
Total BTEX		М	mg/kg		< 0.01	6			
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1			
TPH Total WAC		М	mg/kg		< 5	500			
Total (of 17) PAHs		N	mg/kg		< 2	100			
pH		М			8.7		>6		
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate	
Eluate Analysis			2:1	8:1	10:1	Limit	values for co	mpliance	
Liddle Analysis	+							EN 12457-3 at	
			mg/l	mg/l	mg/kg		L/S 10 l/kg		
Arsenic		N	< 0.005	< 0.005	< 0.05	0.5	2	25	
Barium		N	0.027	0.008	0.10	20	100	300	
Cadmium		N	< 0.001	< 0.001	< 0.01	0.04	1	5	
Chromium		N	< 0.005	< 0.005	< 0.05	0.5	10	70	
Copper		N	< 0.005	< 0.005	< 0.05	2	50	100	
Mercury		N	< 0.005	< 0.005	< 0.01	0.01	0.2	2	
Molybdenum		N	0.029	0.007	0.10	0.5	10	30	
Nickel		N	0.001	< 0.001	< 0.05	0.4	10	40	
Lead		N	< 0.001	< 0.001	< 0.05	0.5	10	50	
Antimony		N	< 0.005	< 0.005	< 0.05	0.06	0.7	5	
Selenium		N	< 0.005	< 0.005	< 0.05	0.1	0.5	7	
Zinc		N	0.006	< 0.005	< 0.05	4	50	200	
Chloride		N	16.000	7.000	80.00	800	15000	25000	
Fluoride		N	< 1	< 1	< 10	10	150	500	
Sulphate		N	637.000	63.000	1450.00	1000	20000	50000	
Total Dissolved Solids		N	1110.000	170.000	3040.00	4000	60000	100000	
Phenol Index		N	< 0.01	< 0.01	< 0.10	1	-	-	
Dissolved Organic Carbon		N	11.400	6.120	69.00	500	800	1000	
Leach Test Information	on								
Eluent Volume (ml)		N	250	1400					
рН		N	7.5	7.7					
Conductivity (uS/cm)		N	1350	250					
Temperature (°C)		N	18	19					
Solid Information									
Dry mass of test portion (g)			176						
Moisture (%)			22.7						
	_								

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 14-01039

Asbestos Qualitative Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No	Depth (m)	Clients Reference	Description of Sample Matrix #	Result
7108	0.50	WS1 P	Sandy silty loam	No asbestos detected
7112	0.50	WS3 P	Stone/ Concrete	No asbestos detected
7114	1.50	WS3 P	Silty loam	No asbestos detected
7116	0.50	WS4 P	Silty loam	No asbestos detected

Method Summary Report No.: 14-01039

Parameter	Analysis Undertaken	Date	Method	Technique
	On	Tested	Number	
Soil	I			I
Hexavalent chromium	As submitted sample	28/10/2014	110	Colorimetry
Acid Soluble Sulphate	Air dried sample	03/11/2014	115	Ion Chromatography
Aqua regia extractable metals	Air dried sample	29/10/2014	118	ICPMS
Phenols in solids	As submitted sample	28/10/2014	121	HPLC
Polyaromatic hydrocarbons (GC-FID)	As submitted sample	28/10/2014	133	GC-FID
Water soluble anions	Air dried sample	29/10/2014	172	Ion Chromatography
Water soluble boron	Air dried sample	29/10/2014	202	Colorimetry
Total cyanide	As submitted sample	30/10/2014	204	Colorimetry
Basic carbon banding in soil	As submitted sample	28/10/2014	218	GC-FID
Asbestos identification	As submitted sample	29/10/2014	PMAN	Microscopy
Leachate				
Arsenic*		29/10/2014	101	ICPMS
Cadmium*		29/10/2014	101	ICPMS
Chromium*		29/10/2014	101	ICPMS
Lead*		29/10/2014	101	ICPMS
Nickel*		29/10/2014	101	ICPMS
Copper*		29/10/2014	101	ICPMS
Zinc*		29/10/2014	101	ICPMS
Mercury*		29/10/2014	101	ICPMS
Selenium*		29/10/2014	101	ICPMS
Antimony		29/10/2014	101	ICPMS
Barium*		29/10/2014	101	ICPMS
Molybdenum*		29/10/2014	101	ICPMS
pH Value*		29/10/2014	113	Electrometric
Electrical Conductivity*		29/10/2014	136	Probe
Dissolved Organic Carbon		29/10/2014	102	TOC analyser
Chloride*		29/10/2014	131	Ion Chromatography
Fluoride*		29/10/2014	131	Ion Chromatography
Sulphate*		29/10/2014	131	Ion Chromatography
Total Dissolved Solids		29/10/2014	144	Gravimetric
Phenol index		29/10/2014	121	HPLC
WAC Solids analysis				
pH Value**	Air dried sample	29/10/2014	113	Electrometric
Total Organic Carbon	Air dried sample	29/10/2014	210	IR
Loss on Ignition**	Air dried sample	29/10/2014	129	Gravimetric
Acid Neutralization Capacity to pH 7	Air dried sample	29/10/2014	NEN 737	Electrometric
Total BTEX**	As submitted sample	29/10/2014	181	GCMS
Mineral Oil**	As submitted sample	29/10/2014	117	GCFID
Total PCBs (7 congeners)	Air dried sample	29/10/2014	120	GCMS
Total PAH (17)**	As submitted sample	29/10/2014	133	GCFID

Report Information

Report No.: 14-01039

Key

hold UKAS accreditation
hold MCERTS and UKAS accreditation
do not currently hold UKAS accreditation
MCERTS accreditation not applicable for sample matrix
Subcontracted to approved laboratory UKAS Accredited for the test
Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
Insufficient Sample
Unsuitable sample
Not tested
means "less than"
means "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation
The results relate only to the items tested
Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

Deviation	Codes				
а	No date of sampling supplied				
b	No time of sampling supplied (Waters Only)				
С	Sample not received in appropriate containers				
d	Sample not received in cooled condition				
е	The container has been incorrectly filled				
f	Sample age exceeds stability time (sampling to receipt)				
g Sample age exceeds stability time (sampling to analysis) Where a sample has a deviation code, the applicable test result may be invalid.					

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

LABORATORY REPORT

4043

Contract Number: PSL14/5410

Client's Reference: Report Date: 31 October 2014

Client Name: Jomas Associates Ltd Associates Ltd Associates Ltd

1 Furzeground Way Lakeside House Stockley Park UB11 1BD

For the attention of: Roni Savage

Contract Title: Kilburn High Road

Date Received: 22/10/2014
Date Commenced: 22/10/2014
Date Completed: 31/10/2014

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins M Beastall

(Director) (Director) (Laboratory Manager)

D Lambe S Royle

(Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

Mh

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
BH1	1	U	1.50	Firm grey mottled brown slightly gravelly slightly sandy CLAY.
BH1	7	U	5.50	Firm brown mottled grey slightly sandy CLAY.
BH1	10	U	8.50	Stiff brown slightly sandy CLAY.
BH1	13	U	11.50	Very stiff brown slightly sandy CLAY.
BH1	19	U	17.50	Stiff brown slightly sandy CLAY.
BH1	25	U	23.50	Very stiff brown slightly sandy CLAY.
BH2	3	U	2.50	Firm brown slightly sandy CLAY.
BH2	6	U	4.50	Firm brown mottled grey slightly sandy CLAY.
BH2	9	U	7.00	Stiff brown slightly sandy CLAY.
BH2	15	U	13.00	Very stiff brown slightly sandy CLAY.
BH2	21	U	19.00	Very stiff brown slightly sandy CLAY.

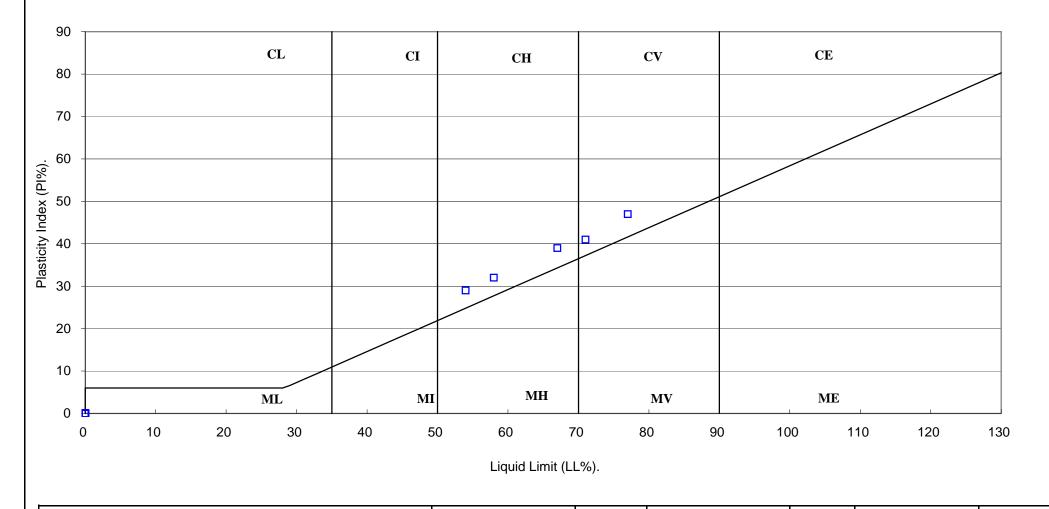
Compiled by	Date	Checked by	Date	Approved by	Date
	31/10/14	M. Sun	31/10/14	M. Sun	31/10/14
IZ)	II DIIDN L	IIGH ROAD.		Contract No:	PSL14/5410
K	ILDUKN I	ugn koad.		Client Ref:	P8592J338-07

SUMMARY OF SOIL CLASSIFICATION TESTS

(B.S. 1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Depth m	Moisture Content	Bulk Density Mg/m ³	Dry Density Mg/m ³	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing .425mm	Remarks
				Clause 3.2	Clause 7.2	Clause 7.2	Clause 8.2	Clause 4.3/4.4	Clause 5.3	Clause 5.4		
BH1	1	U	1.50	30				58	26	32	100	High plasticity CH.
BH1	13	U	11.50	30				77	30	47	100	Very high plasticity CV.
BH2	6	U	4.50	31				67	28	39	100	High plasticity CH.
BH2	9	U	7.00	29				71	30	41	100	Very high plasticity CV.
BH2	21	U	19.00	26				54	25	29	100	High plasticity CH.

