REPORT N^O GLP-SPEC-002

GREATER LONDON HOUSE ASOS -INFILL OFFICES

DRAINAGE STATEMENT

CONFIDENTIAL

DECEMBER 2016

GREATER LONDON HOUSE ASOS –INFILL OFFICES DRAINAGE STATEMENT GLP

Type of document (version) Confidential

Date: December 2016

GLP Consulting Engineers Ltd Unit 5, Howarth Court Gateway Crescent Oldham Broadway Business Park Chadderton Greater Manchester OL9 9XB

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks	Rev 1			
Date	12.12.2016			
Prepared by	RM			
Signature	R. nuyenge			
Checked by	РК			
Signature				
Authorised by				
Signature				
Project number				
Report number	REPORT N ⁰ GLP- SPEC-002			

TABLE OF CONTENTS

1	GENERAL	.1
1.1		. 1
1.2	LOCATION OF PROJECT	. 1
1.3	CLIENT ORGANISATION	. 1
2	DESIGN PHILOSOPHY	.3
2.1	MAINTENANCE GENERAL	. 4
2.2	MAINTENANCE PLANS GREEN ROOF	. 4
2.3	LIFETIME MAINTENANCE PROCEDURES	. 4
2.4	LIFETIME MAINTENANCE PLANS ATTENUATION TANKS	. 5
3	CONCLUSION	.6

APPENDICES

A P P E N D I X B GLP BELOW GROUND DRAINAGE DRAWING-1607-M106 T2/TYPICAL TANK DETAIL	APPEN	ΡF	Ρ	ΕN	N	D	ΙΧ	Α	PRO FORMA DOCUMENT
	A P P E N	ΡF	Ρ	ΕN	N	D	IX		
A P P E N D I X C MICRODRAINAGE CALCULATIONS		PP	Р	FN	ΝГ	ח	IX		

1 GENERAL

1.1 INTRODUCTION

This statement has been produced for use in support of submission to London Borough of Camden council to demonstrate that the drainage strategy has been adequately developed for the redevelopment of Greater London House, London. *Under condition 10 'Prior to commencement of the development, a lifetime maintenance plan demonstrating how the sustainable drainage system as approved in the "SuDS Calculation Report" dated 22 August 2016 will be maintained submitted to and approved in writing by the local planning authority and that the proposed drainage philosophy will not increase flood risk to the development or properties elsewhere.*

The drainage proposals are in line with the original outline strategies for (SUDS) as defined in the Flood Risk Assessment. Please refer to the approved (SUDS) report

1.2 LOCATION OF PROJECT

The survey works shall be undertaken generally at the following existing/proposed location:

ASOS HQ
Greater London House
Hampstead Road
Camden Town
London
NW1 7FB
These works are specifically related to the new build infill offices to the existing courtyard

1.3 CLIENT ORGANISATION

1.3.1 Project Contacts

The principal contract names and addresses relating to this Project are as follows:

PRIMARY CLIENT

Name:	Nicholas Lazari
Address:	Lazari Investments Ltd
	Greater London House
	Hampstead Road
	London
	NW1 7QX
	United Kingdom
Tel:	0207 388 5444
Email:	Nicholas@lazari.co.uk

CLIENT REPRESENTATIVE FOR MATTERS CONCERNING THIS PROJECT

Name:	Peter Elias (Building Manager)
Address:	Greater London House
	Greater London House
	Hampstead Road
	London
	NW1 7QX
Tel:	07572 278025

The drainage proposals are in line with the original outline strategies for (SUDS) as defined in the Flood Risk Assessment.

The Initial Quick Storage assessment within the Flood Risk Assessment carried out by UK Flood Risk Consultants confirmed the following.

The area of the proposed infilled courtyard is approximately 1,540m2 which is approximately 11% of the total building footprint area. It is therefore proposed that the surface runoff will be attenuated by 11% which is in proportion of the infilled courtyard area. This means approximately 110m3 (11% of 998 m3) of storage will be required to attenuate the surface runoff generated from this area.

Please Note the above mentioned volume is indicative and is based on HR Wallingford's Storm Water Storage Analysis Tool.

Within the current design period we have carried out our own design Microdrainage calculations for the attenuation design we are putting forward for acceptance and we have noted that the total storage volume required to cater for the redeveloped area of the infill offices will be 53m3 and not 110m3 as mentioned above.

Within the current design period we have carried out our own design Microdrainage calculations for the attenuation design we are putting forward for acceptance and we have noted that the total storage volume required to cater for the redeveloped area of the infill offices is approx. 53m3 and not 110m3 as mentioned above.

This meets the Greenfield run off rates of 6.28l/s as written within FRA.

Surface Water drainage from the north and south roofs of the building will be transferred to an attenuation tank located within the building at basement car park level. Downpipes associated will convey flows from these areas into a gravity network at basement level which in turn will discharge into the attenuation tank.

Due to site constraints we are not able to direct all the roof rainwater to a single attenuation tank and are proposing 3 individual tanks in discrete locations that have a specified catchment directed through them, these tanks will all come complete with flow control devices, to restrict the run-off to no more than 2l/s per tank outfall.

The Surface Water drainage system comprise of three attenuation tanks with the combined outflow restricted to 6.28 l/s as agreed with Camden Council in principal. The volume of attenuation tanks are designed to accommodate the critical 1 in 100 year +30% climate change storm event and therefore do not increase risk of flooding to the site or adjacent properties.

This is better illustrated on our drawing 1607-M106 Rev T2.

Please Note: No oil interceptors are required prior to the above ground storage tanks as they will be receiving roof rainwater only.

We trust that our updated calculations and corresponding drawing meets the requirements of the SUDS planning conditions, (in particular condition 10).

This statement should be read in conjunction with the following:

- → Camden ProForma Documentation
- → Micro Drainage Attenuation Calculations
- Drainage Drawing

2.1 MAINTENANCE GENERAL

To enable these maintenance works to occur access will need to be provided to all areas of the greenroofs and some parts of the basement car park.

2.2 MAINTENANCE PLANS GREEN ROOF

Greenroofs will be installed to some of the roof surfaces and may attenuate flows to some degree until the point the roof is saturated and provide improved water run-off quality. To ensure these Sustainable Drainage Systems function correctly they will require maintenance activities in line with the specialist's requirements.

This is not limited to the following:

General maintenance is normally carried out annually during springtime. However, certain tasks which will be dependent upon the location of the roof, such as the removal of weeds, seedlings and accumulated leaf litter from overhanging trees may also need to be done during the autumn.

The following procedures should be carried out as indicated below, in order to ensure that the roof is maintained in good condition and to protect the validity of the guarantee.

2.3 LIFETIME MAINTENANCE PROCEDURES

- → Ensure safe access can be gained to the roof and that relevant Health and Safety procedures are followed when working at roof level. It is advised that the contractor should always seek proof of current maintenance for any man-safe roof access systems prior to proceeding with the work on site.
- → Remove all dead vegetation and debris from the roof surface, taking particular care to ensure that all chute outlets, gutters and downpipes are clear. Where the species mix incorporates wild flowers and grasses it is recommended that all dead vegetation is strimmed off and the waste lowered to the ground and carted away.
- → Please note Roofs in the vicinity of taller trees will need more frequent maintenance.
- → We recommend removing dead leaves during the spring and again in the autumn, to ensure that they do not damage the roof vegetation.
- → Remove the lids of all Inspection chambers, ensure that all rainwater outlets and downpipes are free from blockages and that water can flow freely away.
- → Ensure that any protective metal flashings and termination bars remain securely fixed in place. Advise the client of the need to repair or renew as necessary.
- → Examine all mastic sealant and mortar pointing for signs of degradation. Advise the client of the need to repair or renew as necessary.
- → Check that all promenade tiles and paving slabs are securely fixed to the roof surface and in good condition.
- → Ensure that any new items of plant/equipment on the roof are mounted on suitable isolated slabs and that any fixings used to secure the plant/equipment in place do not penetrate the waterproofing. If in doubt, please contact Bauder for further advice.

