Eight Associates Ground Floor 57a Great Suffolk Street London SE1 0BB

+44 (0) 20 7043 0418

www.eightassociates.co.uk info@eightassociates.co.uk

# Planning Statement Energy Assessment 176 Prince of Wales Road

| Document information:   | Prepared for:<br>Zabludowicz Art Trust                                                                                                                     | Date of current issue:<br>12/12/2016                                                                                                                       |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         |                                                                                                                                                            | Issue number: 2                                                                                                                                            |  |
|                         |                                                                                                                                                            | Our reference:<br>1930-Energy Assessment-1612-12ch.docx                                                                                                    |  |
| Assessment information: | Prepared by:<br>Oliver Morris                                                                                                                              | Quality assured by:<br>Chris Hocknell                                                                                                                      |  |
|                         | Signature:                                                                                                                                                 | Signature:                                                                                                                                                 |  |
|                         | Oliver Morris                                                                                                                                              | Chris Hocknell                                                                                                                                             |  |
| Disclaimer:             | This report is made on behalf of l<br>client - or any third party relying c<br>tort or breach of statutory duty (ir                                        | Eight Associates. By receiving the report and acting on it, the n it - accepts that no individual is personally liable in contract, including negligence). |  |
| Contents:               | Executive Summary                                                                                                                                          |                                                                                                                                                            |  |
|                         | Establishing Emissions: The Carbon Profile                                                                                                                 |                                                                                                                                                            |  |
|                         | Be Lean': Demand Reduction Measures                                                                                                                        |                                                                                                                                                            |  |
|                         | 'Be Clean'. Connection to Existing and Planned Networks                                                                                                    |                                                                                                                                                            |  |
|                         | 'Be Clean': Site Wide Networks and CHP                                                                                                                     |                                                                                                                                                            |  |
|                         | 'Be Clean': Site Wide Networks a                                                                                                                           | and CHP                                                                                                                                                    |  |
|                         | 'Be Clean': Site Wide Networks a<br>'Be Clean': Cooling                                                                                                    | and CHP                                                                                                                                                    |  |
|                         | 'Be Clean': Site Wide Networks a<br>'Be Clean': Cooling<br>'Be Green': Renewable Energy                                                                    | and CHP                                                                                                                                                    |  |
|                         | 'Be Clean': Site Wide Networks a<br>'Be Clean': Cooling<br>'Be Green': Renewable Energy<br>'Be Green': Summary of Renewa                                   | and CHP                                                                                                                                                    |  |
|                         | 'Be Clean': Site Wide Networks a<br>'Be Clean': Cooling<br>'Be Green': Renewable Energy<br>'Be Green': Summary of Renewa<br>'Be Green': ASHP               | and CHP                                                                                                                                                    |  |
|                         | 'Be Clean': Site Wide Networks a<br>'Be Clean': Cooling<br>'Be Green': Renewable Energy<br>'Be Green': Summary of Renewa<br>'Be Green': ASHP<br>Conclusion | and CHP                                                                                                                                                    |  |

# Executive Summary Energy Assessment 176 Prince of Wales Road

| The proposal comprises the extension of the existing middle and rear gallery buildings to provide additional gallery space for the art gallery. Located within the London Borough of Camden, the development has a total gross internal area of approximately 1,633 m <sup>2</sup> .                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Please note that only the refurbished side of the building (west side) will be analysed in this report. The east side of the building comprises 100% retained elements, which are not subject to any renovation work. Moreover, the existing building services will essentially be retained. Therefore for the purposes of this energy strategy the building has been subdivided with the existing unrefurbished part of the building excluded. |
| In accordance with the GLA's London Plan Policy 5.2, the London Borough of Camden's Core<br>Strategy Policy, the scheme aspires to achieve a 35% reduction in carbon emissions over<br>minimum building regulations Part L2B.                                                                                                                                                                                                                   |
| <ul> <li>The scheme complies with the 2013 Building Regulations Part L and the minimum energy efficiency targets in the following documents have been followed:</li> <li>Refurbishment (Part L2B) – Consequential improvements to refurbished areas have been made to ensure that the building complies with Part L, to the extent that such improvements are technically, functionally, and economically feasible.</li> </ul>                  |
| The proposed scheme has followed the energy hierarchy that is illustrated below:                                                                                                                                                                                                                                                                                                                                                                |
| Reduce the need for energy<br>Use energy more efficiently                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

The resulting energy savings are shown below in accordance with the GLA's Energy Hierarchy:

Ensure that any continuing use of fossil fuels should use clean technologies and to be efficient

| GLA's Energy Hierarchy – Regulated Carbon Emissions                           |           |          |           |           |
|-------------------------------------------------------------------------------|-----------|----------|-----------|-----------|
|                                                                               | Baseline: | Be Lean: | Be Clean: | Be Green: |
| CO₂ emissions (Tonnes CO₂/γr)                                                 | 73.32     | 48.66    | -         | 47.36     |
| CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr)                 | -         | 24.66    | -         | 1.31      |
| Saving from each stage (%) -                                                  |           | 33.6     | -         | 1.8       |
| Total CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr)     25.96 |           |          |           |           |

#### 35.4% Total carbon emissions savings over Part L of the Building Regulations 2013 achieved

# Executive Summary Energy Assessment 176 Prince of Wales Road

#### GLA's Energy Hierarchy – Regulated Carbon Emissions:

Figure:

A graphical illustration of how the scheme performs in relation to Building Regulations and the Energy Hierarchy is shown below.



The Energy Hierarchy

Summary:

As demonstrated above the development will reduce carbon emissions by 33.6% from the fabric energy efficiency measures described in the 'Be Lean' section, and will reduce total carbon emissions by 35.4% over Building Regulations with the further inclusion of low and zero carbon technologies.



# Executive Summary Energy Assessment 176 Prince of Wales Road

Shortfall in Emissions:

As set out in Policy 5.2 of the London Plan and adopted within Camden's Core Strategy Policy, if the development fails to meet the 35% target, the annual shortfall is determined by subtracting the overall regulated carbon dioxide savings from the target savings. The result is then multiplied by the assumed lifetime of the development's services (e.g. 30 years) to give the cumulative shortfall. The cumulative shortfall is multiplied by the carbon dioxide off-set price to determine the required cash-in-lieu contribution, as shown below.

| Carbon Dioxide Emissions – Regulated (Tonnes CO <sub>2</sub> /yr) |                              |       |  |
|-------------------------------------------------------------------|------------------------------|-------|--|
|                                                                   | (Tonnes CO <sub>2</sub> /yr) | %     |  |
| Savings from 'Be Lean'-After energy demand reduction              | 24.66                        | 33.6% |  |
| Savings from 'Be Clean'-After CHP                                 | 0.0                          | 0.0%  |  |
| Savings from 'Be Green'-After<br>renewable energy                 | 1.31                         | 1.8%  |  |
| Total Cumulative Savings                                          | 25.96                        | 35.4% |  |
|                                                                   |                              |       |  |
| Total Target Savings                                              | 25.66                        | 35%   |  |
| Annual Surplus                                                    | 0.30                         | -     |  |
| Cumulative Shortfall                                              | 0                            |       |  |

**Total Carbon Emissions:** 

As required by the GLA both the regulated and unregulated emissions of the development must be quantified and demonstrated. The total emissions for the scheme are shown below.

| Carbon Dioxide Emissions – Regulated and Unregulated (Tonnes $CO_2$ /yr) |                        |                          |                    |  |
|--------------------------------------------------------------------------|------------------------|--------------------------|--------------------|--|
|                                                                          | Regulated<br>Emissions | Unregulated<br>Emissions | Total<br>Emissions |  |
| Baseline: Part L 2013                                                    | 73.32                  | 45.58                    | 118.90             |  |
| Be Lean: After demand reduction                                          | 48.66                  | 45.58                    | 94.24              |  |
| Be Clean: After CHP                                                      | -                      | -                        | -                  |  |
| Be Green: After Renewable energy                                         | 47.36                  | 45.58                    | 92.94              |  |

# Introduction Energy Assessment 176 Prince of Wales Road

| Aim of this study: | The purpose of an energy assessment is to demonstrate that climate change mitigation measures comply with London Plan energy policies, including the energy hierarchy. It also ensures energy remains an integral part of the development's design and evolution.                                                                                                                                                                          |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Methodology:       | The methodology followed in this report follows the guidance set out by the Greater London<br>Authority (GLA) for developing energy strategies as detailed in the document "ENERGY<br>PLANNING: Greater London Authority guidance on preparing energy assessments (2016)"                                                                                                                                                                  |  |  |
|                    | In accordance with the GLA's London Plan Policy 5.2 and the London borough of Camden's Core Strategy Policy CPG3, applications for major developments should be accompanied by an energy statement. The energy statement should provide information demonstrating how the energy hierarchy has been followed i.e. 'Lean, Clean, Green', including consideration of passive design and decentralised energy options such CHP/Community CHP. |  |  |
|                    | This report has followed these documents and comprises the following components:                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                    | <ul> <li>BASELINE: A calculation of the Part L 2013 Building Regulations complaint CO<sub>2</sub><br/>emission baseline using approved software. The baseline assumes a gas boiler<br/>would provide heating and any active cooling would be electrically powered.</li> </ul>                                                                                                                                                              |  |  |
|                    | <ul> <li>Maximise Energy Efficiency (Be LEAN): A calculation of the impact of demand<br/>reduction measures. For example, passive design measures, including optimising<br/>orientation and site layout, natural ventilation and lighting, thermal mass and solar<br/>shading, and active design measures such as high efficacy lighting and efficient<br/>mechanical ventilation with heat recovery.</li> </ul>                           |  |  |
|                    | <ul> <li>Supply Energy Efficiently Using Low Carbon Heating and Cooling Systems (Be<br/>CLEAN: COOLING HIERARCHY): in accordance with Policy 5.9 of London Plan,<br/>measures that are proposed to reduce the demand for cooling have been set out<br/>such as minimisation of solar and internal gains and night cooling strategies.</li> </ul>                                                                                           |  |  |
|                    | <ul> <li>CLEAN: in accordance with Policy 5.6 of London Plan, this report has demonstrated<br/>how the scheme has selected heating, cooling and power systems to minimise<br/>carbon emissions. This comprises an evaluation of the feasibility of connecting to<br/>existing low carbon heat networks, planned networks, site-wide and communal heat<br/>networks and CHP.</li> </ul>                                                     |  |  |
|                    | <ul> <li>Incorporate Renewable Technology (Be GREEN): in accordance with Policy 5.7 of<br/>London Plan, this report has conducted a feasibility assessment of renewable energy<br/>technologies. This comprised a site-specific analysis of the technologies and if<br/>applicable how they would be integrated into the heating and cooling strategy for the<br/>scheme.</li> </ul>                                                       |  |  |
|                    | Please note that these findings are currently subject to a detailed analysis from a building services design engineer and qualified quantity surveyor.                                                                                                                                                                                                                                                                                     |  |  |

# Establishing Emissions: The Carbon Profile Energy Assessment 176 Prince of Wales Road

#### Building Regulations Part L 2013 Minimum Compliance:

The 'baseline' carbon emissions for the development are 73.32 Tonnes CO<sub>2</sub>/yr.

The pie chart below provides a breakdown of the scheme's baseline carbon emissions by end use over the course of one year.

| Carbon Emissions in Tonnes<br>CO <sub>2</sub> /yr | Heating | Hot Water | Cooling | Auxiliary | Lighting |
|---------------------------------------------------|---------|-----------|---------|-----------|----------|
|                                                   | 24.85   | 6.75      | 9.18    | 5.81      | 26.69    |



#### Baseline CO<sub>2</sub> Breakdown

#### **Overview:**

The chart above shows that lighting is the primary source of carbon emissions, and space heating is the second largest, across the scheme as a whole. Lighting accounts for approximately 36% of the baseline scenarios energy demand whilst space heating accounts for 34%.

# 'Be Lean': Demand Reduction Measures Energy Assessment 176 Prince of Wales Road

#### Be Lean - Summary:

Passive Design measures:

**Building Fabric** 

Demand reduction measures have reduced the scheme's carbon emissions by 33.6% over the minimum Part L 2013 Building Regulations baseline.

| U Values:                |                                                  |                  |
|--------------------------|--------------------------------------------------|------------------|
| Element                  | Minimum Building<br>Regulations U value<br>W/m²K | Proposed U value |
|                          | 1.00                                             |                  |
| External Wall (existing) | 1.60                                             | 0.30             |
| External wall (new)      | 0.28                                             | 0.24             |
| Ground floor (existing)  | -                                                | 0.58             |
| Ground floor (new)       | 0.22                                             | 0.18             |
| Roof (new)               | 0.18                                             | 0.18             |
| Glazing (existing)       | -                                                | 4.96             |
| Glazing (new)            | 1.8                                              | 1.6              |
| Personnel doors (new)    | 1.8                                              | 1.8              |

#### Airtightness:

The target air permeability for the scheme has been modelled as 10 m<sup>3</sup>/(hr.m<sup>2</sup>) @ 50 pa.

