

The Hope Project – HTS response to the BIA Audit

Please find appended our response to the Audit of the Basement Impact Assessment for The Hope Project, Camden.

The numbered responses relate to Campbell Reith's Audit Query Tracker dated February 2017 (revision D1).

Query 1 – Land Stability

- Outline retaining wall calculations please see attached. The design of the contiguous piled retaining wall will be a contractor design portion.
- Indicative temporary works scheme, sequencing and propping arrangement please see attached (Sketches SK40-45). The exact construction methodology is to be confirmed by the appointed contractor and temporary works engineer.
- Proposed ground water control measures:
 - The ground water level has been measured below the proposed basement slab level. Localised dewatering will only be required if the ground water level is found to be higher than expected.
 - During construction localised dewatering is proposed during construction via sump pumping. The sump will be located in the centre of the site to keep the dewatered level local to the site works. The dewatering will be monitored to ensure that no fines are washed in to the sump.
 - Permanent works A Grade 3 waterproofing system is proposed in the basement areas. A drained cavity system will be installed enabling ground water collection within sump locations. Sump pumps will pump ground water via a rising main to ground floor level where it will be discharged via gravity into the combined Thames Water sewer network. Non return valves will be used to mitigate against sewer surcharging.
- Construction programme To be confirmed once a contractor has been appointed.

e RETAINING WAL	DELION - BAYIMM	Start, Eng.	MIT	HEY
DNO. 1464	Sheet	Rev.		STE
-	n	1		
RELAINING LA	an calminions			
BAYHAM STAR	ET ELEVATION			
	(BAYHAM _S	TABET)		
	P			
+		N		
O BASCHENT.				
00 M			-	000
ProP				10
	SURMANDE	Soil	Groundward	
	20.000	2016		
* RETAINED ITEN	$c_{11} = 3100mm$			
BY NEW DAS	REGINING LIAN T	to be propped	ES AT BASE	
ASSUME TOE	ANS BASE THUNK	is me th	Dawn Title	
	> Q= 10 121/h			
•	RSIZ SZ PELOO			
	Lo LONDON CUM	8 =	20 /w/m3	
		Cy =	70+ 6.002 70+ 6.002 2.5=	911W/m2
		Ø' =	ZS°	
s Growswatter	> GINSEWATIVEN	ASSWRE GLU	LAT LEVER	In
	ABOVE BASENE	NT JSL =	Co.Sn AOD	

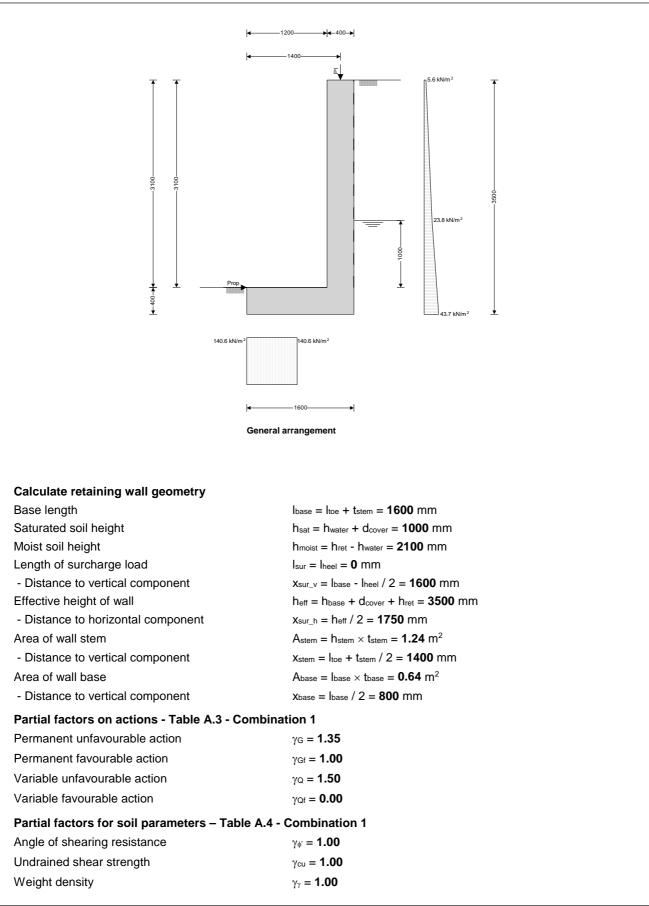
Job	THE	HOPE	MJE	201			Date F	103. 2017	HEYNE
Title	PETAU	VING	LIM	JEIW	-BATHAM	SUBOL	Eng.	MJT	TILLETT
Job No.	[^	499		Sheet	2		Rev.	-	STEEL

 $G: \left(\frac{221}{M/m^{2}x} S_{Mx} O(4m) + \left(\frac{21}{M/m^{2}x} 1.25m\right) \right)$ $+ \left(\frac{1.51}{M/m^{2}x} 1.25m\right)$ Groups FLOW<math display="block">Groups FLOW $<math display="block">Q: \left(\frac{1.51}{M/m^{2}x} 1.25m\right) + \left(\frac{51}{M/m^{2}x} 1.25m\right)$ > 48.4 m/m = 8.11m/m

RETAINING WAR DESIGNED WING TENS

SDERIGN PASSES, SEE ATTAUNES)

Tekla Tedds	Project	The Hop	e Project		Job no. 1	444
HTS	Calcs for Ret	taining wall desi	gn - Bayham S	Street	Start page no./F	Revision 1
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date


RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.11

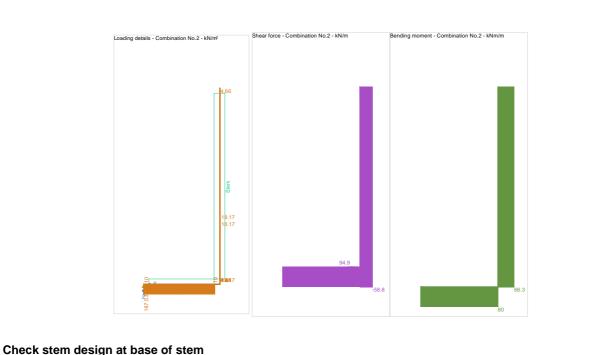
Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 3100 mm
Stem thickness	t _{stem} = 400 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 1200 mm
Base thickness	t _{base} = 400 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 3100 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 1000 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Hard clay
Moist density	$\gamma_{mr} = 20 \text{ kN/m}^3$
Saturated density	γsr = 20 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 25 deg
Characteristic wall friction angle	$\delta_{r.k} = 12.5 \text{ deg}$
Base soil properties	
Soil type	Hard clay
Soil density	$\gamma_{\rm b} = 20 \ {\rm kN}/{\rm m}^3$
Characteristic undrained shear strength	Cb.u.k = 91 kN/m ²
Characteristic effective shear resistance angle	φ'b.k = 18 deg
Characteristic wall friction angle	δь.k = 9 deg
Characteristic base friction angle	$\delta_{bb.k} = 12 \text{ deg}$
Loading details	
Variable surcharge load	Surcharge _Q = 10 kN/m^2
Vertical line load at 1400 mm	Pg1 = 48.4 kN/m
	P _{Q1} = 8.1 kN/m

Tekla Tedds	Project	The Hop	e Project		Job no. 14	44
HTS	Calcs for Ret	aining wall desi	gn - Bayham St	reet	Start page no./Re	evision 2
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