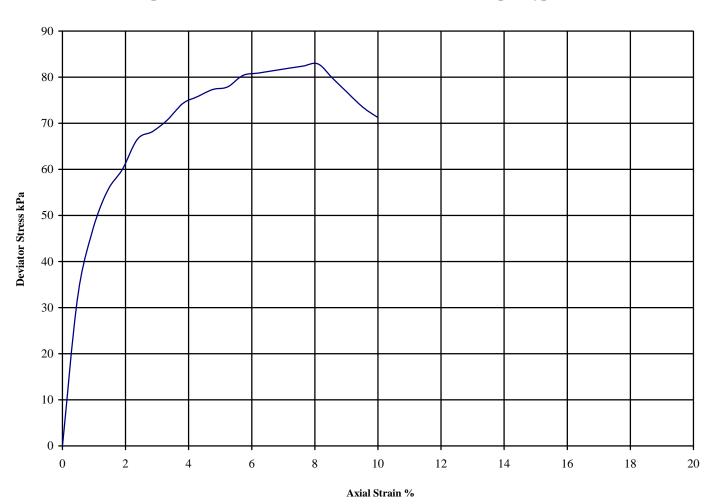
SYMBOLS: NP: Non Plastic


^{*:} Liquid Limit and Plastic Limit Wet Sieved.

ı	Compiled by	Date	Checked by	Date	Approved by	Date
	6000	31/10/14	M. Sun	31/10/14	M. Sen	31/10/14
	VI	I DIIDN H	IGH ROAD.		Contract No:	PSL14/5410
	KI	LDUKN N	IGH KUAD.		Client Ref:	P8592J338-07

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(B.S.5930: 1999)

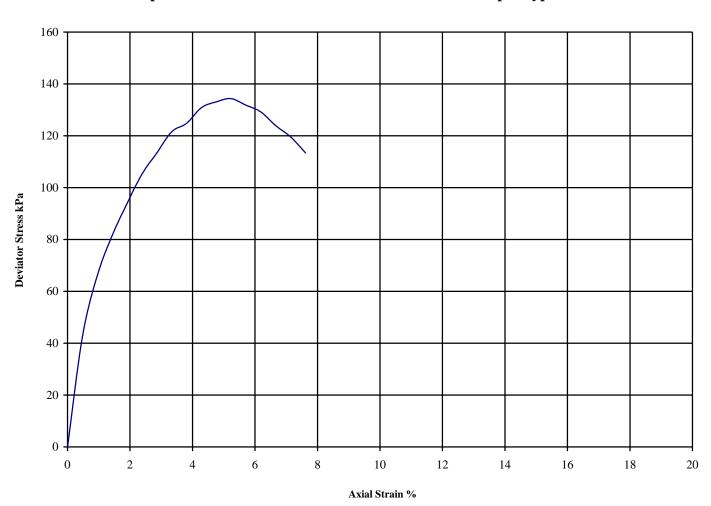

PSLProfessional Soils Laboratory

Compiled by	Date	Checked by	Date	Approved by	Date
	31/10/14	M. Sen	31/10/14	M. Sen	31/10/14
VI	I DIIDN LI	IGH ROAD.		Contract No:	PSL14/5410
KI	LDUKN N	IGH KUAD.		Client Ref:	P8592J338-07

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 1.50

Sample Number: 1 Sample Type: U

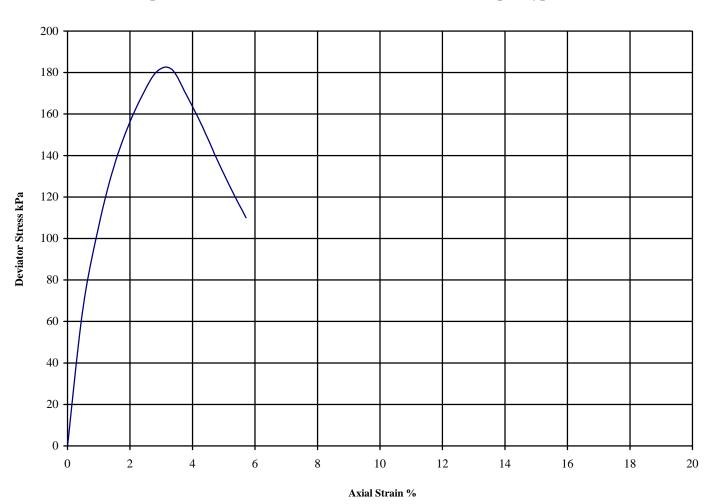


	P	SL ioils Labo			KILBUR	RN HIGH	I ROAD) .	N.buS	orrection applied 0.36 kPa e summary of soil descriptions. hecked Date Approved Date		31/10/14	
									Checked				
A	30	1.81	1.40	30	83	41	8.1	Brittle	See summa	ary of soil	description	S.	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{\mathrm{f}}$			Correction				
					(kPa)	(kPa)			Latex Men	Latex Membrane used 0.2 mm thickn			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of stra	ate of strain = 1.9 %/min atex Membrane used 0.2 mm thickness correction applied 0.36 kPa			
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tak	en from to	op of tube		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed		

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 5.50

Sample Number: 7 Sample Type: U

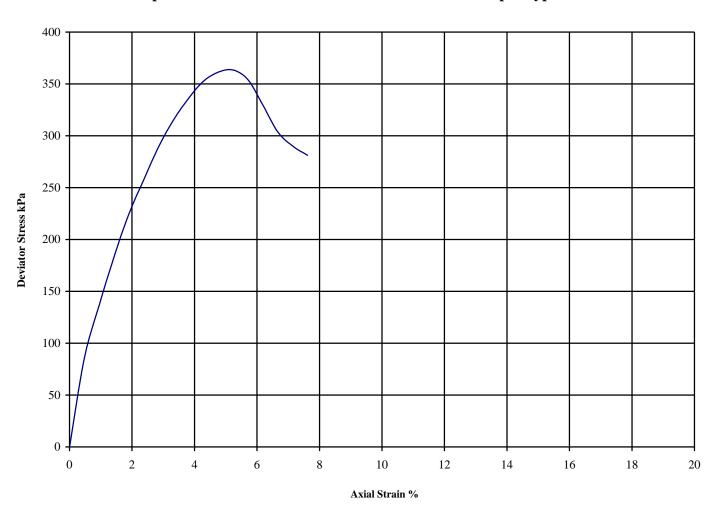


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed			
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks			
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	ken from to	op of tube			
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	6/min			
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thickness					
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.36 kPa					
A	32	1.90	1.44	110	134	67	5.2	Brittle	See summary of soil descriptions.					
									Checked	Date	Approved	Date		
									N.bu S	31/10/14	N.bus	31/10/14		
Profes	Ps	SL Soils Labo	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410			

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 8.50

Sample Number: 10 Sample Type: U

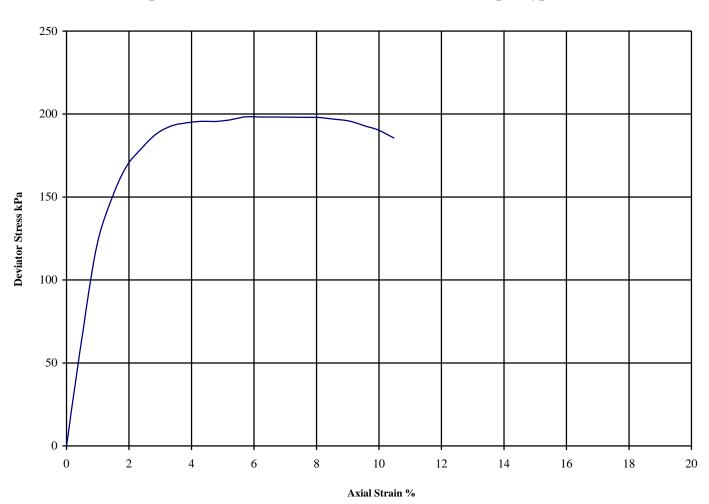


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tak	ken from to	op of tube		
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	6/min		
					(kPa)	(kPa)			Latex Membrane used 0.2 mm thickness				
$\theta_3 = (\theta_1 - \theta_3)_f = \frac{1}{2}(\theta_1 - \theta_3)_f$									Correction	applied	0.37	kPa	
A	31	1.94	1.48	170	182	91	3.3	Brittle	See summary of soil descriptions.				
									Checked	Date	Approved	Date	
									N.Sus	31/10/14	N.bus	31/10/14	
Profes	Ps	SL oils Lab	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410		

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 11.50

Sample Number: 13 Sample Type: U

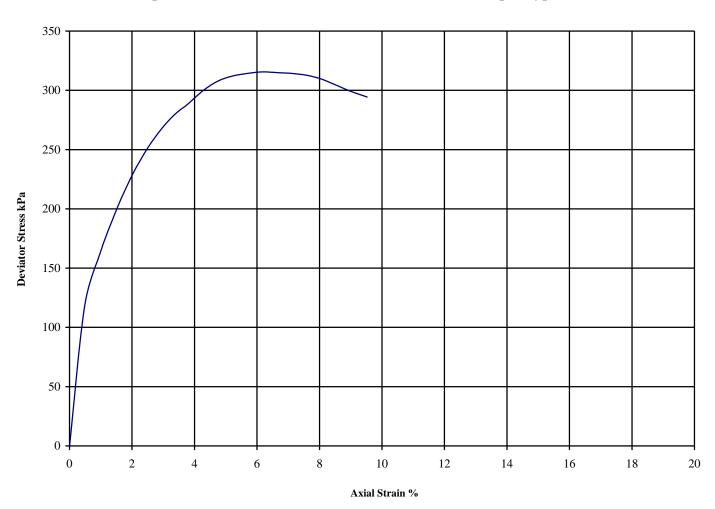


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed		
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks		
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tak	ken from to	op of tube		
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	%/min		
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm t	hickness,	
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa	
A	30	1.96	1.51	230	363	182	5.2	Brittle	See summary of soil descriptions.				
									Checked	Date	Approved	Date	
									N.bus	31/10/14	N.bus	31/10/14	
Profes		SL Soils Labo	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410		