This will require careful attention to two key areas:

- Structural leakage
- Services leakage

Structural leakage occurs at joints in the building fabric and around window and door openings, loft hatches and access openings. There will also be some diffusion through materials such and cracks in masonry walls typically this is caused by poor perpends in blockwork inner leafs. Structural leakage is hard to remedy retrospectively. Good detailing at the design stage is therefore essential.

Services leakage occurs at penetrations from pipes and cables entering the building. These can be sewerage pipes, water pipes and heating pipes. As well as electricity cables there may also be telecommunication cables. Attention therefore, needs to be paid to sealing all penetrations during constriction.

#### Thermal Bridging:

As a refurbishment project there is limited scope to minimise heat loss via linear junctions. The scheme has therefore been indicatively modelled with the default thermal bridge y-values for all junction types, 0.15W/m<sup>2</sup>K.

#### Thermal Mass:

Thermal mass of the scheme has been indicatively modelled as 250 kJ/m<sup>2</sup>K (medium).

Graphic illustrations of the heat flow through a wall and how is it minimized with low uvalue (consequence of the additional insulation).

# 'Be Lean': Demand Reduction Measures Energy Assessment 176 Prince of Wales Road

#### Energy Efficient Services Active Design measures:

#### Heating:

The new heating system in the refurbished west-side part (new extended rear and middle galleries) of the building, for the *Lean scenario only*, will be provided by a condensing gas boilers, featuring time and temperature zone control, delayed thermostat and a weather compensator. The heat will be distributed via radiators. The gas boiler will have a minimum efficiency of 94%.



Graphic illustration of a heat recovery unit, which exploits the extract hot air of the room to heat the cold supply air.

#### Ventilation:

Balanced mechanical ventilation with heat recovery (70% seasonal efficiency and 1.8 SFP) will be provided to renovated parts of the scheme, with localised extract ventilation for kitchens and WCs with a with an SFP of 0.3 W/l/s.

#### Air Conditioning:

Cooling will be provided to the main galleries and associated rooms (including art storage) of the renovated part of the building by  $4 \times 56$ kW VRV condensing systems, the systems will have an energy efficiency rating of 3.01.

#### Lighting:

High efficiency lighting has been specified for the whole development with a minimum luminous efficacy of 75 lumens per circuit watt.

## eight associates 'Be Clean': Heating Infrastructure & CHP **Energy Assessment** 176 Prince of Wales Road Heating Infrastructure including CHP: Once demand for energy has been minimised, schemes must demonstrate how their energy systems have been selected in accordance with the order of preference in Policy 5.6B of London Plan. This has involved a systematic appraisal of the potential to connect to existing or planned heating networks and on site communal and CHP systems. Heating Infrastructure: The London Heat Map (shown below) has been consulted to establish the possibility of connecting to heating infrastructure. OFLONDON ONDO OR O AAYC MAYOR OF ORO MAYOR O

Source: http://www.londonheatmap.org.uk/Mapping

329. ) (2010)

# 'Be Clean': Connection to Existing and Planned Networks Energy Assessment 176 Prince of Wales Road

**Existing and Planned Networks:** 

#### Existing networks:

A review of the London Heat Map demonstrates that there are no existing networks present within connectable range of the scheme. A map of the existing and potential networks in the scheme's location is shown below.



There are no existing or potential networks within (500m) the vicinity of the scheme; therefore a connection is not possible.

Existing DH Networks
 Potential DH Networks

# 'Be Clean': Site Wide Networks and CHP Energy Assessment 176 Prince of Wales Road

| Site-wide Heat Networks:      | The scheme comprises one building so a site wide heating network is not relevant.                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Combined Heat and Power (CHP) | In accordance with section 8.3 of the GLA guidance for Energy Planning where connection to<br>an area wide heat network will not be available in the foreseeable future i.e. 5 years following<br>completion, or the development is of such a scale that it could be the catalyst for an area wide<br>heat network, applicants should evaluate the feasibility of on-site CHP                                                                                                                       |  |
|                               | The heat demand profile of this gallery/office scheme is not suitable to CHP. The implemented fabric improvements from the 'Be Lean' scenario have reduced energy demand from space heating somewhat. However, for CHP systems to be economically viable they need to run for at least 5,000 hours per year. Although the scheme has a reasonable space heating demand it is still not large or consistent for a CHP system, as it would be oversized, and as a result less efficient and economic. |  |
|                               | The plant room will make allowances to be 'connection ready' should any future connection become available. Capped pipework and plant room allocation for connection to future networks will be made.                                                                                                                                                                                                                                                                                               |  |

# 'Be Clean': Cooling Energy Assessment 176 Prince of Wales Road

| Avoiding Overheating<br>Measures taken: | The following measures have been taken in accordance with the cooling hierarchy to reduce overheating and the need for cooling:                                                                                                                                                                                                                                                   |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                         | <ul> <li>6) Active cooling systems (ensuring the lowest carbon option)</li> </ul>                                                                                                                                                                                                                                                                                                 |  |  |
|                                         | 5) Mechanical ventilation                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                         | 4) Passive ventilation                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                         | <ol> <li>Manage the heat within the building through thermal mass, room height and<br/>green roofs</li> </ol>                                                                                                                                                                                                                                                                     |  |  |
|                                         | and fenestration)                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                         | 2) Reduce the amount of heat entering the building in summer (e.g. shading                                                                                                                                                                                                                                                                                                        |  |  |
|                                         | 1) Minimise internal heat generation through energy efficient design                                                                                                                                                                                                                                                                                                              |  |  |
| The Cooling Hierarchy:                  | Major developments should reduce potential overheating and reliance on air conditioning systems and demonstrate this with the Cooling Hierarchy:                                                                                                                                                                                                                                  |  |  |
|                                         | Where appropriate, the cooling strategy should investigate the opportunities to improve cooling efficiencies through the use of locally available sources such as ground cooling and river/dock water-cooling.                                                                                                                                                                    |  |  |
|                                         | Where design measures and the use of natural and/or mechanical ventilation are not enough to guarantee the occupant's comfort, in line with the cooling hierarchy the development's cooling strategy must include details of the active cooling plant being proposed, including efficiencies, and the ability to take advantage of free cooling and/or renewable cooling sources. |  |  |
| Policy 5.9 Overheating and Cooling:     | The aim of this policy is to reduce the impact of the urban heat island effect in London and encourage the design of spaces to avoid overheating and excessive heat generation, and to mitigate overheating due to the impact of climate change.                                                                                                                                  |  |  |



LED bulbs can emit 80% less heat compared to an incandescent bulb and their life span is up to 41 times more. or housing and the hood for cooling.

#### 1) Minimise internal heat generation through energy efficient design

Internal heat gains have been minimised where possible. The scheme is a gallery with minimal equipment. Any new appliances such as office equipment will be energy efficient and will help reduce internal heat gain and reduce the cooling requirement.

Energy efficient lighting will also be specified as part of the renovation works. Internal lighting will have a luminous efficacy of 75 lumens per circuit watt and occupancy sensors will also be specified in corridors, WCs and store rooms to reduce unnecessary lighting usage.

# 'Be Clean': Cooling Energy Assessment 176 Prince of Wales Road

#### Avoiding Overheating Measures taken:

## 2) Reduce the amount of heat entering the building in summer (e.g. shading and fenestration)

Direct solar gains will be controlled in the following ways:

- Orientation of building the building's most-glazed façades are orientated east-west which reduces the solar gain and overheating risks.
- Solar control all methods of controlling solar gain to within tolerable limits have been considered. The design and type of window openings and glazing have been optimised, the new windows will have reduced solar gain factors from low emissivity windows with a G-value of 0.55.
  - Internal solar control devices such as blinds will be specified for the offices.

Heat transfer and infiltration has been controlled in the following ways:

- Insulation levels for the new thermal elements have been maximised and the resulting u-values are lower than required by Building Regulations. The build-ups therefore prevent the penetration of heat as much as practically possible. See the 'Be Lean' section of this report for target u values.
- A reduced air permeability rate of 10 m<sup>3</sup>/(hr.m<sup>2</sup>) @ 50 pa has been targeted to minimise uncontrolled air infiltration. This will require attention to detailing and sealing. See 'Be Lean' section of this report for details of how this will be achieved.

## 3) Manage the heat within the building through thermal mass, room height and green roofs.

The following measures have been specified to manage heat accumulation within the building:

 High thermal mass – existing building fabric materials such as thick masonry (walls) and concrete (floors) act as 'thermal batteries'; they absorb heat gains during the day when the building is occupied and 'store' it for an extended period, thereby helping to stabilise daytime temperatures. At night this heat can be dissipated, which 'resets' the heating cycle. Ventilation will also be used at night to purge the stored heat within the structure.



Examples of possible air leakage points in a building



Examples of how the thermal mass absorbs heat during day and emits it during night.

# 'Be Clean': Cooling Energy Assessment 176 Prince of Wales Road

#### Avoiding Overheating Measures taken:

- Room heights high ceilings are traditionally used in hot climates to allow thermal stratification so that occupants can inhabit the lower cooler space, and to decrease the transfer of heat gain through the roof. The existing building has varying floor to ceiling heights of approximately 2.7m to 5.9m. As the new roof will be well insulated to achieve a U-value of 0.18 W/m<sup>2</sup>K, there will be minimal penetration of heat through the roof.
- Due to the listed status of the former Methodist Church, and to integrate the extension with the listed features of the building, the design team have considered a green roof impractical. Brick tiles will be specified which will have a neutral impact to the absorbed heat being transferred into the building.

#### 4) Passive ventilation

Ventilation that does not use fans or mechanical system has been specified to reduce the cooling load.

- Openable sash windows are specified on the front facade of the building. Cross ventilation will be achieved by opening windows and ensuring there is a clear path for airflow.
- Night time cooling can also be utilised via opening windows. This will work in tandem with high thermal mass materials specified. The larger temperature differential that exists between internal and external temperatures at night will allow effective stack ventilation and purging of heat accumulated within the structure during the day.

Fresh air Stale, warm air

Typical building section demonstrating passive cross ventilation.

# 'Be Clean': Cooling Energy Assessment 176 Prince of Wales Road

#### Avoiding Overheating Measures taken:



Typical building section demonstrating a simple method of supply and extract ventilation system.

**Overheating Risk:** 

#### 5) Mechanical ventilation

Passive ventilation will not be adequate to cool the building to the required temperature. Mechanical ventilation will be utilised in the following forms:

- A mixed mode system will be implemented in the refurbished building. This will be complimentary to the passive cooling measures taken. During summer months, mechanical ventilation using fans will circulate and remove hot air from the building. The building will also adopt a zoned design to allow natural ventilation where possible and mechanical ventilation where there are increased cooling loads such as gallery and IT rooms and equipment and high-density offices.
- Fan powered ventilation: single point extracts will be used in WCs, bin stores and food preparation areas. The renovated part of the building will use air handling units with separate supply and extract fans. Heat recovery units will also be specified to reduce energy demand, improved performance will be achieved by the reduced air permeability rate of 10 m<sup>3</sup>/(hr.m<sup>2</sup>) @ 50 pa.
- The mechanical systems will have the following efficiencies which are in compliance with the Non-Domestic Building Services Compliance Guide:
  - ✓ Specific fan power of 0.3 W/l/s for extract fans
  - Specific fan power of 1.8 W/l/s for whole ventilation systems with heat recovery
  - Heat recovery efficiency of 70%\*

\*Variable seasonal efficiency

According to the GLA guidance on preparing energy assessments (2016), Section 11, a dynamic modelling to assess the risk of overheating should be carried out. An overheating risk assessment with dynamic thermal modelling has been conducted and confirms that without active cooling measures there is a risk of overheating. A separate overheating report has been undertaken and accompanies this report.

# 'Be Clean': Cooling Energy Assessment 176 Prince of Wales Road

Efficiency Measures taken:

#### 6) Active cooling systems (ensuring the lowest carbon option)

Passive design measures and the use of natural and/or mechanical ventilation were not adequate to meet the requirements of a contemporary art gallery and the provision of climatically controlled exhibition and storage spaces. Therefore, air conditioning has been specified for the scheme to provide the required level of comfort. Following the methodology of the cooling hierarchy has progressively reduced the demand for cooling.