GI P

- → The Building owner should keep a record of all inspections and maintenance carried out on the roof.
- → Any signs of damage or degradation to the waterproofing should be reported to Bauder immediately, in order that arrangements can be made for remedial work to be carried out if necessary. Damage to the landscaping should be reported to the building owner Maintenance Plans Attenuation Tanks

2.4 LIFETIME MAINTENANCE PLANS ATTENUATION TANKS

- → The surface water drainage strategy directs water via piped systems to the basement car park via a series of attenuation tanks. The attenuation tanks have been designed to accommodate for the 1 in 100 year storm event including an allowance for climate change.
- → The proposed (SUDS) attenuation tanks (sectional steel) to be installed in the basement car park. Come with a life expectancy in excess of 20 years this is based on confirmation from Balmoral the tank manufacturer. As to the location of the tanks the requirement to replace the tanks during the design life of the development is limited as the tanks will be protected external conditions. It is proposed to provide a diverter valve on the inlets to the tanks should emergency maintenance of the tank be required. (refer to typical tank detail drawing within the appendices of this report.
- → This is to provide dry working conditions for maintenance in the event that the surface tank has a serious blockage. During this event surface water will accumulate on the basement slab into, although this is considered to only be a small amount of surface water and as such is a low risk, further more there are drainage channels that could convey the flows to drain if another storm was to take place.
- → The tanks which shall be sited 'above ground' will all come complete with free access around the tank to inspect the tank seals and all interconnecting rainwater pipework.
- → The tanks can be inspected or cleaned and flushed out easily if required, making it a lowmaintenance solution, each tank will come with an integral flow control device, this will require infrequent visual inspection from the access turret. There will be a lifting chain provided should the flow control device require removal.
- → Each tank will come complete with an overflow warning pipe link to the trigger a warning to the maintenance staff, the contents are not clearing effectively. As the tank is not a buried entity, maintenance can be carried out without needing permits or preventing the day to day operations of the offices.
- → The tanks will be constructed from stainless steel and are deemed suitable for the environment they will be installed in; each tank will also come with a ventilation pipe to deal with pressure fluctuations.
- → Each tanks restricted outfall will be connected to the existing drainage via a robust non return valve. The tanks shall come complete with level probes linked to the building management system to also provide an audible warning should there be a tank surcharge event taking place that requires further investigation by the building maintenance team.

The contents of this drainage statement highlight the proposed drainage designs at the GLH site, as specified in this report and corresponding drawing work, have been designed to incorporate the maintenance requirements of its drainage features, for the design life of the site.

Appendix A

Advice Note on contents of a Surface Water Drainage Statement

London Borough of Camden

1. Introduction

- 1.1 The Government has strengthened planning policy on the provision of sustainable drainage and new consultation arrangements for 'major' planning applications will come into force from 6 April 2015 as defined in the <u>Written</u> <u>Ministerial Statement</u> (18th Dec 2014).
- 1.2 The new requirements make Lead Local Flood Authorises statutory consultees with respect to flood risk and SuDS for all major applications. Previously the Environment Agency had that statutory responsibility for sites above 1ha in flood zone 1.
- 1.3 Therefore all 'major' planning applications submitted from 6 April 2015 are required demonstrate compliance with this policy and we'd encourage this is shown in a **Surface Water Drainage Statement**.
- 1.4 The purpose of this advice note is to set out what information should be included in such statements.

2. Requirements

- 2.1 It is essential that the type of Sustainable Drainage System (SuDS) for a site, along with **details of its extent and position**, is identified within the planning application to clearly demonstrate that the proposed SuDS can be accommodated within the development.
- 2.2 It will now not be acceptable to leave the design of SuDs to a later stage to be dealt with by planning conditions.
- 2.3 The NPPF paragraph 103 requires that developments do not increase flood risk elsewhere, and gives priority to the use of SuDS. Major developments must include SuDS for the management of run-off, unless demonstrated to be inappropriate. The proposed minimum standards of operation must be appropriate and as such, a **maintenance plan** should be included within the Surface Water Drainage Statement, clearly demonstrating that the SuDS have been designed to ensure that the maintenance and operation requirements are economically proportionate Planning Practice Guidance suggests that this should be considered by reference to the costs that would be incurred by consumers for the use of an effective drainage system connecting directly to a public sewer.
- 2.4 Camden Council will use planning conditions or obligations to ensure that there are clear arrangements in place for ongoing maintenance over the lifetime of the development.
- 2.5 Within Camden, SuDS systems must be designed in accordance with London Plan policy 5.13. This requires that developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

UNCLASSIFIED

- 1 store rainwater for later use
- 2 use infiltration techniques, such as porous surfaces in non-clay areas
- 3 attenuate rainwater in ponds or open water features for gradual release
- 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
- 5 discharge rainwater direct to a watercourse
- 6 discharge rainwater to a surface water sewer/drain
- 7 discharge rainwater to the combined sewer.
- 2.6 The hierarchy above seeks to ensure that surface water run-off is controlled as near to its source as possible to mimic natural drainage systems and retain water on or near to the site, in contrast to traditional drainage approaches, which tend to pipe water off-site as quickly as possible.
- 2.7 Before disposal of surface water to the public sewer is considered all other options set out in the drainage hierarchy should be exhausted. When no other practicable alternative exists to dispose of surface water other than the public sewer, the Water Company or its agents should confirm that there is adequate spare capacity in the existing system taking future development requirements into account.
- 2.8 Best practice guidance within the <u>non-statutory technical standards</u> for the design, maintenance and operation of sustainable drainage systems will also need to be followed. Runoff volumes from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the **greenfield runoff volume** for the same event.
- 2.9 <u>Camden Development Policy 23</u> (Water) requires developments to reduce pressure on combined sewer network and the risk of flooding by limiting the rate of run-off through sustainable urban drainage systems. This policy also requires that developments in areas known to be at risk of surface water flooding are designed to cope with being flooded. <u>Camden's SFRA</u> surface water flood maps, updated SFRA figures 6 (LFRZs), and 4e (increased susceptibility to elevated groundwater), as well as the <u>Environment Agency</u> <u>updated flood maps for surface water (ufmfsw)</u>, should be referred to when determining whether developments are in an area at risk of flooding.
- 2.10 <u>Camden Planning Guidance 3</u> (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required. Further guidance on how to reduce the risk of flooding can be found in CPG3 paragraphs 11.4-11.8.
- 2.11 Where an application is part of a larger site which already has planning permission it is essential that the new proposal does not compromise the drainage scheme already approved.

3. Further information and guidance

- 3.1 Applicants are strongly advised to discuss their proposals with the Lead Local Flood Authority at the pre-application stage to ensure that an acceptable SuDS scheme is submitted.
- 3.2 For general clarification of these requirements please Camden's Local Planning Authority or Lead Local Flood Authority

UNCLASSIFIED

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	
Address & post code or LPA reference	
Grid reference	
Is the existing site developed or Greenfield?	
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	
Total Site Area served by drainage system (excluding open space) (Ha)*	

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)				If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method			N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)				the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed MicroDrainage calculations	~		REFER TO MICRODRAINAGE CALCULATIONS PROVIDED FOR ALL RETURN PERIODS REQUIRED	Please provide MicroDrainage calculations of existing and proposed run-off rates and volumes in accordance with a recognised methodology or the results of a full infiltration test (see line below) if infiltration is proposed.
Infiltration				e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse		\checkmark		e.g. Is there a watercourse nearby?
To surface water sewer	V		CCTV RESULTS HAVE PROVEN SITE IS CURRENTLY POSTIVELY DRAINED THROUGH A NETWORK OF SUSPENDED DRAINAGE RUNS WITHIN THE BASEMENT	Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above				e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal had regard to the SuDS hierarchy?	V		THE SITE HAS REGARDED SECTION 2.5 OF THE HIERARCHY AND WE WILL BE PROVIDING ATTENUATION TANKS FOR THE REDEVELOPED AREA OF THE SITE, THERE WILL ALSO BE PARTS OF THE NEW ROOF PROVIDED WITH A GREEN ROOF TO FURTHER ENHANCE OUR SUDS TECHNIQUES, WATER WILL BE LIMITED TO GREENFIELD RUN OFF RATES AND WILL UITIMATELY DISCHARGE TO THE BASEMENT COMBINED DRAINAGE RUNS	Evidence must be provided to demonstrate that the proposed Sustainable Drainage strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
Layout plan showing where the sustainable drainage infrastructure will be located on site.	V		ATTENUTATION TANK 1, 2 + 3 WILL BE SITED AS INDICATED ON OUR CURRENT BELOW GROUND DRAINAGE DRAWING, WE HAVE HAD TO SEGEMENT THE TANKS AS THE EXISTICS CAR PARK IS IN USE AND THEER ARE SEVERAL. NEW STUCTURAL COLUMS THAT PREVENT HAVING ONE LARGER TANK TO DEAL WITH SURFACE RUN OFF. THE TANKS HAVE BEEN POSITIONED SO THAT FUTURE MAINTAINACE CAN BE CARRIED OUT EASILY.	Please provide plan reference numbers showing the details of the site layout showing where the sustainable drainage infrastructure will be located on the site. If the development is to be constructed in phases this should be shown on a separate plan and confirmation should be provided that the sustainable drainage proposal for each phase can be constructed and can operate independently and is not reliant on any later phase of development.

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers
Greenfield QBAR		N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1					Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30					for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100					by 50% from the existing sites for all corresponding rainfall events.
1 in 100 plus climate change	N/A				The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.