		The Ho	pe Project		1	444		
HTS	Calcs for				Start page no./I	Revision		
	Retaining wall design - Bayham Street3Cates by MJTCates date 08/02/2017Checked by Checked byChecked dateApproved byApproved colspan="2">Approved colspan="2">Approved colspan="2">3 $\gamma_{w'} = \gamma_{w'} / \gamma_{\gamma} = 20 \text{ kN/m}^3$ $\gamma_{w'} = \gamma_{w'} / \gamma_{\gamma} = 20 \text{ kN/m}^3$ stance angle $\phi'_{rd} = \operatorname{atan}(\tan(\phi'_{r,k}) / \gamma_{0}) = 125 \text{ deg}$ $\delta_{r,d} = \operatorname{atan}(\tan(\phi_{r,k}) / \gamma_{0}) = 12 \text{ deg}$ $\delta_{b,d} = \operatorname{atan}(\tan(\phi_{b,k}) / \gamma_{0}) = 12 \text{ deg}$ $\delta_{b,d} = (b_{u,d} = C_{b,u,k} / \gamma_{cu} = 91 \text{ kN/m}^2$ KA = sin(\alpha, + \psi_{r,0})^2 / (sin(\alpha) - \sin(\alpha, - \dots_{r,d}) \times (1 + \sin(\psi_{r,d} + \dots_{r,d}) \times sin(\psi_{r,d} - \beta_{r,d}) \times sin(\psi_{r,d} - \beta_{r,d}) / (sin((0 - \dots_{r,d}) \times sin((\alpha, - \beta_{r,d}) \times sin((\psi_{r,d} + \dots_{r,d}))]]^2) = 0.367 thK = sin(\Got - \psi_{b,d})^2 / (sin((0 - \dots_{r,d}) - \beta_{r,d}) + (1 + \sin(\beta_{r,d} + \dots_{r,d}) \times sin((\psi_{r,d} + \beta_{r,d}) + (sin((\beta_{r,d} - \beta_{r,d}) + (sin((\b							
			Checked by	Checked date	Approved by	Approved da		
Water properties								
Design water density		$\gamma w' = \gamma w / \gamma_{\gamma}$	= 9.8 kN/m ³					
Retained soil properties								
Design moist density		$\gamma mr' = \gamma mr / \gamma$	$y_{\gamma} = 20 \text{ kN/m}^3$					
Design saturated density		$\gamma sr' = \gamma sr / \gamma_{\gamma}$	= 20 kN/m ³					
Design effective shear resist	ance angle	φ'r.d = atan	$tan(\phi'r.k) / \gamma_{\phi'}) =$	25 deg				
Design wall friction angle		$\delta_{r.d} = atan($	$\tan(\delta r.k) / \gamma_{\phi'}) =$	12.5 deg				
Base soil properties								
Design soil density		$\gamma_{b}' = \gamma_{b} / \gamma_{\gamma}$	= 20 kN/m ³					
Design effective shear resist	ance angle	φ'b.d = atan	(tan(φ'ь.k) / γ _{φ'}) :	= 18 deg				
Design wall friction angle		$\delta_{b.d} = atan($	tan($\delta b.k$) / γ_{ϕ}) =	9 deg				
Design base friction angle		$\delta_{bb.d}$ = atan	(tan(δьь.k) / γ _{φ'})	= 12 deg				
Design undrained shear stre	ngth	$C_{b.u.d} = C_{b.u.l}$	<pre></pre> <pre><td>m²</td><td></td><td></td></pre>	m²				
Using Coulomb theory								
Active pressure coefficient		$K_A = sin(\alpha)$	+ φ'r.d) ² / (sin(α	$(\alpha - \delta_{r.d}) \times \sin(\alpha - \delta_{r.d}) \times$	[1 + √[sin(\\$'r.d	+ δr.d) ×		
		sin(φ'r.d - β)	/ (sin(α - δ r.d)	$\times \sin(\alpha + \beta))]]^2) =$	0.367			
Passive pressure coefficient		$K_P = \sin(90 - \phi'_{b.d})^2 / (\sin(90 + \delta_{b.d}) \times [1 - \sqrt{[\sin(\phi'_{b.d} + \delta_{b.d})} \times \sin(\phi'_{b.d}) / (1 - \sqrt{((\cos(\phi'_{b.d} + \delta_{b.d})} \times \sin(\phi'_{b.d}) / (1 - \sqrt{((\cos(\phi'_{b.d} + \delta_{b.d})} \times \sin(\phi'_{b.d}) / (1 - ((\cos(\phi'_{b$						
		(sin(90 + δ	b.d))]] ²) = 2.359)				
Overturning check								
Vertical forces on wall								
Wall stem		F _{stem} = γ _{Gf} >	< A _{stem} × γ _{stem} =	31 kN/m				
Wall base		Fbase = γGf >	< Abase × γbase =	= 16 kN/m				
Line loads		$F_{P_v} = \gamma_{Gf} \times$	$P_{G1} + \gamma_{Qf} \times P_Q$	1 = 48.4 kN/m				
Total		$F_{total_v} = F_{st}$	_{em} + F _{base} + F _w	ater_v + F _{P_v} = 95. 4	4 kN/m			
Horizontal forces on wall								
Surcharge load		$F_{sur_h} = K_A$	× $\cos(\delta_{r.d})$ × γ_Q	\times Surcharge _Q \times	h _{eff} = 18.8 kN/r	n		
Saturated retained soil		F _{sat_h} = γ _G >	$\langle K_{A} \times cos(\delta_{r.d}) \rangle$	$ imes$ (γ_{sr}' - γ_{w}') $ imes$ (hsa	at + h _{base}) ² / 2 =	4.8 kN/m		
Water		$F_{water_h} = \gamma G$	$_{\rm s} imes \gamma_{\rm w}' imes (h_{ m water} \cdot$	+ d _{cover} + h _{base}) ² /	2 = 13 kN/m			
Moist retained soil		$F_{moist_h} = \gamma G$	$\mathbf{s} \times \mathbf{K}_{A} \times \mathbf{cos}(\delta_{r})$	d) $ imes \gamma_{mr}' imes$ ((h _{eff} - h	n _{sat} - h _{base})² / 2 -	+ (h _{eff} - h _{sat} -		
		$h_{base}) imes (h_{sa})$	at + h _{base})) = 49	9 .8 kN/m				
Base soil		F _{exc_h} = -γ _G	$f \times K_P \times \cos(\delta b)$	d) $\times \gamma_{b}' \times (h_{pass} +$	h _{base}) ² / 2 = -3.	7 kN/m		
Total		Ftotal_h = Fsa	at_h + Fmoist_h +	Fexc_h + Fwater_h +	Fsur_h = 82.7 k	N/m		
Overturning moments on v	vall							
Surcharge load		$M_{sur_OT} = F_{st}$	$sur_h \times X_{sur_h} = 3$	3 kNm/m				
Saturated retained soil		$M_{sat_OT} = F_{s}$	sat_h × Xsat_h = 2	.3 kNm/m				
Water		M _{water_OT} =	$F_{water_h} imes x_{water_h}$	h = 6.1 kNm/m				
Moist retained soil		$M_{moist_OT} =$	$F_{moist_{h}} imes x_{moist_{h}}$	_h = 64.8 kNm/m				
Total		M _{total_OT} = N	/Isat_OT + Mmoist_	OT + Mwater_OT + N	Isur_OT = 106 kN	lm/m		
Restoring moments on wa	I							
Wall stem		$M_{\text{stem}_R} = F$	stem \times Xstem = 43	3.4 kNm/m				
Wall base		$M_{base_R} = F$	base \times Xbase = 12	2.8 kNm/m				
		•• / ·	(D		7 9 1.1 1.00 /000			
Line loads		Mp_r = (ab	S(γGf × PG1 + γα	$p_{1} \times P_{Q1}) \times p_{1} = 6$	1.0 KINI11/111			

	Option (The Ho	pe Project			444
HTS	Calcs for	Retaining wall des	ign - Bayham	Street	Start page no./F	Revision 4
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approve
Check stability against over						
Factor of safety	unning	FoSot = Mto	tal R / M total OT =	= 1.169		
		PASS - Maximu			er than overtu	rning me
Bearing pressure check			-	-		-
Vertical forces on wall						
Wall stem		F _{stem} = γ _G ×	Astem × γstem =	41.9 kN/m		
Wall base			Abase × γbase =			
Line loads		-	Pg1 + γα × Pq1			
Total		•	•	_{ater_v} + F _{P_v} = 140	.9 kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur h} = K_A$	× cos(δ _{r.d}) × να	$x \times Surcharge_Q \times I$	h _{eff} = 18.8 kN/n	n
Saturated retained soil				\times (γ_{sr} ' - γ_{w} ') \times (h _{sa}		
Water		-		+ d_{cover} + h_{base}) ² /	-	
Moist retained soil				d) × γmr' × ((h _{eff} - h		⊦ (h _{eff} - h
			at + h _{base})) = 49		,	(
Base soil				_{b.d}) × γb' × (d _{cover} +	- h _{base}) ² / 2 = -3	5 .7 kN/m
Total				Fpass_h + Fwater_h +	-	
Moments on wall						
Wall stem		Mstem = Fste	$m \times X_{stem} = 58.$	6 kNm/m		
Wall base			se \times Xbase = 17.			
Surcharge load		Msur = -Fsur	_h × Xsur_h = -33	3 kNm/m		
Line loads) × p1 = 108.5 kN	m/m	
Saturated retained soil		Msat = -Fsat	_h × Xsat_h = -2.3	3 kNm/m		
Water		Mwater = -Fv	ater_h × X water_h :	= -6.1 kNm/m		
Moist retained soil		Mmoist = -Fr	noist_h × X moist_h =	= -64.8 kNm/m		
Total		$M_{total} = M_{ster}$	m + M _{base} + M _s	at + M _{moist} + M _{water}	+ M_{sur} + M_P =	78.3 kNr
Check bearing pressure						
Propping force		Fprop_base =	Ftotal_h = 82.7	<n m<="" td=""><td></td><td></td></n>		
Distance to reaction		$\overline{x} = M_{total} /$	F _{total_v} = 556 r	nm		
Eccentricity of reaction			_e / 2 = -244 m	m		
Loaded length of base			x = 1111 mm			
Bearing pressure at toe			v / I _{load} = 126.8	kN/m²		
Bearing pressure at heel		$q_{heel} = 0 kN$				
Effective overburden pressure			d_{cover} $\times \gamma b' = 8$	kN/m ²		
Design effective overburden p	ressure	$q' = q / \gamma_{\gamma} =$	8 kN/m ²			
Foundation shape factors		s _c = 1	F . F		LAN 1/m	
Load inclination factors				$h + F_{moist_h} = 86.5$		
Not ultimote beering accession				$(bad \times Cb.u.d))) = 0.6$		
Net ultimate bearing capacity Factor of safety			× Cb.u.d × Sc × ∣ / max(q _{toe} , q _{hee}	ic + q = 331.1 kN/ ມ) – 2 611	111-	
r actor or salely	PASS -	Allowable bearin		-	m applied hea	nina nre