To ensure the cooling system is the most carbon efficient possible the following parameters have been selected:

- Location: Indoor cooling units have been specified on a localised basis where internal gains are too high. The units will be fully fitted with local temperature controls for optimal usage.
- The AC systems will have the following efficiencies which are in compliance with the Non-Domestic Building Services Compliance Guide:
   ✓ Seasonal Energy Efficiency Ratio of 4.39
  - Seasonal Energy Efficiency Ratio of 3.01

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

| Renewable Energy Feasibility:              | In line with Policy 5.7 of the London Plan the feasibility of renewable energy technologies has been considered. A detailed site-specific analysis and associated carbon saving calculations has also been provided for renewable energy technologies considered feasible.            |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Renewable Energy Technology<br>Comparison: | Each technology has been assessed under 5 broader categories. There are key criteria for each category on which the technology is evaluated. The key criteria have been given a weighting based on a tick-system, a graphical representation of this is shown below:                  |  |  |
|                                            | $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ = 1 scored out of a possible 5                                                                                                                                                                          |  |  |
|                                            | The weighting of each of the criteria within the categories is shown below:                                                                                                                                                                                                           |  |  |
|                                            | <ul> <li>Local, site-specific impact: (Maximum score of 4)</li> <li>Local planning criteria = </li> <li>Land used by all components = </li> <li>Noise impact from operation = </li> </ul>                                                                                             |  |  |
|                                            | <ul> <li>Suitability and design impact: (Maximum score of 4)</li> <li>Interaction on the current building design = </li> <li>Building orientation suitability = </li> <li>Buildability of installation = </li> </ul>                                                                  |  |  |
|                                            | <ul> <li>Economic viability: (Maximum score of 5)         <ul> <li>Capital cost of all components = ✓ ✓</li> <li>Grants and funding available = ✓</li> <li>Payback periods (years) 3-5, 5-10, 10-15 = ✓ ✓ ✓</li> </ul> </li> </ul>                                                    |  |  |
|                                            | <ul> <li>Operation and maintenance: (Maximum score of 3)</li> <li>Servicing requirements (low or high) = ✓</li> <li>Maintenance costs (low or high) = ✓</li> <li>Resource use from future maintenance (low or high) = ✓</li> </ul>                                                    |  |  |
|                                            | <ul> <li>CO<sub>2</sub> and sustainability: (Maximum score of 10)</li> <li>Carbon saving per year = ✓ ✓ ✓ ✓</li> <li>Impact of future grid decarbonisation (gas vs. electric) = ✓ ✓</li> <li>Local air quality/pollution = ✓ ✓</li> <li>Resource use of installation = ✓ ✓</li> </ul> |  |  |
|                                            | Key comments on each of the criteria and the corresponding score will be provided in a table<br>(example below) for each of the technologies. The score for each of the criteria will be                                                                                              |  |  |

(example below) for each of the technologies. The score for each of the criteria will be summed and each of the technologies will then be ranked. The assessment of each technology is undertaken on the following pages.

| Renewable  | Local, site-specific | Suitability and | Economic  | Operation and | CO₂ and        |  |
|------------|----------------------|-----------------|-----------|---------------|----------------|--|
| Technology | impact               | design impact   | viability | maintenance   | sustainability |  |
|            |                      |                 |           | ~ ~ ~ ~       |                |  |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

#### Biomass & Biofuel:

#### Rejected



Biomass is normally considered a carbon 'neutral' fuel, as the carbon dioxide emitted on burning has been recently absorbed from the atmosphere by photosynthesis. Although some form of fossil fuel derived inputs are required in the production and transportation of the fuel.

Wood is seen as a by-product of other industries and the small quantity of energy for drying, sawing, pelleting and delivery are typically discounted. Biomass from coppicing is likely to have external energy inputs from fertiliser, cutting, drying etc. and these may need to be considered. In this toolkit, all biomass fuels are considered to have zero net carbon emissions.

Biomass can be burnt directly to provide heat in buildings. Wood from forests, urban tree pruning, farmed coppices or farm and factory waste, is the most common fuel and is used commercially in the form of wood chips or pellets. Biomass boilers can also be designed to burn smokeless to comply with the Clean Air Acts.

Boilers can be fed automatically by screw drives from fuel hoppers. This typically involves daily addition of bagged fuels. A biomass boiler could be installed on site for supplementary LTHW heating; however, a major factor influencing the suitability of a biomass boiler is the availability of the biomass fuel. A local and reliable fuel source would be essential for the biomass boiler to be an efficient replacement for a conventional boiler system. Therefore, a very comprehensive feasibility assessment needs to be undertaken to understand the practicalities of such a system.

It is estimated that the heating and hot water demand of the site is large enough to allow significant reductions in  $CO_2$  emissions to be achieved if a biomass boiler was installed. However, a biomass boiler would need to be combined with energy demand reduction measures to limit the required number of deliveries to the site. In order to meet a significant  $CO_2$  emissions reduction a 65kW biomass boiler would need to be installed for the renovated part of the scheme. The likely installed cost would be circa £50,000. The additional cost of providing and storing the bio-fuel also needs to be accounted for. The site is likely to be unsuitable for biomass boilers due to site constraints such as limited transport/access issues, and storage of the biomass fuel. For an extensive understanding of the capabilities and feasibility of this technology, a further analysis would be required at the detailed design by an appropriate services engineer.

| Renewable<br>Technology | Local, site-specific<br>impact                                                                                     | Suitability and<br>design impact                                                                        | Economic<br>viability                                                        | Operation and<br>maintenance                                                                                                  | CO₂ and<br>sustainability                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Biomass Boiler          | <b>v</b> v v v                                                                                                     | <i>~~~</i>                                                                                              | <i>、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、</i>                                 | <b>v</b> v v                                                                                                                  | <i></i>                                                                                                                                      |
|                         | Local air quality<br>impacts, increased<br>transport usage on<br>the restricted site,<br>increased plant<br>space. | Increase in plant<br>space required,<br>orientation fine,<br>slightly increased<br>buildability issues. | Increased capital<br>costs of<br>installation, typical<br>payback of 8 years | Increased<br>maintenance<br>relative to gas<br>boiler, resource<br>use not<br>significantly<br>increased if well<br>serviced. | Very low carbon<br>intensity of<br>feedstock if<br>properly procured.<br>Decarbonisation<br>impact not<br>applicable, air<br>quality issues. |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

#### Photovoltaic (PV):

#### Rejected



Photovoltaic systems convert energy from the sun into electricity through semi conductor cells. Systems consist of semi-conductor cells connected together and mounted into modules. Modules are connected to an inverter to turn the direct current (DC) output into alternating current (AC) electricity for use in buildings.

Photovoltaic systems can be discreet through being designed as an integral part of the roof. An 'invisible' design using slates or shingles as opposed to an architectural statement could be preferable in a sensitive area.

Photovoltaics supply electricity to the building and are connected to the electrical grid or to any other electrical load. Excess electricity can be exported to the National Grid when the generated power exceeds the local need. PV systems require only daylight, not sunlight to generate electricity (although more electricity is produced with more sunlight), so energy can still be produced in overcast or cloudy conditions.

The cost of PV cells is heavily dependent on the size of the array. There are significant cost reductions available for larger installations.

The most suitable location for mounting photovoltaic panels is on roofs as they usually have the greatest exposure to the sun. The proposed site has a large useable roof area and is orientated east-west. However, it is considered unsuitable given the conservation constraints of scheme and its listed status.

| Renewable    | Local, site-specific                                                                                                                                                                                                                                        | Suitability and                                                                                                                   | Economic                                                                                                      | Operation and                                                                                           | CO₂ and                                                                                                                                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Technology   | impact                                                                                                                                                                                                                                                      | design impact                                                                                                                     | viability                                                                                                     | maintenance                                                                                             | sustainability                                                                                                                             |
| Photovoltaic | No local air quality<br>impacts, use of<br>unutilised roof<br>space,<br>conservation<br>officer has<br>concerns for part<br>of the site, no<br>noise issues. The<br>historic character<br>of the building will<br>be considered<br>compromised with<br>PVs. | Can be added to<br>the roof, good<br>orientation, and<br>slightly increased<br>buildability issues<br>for wiring and<br>metering. | Increased capital<br>costs of<br>installation, typical<br>payback of 8 years,<br>Feed in Tariff<br>available. | Limited servicing<br>and maintenance<br>i.e. 1 visit per year,<br>inverter will require<br>replacement. | High carbon saving<br>from electricity,<br>uses minimal grid<br>electricity, no local<br>air impact, high<br>embodied energy<br>of panels. |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

#### Solar Thermal:

#### Rejected



Solar water heating systems use the energy from the sun to heat water for domestic hot water needs. The systems use a heat collector, generally mounted on the roof in which a fluid is heated by the sun. This fluid is used to heat up water that is stored in either a separate hot water cylinder or a twin coil hot water cylinder inside the building. The systems work very successfully in all parts of the UK, as they can work in diffuse light conditions.

Like photovoltaic panels the most suitable location for mounting solar hot water panels is on roofs as they usually have the greatest exposure to the sun. The proposed site has a large useable roof area and is orientated east-west. However, it is considered unsuitable given the conservation constraints of scheme and its listed status.

It is estimated that the  $CO_2$  emissions reduction that would be produced by solar hot water as a standalone system would not be adequate to achieve the required  $CO_2$  emissions reduction target. Therefore a solar hot water system would need to be combined with more energy efficiency strategies, a CHP or additional renewable technologies to achieve the carbon reduction target.

| Renewable<br>Technology     | Local, site-specific<br>impact                                                                                                                                             | Suitability and<br>design impact | Economic<br>viability                                                                                                                | Operation and<br>maintenance                                                                                                                                                               | CO₂ and sustainability                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology<br>Solar Thermal | Impact<br>No local air quality<br>impacts, use of<br>unutilised roof<br>space,<br>conservation<br>officer has<br>concerns for part<br>of the site, no<br>noise issues. The | design impact                    | viability<br>Increased capital<br>costs of<br>installation, typical<br>payback of 8 years,<br>Renewable Heat<br>Incentive available. | Imintenance         Limited servicing         and maintenance         i.e. 1 visit every         two years, heat         transfer fluid         requires replacing         every 10 years. | Lower carbon<br>saving as primarily<br>displacing gas,<br>uses minimal grid<br>electricity, no local<br>air impact, medium<br>embodied energy<br>of panels. |
|                             | historic character<br>of the building will<br>be considered<br>compromised with<br>solar panels.                                                                           |                                  |                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                             |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

#### Wind Energy:

#### Rejected



Wind energy is a cost effective method of renewable power generation. Wind turbines can produce electricity without carbon dioxide emissions in ranges from watts to megawatt outputs. The most common design is for three blades mounted on a horizontal axis, which is free to rotate into the wind on a tall tower.

The blades drive a generator either directly or via a gearbox to produce electricity. The electricity can either be linked to the grid or charge batteries. An inverter is required to convert the electricity from direct current (DC) to alternating current (AC) for feeding into the grid.

Modern quiet wind turbines are becoming viable in low density areas where ease of maintenance and immediate connection to the grid or direct use of the electricity in a building, may make them cost effective, despite lower wind speeds than open areas.

Wind turbines are generally less suited to dense urban areas as their output will be affected by potentially lower and more disrupted wind speeds, and their use of much more cost effective machines may be prohibited by their proximity to some building types. Small turbines can be used in inner city areas mounted on buildings, although there are relatively few installations.

Typically a 1.5 kW turbine can provide 4,000 kWh of electrical power annually. To achieve the required  $CO_2$  emissions reduction target approximately 1 turbine would be required as a standalone solution. The indicative cost of a smaller roof mounted turbine is £2,000/kW so achieving the required  $CO_2$  emissions reduction would cost approximately £4,000 for installation and maintenance costs.

A detailed wind resource evaluation would be required for the site to fully understand the generation potential and payback period. Also, it is certain that planning restrictions and resistance from small groups within the local community would mean the viability of wind energy is nil for the project.

| Renewable   | Local, site-specific                                                                                                                                                                                                                                    | Suitability and                                                                                                                                     | Economic                                                                                                  | Operation and                                                              | CO₂ and sustainability                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology  | impact                                                                                                                                                                                                                                                  | design impact                                                                                                                                       | viability                                                                                                 | maintenance                                                                |                                                                                                                                                                                            |
| Wind Energy | No local air quality<br>impacts, use of<br>unutilised roof<br>space,<br>conservation<br>officer will have<br>concerns for the<br>site, minor noise<br>issues. The historic<br>character of the<br>building will be<br>compromised with<br>wind turbines | Can be added to<br>the roof, relatively<br>limited wind<br>speeds in local<br>area, increased<br>buildability issues<br>for wiring and<br>metering. | Medium capital<br>costs of<br>installation, typical<br>payback < 5 years,<br>Feed in Tariff<br>available. | Very limited<br>servicing and<br>maintenance,<br>costs of 2-3%<br>typical. | High carbon saving<br>from electricity,<br>output limited from<br>urban installation,<br>consumes little<br>grid electricity, no<br>local air impact,<br>low embodied<br>energy of panels. |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

Ground Source Heat Pump (GSHP):

#### Rejected



Geo-thermal energy is essentially heat collected from the ground. Heat obtained from the ground may be considered it as a source of heating and cooling within the UK by the use of a geo-thermal heat pump or ground source heat pumps.