Note: Attenuating to Greenfield run off rates through the tank (s) improves the current run off for the redeveloped area by a significant 85%

5. Calculate additional volumes for storage –The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume (m ³)	Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³) (Proposed-Existing)	Notes for developers
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any increase in volume increases flood risk elsewhere. Where volumes are increased section 6 must be filled in.
1 in 100 6 hour plus climate change					The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as is reasonably practicable to the greenfield runoff volume wherever practicable. As a minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

	Notes for developers
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m ³)	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)	previously developed sites, runoff rates should not be more than three times the
	calculated greenfield rate. Can't be used where discharge volumes are
	increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	Percentage of attenuation volume which will be held above ground in
	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

		Notes for developers
	State the Site's Geology and known Source	Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration	Protection Zones (SPZ)	and refer to Environment Agency website to identify and source
		protection zones (SPZ)
	Are infiltration rates suitable?	Infiltration rates should be no lower than 1x10 ⁻⁶ m/s.
	State the distance between a proposed infiltration	Need 1m (min) between the base of the infiltration device & the water
	device base and the ground water (GW) level	table to protect Groundwater quality & ensure GW doesn't enter
		infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

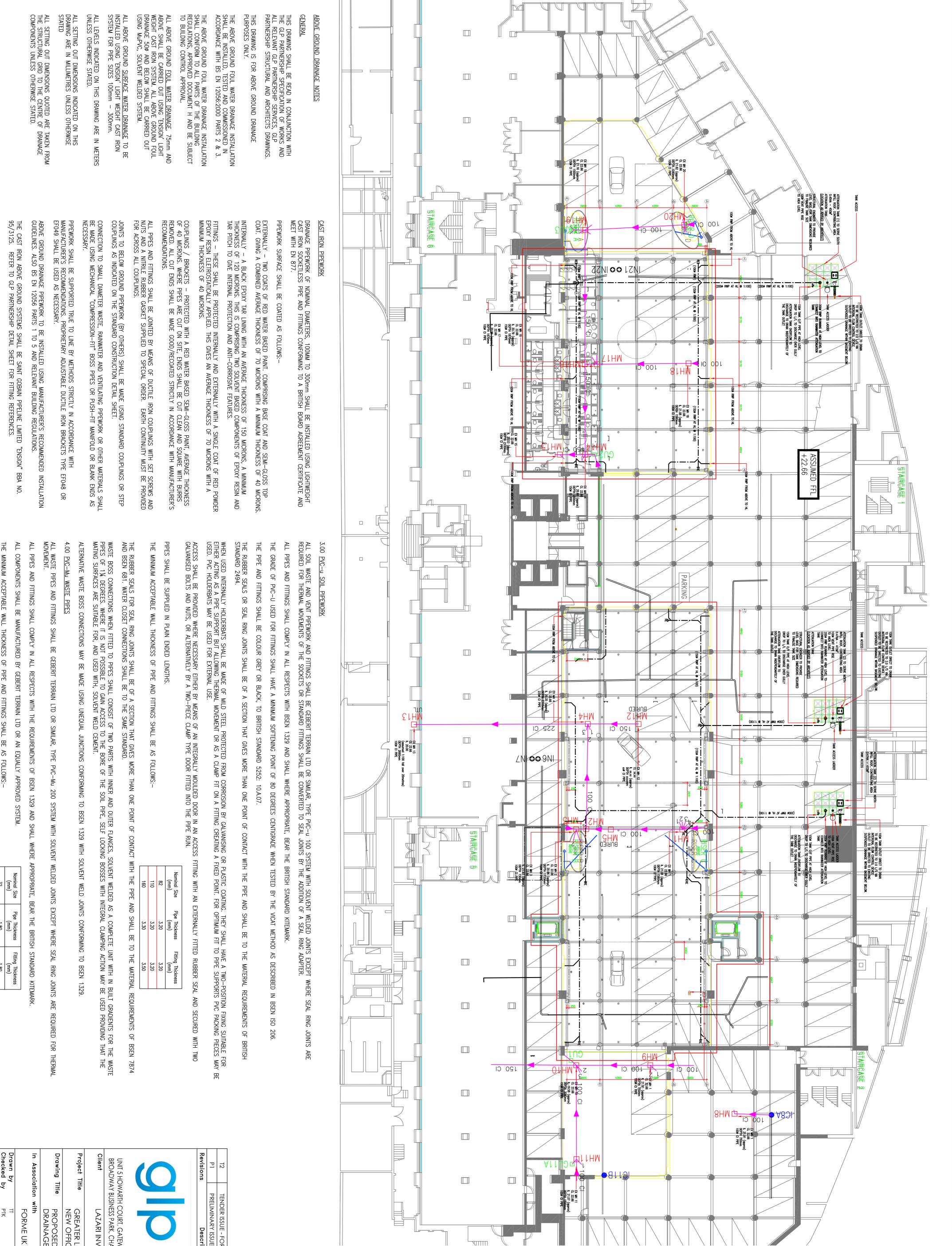
The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

	Notes for developers
Please confirm what option has been chosen and how much storage is required on site.	The developer at this stage should have an idea of the site characteristics and be able to explain what the storage requirements are on site and how it will be achieved.

8. Please confirm


	Notes for developers
Which Drainage Systems measures have been used, including green roofs?	SUDS can be adapted for most situations even where infiltration isn't feasible e.g. impermeable liners beneath some SUDS devices allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event without flooding	This a requirement for sewers for adoption & is good practice even where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm event? If no please demonstrate how buildings and utility plants will be protected.	National standards require that the drainage system is designed so that flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate change storm events will be safely contained on site.	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.
How will exceedance events be catered on site without increasing flood risks (both on site and outside the development)?	Safely: not causing property flooding or posing a hazard to site users i.e. no deeper than 300mm on roads/footpaths. Flood waters must drain away at section 6 rates. Existing rates can be used where runoff volumes are not increased.Exceedance events are defined as those larger than the 1 in 100 +CC event.
How are rates being restricted (vortex control, orifice etc)	Detail of how the flow control systems have been designed to avoid pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage systems throughout the development. Please list all the owners.	If these are multiple owners then a drawing illustrating exactly what features will be within each owner's remit must be submitted with this Proforma.
How is the entire drainage system to be maintained?	If the features are to be maintained directly by the owners as stated in answer to the above question please answer yes to this question and submit the relevant maintenance schedule for each feature. If it is to be maintained by others than above please give details of each feature and the maintenance schedule. Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section	Document reference where details quoted above are taken from	Page Number
Section 2		
Section 3		
Section 4		
Section 5		
Section 6		
Section 7		
Section 8		
drainage proposals increase in rate or This form is comple drainage strategy o		asing. If there is an ng dealt with.
Form Completed By Qualification of person	RICKESH MIYANGAR son responsible for signing off this pro-formaCHARTERED ENGINEER	
Company On behalf of (Client Date:	GLP I's details) LANZARI INVESTMENTS LTD 09/12/2016	

Appendix B

GLP BELOW GROUND DRAINAGE DRAWING-1607-M106 REV T2/TYPICAL TANK DETAIL

			-	
160	110	82	(mm)	Nominal Size
.3.30	3.20	3.20	(mm)	Pipe Thickness
3 50	3.20	3.20	(mm)	Fitting Thickness