γGf = **1.00**


Permanent favourable action

	Project	The Ho	pe Project		Job no.	1444
HTS	Calcs for	Deteining		Otro ot	Start page no./	
		Retaining wall des				5
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved
Variable unfavourable actio	n	γ Q = 1.30				
Variable favourable action		$\gamma_{Qf} = 0.00$				
Partial factors for soil para	ameters – Table	A.4 - Combinatio	on 2			
Angle of shearing resistance	е	$\gamma_{\phi'} = 1.25$				
Undrained shear strength		γcu = 1.40				
Weight density		$\gamma_{\gamma} = 1.00$				
Water properties						
Design water density		$\gamma w' = \gamma w / \gamma_{\gamma}$	9.8 kN/m ³			
Retained soil properties						
Design moist density		γmr' = γmr /	γ _γ = 20 kN/m ³			
Design saturated density		• •	$\gamma = 20 \text{ kN/m}^3$			
Design effective shear resis	tance angle		(tan(φ'r.k) / γ _φ ') =	20.5 deg		
Design wall friction angle	č		$(\tan(\delta_{r.k}) / \gamma_{\phi'}) =$			
Base soil properties				-		
Design soil density		$\gamma_{b}' = \gamma_{b} / \gamma_{v}$	= 20 kN/m ³			
Design effective shear resis	tance angle		n(tan(φ'b.k) / γ _{φ'}) :	= 14.6 dea		
Design wall friction angle	united an igne		(tan(δ _{b.k}) / γ _φ) =			
Design base friction angle			n(tan(δ _{bb.k}) / γ _φ)			
Design undrained shear stre	ength		$1 k / \gamma_{cu} = 65 kN/$			
Using Coulomb theory	-					
Active pressure coefficient		$K_A = \sin(\alpha)$	+ φ'r d) ² / (sin(α	ι) ² × sin(α - δr.d) ×	[1 + √[sin(\u00f6'rd	+δrd)×
				$\times \sin(\alpha + \beta))]^2) =$		i endy i i
Passive pressure coefficien	t			90 + δb.d) × [1 - √		× sin(d'b.d)
·			Sb.d))]] ²) = 1.965			(1)
Overturning check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_{Gf}$	× Astem × γ stem =	= 31 kN/m		
Wall base		$F_{base} = \gamma_{Gf}$	× Abase × γ base =	= 16 kN/m		
Line loads		$F_{P_v} = \gamma_{Gf}$	$\langle P_{G1} + \gamma_{Qf} \times P_{Q}$	1 = 48.4 kN/m		
Total		$F_{total_v} = F_s$	_{stem} + F _{base} + F _w	$_{ater_v} + F_{P_v} = 95.4$	1 kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	$\times \cos(\delta r.d) \times \gamma Q$	\times Surcharge _Q \times	h _{eff} = 19.7 kN/r	n
Saturated retained soil		$F_{sat_h} = \gamma G$	× $K_A \times cos(\delta_{r.d})$	\times (ysr' - yw') \times (hsa	t + h _{base}) ² / 2 =	4.3 kN/m
Water		$F_{water_h} = \gamma$	$G imes \gamma_{w}' imes (h_{water} \cdot$	+ d _{cover} + h _{base}) ² /	2 = 9.6 kN/m	
Moist retained soil		$F_{moist_h} = \gamma$	$G \times KA \times cos(\delta r.$	d) $ imes$ γ mr' $ imes$ ((heff - h	Isat - h _{base}) ² / 2	+ (h _{eff} - h _{sa}
			sat + h _{base})) = 44			
Base soil		$F_{exc_h} = -\gamma c$	$Gf \times KP \times COS(\deltab)$.d) $\times \gamma_{b}' \times (h_{pass} + 1)$	h _{base}) ² / 2 = -3.	1 kN/m
Total		$F_{total_h} = F_s$	sat_h + F _{moist_h} +	F _{exc_h} + F _{water_h} +	F _{sur_h} = 75 kN/	m
Overturning moments on	wall					
Surcharge load		$M_{sur_OT} = F$	$s_{sur_h} \times X_{sur_h} = 3$	34.4 kNm/m		
Saturated retained soil		$M_{sat_OT} = F$	sat_h × Xsat_h = 2	kNm/m		
Water		$M_{water_OT} =$	$F_{water_h} \times x_{water_}$	_h = 4.5 kNm/m		
Moist retained soil		Mmoist OT =	Fmoist h × Xmoist	h = 57.9 kNm/m		

	roject	The Hop	e Project		Job no. 1	444
	alcs for				Start page no./F	Revision
	F	Retaining wall desi	ign - Bayham	Street		6
С	alcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved
Total		Mtotal_OT = N	Isat_OT + Mmoist_	OT + Mwater_OT + M	1sur_OT = 98.8 kl	Nm/m
Restoring moments on wall						
Wall stem		$M_{\text{stem}_R} = F_s$	stem × Xstem = 43	3.4 kNm/m		
Wall base		$M_{base_R} = F_t$	base × Xbase = 12	2.8 kNm/m		
Line loads		$M_{P_R} = (abs)$	s(γ _{Gf} × P _{G1} + γc	$p_{1} \times P_{Q1}) \times p_{1} = 6$	7.8 kNm/m	
Total		$M_{total_R} = M_s$	stem_R + Mbase_R	. + MP_R = 124 kN	lm/m	
Check stability against overturn	ing					
Factor of safety	0	$FoS_{ot} = M_{tot}$	_{tal_R} / M _{total_OT} =	1.255		
-		PASS - Maximur	m restoring m	noment is greate	er than overtu	rning mo
Bearing pressure check						
Vertical forces on wall						
		F	٨	24 1/1/100		
Wall stem		-	Astem $\times \gamma$ stem =			
Wall base			Abase × γbase =			
Line loads		-	PG1 + γQ × PQ1			
Total		$F_{total_v} = F_{sterms}$	em + Fbase + Fwa	ater_v + F _{P_v} = 105	9.9 KN/M	
Horizontal forces on wall						
Surcharge load				\times Surcharge _Q \times		
Saturated retained soil		$F_{sat_h} = \gamma_G \times$	$K_{A} \times cos(\delta_{r.d})$	$ imes$ (γ_{sr}' - γ_{w}') $ imes$ (hsa	$h_{t} + h_{base})^2 / 2 =$	4.3 kN/m
Water		$F_{water_h} = \gamma_G$	$\times \gamma_w' \times (h_{water} \cdot $	+ d _{cover} + h _{base}) ² /	2 = 9.6 kN/m	
Moist retained soil		$F_{moist_h} = \gamma_G$	$\times \ \textbf{K}_{\textbf{A}} \times \textbf{cos}(\delta_{r.c}$	$_{ m d}$) $ imes$ $\gamma_{ m mr}$ ' $ imes$ ((h _{eff} - h	n _{sat} - h _{base})² / 2 -	⊦ (h _{eff} - h _{sa}
		h_{base}) × (h_{sa}	t + h _{base})) = 44	.5 kN/m		
Base soil		$F_{pass_h} = -\gamma_G$	$K_{P} \times K_{P} \times cos(\delta_{R})$	$_{\rm o.d}) imes \gamma_{\rm b'} imes ({\sf d}_{ m cover} +$	⊦ h _{base})² / 2 = -3	.1 kN/m
Total		Ftotal_h = Fsa	t_h + Fmoist_h +	Fpass_h + Fwater_h +	- Fsur_h = 75 kN/	/m
Moments on wall						
Wall stem		Mstem = Fster	m × Xstem = 43.4	\$ kNm/m		
Wall base		Mbase = Fbas	$x = x_{base} = 12.8$	3 kNm/m		
Surcharge load		Msur = -Fsur_	$h \times X_{sur_h} = -34$.4 kNm/m		
Line loads		MΡ = (γg × I	Pg1 + γq × Pq1)) × p1 = 82.5 kNn	n/m	
Saturated retained soil		Msat = -Fsat_	h × Xsat_h = -2 k	Nm/m		
Water			ater_h × X water_h =			
Moist retained soil				= -57.9 kNm/m		
Total				at + Mmoist + Mwater	$+ M_{sur} + M_P = 3$	39.9 kNm
Check bearing pressure						
Propping force		Fprop base =	F _{total_h} = 75 kN	/m		
Distance to reaction			Ftotal_v = 377 m			
Eccentricity of reaction			₀ / 2 = -423 mr			
Loaded length of base		$l_{load} = 2 \times \frac{1}{2}$				
Bearing pressure at toe			$/ _{load} = 140.6$	kN/m ²		
Bearing pressure at heel		$q_{\text{heel}} = 0 \text{ kN}$				
Effective overburden pressure		•	dcover) × γb' = 8	kN/m ²		
Design effective overburden press	ure	$q' = q / \gamma_{\gamma} =$				
Foundation shape factors		$s_c = 1$				
Load inclination factors			Fsat h + Fwater	h + Fmoist_h = 78.1	kN/m	
-				$(C_{b.u.d}) - 1)) = 0.8$		