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 17.50

Sample Number: 19 Sample Type: U

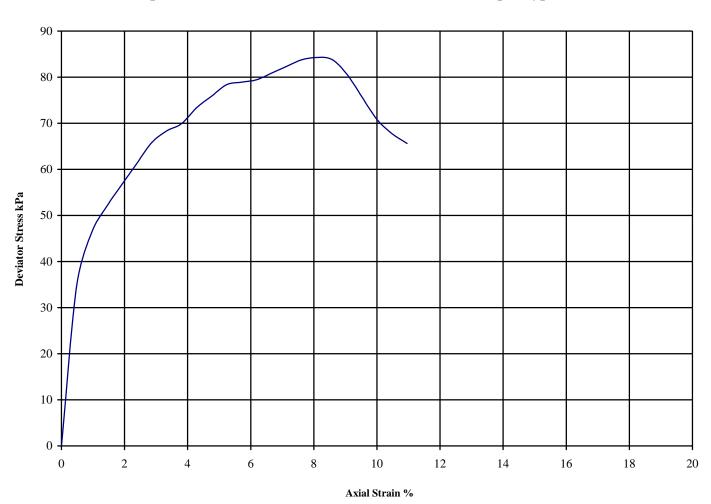


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	nm Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	en from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	%/min	
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm tl	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa
A	28	1.96	1.54	350	198	99	5.7	Brittle	See summa	ary of soil	description	s.
									Checked	Date	Approved	Date
									N.bus	31/10/14	N.bus	31/10/14
Profes	PSL Professional Soils Laboratory				KILBUF	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH1 Depth (m): 23.50

Sample Number: 25 Sample Type: U

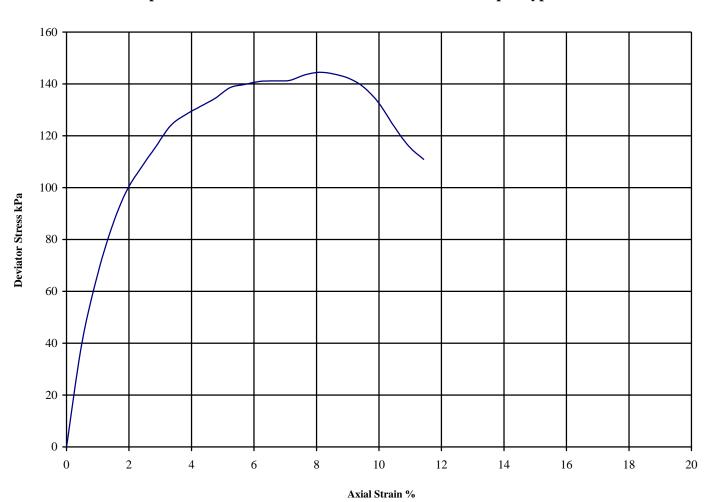


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	nm Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	ken from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	Sample taken from top of tube Rate of strain = 1.9 %/min Latex Membrane used 0.2 mm thickr Correction applied 0.36 kPa See summary of soil descriptions.		
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm tl	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa
A	30	1.95	1.50	470	316	158	6.2	Brittle	See summa	ary of soil	description	s.
									Checked	Date	Approved	Date
									N.bus	31/10/14	N.bus	31/10/14
Profes	PSL Professional Soils Laboratory				KILBUR	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH2 Depth (m): 2.50

Sample Number: 3 Sample Type: U

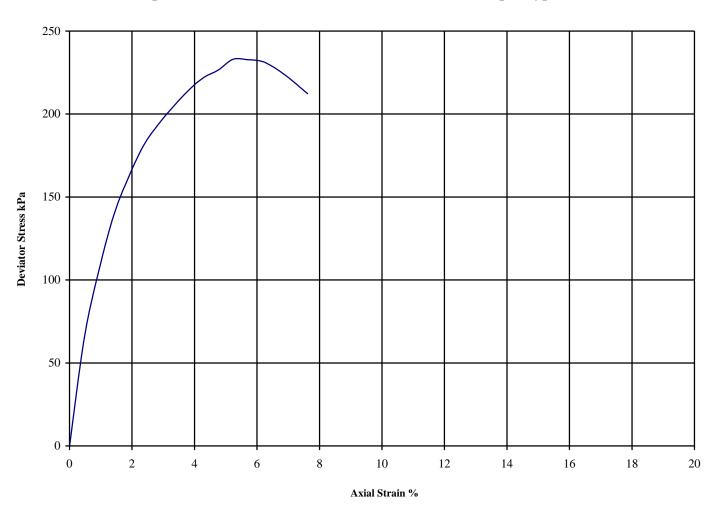


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 n	nm Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	en from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	%/min	
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm t	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	Correction applied 0.36 kPa		
A	30	1.96	1.51	50	84	42	8.1	Brittle	See summa	ary of soil	description	s.
									Checked	Date	Approved	Date
									N.bus	31/10/14	M.bus	31/10/14
Profes	P ssional S	SL Soils Labo	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH2 Depth (m): 4.50

Sample Number: 6 Sample Type: U

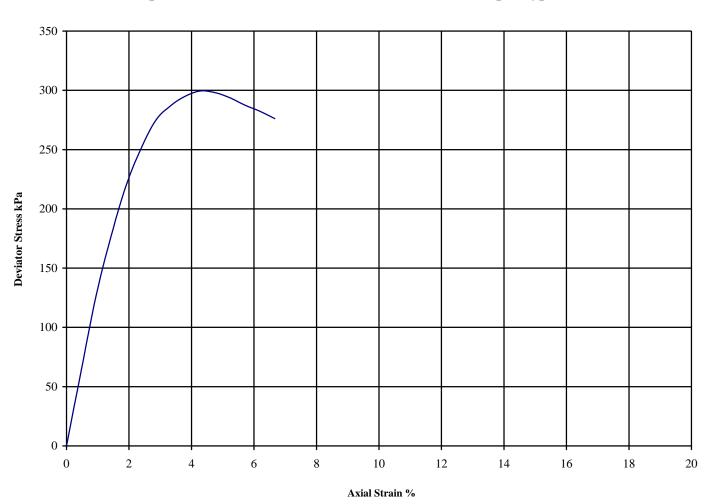


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	nm Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	en from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	%/min	
					(kPa)	(kPa)			Latex Men	nbrane use	ed 0.2 mm tl	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction applied 0.36 kPa			kPa
A	31	1.93	1.48	90	145	72	8.1	Brittle	See summa	ary of soil	description	s.
									Checked	Date	Approved	Date
									N.bus	31/10/14	N.bus	31/10/14
Profes	PSL Professional Soils Laboratory				KILBUR	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH2 Depth (m): 7.00

Sample Number: 9 Sample Type: U

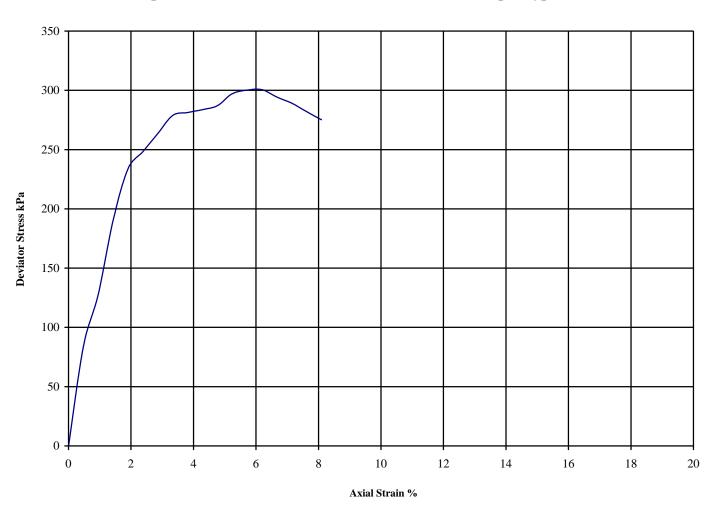


Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	nm Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	cen from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	6/min	
					(kPa)	(kPa)			Latex Mer	nbrane use	ed 0.2 mm t	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa
A	29	1.76	1.36	140	233	116	5.2	Brittle	See summ	ary of soil	description	s.
									Checked	Date	Approved	Date
									N.bus	31/10/14	N.bus	31/10/14
Profes	Ps	SL oils Labo	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH2 Depth (m): 13.00

Sample Number: 15 Sample Type: U



Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tak	en from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	%/min	
					(kPa)	(kPa)	Latex Membrane used 0.2 mm thick					
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa
A	28	1.99	1.56	260	300	150	4.3	Brittle	See summary of soil descriptions.			
									Checked	Date	Approved	Date
									M.bus	31/10/14	M.bus	31/10/14
Profes	Pg ssional S	SL Soils Labo	oratory		KILBUF	RN HIGH	I ROAD).			act No: 4/5410	

without measurement of Pore Pressure B.S. 1377: Part7: Clause 8: 1990

Hole Number: BH2 Depth (m): 19.00

Sample Number: 21 Sample Type: U

Diamete	er (mm):	102.0	Height (mm):	210.0	Test:	100 m	ım Single	Stage.	Undistur	bed	
Specimen	Moisture	Bulk	Dry	Cell	Corr. Max.	Shear	Failure	Mode		Ren	narks	
	Content	Density	Density	Pressure	Deviator	Strength	Strain	of	Sample tal	en from to	op of tube	
	(%)	(Mg/m3)	(Mg/m3)	(kPa)	Stress	Cu	(%)	Failure	Rate of str	ain = 1.9 %	6/min	
					(kPa)	(kPa)			Latex Mer	nbrane use	ed 0.2 mm t	hickness,
				θ_3	$(\theta_1 - \theta_3)_f$	$^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$			Correction	applied	0.36	kPa
A	26	2.02	1.60	380	301	150	6.2	Brittle	See summ	ary of soil	description	ıs.
									Checked	Date	Approved	Date
									M.bus	31/10/14	N.bus	31/10/14
Profes		SL oils Labo	oratory		KILBUR	RN HIGH	I ROAD).			act No: 4/5410	

