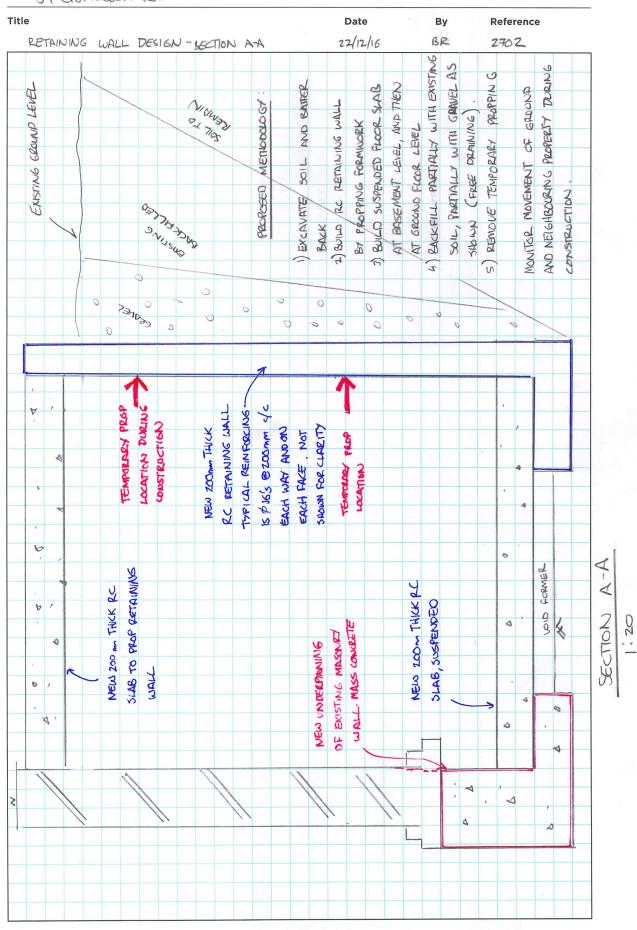

Appendix F: Underpinning and retaining wall information

This section includes:

- Typical underpinning and retaining wall details
- Proposed construction methodologies
- Typical structural calculations for basement extension retaining wall


BASEMENT PLAN NTS

MO MENTUM 59 CROFTOOWN ROAD RETAINING WALL DESIGN-PLANS 2702/SKO 22/12/2016 BR

MOMENTUM

structural engineers

59 Croftolown Road

Project

MOMENTUM structural engineers

59 Croftdown Road

e ET#	AININ	6 W	ALL I	PESIGI	V-5EC	-TTON) B	-ß				22/	Date 12/1	ß	By ת		eferer 2702	
EXISTING GROUND LEVEL			PLOPOSED METHODOLOGY :	1) EXCAVATE TOP 13 OF SOIL. BOARD AND PROP TO MAINTAIN VERTICAL	2) REPEAT 1) UNTIL AT THE BASE AND EXCAUNTION IS COMPLETELY	s) CAST RC WALL IN SECTIONS USING BARED AS REAR REMUMERY			LAST BOTH	7) ONCE SET, AND OTHER BASEMENT WALLS ARE COMPLETED	REMOVE PROPS.	TO FE REFER WITH CONTRACTOR				0		
				•														
. 9				TEMPCEART		WALL, TYPICAL REINORLING IS	p.16's e 200mm clc EACH with	EACH FACE (SOOMPO) . NOT SHOWN	FOR CLARITY		TENPOGARY	4004			4004	NEW 200, THICK RC SLAB		LOD FORMEL

Project

59 Croftdown Road

Typical structural calculations

22 December 2016. 2702 Rev[00]

Contents

This document has been prepared for the sole benefit, use and information of the client and for the purposes set out in the following pages.

The liability of Momentum Consulting Engineers Ltd in respect of the information contained in the document will not extend to any third party.