	Project	The Hop	pe Project		Job no.	444
HTS	Calcs for Ret	aining wall des	ign - Bayham	Street	Start page no./R	evision 7
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date
Net ultimate bearing capacity		$n_f = (\pi + 2)$	\times Cb.u.d \times Sc \times İ	c + q = 304.1 kN/	m²	
Factor of safety			max(qtoe, qhee			
	PASS - All	owable bearin	ig pressure e	ceeds maximu	m applied bea	ring pressui
RETAINING WALL DESIGN						
In accordance with EN1992 incorporating National Ame		rating Corrige	ndum dated J	anuary 2008 an	d the UK Natio	onal Annex
Oswana (a datalla - Tabla 0.4					Tedds calcula	tion version 2.6.1
Concrete details - Table 3.1	- Strength and de	C32/40	racteristics to	or concrete		
Concrete strength class Characteristic compressive cy	linder strength	C32/40 f _{ck} = 32 N/n	nm ²			
Characteristic compressive of	-	$f_{ck,cube} = 40$				
Mean value of compressive c	-		N/mm ² = 40 N	J/mm ²		
Mean value of axial tensile sti				N/mm ²) ^{2/3} = 3.0 I	l/mm ²	
5% fractile of axial tensile stre	-		$7 \times f_{ctm} = 2.1 \text{ N}$	-	N/IIIII	
Secant modulus of elasticity of	-			10 N/mm²) ^{0.3} = 3 3	$346 \mathrm{N/mm^2}$	
Partial factor for concrete - Ta		γc = 1.50		10 N/IIII) = 3	5540 N/IIIII	
		$\gamma c = 1.30$ $\alpha_{cc} = 0.85$				
Compressive strength coeffici			. /	100 002		
Design compressive concrete Maximum aggregate size	strength - exp.s. is	$h_{agg} = 20 \text{ m}$	_{ck} / γc = 18.1 Ν	/ጠጠ-		
		Hagg – 20 H				
Reinforcement details	f reinforcement	f 500 N	/m m ²			
Characteristic yield strength of Modulus of elasticity of reinfor		f _{yk} = 500 N/ Es = 20000				
Partial factor for reinforcing st		Ls = 20000 γs = 1.15				
Design yield strength of reinfo		-	= 435 N/mm ²			
	Jeement	Tyu — Tyk 7 73	- 433 14/11111			
Cover to reinforcement			_			
Front face of stem		c _{sf} = 40 mn c _{sr} = 50 mn				
Rear face of stem						
		$c_{\rm m} = 50 {\rm mn}$	n			
Top face of base		C _{bt} = 50 mn				
		с _{bt} = 50 mn с _{bb} = 75 mr				
Top face of base Bottom face of base	ombination No.1 - kN/m ²		n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	ombination No.1 - kN/m² Sht	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	ombination No.1 - kN/m ² Sh	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	Shu	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	She	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	ombination No.1 - kN/m ² Sh	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	She	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	Shu	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	Shr	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	5.38 E	с _{bb} = 75 mr	n	ioment - Combination No. 1 - kNm/m		
Top face of base Bottom face of base	5 38	с _{bb} = 75 mr	n	orment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	5.38 E	с _{bb} = 75 mr	TY Bending n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	5.38 E	с _{bb} = 75 mr	n	ioment - Combination No.1 - kNm/m		
Top face of base Bottom face of base	5.38 E	с _{bb} = 75 mr	TY Bending n	orment - Combination No.1 - kNm/m	75.3	

Tekla Tedds	Project	The Hop	e Project		Job no.	444
HTS	Calcs for Ret	taining wall desi	gn - Bayham S	Street	Start page no./R	tevision 8
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

Rectangular section in flexure - Section 6	
Depth of section	

h = **400** mm

Rectangular section in nexure - Section 6.		
Design bending moment combination 1	M = 75.3 kNm/m	
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr} / 2 = 344 mm	
	$K = M / (d^2 \times f_{ck}) = 0.020$	
	K' = 0.207	
	K' > K - No compression reinforcement is required	
Lever arm	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 327 mm$	
Depth of neutral axis	$x = 2.5 \times (d - z) = 43 \text{ mm}$	
Area of tension reinforcement required	$A_{sr.req} = M / (f_{yd} \times z) = 530 \text{ mm}^2/\text{m}$	

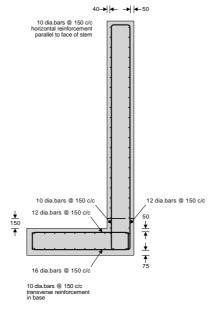
Area of tension reinforcement required	Asr.req
Tension reinforcement provided	12 dia
Area of tension reinforcement provided	Asr.prov
Minimum area of reinforcement - exp.9.1N	A _{sr.min}
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sr.max}

2 dia.bars @ 150 c/c $k_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 754 \text{ mm}^2/\text{m}$ $k_{sr,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 541 \text{ mm}^2/\text{m}$

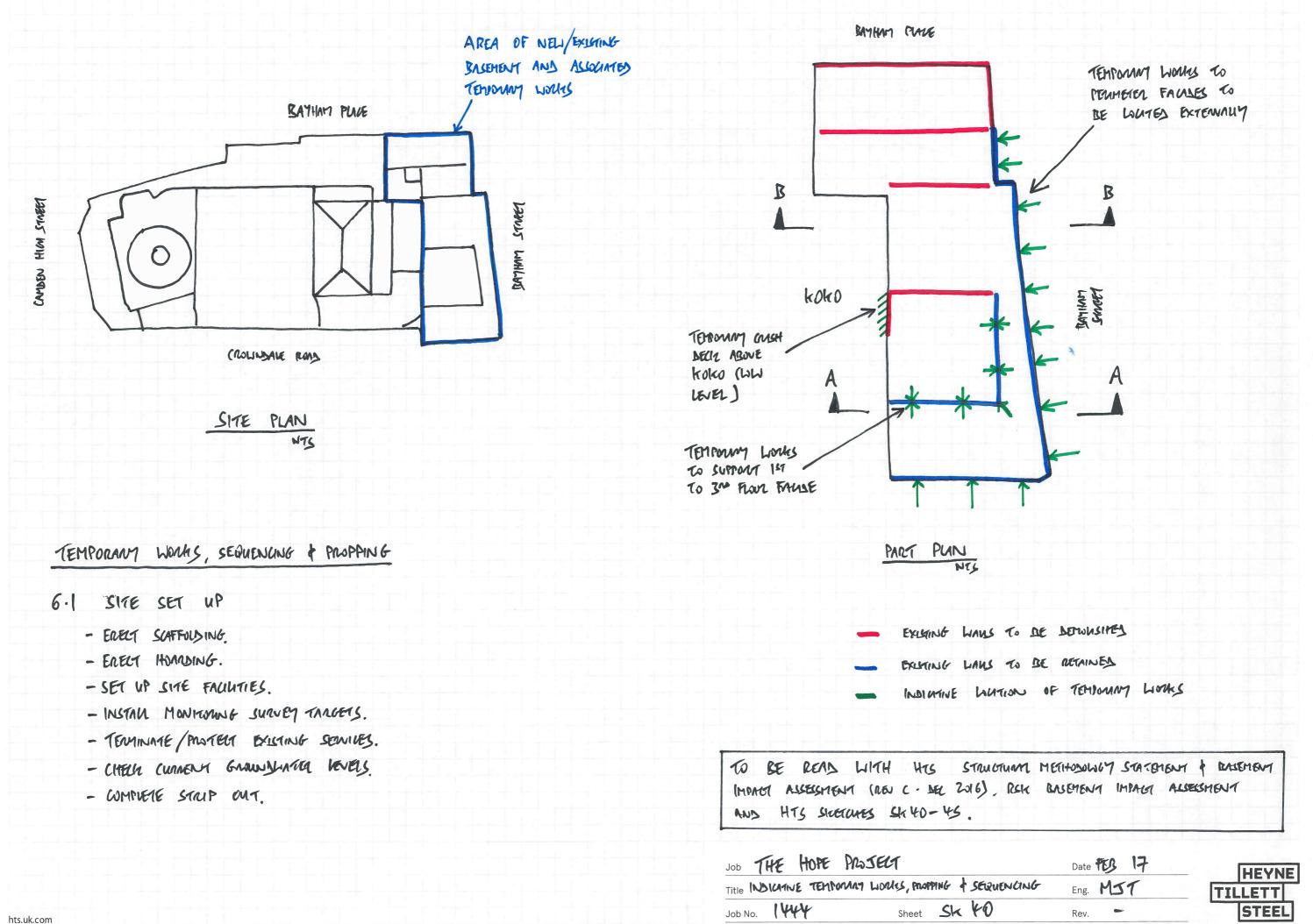
 $A_{sr.max} = 0.04 \times h = 16000 \text{ mm}^2/\text{m}$

