APPENDIX G

Chemical test results

Fraser Chamley

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: fraserc@cgl-uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-17466

Replaces Analytical Report Number: 16-17466, issue no. 1

Project / Site name: Centric Close Samples received on: 11/05/2016

Your job number: CG-18804 Samples instructed on: 11/05/2016

Your order number: 3184 Analysis completed by: 23/05/2016

Report Issue Number: 2 **Report issued on:** 23/05/2016

Samples Analysed: 13 soil samples

Signed: Signed:

Rexona Rahman Emma Winter
Reporting Manager Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd. For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				572592	572593	572594	572595	572596
Sample Reference				WS01	WS01	FIP01	WS02	FIP02
Sample Number				ES01	ES03	ES02	ES04	ES05
Depth (m)				0.40	2.70	0.50	0.60	0.50
Date Sampled				10/05/2016	10/05/2016	10/05/2016	10/05/2016	10/05/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	15	15	24	9.9
Total mass of sample received	kg	0.001	NONE	2.0	1.0	2.0	1.2	2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	Chrysotile	Chrysotile	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Detected	Detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.002	< 0.001	0.003	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.002	< 0.001	0.003	-	-
								<u> </u>
General Inorganics				-		-	-	
pН	pH Units	N/A	MCERTS	10.2	8.3	8.3	8.0	11.4
Total Cyanide	mg/kg	1 50	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	4300	7200	4700	2000	3800
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.82	-	0.20	0.37	-
Total Sulphur	mg/kg	50	NONE	- 1.5	0.3	1.2	0.9	0.6
Organic Matter	%	0.1	MCERTS	1.5	0.3	1.2	0.9	0.6
Total Phenols								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs	тід/кд		PICERTS	V 1.0	V 1.0	< 1.0	V 1.0	V 1.0
Naphthalene	mg/kg	0.05	MCERTS	2.0	< 0.05	0.57	0.23	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	0.32	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	2.1	< 0.10	1.6	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	1.4	< 0.10	2.2	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	28	< 0.10	31	1.7	1.4
Anthracene	mg/kg	0.1	MCERTS	7.8	< 0.10	15	0.42	0.44
Fluoranthene	mg/kg	0.1	MCERTS	54	0.51	54	2.9	5.7
Pyrene	mg/kg	0.1	MCERTS	45	0.49	45	2.5	4.6
Benzo(a)anthracene	mg/kg	0.1 0.05	MCERTS	27 22	0.28 0.24	24 22	1.4 1.1	2.4
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	28	0.24	22	1.5	3.1
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	15	0.21	9.5	0.62	1.1
Benzo(a)pyrene	mg/kg	0.1	MCERTS	26	0.22	20	1.2	2.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	13	< 0.10	9.3	0.54	1.2
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	3.0	< 0.10	2.8	< 0.10	0.22
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	15	< 0.05	11	0.61	1.7
Coronene	mg/kg	0.05	NONE	4.2	< 0.05	3.3	< 0.05	0.25
Total PAH				200	2.2	270		27
Total WAC-17 PAHs	mg/kg	1.6	NONE	290	2.2	270	15	27
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	3.4	< 1.0	5.7	2.8	2.7
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	18	22	17	13
Barium (aqua regia extractable)	mg/kg	1	MCERTS	170	53	220	130	130
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.34	0.95	1.2	0.59
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5	1.1	1.9	1.3	1.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.5
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	31	12	21	36	19
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	12	21	36	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	32 350	17 320	32 800	63 380	67 210
Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	< 0.3	< 0.3	3.5	1.2	< 0.3
Nickel (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 0.3 22	< 0.3 8.9	3.5 17	30	< 0.3 13
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	47	28	64	76	30
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	190	100	170	130	130
		-						

Lab Sample Number				572592	572593	572594	572595	572596
Sample Reference		WS01	WS01	FIP01	WS02	FIP02		
Sample Number		ES01	ES03	ES02	ES04	ES05		
Depth (m)		0.40	2.70	0.50	0.60	0.50		
Date Sampled				10/05/2016	10/05/2016	10/05/2016	10/05/2016	10/05/2016
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.3	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	17	< 2.0	< 2.0	< 2.0	2.4
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	40	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	130	< 8.0	< 8.0	18	25
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	190	< 10	11	22	32
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.7	< 1.0	2.1	< 1.0	1.4
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	67	< 2.0	30	< 2.0	9.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	370	< 10	200	< 10	59
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	480	< 10	140	< 10	120
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	910	< 10	380	16	190