A ground source heat pump is a device for converting energy in the form of low level heat to heat at a usable temperature. The heat pump consists of five main parts; ground collector loop/or bores, heat exchanger, compressor, condenser heat exchanger and expansion valve.

At approximately 1.2-1.5 metres down below ground level the temperature is a constant 10 to  $12^{\circ}$ C. Any bores would need to be sunk to an effective depth of 50 - 120m and a ground feasibility report would be required to ascertain if this method of heat source was viable.

From the bores pre-insulated pipework is laid in the ground to the heat exchanger device. The system is filled with water and antifreeze. The cooled water is pumped around the loop / bore gathering energy as it circulates. The water that has been heated to 10-12°C is returned to the ground source heat exchanger where the energy is transferred to the refrigerant gas. For every 1kW of energy used to compress the refrigerant, the process 'gives up' 4 kW of energy for use in the system being used to heat the building.

Typical costs for an installation this are in the region of £250,000 for a commercial installation, with general installation costs at £1200 /kW of energy produced.

| Renewable  | Local, site-specific                                                                                                                                                  | Suitability and                                                                                                                                    | Economic                                                                                                                                      | Operation and                                                                                                                      | CO <sub>2</sub> and sustainability                                                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology | impact                                                                                                                                                                | design impact                                                                                                                                      | viability                                                                                                                                     | maintenance                                                                                                                        |                                                                                                                                                                                                |
| GSHP       | No local air quality<br>impacts, not visible<br>so conservation<br>friendly, no noise<br>issues, however<br>the constrained<br>site may prohibit<br>its installation. | Can be added to<br>the roof, good air-<br>flow on roof,<br>increased<br>buildability issues<br>for pipework and<br>heating emitters<br>internally. | High capital costs<br>of installation,<br>typical payback of<br>15 years where<br>gas is displaced,<br>Renewable Heat<br>Incentive available. | Limited servicing<br>and maintenance<br>i.e. 1 visit per year,<br>mechanical parts<br>may require<br>replacement over<br>lifespan. | Limited carbon<br>saving from gas<br>displacement,<br>consumes some<br>electricity so<br>benefits from<br>decarbonisation,<br>no local air impact,<br>high embodied<br>energy of<br>equipment. |

# 'Be Green': Renewable Energy Energy Assessment 176 Prince of Wales Road

#### Air Source Heat Pump (ASHP):

#### Accepted



Air source heat pump systems work on the same principle as a ground source heat pump although they use the outside air as the heat source.

The coefficients of performance given by air source heat pump systems are inferior to that of ground source systems due to varying air temperatures. In the depth of winter the energy efficiency of an air source system will be lower than that of a ground source system, and it is likely that more back-up heat will be required if an air source unit is fitted. This back-up heat often comes from a direct electric heater. They operate over a varying temperatures range of  $-15^{\circ}$ C to  $+25^{\circ}$ C, however, the performance will reduce to below the required 3 to 1 carbon saving ratio in winter, and the also require a defrosting mechanism to melt ice that forms on the air heat exchanger.

ASHPs are cheaper to install than ground source heat pumps but are only available on a relatively small scale. If applied across a larger site a number of plant zones would be required for generation of heat, leading to increased plant space requirements. Typical costs for an installation this are in the region of £60,000 for medium sized commercial spaces.

Carbon dioxide emissions savings will typically be less than that of the ground source heat pump. Air source heat pumps may be more suitable as a HVAC solution.

| Renewable  | Local, site-specific                                                                                                                                                  | Suitability and                                                                                                                                    | Economic                                                                                                                                               | Operation and                                                                                                                      | CO <sub>2</sub> and sustainability                                                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology | impact                                                                                                                                                                | design impact                                                                                                                                      | viability                                                                                                                                              | maintenance                                                                                                                        |                                                                                                                                                                                                                        |
| ASHP       | No local air quality<br>impacts, use of<br>unutilised roof<br>space,<br>conservation<br>officer may have<br>minor concerns<br>over visual impact,<br>no noise issues. | Can be added to<br>the roof, good air-<br>flow on roof,<br>increased<br>buildability issues<br>for pipework and<br>heating emitters<br>internally. | Medium- high<br>capital costs of<br>installation, typical<br>payback >15 years<br>where gas is<br>displaced,<br>Renewable Heat<br>Incentive available. | Limited servicing<br>and maintenance<br>i.e. 1 visit per year,<br>mechanical parts<br>may require<br>replacement over<br>lifespan. | Limited carbon<br>saving from gas<br>displacement, less<br>efficient in winter,<br>consumes<br>electricity so<br>benefits from<br>decarbonisation,<br>no local air impact,<br>high embodied<br>energy of<br>equipment. |

# 'Be Green': Summary of Renewable Technologies Energy Assessment 176 Prince of Wales Road

Summary Comparison Matrix:

An assessment of the feasibility of each of the technologies is shown below.

| Renewable<br>Technology | Local, site-<br>specific impact | Suitability and<br>design impact | Economic<br>viability | Operation and maintenance | CO₂ and sustainability                        | Total Score  |
|-------------------------|---------------------------------|----------------------------------|-----------------------|---------------------------|-----------------------------------------------|--------------|
| Biomass<br>Boiler       | <b>v</b> v v v                  | V V V V                          | <b>~~</b> ~~~         | <b>v</b> v v              | V V V V V<br>V V V V V                        | 15 out of 26 |
| Photovoltaic            | <b>~ ~</b> ~ ~ ~                | V V V V                          | <i>~~~</i>            | <b>~~</b> ~               | V V V V V<br>V V V V V                        | 18 out of 26 |
| Solar<br>Thermal        | <b>~ ~ ~ ~ ~</b>                | <b>~ ~ ~ ~ / /</b>               | <i>~~~</i>            | ~~~                       | <b>~~~~</b>                                   | 16 out of 26 |
| Wind Energy             | <b>v</b> v v v                  | • • • • •                        | <i>~~~</i>            | ~~~                       | <i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i> | 16 out of 26 |
| GSHP                    | ~~~                             | V V V V                          | • • • • • •           | ~~~                       | <i>~~~~</i>                                   | 15 out of 26 |
| ASHP                    | <i>~~~</i>                      | V V V V                          | <b>~~</b> ~~~         | <b>~ ~ ~</b>              | <i>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </i> | 17 out of 26 |

Renewable Technology Conclusion & Specification: Photovoltaic panels, and an air source heat pump have scored the best. Wind energy would be considered unsuitable for the area by conservation criteria and that the local residents would raise concerns over potential noise and turbulence.

The capital costs of a ground source heat pump combined with the constraints of the site make this unviable. Therefore, an air source heat pump is considered to be the optimum balance of sustainable and economic objectives.

# 'Be Green': ASHP Energy Assessment 176 Prince of Wales Road

| ASHP:                             | A summary of the lifecycle cost, revenue and payback for an ASHP is given below. Whilst this proposed system has higher associated operational costs it reduces carbon emissions relative to a gas boiler. |                                            |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Lifecycle Cost:                   | The lifecycle of the proposed system is 25 years. To calculate the lifecycle cost of the panels, the maintenance of the system and cost of electricity to run the pumps will be included.                  |                                            |  |  |  |
|                                   | The total costs for the proposed systems lifetime is:                                                                                                                                                      |                                            |  |  |  |
|                                   | <ul> <li>Capital Cost = £60,000</li> <li>Maintenance Cost = £6,000</li> <li>Operation Cost = £21,825</li> <li>Total Costs = £87,825</li> </ul>                                                             |                                            |  |  |  |
| Revenue and Payback Parameters:   | With the Non-Domestic Renewable Heat Incentive a tariff of 2.57 applications processed after Oct 2016, which gives an annual sav                                                                           | /kWh will be received for<br>ring of £226. |  |  |  |
| Summary Performance Calculations: | The following tables summarise the reduction in carbon emissions and the life cycle cost of the ASHP system.                                                                                               |                                            |  |  |  |
|                                   | Energy and Carbon Performance Criteria at 2016 carbon intensity                                                                                                                                            | Value                                      |  |  |  |
|                                   | Predicted Annual Energy Saved (kWh/yr)                                                                                                                                                                     | 12.355                                     |  |  |  |
|                                   | Annual Carbon Emissions Reductions (kg CO <sub>2</sub> /yr)                                                                                                                                                | 1.361                                      |  |  |  |
|                                   | % CO <sub>2</sub> Emissions Reduction                                                                                                                                                                      | 2.7%                                       |  |  |  |
|                                   | Cost Performance Criteria                                                                                                                                                                                  | Value                                      |  |  |  |
|                                   | Extra over total cost over life cycle (£)                                                                                                                                                                  | -6,099 (saving)                            |  |  |  |
|                                   | Predicted Annual Savings (£)                                                                                                                                                                               | 524                                        |  |  |  |
|                                   | Initial extra over cost saving of installing an air source heat<br>pump over a gas heating system                                                                                                          | Circa £7,000                               |  |  |  |
|                                   | Payback Period (years)                                                                                                                                                                                     | 13                                         |  |  |  |

# Conclusion Energy Assessment 176 Prince of Wales Road

#### Summary

The baseline carbon emissions for the scheme are 73.32 Tonnes  $CO_2/yr$ .

As demonstrated above the development will reduce carbon emissions by 33.6% from the fabric energy efficiency measures described in the 'Be Lean' section, and will reduce total carbon emissions by 35.49% over Building Regulations with the further inclusion of low and zero carbon technologies.

| GLA's Energy Hierarchy – Regulated Carbon Emissions                 |           |          |           |           |  |  |
|---------------------------------------------------------------------|-----------|----------|-----------|-----------|--|--|
|                                                                     | Baseline: | Be Lean: | Be Clean: | Be Green: |  |  |
| CO <sub>2</sub> emissions (Tonnes CO <sub>2</sub> /yr)              | 73.32     | 48.66    | -         | 47.36     |  |  |
| CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr)       | - 24.66   |          | -         | 1.31      |  |  |
| Saving from each stage (%)                                          | - 33.6    |          | -         | 1.8       |  |  |
| Total CO <sub>2</sub> emissions saving (Tonnes CO <sub>2</sub> /yr) | 25.96     |          |           |           |  |  |

35.4% Total carbon emissions savings over Part L of the Building Regulations 2013 achieved

# Appendix Energy Assessment 176 Prince of Wales Road

**Further Information:** 

As required by the GLA, the emission figures and details of the calculations and methodology used to determine the figures provided within the report can be found in the following pages:

Baseline – BER from the Baseline & Part L2B BRUKLLean– BER from the Lean BRUKLGreen– BER from the Green BRUKL

# Appendix Energy Assessment 176 Prince of Wales Road

Baseline and Part L2B Scenario

# **BRUKL** Output Document

HM Government

Compliance with England Building Regulations Part L 2013

### **Project name**

## 176 Prince of Wales Rd

Date: Tue Dec 06 13:45:43 2016

### Administrative information

### **Building Details**

Address: ,

#### **Certification tool**

Calculation engine: SBEM

Calculation engine version: v5.2.g.3

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v4.7.0

BRUKL compliance check version: v5.2.g.3

### Owner Details Name: **Telephone number:**

Address: , ,

**Certifier details** 

Name: Niccolo Vicarelli Telephone number: 02070430418 Address: 57A Great Suffolk Street, London, SE1 0BB

### Criterion 1: The calculated CO<sub>2</sub> emission rate for the building should not exceed the target

The building does not comply with England Building Regulations Part L 2013

| CO <sub>2</sub> emission rate from the notional building, kgCO <sub>2</sub> /m <sup>2</sup> .annum | 28.1                |
|----------------------------------------------------------------------------------------------------|---------------------|
| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> .annum               | 28.1                |
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum             | 44.9                |
| Are emissions from the building less than or equal to the target?                                  | BER > TER           |
| Are as built details the same as used in the BER calculations?                                     | Separate submission |

### Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

#### **Building fabric**

| Element                                                                   | <b>U</b> a-Limit | Ua-Calc | Ui-Calc           | Surface where the maximum value occurs*                               |
|---------------------------------------------------------------------------|------------------|---------|-------------------|-----------------------------------------------------------------------|
| Wall**                                                                    | 0.35             | 0.96    | 1.6               | 01-Ground - New - Circulation_P_11                                    |
| Floor                                                                     | 0.25             | 0.23    | 0.58              | 00-Basement - New - Circulation_F_5                                   |
| Roof                                                                      | 0.25             | 0.23    | 0.68              | 00-Basement - New - Gallery Storage_R_5                               |
| Windows***, roof windows, and rooflights                                  | 2.2              | 3.5     | 4.96              | 01-Ground - New - Circulation_G_18                                    |
| Personnel doors                                                           | 2.2              | 1.8     | 1.8               | 01-Ground - New - Circulation_D_17                                    |
| Vehicle access & similar large doors                                      | 1.5              | -       | -                 | "No external vehicle access doors"                                    |
| High usage entrance doors                                                 | 3.5              | -       | -                 | "No external high usage entrance doors"                               |
| U <sub>a-Limit</sub> = Limiting area-weighted average U-values [W         | //(m²K)]         |         |                   | algulated maximum individual element LL values (M//m²//)              |
| Ua-Calc = Calculated area-weighted average U-values [W/(m <sup>2</sup> K) |                  |         | $U_i$ -Calc = $U$ | aiculated maximum individual element U-values [VV/(m <sup>2</sup> K)] |

U<sub>a-Calc</sub> = Calculated area-weighted average U-values [W/(m<sup>2</sup>K)]

\* There might be more than one surface where the maximum U-value occurs.