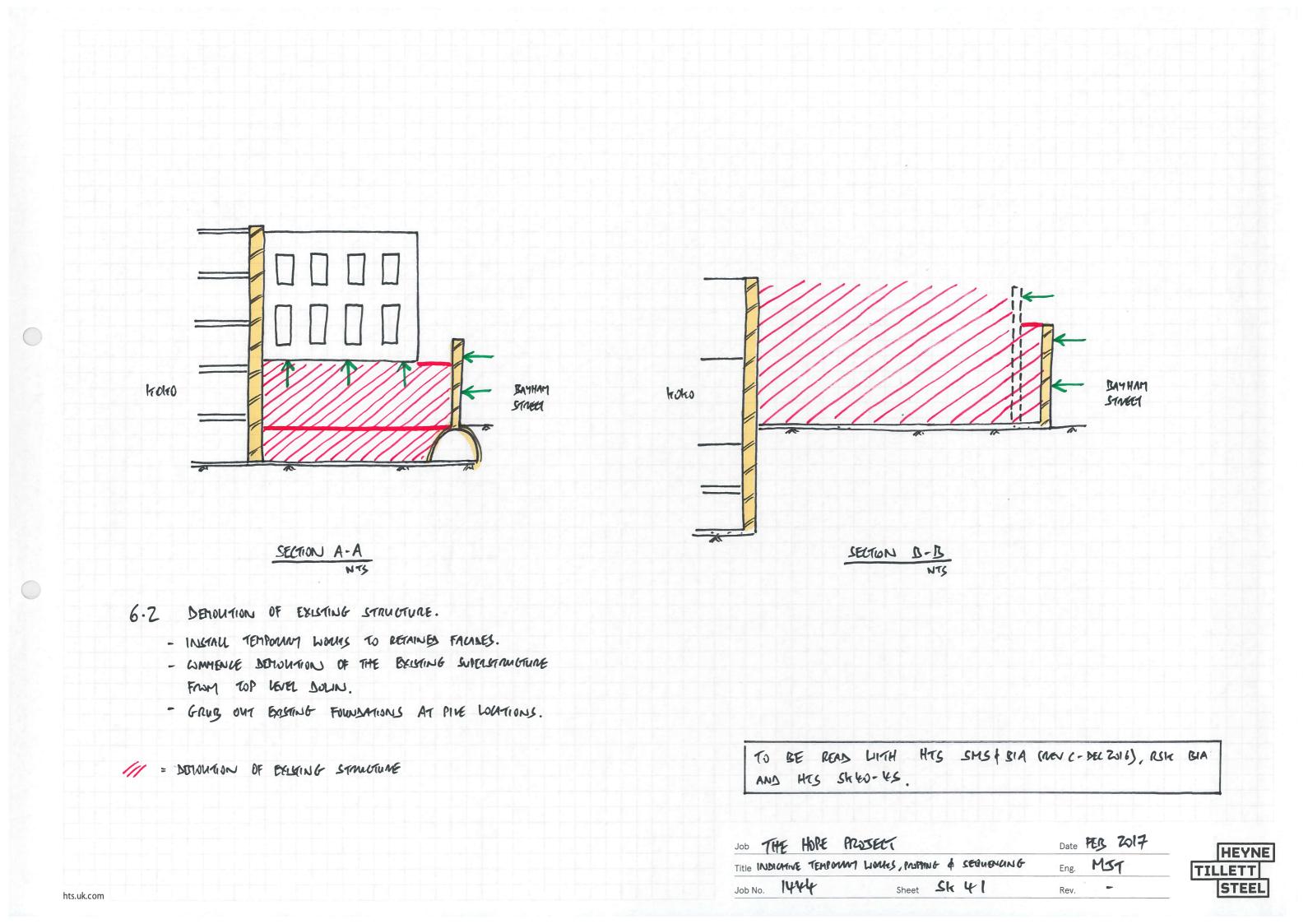
max(Asr.req, Asr.min) / Asr.prov = 0.717

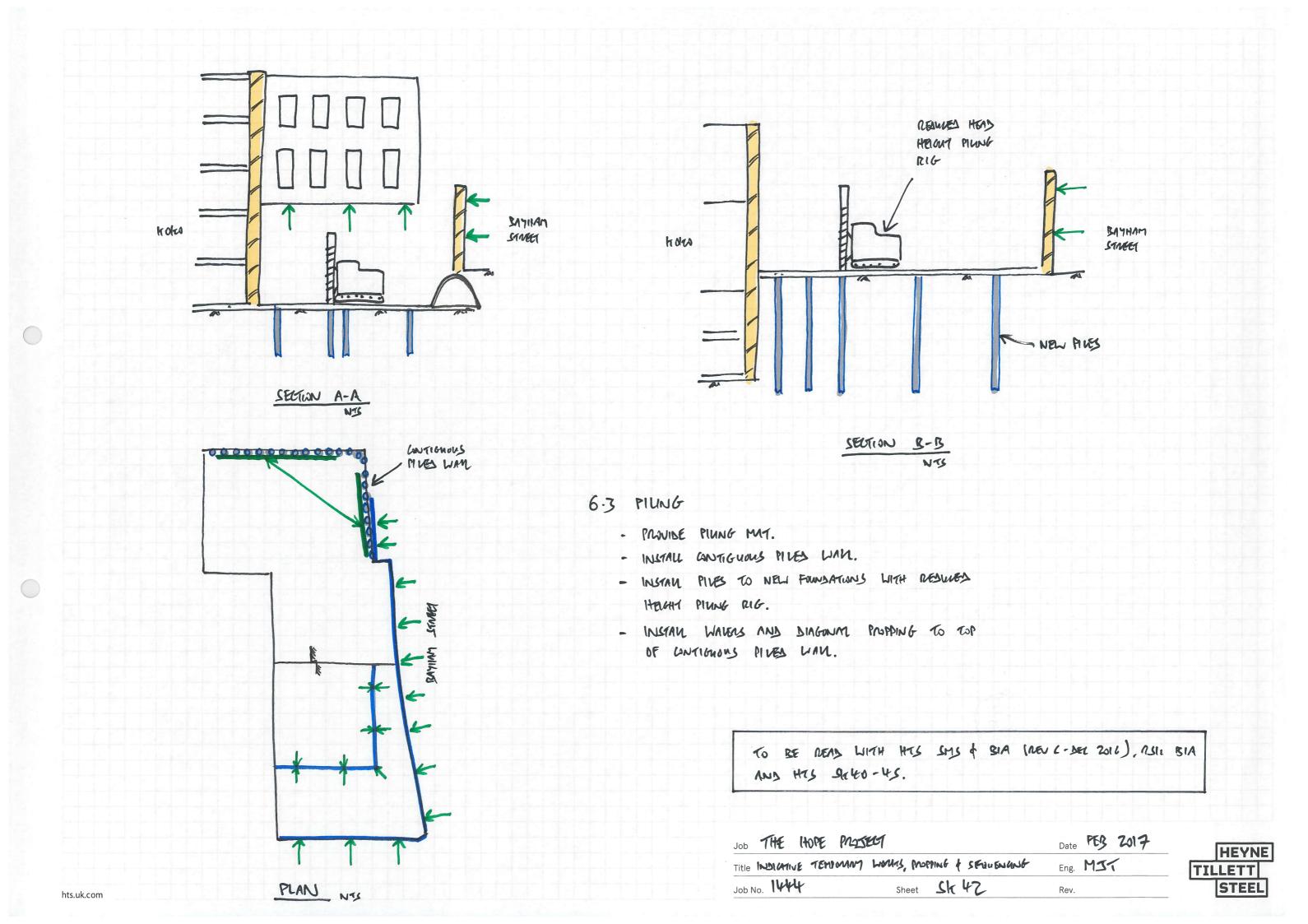
PASS - Area of reinforcement provided is greater than area of reinforcement required