Lab Sample Number				572597	572598	572599	572600	572601
Sample Reference				WS03	572396 FIP04	FIP03	WS02	WS03
Sample Number				ES07	ES08	ES10	W302 D4	D7
Depth (m)				0.40	0.70	1.10	3.30	2.70
Date Sampled				10/05/2016	10/05/2016	10/05/2016	10/05/2016	10/05/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.9	11	15	26	26
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	1.2	0.73
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Amosite	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	-	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.003	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.003	-	-	-	-
General Inorganics								
pH	pH Units	N/A	MCERTS	10.2	8.1	7.8	8.0	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	1900	300	480	660	740
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	0.016	0.12	0.15
Total Sulphur	mg/kg	50	NONE	ı	-	-	-	-
Organic Matter	%	0.1	MCERTS	0.3	0.5	2.1	2.0	0.5
Total Phonoic								
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friendis (monoriyane)	mg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	0.35	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	0.21	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	3.9	< 0.10	0.39	< 0.10	< 0.10
Anthracene Fluoranthene	mg/kg mg/kg	0.1	MCERTS MCERTS	1.4 12	< 0.10 < 0.10	< 0.10 0.95	< 0.10 < 0.10	< 0.10 < 0.10
Pyrene	mg/kg	0.1	MCERTS	11	< 0.10	1.0	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	5.3	< 0.10	0.53	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	3.9	< 0.05	0.44	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	7.0	< 0.10	0.69	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	1.6	< 0.10	0.25	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	4.6	< 0.10	0.44	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	2.8 0.52	< 0.10 < 0.10	0.21 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.1 0.05	MCERTS MCERTS	3.2	< 0.10 < 0.05	0.31	< 0.10 < 0.05	< 0.10 < 0.05
Coronene	mg/kg	0.05	NONE	0.79	< 0.05	< 0.05	< 0.05	< 0.05
-	<u> </u>			-				
Total PAH					1 .		I	
Total WAC-17 PAHs	mg/kg	1.6	NONE	58	< 1.6	5.2	< 1.6	< 1.6
Heavy Metals / Metalloids								
Antimony (agua regia extractable)	mg/kg	1	ISO 17025	2.0	1.5	12	3.5	2.7
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	11	39	16	11
Barium (aqua regia extractable)	mg/kg	1	MCERTS	180	36	190	110	76
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.57	0.58	1.8	1.5	1.9
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.2	0.9	2.7	2.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent) Chromium (III)	mg/kg mg/kg	1.2 1	MCERTS NONE	< 1.2 24	< 1.2 21	< 1.2 38	< 1.2 48	< 1.2 52
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	21	38	48	52
Copper (aqua regia extractable)	mg/kg	1	MCERTS	20	12	120	49	25
Lead (aqua regia extractable)	mg/kg	1	MCERTS	230	50	320	130	40
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	1.2	1.1	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	18	31	35	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	36	37	65	96	100
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	78	34	270	96	89

Your Order No: 3184

Lab Sample Number				572597	572598	572599	572600	572601
Sample Reference				WS03	FIP04	FIP03	WS02	WS03
Sample Number				ES07	ES08	ES10	D4	D7
Depth (m)				0.40	0.70	1.10	3.30	2.70
Date Sampled				10/05/2016	10/05/2016	10/05/2016	10/05/2016	10/05/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

r ca olean riyareaa bons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	39	< 8.0	8.6	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	44	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	15	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	110	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	240	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	370	< 10	< 10	< 10	< 10

