

Project No: 3788 Ref: P:\Projects\3788\Documents\Letters\3788-let-161208-mpc-Tack Room units 25,26,27-load capacity and structural strengthening CALSH

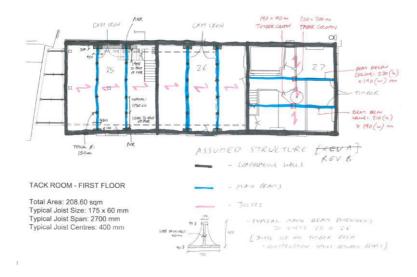
8th December 2016

Stanley Sidings Ltd Unit 7 James Cameron House 12 Castlehaven Road London NW1 8QW Walsh Structural and Civil Engineers 32 Lafone Street

London SE1 2LX

+44 (0) 20 7089 6800 london@walsh.co.uk

walsh.co.uk


For the attention of Ben Blackledge

Re: Tack Room Units 25/26/27 - Stables Market, Camden – Load Capacity and Structural Strengthening

Dear Ben,

Following your request, this letter outlines the maximum allowable capacity of the floor structure of units 25, 26 and 27 of the Tack Room, Stables Market, Camden. This letter also contains the necessary structural modifications in order to strengthen the structure to accommodate a total load of 5 kN/m².

Based on the received drawing with information regarding the dimensions of the floor joists and cast-iron beams (shown in Figure 1) and based on a condition survey done on the first floor of the Tack Room, we have back analyzed the maximum allowable loading of the floor structure of units 25, 26 and 27 inside the Tack Room.

Project No: 3788 Ref: P:\Projects\3788\Documents\Letters\3788-let-161208-mpc-Tack Room units 25,26,27-load capacity and structural strengthening.docx Date: 08/12/16

In order to obtain the maximum allowable loading for the floor structure, we have made the following assumptions:

- Structural elements to have dimensions as shown in Figure 1;
- Floor timber joists to be softwood and grade C16, spanning 2900 mm;
- Assumed self-weight of the floor to be 0.25 kN/m²;
- Beams supporting the joists to be cast-iron (with working stresses of 18.5 N/mm², based on "Historical Structural Steelwork Handbook" (Bates) for cast-iron beams before year 1900);
- Cast-iron beams to be supported by columns, spanning 1900 mm, in units 25 and 26;
- Softwood timber beams (grade C16) supporting the floor joists in unit 27, with two spans of 4300 mm;

Without any strengthening of the floor structure, we calculate the maximum capacity of the floor for unit 25 and 26 to be:

 Current allowable load to be 4 kN/m² subject to timber condition survey (Super imposed dead Load: 1 kN/m² + Imposed load: 3 kN/m² = 4 kN/m²);

In order to the floor structure of units 25 and 26 be able to accommodate a total load of 5 kN/m² (assumed split 1 kN/m² of super imposed dead load + 4 kN/m² of live load, which is the load defined by the Eurocodes for retail shops), we recommend introducing new timber joists between the existing ones (63x175 with 400 mm spacing from center to center and grade C24). For more information please see drawing 3788/204 issued on 8Th December 2016.

Please note that the condition survey reported that several joists, in unit 25 and 26, were showing several decays, therefore we didn't assume the existing joists in the first floor of the Tack Room had any structural capacity.

Regarding unit 27, due to a different structural support for the floor joists, we calculate the maximum capacity of the floor structure of unit 27 to be:

 Current allowable load to be 1.55 kN/m² subject to timber condition survey (Super imposed dead Load: 0.25 kN/m² + Imposed load: 1.3 kN/m² = 1.55 kN/m²);

In order to the floor structure of unit 27 be able to accommodate a load of 5 kN/m^2 (assumed split 1 kN/m^2 of super imposed dead load + 4 kN/m^2 of live load), we recommend introducing new timber joists between the existing ones (63x175 with 400 mm spacing from center to center and grade C24).

For unit 27, the condition survey also indicates that the joists were showing signals of decay meaning that no structural capacity of the existing joists were taken into account for the load calculations.

We also recommend strengthening the timber beams of unit 27 by means of two steel plates ($12x220 \text{ mm}^2$ and S275) on each side of the beams. Finally, we recommend foundations within unit 27 to be

strengthen with 1.0x1.0x1.0 m³ reinforced concrete pads. For more information please see drawing 3788/204 issued on 8Th December 2016.