APPENDIX 5 – STATISTICAL ANALYSIS RESULTS

	A	В	С	D General UCL Star	E tistics f	F or Full Data	G Sets	Н	I	J	K	L
1		User Selec	ted Options									
2			From File	WorkSheet.wst								
3		Fu	II Precision	OFF								
5		Confidence	Coefficient	95%								
6	Number o	of Bootstrap	Operations	2000								
7												
8												
	Arsenic											
10												
11						General	Statistics					
12			Num	ber of Valid Observ	ations	10			Numbe	er of Distinct	Observations	10
13												
14			Raw S	tatistics					Log-transfor	med Statisti		
15					nimum						m of Log Data	
16				Ma	ximum						m of Log Data	
17						19.85					an of log Data	
18				Geometric						S	SD of log Data	0.335
19				<u> </u>	Median							
20				0.1.5		6.641						
21				Std. Error o								
22				Coefficient of Va	wness							
23				Ske	wness	0.758						
24						Polovant II	CL Statistics					
25			Normal Diet	ribution Test		Relevant U	CL Statistics		ognormal D	istribution To	net	
26				Shapiro Wilk Test S	tatistic	ი 951		- '	-		Test Statistic	n 98
27				hapiro Wilk Critical						•	Critical Value	
28		Data appe		: 5% Significance L		0.012	Г)ata appea		· ·	ficance Level	0.012
29												
30		As	ssuming Nor	mal Distribution				Ass	uming Logn	ormal Distrib	oution	
31				95% Student's	-t UCL	23.7					95% H-UCL	25.01
33		95%	UCLs (Adju	sted for Skewness)				95%	Chebyshev	(MVUE) UCL	29.1
				ed-CLT UCL (Chen	-1995)	22 04			97.5%	Chebyshev	(MVUE) UCL	33.1
34			95% Adjuste	(011011	,	23.04					(MVUE) UCL	40.95
34			•	ed-t UCL (Johnson	,				99%	Chebyshev		
35			•	•	,				99%	Chebyshev		
35 36			95% Modifie	•	,					Chebyshev stribution		
35			95% Modifie	ed-t UCL (Johnson	ı-1978)	23.78		Data appe	Data D	,	cance Level	
35 36 37			95% Modifie	tribution Test k star (bias con	rected)	7.199 2.757		Data appe	Data D	istribution	cance Level	
35 36 37 38			95% Modifie	tribution Test k star (bias corr The	rected) ta Star	7.199 2.757 19.85		Data appe	Data D	istribution	cance Level	
35 36 37 38 39			95% Modifie	tribution Test k star (bias corn The MLE of Standard De	rected) ta Star f Mean	7.199 2.757 19.85 7.398		Data appe	Data D	istribution	cance Level	
35 36 37 38 39 40			95% Modifie	tribution Test k star (bias con The MLE of	rected) ta Star f Mean eviation nu star	7.199 2.757 19.85 7.398		Data appe	Data D ear Normal a	istribution t 5% Signific		
35 36 37 38 39 40 41			95% Modifie	tribution Test k star (bias corn The MLE of LE of Standard De	rected) ta Star f Mean eviation nu star	7.199 2.757 19.85 7.398 144 117.3		Data appe	Data D ear Normal a	istribution t 5% Signific	s	
35 36 37 38 39 40 41 42			95% Modifie Gamma Dist M Approximat Adjus	tribution Test k star (bias corr The MLE of LE of Standard De te Chi Square Value sted Level of Signif	rected) ta Star f Mean viation nu star te (.05)	7.199 2.757 19.85 7.398 144 117.3 0.0267		Data appe	Data D ear Normal a	istribution t 5% Signific	s 95% CLT UCL	23.3
35 36 37 38 39 40 41 42 43 44 45			95% Modifie Gamma Dist M Approximat Adjus	tribution Test k star (bias corn The MLE of LE of Standard De	rected) ta Star f Mean viation nu star te (.05)	7.199 2.757 19.85 7.398 144 117.3 0.0267		Data appe	Data D ear Normal a	etric Statistic	s 95% CLT UCL ackknife UCL	23.3
35 36 37 38 39 40 41 42 43 44 45 46			95% Modifie Gamma Dist M Approximat Adjus	tribution Test k star (bias corn The MLE of LE of Standard De te Chi Square Valu sted Level of Signif	rected) ta Star f Mean eviation nu star ie (.05) ficance	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1		Data appe	Data D ear Normal a	etric Statistic 95% J	s 95% CLT UCL ackknife UCL Bootstrap UCL	23.3 23.7 23.19
35 36 37 38 39 40 41 42 43 44 45 46 47			95% Modifie Gamma Dist M Approximat Adjus Ander	tribution Test k star (bias corr The MLE of LE of Standard De te Chi Square Valu sted Level of Signif	rected) ta Star f Mean viation nu star ie (.05) ficance	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1		Data appe	Data Dear Normal a	etric Statistic 95% J Standard E	s 15% CLT UCL lackknife UCL Bootstrap UCL lotstrap-t UCL	23.3 23.7 23.19 24.57
35 36 37 38 39 40 41 42 43 44 45 46 47			95% Modifie Gamma Dist M Approximat Adjus Ander Anderson-	tribution Test k star (bias corn The MLE of LE of Standard De te Chi Square Valu sted Level of Signif djusted Chi Square son-Darling Test S	rected) ta Star f Mean viation nu star le (.05) ricance value	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725		Data appe	Data Dear Normal a	etric Statistic 95% J Standard E 95% Bc	s 95% CLT UCL ackknife UCL Bootstrap UCL otstrap-t UCL Bootstrap UCL	23.3 23.7 23.19 24.57 24.99
35 36 37 38 39 40 41 42 43 44 45 46 47 48			95% Modifie Gamma Dist M Approximate Adjust Adderson-Kolmogor	tribution Test k star (bias corr The MLE of Standard De te Chi Square Value sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critica	rected) ta Star f Mean eviation nu star te (.05) ficance Value	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118		Data appe	Data Dear Normal a	etric Statistic 95% J Standard E 95% Bc 95% Hall's B	s 15% CLT UCL 1ackknife UCL 15ootstrap UCL 15ootstrap-t UCL 15ootstrap UCL 15ootstrap UCL	23.3 23.7 23.19 24.57 24.99 23.16
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Date	K	95% Modifie Gamma Dist M Approximate Adjus Ander Anderson- Kolmogorov-S	tribution Test k star (bias corn The MLE of ILE of Standard De te Chi Square Valu sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critica rov-Smirnov Test S	rected) ta Star f Mean viation nu star le (.05) ficance Value tatistic	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data Dear Normal a	etric Statistic 95% Bc 95% Hall's B Percentile B	s 95% CLT UCL ackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Data	K	95% Modifie Gamma Dist M Approximate Adjus Ander Anderson- Kolmogorov-S	tribution Test k star (bias corr The MLE of Standard De te Chi Square Value sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critica	rected) ta Star f Mean viation nu star le (.05) ficance Value tatistic	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data D ear Normal a Nonparame 95% 95% 95% C	etric Statistic 95% J Standard E 95% Bc 95% BCA E hebyshev(M	s 95% CLT UCL lackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68 29
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Data	K n appear Gar	95% Modifie Gamma Dist M Approximat Adjus Ander Anderson- Kolmogor Colmogorov-S mma Distribu	tribution Test k star (bias corn The MLE of ILE of Standard De te Chi Square Valu sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critica rov-Smirnov Test S Smirnov 5% Critica	rected) ta Star f Mean viation nu star le (.05) ficance Value tatistic	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data D ear Normal a Nonparame 95% 95% 95% C 97.5% C	etric Statistic 95% Bo 95% Hall's E Percentile E 95% BCA E hebyshev(M	s 95% CLT UCL ackknife UCL sootstrap UCL ean, Sd) UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68 29 32.97
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		K a appear Gai	95% Modifie Gamma Dist M Approximate Adjust Ander Anderson- Kolmogorov-S mma Distribut ssuming Gam	tribution Test k star (bias corn The MLE of ILE of Standard De te Chi Square Value sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critical rov-Smirnov Test S Smirnov 5% Critical uted at 5% Significal	rected) ta Star f Mean eviation nu star te (.05) ficance e Value statistic I Value tatistic I Value	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data D ear Normal a Nonparame 95% 95% 95% C 97.5% C	etric Statistic 95% Bo 95% Hall's E Percentile E 95% BCA E hebyshev(M	s 95% CLT UCL lackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68 29 32.97
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		Ka appear Gai	95% Modified Gamma Distribution Ander Anderson- Kolmogorov-Somma Distribution suming Gamma	tribution Test k star (bias corr The MLE or ILE of Standard De te Chi Square Valuated Level of Significations djusted Chi Square son-Darling Test Standard Test Standard Test Standard tov-Smirnov Test Standard Standard ted at 5% Signification UCL (Use when n	rected) ta Star f Mean eviation nu star le (.05) ficance Value tatistic Value tatistic Value	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data D ear Normal a Nonparame 95% 95% 95% C 97.5% C	etric Statistic 95% Bo 95% Hall's E Percentile E 95% BCA E hebyshev(M	s 95% CLT UCL ackknife UCL sootstrap UCL ean, Sd) UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68 29 32.97
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		Ka appear Gai	95% Modified Gamma Distribution Ander Anderson- Kolmogorov-Somma Distribution suming Gamma	tribution Test k star (bias corn The MLE of ILE of Standard De te Chi Square Value sted Level of Signif djusted Chi Square son-Darling Test S Darling 5% Critical rov-Smirnov Test S Smirnov 5% Critical uted at 5% Significal	rected) ta Star f Mean eviation nu star le (.05) ficance Value tatistic Value tatistic Value	7.199 2.757 19.85 7.398 144 117.3 0.0267 113.1 0.198 0.725 0.118 0.267		Data appe	Data D ear Normal a Nonparame 95% 95% 95% C 97.5% C	etric Statistic 95% Bo 95% Hall's E Percentile E 95% BCA E hebyshev(M	s 95% CLT UCL ackknife UCL sootstrap UCL ean, Sd) UCL	23.3 23.7 23.19 24.57 24.99 23.16 23.68 29 32.97