FITTINGS

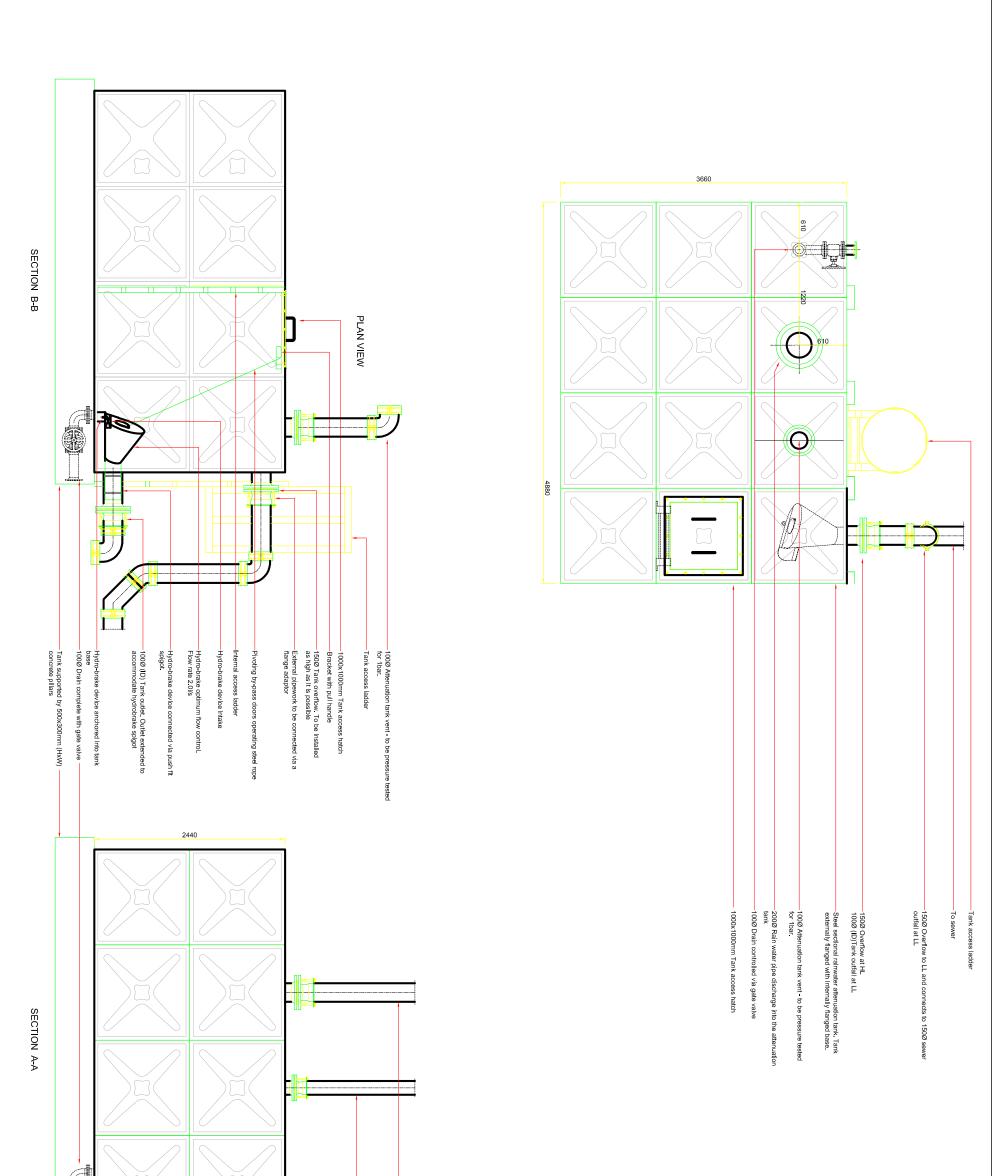
ALL ABOVE GROUND PIPEWORK SHALL BE SUITABLY RESTRAINED/BRACKETED IN ORDER TO WITHSTAND THE WEIGHT OF PIPEWORK WHEN FULL OF WASTE/5 BAR STATIC HEAD.

ΞĦΕ

MINIMUM

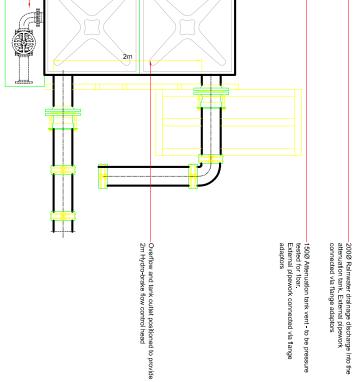
.90

T2	TENDER ISSUE - FOR PLANNING		П	DEC 2016
٩I	PRELIMINARY ISSUE		∃	FEB 2016
Revisions	Description	Ref	Eng	Date
	mechanical and electrical consulting engineers	g er	ngine	strical ers
UNIT 5 HOW, BROADWAY	UNIT 5 HOWARTH COURT, GATEWAY CRESCENT, OLDHAM BROADWAY BUSINESS PARK, CHADDERTON, OL9 9XB		Tel: 01 Fax: 0	Tel: 01 <i>6</i> 1 681 7070 Fax: 0161 219 1968
Client	LAZARI INVESTMENTS LTD			
Project Title	GREATER LONDON HOUSE NEW OFFICE SPACE			
Drawing Title	PROPOSED SPA AND SHOWER BLOCK DRAINAGE STRATEGY DRAWING	BLO G	СК	
In Association with	on with			
Drawn by	∏ Scales	1:50	1:50@A1	
Checked by Date	FEB 2016 (work to		figured d	dimensions)
DRG No.	1607-M106			Rev. T2


.____ THE POSITION AND LOCATION OF ALL EXISTING SERVICES INDICATED ON THIS DRAWING ARE APPROXIMATE ONLY. <u>NOTES</u>

- 2 THE NATURE AND CONDITION OF EXISTING SERVICES SHALL NOT BE RELIED UPON, AND IT IS EXPECTED THAT THE CONTRACTOR SHALL VERIFY ALL NECESSARY INFORMATION.
- ь С THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL AVAILABLE RECORD DRAWINGS AND DOCUMENTATION FOR THE SITE, STRUCTURES AND ENGINEERING SERVICES TOGETHER WITH HEALTH AND SAFETY PRE-CONSTRUCTION INFORMATION, WHICH HAS BEEN PROVIDED TO GLP
- 4 GLP ARE NOT RESPONSIBLE FOR UNDERTAKING INVESTIGATIONS AND SURVEYS TO DETERMINE THE NATURE OF THE SITE, EXISTING SERVICES, LOCAL CONDITIONS AND RESTRICTIONS LIKELY TO EFFECT THE EXECUTION OF THE WORKS PRIOR TO COMMENCEMENT. ALL DIMENSIONS WHERE SHOWN ARE IN MILLIMETRES (mm) UNLESS STATED OTHERWISE.
- б. ъ.
- THE WORKS SHALL BE CARRIED OUT BY SPECIALIST COMPETENT AND EXPERIENCED CONTRACTORS WHO ARE MEMBERS OF A RECOGNISED NATIONAL ORGANISATION. OPERATIVES SHALL HAVE RECEIVED FULL AND APPROPRIATE TRAINING FOR THE OPERATIONS THEY ARE TO UNDERTAKE. ALL WORKS SHALL BE CARRIED OUT IN ACCORDANCE WITH ALL PERTINENT HEALTH AND SAFETY REGULATIONS.
- GAPS AROUND SERVICE PENETRATIONS ARE TO BE FIRE STOPPED WITH INTUMESCENT MASTIC SEALANT. INTUMESCENT FIRE COLLARS ARE TO BE PROVIDED ON ALL NON METALLIC PIPEWORK ABOVE 50mm TO ENSURE FIRE INTEGRITY IS MAINTAINED.

.7


EXISTING RAINWATER INSTALLATION TO BE INSPECTED, CLEANED, TESTED & REPAIRED WHERE NECESSARY, AND LEFT IN A SOUND WORKING CONDITION.

œ

Due to static pressure from rainwater system tank to be tested for 1 bar pressure Final connections positions TBC with tank manufacturer

Appendix C

MICRODRAINAGE CALCULATIONS

WSP Group Ltd						Page 1
•						5
•						Micro
Date 13/12/2016 10:27		Designe	d by UKRX	XM014		Drainage
File 161209 Attenuati	on Tank	Checked	by			Diamage
XP Solutions		Source	Control 2	2015.1		
Summary o	f Results f	or 100 y	rear Retu	rn Perio	d (+30%)	-
Storm	Max Max	Marr	New	Mari	No. G	
Event	Max Max Level Dept		Max Overflow	Max Σ Outflow		tatus
	(m) (m)		(1/s)	(l/s)	(m ³)	
					10 6	
	c 23.055 0.35 c 23.120 0.42		0.0 0.0	2.2	10.6 12.6	ок ок
	23.120 0.42 23.127 0.42			2.3	12.8	OK
120 min Summer			0.0	2.3	11.8	ОК
180 min Summer			0.0	2.2	10.6	O K
240 min Summe	23.015 0.31	5 2.2	0.0	2.2	9.4	ОК
360 min Summer				2.2	7.2	O K
480 min Summer				2.1	5.3	O K
600 min Summer			0.0	2.1	3.7	ОК
720 min Summer 960 min Summer			0.0 0.0	2.1 2.1	2.5 0.7	ок ок
1440 min Summer			0.0	1.8	0.7	OK
2160 min Summer				1.0	0.0	OK
2880 min Summer			0.0	1.0	0.0	O K
4320 min Summer				0.7	0.0	O K
5760 min Summer	22.700 0.00	0 0.6	0.0	0.6	0.0	O K
7200 min Summer			0.0	0.5	0.0	O K
8640 min Summer				0.4	0.0	0 K
10080 min Summer				0.4	0.0	ОК
	c 23.107 0.40 c 23.188 0.48			2.3 2.3	12.2 14.6	ОК ОК
Storm	Rain	Flooded	Discharge	Overflow	Time-Peak	:
Event	(mm/hr)	Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m ³)		
15 min S	ummer 137.274	£ 0.0	12.8	0.0	17	,
30 min S			16.6	0.0	31	
60 min S			20.3	0.0	54	
120 min S			24.3	0.0	86	
180 min S			26.5	0.0	120	
240 min S 360 min S			28.0 30.3	0.0	154 220	
480 min S			30.3	0.0	220	
600 min S			33.4	0.0	340	
720 min S			34.5	0.0	398	
960 min S	ummer 6.081		36.5	0.0	508	1
1440 min S			39.3	0.0	0	
2160 min S			42.2	0.0	0	
2880 min S			44.4	0.0	0	
4320 min S 5760 min S			47.6 49.9	0.0	0	
7200 min S			49.9 51.8	0.0	0	
8640 min S			53.4	0.0	0	
10080 min S			54.8	0.0	0	
	inter 137.274		14.4	0.0	17	
30 min W	inter 88.737	7 0.0	18.7	0.0	31	
		0015	~ 1			
	©1982-	-2015 XP	Solution	IS		