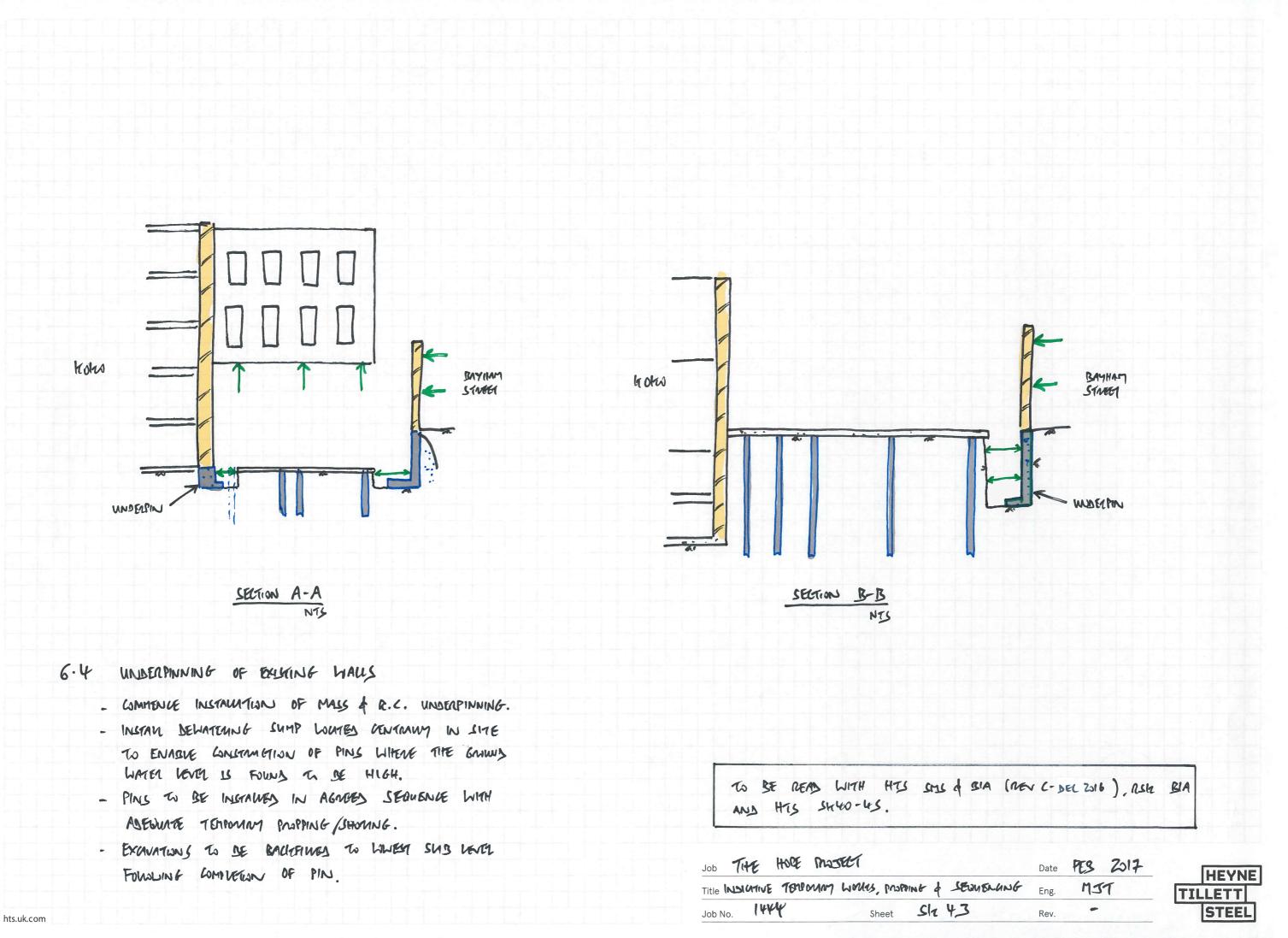

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.006$
Required tension reinforcement ratio	$\rho = A_{sr.req} / d = 0.002$
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 0.4
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.422$
Limiting span to depth ratio - exp.7.16.a	$\text{K}_{\text{s}} \times \text{K}_{\text{b}} \times [\text{11 + 1.5} \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{\text{ck}} \ / \ 1 \ \text{N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \rho_0 / $
	(ρ ₀ / ρ - 1) ^{3/2}] = 68.9
Actual span to depth ratio	h _{stem} / d = 9
	PASS - Span to depth ratio is less than deflection control limit

HTS		The Hop	e Project		1	444		
1110	Calcs for	Calcs for Retaining wall design - Bayham Street				Start page no./Revision 9		
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved		
Crack control - Section 7.3								
Limiting crack width		Wmax = 0.3 I	mm					
Variable load factor - EN1990	– Table A1.1	ψ2 = 0.6						
Serviceability bending momer	nt	M _{sls} = 47 kM	Nm/m					
Tensile stress in reinforcemer	nt	$\sigma_s = M_{sls} / (A_s)$	Asr.prov × z) = 1	90.8 N/mm ²				
Load duration		Long term						
Load duration factor		$k_t = 0.4$						
Effective area of concrete in t	ension	Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) =	= 119000 mm²/ı	n		
Mean value of concrete tensil	e strength	$f_{ct.eff} = f_{ctm} =$	3.0 N/mm ²					
Reinforcement ratio		$\rho_{p.eff} = A_{sr.pr}$	_{ov} / A _{c.eff} = 0.00	06				
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 5.998					
Bond property coefficient		k1 = 0.8	k1 = 0.8					
Strain distribution coefficient		k2 = 0.5	k ₂ = 0.5					
		k ₃ = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp	0.7.11	$s_{r.max} = k_3 \times$	$c_{sr} \textbf{+} \textbf{k}_1 \times \textbf{k}_2 \times$	$k_4 \times \phi_{sr} \ / \ \rho_{p.eff} = 4$	92 mm			
Maximum crack width - exp.7.	.8	$W_k = S_{r.max} \times$	a max(σ _s – k _t ×	$(f_{ct.eff} / \rho_{p.eff}) \times (1$	+ $\alpha_e \times \rho_{p.eff}$), 0.	6 × σs) / E		
		$w_k = 0.282$	mm					
		Wk / Wmax =	0.938					
		PASS	- Maximum c	rack width is le	ss than limitin	g crack		
Rectangular section in shea	ar - Section 6.2							
Design shear force		V = 67.5 kM	l/m					
		$C_{\text{Rd,c}} = 0.18$	8 / γc = 0.120					
		k = min(1 +	√(200 mm / c	l), 2) = 1.762				
Longitudinal reinforcement ra	tio	ρι = min(Ası	.prov / d, 0.02) :	= 0.002				
		Vmin = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{/2} \times f_{ck}^{0.5} = 0.463$	N/mm²			
Design shear resistance - exp	.6.2a & 6.2b	$V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho i \times f_{ck})^{1/3}, V_{min}) \times d$						
		V _{Rd.c} = 159	. 4 kN/m					
		$V / V_{Rd.c} = 0$).423					
		PAS	S - Design sł	near resistance	exceeds desig	n shear		
Horizontal reinforcement pa	arallel to face of s	tem - Section 9	9.6					
Minimum area of reinforceme	nt – cl.9.6.3(1)	A _{sx.req} = ma	$x(0.25 imes A_{sr.pro})$	w, $0.001 \times t_{stem}$) =	400 mm²/m			
Maximum spacing of reinforce	ement – cl.9.6.3(2)	Ssx_max = 40	0 mm					
Transverse reinforcement pro	vided	10 dia.bars	@ 150 c/c					
Area of transverse reinforcem	ent provided	$A_{sx.prov} = \pi$	$<\phi_{sx}^2$ / (4 \times Ssx) = 524 mm²/m				
	PASS - Area of	reinforcement	provided is	greater than are	a of reinforce	nent req		

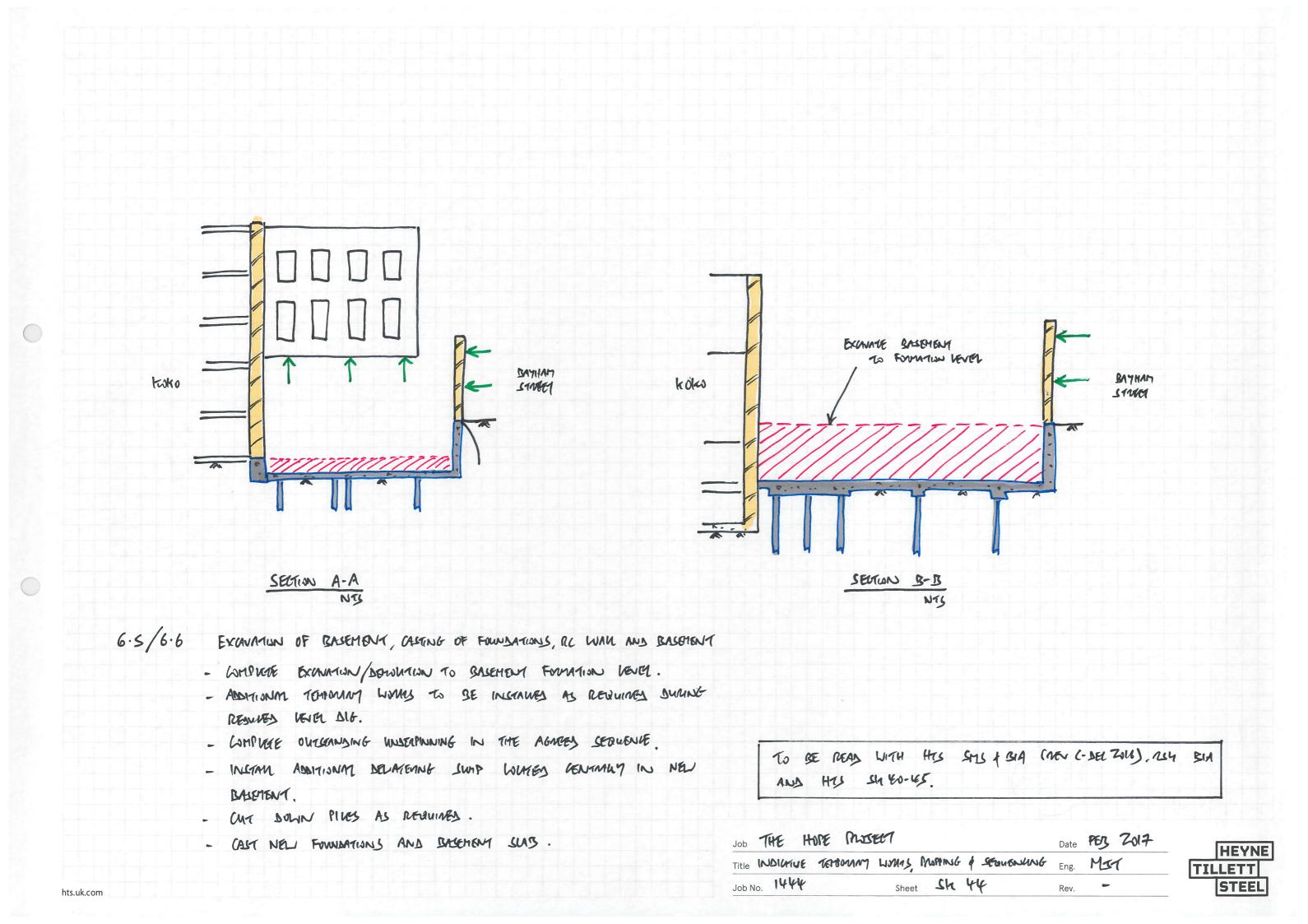

Depth of section	h = 400 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 82.8 kNm/m
Depth to tension reinforcement	d = h - c _{bb} - φ _{bb} / 2 = 317 mm
	$K = M / (d^2 \times f_{ck}) = 0.026$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 3.53 × K) ^{0.5} , 0.95) × d = 301 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 40 \text{ mm}$