Finally, contractor must allow for propping the upper floor of unit 27 and to propose construction method for the foundations' strengthening.

Yours sincerely,

Miguel Costa Structural Engineer

	^{roject} Stables Ma	rket, Camden - Ta	ck Room - Un	its 25, 26 and 27	Job no. 3	788
	Calcs for New timber joists - units 25, 26 and 27				Start page no./Revision 1	
WALSH	alcs by MPC	Calcs date 27/09/2016	Checked by PM	Checked date	Approved by PM	Approved d
TIMBER JOIST DESIGN (BS5268	3-2:2002)					
Joist details					Tedds calcula	ation version 1.
Joist breadth		b = 63 mm				
Joist depth		h = 175 mr	n			
Joist spacing		s = 400 mn	n			
Timber strength class		C24				
Service class of timber		1				
mm [900 1			
Span details						
Number of spans		N _{span} = 1				
Length of bearing		L _b = 100 m	m			
Effective length of span		L _{s1} = 2900				
					\sim	
					\langle	
← 63 →		$>$ $ $				
1						
		◄ —100—►				
Section properties						
Second moment of area		$I = b \times h^3 /$	12 = 2813671	9 mm⁴		
Section modulus			6 = 321563 n			
Loading details						
Joist self weight		$F_{swt} = b \times h$	$ imes ho_{char} imes g_{acc}$ =	= 0.04 kN/m		
Dead load		F _{d_udl} = 1.0				
Imposed UDL(Long term)		F _{i_udl} = 4.00				
Imposed point load (Medium term)	F _{i_pt} = 1.40	kN			
Ma differentia a fa afa un						
Modification factors	to arein					
Service class for bending parallel	to grain	K _{2m} = 1.00				
Service class for bending parallel Service class for compression Service class for shear parallel to		K _{2m} = 1.00 K _{2c} = 1.00 K _{2s} = 1.00				

	ProjectJob no.Stables Market, Camden - Tack Room - Units 25, 26 and 273788							
	Calcs for Start page no./Revision New timber joists - units 25, 26 and 27 2							
WALSH	Calcs by MPC	Calcs date 27/09/2016	Checked by PM	Checked date	Approved by PM	Approved date		
Section depth factor		K ₇ = 1.06	1					
Load sharing factor		K ₈ = 1.10						
Consider long term loads								
Load duration factor		K ₃ = 1.00						
Maximum bending moment		M = 2.142	kNm					
Maximum shear force		∨ = 2.955	kN					
Maximum support reaction		R = 2.955	kN					
Maximum deflection		δ = 6.521 ι	nm					
Check bending stress								
Bending stress		σm = 7.500	N/mm ²					
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{r}$	$_{\rm m} imes {\sf K}_{2{ m m}} imes {\sf K}_{3} imes {\sf H}$	K ₇ × K ₈ = 8.754 N	/mm²			
Applied bending stress			/ Z = 6.662 N/					
		_		ed bending stres	s within perr	nissible limits		
Check shear stress								
Shear stress		τ = 0.710 Ι	N/mm ²					
Permissible shear stress		$\tau_{adm} = \tau \times I$	$K_{2s} \times K_3 \times K_8 =$	0.781 N/mm ²				
Applied shear stress		τ_{max} = 3 × V / (2 × b × h) = 0.402 N/mm ²						
· +			. ,	plied shear stres	s within perr	nissible limits		
Check bearing stress								
Compression perpendicular to	arain (no wane) _{σcp1} = 2.40	● N/mm ²					
Permissible bearing stress	grain (no wane			K ₈ = 2.640 N/mm ²	2			
Applied bearing stress		_	$/ (b \times L_b) = 0.40$					
Applied bearing siless		Oc_max - K	. ,	ied bearing stres	s within norr	nissihla limits		
			1 A33 - Appil	ieu bearing sires	s within peri			
Check deflection								
Permissible deflection	- 、			1 mm) = 8.700 mr	n			
Bending deflection (based on I	⊐mean <i>)</i>	$\delta_{\text{bending}} = 6$						
Shear deflection		δ _{shear} = 0.3						
Total deflection		$\delta = \delta$ bending	+ δ _{shear} = 6.521 - PASS	i mm ∙ Actual deflectio	on within perr	nissible limits		
Consider medium term loads	6							
Load duration factor	-	K ₃ = 1.25						
Maximum bending moment		M = 1.475	kNm					
Maximum shear force		V = 2.035	kN					
Maximum support reaction		R = 2.035	kN					
Maximum deflection		δ = 3.906 ι	nm					
Check bending stress								
Bending stress		σm = 7.500	N/mm ²					
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{r}$	$_{\rm m} imes {\sf K}_{2m} imes {\sf K}_3 imes {\sf H}$	K ₇ × K ₈ = 10.942 N	N/mm²			
Applied bending stress		_	/ Z = 4.588 N/		o within	niccibla limita		
Check shear stress			rass - Applie	ed bending stres	s within perr	missible limits		
Shear stress		τ = 0.710 Ι	N/mm²					
Permissible shear stress			$K_{2s} \times K_3 \times K_8 =$	0.976 N/mm ²				
Applied shear stress				= 0.277 N/mm ²				
Applied sileal siless		$t_{\text{max}} - 3 \times 3$	v / (z × u × II) -	- V.211 IN/IIIII ⁻				