\*\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\*\* Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air Permeability   | Worst acceptable standard | This building |
|--------------------|---------------------------|---------------|
| m³/(h.m²) at 50 Pa | 10                        | 25            |

### As designed

#### **Building services**

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | NO   |
|----------------------------------------------------------------------------------------------|------|
| Whole building electric power factor achieved by power factor correction                     | <0.9 |

#### 1- BOH HVAC

|                                                                                                                                                                                                                                                   | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR efficier | ncy |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|-------------|-----|--|--|--|
| This system                                                                                                                                                                                                                                       | 0.88               | -                  | -                  | -             | -           |     |  |  |  |
| Standard value                                                                                                                                                                                                                                    | 0.91*              | N/A                | N/A                | N/A N/A       |             |     |  |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO                                                                                                                                                      |                    |                    |                    |               |             |     |  |  |  |
| * Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82. |                    |                    |                    |               |             |     |  |  |  |

#### 2- FOH HVAC

|                                                                                              | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR efficiency |  |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|--|--|--|
| This system                                                                                  | 0.88               | 2.5                | -                  | -             | -             |  |  |  |  |
| Standard value                                                                               | 0.91*              | N/A                | N/A                | N/A           | N/A           |  |  |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO |                    |                    |                    |               |               |  |  |  |  |
|                                                                                              |                    |                    |                    |               |               |  |  |  |  |

\* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

#### 1- New DHW

|                                                                                                             | Water heating efficiency | Storage loss factor [kWh/litre per day] |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--|--|--|--|--|
| This building                                                                                               | 0.88                     | -                                       |  |  |  |  |  |
| Standard value                                                                                              | 0.9*                     | N/A                                     |  |  |  |  |  |
| * Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting efficiency is 0.73. |                          |                                         |  |  |  |  |  |

### Local mechanical ventilation, exhaust, and terminal units

| ID | System type in Non-domestic Building Services Compliance Guide                                          |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Α  | Local supply or extract ventilation units serving a single area                                         |  |  |  |  |  |
| В  | Zonal supply system where the fan is remote from the zone                                               |  |  |  |  |  |
| С  | Zonal extract system where the fan is remote from the zone                                              |  |  |  |  |  |
| D  | Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery |  |  |  |  |  |
| E  | Local supply and extract ventilation system serving a single area with heating and heat recovery        |  |  |  |  |  |
| F  | Other local ventilation units                                                                           |  |  |  |  |  |
| G  | Fan-assisted terminal VAV unit                                                                          |  |  |  |  |  |
| Н  | Fan coil units                                                                                          |  |  |  |  |  |
| 1  | Zonal extract system where the fan is remote from the zone with grease filter                           |  |  |  |  |  |

| Zone name                           |     | SFP [W/(I/s)] |     |     |     | UD officionay |     |     |   |              |          |
|-------------------------------------|-----|---------------|-----|-----|-----|---------------|-----|-----|---|--------------|----------|
| ID of system type                   | Α   | В             | С   | D   | Е   | F             | G   | н   | I | нк епісіенсу |          |
| Standard value                      | 0.3 | 1.1           | 0.5 | 1.9 | 1.6 | 0.5           | 1.1 | 0.5 | 1 | Zone         | Standard |
| 00-Basement - New - Plant Rooms     | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 00-Basement - New - AHU Plant       | 0.4 | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 01-Ground - New - Risers            | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 03- Second Floor New - Condensers   | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 02 - First Floor New N - Risers     | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 00-Basement - New - Gallery Storage | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |
| 00-Basement - New - Circulation     | -   | -             | -   | -   | -   | -             | -   | -   | - | -            | N/A      |

| Zone name                              | SFP [W/(I/s)] |     |     |     |     |     |     |     |   |      |           |
|----------------------------------------|---------------|-----|-----|-----|-----|-----|-----|-----|---|------|-----------|
| ID of system type                      | Α             | В   | С   | D   | Е   | F   | G   | н   | I | нке  | fficiency |
| Standard value                         | 0.3           | 1.1 | 0.5 | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1 | Zone | Standard  |
| 00-Basement - New - Shower             | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 00-Basement - New - WC                 | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 00-Basement - New - Kitchenette        | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Circulation          | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Stairwell            | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Care Taker           | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Bin Store            | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Toilets              | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 03- Second Floor New - Circulation     | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 03- Second Floor New - Toilets         | 0.4           | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 02 - First Floor New S - Classroom     | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 02 - First Floor New S - Void          | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 02 - First Floor New N - Circulation   | -             | -   | -   | -   | -   | -   | -   | -   | - | -    | N/A       |
| 01-Ground - New - Rear Gallery         | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 01-Ground - New - Library              | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 03- Second Floor New - Performance     | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 02 - First Floor New N - Void          | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 02 - First Floor New N - Middle Galler | y-            | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 02 - First Floor New N - Front Gallery | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |
| 02 - First Floor New N - A.V.          | -             | -   | -   | 2.2 | -   | -   | -   | -   | - | 0.5  | 0.5       |

| General lighting and display lighting | I lighting and display lighting Luminous efficacy [In |      |              |                      |  |
|---------------------------------------|-------------------------------------------------------|------|--------------|----------------------|--|
| Zone name                             | Luminaire                                             | Lamp | Display lamp | General lighting [W] |  |
| Standard value                        | 60                                                    | 60   | 22           |                      |  |
| 00-Basement - New - Plant Rooms       | 60                                                    | -    | -            | 333                  |  |
| 00-Basement - New - AHU Plant         | 60                                                    | -    | -            | 225                  |  |
| 01-Ground - New - Risers              | 60                                                    | -    | -            | 110                  |  |
| 03- Second Floor New - Condensers     | 60                                                    | -    | -            | 244                  |  |
| 02 - First Floor New N - Risers       | 60                                                    | -    | -            | 288                  |  |
| 00-Basement - New - Gallery Storage   | 60                                                    | -    | -            | 274                  |  |
| 00-Basement - New - Circulation       | -                                                     | 60   | -            | 208                  |  |
| 00-Basement - New - Shower            | -                                                     | 60   | -            | 35                   |  |
| 00-Basement - New - WC                | -                                                     | 60   | -            | 100                  |  |
| 00-Basement - New - Kitchenette       | -                                                     | 60   | -            | 209                  |  |
| 01-Ground - New - Circulation         | -                                                     | 60   | -            | 363                  |  |
| 01-Ground - New - Stairwell           | -                                                     | 60   | -            | 308                  |  |
| 01-Ground - New - Care Taker          | 60                                                    | -    | -            | 155                  |  |
| 01-Ground - New - Bin Store           | 60                                                    | -    | -            | 22                   |  |
| 01-Ground - New - Toilets             | -                                                     | 60   | -            | 171                  |  |
| 03- Second Floor New - Circulation    | -                                                     | 60   | -            | 355                  |  |
| 03- Second Floor New - Toilets        | -                                                     | 60   | -            | 120                  |  |
| 02 - First Floor New S - Classroom    | 60                                                    | -    | -            | 937                  |  |
| 02 - First Floor New S - Void         | 60                                                    | -    | -            | 770                  |  |

| General lighting and display lighting   | Lumino    | ous effic |              |                      |
|-----------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                               | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                          | 60        | 60        | 22           |                      |
| 02 - First Floor New N - Circulation    | -         | 60        | -            | 297                  |
| 01-Ground - New - Rear Gallery          | -         | 60        | -            | 1426                 |
| 01-Ground - New - Library               | -         | 60        | -            | 551                  |
| 03- Second Floor New - Performance      | -         | 60        | -            | 5362                 |
| 02 - First Floor New N - Void           | 60        | -         | -            | 1709                 |
| 02 - First Floor New N - Middle Gallery | -         | 60        | -            | 111                  |
| 02 - First Floor New N - Front Gallery  | -         | 60        | -            | 90                   |
| 02 - First Floor New N - A.V.           | 60        | -         | -            | 288                  |

# Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

| Zone                                    | Solar gain limit exceeded? (%) | Internal blinds used? |
|-----------------------------------------|--------------------------------|-----------------------|
| 01-Ground - New - Care Taker            | NO (-56.8%)                    | NO                    |
| 02 - First Floor New S - Classroom      | NO (-0.7%)                     | NO                    |
| 02 - First Floor New S - Void           | NO (-56.9%)                    | NO                    |
| 01-Ground - New - Rear Gallery          | NO (-44.8%)                    | NO                    |
| 01-Ground - New - Library               | NO (-48.6%)                    | NO                    |
| 03- Second Floor New - Performance      | YES (+18.4%)                   | NO                    |
| 02 - First Floor New N - Void           | NO (-7.7%)                     | NO                    |
| 02 - First Floor New N - Middle Gallery | N/A                            | N/A                   |
| 02 - First Floor New N - Front Gallery  | N/A                            | N/A                   |
| 02 - First Floor New N - A.V.           | N/A                            | N/A                   |

## Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

# Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

### EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? |    |  |  |  |  |
|----------------------------------------------------------------------------------------|----|--|--|--|--|
| Is evidence of such assessment available as a separate submission?                     | NO |  |  |  |  |
| Are any such measures included in the proposed design?                                 | NO |  |  |  |  |

## **Technical Data Sheet (Actual vs. Notional Building)**

### **Building Global Parameters**

|                                                       | Actual  | Notional |
|-------------------------------------------------------|---------|----------|
| Area [m <sup>2</sup> ]                                | 1633    | 1633     |
| External area [m <sup>2</sup> ]                       | 2541.9  | 2541.9   |
| Weather                                               | LON     | LON      |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 25      | 3        |
| Average conductance [W/K]                             | 1951.83 | 952.87   |
| Average U-value [W/m <sup>2</sup> K]                  | 0.77    | 0.37     |
| Alpha value* [%]                                      | 6.32    | 13.69    |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### **Building Use**

100

## % Area Building Type

| A1/A2 Retail/Financial and Professional services            |
|-------------------------------------------------------------|
| A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways      |
| B1 Offices and Workshop businesses                          |
| B2 to B7 General Industrial and Special Industrial Groups   |
| B8 Storage or Distribution                                  |
| C1 Hotels                                                   |
| C2 Residential Inst .: Hospitals and Care Homes             |
| C2 Residential Inst.: Residential schools                   |
| C2 Residential Inst .: Universities and colleges            |
| C2A Secure Residential Inst.                                |
| Residential spaces                                          |
| D1 Non-residential Inst.: Community/Day Centre              |
| D1 Non-residential Inst.: Libraries, Museums, and Galleries |
| D1 Non-residential Inst.: Education                         |
| D1 Non-residential Inst.: Primary Health Care Building      |
| D1 Non-residential Inst.: Crown and County Courts           |
| D2 General Assembly and Leisure, Night Clubs and Theatres   |
| Others: Passenger terminals                                 |
| Others: Emergency services                                  |
| Others: Miscellaneous 24hr activities                       |
| Others: Car Parks 24 hrs                                    |
| Others - Stand alone utility block                          |

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 70.46  | 31.48    |
| Cooling    | 10.83  | 5.5      |
| Auxiliary  | 6.85   | 2.98     |
| Lighting   | 31.49  | 25.38    |
| Hot water  | 19.13  | 19.47    |
| Equipment* | 53.78  | 53.78    |
| TOTAL**    | 138.76 | 84.81    |

\* Energy used by equipment does not count towards the total for calculating emissions. \*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 296.15 | 215.92   |
| Primary energy* [kWh/m <sup>2</sup> ]         | 260.25 | 163.51   |
| Total emissions [kg/m <sup>2</sup> ]          | 44.9   | 28.1     |

\* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

| ŀ   | HVAC Systems Performance                                                                 |                   |                   |                    |                    |                   |               |               |                  |                  |
|-----|------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| Sys | stem Type                                                                                | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST | [ST] No Heating or Cooling                                                               |                   |                   |                    |                    |                   |               |               |                  |                  |
|     | Actual                                                                                   | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             | 0                | 0                |
|     | Notional                                                                                 | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             |                  |                  |
| [ST | ] Central he                                                                             | eating using      | y water: rad      | iators, [HS]       | LTHW boil          | ler, [HFT] N      | atural Gas,   | [CFT] Natu    | ral Gas          |                  |
|     | Actual                                                                                   | 298.1             | 56.1              | 105.5              | 0                  | 4.9               | 0.79          | 0             | 0.88             | 0                |
|     | Notional                                                                                 | 192.1             | 117.1             | 65.1               | 0                  | 3.1               | 0.82          | 0             |                  |                  |
| [ST | [ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity |                   |                   |                    |                    |                   |               |               |                  |                  |
|     | Actual                                                                                   | 153.2             | 151.1             | 51.9               | 23.6               | 10                | 0.82          | 1.78          | 0.88             | 2.5              |
|     | Notional                                                                                 | 17.1              | 155.6             | 5.8                | 12                 | 3.3               | 0.82          | 3.6           |                  |                  |

#### Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type HS = Heat source HFT = Heating fuel type CFT = Cooling fuel type

## **Key Features**

The BCO can give particular attention to items with specifications that are better than typically expected.