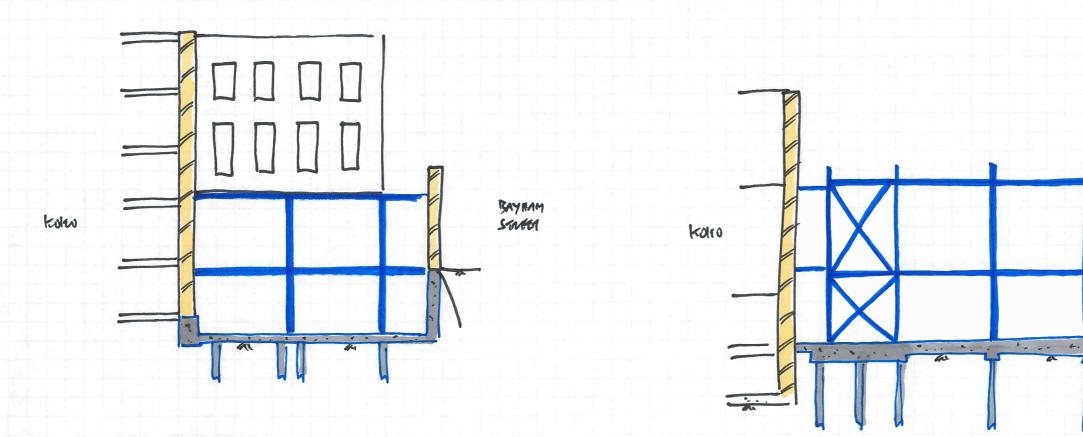

Tedde	Project	The Hor	e Project		Job no.	1444	
Tedds HTS	Calcs for				Start page no./Revision		
		Retaining wall design - Bayham Street					
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved	
	MJT	08/02/2017					
Area of tension reinforcement	required	Abb.req = M /	′ (f _{yd} × z) = 632	2 mm²/m			
Tension reinforcement provide	ed .	16 dia.bars	@ 150 c/c				
Area of tension reinforcement	provided	$A_{bb.prov} = \pi$	$\times \phi_{bb}^2$ / (4 \times Sb)	b) = 1340 mm ² /m			
Minimum area of reinforcemer	nt - exp.9.1N	A _{bb.min} = ma	$x(0.26 \times f_{ctm})$	f _{yk} , 0.0013) × d =	498 mm²/m		
Maximum area of reinforceme	nt - cl.9.2.1.1(3)	$A_{bb.max} = 0.0$	04 × h = 1600	0 mm²/m			
		max(A _{bb.req} ,	Abb.min) / Abb.pi	rov = 0.472			
	PASS - Area of I				a of reinforce	ment req	
Crack control - Section 7.3							
Limiting crack width		Wmax = 0.3 r	nm				
Variable load factor - EN1990	– Table A1.1	ψ2 = 0.6					
Serviceability bending momen	t	M _{sls} = 59.3	kNm/m				
Tensile stress in reinforcemen		$\sigma_s = M_{sls} / (A_s)$	$A_{bb.prov} \times z) = 1$	1 46.9 N/mm²			
Load duration		Long term					
Load duration factor		kt = 0.4					
Effective area of concrete in te	ension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 120125 mm^2/m$					
Mean value of concrete tensile	e strength	$f_{ct.eff} = f_{ctm} =$	3.0 N/mm ²				
Reinforcement ratio		$\rho_{p.eff} = A_{bb.pr}$	rov / Ac.eff = 0.0	11			
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 5.998				
Bond property coefficient		k ₁ = 0.8					
Strain distribution coefficient		k2 = 0.5					
		k3 = 3.4					
		k4 = 0.425					
Maximum crack spacing - exp	.7.11	$s_{r.max} = k_3 \times$	$\mathbf{C}_{bb} + \mathbf{k}_1 \times \mathbf{k}_2 >$	\times k4 \times ϕ bb / ρ p.eff = 4	499 mm		
Maximum crack width - exp.7.8	3	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$					
		w _k = 0.22 m					
		$W_k / W_{max} =$					
		PASS	- Maximum o	crack width is les	ss than limitir	ng crack	
Rectangular section in shea	r - Section 6.2						
Design shear force		V = 113.7 k					
			3 / γc = 0.120				
		-	√(200 mm / c				
Longitudinal reinforcement rat	io		o.prov / d, 0.02)				
				^{1/2} × f _{ck} ^{0.5} = 0.476 I			
Design shear resistance - exp	.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (1$	00 N ² /mm ⁴ × ρ I ×	$f_{ck})^{1/3}, V_{min}) imes d$	l -	
		VRd.c = 162.					
		$V / V_{Rd.c} = 0$		_			
Concerdant (man-			S - Design sl	hear resistance e	exceeds desi	gn shear	
Secondary transverse reinfo				2/			
Minimum area of reinforcemen			$\times A_{bb,prov} = 26$	o mm²/m			
Maximum spacing of reinforce		sbx_max = 45 10 dia.bars	-				
Transverse reinforcement prov							


Tekla Tedds	Project	The Hop	e Project		Job no. 14	44
HTS	Calcs for S Retaining wall design - Bayham Street				Start page no./Revision 11	
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date



Reinforcement details





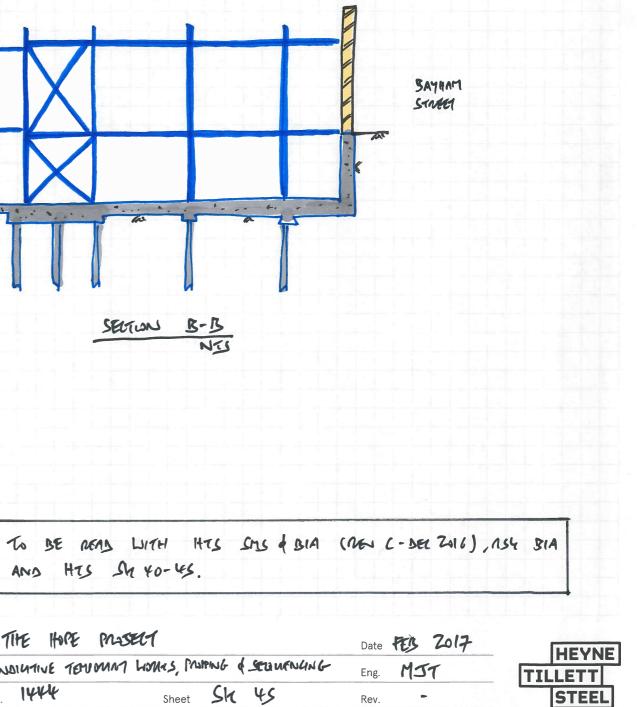
Job	THE	HOCE	ma	SELI			
Title	NDIGTIVE	Ton	mm	wours,	PROPINE	ł	1
Job N	o. 144	¥		She	eet S	12	4:

SECTION A-A NTS

COMPLETE SUPERSTMUTURE WOMAS & NONOVE TENDOMINY WOMAS 6.7

- ENERT NEW SUPERSTRUCTURE AND PERMANENT SUPPORT TO NETAINES STANCTURE.
- SEQUENTIALLY RETURE TEMPORARY LIMITS FOLLING CONFIRMATION FROM S.E.
- REMINING INSTALLATION/EVENTION OF SUPELSTAMETURE TO WIMENCE.

AND HIS Sh 40-45.