Lab Sample Number				572602	572603	572604		
Sample Reference				WS03	WS04	FIP02	-	
Sample Number				D11	D13	ES11	 	
Depth (m)				4.70	3.90	0.50	 	
Date Sampled Time Taken				10/05/2016 None Supplied	10/05/2016 None Supplied	10/05/2016 None Supplied	 	
Tille Takeli	1			None Supplied	None Supplied	None Supplied		
		윤ᆫ	Accreditation Status					
Analytical Parameter	Units	Limit of detection	redi Stat					
(Soil Analysis)	ß	tio of	us tat					
		3 "	ō.					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-		
Moisture Content	%	N/A	NONE	21	21	-		
Total mass of sample received	kg	0.001	NONE	1.2	1.6	-		
		-						
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-	-		ĺ
						Not detected	_	-
Asbestos in Soil Asbestos Quantification (Stage 2)	Type 0/-	N/A 0.001	ISO 17025 ISO 17025	-	-	Not-detected		
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	 	
possess Quantification Total	70	0.001	130 1/023	-	-			
General Inorganics								
рН	pH Units	N/A	MCERTS	7.7	8.0	-		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	-		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	8200	700	-		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	3.1	0.31	-	<u> </u>	
Total Sulphur	mg/kg	50	NONE	3600	300	-		
Organic Matter	%	0.1	MCERTS	0.3	0.5	-		
Total Phanala								
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	_	1	
Total Pilenois (monoriyanc)	mg/kg		MCERTS	< 1.0	< 1.0		1	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	_		
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Benzo(a)anthracene	mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.05	< 0.10 < 0.05	-		
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.03	MCERTS	< 0.10	< 0.10	-		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-		
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	-	<u> </u>	
Tarabasi								
Total PAH Total WAC-17 PAHs		1.6	NONE	246	2.1.0	_	1	
TOLAT WAC-17 PARS	mg/kg	1.6	NONE	< 1.6	< 1.6	-	1	
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.3	1.7	_		ı ,
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.8	12	-	1	
Barium (aqua regia extractable)	mg/kg	1	MCERTS	31	140	-	<u> </u>	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.4	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.4	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-		
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	-		
Chromium (III)	mg/kg	1	NONE	53	50	-	 	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	53	50	-	 	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	19	-	-	
Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	15 < 0.3	31 < 0.3	-	 	
microux (auta reula extractable)	mg/kg			< 0.3 40	< 0.3 41	-	 	
	ma/ka	1	MCEDIC					4
Nickel (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS			-		
	mg/kg mg/kg mg/kg	1 1 1	MCERTS MCERTS MCERTS	< 1.0 100	< 1.0 92			

Your Order No: 3184

Lab Sample Number				572602	572603	572604	
Sample Reference		WS03	WS04	FIP02			
Sample Number		D11	D13	ES11			
Depth (m)		4.70	3.90	0.50			
Date Sampled	10/05/2016	10/05/2016	10/05/2016				
Time Taken		None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)							
Monoaromatics							
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	-	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	-	

Petroleum Hydrocarbons

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	-	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	

Your Order No: 3184

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

"The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
572592	WS01	0.40	143	Hard/Cement Type Material	Chrysotile	0.002	0.002
572593	WS01	2.70	136	Loose Fibres	Chrysotile	< 0.001	< 0.001
572594	FIP01	0.50	139	Loose Fibres & Hard/Cement Type Material	Chrysotile	0.003	0.003
572597	WS03	0.40	152	Loose Fibres & Hard/Cement Type Material	Chrysotile & Amosite	0.003	0.003

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
572592	WS01	ES01	0.40	Brown loam and sand with gravel and brick.
572593	WS01	ES03	2.70	Brown sandy gravel.**
572594	FIP01	ES02	0.50	Brown loam and sand with gravel.
572595	WS02	ES04	0.60	Brown clay and sand with gravel.
572596	FIP02	ES05	0.50	Brown loam and sand with gravel.
572597	WS03	ES07	0.40	Brown sandy loam with gravel and brick.
572598	FIP04	ES08	0.70	Brown loam and sand with gravel.
572599	FIP03	ES10	1.10	Brown loam and sand with gravel.
572600	WS02	D4	3.30	Brown clay and loam.
572601	WS03	D7	2.70	Brown clay and loam.
572602	WS03	D11	4.70	Brown clay with gravel.
572603	WS04	D13	3.90	Brown clay with gravel.
572604	FIP02	ES11	0.50	-