	Project Stables Market, Camden - Tack Room - Units 25, 26 and 27					88		
	Calcs for New	w timber joists -	units 25, 26 and	27	Start page no./Revision 3			
WALSH	Calcs by MPC	Calcs date 27/09/2016	Checked by PM	Checked date	Approved by PM	Approved date		

PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane) Permissible bearing stress

Applied bearing stress

σ_{cp1} = **2.400** N/mm²

 $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{3.300} \ N/mm^2$

 δ_{adm} = min(L_{s1} \times 0.003, 14 mm) = 8.700 mm

 σ_{c_max} = R / (b \times L_b) = 0.323 N/mm²

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection Bending deflection (based on E_{mean}) Shear deflection Total deflection

 δ_{bending} = 3.668 mm

 δ_{shear} = 0.238 mm

 $\delta = \delta_{\text{bending}} + \delta_{\text{shear}} = \textbf{3.906} \text{ mm}$

PASS - Actual deflection within permissible limits

tom flange (mm) 400 W (mm3) 2323268.502	Dimensions Top flange (mm) 100 Mrd (kNm) 41.82	tf (mm) 40 Fy (Mpa)	tw (mm) 40 18	xg (mm) 134.1	l (mm4) 617649430.9
400 W (mm3)	100 Mrd (kNm)	40 Fy (Mpa)	40		
W (mm3)	Mrd (kNm)	Fy (Mpa)	18	134.1	617649430.9
	······				
	······				
2323268.502	41.82	E (N A)			
	41.02	E (Mpa)	210000		
	Working stresses				
L (m)	P/joist (kN)	F (kN/m)	Med (kNm)	δ (mm)	L/500 (mm)
1.9	7.18	12.33	5.56	0.011	3.8
			L (m) P/joist (kN) F (kN/m)	L (m) P/joist (kN) F (kN/m) Med (kNm)	L (m) P/joist (kN) F (kN/m) Med (kNm) δ (mm)

TACK ROOM - UNIT 25/26 CAST-IRON BBAMS

3788/5K/160915/MPC/01

Structural and Civil Engineers

32 Lafone Street London SEI 2LX t. +44 (0)20 7089 6800 e. london@walsh.co.uk

walsh.co.uk

	Unit 27			
	Timber Beam	n and a state of the		
b (mm)	h (mm)	E (MPa)	F (Mpa)	
190	230	8000	8.6	
	Steel Plates			
b (mm)	h (mm)	E (Mpa)	F (Mpa)	
12	220	210000	235	
Mrd (kNm)				
54.5				
Dead load (kN/m)	Live load (kN/m)	L1/L2 (m)	Med (kNm)	
2.9	11.6	4.3	49.3	

TACK ROCH - UNIT 27 - STRENGTHENING OF MAIN TINBER BEAMS 3788/SW/ 161208/MPC/01

Structural and Civil Engineers

32 Lafone Street London SEI 2LX t. +44 (0)20 7089 6800 e. london@walsh.co.uk

walsh.co.uk