Self supporting frame construction from aluminium hollow profiles. Double-walled side panels from galvanised sheet steel. Intake cone for ideal airflow, spigot and flexible connector for duct connection. With discharge adapter (square to circular) on the pressure side for low-loss discharge and flexible sleeve to reduce vibration transmission. Simple positioning by standard crane hooks. Installation must be carried out with condensation discharge showing downward. Flexible assembly by three possible centrifugal discharge directions via discharge adapter. Outdoor installation is possible using outdoor cover hood and external weather louvres (accessories).

Impeller:

Smooth running backward curved aluminium centrifugal impeller highly efficient and direct driven. Energy efficient with a low noise development. Dynamically balanced together with the motor to DIN ISO 1940 Pt.1 - class 6.3 Motor:

Maintenance free external rotor motor or IEC standard motor protected to IP 44 and 54. With ball bearings and radio suppressed

as standard. **Electrical Connection:**

Standard terminal box (IP54) fitted on the motor support plate.

Motor Protection:

Motors have thermal contacts wired to the terminal block and must be connected to a motor protection unit.

Speed Control:

Speed controllable by voltage reduction using transformer controller.

Туре	:	Re	f. No.	R.	P.M.		und evel	po	otor ower minal)	Ful	ırrent I Load	100	aximum a ow temp	and the latest and th	Nor weig (ne	ht	5 ste		
				m	in ⁻¹		() at 4 m	ŀ	κW	A	mps		+°C		kg	l	Туре		Ref.
GBW	/ 560/4	1	5508	1.	370	4	14	2	2.0		8.7		60		90)	TSW 1	.0	1498
	Volume Flow m3/s against static pressure																		
0	50	100	150	200	250	300	400	500	600	700	800								_
2.77	2.72	2.55	2.48	2.41	2.31	2.22	2.0	1.72	1.44	1.00	0.36						He	lio	\$

HELIOS FAN - GBW 560 / 4 SIZE: W.800 X D.800 X H.800 mm

Certified Performance Data

Quiet-Duct® Silencer Type: LFS

Superior Low Frequency Silencers with Forward and Reverse Flow Ratings

Standard modular widths are multiples of 300mm, other

LFS silencers are advantageous where low frequency DIL requirements are high in HVAC systems. In some systems high frequency attenuation may be provided by the system components or may not be needed.

- Aerodynamic inlet and discharge to splitter elements to reduce pressure drop and conserve energy
- Perforated galvanised steel facings to all splitter

Designating Silencers (Example)

Model: 5LFS-600-600

Length Type

Average weight 85kg/m³

Self-Noise Power Levels dB re: 10⁻¹² Watts (for a 0.37m² face area silencer)

Г		Octave Band	1	2	3	4	5	6	7	8
1	IAC LFS Model	Hz	63	125	250	500	1K	2K	4K	8K
L		Silencer Face Velocity, m/s								
Г		-10	58	54	58	61	62	63	65	63
1		-7.5	51	49	53	56	56	59	60	53
1	LFS All Lengths	-5	45	42	45	43	45	49	44	37
1	LFS All Lengths	+5	46	42	45	43	45	49	44	37
1		+7.5	56	54	57	56	52	56	57	51
L		+10	68	64	65	66	61	61	64	61

Face Area Adjustment Factors (add or subtract from Lw values above)

Quiet-Duct® Face Area, m ² *	0.05	0.09	0.19	0.37	0.74	1.5	3.0	6.0	12.0
Lw Adjustment Factor, dB	-9	-6	-3	0	+3	+6	+9	+12	+15

^{*} For intermediate face areas, interpolate to the nearest whole number

Aerodynamic Performance

iac acoustics

IAC Model	Length (mm)		Static Pressure Drop N/m²									
	900	10	12	17	22	27	35	42	50			
LFS	1500	10	15	20	25	32	40	47	55			
LFS	2100	10	15	20	25	33	40	50	57			
	3000	10	15	22	27	35	45	52	65			
	lencer Face elocity, m/s	1.27	1.52	1.78	2.03	2.29	2.54	2.79	3.05			