^{**}Non MCerts matrix

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	The analysis was carried out using documented inhouse method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS02	D4	S	16-17466	572600	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS02	D4	S	16-17466	572600	b	Monohydric phenols in soil	L080-PL	b
WS02	D4	S	16-17466	572600	b	Speciated WAC-17 PAHs in soil	L064-PL	b
WS02	D4	S	16-17466	572600	b	TPHCWG (Soil)	L076-PL	b
WS03	D11	S	16-17466	572602	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS03	D11	S	16-17466	572602	b	Monohydric phenols in soil	L080-PL	b
WS03	D11	S	16-17466	572602	b	Speciated WAC-17 PAHs in soil	L064-PL	b
WS03	D11	S	16-17466	572602	b	TPHCWG (Soil)	L076-PL	b
WS03	D7	S	16-17466	572601	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS03	D7	S	16-17466	572601	b	Monohydric phenols in soil	L080-PL	b
WS03	D7	S	16-17466	572601	b	Speciated WAC-17 PAHs in soil	L064-PL	b
WS03	D7	S	16-17466	572601	b	TPHCWG (Soil)	L076-PL	b
WS04	D13	S	16-17466	572603	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS04	D13	S	16-17466	572603	b	Monohydric phenols in soil	L080-PL	b
WS04	D13	S	16-17466	572603	b	Speciated WAC-17 PAHs in soil	L064-PL	b
WS04	D13	S	16-17466	572603	b	TPHCWG (Soil)	L076-PL	b

Fraser Chamley

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: fraserc@cgl-uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-17885

Project / Site name: Centric Close Samples received on: 17/05/2016

Your job number: 18804 Samples instructed on: 17/05/2016

Your order number: 3184 Analysis completed by: 20/05/2016

Report Issue Number: 1 **Report issued on:** 20/05/2016

Samples Analysed: 1 water sample

Signed:

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter

Assistant Reporting Manager
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Valir	Order	No:	7124

Your Order No: 3184							
Lab Sample Number				575203			
Sample Reference				WS02			
Sample Number				WS2-1			
Depth (m)				None Supplied			
Date Sampled				16/05/2016			
Time Taken				None Supplied			
			A				
Americal and Brown and an	_	Limit of detection	Accreditation Status				
Analytical Parameter	Units	mit	ta di				
(Water Analysis)	S	일 역	us				
			9				
	-	•			•	•	
General Inorganics							
pH	pH Units	N/A	ISO 17025	6.9			
Total Cyanide (Low Level 1 μg/l)	μg/l	1	ISO 17025	< 1.0			
Sulphate as SO ₄	μg/l	45	ISO 17025	439000			
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	8.72			
Hardness - Total	mgCaCO3/I	1	ISO 17025	1160			
Total Phenois					1	ı	1
Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0	<u> </u>		
Consisted PAIIs							
Speciated PAHs		0.00			1	ı	
Naphthalene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01			
Fluorene	μg/l	0.01	ISO 17025	< 0.01			
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01			
Fluoranthene Pyrene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01			
Chrysene	μg/l μg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	μg/I μg/I	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	μg/I μg/I	0.01	ISO 17025	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01			
Bernad (grin/per y ierie	P3/-	0.01		. 0101	<u></u>	<u></u>	<u></u>
Total PAH							
Total EPA-16 PAHs	μg/l	0.16	NONE	< 0.16			
•							
Heavy Metals / Metalloids							
Antimony (dissolved)	μg/l	0.4	ISO 17025	2.2			
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.32			
Barium (dissolved)	μg/l	0.06	ISO 17025	24			
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1			
Boron (dissolved)	μg/l	10	ISO 17025	350			
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02			
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0			
Chromium (III)	μg/l	1	NONE	< 1.0	ļ		
Chromium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	ļ		
Copper (dissolved)	μg/l	0.5	ISO 17025	< 0.5			
Lead (dissolved)	μg/l	0.2	ISO 17025	0.5			
Mercury (dissolved)	μg/l	0.05	ISO 17025	0.52			
Nickel (dissolved)	μg/l	0.5	ISO 17025	25			
Selenium (dissolved)	μg/l	0.6	ISO 17025	2.5			
Vanadium (dissolved)	μg/l	0.2	ISO 17025	0.4			
Zinc (dissolved)	μg/l	0.5	ISO 17025	3.2	<u> </u>	1	
Calcium (dissalved)	m=/I	0.012	ICO 17025	240			
Calcium (dissolved) Magnesium (dissolved)	mg/l	0.012	ISO 17025 ISO 17025	240 140	 		
magnesium (dissolved)	mg/l	0.005	150 1/025	140	<u> </u>	<u> </u>	<u> </u>