Author

B Ramsay

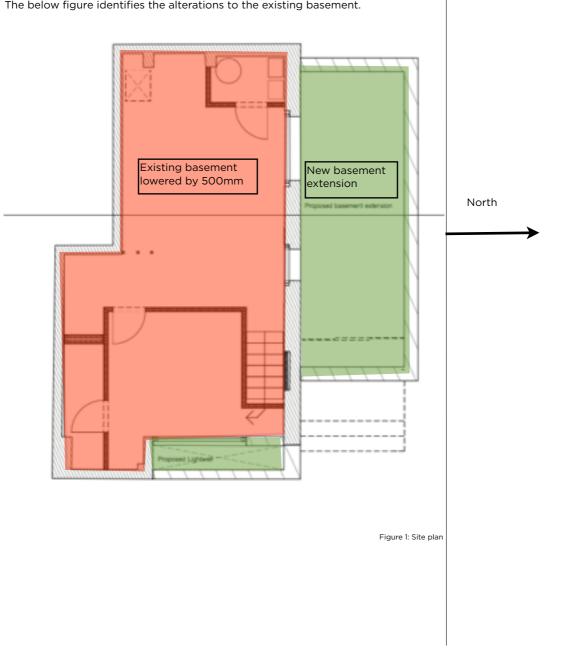
1	Introduction	3
2	Underpinning design	4
2.1	4	
3	Typical retaining wall design	5

Issue History

Rev.	Date	Comments
00	22.12.2016	First Issue

Project

59 Croftdown Road


Title	Date	Ву	Reference
Structural Calculations	22.12.2016	BR	2702. BC . 3

Introduction 1 These calculations are to provide the typical design for the proposed basement extension at 59 Croftdown Road. The proposal is for the existing basement to be lowered by 500mm, with a 2.5m x 6.8m basement extension on the Northern face of the building.

These structural calculations cover:

- a) Typical underpinning for the existing structure
- b) Typical propped retaining wall design for the new extension.

The below figure identifies the alterations to the existing basement.

Project

59 Croftdown Road

Title	Date	Ву	Reference
Structural Calculations	22.12.2016	BR	2702. BC . 4

2 Underpinning design 2.1 Underpinning philosophy The existing foundations consist of corbeled masonry with a wider concrete crush footing underneath as found in the site investigation. The proposed underpinning consists of reinforced concrete lowering the existing foundations by 500mm. The same width of footing will be maintained as a minimum therefore maintaining the same scenario typically. Based on our understanding of the structure, the northern, eastern and southern walls are currently retaining soil with the western wall being a party wall. The southern, eastern and western walls are all supported by return walls or piers at regular centres. Based on this, the walls are considered to be spanning horizontally typically, with piers and return walls spanning vertically. The 500mm underpinning does not change the existing scenario as effectively a rigid block will be provided at the base to support the existing wall above. The underpinning will be designed to take the shear load from the piers and return walls to the new foundation level via dowels. For the northern wall we are removing the soil being retained over the majority of the walls length, and are providing a new retained structure at the new external edge of the basement. Therefore the wall is only required to take vertical loading, which will be adequate by inspection as we will provide the same width of foundation as the existing as a minimum.

Project

59 Croftdown Road

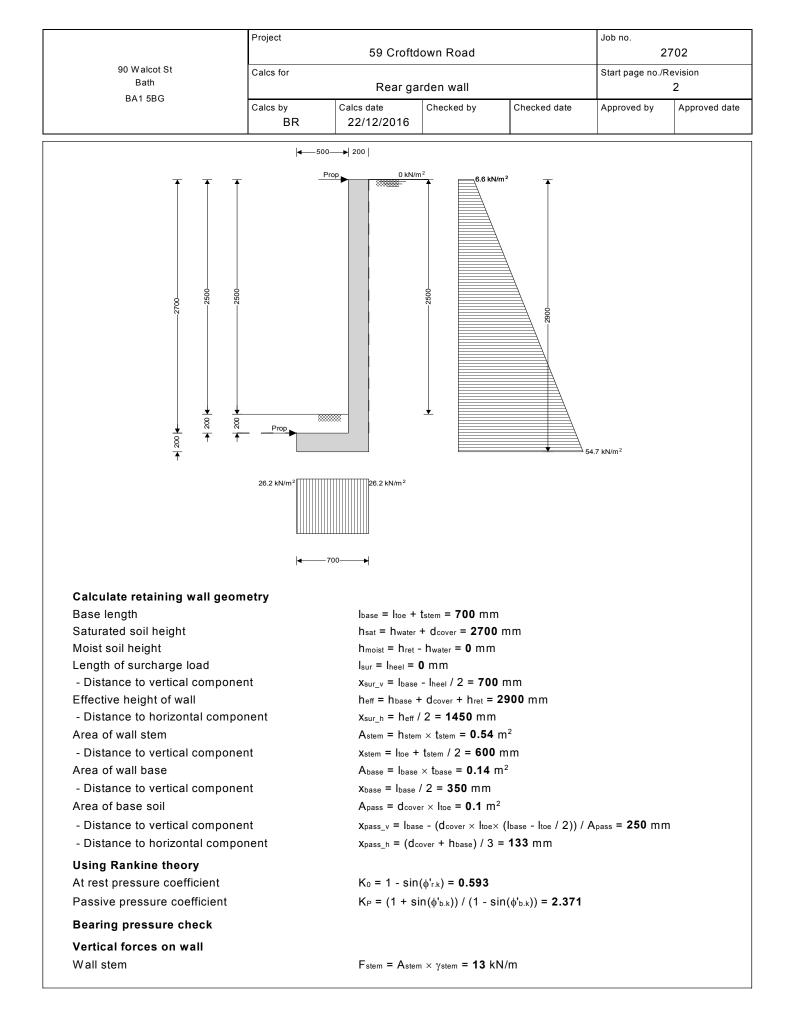
Title	Date	Ву	Reference
Structural Calculations	22.12.2016	BR	2702. BC . 5