www.iac-acoustics.com

Certified Performance Data

Dynamic Insertion Loss (DIL) Ratings: Forward (+) / Reverse (-) Flow

AC LFS Model (length	Octave Band	1	2	3	4	5	6	7	8
in mm)	Hz	63	125	250	500	1K	2K	4K	81
	Silencer Face Velocity, m/s	Dynamic Insertion Loss, dB							
	-10	8	14	25	29	27	20	16	1
3LFS (900)	-5	7	13	23	28	26	20	16	1
	0	8	13	23	28	27	21	17	1
	+5	9	12	22	28	27	21	18	1
	+10	7	11	21	25	25	21	17	1
	-10	11	19	31	36	35	24	18	1
	-5	10	17	29	35	34	24	19	1
4LFS (1200)	0	11	17	28	34	34	25	20	1
	+5	11	16	27	32	34	24	20	1
	+10	9	14	25	29	31	25	19	1
	-10	13	23	36	42	42	28	19	1
	-5	13	21	35	41	41	28	21	- 1
5LFS (1500)	0	13	20	33	39	41	28	22	1
	+5	12	19	31	36	40	27	22	1
	+10	10	17	28	33	37	29	20	1
	-10	14	24	38	46	47	32	21	-
	-5	14	23	39	45	45	32	23	1
6LFS (1800)	0	13	22	37	43	44	31	24	
	+5	12	21	34	40	43	30	24	
	+10	10	20	33	39	41	32	22	_
	-10	14	25	40	50	51	35	22	
	-5	14	24	42	49	49	35	24	ď
7LFS (2100)	0	13	24	40	47	47	34	25	Ì
	+5	12	23	37	44	45	33	25	-
	+10	10	22	37	44	45	34	24	_
	-10	16	27	42	51	52	38	23	
01 EC (0400)	-5	15	27	45	50	50	38	26	
8LFS (2400)	0	15	26	43	49	49	38	27	
	+5	14	25	40	47	48	38	28	1
	+10 -10	12 17	23	40	47	48 52	39	28	1
	-10 -5	17	28 29	44	51 51		40	24 27	
9LFS (2700)	-5 0	16	29	46	50	52 51	42 42	30	2
7LF3 (2700)	+5	15	26	44	49	50	42	30	1
	+5	14	24	44	50	50	42	32	2
	+10 -10	19	30	46	50	53	43	25	1
	-10 -5	18	32	50	52	53	45	29	1
10LFS (3000)	-5 0	18	30	49	52	53	46	32	2
10LF5 (3000)	+5	17	28	47	52	53	46	35	2
	+10	16	25	46	53	53	48	36	2

- The tabulated airflow in m/s is based upon tests conducted in the IAC Acoustics R&D Laboratory, in accordance with applicable The tabulated airflow in m/s is based upon tests conducted in the IAC Acoustics R&D Laboratory, in accordance with applicable sections of internationally recognised airflow test codes. These codes require specific lengths of straight duct both upstream and downstream of the test specimen. Non-compliance with these codes can add from ½ to several velocity heads depending on specific conditions. The downstream measurements are made far enough downstream to include static regain. Therefore, if silencers are installed immediately before or after elbows, transitions or at the intake or discharge of a system, sufficient allowance to compensate for these factors must be included when calculating the operating static pressure loss through the silencer. See pages 10 & 11 for further details.

 Silencer Face Area is the cross-sectional area at the silencer entrance or exit
 Face velocity [FVI in m/s is the airflow in m³/s divided by the silencer face area in m³
 Pressure drop [PD] for any face velocity can be calculated from the equation: PD = IActual FV / Catalogue FVJ² x [Catalogue PD]

iac acoustics

www.iac-acoustics.com

SILENCER - 3 LFS 900 SIZE: W.600 X D.600 X H.900 mm

GENERAL NOTES:

- ALL MEASUREMENTS ARE NOMINAL AND MAY VARY WITH THE APPROVAL OF ZD DESIGN LTD

SCALE BAR

ZD DESIGN Interior Design & Architecture

Email:francois@zddesign.co.uk www.zddesign.co.uk

PROJECT TITLE	BAKE AND CAKE
LOCATION	178 KILBURN HIGH ROAD - LONDON NW6 4JD
CLIENT	Mr. MOHAMMED TARHINI
SHEET TITLE	PROPOSED FAN SPECS
BUILD AREA	103 Sqm - 1107 SQFT
INTERIOR ARCHITECTURE	FZ
DRAWINGS	FZ

DATE	DATE 30 DECEMBE					
SCALE	AS SHOWN - A3					
JOB N	FZ.BB-103	21	0-09-16			
REVISED	PAGE	1	FLOOR			
Α	A-106	GROUND FLOOR				

APPROVED - BY CLIENT

PROPOSED FAN AND SPECS