	Α	В	С	D	E	F	G	Н	l	J	K	L
56												
57			Potential L	JCL to Use					l	Jse 95% Stu	dent's-t UCL	23.7
58												
59	No	te: Suggesti	ons regardin	g the selection	on of a 95% l	JCL are prov	rided to help	the user to s	select the mo	st appropriat	te 95% UCL.	
60	•	These recom	nmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Singh, and I	aci (2002)	
61			and Singh	and Singh (2	003). For a	dditional insi	ght, the user	may want to	consult a st	tatistician.		
62	·					·				·	·	

	Α	В	С	D	E	F	G	Н		J	K	L
1					Outlier Test	s for Selecte	d Variables					
2			User Selec	ted Options						 		
3					WorkSheet.	wst						
4					OFF							
5		-	Outliers with		1							
6	Test for	Suspected C	Outliers with F	Rosner test	1							
7												
8												
9		Dixon's C	Outlier Test fo	or Arsenic								
10												
11	Number of											
12		l value: 0.409	9									
13		value: 0.477										
14	1% critical	value: 0.597										
15												
16	1. Data Va	lue 33.7 is a	Potential Out	tlier (Upper T	ail)?							
17												
18	Test Statist	ic: 0.467										
19												
20		_	vel, 33.7 is ar									
21			el, 33.7 is not									
22	For 1% sign	nificance leve	el, 33.7 is not	an outlier.								
23												
24	2. Data Val	ue 10.6 is a l	Potential Out	lier (Lower Ta	ail)?							
25												
26	Test Statist	ic: 0.232										
27												
28		_	vel, 10.6 is no									
29	_		el, 10.6 is not									
30	For 1% sign	nificance leve	el, 10.6 is not	an outlier.								
31												

1	Α	В	С	D General UCI	E L Statistics f	F for Full Data	G G Sets	Н	ı	J	K	L
2		User Selec	cted Options									
3			From File	WorkSheet.v	wst							
4			II Precision	OFF								
5		Confidence		95%								
6	Number	of Bootstrap	Operations	2000								
7												
8	Ponzo(o)ny	TOD 0										
9	Benzo(a)py	rene										
10						General	Statistics					
11			Numl	ber of Valid O	bservations		Ciausuos		Numb	er of Distinct	Observation	s 4
12												<u></u>
13			Raw S	tatistics					Log-transfo	rmed Statist	ics	
14 15					Minimum	0.5					m of Log Dat	a -0.693
16					Maximum	1.7				Maximu	m of Log Data	a 0.531
17					Mean	0.69				Me	an of log Data	a -0.468
18				Geor	metric Mean	0.626					SD of log Data	
19					Median	0.5						
20					SD	0.39						
21				Std. Er	rror of Mean	0.123						
22				Coefficient	of Variation	0.565						
23					Skewness	2.369						
24												
25												
26				Wa	arning: The	re are only 4	Distinct Values	in this da	nta			
27			There a				rm some GOF to		-	ethods.		
28				Those i	methods wil	l return a 'N/	A' value on your	r output d	isplay!			
29												
30				•			Values to comp		•			
31						-	9 distinct values	-				
32		It	is recommer	nded to have	10-15 or mo	ore observati	ons for accurate	e and mea	aningful boo	tstrap result	S.	
33						Polovont I I	CL Statistics					
34			Normal Diet	ribution Test		Relevant U			ognormal F	Distribution T	oet	
35				hapiro Wilk T	ect Statistic	0.586					Test Statistic	c 0.635
36				hapiro Wilk C						•	Critical Value	
37		Data not		% Significano		3.0-72	Г	Data not l		nt 5% Signific		3.012
38		- aid 1101						1104 1		/o		
39		As	ssuming Norr	mal Distributio	on			Ass	suming Loan	normal Distri	bution	
40					dent's-t UCL	0.916			<u> </u>		95% H-UC	L 0.919
41 42		95%	UCLs (Adjus	sted for Skew					95%	6 Chebyshev	(MVUE) UC	
42			, ,	ed-CLT UCL (•	0.992				•	(MVUE) UC	
44			=	ed-t UCL (Joh						•	(MVUE) UC	
45						1						
46			Gamma Dist	tribution Test					Data D	istribution		
47				k star (bia	s corrected)	3.797	Data	a do not f	follow a Disc	cernable Dis	tribution (0.05	5)
48					Theta Star	0.182						
49				M	ILE of Mean	0.69						
50			М	LE of Standa	rd Deviation	0.354						
51					nu star	75.94						
52				te Chi Square	` '				Nonparam	etric Statistic		
53			_	sted Level of	-						95% CLT UC	
54			Ac	djusted Chi So	quare Value	54.01					Jackknife UCI	
55									95%	% Standard I	Bootstrap UC	L 0.883
- 00												·

	Α	В	С	D	E	F	G	Н	I	J	K	L
56			Ander	son-Darling 1	Test Statistic	1.838				95% Boo	otstrap-t UCL	1.384
57			Anderson-	Darling 5% C	Critical Value	0.729			9	95% Hall's Bo	ootstrap UCL	1.534
58			Kolmogor	ov-Smirnov 1	Test Statistic	0.411			95% I	Percentile Bo	ootstrap UCL	0.91
59		K	olmogorov-S	Smirnov 5% C	Critical Value	0.267			!	95% BCA Bo	ootstrap UCL	0.96
60	Da	ata not Gamr	na Distribute	d at 5% Sign	ificance Lev	el			95% Ch	nebyshev(Me	ean, Sd) UCL	1.228
61								ean, Sd) UCL	1.46			
62		As	suming Gam	ma Distributi	on			ean, Sd) UCL	1.917			
63	95	% Approxim	ate Gamma	UCL (Use wl	hen n >= 40)	0.921						
64		95% Adju	usted Gamma	a UCL (Use v	when n < 40)	0.97						
65												
66			Potential U	JCL to Use					l	Jse 95% Stu	ıdent's-t UCL	0.916
67										or 95% M	odified-t UCL	0.931
68												
69	No	te: Suggesti	ons regardin	g the selection	on of a 95% l	UCL are pro	vided to help	the user to s	select the mo	st appropria	te 95% UCL.	
70		These recon	nmendations	are based u	pon the resu	Its of the sin	nulation studio	es summariz	ed in Singh,	Singh, and I	laci (2002)	
71			and Singh	and Singh (2	003). For a	dditional ins	ight, the user	may want to	consult a st	atistician.		
72												

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					Outlier Test	s for Selecte	d Variables					
2			User Selec	ted Options						 		
3					WorkSheet.	wst						
4				I Precision	OFF							
5		-	Outliers with		1							
6	Test for	Suspected C	Outliers with F	Rosner test	1							
7												
8												
9	[Dixon's Outlie	er Test for Be	nzo(a)pyrene	•							
10												
11	Number of											
12		l value: 0.409	9									
13		value: 0.477										
14	1% critical	value: 0.597										
15												
16	1. Data Va	lue 1.7 is a F	Potential Outli	ier (Upper Ta	il)?							
17												
18	Test Statist	tic: 0.583										
19												
20		_	vel, 1.7 is an									
21	_		el, 1.7 is an o									
22	For 1% sign	nificance leve	el, 1.7 is not a	an outlier.								
23												
24	2. Data Val	ue 0.5 is a P	otential Outli	er (Lower Tai	i)?							
25												
26	Test Statist	tic: 0.000										
27												
28		_	vel, 0.5 is not									
29	_		el, 0.5 is not a									
30	For 1% sign	nificance leve	el, 0.5 is not a	an outlier.								
31												