Your Order No: 3184

TOUT Order NO: 3184							
Lab Sample Number				575203			
Sample Reference				WS02			
Sample Number				WS2-1			
Depth (m)				None Supplied			
Date Sampled				16/05/2016			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/l	1	ISO 17025	< 1.0			
Toluene	μg/l	1	ISO 17025	< 1.0			
Ethylbenzene	μg/l	1	ISO 17025	< 1.0			
p & m-xylene	μg/l	1	ISO 17025	< 1.0			
o-xylene	μg/l	1	ISO 17025	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0			
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10			
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE	< 10	I		
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic > C8 - C10	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic > C10 - C12	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10			
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	Ì		

U/S = Unsuitable Sample I/S = Insufficient Sample

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L0102B-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Fraser Chamley

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: fraserc@cgl-uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-18041

Project / Site name: Centric Close Samples received on: 11/05/2016

Your job number: CG-18804 Samples instructed on: 17/05/2016

Your order number: 3184 Analysis completed by: 23/05/2016

Report Issue Number: 1 **Report issued on:** 23/05/2016

Samples Analysed: 2 leachate samples

Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Your Order No: 3184								
Lab Sample Number				5760 4 7	576048			
Sample Reference				FIP01	FIP03			
Sample Number				ES02	ES10			
Depth (m)				0.50	1.10			
Date Sampled				10/05/2016	10/05/2016			
Time Taken				None Supplied	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	8.6	9.0		I	
Total Cyanide (Low Level 1 μg/l)	µg/l	1	ISO 17025	6.2	< 1.0			
Sulphate as SO ₄	μg/l	100	ISO 17025	1740000	3670			
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	2.47	2.50			†
Dissolved Organic Carbon (DOC)	mg/i	0.1	NONE	2.17	2.50		ч.	
Total Phenois								
Total Phenols (monohydric)	μg/l	1	ISO 17025	< 1.0	< 1.0			
	- 10			*	-	•		
Speciated PAHs								
Naphthalene	μg/l	0.01	NONE	< 0.01	< 0.01			
Acenaphthylene	μg/l	0.01	NONE	< 0.01	< 0.01			
Acenaphthene	μg/l	0.01	NONE	< 0.01	< 0.01			
Fluorene	μg/l	0.01	NONE	< 0.01	< 0.01			
Phenanthrene	μg/l	0.01	NONE	0.65	< 0.01			
Anthracene	μg/l	0.01	NONE	0.29	< 0.01			
Fluoranthene	μg/l	0.01	NONE	2.3	< 0.01			
Pyrene	μg/l	0.01	NONE	2.0	< 0.01			
Benzo(a)anthracene	μg/l	0.01	NONE	0.94	< 0.01			
Chrysene	μg/l	0.01	NONE	< 0.01	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	NONE	0.63	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	NONE	0.28	< 0.01			
Benzo(a)pyrene	μg/l	0.01	NONE	1.1	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01			
Total PAH								
Total EPA-16 PAHs	μq/l	0.2	NONE	8.2	< 0.2			1
Total EFA-10 FALIS	ру/т	0.2	NONL	0.2	< 0.2	ļ	1	
Heavy Metals / Metalloids								
Antimony (dissolved)	μg/l	1.7	ISO 17025	< 1.7	< 1.7			
Arsenic (dissolved)	μg/l	1.1	ISO 17025	< 1.1	13			
Barium (dissolved)	μg/l	0.05	ISO 17025	85	9.0			
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2			
Boron (dissolved)	μg/l	10	ISO 17025	160	11			
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08			
Chromium (hexavalent)	μg/l	5	NONE	< 5.0	< 5.0			
Chromium (III)	μg/l	1	NONE	3.0	< 1.0			
Chromium (dissolved)	μg/l	0.4	ISO 17025	3.0	1.0			
Copper (dissolved)	μg/l	0.7	ISO 17025	3.7	3.5		Į	<u> </u>
Lead (dissolved)	μg/l	1	ISO 17025	190	< 1.0		Į	
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5		Į	1
Nickel (dissolved)	μg/l	0.3	ISO 17025	0.8	2.5		Į	
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0		Į	1
Vanadium (dissolved)	μg/l	1.7	ISO 17025	< 1.7	< 1.7		<u> </u>	
Zinc (dissolved)	μg/l	0.4	ISO 17025	5.6	2.5			
							r	
Calcium (dissolved)	mg/l	0.012	ISO 17025	580	15		İ	