WSP Group Ltd						Page 2
•						5
						Micco
Date 13/12/2016 10:27		Designe	d by UKRY	KM014		
File 161209 Attenuation Ta	ank	Checked	by			Drainage
XP Solutions		Source	Control 2	2015.1		
Summary of Res	sults fo	or 100 y	ear Retu	rn Perio	d (+30%)	
84 No.		M		Ma	X 64	
Storm Ma Event Lev		Max	Max Overflow	Max E Outflow		atus
(m		(1/s)	(1/s)	(1/s)	(m ³)	
	, , ,	() =)	() =)		、 γ	
60 min Winter 23.2				2.3	15.3	ОК
120 min Winter 23.1 180 min Winter 23.1			0.0	2.3	13.8	ОК
240 min Winter 23.0 240 min Winter 23.0			0.0 0.0	2.3	12.1 10.3	о к о к
360 min Winter 23.0			0.0	2.2	7.0	0 K
480 min Winter 22.8			0.0	2.2	4.2	ОК
600 min Winter 22.5			0.0	2.1	2.0	ОК
720 min Winter 22.7	18 0.018	2.1	0.0	2.1	0.6	ОК
960 min Winter 22.7			0.0	1.8	0.0	ОК
1440 min Winter 22.7			0.0	1.3	0.0	ОК
2160 min Winter 22.7			0.0	0.9	0.0	ОК
2880 min Winter 22.7 4320 min Winter 22.7			0.0	0.7	0.0	O K O K
4320 min Winter 22.7 5760 min Winter 22.7			0.0	0.5 0.4	0.0 0.0	ОК ОК
7200 min Winter 22.7			0.0	0.4	0.0	O K
8640 min Winter 22.7			0.0	0.3		ОК
10080 min Winter 22.7			0.0	0.3	0.0	ОК
Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
Event	(mm/hr)	Volume (m³)	Volume (m³)	Volume (m³)	(mins)	
Event 60 min Winter	(mm/hr)	Volume (m³) 0.0	Volume (m ³) 22.8	Volume (m ³) 0.0	(mins) 58	
Event 60 min Winter 120 min Winter	(mm/hr) 54.549 32.389	Volume (m ³) 0.0 0.0	Volume (m ³) 22.8 27.3	Volume (m ³) 0.0 0.0	(mins) 58 92	
Event 60 min Winter	(mm/hr) 54.549 32.389 23.570	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 22.8 27.3 29.8	Volume (m ³) 0.0 0.0 0.0	(mins) 58 92 130	
Event 60 min Winter 120 min Winter 180 min Winter	(mm/hr) 54.549 32.389 23.570 18.708	Volume (m ³) 0.0 0.0	Volume (m ³) 22.8 27.3	Volume (m ³) 0.0 0.0	(mins) 58 92	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 22.8 27.3 29.8 31.4	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 58 92 130 166	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 58 92 130 166 234 296 350	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 58 92 130 166 234 296 350 398	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 58 92 130 166 234 296 350 398 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0	
Event60minWinter120minWinter180minWinter240minWinter360minWinter360minWinter480minWinter600minWinter720minWinter960minWinter1440minWinter2160minWinter4320minWinter5760minWinter7200minWinter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7 53.3 55.9 58.1	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 5760 min Winter 5760 min Winter 8640 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7 53.3 55.9 58.1 59.8	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7 53.3 55.9 58.1	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event60minWinter120minWinter180minWinter180minWinter240minWinter360minWinter360minWinter480minWinter600minWinter720minWinter960minWinter1440minWinter2160minWinter2800minWinter5760minWinter7200minWinter8640minWinter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7 53.3 55.9 58.1 59.8	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event60minWinter120minWinter180minWinter180minWinter240minWinter360minWinter360minWinter480minWinter600minWinter720minWinter960minWinter1440minWinter2160minWinter280minWinter5760minWinter7200minWinter8640minWinter	(mm/hr) 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 22.8 27.3 29.8 31.4 34.0 35.9 37.4 38.7 40.9 44.0 47.3 49.7 53.3 55.9 58.1 59.8	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 58 92 130 166 234 296 350 398 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

WSP Group Ltd		Page 3
· ·		L'un
Date 13/12/2016 10:27	Designed by UKRXM014	
File 161209 Attenuation Tank	Checked by	Drainage
XP Solutions	Source Control 2015.1	-1
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	100Cv (Summer)0.7and and WalesCv (Winter)0.820.700Shortest Storm (mins)0.436Longest Storm (mins)100	340 15
Tir	ne Area Diagram	
Tota	al Area (ha) 0.050	
	ime (mins) Area om: To: (ha)	
	0 4 0.050	

©1982-2015 XP Solutions

WSP Group Ltd					Page 4
	Dogiono	d her HEDYMO	214		Micro
Date 13/12/2016 10:27 File 161209 Attenuation Tank	Checked	d by UKRXM()⊥4		Drainage
XP Solutions		Control 201	15.1		
	504200				
I	Model Det	ails			
Storage is Or	line Cove	r Level (m) 2	25.100		
Tank	or Pond	Structure			
	rt Level (
De.	p th (m) Ar 0.000	30.0			
Hydro-Brake	Optimum®	Outflow Co	ontrol		
Unit	Reference	MD-SHE-0060)-2000-160	0-2000	
	n Head (m) Flow (l/s)			1.600 2.0	
	Flush-Flo		Calc	ulated	
	Objective	e Minimise u	upstream s	torage	
	meter (mm)			60	
Minimum Outlet Pipe Dia	Level (m) meter (mm)			21.000 75	
Suggested Manhole Dia				1200	
Control Pc	ints	Head (m) Fl	ow (l/s)		
Design Point (Ca			2.0		
	Flush-Flo™ Kick-Flo®		1.5 1.2		
Mean Flow over 1			1.5		
The hydrological calculations have h Hydro-Brake Optimum® as specified. Hydro-Brake Optimum® be utilised the invalidated	Should and n these st	other type of torage routin	control ng calcula	device ot tions wil	cher than a Ll be
Depth (m) Flow (1/s) Depth (m) Flow					
0.100 1.3 1.200 0.200 1.5 1.400	1.8 1.9	3.000 3.500	2.7 2.9	7.000 7.500	4.0 4.1
0.300 1.5 1.600	2.0	4.000	3.0	8.000	4.2
0.400 1.5 1.800	2.1	4.500	3.2	8.500	4.3
0.500 1.3 2.000	2.2 2.3	5.000	3.4	9.000	4.4
0.600 1.3 2.200 0.800 1.5 2.400	2.3	5.500 6.000	3.5 3.7	9.500	4.6
1.000 1.6 2.600	2.5	6.500	3.8		
Pipe	Overflow	v Control			
Diameter (m) 0.15 Slope (1:X) 200. Length (m) 2.50 Roughness k (mm) 0.60	0 Coeffic: 0 Upstrea 0	am Invert Lev	caction ().500).600 4.900	
©1982-	-2015 XP	Solutions			