	Α	В	С	D General UCL St	E tatistics fo	F or Full Data	G G	Н	I	J	K	L
1		User Selec	ted Options									
2			From File	WorkSheet.wst								
3		Ful	II Precision	OFF								
5		Confidence	Coefficient	95%								
6	Number o	of Bootstrap	Operations	2000								
7												
8												
9	Lead											
10												
11						General	Statistics					
12			Numl	ber of Valid Obse	ervations	10			Numbe	er of Distind	ct Observations	10
13												
14			Raw St	tatistics				l	_og-transfor			
15					/linimum						um of Log Data	
16				M	laximum						um of Log Data	
17					Mean					М	ean of log Data	
18				Geometr							SD of log Data	1.264
19					Median							
20				0.15		818.4						
21				Std. Error								
22				Coefficient of \	Variation kewness							
23					kewness	1.549						
24						Polovant I I	CL Statistics					
25			Normal Diet	ribution Test		Relevant O	JL Statistics		ognormal D	ietribution '	Toet	
26				hapiro Wilk Test	Statistic	0 797			•		lk Test Statistic	0 967
27				hapiro Wilk Critic						•	k Critical Value	
28		Data not		% Significance L		0.0.2)ata appeai		•	nificance Level	
29 30				y								
31		As	suming Norr	mal Distribution				Ass	uming Logn	ormal Distr	ribution	
32				95% Student	t's-t UCL	1233					95% H-UCL	4401
33		95%	UCLs (Adjus	sted for Skewnes	ss)				95%	Chebyshe	ev (MVUE) UCL	2360
34			95% Adjuste	ed-CLT UCL (Che	en-1995)	1320			97.5%	Chebyshe	ev (MVUE) UCL	3022
35			95% Modifie	ed-t UCL (Johnso	on-1978)	1254			99%	Chebyshe	ev (MVUE) UCL	4323
36						<u> </u>						
37			Gamma Dist	tribution Test					Data Di	istribution		
38				k star (bias co	orrected)	0.756	Data a	appear Gar	mma Distrib	uted at 5%	Significance Le	evel
39					neta Star							
40					of Mean							
7			M	LE of Standard D								
41	i i				nu star	15.13						
41 42							1		Nonparame	etric Statist		1101
				te Chi Square Va	` '						0E0/ 0: - : : -	1184
42			Adjus	sted Level of Sigr	nificance	0.0267				6- 4:	95% CLT UCL	
42 43 44 45			Adjus	·	nificance	0.0267			·		Jackknife UCL	1233
42 43 44 45 46			Adjus Ad	sted Level of Sigr djusted Chi Squa	nificance re Value	0.0267 6.43			·	6 Standard	Jackknife UCL Bootstrap UCL	1233
42 43 44 45 46 47			Adjus Ad Anders	sted Level of Sigr djusted Chi Squa son-Darling Test	re Value Statistic	0.0267 6.43 0.221			95%	Standard 95% E	Jackknife UCL Bootstrap UCL Bootstrap-t UCL	1233 1161 1934
42 43 44 45 46 47 48			Adjus Adjus Anders	sted Level of Sign djusted Chi Squa son-Darling Test Darling 5% Critic	re Value Statistic	0.0267 6.43 0.221 0.749			95%	6 Standard 95% E 95% Hall's	Jackknife UCL Bootstrap UCL Bootstrap-t UCL Bootstrap UCL	1233 1161 1934 3853
42 43 44 45 46 47 48 49		, k	Anders Anderson- Kolmogore	sted Level of Sigr djusted Chi Squa son-Darling Test Darling 5% Critic ov-Smirnov Test	nificance re Value Statistic cal Value Statistic	0.0267 6.43 0.221 0.749 0.161			95%	6 Standard 95% E 95% Hall's Percentile	Jackknife UCL Bootstrap UCL Bootstrap-t UCL Bootstrap UCL Bootstrap UCL	1233 1161 1934 3853 1206
42 43 44 45 46 47 48 49 50	Date		Adjus Anders Anderson- Kolmogorov-S	sted Level of Sigrations of Si	nificance re Value Statistic cal Value Statistic cal Value	0.0267 6.43 0.221 0.749 0.161 0.274			95%	95% E 95% Hall's Percentile 95% BCA	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL	1233 1161 1934 3853 1206 1292
42 43 44 45 46 47 48 49 50 51	Data		Adjus Anders Anderson- Kolmogorov-S	sted Level of Sigr djusted Chi Squa son-Darling Test Darling 5% Critic ov-Smirnov Test	nificance re Value Statistic cal Value Statistic cal Value	0.0267 6.43 0.221 0.749 0.161 0.274			95% 95% 95% C	95% E 95% Hall's Percentile 95% BCA hebyshev(l	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL	1233 1161 1934 3853 1206 1292 1887
42 43 44 45 46 47 48 49 50 51 52	Data	appear Gar	Adjus Anders Anderson- Kolmogorov-S mma Distribu	sted Level of Signal djusted Chi Squa son-Darling Test Darling 5% Critic ov-Smirnov Test Smirnov 5% Critic ated at 5% Significated	nificance re Value Statistic cal Value Statistic cal Value	0.0267 6.43 0.221 0.749 0.161 0.274			95% 95% 95% C 97.5% C	% Standard 95% E 95% Hall's Percentile 95% BCA hebyshev(l	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL	1233 1161 1934 3853 1206 1292 1887 2375
42 43 44 45 46 47 48 49 50 51 52 53		appear Gar As	Adjus Anders Anderson- Kolmogorov-S mma Distribu suming Gam	sted Level of Sigrations of Si	nificance re Value Statistic cal Value Statistic cal Value	0.0267 6.43 0.221 0.749 0.161 0.274			95% 95% 95% C 97.5% C	% Standard 95% E 95% Hall's Percentile 95% BCA hebyshev(l	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL	1233 1161 1934 3853 1206 1292 1887 2375
42 43 44 45 46 47 48 49 50 51 52 53 54		As Approxim	Adjus Anders Anderson- Kolmogorov-S mma Distribu suming Gam nate Gamma	sted Level of Signal djusted Chi Squa son-Darling Test Darling 5% Critic ov-Smirnov Test Smirnov 5% Critic sted at 5% Significated at 5% Significated	Statistic cal Value Statistic cal Value cance Le	0.0267 6.43 0.221 0.749 0.161 0.274			95% 95% 95% C 97.5% C	% Standard 95% E 95% Hall's Percentile 95% BCA hebyshev(l	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL	1233 1161 1934 3853 1206 1292 1887 2375
42 43 44 45 46 47 48 49 50 51 52 53		As Approxim	Adjus Anders Anderson- Kolmogorov-S mma Distribu suming Gam nate Gamma	sted Level of Signal dijusted Chi Squa son-Darling Test Darling 5% Critic ov-Smirnov Test Smirnov 5% Critic sted at 5% Significant Distribution UCL (Use when	Statistic cal Value Statistic cal Value cance Le	0.0267 6.43 0.221 0.749 0.161 0.274			95% 95% 95% C 97.5% C	% Standard 95% E 95% Hall's Percentile 95% BCA hebyshev(l	Jackknife UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL	1233 1161 1934 3853 1206 1292 1887 2375

	Α	В	С	D	E	F	G	Н		J	K	L
56												
57			Potential L	ICL to Use					Use 95% A	pproximate (Gamma UCL	1561
58												
59	No	te: Suggesti	ons regardin	g the selection	on of a 95% I	JCL are prov	rided to help	the user to s	select the mo	st appropriat	te 95% UCL.	
60		These recon	nmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	zed in Singh,	Singh, and I	aci (2002)	
61			and Singh	and Singh (2	003). For a	dditional insi	ght, the user	may want to	consult a st	atistician.		
62						·						

	A	В	С	D	E	F	G	Н	I		J	K	L
1					Outlier Test	s for Selecte	d Variables						
2			User Selec	ted Options									
3				From File	WorkSheet.	wst							
4				II Precision	OFF								
5			Outliers with		1								
6	Test for	Suspected C	Outliers with F	Rosner test	1								
7													
8													
9		Dixon's	Outlier Test	for Lead									
10													
11	Number of												
12		l value: 0.409	9										
13		value: 0.477											
14	1% critical	value: 0.597											
15													
16	1. Data Va	lue 2530 is a	Potential Ou	ıtlier (Upper	Tail)?								
17													
18	Test Statist	ic: 0.260											
19													
20		_	vel, 2530 is n										
21	_		el, 2530 is no										
22	For 1% sign	nificance leve	el, 2530 is no	t an outlier.									
23													
24	2. Data Val	ue 38.4 is a l	Potential Out	lier (Lower T	ail)?								
25													
26	Test Statist	ic: 0.038											
27													
28		_	vel, 38.4 is no										
29	_		el, 38.4 is not										
30	For 1% sign	nificance leve	el, 38.4 is not	an outlier.									
31													
										•			

	A	В	С	D General I I	E CL Statistics	F for Full Data	G	Н	I	J	K	L	
1		User Selec	ted Options	General OC	JE Statistics	IOI FUII Dala	Jeis						
2		0361 06160	From File	WorkSheet	wst								
3		From File WorkSheet.wst Full Precision OFF											
4		Confidence		95%									
5	Number	of Bootstrap		2000									
6													
7													
9	Mercury												
10													
11						General	Statistics						
12	Number of Valid Observations 10							Number of Distinct Observations 8					
13													
14			Raw St	tatistics					Log-transfo	rmed Statistic	s		
15		Minimum 0.5								Minimun	n of Log Data	-0.693	
16		Maximum 2.3								Maximun	n of Log Data	0.833	
17		Mean 1.15								Mea	n of log Data	-0.000374	
18		Geometric Mean 1								S	D of log Data	0.572	
19		Median 1.15											
20		SD 0.615											
21		Std. Error of Mean 0.195											
22		Coefficient of Variation 0.535											
23					Skewness	0.525							
24													
25													
26						Relevant U	CL Statistics						
27	Normal Distribution Test							Lognormal Distribution Test					
28				•	Test Statistic					Shapiro Wilk			
29					Critical Value	0.842				Shapiro Wilk (0.842	
30		Data appe	ear Normal at	5% Significa	ance Level		[Data appea	r Lognorma	l at 5% Signif	icance Level		
31													
32		As	ssuming Norr			14.505		Ass	uming Logn	normal Distrib			
33		050/	1101 (4.11		ident's-t UCL	1.507			050		95% H-UCL		
34			UCLs (Adjus		•	1 504				6 Chebyshev	,		
35			95% Adjuste							Chebyshev Chebyshev			
36			95% Modifie	ea-t UCL (Jo	nnson-1978	1.512			99%	Chebysnev	(MIVUE) UCL	3.284	
37			Commo Diet	ribution Too					Doto D	istribution			
38		Gamma Distribution Test k star (bias corrected) 2.675						Data appear Normal at 5% Significance Level					
39				K Star (bit	Theta Star			Data appe	ai Nomiai e	at 0 /0 Olgrinio	ance Level		
40				ı	MLE of Mear								
41			М		ard Deviation								
42					nu star								
43			Approximat	te Chi Squar	e Value (.05)				Nonparam	etric Statistics)		
44 45					Significance				•		5% CLT UCL	1.47	
					Square Value						ackknife UCL		
46 47				-					95%	% Standard B			
48			Anders	son-Darling	Test Statistic	0.441					otstrap-t UCL		
				•	Critical Value					95% Hall's Bo	•		
	I			-	Test Statistic				95%	Percentile Bo	ootstrap UCL	1.47	
49			Kolmogor			0.269				95% BCA B	ootstrap UCL	1.48	
49 50		K	Kolmogor Solmogorov-S		Critical Value	0.200							
49 50 51	Data		_	Smirnov 5% (95% C	hebyshev(Me	ean, Sd) UCL	1.998	
49 50 51 52	Data		olmogorov-S	Smirnov 5% (,		
49 50 51 52 53	Data	a appear Ga	olmogorov-S	Smirnov 5% (Ited at 5% S	ignificance L				97.5% C	Chebyshev(Me	ean, Sd) UCL	2.365	
49 50 51 52		a appear Gar As	colmogorov-S	Smirnov 5% (uted at 5% Si uma Distribut	ignificance L	evel			97.5% C	Chebyshev(Me	ean, Sd) UCL	2.365	