Your Order No: 3184

Tour Order No. 3104							
Lab Sample Number				576047	576048		
Sample Reference				FIP01	FIP03		
Sample Number				ES02	ES10		
Depth (m)				0.50	1.10		
Date Sampled	10/05/2016	10/05/2016					
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/l	1	NONE	< 1.0	< 1.0		
Toluene	μg/l	1	NONE	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	NONE	< 1.0	< 1.0		
p & m-xylene	μg/l	1	NONE	< 1.0	< 1.0		
o-xylene	μg/l	1	NONE	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10		

Petroleum Hydrocarbons

Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	NONE
In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L023-PL	W	NONE
Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	W	NONE
Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
	acidified and followed by ICP-OES. Determination of BTEX and MTBE in leachates by headspace GC-MS. In-house method by calculation from total Cr and Cr VI. Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification. Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of phenols in leachate by distillation followed by colorimetry. Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Determination of sulphate in leachate by acidification followed by ICP-OES.	Determination of BTEX and MTBE in leachates by headspace GC-MS. In-house method by calculation from total Cr and Cr VI. In-house method by calculation from total Cr and Cr VI. Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification. Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in leachate by electrometric measurement. Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Determination of sulphate in leachate by acidification followed by ICP-OES. Determination of total cyanide by distillation followed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar) In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on Examination of Metals in Soil. Determination of sulphate in leachate by acidification followed by Cl-POES.	Determination of BTEX and MTBE in leachates by headspace GC-MS. In-house method by calculation from total Cr and Cr VI. Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification. Determination of hexavalent chromium in leachate by addification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in leachate by distillation followed by colorimetry. In-house method based on Examination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Determination of phenols in leachate by distillation followed by colorimetry. In-house method based on Examination of Metals in Soil. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests In-house method based on USEPA 8270 L005-PL Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Determination of sulphate in leachate by acidification followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Determination of sulphate in leachate by acidification followed by CP-OES. In-house method based on Examination of Metals in Soil. Determination of total cyanide by distillation followed by colorimetry. In-house method based on Examination of Metals in Soil. L039-PL L070-PL Determination of dichloromethane extractable In-house method based on Examination of Metals in Soil. L070-PL	acidified and followed by ICP-OES. Determination of BTEX and MTBE in leachates by headspace GC-MS. In-house method by calculation from total Cr and Cr VI. In-house method by calculation from total Cr and Cr VI. Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification. Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in leachate by distillation followed by colorimetry. In-house method based on Examination of L023-PL W Methods for the Determination of Metals in Soil. Determination of phenols in leachate by distillation followed by colorimetry. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Determination of Sulphate in leachate by acidification followed by CD-OES. In-house method based on USEPA 8270 L070-PL W detraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Determination of total cyanide by distillation followed by colorimetry. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Determination of total cyanide by distillation followed by CD-OES. Methods for the Determination of Metals in Soil. Determination of total cyanide by distillation followed by CD-OES. Methods for the Determination of Metals in Soil. Determination of dichloromethane extractable In-house method based on Examination of Metals in Soil.