WSP Group Ltd							Page 1
							1 m
·				-1 1 1	014		Micro
Date 09/12/2016 1				d by ukra	xm014		Drainage
File 161209 Atter	luation Tar		Checked	-			
XP Solutions			Source	Control 2	2015.1		
Summa	ary of Resu	ltg fo	r 100 v	oar Rotu	rn Derio	d (+30%)
	ary or kest	LLS IC	01 100 y	ear Ketu.	III PELIO	u (+30%	<u>)</u>
Storm	n Max	Max	Max	Max	Max	Max S	Status
Event		-		Overflow			
	(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15 min	Summer 23.07	1 0.371	2.2	0.0	2.2	11.1	ОК
	Summer 23.14			0.0	2.3	13.2	ОК
	Summer 23.15			0.0	2.3		O K
	Summer 23.11			0.0	2.3	12.5	ОК
	Summer 23.07			0.0	2.2	11.3	ОК
	Summer 23.03 Summer 22.96			0.0	2.2	10.1	OK
	Summer 22.96 Summer 22.89			0.0 0.0	2.2	7.9 5.9	O K O K
	Summer 22.89			0.0	2.2		0 K
	Summer 22.79			0.0	2.1		O K
	Summer 22.73			0.0	2.1		ОК
	Summer 22.70			0.0	1.9		O K
	Summer 22.70			0.0	1.3		ОК
2880 min	Summer 22.70	0 0.000	1.0	0.0	1.0	0.0	ОК
4320 min	Summer 22.70	0 0.000	0.7	0.0	0.7	0.0	ОК
	Summer 22.70			0.0	0.6	0.0	ОК
	Summer 22.70			0.0	0.5	0.0	ОК
	Summer 22.70			0.0	0.4		ОК
	Summer 22.70			0.0	0.4		ОК
	Winter 23.12 Winter 23.21			0.0 0.0	2.3	12.8 15.4	O K O K
	Storm	Rain	Flooded	Discharge	Overflow	Time-Pea	¢
	Event	(mm/hr)	Volume	Volume	Volume	(mins)	
			(m³)	(m³)	(m³)		
15	min Summer	137.274	0.0	13.4	0.0	17	7
30	min Summer	88.737	0.0	17.3	0.0	32	1
	min Summer	54.549	0.0	21.2	0.0	54	4
	min Summer	32.389	0.0	25.3	0.0	86	
	min Summer	23.570	0.0	27.5	0.0	120	
	min Summer	18.708	0.0	29.0	0.0	154	
	min Summer min Summer	13.486 10.688	0.0	31.6 33.2	0.0 0.0	220 284	
	min Summer min Summer	8.919	0.0	33.2 34.8	0.0	284	
	min Summer	7.689	0.0	34.0	0.0	400	
			0.0	37.9	0.0	510	
720	min Summer	6.081					0
720 960	min Summer min Summer	6.081 4.363	0.0	40.8	0.0	(J
720 960 1440				40.8 43.9	0.0		2
720 960 1440 2160	min Summer	4.363	0.0			(
720 960 1440 2160 2880 4320	min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762	0.0 0.0 0.0 0.0	43.9 46.1 49.5	0.0 0.0 0.0	(((0 0 0
720 960 1440 2160 2880 4320 5760	min Summer min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762 1.387	0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9	0.0 0.0 0.0 0.0	(((0 0 0 0
720 960 1440 2160 2880 4320 5760 7200	min Summer min Summer min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762 1.387 1.152	0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9 53.9	0.0 0.0 0.0 0.0 0.0		
720 960 1440 2160 2880 4320 5760 7200 8640	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762 1.387 1.152 0.989	0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9 53.9 55.6	0.0 0.0 0.0 0.0 0.0 0.0	(((((
720 960 1440 2160 2880 4320 5760 7200 8640 10080	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9 53.9 55.6 57.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Winter	4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870 137.274	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9 53.9 55.6 57.0 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		D D D D D D D D D T
720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.9 46.1 49.5 51.9 53.9 55.6 57.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		D D D D D D D D T

WSP Group Ltd						Page 2
						N .
						Micro
Date 09/12/2016 16:23			d by ukrx	cm014		Drainage
File 161209 Attenuatio	n Tank	Checked				Diamage
XP Solutions		Source	Control 2	2015.1		
Cummorate of	Dogulta fo		Dor Dotu	n Dorio	1 (1208)	
Summary OL	Results fo	<u>JI 100 Y</u>	ear ketur	II Period	1 (+30%)	
Storm	Max Max	Max	Max	Max	Max St	atus
Event	Level Depth					
	(m) (m)	(l/s)	(1/s)	(l/s)	(m³)	
60 min Winter	23.240 0.540	2.3	0.0	2.3	16.2	ОК
120 min Winter			0.0	2.3	14.7	ОК
180 min Winter			0.0	2.3	13.0	ОК
240 min Winter				2.2	11.1	ОК
360 min Winter 480 min Winter			0.0	2.2 2.1	7.8 4.9	O K O K
600 min Winter			0.0	2.1	4.9 2.6	O K
720 min Winter				2.1	0.9	ок
960 min Winter			0.0	1.9	0.0	ОК
1440 min Winter			0.0	1.3	0.0	ОК
2160 min Winter			0.0	1.0	0.0	ОК
2880 min Winter			0.0	0.8	0.0	ОК
4320 min Winter			0.0	0.5	0.0	ОК
5760 min Winter 7200 min Winter				0.4 0.4	0.0 0.0	O K O K
8640 min Winter			0.0	0.4	0.0	O K
10080 min Winter			0.0	0.3	0.0	ОК
Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow ' Volume (m³)	Time-Peak (mins)	
	nter 54.549		23.9	0.0	58	
120 min Wi 180 min Wi			28.2 30.8	0.0 0.0	94 132	
240 min Wi			30.8	0.0	152	
360 min Wi			35.3	0.0	236	
480 min Wi			37.3	0.0	298	
600 min Wi			38.9	0.0	356	
720 min Wi			40.3	0.0	404	
960 min Wi 1440 min Wi			42.5 45.7	0.0	0	
2160 min Wi			45.7 49.1	0.0 0.0	0	
2880 min Wi			51.7	0.0	0	
4320 min Wi			55.4	0.0	0	
5760 min Wi			58.2	0.0	0	
7200 min Wi			60.4	0.0	0	
8640 min Wi 10080 min Wi			62.2	0.0	0	
10080 min Wi	nter 0.870	0.0	63.8	0.0	0	
			Solution			

WSP Group Ltd		Page 3
Date 09/12/2016 16:23	Designed by ukrxm014	Micro
		Drainage
File 161209 Attenuation Tank	Checked by	
XP Solutions	Source Control 2015.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	100Cv (Summer) 0.7and and WalesCv (Winter) 0.820.700Shortest Storm (mins)0.436Longest Storm (mins) 100	40 15
Tin	ne Area Diagram	
	al Area (ha) 0.052	
	me (mins) Area om: To: (ha)	
	0 4 0.052	

©1982-2015 XP Solutions

WSP Group Ltd				I	Page 4
Date 09/12/2016 16:23	Dogiono	d by ylaram	014		Micro
File 161209 Attenuation Tank	Checked	d by ukrxm	014		Drainage
XP Solutions		Control 20	15 1		
	Douroe				
<u> </u>	Model De	tails			
Storage is On	line Cove	r Level (m)	25.100		
Tank	or Pond	Structure			
		m) 22.700			
Dej	oth (m) Au	rea (m²) 30.0			
Hydro-Brake	Optimum®) Outflow C	Control		
		e MD-SCL-005	7-2000-160		
	n Head (m Flow (l/s			1.600 2.0	
	Flush-Flo		Calc	ulated	
	Objectiv	e Minimi	se blockag	e risk	
	meter (mm			57	
Invert Minimum Outlet Pipe Dia	Level (m			21.000 75	
Suggested Manhole Dia				1200	
Control Po	ints	Head (m) F	low (l/s)		
Design Point (Ca	alculated) Flush-Flo™		2.0 1.5		
	Kick-Flo®		1.2		
Mean Flow over H	lead Range		1.5		
The hydrological calculations have h Hydro-Brake Optimum® as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow	Should an n these s	other type o torage routi	f control ng calcula	device ot tions wil	her than a l be
0.100 1.4 1.200	1.8	3.000	2.7	7.000	3.9
0.200 1.5 1.400	1.9	3.500	2.9	7.500	4.1
0.300 1.5 1.600	2.0	4.000	3.0	8.000	4.2
0.400 1.4 1.800	2.1	4.500	3.2	8.500	4.3
0.500 1.3 2.000	2.2	5.000	3.4	9.000	4.4
0.600 1.3 2.200 0.800 1.5 2.400	2.3	5.500 6.000	3.5 3.7	9.500	4.5
1.000 1.6 2.600	2.4	6.500	3.8		
Pipe	Overflo	w Control	, ,		
Diameter (m) 0.15 Slope (1:X) 200. Length (m) 2.50 Roughness k (mm) 0.60	0 Coeffic 0 Upstre	ry Loss Coef ient of Cont am Invert Le	raction (0.500 0.600 4.900	
©1982-	-2015 XP	Solutions			