SETTION B-B NII

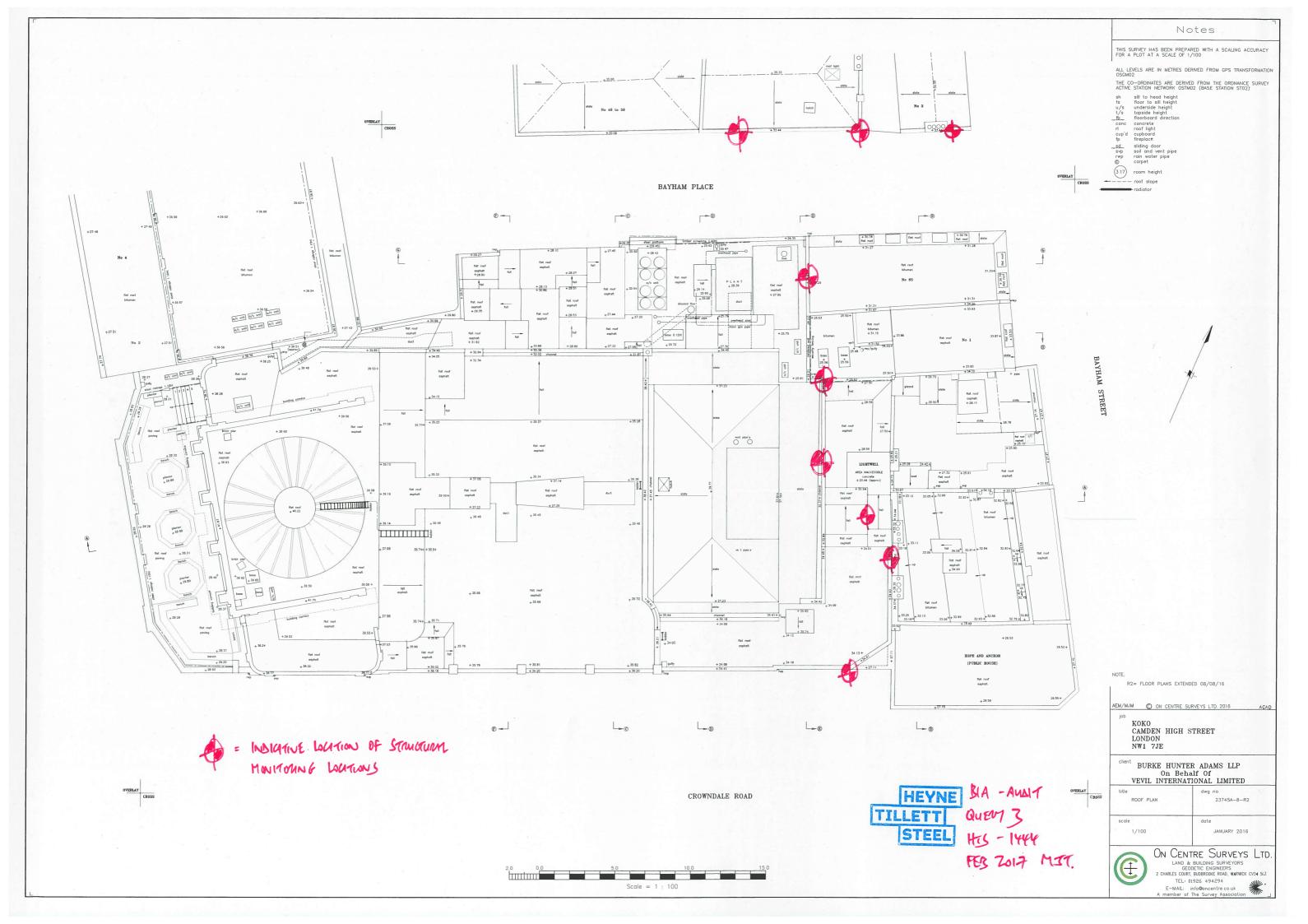
Job	71	ÍE	H	PE	pros	E 1				
Title	INC	141	vE	101	IMAT	homes,	M	pwg	4	LU
Job I	No.	14	44			She	et	Sh	2	49

0

0

TEMONIM WOMES NOLOVES FOULDWING INSTALLITION OF NEW SWELSTMOTUNE AND RE-JUTIONT TO FALLOES

Query 2 – Land Stability


- Dimensions of the piles used in the ground movement assessment of the contiguous piled retaining wall (as confirmed by RSK):
 - o Diameter = 450mm
 - o Length = 12.3m deep
 - o Toe depth = 10.2m AOD

Query 3 – Land Stability

- Structural monitoring see below for an outline structural monitoring plan. The final detailed monitoring plans with adjacent buildings will be agreed with the appointed contractor. There are no party wall awards as the buildings on the site are under the same ownership. A site plan with indicative locations of monitoring points is appended:
- The integrity of excavations is to be maintained by the contractor at all times.
- The contractor shall be responsible for establishing and setting out of all levels and datum.
- The contractor is to provide a schedule of conditions of all adjacent buildings with photographs agreed with the CA prior to works commencing.
- Any cracks to the fabric of the adjacent structures or perimeter retained walls are to have graduated tell tales applied prior to the commencement of the demotion works, or as they are uncovered.
 - The perimeter walls shall be monitored regularly for signs of movement by all of the follow methods:
 - o Visual inspection
 - o Accurate survey techniques
 - o Graduated tell tales
- Movement shall be measured with the use of prism reflector targets. Results are to be tabulated and represented graphically and submitted on a weekly basis.
- Monitoring to be undertaken until the retained walls are tied into the new structure.
- Monitoring is to be undertaken for a suitable period prior to main demolition and excavation works commencing to enable base movement due to daily thermal effects to be established.
- Readings should be taken at the same time each day to minimise the effects of temperature fluctuations.
- Frequency of monitoring to be in accordance with CIRIA guide C579.
- Lateral or vertical movements and deflections of the perimeter retained walls and adjacent structures above those due to daily thermal effects should be monitored against an agreed traffic light system to be proposed by the contractor, based on the following:
 - Green The wall movement is within an acceptable range. Site works and frequency of monitoring can proceed as planned. Max lateral/vertical deflection trigger level 5mm.
 - Amber Wall movement exceeds the green limit but is below the red limit. Monitoring frequency is increased. A meeting is convened to review working procedures and assumptions. Max lateral/vertical deflection trigger level is greater than 5mm but less than 10mm.
 - Red Wall movement exceeds amber control limit. Work is stopped immediately and team meeting convened to identify the reason for reaching the limit and any remedial action or propping that may be required.
- Structural Engineer to be present on site to confirm remedial action.
- Differential movement trigger levels:
 - Amber Differential movement between adjacent horizontal targets which exceed 3mm difference in figures but less than 5mm. A meeting is convened to review working procedures, condition of AO finishes & assumptions.
 - Red Differential movement between adjacent horizontal targets which exceeds 5mm difference in figures. Work is stopped immediately and team meeting is convened to identify the reason for reaching the limit and any remedial action required.
- The contractor is to undertake a movement survey of the piled wall during basement construction twice weekly. Contractor to confirm method of survey. A brief report detailing monitoring locations & movement is to be issued 24 hours following survey.

Activity	Suggested frequency
From installation of monitoring to start of demolition	Weekly until reading have stabilised (allow 4 weeks)
During demolition and excavation	Weekly
Construction of all remaining structure	Fortnightly
Remainder of contract period	Every 3 months
During defects liability period	Twice, at least 6 months apart

• Suggested frequency of monitoring:

Query 4 – Land Stability

N/A - Ongoing

Query 5 – Flood Risk

• Surface Water Floor Risk – please see the following response from RSK.

"By way of background, if intense rain is unable to soak into the ground or be carried through manmade drainage systems, for a variety of reasons, it can run off over the surface causing localised floods before reaching a river or other watercourse. Generally, where there is impermeable surfacing or where the ground infiltration capacity is exceeded, surface water runoff will occur. Excess surface water flows from the site are believed to drain into the surrounding Thames Water sewer network. For the avoidance of all doubt, the surrounding private drainage and highway drainage and/or surface/combined sewer network would either have to be blocked or overflowing for there to be any risk of surface water flooding in the area.

- There is a surface water flow path along Crowndale Road to the south, which extends (to a lesser extent) up Camden High Street to the west, Bayham Street to the east and into Bayham Place to the north of the site. The flood risk associated with this flow path ranges from low to high, however, the flow pathways do not encroach onto the site and the site itself is assessed as being at very low risk from surface water flooding. Meaning that any surface water flows are likely to be confined to the surrounding road network, and probably contained within the existing road gullies adjacent to the pavements surrounding the site.
- As the area of high risk is confined to the surrounding road network, it is likely that surface water would be prevented from flowing through the site due to raised kerbs and the walls along the boundaries of the site. From Google Street View, it seems like there is a degree of freeboard between the road gullies and the site doorways, probably between 100mm and 200mm, meaning that flood depths would have to exceed these depths in order to flood the site.
- Further reference to the expected flood depths mapping in the surrounding road network indicate that expected flood depths are likely to be less than 300mm and have a velocity in excess of 0.25m/s. The main flow route is expected to be north to south down Camden High Street then west to east along Crowndale Road.
- The overall risk of flooding to the site from surface water is considered low, and therefore further site specific mitigation is not considered necessary. "

Query 6 – Flood Risk

- Proposed ground water control measures:
 - The ground water level has been measured below the proposed basement slab level. Localised dewatering will only be required if the ground water level is found to be higher than expected.
 - During construction localised dewatering is proposed during construction via sump pumping. The sump will be located in the centre of the site to keep the dewatered level local to the site works. The dewatering will be monitored to ensure that no fines are washed in to the sump.
 - Permanent works A Grade 3 waterproofing system is proposed in the basement areas. A drained cavity system will be installed enabling ground water collection within sump locations. Sump pumps will pump ground water via a rising main to ground floor level where it will be discharged via gravity into the combined Thames Water sewer network. Non return valves will be used to mitigate against sewer surcharging.

Query 7 – Hydrology

N/A - Ongoing