	Α	В	С	D	E	F	G	Н	I	J	K	L
56		95% Adju	sted Gamma	a UCL (Use v	vhen n < 40)	1.738						
57												
58			Potential U	JCL to Use					l	Jse 95% Stu	ident's-t UCL	1.507
59												
60	No	te: Suggesti	ons regardin	g the selection	on of a 95%	UCL are prov	ided to help	the user to s	elect the mo	st appropria	te 95% UCL.	
61	•	These recon	nmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Singh, and I	laci (2002)	
62			and Singh	and Singh (2	003). For a	dditional insi	ght, the user	may want to	consult a st	atistician.		
63												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					Outlier Test	s for Selecte	d Variables					
2			User Selec	ted Options								
3					WorkSheet.	wst						
4				II Precision	OFF							
5			Outliers with		1							
6	Test for	Suspected C	Outliers with F	Rosner test	1							
7												
8												
9		Dixon's O	Outlier Test fo	r Mercury								
10												
11	Number of											
12		l value: 0.409	9									
13		value: 0.477										
14	1% critical v	value: 0.597										
15												
16	1. Data Va	lue 2.3 is a P	Potential Outli	ier (Upper Ta	nil)?							
17												
18	Test Statist	ic: 0.333										
19												
20	_	_	vel, 2.3 is not									
21	_		el, 2.3 is not a									
22	For 1% sign	nificance leve	el, 2.3 is not a	an outlier.								
23												
24	2. Data Val	ue 0.5 is a Po	otential Outli	er (Lower Tai	il)?							
25												
26	Test Statist	ic: 0.000										
27												
28	_	_	vel, 0.5 is not									
29	_		el, 0.5 is not a									
30	For 1% sigr	nificance leve	el, 0.5 is not a	an outlier.								
31												

1	A	В	С	D General UC	E L Statistics f	F for Full Data	G Sets	Н	ı	J	K	L
2		User Selec	ted Options									
3			From File	WorkSheet.	wst							
4			II Precision	OFF								
5		Confidence		95%								
6	Number	of Bootstrap	Operations	2000								
7												
8	Namahalawa											
9	Napthalene											
10						General	Statistics					
11			Numl	ber of Valid O)hservations		Otationos		Number	of Distinct C	bservations 2	2
12				oor or valia o					- Tunibon		200174410110	
13			Raw S	tatistics				Log	ı-transform	ed Statistics	.	
14 15					Minimum	0.5					of Log Data -	-0.693
16					Maximum	10.7				Maximum	of Log Data 2	2.37
17					Mean	1.52				Mear	n of log Data -	-0.387
18				Geor	metric Mean	0.679					of log Data (
19					Median	0.5						
20					SD	3.226						
21				Std. E	rror of Mean	1.02						
22				Coefficient	of Variation	2.122						
23					Skewness	3.162						
24												
25												
26					_	-	Distinct Values in					
27			There a				rm some GOF te		-	hods.		
28				Those	methods wil	l return a 'N/	A' value on your o	output displa	ay!			
29												
30				•			Values to compu		•	3.		
31						-	9 distinct values	-				
32		π	is recommer	nded to nave	10-15 or mo	ore observati	ons for accurate a	and meanin	igiui boots	trap results.		
33						Polovant I I	CL Statistics					
34			Normal Diet	ribution Test		Nelevalit O		Logr	normal Dis	tribution Tes	et	
35				Shapiro Wilk T	est Statistic	0.366		Logi			est Statistic (0.366
36				hapiro Wilk C						•	critical Value (
37		Data not		% Significand		1	Da	ata not Logi		5% Significa		
38				gsuit				 2. 209 1				
39 40		As	suming Norr	mal Distribution	on			Assumi	ing Lognor	mal Distribu	tion	
41					dent's-t UCL	3.39			_ •		95% H-UCL 2	2.897
42		95%	UCLs (Adjus	sted for Skew	ness)				95% (MVUE) UCL 2	
43			95% Adjuste	ed-CLT UCL ((Chen-1995)	4.288			97.5% (Chebyshev (I	MVUE) UCL	3.065
44			95% Modifie	ed-t UCL (Joh	nnson-1978)	3.56			99% (Chebyshev (I	MVUE) UCL 4	4.278
45						1						
46			Gamma Dist	tribution Test					Data Dis	tribution		
47				k star (bia	s corrected)	0.587	Data	do not follo	w a Disce	rnable Distril	bution (0.05)	
48					Theta Star	2.587						
49					ILE of Mean							
50			М	LE of Standa								
51					nu star							
52			• •	te Chi Square	, ,			No	nparamet	ic Statistics		
53			-	sted Level of	-						% CLT UCL	
54			Ād	djusted Chi S	quare Value	4.325					ckknife UCL	N/A
55									95%	Standard Bo	otstrap UCL	N/A

	Α	В	С	D	Е	F	G	Н		J	K	L
56			Anders	son-Darling 1	Test Statistic	3.402				95% Boo	tstrap-t UCL	N/A
57			Anderson-l	Darling 5% C	Critical Value	0.757			9	5% Hall's Bo	otstrap UCL	N/A
58			Kolmogoro	ov-Smirnov 1	Test Statistic	0.555			95% F	Percentile Bo	otstrap UCL	N/A
59		K	olmogorov-S	mirnov 5% C	Critical Value	0.276			,	95% BCA Bo	otstrap UCL	N/A
60	Da	ata not Gamr	na Distribute	d at 5% Sign	ificance Lev	el			95% Ch	ebyshev(Me	an, Sd) UCL	5.966
61									97.5% Ch	ebyshev(Me	an, Sd) UCL	7.89
62		As	suming Gam	ma Distributi	ion				99% Ch	ebyshev(Me	an, Sd) UCL	11.67
63	95	5% Approxim	ate Gamma	UCL (Use w	hen n >= 40)	3.528						
64		95% Adju	isted Gamma	a UCL (Use v	when n < 40)	4.13						
65												
66			Potential L	ICL to Use				l	Jse 95% Che	ebyshev (Me	an, Sd) UCL	5.966
67												
68	No	te: Suggesti	ons regardin	g the selection	on of a 95% l	UCL are prov	ided to help	the user to s	elect the mo	st appropriat	te 95% UCL.	
69		These recon	nmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Singh, and I	aci (2002)	
70			and Singh	and Singh (2	2003). For a	dditional insi	ght, the user					
71												

	Α	В	С	D	E	F	G	Н		J	K	L
1					Outlier Test	s for Selecte	d Variables					
2			User Selec	ted Options								
3					WorkSheet.	wst						
4					OFF							
5		•	Outliers with		1							
6	Test for	Suspected C	Outliers with F	Rosner test	1							
7											_	
8												
9		Dixon's Ou	tlier Test for	Napthalene								
10												
11	Number of											
12		l value: 0.409	9									
13		value: 0.477										
14	1% critical	value: 0.597										
15												
16	1. Data Va	lue 10.7 is a	Potential Ou	tlier (Upper T	ail)?							
17												
18	Test Statist	tic: 1.000										
19												
20		_	vel, 10.7 is ar									
21			el, 10.7 is an									
22	For 1% sign	nificance leve	el, 10.7 is an	outlier.								
23												
24	2. Data Val	ue 0.5 is a P	otential Outli	er (Lower Tai	il)?							
25												
26	Test Statist	tic: NaN										
27												
28		_	vel, 0.5 is an									
29	_		el, 0.5 is an o									
30	For 1% sign	nificance leve	el, 0.5 is an o	utlier.								
31												

APPENDIX 6 - SOIL GAS MONITORING RECORDS

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Kilburn high road	Operative(s): GG	Date: 29/1	0/14	Time: 12:13 pm		Round: 1	Page: 1 of 3				
		MON	ITORING EQ	UIPMENT							
Instrument Type	Instrument Make			Serial No.		Date Last Calibrated					
Analox	GA5000										
PID	Phochecker tiger										
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Cloudy, h	neavy rain	Ground Condition	ns: wet			Temperature: 16c					
Barometric Pressure (mbar): 1009 Barometric Pressure Trend (24hr): falling Ambient Concentration: 0%CH ₄ , 0%CO ₂ , 21.8%O ₂											

	MONITORING RESULTS												
Monitoring		Flow	Atmospheric	Methane	Methane	Carbon	Oxygen	VO	C (ppm)	Hydrogen	Carbon	Depth to	Depth to Base
Point Location	Peak	Average	Pressure (mbar)	%	% LEL	Dioxide %	%	Peak	Average	Sulphide (ppm)	Monoxide (ppm)	water (bgl)	of well (bgl)
WS3	+0.2	/	1009	0.0	0	8.4	11.0	0.0	/	0	0	Dry	2.54
BH2	+0.2	/	1009	0.0	0	0.5	20.5	0.3	/	0	1	Dry	18.54

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Kilburn high road	Operative(s): GG	Date: 05/11/14	Time: 10:32 am		Round: 2	Page: 2 of 3					
		MONITORING EQ	UIPMENT								
Instrument Type	Type Instrument Make Serial No. Date Last Calibrated										
Analox	GA5000										
PID	Phochecker tiger										
Dip Meter	GeoTech										
		MONITORING CO	NDITIONS		<u>-</u>						
Weather Conditions: Cloudy, h	neavy rain	Ground Conditions: wet		-	Temperature: 12c						
Barometric Pressure (mbar): 0983 Barometric Pressure Trend (24hr): falling Ambient Concentration: 0%CH ₄ , 0%CO ₂ , 21.8%O ₂											