3 Typical retaining wall design

Typical retaining wall calculations have been provided using Tedds. Refer to the attached for the calculations. The parameters for the soil have been obtained from the Ground and Water site investigation report.

The retaining wall has been designed as a reinforced concrete propped cantilever. It will be propped at ground floor via the suspended floor slab and at basement level via another suspended floor slab.

The ground floor slab is then restrained by return walls so is required to act as a diaphragm.


	Project				Job no.		
	59 Croftdown Road					2702	
90 W alcot St Bath	Calcs for Rear garden wall				Start page no./Revision 1		
BA1 5BG	Calcs by BR	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved date	

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.4.09

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 2700 mm
Prop height	h _{prop} = 2700 mm
Stem thickness	tstem = 200 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{\text{stem}} = 24 \text{ kN/m}^3$
Toe length	l _{toe} = 500 mm
Base thickness	t _{base} = 200 mm
Base density	γ _{base} = 24 kN/m ³
Height of retained soil	h _{ret} = 2500 mm
Angle of soil surface	$\beta = 0 \operatorname{deg}$
Depth of cover	d _{cover} = 200 mm
Depth of excavation	d _{exc} = 200 mm
Height of water	h _{water} = 2500 mm
Water density	γw = 9.8 kN/m ³
Retained soil properties	
Soil type	Stiff clay
Moist density	γmr = 20 kN/m ³
Saturated density	γ_{sr} = 20 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 24 deg
Characteristic wall friction angle	$\delta_{r.k} = 9 \text{ deg}$
Base soil properties	
Soil type	Stiff clay
Moist density	γmb = 20 kN/m ³
Characteristic effective shear resistance angle	φ'ь. k = 24 deg
Characteristic wall friction angle	δ _{b.k} = 12 deg
Characteristic base friction angle	$\delta_{bb.k}$ = 16 deg
Presumed bearing capacity	Pbearing = 150 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 10 kN/m ²
-	Surcharge _G = 10 kN/m ²