#### **Building fabric**

| Element                                                                         | <b>U</b> і-Тур | Ui-Min | Surface where the minimum value occurs*                                         |  |
|---------------------------------------------------------------------------------|----------------|--------|---------------------------------------------------------------------------------|--|
| Wall                                                                            | 0.23           | 0.28   | 00-Basement - New - Gallery Storage_W_7                                         |  |
| Floor                                                                           | 0.2            | 0.11   | 01-Ground - New - Rear Gallery_S_5                                              |  |
| Roof                                                                            | 0.15           | 0.18   | 03- Second Floor New - Circulation_R_13                                         |  |
| Windows, roof windows, and rooflights                                           | 1.5            | 1.8    | 00-Basement - New - Gallery Storage_G_11                                        |  |
| Personnel doors                                                                 | 1.5            | 1.8    | 01-Ground - New - Circulation_D_17                                              |  |
| Vehicle access & similar large doors                                            | 1.5            | -      | "No external vehicle access doors"                                              |  |
| High usage entrance doors                                                       | 1.5            | -      | "No external high usage entrance doors"                                         |  |
| U <sub>i-Typ</sub> = Typical individual element U-values [W/(m <sup>2</sup> K)] |                |        | U <sub>i-Min</sub> = Minimum individual element U-values [W/(m <sup>2</sup> K)] |  |
| * There might be more than one surface where the minimum U-value occurs.        |                |        |                                                                                 |  |

| Air Permeability   | Typical value | This building |
|--------------------|---------------|---------------|
| m³/(h.m²) at 50 Pa | 5             | 25            |

# Appendix Energy Assessment 176 Prince of Wales Road

LEAN Scenario

# **BRUKL** Output Document

HM Government

Compliance with England Building Regulations Part L 2013

### **Project name**

## 176 Prince of Wales Rd

Date: Tue Dec 06 13:53:34 2016

#### Administrative information

### **Building Details**

Address: ,

#### **Certification tool**

Calculation engine: SBEM

Calculation engine version: v5.2.g.3

BRUKL compliance check version: v5.2.g.3

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v4.7.0

### Owner Details Name: **Telephone number:**

Address: , ,

Certifier details

Name: Niccolo Vicarelli Telephone number: 02070430418 Address: 57A Great Suffolk Street, London, SE1 0BB

### Criterion 1: The calculated CO<sub>2</sub> emission rate for the building should not exceed the target

The building does not comply with England Building Regulations Part L 2013

| CO <sub>2</sub> emission rate from the notional building, kgCO <sub>2</sub> /m <sup>2</sup> .annum | 28.1                |
|----------------------------------------------------------------------------------------------------|---------------------|
| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> .annum               | 28.1                |
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum             | 29.8                |
| Are emissions from the building less than or equal to the target?                                  | BER > TER           |
| Are as built details the same as used in the BER calculations?                                     | Separate submission |

### Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

#### **Building fabric**

| Element                                                                   | <b>U</b> a-Limit       | Ua-Calc | Ui-Calc          | Surface where the maximum value occurs*                              |
|---------------------------------------------------------------------------|------------------------|---------|------------------|----------------------------------------------------------------------|
| Wall**                                                                    | 0.35                   | 0.27    | 0.3              | 01-Ground - New - Circulation_P_11                                   |
| Floor                                                                     | 0.25                   | 0.22    | 0.58             | 00-Basement - New - Circulation_F_5                                  |
| Roof                                                                      | 0.25                   | 0.23    | 0.68             | 00-Basement - New - Gallery Storage_R_5                              |
| Windows***, roof windows, and rooflights                                  | 2.2                    | 3.48    | 4.96             | 01-Ground - New - Circulation_G_18                                   |
| Personnel doors                                                           | 2.2                    | 1.8     | 1.8              | 01-Ground - New - Circulation_D_17                                   |
| Vehicle access & similar large doors                                      | 1.5                    | -       | -                | "No external vehicle access doors"                                   |
| High usage entrance doors                                                 | 3.5                    | -       | -                | "No external high usage entrance doors"                              |
| Ua-Limit = Limiting area-weighted average U-values [W/(m <sup>2</sup> K)] |                        |         |                  |                                                                      |
| Ua-Calc = Calculated area-weighted average U-values                       | [W/(m <sup>2</sup> K)] |         | $U_{i-Calc} = C$ | alculated maximum individual element U-values [W/(m <sup>2</sup> K)] |

\* There might be more than one surface where the maximum U-value occurs.

\*\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\*\* Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air Permeability   | Worst acceptable standard | This building |
|--------------------|---------------------------|---------------|
| m³/(h.m²) at 50 Pa | 10                        | 10            |

### As designed

#### **Building services**

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values | NO   |
|----------------------------------------------------------------------------------------------|------|
| Whole building electric power factor achieved by power factor correction                     | <0.9 |

#### 1- New BOH HVAC

|                                                                                                                                                                                                                                                   | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR eff | liciency |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|--------|----------|
| This system                                                                                                                                                                                                                                       | 0.94               | -                  | -                  | -             | -      |          |
| Standard value                                                                                                                                                                                                                                    | 0.91*              | N/A                | N/A                | N/A           | N/A    |          |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO                                                                                                                                                      |                    |                    |                    |               |        |          |
| * Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82. |                    |                    |                    |               |        |          |

#### 2- New FOH HVAC

|                                                                                              | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR efficiency |  |
|----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|
| This system                                                                                  | 0.94               | 3.01               | -                  | -             | -             |  |
| Standard value                                                                               | 0.91*              | N/A                | N/A                | N/A           | N/A           |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO |                    |                    |                    |               |               |  |

\* Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

#### 1- New DHW

|                                                                                                             | Water heating efficiency | Storage loss factor [kWh/litre per day] |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--|--|--|
| This building                                                                                               | 0.94                     | -                                       |  |  |  |
| Standard value                                                                                              | 0.9*                     | N/A                                     |  |  |  |
| * Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting efficiency is 0.73. |                          |                                         |  |  |  |

### Local mechanical ventilation, exhaust, and terminal units

| ID | System type in Non-domestic Building Services Compliance Guide                                          |
|----|---------------------------------------------------------------------------------------------------------|
| A  | Local supply or extract ventilation units serving a single area                                         |
| В  | Zonal supply system where the fan is remote from the zone                                               |
| С  | Zonal extract system where the fan is remote from the zone                                              |
| D  | Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery |
| E  | Local supply and extract ventilation system serving a single area with heating and heat recovery        |
| F  | Other local ventilation units                                                                           |
| G  | Fan-assisted terminal VAV unit                                                                          |
| Н  | Fan coil units                                                                                          |
| Ι  | Zonal extract system where the fan is remote from the zone with grease filter                           |

| Zone name                           |     | SFP [W/(l/s)] |     |     |     |     |     |     |   |      |          |
|-------------------------------------|-----|---------------|-----|-----|-----|-----|-----|-----|---|------|----------|
| ID of system type                   | Α   | В             | С   | D   | Е   | F   | G   | н   | I | ппе  | inciency |
| Standard value                      | 0.3 | 1.1           | 0.5 | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1 | Zone | Standard |
| 00-Basement - New - Plant Rooms     | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 00-Basement - New - AHU Plant       | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 01-Ground - New - Risers            | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 03- Second Floor New - Condensers   | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 02 - First Floor New N - Risers     | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 00-Basement - New - Gallery Storage | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |
| 00-Basement - New - Circulation     | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A      |

| Zone name                              |     | SFP [W/(I/s)] |     |     |     |     |     |     |   |      |              |  |
|----------------------------------------|-----|---------------|-----|-----|-----|-----|-----|-----|---|------|--------------|--|
| ID of system type                      | Α   | В             | С   | D   | Е   | F   | G   | Н   | I | нке  | nn eniciency |  |
| Standard value                         | 0.3 | 1.1           | 0.5 | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1 | Zone | Standard     |  |
| 00-Basement - New - Shower             | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 00-Basement - New - WC                 | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 00-Basement - New - Kitchenette        | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Circulation          | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Stairwell            | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Care Taker           | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Bin Store            | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Toilets              | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 03- Second Floor New - Circulation     | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 03- Second Floor New - Toilets         | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 02 - First Floor New S - Classroom     | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 02 - First Floor New S - Void          | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 02 - First Floor New N - Circulation   | -   | -             | -   | -   | -   | -   | -   | -   | - | -    | N/A          |  |
| 01-Ground - New - Rear Gallery         | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 01-Ground - New - Library              | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 03- Second Floor New - Performance     | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 02 - First Floor New N - Void          | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 02 - First Floor New N - Middle Galler | y-  | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 02 - First Floor New N - Front Gallery | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |
| 02 - First Floor New N - A.V.          | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5  | 0.5          |  |

| General lighting and display lighting | Lumino    | ous effic |              |                      |
|---------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                             | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                        | 60        | 60        | 22           |                      |
| 00-Basement - New - Plant Rooms       | 90        | -         | -            | 222                  |
| 00-Basement - New - AHU Plant         | 90        | -         | -            | 150                  |
| 01-Ground - New - Risers              | 90        | -         | -            | 73                   |
| 03- Second Floor New - Condensers     | 90        | -         | -            | 163                  |
| 02 - First Floor New N - Risers       | 90        | -         | -            | 192                  |
| 00-Basement - New - Gallery Storage   | 90        | -         | -            | 183                  |
| 00-Basement - New - Circulation       | -         | 90        | -            | 138                  |
| 00-Basement - New - Shower            | -         | 90        | -            | 24                   |
| 00-Basement - New - WC                | -         | 90        | -            | 67                   |
| 00-Basement - New - Kitchenette       | -         | 90        | -            | 139                  |
| 01-Ground - New - Circulation         | -         | 90        | -            | 242                  |
| 01-Ground - New - Stairwell           | -         | 90        | -            | 206                  |
| 01-Ground - New - Care Taker          | 90        | -         | -            | 104                  |
| 01-Ground - New - Bin Store           | 90        | -         | -            | 15                   |
| 01-Ground - New - Toilets             | -         | 90        | -            | 114                  |
| 03- Second Floor New - Circulation    | -         | 90        | -            | 237                  |
| 03- Second Floor New - Toilets        | -         | 90        | -            | 80                   |
| 02 - First Floor New S - Classroom    | 90        | -         | -            | 624                  |
| 02 - First Floor New S - Void         | 90        | -         | -            | 514                  |

| General lighting and display lighting   | Lumino    | ous effic |              |                      |
|-----------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                               | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                          | 60        | 60        | 22           |                      |
| 02 - First Floor New N - Circulation    | -         | 90        | -            | 198                  |
| 01-Ground - New - Rear Gallery          | -         | 90        | -            | 951                  |
| 01-Ground - New - Library               | -         | 90        | -            | 367                  |
| 03- Second Floor New - Performance      | -         | 90        | -            | 3574                 |
| 02 - First Floor New N - Void           | 90        | -         | -            | 1139                 |
| 02 - First Floor New N - Middle Gallery | -         | 90        | -            | 74                   |
| 02 - First Floor New N - Front Gallery  | -         | 90        | -            | 60                   |
| 02 - First Floor New N - A.V.           | 90        | -         | -            | 192                  |

# Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

| Zone                                    | Solar gain limit exceeded? (%) | Internal blinds used? |
|-----------------------------------------|--------------------------------|-----------------------|
| 01-Ground - New - Care Taker            | NO (-56.8%)                    | NO                    |
| 02 - First Floor New S - Classroom      | NO (-0.7%)                     | NO                    |
| 02 - First Floor New S - Void           | NO (-56.9%)                    | NO                    |
| 01-Ground - New - Rear Gallery          | NO (-44.8%)                    | NO                    |
| 01-Ground - New - Library               | NO (-48.6%)                    | NO                    |
| 03- Second Floor New - Performance      | YES (+18.4%)                   | NO                    |
| 02 - First Floor New N - Void           | NO (-7.7%)                     | NO                    |
| 02 - First Floor New N - Middle Gallery | N/A                            | N/A                   |
| 02 - First Floor New N - Front Gallery  | N/A                            | N/A                   |
| 02 - First Floor New N - A.V.           | N/A                            | N/A                   |

## Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

# Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

### EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

## **Technical Data Sheet (Actual vs. Notional Building)**

### **Building Global Parameters**

|                                                       | Actual  | Notional |
|-------------------------------------------------------|---------|----------|
| Area [m <sup>2</sup> ]                                | 1633    | 1633     |
| External area [m <sup>2</sup> ]                       | 2541.9  | 2541.9   |
| Weather                                               | LON     | LON      |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 10      | 3        |
| Average conductance [W/K]                             | 1177.48 | 952.87   |
| Average U-value [W/m <sup>2</sup> K]                  | 0.46    | 0.37     |
| Alpha value* [%]                                      | 10.48   | 13.69    |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### **Building Use**

## % Area Building Type

|     | A1/A2 Retail/Financial and Professional services             |
|-----|--------------------------------------------------------------|
|     | A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways       |
|     | B1 Offices and Workshop businesses                           |
|     | B2 to B7 General Industrial and Special Industrial Groups    |
|     | B8 Storage or Distribution                                   |
|     | C1 Hotels                                                    |
|     | C2 Residential Inst.: Hospitals and Care Homes               |
|     | C2 Residential Inst.: Residential schools                    |
|     | C2 Residential Inst.: Universities and colleges              |
|     | C2A Secure Residential Inst.                                 |
|     | Residential spaces                                           |
|     | D1 Non-residential Inst .: Community/Day Centre              |
|     | D1 Non-residential Inst .: Libraries, Museums, and Galleries |
|     | D1 Non-residential Inst.: Education                          |
|     | D1 Non-residential Inst .: Primary Health Care Building      |
|     | D1 Non-residential Inst .: Crown and County Courts           |
| 100 | D2 General Assembly and Leisure, Night Clubs and Theatres    |
|     | Others: Passenger terminals                                  |
|     | Others: Emergency services                                   |
|     | Others: Miscellaneous 24hr activities                        |
|     | Others: Car Parks 24 hrs                                     |
|     | Others - Stand alone utility block                           |

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 39.14  | 31.48    |
| Cooling    | 6.6    | 5.5      |
| Auxiliary  | 5.6    | 2.98     |
| Lighting   | 21.49  | 25.38    |
| Hot water  | 17.91  | 19.47    |
| Equipment* | 53.78  | 53.78    |
| TOTAL**    | 90.73  | 84.81    |

\* Energy used by equipment does not count towards the total for calculating emissions. \*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 220.6  | 215.92   |
| Primary energy* [kWh/m <sup>2</sup> ]         | 173    | 163.51   |
| Total emissions [kg/m <sup>2</sup> ]          | 29.8   | 28.1     |

\* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

| ŀ   | HVAC Systems Performance                                                                 |                   |                   |                    |                    |                   |               |               |                  |                  |
|-----|------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| Sys | stem Type                                                                                | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST | [ST] No Heating or Cooling                                                               |                   |                   |                    |                    |                   |               |               |                  |                  |
|     | Actual                                                                                   | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             | 0                | 0                |
|     | Notional                                                                                 | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             |                  |                  |
| [ST | ] Central he                                                                             | eating using      | y water: rad      | iators, [HS]       | LTHW boil          | ler, [HFT] N      | atural Gas,   | [CFT] Natu    | ral Gas          |                  |
|     | Actual                                                                                   | 197.3             | 61                | 65.3               | 0                  | 4.9               | 0.84          | 0             | 0.94             | 0                |
|     | Notional                                                                                 | 192.1             | 117.1             | 65.1               | 0                  | 3.1               | 0.82          | 0             |                  |                  |
| [ST | [ST] Split or multi-split system, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Electricity |                   |                   |                    |                    |                   |               |               |                  |                  |
|     | Actual                                                                                   | 70.5              | 161.6             | 22.4               | 14.4               | 7.3               | 0.88          | 3.12          | 0.94             | 4.39             |
|     | Notional                                                                                 | 17.1              | 155.6             | 5.8                | 12                 | 3.3               | 0.82          | 3.6           |                  |                  |

#### Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type HS = Heat source HFT = Heating fuel type CFT = Cooling fuel type

## **Key Features**

The BCO can give particular attention to items with specifications that are better than typically expected.

#### **Building fabric**

| Element                                                                         | <b>U</b> і-Тур | Ui-Min     | Surface where the minimum value occurs*                                         |
|---------------------------------------------------------------------------------|----------------|------------|---------------------------------------------------------------------------------|
| Wall                                                                            | 0.23           | 0.24       | 00-Basement - New - Gallery Storage_W_7                                         |
| Floor                                                                           | 0.2            | 0.1        | 01-Ground - New - Rear Gallery_S_5                                              |
| Roof                                                                            | 0.15           | 0.18       | 03- Second Floor New - Circulation_R_13                                         |
| Windows, roof windows, and rooflights                                           | 1.5            | 1.6        | 03- Second Floor New - Performance_G_14                                         |
| Personnel doors                                                                 | 1.5            | 1.8        | 01-Ground - New - Circulation_D_17                                              |
| Vehicle access & similar large doors                                            | 1.5            | -          | "No external vehicle access doors"                                              |
| High usage entrance doors                                                       | 1.5            | -          | "No external high usage entrance doors"                                         |
| U <sub>i-Typ</sub> = Typical individual element U-values [W/(m <sup>2</sup> K)] |                |            | U <sub>i-Min</sub> = Minimum individual element U-values [W/(m <sup>2</sup> K)] |
| * There might be more than one surface where the n                              | ninimum U      | I-value oc | curs.                                                                           |

| Air Permeability   | Typical value | This building |
|--------------------|---------------|---------------|
| m³/(h.m²) at 50 Pa | 5             | 10            |

# Appendix Energy Assessment 176 Prince of Wales Road

**GREEN** Scenario

# **BRUKL** Output Document

HM Government

Compliance with England Building Regulations Part L 2013

### **Project name**

## 176 Prince of Wales Rd

Date: Tue Dec 06 13:47:21 2016

#### Administrative information

### **Building Details**

Address: ,

#### **Certification tool**

Calculation engine: SBEM

Calculation engine version: v5.2.g.3

BRUKL compliance check version: v5.2.g.3

Interface to calculation engine: DesignBuilder SBEM Interface to calculation engine version: v4.7.0

### Owner Details Name: **Telephone number:**

Address: , ,

Certifier details Name: Niccolo Vicarelli

Telephone number: 02070430418 Address: 57A Great Suffolk Street, London, SE1 0BB

### Criterion 1: The calculated CO<sub>2</sub> emission rate for the building should not exceed the target

The building does not comply with England Building Regulations Part L 2013

| CO <sub>2</sub> emission rate from the notional building, kgCO <sub>2</sub> /m <sup>2</sup> .annum | 28                  |
|----------------------------------------------------------------------------------------------------|---------------------|
| Target CO <sub>2</sub> emission rate (TER), kgCO <sub>2</sub> /m <sup>2</sup> .annum               | 28                  |
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum             | 29                  |
| Are emissions from the building less than or equal to the target?                                  | BER > TER           |
| Are as built details the same as used in the BER calculations?                                     | Separate submission |

### Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

#### **Building fabric**

| Element                                                                   | <b>U</b> a-Limit | Ua-Calc | Ui-Calc           | Surface where the maximum value occurs*                               |
|---------------------------------------------------------------------------|------------------|---------|-------------------|-----------------------------------------------------------------------|
| Wall**                                                                    | 0.35             | 0.27    | 0.3               | 01-Ground - New - Circulation_P_11                                    |
| Floor                                                                     | 0.25             | 0.22    | 0.58              | 00-Basement - New - Circulation_F_5                                   |
| Roof                                                                      | 0.25             | 0.23    | 0.68              | 00-Basement - New - Gallery Storage_R_5                               |
| Windows***, roof windows, and rooflights                                  | 2.2              | 3.48    | 4.96              | 01-Ground - New - Circulation_G_18                                    |
| Personnel doors                                                           | 2.2              | 1.8     | 1.8               | 01-Ground - New - Circulation_D_17                                    |
| Vehicle access & similar large doors                                      | 1.5              | -       | -                 | "No external vehicle access doors"                                    |
| High usage entrance doors                                                 | 3.5              | -       | -                 | "No external high usage entrance doors"                               |
| U <sub>a-Limit</sub> = Limiting area-weighted average U-values [W         | //(m²K)]         |         |                   |                                                                       |
| Ua-Calc = Calculated area-weighted average U-values  W/(m <sup>2</sup> K) |                  |         | $U_i$ -Calc = $U$ | aiculated maximum individual element U-values [VV/(m <sup>2</sup> K)] |

\* There might be more than one surface where the maximum U-value occurs.

\*\* Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

\*\*\* Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

| Air Permeability   | Worst acceptable standard | This building |
|--------------------|---------------------------|---------------|
| m³/(h.m²) at 50 Pa | 10                        | 10            |

### As designed

#### **Building services**

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

| Whole building lighting automatic monitoring & targeting with alarms for out-of-range values |      |  |
|----------------------------------------------------------------------------------------------|------|--|
| Whole building electric power factor achieved by power factor correction                     | <0.9 |  |

#### 1- New BOH HVAC

|                                                                                                                                              | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR efficiency |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|--|--|
| This system                                                                                                                                  | 0.94               | -                  | -                  | -             | -             |  |  |
| Standard value                                                                                                                               | 0.91*              | N/A                | N/A                | N/A           | N/A           |  |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO                                                 |                    |                    |                    |               |               |  |  |
| * Standard shown is for gas single boiler systems <=2 MW output. For single boiler systems >2 MW or multi-boiler systems, (overall) limiting |                    |                    |                    |               |               |  |  |

efficiency is 0.86. For any individual boiler in a multi-boiler system, limiting efficiency is 0.82.

#### 2- New FOH HVAC

|                                                                                              | Heating efficiency | Cooling efficiency | Radiant efficiency | SFP [W/(l/s)] | HR  | R efficiency |  |
|----------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|---------------|-----|--------------|--|
| This system                                                                                  | 3.6                | 3.01               | -                  | -             | -   |              |  |
| Standard value                                                                               | 2.5*               | N/A                | N/A                | N/A           | N/A |              |  |
| Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system NO |                    |                    |                    |               |     |              |  |

\* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

#### 1- New DHW

|                                                                                                          | Water heating efficiency | Storage loss factor [kWh/litre per day] |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--|--|
| This building                                                                                            | 0.94                     | -                                       |  |  |
| Standard value                                                                                           | 0.9*                     | N/A                                     |  |  |
| * Standard shown is for as boilers >30 kW output. For boilers <=30 kW output limiting afficiency is 0.73 |                          |                                         |  |  |

Standard shown is for gas boilers >30 kW output. For boilers <=30 kW output, limiting ethciency is 0.73.