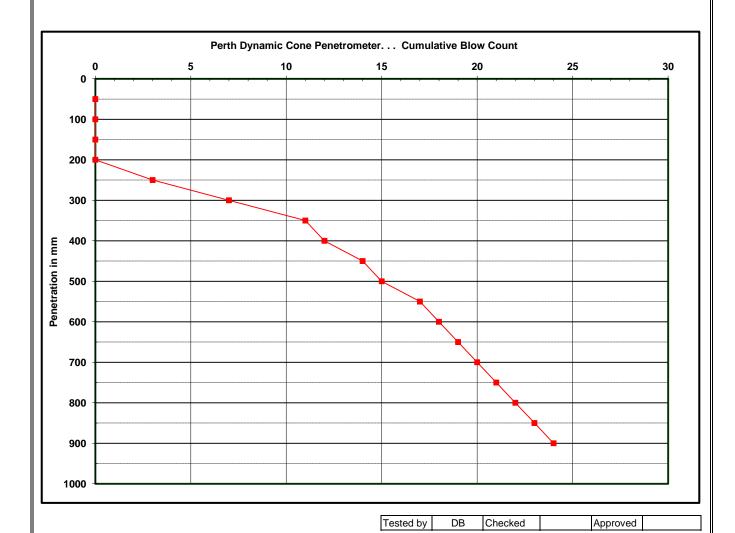
	MONITORING RESULTS												
Monitoring		Flow	Atmospheric	Methane	Methane	Carbon	Oxygen	VO	C (ppm)	Hydrogen	Carbon	Depth to	Depth to Base
Point Location	Peak	Average	Pressure (mbar)	%	% LEL	Dioxide %	%	Peak	Average	Sulphide (ppm)	Monoxide (ppm)	water (bgl)	of well (bgl)
WS3	+0.8	/	0983	0.0	0	9.4	9.9	0.3	/	0	0	Dry	2.54
BH2	+0.2	/	0983	0.0	0	0.6	20.0	0.3	/	0	0	Dry	18.54

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: Kilburn high road	Operative(s): GG	Date: 13/1	1/14	Time: 4.08 pm		Round: 3	Page: 3 of 3				
		MON	IITORING EQ	UIPMENT							
Instrument Type	nent Type Instrument Make Serial No. Date Last Calibrated										
Analox	GA5000										
PID	Phochecker tiger										
Dip Meter	GeoTech										
	MONITORING CONDITIONS										
Weather Conditions: Cloudy, h	neavy rain	Ground Condition	ons: wet			Temperature: 12c					
Barometric Pressure (mbar): 0983 Barometric Pressure Trend (24hr): falling Ambient Concentration: 0%CH ₄ , 0%CO ₂ , 21.8%O ₂											

	MONITORING RESULTS												
Monitoring		Flow	Atmospheric	Methane	Methane	Carbon	Oxygen	VO	C (ppm)	Hydrogen	Carbon	Depth to	Depth to Base
Point Location	Peak	Average	Pressure (mbar)	%	% LEL	Dioxide %	%	Peak	Average	Sulphide (ppm)	Monoxide (ppm)	water (bgl)	of well (bgl)
WS3	+0.2	/	0983	0.0	0	8.6	10.6	0.0	/	0	0	Dry	2.54
BH2	+0.4	/	0983	0.0	0	0.7	20.0	0.0	/	0	0	Dry	18.54

APPENDIX 7 - IN SITU CBR RESULTS

Dynamic Cone CBR Test


Nr Blows	S Blows	Penetration	S Pen.
INI DIOWS	אטום כ	mm	mm
0	0	50	50
0	0	50	100
0	0	50	150
0	0	50	200
3	3	50	250
4	7	50	300
4	11	50	350
1	12	50	400
2	14	50	450
1	15	50	500
2	17	50	550
1	18	50	600
1	19	50	650
1	20	50	700
1	21	50	750
1	22	50	800
1	23	50	850
1	24	50	900

254 Kilburn High Road Test Reference: - CBR 1

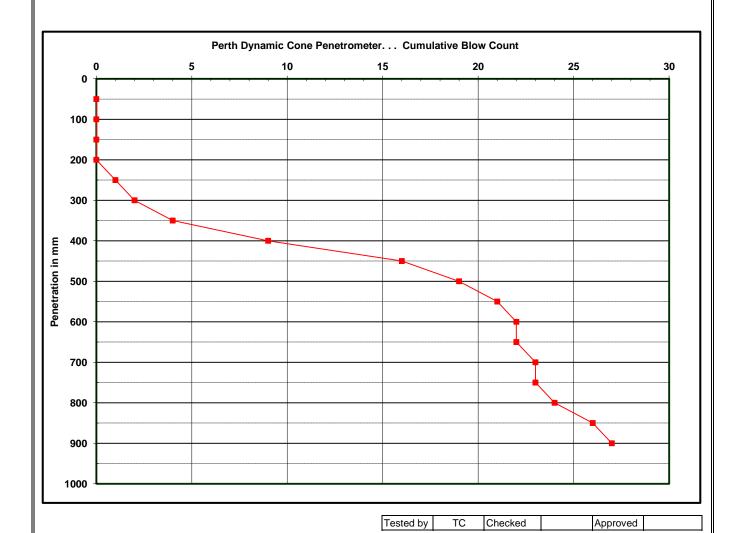
Job Nr J338 Date 10-Oct-14

CBR VALUE CALCULATIONS

Initial S	Final S	Initial S	Final S	Pen/Blow	CBR	CBR	CBR
Pen mm	Pen mm	Blows	Blows	mm	TRRL	KVH	Value (%)
250	350	3	11	12.5	20.9	16.9	16.9
350	500	11	15	37.5	6.6	4.1	4.1
550	900	17	24	50.0	4.8	2.9	2.9

Site: 254 Kilburn High Road	Client: Aitch	Date: 10/10/2014	
	Job No: J338	Test No: CBR 1	

Dynamic Cone CBR Test


Nr Blows	S Blows	Penetration	S Pen.	
I DIOWS	O BIOWS	mm	mm	
0	0	50	50	
0	0	50	100	
0	0	50	150	
0	0	50	200	
1	1	50	250	
1	2	50	300	
2	4	50	350	
5	9	50	400	
7	16	50	450	
3	19	50	500	
2	21	50	550	
1	22	50	600	
0	22	50	650	
1	23	50	700	
0	23	50	750	
1	24	50	800	_
2	26	50	850	_
1	27	50	900	
1				
1				

254 Kilburn High Road Test Reference: - CBR 3

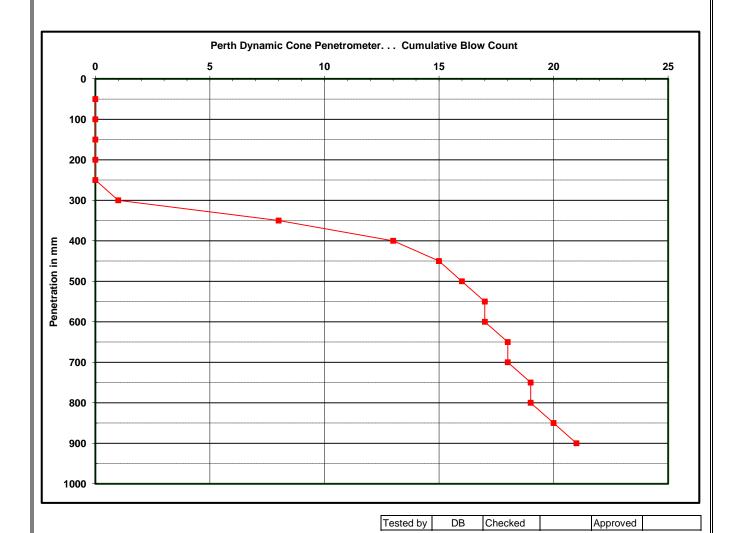
Job Nr J338 Date 10-Oct-14

CBR VALUE CALCULATIONS

Initial S	Final S	Initial S	Final S	Pen/Blow	CBR	CBR	CBR
Pen mm	Pen mm	Blows	Blows	mm	TRRL	KVH	Value (%)
300	400	2	9	14.3	18.2	14.2	14.2
400	550	9	21	12.5	20.9	16.9	16.9
550	750	21	23	100.0	2.3	1.2	1.2
800	900	24	27	33.3	7.4	4.8	4.8

Site: 254 Kilburn High Road	Client: Aitch	Date: 10/10/2014	
	Job No: J338	Test No: CBR2	

Dynamic Cone CBR Test


Nr Blows	S Blows	Penetration	S Pen.	
III BIOIIO	0 5.0110	mm	mm	
0	0	50	50	
0	0	50	100	
0	0	50	150	
0	0	50	200	
0	0	50	250	
1	1	50	300	
7	8	50	350	
5	13	50	400	
2	15	50	450	
1	16	50	500	
1	17	50	550	
0	17	50	600	
1	18	50	650	
0	18	50	700	
1	19	50	750	
0	19	50	800	
1	20	50	850	
1	21	50	900	

254 Kilburn High Road Test Reference: - CBR 3

Job Nr J338 Date 10-Oct-14

CBR VALUE CALCULATIONS

Initial S	Final S	Initial S	Final S	Pen/Blow	CBR	CBR	CBR
Pen mm	Pen mm	Blows	Blows	mm	TRRL	KVH	Value (%)
300	400	1	13	8.3	32.1	28.4	28.4
400	550	13	17	37.5	6.6	4.1	4.1
550	750	17	19	100.0	2.3	1.2	1.2
800	900	19	21	50.0	4.8	2.9	2.9

Site: 254 Kilburn High Road	Client: Aitch	Date: 10/10/2014	
	Job No: J338	Test No: CBR 3	