	Project Job no. 59 Croftdown Road 2702							
90 Walcot St	Calcs for		Start page no./Revision					
Bath	Ould's for	Rear ga	rden wall		otart page no./	3		
BA1 5BG	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da		
	BR	22/12/2016						
Wall base		F _{base} = A _{bas}	e × γ _{base} = 3.4	kN/m				
Base soil		$F_{pass_v} = A_p$	ass × γmb = 2 kN	J/m				
Total		F _{total_v} = F _{ste}	em + Fbase + Fpa	ass_v + Fwater_v = 1 8	8.3 kN/m			
Horizontal forces on wall								
Surcharge load		Fsur_h = Ko >	< Surcharge	≺ h _{eff} = 17.2 kN/m	ı			
Saturated retained soil			•	_{at} + h _{base}) ² / 2 = 2				
Water				_{er} + h _{base}) ² / 2 = 4				
Moist retained soil				h _{sat} - h _{base}) ² / 2 +		_{se}) × (h _{sat} +		
		h_{base}) = 0 kN/m						
Total		F _{total_h} = F _{sat_h} + F _{moist_h} + F _{water_h} + F _{sur_h} = 83.9 kN/m						
Moments on wall								
Wall stem		M _{stem} = F _{ster}	m × x _{stem} = 7.8	kNm/m				
Wall base	Mbase = Fbas	e × Xbase = 1.2	kNm/m					
Surcharge load	M _{sur} = -F _{sur}	_h × Xsur_h = -24	. 9 kNm/m					
Saturated retained soil		$M_{sat} = -F_{sat_h} \times x_{sat_h} = -24.6 \text{ kNm/m}$						
Water		M _{water} = -F _w	ater_h × Xwater_h =	= -39.9 kNm/m				
Moist retained soil		Mmoist = -Fm	oist_h $ imes$ Xmoist_h =	= 0 kNm/m				
Base soil		M _{pass} = F _{pas}	$s_v \times x_{pass_v} = 0$).5 kNm/m				
Total		Mtotal = Mste	m + Mbase + Msa	at + Mmoist + Mpass	+ M _{water} + M _{sur}	= -79.9		
		kNm/m						
Check bearing pressure								
Propping force to stem			$min((F_{total_v} \times I_t))$	_{base} / 2 - M _{total}) / (h	n_{prop} + t_{base}), F_{to}	_{tal_h}) = 29.8		
		kN/m		_,,				
Propping force to base		Fprop_base = Ftotal_h - Fprop_stem = 54.1 kN/m						
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 86.4 \text{ kNm/m}$							
Distance to reaction			+ Mprop) / Ftotal_	v = 350 mm				
Eccentricity of reaction			₀ / 2 = 0 mm					
Loaded length of base		$I_{load} = I_{base} =$		A1/m ²				
Bearing pressure at toe								
Bearing pressure at heel		•						
Factor of safety		Allowable bearin		, q _{heel}) = 5.731				

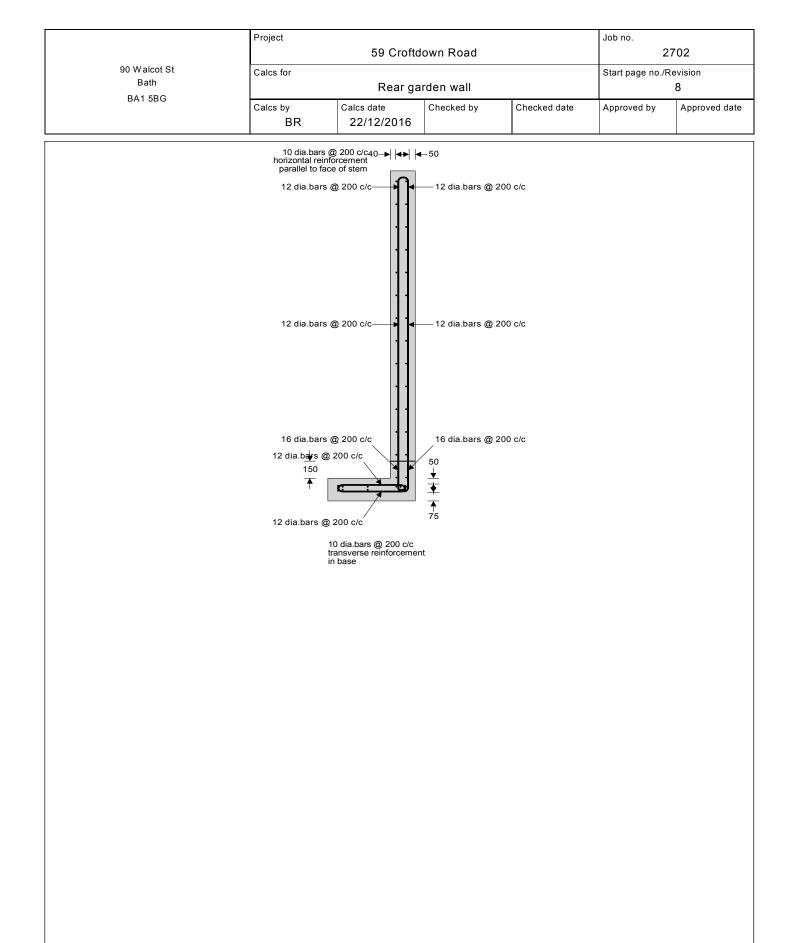
RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.4.09

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

C30/37
f _{ck} = 30 N/mm ²
f _{ck,cube} = 37 N/mm ²
$f_{cm} = f_{ck} + 8 N/mm^2 = 38 N/mm^2$
f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.0 N/mm ²
E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32837 N/mm ²
γc = 1.50