#### Local mechanical ventilation, exhaust, and terminal units

| ID | System type in Non-domestic Building Services Compliance Guide                                          |
|----|---------------------------------------------------------------------------------------------------------|
| Α  | Local supply or extract ventilation units serving a single area                                         |
| В  | Zonal supply system where the fan is remote from the zone                                               |
| С  | Zonal extract system where the fan is remote from the zone                                              |
| D  | Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery |
| Е  | Local supply and extract ventilation system serving a single area with heating and heat recovery        |
| F  | Other local ventilation units                                                                           |
| G  | Fan-assisted terminal VAV unit                                                                          |
| Н  | Fan coil units                                                                                          |
| Ι  | Zonal extract system where the fan is remote from the zone with grease filter                           |

| Zone name<br>ID of system type      |     | SFP [W/(l/s)] |     |     |     |     |     |     |   |              |          |
|-------------------------------------|-----|---------------|-----|-----|-----|-----|-----|-----|---|--------------|----------|
|                                     |     | В             | С   | D   | Е   | F   | G   | Н   | I | пк епісіенсу |          |
| Standard value                      | 0.3 | 1.1           | 0.5 | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1 | Zone         | Standard |
| 00-Basement - New - Plant Rooms     | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 00-Basement - New - AHU Plant       | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Risers            | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 03- Second Floor New - Condensers   | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 02 - First Floor New N - Risers     | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 00-Basement - New - Gallery Storage | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 00-Basement - New - Circulation     | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |

| Zone name                              |     | SFP [W/(I/s)] |     |     |     |     |     |     |   |              |          |
|----------------------------------------|-----|---------------|-----|-----|-----|-----|-----|-----|---|--------------|----------|
| ID of system type                      | Α   | В             | С   | D   | Е   | F   | G   | Н   | I | HR eniciency |          |
| Standard value                         | 0.3 | 1.1           | 0.5 | 1.9 | 1.6 | 0.5 | 1.1 | 0.5 | 1 | Zone         | Standard |
| 00-Basement - New - Shower             | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 00-Basement - New - WC                 | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 00-Basement - New - Kitchenette        | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Circulation          | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Stairwell            | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Care Taker           | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Bin Store            | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Toilets              | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 03- Second Floor New - Circulation     | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 03- Second Floor New - Toilets         | 0.4 | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 02 - First Floor New S - Classroom     | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 02 - First Floor New S - Void          | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 02 - First Floor New N - Circulation   | -   | -             | -   | -   | -   | -   | -   | -   | - | -            | N/A      |
| 01-Ground - New - Rear Gallery         | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 01-Ground - New - Library              | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 03- Second Floor New - Performance     | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 02 - First Floor New N - Void          | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 02 - First Floor New N - Middle Galler | y-  | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 02 - First Floor New N - Front Gallery | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |
| 02 - First Floor New N - A.V.          | -   | -             | -   | 1.6 | -   | -   | -   | -   | - | 0.5          | 0.5      |

| General lighting and display lighting | Lumino    | ous effic |              |                      |
|---------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                             | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                        | 60        | 60        | 22           |                      |
| 00-Basement - New - Plant Rooms       | 90        | -         | -            | 222                  |
| 00-Basement - New - AHU Plant         | 90        | -         | -            | 150                  |
| 01-Ground - New - Risers              | 90        | -         | -            | 73                   |
| 03- Second Floor New - Condensers     | 90        | -         | -            | 163                  |
| 02 - First Floor New N - Risers       | 90        | -         | -            | 192                  |
| 00-Basement - New - Gallery Storage   | 90        | -         | -            | 183                  |
| 00-Basement - New - Circulation       | -         | 90        | -            | 138                  |
| 00-Basement - New - Shower            | -         | 90        | -            | 24                   |
| 00-Basement - New - WC                | -         | 90        | -            | 67                   |
| 00-Basement - New - Kitchenette       | -         | 90        | -            | 139                  |
| 01-Ground - New - Circulation         | -         | 90        | -            | 242                  |
| 01-Ground - New - Stairwell           | -         | 90        | -            | 206                  |
| 01-Ground - New - Care Taker          | 90        | -         | -            | 104                  |
| 01-Ground - New - Bin Store           | 90        | -         | -            | 15                   |
| 01-Ground - New - Toilets             | -         | 90        | -            | 114                  |
| 03- Second Floor New - Circulation    | -         | 90        | -            | 237                  |
| 03- Second Floor New - Toilets        | -         | 90        | -            | 80                   |
| 02 - First Floor New S - Classroom    | 90        | -         | -            | 624                  |
| 02 - First Floor New S - Void         | 90        | -         | -            | 514                  |

| General lighting and display lighting   | Lumino    | ous effic |              |                      |
|-----------------------------------------|-----------|-----------|--------------|----------------------|
| Zone name                               | Luminaire | Lamp      | Display lamp | General lighting [W] |
| Standard value                          | 60        | 60        | 22           |                      |
| 02 - First Floor New N - Circulation    | -         | 90        | -            | 198                  |
| 01-Ground - New - Rear Gallery          | -         | 90        | -            | 951                  |
| 01-Ground - New - Library               | -         | 90        | -            | 367                  |
| 03- Second Floor New - Performance      | -         | 90        | -            | 3574                 |
| 02 - First Floor New N - Void           | 90        | -         | -            | 1139                 |
| 02 - First Floor New N - Middle Gallery | -         | 90        | -            | 74                   |
| 02 - First Floor New N - Front Gallery  | -         | 90        | -            | 60                   |
| 02 - First Floor New N - A.V.           | 90        | -         | -            | 192                  |

# Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

| Zone                                    | Solar gain limit exceeded? (%) | Internal blinds used? |
|-----------------------------------------|--------------------------------|-----------------------|
| 01-Ground - New - Care Taker            | NO (-56.8%)                    | NO                    |
| 02 - First Floor New S - Classroom      | NO (-0.7%)                     | NO                    |
| 02 - First Floor New S - Void           | NO (-56.9%)                    | NO                    |
| 01-Ground - New - Rear Gallery          | NO (-44.8%)                    | NO                    |
| 01-Ground - New - Library               | NO (-48.6%)                    | NO                    |
| 03- Second Floor New - Performance      | YES (+18.4%)                   | NO                    |
| 02 - First Floor New N - Void           | NO (-7.7%)                     | NO                    |
| 02 - First Floor New N - Middle Gallery | N/A                            | N/A                   |
| 02 - First Floor New N - Front Gallery  | N/A                            | N/A                   |
| 02 - First Floor New N - A.V.           | N/A                            | N/A                   |

## Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

# Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

### EPBD (Recast): Consideration of alternative energy systems

| Were alternative energy systems considered and analysed as part of the design process? | NO |
|----------------------------------------------------------------------------------------|----|
| Is evidence of such assessment available as a separate submission?                     | NO |
| Are any such measures included in the proposed design?                                 | NO |

## **Technical Data Sheet (Actual vs. Notional Building)**

### **Building Global Parameters**

|                                                       | Actual  | Notional |
|-------------------------------------------------------|---------|----------|
| Area [m <sup>2</sup> ]                                | 1633    | 1633     |
| External area [m <sup>2</sup> ]                       | 2541.9  | 2541.9   |
| Weather                                               | LON     | LON      |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa] | 10      | 3        |
| Average conductance [W/K]                             | 1177.48 | 952.87   |
| Average U-value [W/m <sup>2</sup> K]                  | 0.46    | 0.37     |
| Alpha value* [%]                                      | 10.48   | 13.69    |

\* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

### **Building Use**

100

## % Area Building Type

| A1/A2 Retail/Financial and Professional services             |
|--------------------------------------------------------------|
| A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways       |
| B1 Offices and Workshop businesses                           |
| B2 to B7 General Industrial and Special Industrial Groups    |
| B8 Storage or Distribution                                   |
| C1 Hotels                                                    |
| C2 Residential Inst .: Hospitals and Care Homes              |
| C2 Residential Inst.: Residential schools                    |
| C2 Residential Inst .: Universities and colleges             |
| C2A Secure Residential Inst.                                 |
| Residential spaces                                           |
| D1 Non-residential Inst .: Community/Day Centre              |
| D1 Non-residential Inst .: Libraries, Museums, and Galleries |
| D1 Non-residential Inst.: Education                          |
| D1 Non-residential Inst .: Primary Health Care Building      |
| D1 Non-residential Inst.: Crown and County Courts            |
| D2 General Assembly and Leisure, Night Clubs and Theatres    |
| Others: Passenger terminals                                  |
| Others: Emergency services                                   |
| Others: Miscellaneous 24hr activities                        |
| Others: Car Parks 24 hrs                                     |
| Others - Stand alone utility block                           |

### Energy Consumption by End Use [kWh/m<sup>2</sup>]

|            | Actual | Notional |
|------------|--------|----------|
| Heating    | 31.58  | 29.72    |
| Cooling    | 6.6    | 5.5      |
| Auxiliary  | 5.6    | 2.98     |
| Lighting   | 21.49  | 25.38    |
| Hot water  | 17.91  | 19.47    |
| Equipment* | 53.78  | 53.78    |
| TOTAL**    | 83.17  | 83.05    |

\* Energy used by equipment does not count towards the total for calculating emissions. \*\* Total is net of any electrical energy displaced by CHP generators, if applicable.

### Energy Production by Technology [kWh/m<sup>2</sup>]

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 0      | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |

### Energy & CO<sub>2</sub> Emissions Summary

|                                               | Actual | Notional |
|-----------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] | 220.6  | 215.92   |
| Primary energy* [kWh/m <sup>2</sup> ]         | 168.72 | 162.95   |
| Total emissions [kg/m <sup>2</sup> ]          | 29     | 28       |

\* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

| HVAC Systems Performance                                                                                      |          |                   |                   |                    |                    |                   |               |               |                  |                  |
|---------------------------------------------------------------------------------------------------------------|----------|-------------------|-------------------|--------------------|--------------------|-------------------|---------------|---------------|------------------|------------------|
| System Type                                                                                                   |          | Heat dem<br>MJ/m2 | Cool dem<br>MJ/m2 | Heat con<br>kWh/m2 | Cool con<br>kWh/m2 | Aux con<br>kWh/m2 | Heat<br>SSEEF | Cool<br>SSEER | Heat gen<br>SEFF | Cool gen<br>SEER |
| [ST] No Heating or Cooling                                                                                    |          |                   |                   |                    |                    |                   |               |               |                  |                  |
|                                                                                                               | Actual   | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             | 0                | 0                |
|                                                                                                               | Notional | 0                 | 0                 | 0                  | 0                  | 0.9               | 0             | 0             |                  |                  |
| [ST] Central heating using water: radiators, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Natural Gas           |          |                   |                   |                    |                    |                   |               |               |                  |                  |
|                                                                                                               | Actual   | 197.3             | 61                | 65.3               | 0                  | 4.9               | 0.84          | 0             | 0.94             | 0                |
|                                                                                                               | Notional | 192.1             | 117.1             | 65.1               | 0                  | 3.1               | 0.82          | 0             |                  |                  |
| [ST] Split or multi-split system, [HS] Heat pump (electric): air source, [HFT] Electricity, [CFT] Electricity |          |                   |                   |                    |                    |                   |               |               |                  |                  |
|                                                                                                               | Actual   | 70.5              | 161.6             | 5.8                | 14.4               | 7.3               | 3.36          | 3.12          | 3.6              | 4.39             |
|                                                                                                               | Notional | 17.1              | 155.6             | 1.9                | 12                 | 3.3               | 2.43          | 3.6           |                  |                  |

#### Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) Cool SSEER = Cooling system seasonal energy efficiency ratio Heat gen SSEFF = Heating generator seasonal efficiency Cool gen SSEER = Cooling generator seasonal energy efficiency ratio ST = System type HS = Heat source HFT = Heating fuel type CFT = Cooling fuel type

## **Key Features**

The BCO can give particular attention to items with specifications that are better than typically expected.

#### **Building fabric**

| Element                                                                         | <b>U</b> і-Тур | Ui-Min | Surface where the minimum value occurs*                                         |  |
|---------------------------------------------------------------------------------|----------------|--------|---------------------------------------------------------------------------------|--|
| Wall                                                                            | 0.23           | 0.24   | 00-Basement - New - Gallery Storage_W_7                                         |  |
| Floor                                                                           | 0.2            | 0.1    | 01-Ground - New - Rear Gallery_S_5                                              |  |
| Roof                                                                            | 0.15           | 0.18   | 03- Second Floor New - Circulation_R_13                                         |  |
| Windows, roof windows, and rooflights                                           | 1.5            | 1.6    | 03- Second Floor New - Performance_G_14                                         |  |
| Personnel doors                                                                 | 1.5            | 1.8    | 01-Ground - New - Circulation_D_17                                              |  |
| Vehicle access & similar large doors                                            | 1.5            | -      | "No external vehicle access doors"                                              |  |
| High usage entrance doors                                                       | 1.5            | -      | "No external high usage entrance doors"                                         |  |
| U <sub>i-Typ</sub> = Typical individual element U-values [W/(m <sup>2</sup> K)] |                |        | U <sub>i-Min</sub> = Minimum individual element U-values [W/(m <sup>2</sup> K)] |  |
| * There might be more than one surface where the minimum U-value occurs.        |                |        |                                                                                 |  |

| Air Permeability   | Typical value | This building |
|--------------------|---------------|---------------|
| m³/(h.m²) at 50 Pa | 5             | 10            |