	:d							Page 1
•								1 m
•								– Micro
Date 13/12/2	2016 10:29			Designe	d by UKRI	XM014		Drainago
File 161209	Attenuatio	on Tanł	۲	Checked	by			Diamage
XP Solutions	3			Source	Control 2	2015.1		
	Summary of	E Resul	ts fo	or 100 y	ear Retu	rn Perioo	d (+30%))
	Storm Event	Max	Max	Max	Max Overflow	Max S Outflow		tatus
	Lvenc	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
		()	()	(_/_/	(_/_/	(_/_/	()	
	5 min Summer				0.0	2.2	11.1	O K
	0 min Summer				0.0	2.3	13.2	ОК
	0 min Summer 0 min Summer				0.0 0.0	2.3 2.3	13.6 12.5	O K O K
	0 min Summer				0.0	2.2	11.3	ОК
	0 min Summer				0.0	2.2	10.1	O K
	0 min Summer				0.0	2.2	7.9	O K
	0 min Summer				0.0	2.2	5.9	ОК
	0 min Summer 0 min Summer				0.0	2.1 2.1	4.3	O K
	0 min Summer 0 min Summer				0.0 0.0	2.1	2.9 1.0	O K O K
	0 min Summer				0.0	1.9	0.0	O K
216	0 min Summer	22.700	0.000	1.3	0.0	1.3	0.0	ОК
	0 min Summer				0.0	1.0	0.0	ОК
	0 min Summer				0.0	0.7	0.0	ОК
	0 min Summer 0 min Summer				0.0 0.0	0.6 0.5	0.0	O K O K
	0 min Summer				0.0	0.5	0.0	OK
	0 min Summer				0.0	0.4	0.0	O K
1	5 min Winter	23.125	0.425	2.3	0.0	2.3	12.8	ОК
3	0 min Winter	23.212	0.512	2.3	0.0	2.3	15.4	ΟK
			_ '				1	
	a .				Discharge			
	Storm		Rain		-	Overflow Volume		-
	Storm Event		Rain mm/hr)	Volume	Volume	Volume	(mins)	-
					-			-
	Event 15 min S	(1 ummer 1	mm/hr) 37.274	Volume (m ³) 0.0	Volume (m ³) 13.4	Volume (m ³) 0.0	(mins)	7
	Event 15 min S 30 min S	(1 ummer 1 ummer 1	mm/hr) 37.274 88.737	Volume (m ³) 0.0 0.0	Volume (m ³) 13.4 17.3	Volume (m ³) 0.0 0.0	(mins) 17 31	7
	Event 15 min S 30 min S 60 min S	ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 13.4 17.3 21.2	Volume (m ³) 0.0 0.0 0.0	(mins) 17 31 54	7 _ <u>k</u>
	Event 15 min S 30 min S	ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737	Volume (m ³) 0.0 0.0	Volume (m ³) 13.4 17.3	Volume (m ³) 0.0 0.0	(mins) 17 31	7 L 1 5
	Event 15 min S 30 min S 60 min S 120 min S	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389	Volume (m ³) 0.0 0.0 0.0 0.0	volume (m ³) 13.4 17.3 21.2 25.3	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 17 31 54 86	7 L L 5)
	Event 15 min S 30 min S 60 min S 120 min S 180 min S 240 min S 360 min S	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 17 31 54 86 120 154 220	7 L L L L S D L D
	Event 15 min S 30 min S 60 min S 120 min S 180 min S 240 min S 360 min S	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 17 31 54 86 120 154 220 284	7 L E 5 0 L L
	Event 15 min S 30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 17 31 54 86 120 154 220 284 344	7 4 5) 4) 4
	Event 15 min S 30 min S 60 min S 120 min S 180 min S 240 min S 360 min S	ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 17 31 54 86 120 154 220 284	7 4 5) 4) 4 4)
	Event 15 min S 30 min S 60 min S 120 min S 180 min S 240 min S 360 min S 480 min S 600 min S 720 min S	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400	7 4 5 9 4 9 4 4 9 9
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 9 4 9 4 4 9 9 9 9
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 9 4 9 1 4 9 9 9 9 9 9 9
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 0 4 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 5760 min S	ummer 1 ummer	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5 51.9	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S	ummer 1 ummer	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 0 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S 5760 min S	ummer 1 ummer	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5 51.9 53.9	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S 5760 min S 5760 min S 10080 min S 15 min W	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870 37.274	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5 51.9 53.9 55.6 57.0 15.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9
	Event 15 min S 30 min S 60 min S 120 min S 120 min S 240 min S 360 min S 480 min S 480 min S 720 min S 960 min S 1440 min S 2160 min S 2880 min S 4320 min S 5760 min S 7200 min S 5760 min S 10080 min S	ummer 1 ummer 1	mm/hr) 37.274 88.737 54.549 32.389 23.570 18.708 13.486 10.688 8.919 7.689 6.081 4.363 3.126 2.465 1.762 1.387 1.152 0.989 0.870	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 13.4 17.3 21.2 25.3 27.5 29.0 31.6 33.2 34.8 36.0 37.9 40.8 43.9 46.1 49.5 51.9 53.9 55.6 57.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 17 31 54 86 120 154 220 284 344 400 510 0 0 0 0 0 0 0 0 0 0 0 0 0	7 4 5 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9

WSP Group Ltd						Page 2
•						
•						Mar m
						Micro
Date 13/12/2016 10:29	_		d by UKRX	XM014		Drainage
File 161209 Attenuatio	n Tank	Checked				Diamage
XP Solutions		Source	Control 2	2015.1		
Summary of	Results f	or 100 v	ear Retu	n Perio	1 (+30응)	
					(/	
Storm	Max Max		Max	Max		atus
Event	Level Dept (m) (m)		(l/s)	(1/s)	(m ³)	
60 min Winter				2.3	16.2	O K
120 min Winter 180 min Winter			0.0	2.3 2.3	14.7 13.0	O K O K
240 min Winter				2.3	11.1	O K
360 min Winter			0.0	2.2	7.8	O K
480 min Winter			0.0	2.1	4.9	O K
600 min Winter	22.787 0.08	7 2.1	0.0	2.1	2.6	ОК
720 min Winter	22.731 0.03	1 2.1	0.0	2.1	0.9	O K
960 min Winter			0.0	1.9	0.0	ОК
1440 min Winter			0.0	1.3	0.0	ОК
2160 min Winter			0.0	1.0	0.0	ОК
2880 min Winter 4320 min Winter			0.0 0.0	0.8 0.5	0.0 0.0	O K O K
5760 min Winter				0.3	0.0	O K
7200 min Winter				0.4		ОК
8640 min Winter			0.0	0.3		ОК
10080 min Winter	22.700 0.00	0 0.3	0.0	0.3	0.0	ОК
Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow ' Volume (m ³)	Time-Peak (mins)	
	nter 54.549		23.9	0.0	58 94	
120 min Wi 180 min Wi			28.2 30.8	0.0 0.0	94 132	
240 min Wi			30.8 32.7	0.0	132	
360 min Wi			35.3	0.0	236	
480 min Wi			37.3	0.0	298	
600 min Wi			38.9	0.0	356	
720 min Wi			40.3	0.0	404	
960 min Wi			42.5	0.0	0	
1440 min Wi 2160 min Wi			45.7 49 1	0.0	0	
2160 min Wi 2880 min Wi			49.1 51.7	0.0	0	
4320 min Wi			55.4	0.0	0	
5760 min Wi			58.2	0.0	0	
7200 min Wi			60.4	0.0	0	
8640 min Wi			62.2	0.0	0	
10080 min Wi	nter 0.870	0.0	63.8	0.0	0	
	©1982-	-2015 XP	Solution	.S		

WSP Group Ltd		Page 3
•		
•		Micro
Date 13/12/2016 10:29	Designed by UKRXM014	Drainage
File 161209 Attenuation Tank XP Solutions	Checked by Source Control 2015.1	
XP Solutions	Source Control 2015.1	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0.	
M5-60 (mm)	and and Wales Cv (Winter) 0. 20.700 Shortest Storm (mins)	15
Ratio R	0.436 Longest Storm (mins) 10	080
Summer Storms	Yes Climate Change %	+30
Tir	ne Area Diagram	
Tota	al Area (ha) 0.052	
	ime (mins) Area om: To: (ha)	
	0 4 0.052	