Pr	roject	Job no. 2	Job no. 2702						
90 Walcot St	alcs for	Start page no./Revision							
Bath			o tait pago nom	4					
BA1 5BG	alcs by BR	Calcs date 22/12/2016	-			Approved da			
Compressive strength coefficient -	cl.3.1.6(1)	α _{cc} = 0.85							
Design compressive concrete stre	ngth - exp.3.1	5 $f_{cd} = \alpha_{cc} \times f_c$	κ / γc = 17.0 N	/mm²					
Maximum aggregate size		h _{agg} = 20 m	m						
Reinforcement details									
Characteristic yield strength of reir	nforcement	f _{yk} = 500 N/	mm²						
Modulus of elasticity of reinforcem	ent	Es = 20000	0 N/mm²						
Partial factor for reinforcing steel -	Table 2.1N	γs = 1.15							
Design yield strength of reinforcem	nent	fyd = fyk / γs :	= 435 N/mm ²						
Cover to reinforcement									
Front face of stem		csf = 40 mm	c _{sf} = 40 mm						
Rear face of stem		_{Csr} = 50 mm	c _{sr} = 50 mm						
Top face of base		c _{bt} = 50 mm							
Bottom face of base		c _{bb} = 75 mm							
Check stem design at 1439 mm									
Depth of section		h = 200 mm	1						
Rectangular section in flexure -	Section 6.1								
Design bending moment combinat	tion 1	M = 16.6 kM	M = 16.6 kNm/m						
Depth to tension reinforcement			$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 144 \text{ mm}$						
			× f _{ck}) = 0.027						
		K' = 0.207							
Lover arm		z = min/0 E		No compressio		nt is requi			
Lever arm		$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 137 mm$							
Depth of neutral axis	uirod		$x = 2.5 \times (d - z) = 18 \text{ mm}$						
Area of tension reinforcement requ Tension reinforcement provided		A _{sfM.req} = M / (f _{yd} × z) = 278 mm²/m 12 dia.bars @ 200 c/c							
Area of tension reinforcement provided		AsfM.prov = $\pi \times \phi_{sfM}^2$ / (4 × SsfM) = 565 mm ² /m							
Minimum area of reinforcement - e		$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 217 mm2/m$							
Maximum area of reinforcement - of	-		$04 \times h = 8000$		////				
	0		, A _{sfM.min}) / A _{sfM}						
PI	ASS - Area of		,	greater than are	a of reinforce	nent reaui			

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 12.3 kNm/m
Tensile stress in reinforcement	σ_s = M _{sls} / (A _{sfM.prov} × z) = 158.5 N/mm ²
Load duration	Long term
Load duration factor	kt = 0.4
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 60667 mm^2/m$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sfM.prov} / A_{c.eff} = 0.009$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 6.091$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425