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: fraserc@cgl-uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-18420

Project / Site name: Centric Close Samples received on: 11/05/2016

Your job number: CG-18804 Samples instructed on: 23/05/2016

Your order number: Analysis completed by: 31/05/2016

Report Issue Number: 1 **Report issued on:** 31/05/2016

Samples Analysed: 3 10:1 WAC samples

Signed: Wate

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	resuits	16-:	18420					
					Client:	CARDGEO		
		Ct	i- 6l					
Location		Centr	ic Close		Landfill	Waste Acceptanc	o Critoria	
Lab Reference (Sample Number)		578124	/ 578125		Lanuini	Limits	e Criteria	
Sampling Date		10/0	5/2016			Stable Non-		
Sample ID		WS0	1 ES01		1	reactive		
Depth (m)		0	.40		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.1				3%	5%	6%	
Loss on Ignition (%) **	4.5						10%	
BTEX (μg/kg) **	< 10		1		6000			
Sum of PCBs (mg/kg) **	< 0.007		1		1 500			
Mineral Oil (mg/kg)	83		+	 	500			
Total PAH (WAC-17) (mg/kg) pH (units)**	270 11.3		+	 	100	>6		
			+	 				
Acid Neutralisation Capacity (mol / kg)	140					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:01		es for compliance l		
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25	
Barium *	0.0291			0.243	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0026			0.022	0.5	10	70	
Copper *	0.014			0.12	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0041			0.0345	0.5	10	30	
Nickel *	0.0016			0.014	0.4	10	40	
Lead *	0.0052			0.044	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0074			0.062	4	50	200	
Chloride *	30			250	800	4000	25000	
Fluoride	0.38			3.1	10	150	500	
Sulphate *	84		1	700	1000	20000	50000	
TDS	120		-	1000	4000	60000	100000	
Phenol Index (Monhydric Phenols) * DOC	< 0.010 4.20			< 0.10 35.0	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	2.0							
Dry Matter (%)	87				-			
Moisture (%)	13		1					
			ļ	ļ		1		
			ļ	ļ		1		
			ļ					
			1					
Results are expressed on a dry weight basis, after correction for moisture content w			1	L	l	L		

Stated limits are for guidance only and 12 cannot be held responsible for any disc *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

				Client:	CARDGEO	
	Cent	ric Close				
				Landfill	Waste Acceptanc	e Criteria
					Limits	
					Stable Non- reactive	
+	FIF	J1 E502		Inert Waste	HAZARDOUS	Hazardous
		0.50		Landfill	waste in non- hazardous Landfill	Waste Landfill
0.7				3%	5%	6%
3.9						10%
< 10				6000		
		1				
		-	-			
		+	+			
30					To be evaluated	To be evaluated
10:1			10:01	Limit valu	es for compliance le	eaching test
				using BS El	N 12457-2 at L/S 10	l/kg (mg/kg)
mg/l			mg/kg			
0.0077			0.0660	0.5	2	25
0.0270			0.231	20	100	300
< 0.0001			< 0.0008	0.04	1	5
0.0068			0.058	0.5	10	70
0.018			0.15	2	50	100
< 0.0005			< 0.0050	0.01		2
			_			30
			_			40
			_			50
	-					5
		+				7 200
			_			25000
						500
						50000
90			770			100000
< 0.010			< 0.10	1	-	-
4.23			36.1	500	800	1000
< 0.1	1					
2.0		1			1	
85		1				
15	İ	İ				
	3.9 <10 <0.007 23 280 8.2 30 10:1 mg/l 0.0077 0.0270 <0.0001 0.0068 0.018 <0.0005 0.0021 0.0042 0.034 <0.0007 <1.3 1.2 42 90 <0.0010 4.23	578121 10/4 FIPE 0.7 3.9 < 10 < 0.007 23 280 8.2 30 10:1 mg/l 0.0077 0.0270 < 0.0001 0.0068 0.018 < 0.0005 0.0018 < 0.0001 0.0068 0.018 < 0.0001 0.0042 0.034 < 0.0017 < 0.0040 0.0072 1.3 1.2 42 90 < 0.010 4.23 < 0.1 2.0 85	3.9 <10 <0.007 23 280 8.2 30 10:1 mg/l 0.0077 0.0270 <0.0001 0.0068 0.0018 <0.0005 0.0021 0.0042 0.034 <0.0017 <0.0040 0.0040 0.0072 1.3 1.2 42 90 <0.010 4.23 <0.11 2.0 85	578126 / 578127 10/05/2016 FIPO1 ES02 0.50	S78126 578127 10/05/2016 FIP01 ES02 Inert Waste Landfill	Centric Close

results are expressed on a by weight basis, after Oricicum for moisture contents
Stated limits are for guidance only and 12 cannot be held responsible for any disc

*= UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		16-:	18420				
					Client:	CARDGEO	
Location		Centr	ic Close				
Lab Reference (Sample Number)	578128 / 578129			Landfill Waste Acceptance Criteria			
Sampling Date			5/2016			Limits Stable Non-	
Sample ID			2 ES04			reactive	
Depth (m)	0.60			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.4				3%	5%	6%
Loss on Ignition (%) **	4.3						10%
BTEX (μg/kg) **	< 10		+	1	6000		
Sum of PCBs (mg/kg) ** Minoral Oil (mg/kg)	< 0.007		+	1	1 500		
Mineral Oil (mg/kg)	22 15		+	 	500 100		
Total PAH (WAC-17) (mg/kg) pH (units)**	8.5		+	+	100	>6	
Acid Neutralisation Capacity (mol / kg)	47					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:01		es for compliance I	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	dailig ba Ei	4 12 137 2 de 13 14	, , , , , , , , , , , , , , , , , , ,
Arsenic *	0.0017			0.0150	0.5	2	25
Barium *	0.0218			0.192	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0048			0.042	0.5	10	70
Copper *	0.0085			0.075	2	50	100
Mercury *	< 0.0005		+	< 0.0050	0.01	0.2	2
Molybdenum * Nickel *	0.0091		-	0.0808 0.023	0.5 0.4	10 10	30 40
Lead *	0.0026 0.0047		+	0.023	0.4	10	50
Antimony *	< 0.0047		+	< 0.041	0.06	0.7	5
Selenium *	0.0068		1	0.060	0.00	0.7	7
Zinc *	0.0066			0.058	4	50	200
Chloride *	5.6			49	800	4000	25000
Fluoride	0.73			6.5	10	150	500
Sulphate *	50		1	440	1000	20000	50000
TDS	110			970	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	3.25			28.7	500	800	1000
Leach Test Information			1	1			
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.2						
Dry Matter (%)	76						
Moisture (%)	24						
Results are expressed on a dry weight basis, after correction for moisture content w	shore applicable		1	1	I	I	l

^{*=} UKAS accredited (liquid eluate analysis only)

*= MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
578124	WS01	ES01	0.40	Brown loam and sand with gravel and brick.
578126	FIP01	ES02	0.50	Brown loam and sand with gravel.
578128	WS02	ES04	0.60	Brown clay and sand with gravel.

Project / Site name: Centric Close

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-UK	W	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033-PL	D	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-UK	W	ISO 17025
Mineral Oil (Soil)	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	in-house method	L076-PL	D	NONE
Moisture Content	ure Content Moisture content, determined gravimetrically.		L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	ohydric phenols 10:1 WAC Determination of phenols in leachate by distillation followed by colorimetry.		L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	hate 10:1 WAC Determination of sulphate in leachate by ICP-OES		L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Iss No 16-18420-1 Centric Close CG-18804

Project / Site name: Centric Close

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------	--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
FIP01	ES02	S	16-18420	578126	С	BTEX in soil (Monoaromatics)	L073B-PL	С
FIP01	ES02	S	16-18420	578126	С	Mineral Oil (Soil)	L076-PL	С
FIP01	ES02	S	16-18420	578126	С	Organic matter in soil	L023-PL	С
FIP01	ES02	S	16-18420	578126	С	Total BTEX in soil (Poland)	L073-PL	С
WS01	ES01	S	16-18420	578124	С	BTEX in soil (Monoaromatics)	L073B-PL	С
WS01	ES01	S	16-18420	578124	С	Mineral Oil (Soil)	L076-PL	С
WS01	ES01	S	16-18420	578124	С	Organic matter in soil	L023-PL	С
WS01	ES01	S	16-18420	578124	С	Total BTEX in soil (Poland)	L073-PL	С
WS02	ES04	S	16-18420	578128	С	BTEX in soil (Monoaromatics)	L073B-PL	С
WS02	ES04	S	16-18420	578128	С	Mineral Oil (Soil)	L076-PL	С
WS02	ES04	S	16-18420	578128	С	Organic matter in soil	L023-PL	С
WS02	ES04	S	16-18420	578128	С	Total BTEX in soil (Poland)	L073-PL	С