Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-14
Job No. 16,440	

28 CANFIELD GARDENS NWG.

EXTERNAL LICHTWELL RETAINING WALL DESIGN.

SURCHARGE : SIMITAR TO OTHER EXTERNAL WALLS. LOAD CASES

FROMP (VEHICLE AXELS) = 10.0 km/m²
REAR (CARDEN) = 5.0 km/m²

WATER: LINED WEEP HOLES ARE TO BE FORMED PRESSURE NEAR THE BASE OF THE WALL. WATER TO RUN INTO DRAINAGE (BY GTAERS) IN THE BASE OF THE LICHTWELLS.

GENERAL WALL DESIEN CARRIED OUT USING TEDOS PROGRAM & ASSUMINZ:

- · (-35/52) (nADE COMENSIE
- · H-16 BARS @ ZOOME CLE TOD & BOTTOM TO BASG.
- · 416 BARS @ ZOOMERCH TO BOTH FACES IN WALL VERTICALLY.
- · HIZ BARS @ 250 mm ch To BOTHFACE; IN WALL HORIZONTALLY

4 Edward Square London N1 0SP

	Project				Job no.	
	28 CANFIELD GARDENS, LONDON				16.440 Start page no./Revision)	
Calcs for						
	LIGHTWELL RETAINING WALL SECTION (front)					
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS (BS 8002:1994)

PS

TEDDS calculation version 1.2.01.06

22/12/2016

Wal	do	taile

Surcharge load Vertical dead load

vvali details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 2700 mm	Wall stem thickness	$t_{\text{wall}} = 300 \text{ mm}$
Length of toe	l _{toe} = 1000 mm	Length of heel	$I_{heel} = 0 \text{ mm}$
Overall length of base	l _{base} = 1300 mm	Base thickness	$t_{\text{base}} = 450 \text{ mm}$
Height of retaining wall	h _{wall} = 3150 mm		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 450 \text{ mm}$
Position of downstand	l _{ds} = -250 mm		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 0 \text{ mm}$
Height of ground water	h _{water} = 0 mm	Density of water	$\gamma_{\text{water}} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	h _{eff} = 3150 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{\rm m}$ = 18.0 kN/m ³	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	ϕ'_b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	K _a =0.419	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		
Loading details			

Vertical live load

 $W_{live} = 0.0 \text{ kN/m}$

Surcharge = 10.0 kN/m^2

 $W_{dead} = 0.0 \text{ kN/m}$

4 Edward Square London N1 0SP

Project	
	28 CANFIELD GARDENS, LONDON

Calcs date

22/12/2016

Job no.

16.440

Calcs for

Calcs by

LIGHTWELL RETAINING WALL SECTION (front)

Checked by

Start page no./Revision PC

16

Approved date

Horizontal dead load Position of vertical load $F_{dead} = 0.0 \text{ kN/m}$

PS

 $I_{load} = 0 \text{ mm}$

Horizontal live load

Height of horizontal load

Checked date

 $F_{live} = 0.0 \text{ kN/m}$

 $h_{load} = 0 \text{ mm}$

Approved by

Loads shown in kN/m, pressures shown in kN/m²

Calculate propping force

Propping force

 $F_{prop} = 32.2 \text{ kN/m}$

Check bearing pressure

Total vertical reaction

R = 32.9 kN/m

Distance to reaction

 $x_{bar} = 650 \text{ mm}$

Eccentricity of reaction

e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe

 $p_{toe} = 25.3 \text{ kN/m}^2$

Bearing pressure at heel

 $p_{heel} = 25.3 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall

 $F_{prop_top} = 14.767 \text{ kN/m}$

Propping force to base of wall $F_{prop_base} = 17.480 \text{ kN/m}$

N1 0SP

4 Edward Square London

Project	Job no.	
28 CANFIELD GARDENS, LONDON	16.440	
Calcs for	Start page no./Revision	
LIGHTWELL RETAINING WALL SECTION (front)	PC 17	

Checked date

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Approved date

Ultimate limit state load factors

Dead load factor

 $\gamma_{fd} = 1.4$

Calcs by

PS

Calcs date

22/12/2016

Live load factor

Checked by

 $\gamma_{f,l} = 1.6$

Approved by

Earth pressure factor

 $\gamma_{f_e} = 1.4$

Calculate propping force

Propping force

 $F_{prop} = 32.2 \text{ kN/m}$

Calculate propping forces to top and base of wall

Propping force to top of wall

 $F_{prop top f} = 31.931 \text{ kN/m}$

Propping force to base of wall $F_{prop base f} = 45.947 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete

 $f_{cu} = 35 \text{ N/mm}^2$

Strength of reinforcement

 $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement

k = 0.13 %

Cover in toe

 $c_{toe} = 50 \text{ mm}$

4 200 ▶

Design of retaining wall toe

Shear at heel

 $V_{toe} = 20.6 \text{ kN/m}$

Moment at heel

 $M_{toe} = 13.6 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

 $A_{s_{toe_{req}}} = 585.0 \text{ mm}^2/\text{m}$

Area provided

 $A_{s \text{ toe prov}} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

PASS - Design shear stress is less than maximum shear stress

Check shear resistance at toe

Design shear stress

 $v_{toe} = 0.053 \text{ N/mm}^2$

Allowable shear stress

 $v_{adm} = 4.733 \text{ N/mm}^2$

Concrete shear stress $v_{c_toe} = 0.451 \text{ N/mm}^2$

 $v_{toe} < v_{c_{toe}}$ - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete

 $f_{cu} = 35 \text{ N/mm}^2$

Strength of reinforcement

 $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement

k = **0.13** %

4 Edward Square London N1 0SP

Project	
	28 CANFIELD GARDENS, LONDON

Job no.

16.440

Start page no./Revision

PC 18

LIGHTWELL RETAINING WALL SECTION (front)

Calcs for

Checked by Calcs by Calcs date PS 22/12/2016

Checked date

Approved by Approved date

Cover in stem

 $c_{stem} = 45 \text{ mm}$

Cover in wall

Cwall = 45 mm

200

Design of retaining wall stem

Shear at base of stem

 $V_{stem} = 57.4 \text{ kN/m}$

Moment at base of stem

 $M_{stem} = 33.2 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

 $A_{s_stem_req} = 390.0 \text{ mm}^2/\text{m}$

Area provided

 $A_{s_stem_prov} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress

 $v_{stem} = 0.233 \text{ N/mm}^2$

Allowable shear stress

 $v_{adm} = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress

 $v_{c stem} = 0.591 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

Design of retaining wall at mid height

Moment at mid height

 $M_{\text{wall}} = 15.7 \text{ kNm/m}$

Compression reinforcement is not required

Reinforcement provided

12 mm dia.bars @ 200 mm centres

Area required

 $A_{s \text{ wall req}} = 390.0 \text{ mm}^2/\text{m}$

Area provided

 $A_{s_wall_prov} = 565 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio

 $ratio_{max} = 40.00$

Actual span/depth ratio

 $ratio_{act} = 10.93$

PASS - Span to depth ratio is acceptable

4 Edward Square London N1 0SP

Project				Job no.		
	28 CANFIELD GARDENS, LONDON				16.440	
Calcs for LIGHTWELL RETAINING WALL SECTION			TION (front)	Start page no./Re	evision 19	
Calcs by	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved date	

Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$ Wall bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$ Stem bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$