	Filgett	Project 59 Croftdown Road							
90 Walcot St Bath BA1 5BG	Calcs for				2702 Start page no./Revision				
		Rear ga	rden wall			5			
	Calcs by BR	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved o			
Maximum crack spacing -	exp.7.11	s _{r.max} = k ₃ ×	c_{sf} + $k_1 \times k_2 \times$	$k_4 \times \phi_{sfM} / \rho_{p.eff}$ =	355 mm				
Maximum crack width - ex	p.7.8	$W_k = S_{r.max} \times$	$max(\sigma_s - k_t \times$	(f _{ct.eff} / $\rho_{p.eff}$) × (1	+ $\alpha_e \times \rho_{p.eff}$), 0.	$6 \times \sigma_s$) / Es			
		w _k = 0.169	mm						
		$w_k / w_{max} = 0$							
		PASS	- Maximum cı	rack width is lea	ss than limitin	g crack w			
Check stem design at ba Depth of section	ase of stem	h = 200 mm	ı						
Rectangular section in f	lexure - Section 6.1								
Design bending moment of		M = 35.4 kM	lm/m						
Depth to tension reinforce			φ _{sr} / 2 = 142 m	m					
			× f _{ck}) = 0.058						
		K' = 0.207							
			K' > K -	No compressio	n reinforceme	ent is requ			
Lever arm		z = min(0.5		-					
Depth of neutral axis		z = min(0.5 + 0.5 × (1 – 3.53 × K) ^{0.5} , 0.95) × d = 134 mm x = 2.5 × (d – z) = 19 mm							
•	Area of tension reinforcement required		$A_{sr.req} = M / (f_{yd} \times z) = 606 \text{ mm}^2/\text{m}$						
Tension reinforcement pro		16 dia.bars @ 200 c/c							
Area of tension reinforcement provided		$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2/\text{m}$							
Minimum area of reinforcement - exp.9.1N		$A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 214 \text{ mm}^2/\text{m}$							
Maximum area of reinforce	-		4 × h = 8000 n						
			Asr.min) / Asr.prov						
	PASS - Area o	f reinforcement			a of reinforce	ment requ			
Crack control - Section 7	7.3								
Limiting crack width		w _{max} = 0.3 r	nm						
Variable load factor - EN1	990 – Table A1.1	ψ2 = 0.6							
Serviceability bending mo	ment	M _{sls} = 26.2	kNm/m						
Tensile stress in reinforcement		σ_s = Msis / (Asr.prov × z) = 194.2 N/mm ²							
Load duration		Long term							
Load duration factor		k _t = 0.4							
Effective area of concrete	in tension			n – x) / 3, h / 2) =	• 60205 mm²/m	1			
Mean value of concrete te	nsile strength	$f_{ct.eff} = f_{ctm} =$							
Reinforcement ratio		$\rho_{p.eff} = A_{sr.pro}$	ov / Ac.eff = 0.01	7					
Modular ratio		$\alpha_{e} = E_{s} / E_{cr}$	m = 6.091						
Bond property coefficient		$k_1 = 0.8$							
Strain distribution coefficie	$k_2 = 0.5$								
		k ₃ = 3.4							
Maximum and the second	ave 7.14	k4 = 0.425	A 1 b 1		22 m				
Maximum crack spacing - exp.7.11 Maximum crack width - exp.7.8		$\mathbf{s}_{r,\text{max}} = \mathbf{k}_3 \times \mathbf{C}_{\text{sr}} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_4 \times \phi_{\text{sr}} / \rho_{\text{p,eff}} = 333 \text{ mm}$							
		$W_{k} = S_{r,max} \times Max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$							
		w _k = 0.196 mm w _k / w _{max} = 0.653							
				rack width is lea	ss than limitin	g crack w			
Rectangular section in s	hear - Section 6.2								
Design shear force			1/m						
-		V = 75.9 kN	4/111						
-			γc = 0.120						

F	Project 59 Croftdown Road				Job no. 2702			
	Calcs for				Start page no./Revision 6			
Bath BA1 5BG		Rear ga	arden wall					
c	Calcs by BR	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved d		
Longitudinal reinforcement ratio		ρι = min(As	_{f.prov} / d, 0.02) =	= 0.007				
		vmin = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{\prime 2} \times f_{ck}^{0.5} = 0.542$	N/mm²			
Design shear resistance - exp.6.2	a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	00 N ² /mm ⁴ × ρ I ×	$f_{ck})^{1/3}, v_{min}) \times d$			
		V _{Rd.c} = 94.4	4 kN/m					
		$V / V_{Rd.c} = 0$	0.805					
		PAS	SS - Design sh	ear resistance (exceeds desig	yn shear fo		
Check stem design at prop								
Depth of section		h = 200 mr	n					
Rectangular section in shear - S	Section 6.2							
Design shear force		V = 23.7 kl						
			8 / γc = 0.120					
			⊦ √(200 mm / d					
Longitudinal reinforcement ratio			$\rho_{I} = \min(A_{sf1.prov} / d, 0.02) = 0.004$					
		v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.542 N/mm ²						
Design shear resistance - exp.6.2	a & 6.2b			$00 \text{ N}^2/\text{mm}^4 \times \rho_1 \times$	$(f_{ck})^{1/3}, V_{min}) \times d$			
		$V_{Rd.c} = 77.9$						
		$V / V_{Rd.c} = 0$		ear resistance (axaaada daala	an choor fo		
Horizontal reinforcement parall	el to face of s		-	lear resistance	exceeds desig	jii sileal lu		
Minimum area of reinforcement -				v, 0.001 × tstem) =	251 mm²/m			
Maximum spacing of reinforcement				,,				
Transverse reinforcement provide			s @ 200 c/c					
Area of transverse reinforcement	provided	$A_{sx.prov} = \pi$	$\times \phi_{sx}^2$ / (4 $\times s_{sx}^2$) = 393 mm²/m				
P	ASS - Area of	reinforcemen	t provided is g	greater than are	a of reinforce	ment requi		
Check base design at toe								
Depth of section		h = 200 mr	n					
Rectangular section in flexure -	Section 6.1							
Design bending moment combina	tion 1	M = 2.9 kN	m/m					
Depth to tension reinforcement		d = h - c _{bb} - φ _{bb} / 2 = 119 mm						
			\times f _{ck}) = 0.007					
		K' = 0.207						
		7 - min/0 5		No compressio		-		
Lever arm Depth of neutral axis				.53 × K) ^{0.5} , 0.95)	× u – 113 mm			
Area of tension reinforcement required			$x = 2.5 \times (d - z) = 15 \text{ mm}$ A _{bb.reg} = M / (f _{yd} × z) = 60 mm ² /m					
Tension reinforcement provided			Abb.req = M / ($r_{yd} \times 2$) = 60 mm ^{-/m} 12 dia.bars @ 200 c/c					
Area of tension reinforcement provided			-	o) = 565 mm²/m				
Minimum area of reinforcement -				f_{yk} , 0.0013) × d =	179 mm²/m			
	-		$04 \times h = 8000$					
Maximum area of reinforcement -	• (-)			ov = 0.317				
Maximum area of reinforcement -		IIIax(Abb.red	, Abb.min) / A bb.br					
Maximum area of reinforcement -	ASS - Area of			greater than are	a of reinforce	ment requi		
	ASS - Area of				a of reinforce	ment requi		
P	ASS - Area of		t provided is g		a of reinforce	ment requi		
P. Crack control - Section 7.3		reinforcement	t provided is g		a of reinforce	ment requi		