©1982-2015 XP Solutions

WSP Group Ltd				F	Page 4
	Dogigno	d by UKRXM	014		Micro
Date 13/12/2016 10:29 File 161209 Attenuation Tank	Checked	-	014		Drainage
XP Solutions		Control 20	15.1		
	504200				
<u> </u>	Nodel De	tails			
Storage is On	line Cove	r Level (m)	25.100		
Tank	or Pond	Structure			
		m) 22.700			
Dej	oth (m) Au	rea (m²) 30.0			
	0.000	50.0			
Hydro-Brake	Optimum®) Outflow C	ontrol		
		e MD-SCL-005	7-2000-160		
	n Head (m Flow (l/s			1.600 2.0	
	Flush-Flo		Calc	ulated	
	Objectiv		se blockag		
	meter (mm Level (m			57 21.000	
Minimum Outlet Pipe Dia				75	
Suggested Manhole Dia	meter (mm)		1200	
Control Po	ints	Head (m) F	low (l/s)		
Design Point (Ca			2.0		
1	"lush-Flo" Kick-Flo®		1.5 1.2		
Mean Flow over H	lead Range		1.5		
The hydrological calculations have h Hydro-Brake Optimum® as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow	Should an n these s	other type o torage routi	f control ng calcula	device oth tions will	ner than a L be
0.100 1.4 1.200	1.8	3.000	2.7	7.000	3.9
0.200 1.5 1.400	1.9	3.500	2.9	7.500	4.1
0.300 1.5 1.600	2.0	4.000	3.0	8.000	4.2
0.400 1.4 1.800 0.500 1.3 2.000	2.1	4.500 5.000	3.2	8.500 9.000	4.3 4.4
0.600 1.3 2.000	2.2	5.500	3.4 3.5	9.000 9.500	4.4
0.800 1.5 2.400	2.4	6.000	3.7		
1.000 1.6 2.600	2.5	6.500	3.8		
Pipe	Overflo	w Control			
Diameter (m) 0.15 Slope (1:X) 200. Length (m) 2.50 Roughness k (mm) 0.60	0 Coeffic 0 Upstre 0	am Invert Le	raction ().500).600 4.900	
©1982-	-2015 XP	Solutions			

WSP Group Ltd						Page 1
•						F
•						– Micro
Date 09/12/2016 15:59		Designe	d by ukr	xm014		Drainage
File 161209 Combined	Volumed	Checked	by			Dialitage
XP Solutions		Source	Control 2	2015.1		
Summary of	E Results f	or 100 y	rear Retu	rn Perio	d (+30%)	-
Storm	Max Max	New	Marr	Marr	Nor G	
Event	Max Max Level Dept		Max Overflow	Max Σ Outflow		tatus
	(m) (m)		(1/s)	(1/s)	(m ³)	
	00 015 0 61				0.4 E	
15 min Summer 30 min Summer				5.3 5.5	34.5 41.7	ОК ОК
60 min Summer				5.5	44.6	ОК
120 min Summer				5.5	41.9	ОК
180 min Summer				5.4	38.9	ОК
240 min Summer				5.4	36.0	ОК
360 min Summer 480 min Summer				5.2 5.1	30.4 25.4	ОК ОК
600 min Summer			0.0	5.0	20.8	ОК
720 min Summer				4.9	16.8	ОК
960 min Summer	22.883 0.18	4.8	0.0	4.8	10.2	O K
1440 min Summer				4.6	2.2	ОК
2160 min Summer 2880 min Summer				3.9 3.1	0.0	ок ок
4320 min Summer				2.2	0.0	0 K
5760 min Summer				1.7	0.0	0 K
7200 min Summer	22.700 0.00	1.4	0.0	1.4	0.0	O K
8640 min Summer				1.2	0.0	O K
10080 min Summer 15 min Winter				1.1 5.4	0.0	OK
30 min Winter				5.6	39.2 47.9	ОК ОК
Storm	Rain	Flooded	Discharge	Overflow	Time-Peak	:
Event	(mm/hr) Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m³)		
15 min S	ummer 137.49	4 0.0	39.7	0.0	18	
30 min S	ummer 88.80	9 0.0	51.3	0.0	32	
60 min S			62.8	0.0	60	
120 min S			74.5	0.0	92 126	
180 min S 240 min S			81.6 86.4	0.0 0.0	126 160	
360 min S			93.5	0.0	228	
480 min S			98.6	0.0	292	
600 min S			102.8	0.0	356	
720 min S 960 min S			106.4	0.0	418	
960 min S 1440 min S			112.0 120.5	0.0 0.0	538 754	
2160 min S			120.5	0.0	0	
2880 min S			136.2	0.0	0	
4320 min S			145.9	0.0	0	
5760 min S 7200 min S			153.2	0.0	0	
7200 min S 8640 min S			159.0 163.8	0.0 0.0	0	
10080 min S			168.0	0.0	0	
	inter 137.49		44.5	0.0	18	
30 min W	inter 88.80	9 0.0	57.3	0.0	31	
	@1000	_2015 VD	Solution	ne		
	©T285	-2012 ΧΡ	Solution	i Si		

WSP Group Ltd						Page 2
•						5
•						Mirrn
Date 09/12/2016 15:59			d by ukra	cm014		Drainage
File 161209 Combined Volu		Checked				
XP Solutions		Source	Control 2	2015.1		
	3.	100		- ·	1 (. 200)	
Summary of Re	esults ic	or 100 y	ear Retu	rn Period	d (+30%)	
Storm M	lax Max	Max	Max	Max	Max St	atus
			Overflow			
(m) (m)	(l/s)	(1/s)	(1/s)	(m³)	
60 min Winter 23	.636 0.936	5.7	0.0	5.7	52.4	ОК
120 min Winter 23			0.0	5.6	49.6	O K
180 min Winter 23			0.0	5.5	45.4	ОК
240 min Winter 23 360 min Winter 23			0.0	5.5	41.1	OK
480 min Winter 23			0.0 0.0	5.3 5.1	32.7 25.2	O K O K
600 min Winter 23			0.0	5.1	18.6	O K
720 min Winter 22			0.0	4.9	13.0	ОК
960 min Winter 22			0.0	4.7	4.4	ОК
1440 min Winter 22	.700 0.000	4.0	0.0	4.0	0.0	ОК
2160 min Winter 22			0.0	2.8	0.0	ОК
2880 min Winter 22			0.0	2.2	0.0	ОК
4320 min Winter 22			0.0	1.6	0.0	ОК
5760 min Winter 22 7200 min Winter 22			0.0 0.0	1.3 1.0	0.0	O K O K
8640 min Winter 22			0.0	0.9		O K
10080 min Winter 22			0.0	0.8	0.0	ОК
Storm Event	Rain (mm/hr)	Volume	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
Event	(mm/hr)	Volume (m³)	Volume (m³)	Volume (m³)	(mins)	
Event 60 min Winte	(mm/hr) er 54.549	Volume (m ³) 0.0	Volume (m ³) 70.3	Volume (m ³) 0.0	(mins) 60	
Event 60 min Winte 120 min Winte	(mm/hr) er 54.549 er 32.365	Volume (m ³) 0.0 0.0	Volume (m ³) 70.3 83.7	Volume (m ³) 0.0 0.0	(mins) 60 98	
Event 60 min Winte	(mm/hr) er 54.549 er 32.365 er 23.543	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4	Volume (m ³) 0.0 0.0 0.0	(mins) 60 98 136	
Event 60 min Winte 120 min Winte 180 min Winte	(mm/hr) er 54.549 er 32.365 er 23.543 er 18.683	Volume (m ³) 0.0 0.0	Volume (m ³) 70.3 83.7	Volume (m ³) 0.0 0.0	(mins) 60 98	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte	(mm/hr) er 54.549 er 32.365 er 23.543 er 18.683 er 13.462	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4 96.9	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 60 98 136 174	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 60 98 136 174 246 314 378	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte	(mm/hr) er 54.549 er 32.365 er 23.543 er 18.683 er 13.462 er 10.666 er 8.898 er 7.671	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 60 98 136 174 246 314 378 440	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 60 98 136 174 246 314 378 440 548	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 60 98 136 174 246 314 378 440 548	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115 ar 2.456	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	(mm/hr) er 54.549 er 32.365 er 23.543 er 18.683 er 13.462 er 10.666 er 8.898 er 7.671 er 6.064 er 4.349 er 3.115 er 2.456 er 1.755 er 1.381	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 7200 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115 ar 2.456 ar 1.755 ar 1.381 ar 1.147	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5 163.4 171.5 178.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115 ar 2.456 ar 1.755 ar 1.381 ar 1.147 ar 0.985	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5 163.4 171.5 178.0 183.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 7200 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115 ar 2.456 ar 1.755 ar 1.381 ar 1.147 ar 0.985	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5 163.4 171.5 178.0	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) ar 54.549 ar 32.365 ar 23.543 ar 18.683 ar 13.462 ar 10.666 ar 8.898 ar 7.671 ar 6.064 ar 4.349 ar 3.115 ar 2.456 ar 1.755 ar 1.381 ar 1.147 ar 0.985	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5 163.4 171.5 178.0 183.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0 0 0 0 0 0 0 0 0 0	
Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 54.549 r 32.365 r 23.543 r 18.683 r 13.462 r 10.666 r 8.898 r 7.671 r 6.064 r 4.349 r 3.115 r 2.456 r 1.755 r 1.381 r 1.147 r 0.985 r 0.866	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 70.3 83.7 91.4 96.9 104.4 110.4 115.0 119.2 125.4 135.0 145.1 152.5 163.4 171.5 178.0 183.5	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 60 98 136 174 246 314 378 440 548 0 0 0 0 0 0 0 0 0 0 0 0 0	