90 Walcot St Bath BA1 5BG	Project	59 Croftd	own Road		Job no. 2702			
	Calco for							
		Calcs for Rear garden wall				Start page no./Revision 7		
	Calcs by BR	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved		
Tensile stress in reinforceme	nt	$\sigma_s = M_{sls} / (M_{sls})$	$A_{bb.prov} \times z) = 3$	4 N/mm ²				
Load duration		Long term						
Load duration factor		k _t = 0.4						
Effective area of concrete in	tension	A _{c.eff} = min(2.5 × (h - d), (h – x) / 3, h / 2) =	61708 mm²/m			
Mean value of concrete tensi	le strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²					
Reinforcement ratio		$\rho_{p.eff} = A_{bb.pr}$	ov / Ac.eff = 0.0	09				
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 6.091					
Bond property coefficient		k1 = 0.8						
Strain distribution coefficient		k ₂ = 0.5	k ₂ = 0.5					
		k3 = 3.4						
		k ₄ = 0.425						
Maximum crack spacing - exp.7.11		$s_{r.max}$ = $k_3 \times c_{bb}$ + $k_1 \times k_2 \times k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 478 mm						
Maximum crack width - exp.7	.8	$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$						
		w _k = 0.049	mm					
		Wk / Wmax =						
		PASS	- Maximum c	rack width is le	ss than limitin	g crack w		
Rectangular section in she	ar - Section 6.2							
Design shear force		V = 11.7 kN/m						
		$C_{Rd,c} = 0.18$	/ γc = 0.120					
		k = min(1 +	$\sqrt{200}$ mm / d), 2) = 2.000				
Longitudinal reinforcement ratio		ρι = min(Abb.prov / d, 0.02) = 0.005						
		v _{min} = 0.035	$N^{1/2}/mm \times k^{3/2}$	$^{2} \times f_{ck}^{0.5} = 0.542$	N/mm²			
Design shear resistance - exp.6.2a & 6.2b		$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{N}^2/\text{mm}^4 \times \rho_{\text{I}} \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$						
		V _{Rd.c} = 69.3	kN/m					
		$V / V_{Rd.c} = 0$.169					
		PAS	S - Design sh	ear resistance	exceeds desig	n shear fo		
Secondary transverse reinf	orcement to base ·	Section 9.3						
Minimum area of reinforceme			$\times A_{bb.prov}$ = 11	3 mm²/m				
Maximum spacing of reinforcement – cl.9.3.1.1(3)								
Transverse reinforcement provided		10 dia.bars @ 200 c/c A _{bx.prov} = $\pi \times \phi_{bx}^2$ / (4 × s _{bx}) = 393 mm ² /m						
Area of transverse reinforcen			-					

