Type of structure = Fully Embedded Wall Elevation of toe of wall = -3.60 Maximum finite element length = 0.20 m Youngs modulus of wall E = 2.1000E+07 kN/m2 Moment of inertia of wall I = 7.0987E-03 m4/m run E.I = 149073 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	-0.20	1.00	0.300000	2.100E+07	5.65	0.00	0	Yes
2	-1.20	1.00	0.030000	2.000E+08	5.65	0.00	0	No
3	-2.30	1.00	0.030000	2.000E+08	5.65	0.00	0	No
4	-3.40	1.00	0.300000	2.100E+07	5.65	0.00	0	Yes

CONSTRUCTION STAGES

Construction	Stage description
stage no. 1	Excavate to elevation 0.00 on PASSIVE side
	Toe of berm at elevation -0.80
	Width of top of berm = 0.10
	Width of toe of berm = 0.90
2	Install strut or anchor no.1 at elevation -0.20
3	Excavate to elevation -0.80 on PASSIVE side
4	Apply water pressure profile no.1 (Mod. Conserv.)
5	Excavate to elevation -0.80 on PASSIVE side
	Toe of berm at elevation -1.80
	Width of top of berm = 0.10
	Width of toe of berm = 1.10
б	Install strut or anchor no.2 at elevation -1.20
7	Excavate to elevation -1.80 on PASSIVE side
8	Apply water pressure profile no.2 (Mod. Conserv.)
9	Excavate to elevation -1.80 on PASSIVE side
	Toe of berm at elevation -2.80
	Width of top of berm = 0.10
	Width of toe of berm = 1.10
10	Install strut or anchor no.3 at elevation -2.30
11	Excavate to elevation -2.80 on PASSIVE side
12	Apply water pressure profile no.3 (Mod. Conserv.)
13	Excavate to elevation -2.80 on PASSIVE side
	Toe of berm at elevation -3.60
	Width of top of berm = 0.10
	Width of toe of berm = 0.90
14	Install strut or anchor no.4 at elevation -3.40
15	Excavate to elevation -3.60 on PASSIVE side
16	Fill to elevation -3.20 on PASSIVE side with soil type 4
17	Remove strut or anchor no.3 at elevation -2.30
18	Remove strut or anchor no.2 at elevation -1.20
19	Remove strut or anchor no.1 at elevation -0.20
FACTORS OF SAI	FETY and ANALYSIS OPTIONS

Limit State options: Serviceability Limit State All loads and soil strengths are unfactored

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m

Boundary conditions:

Length of wall (normal to plane of analysis) = 2400.00 m Width of excavation on active side of wall = 11.30 m Width of excavation on passive side of wall = 11.30 m Distance to rigid boundary on active side = 11.30 m Distance to rigid boundary on passive side = 11.30 m

OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	3
1 Excav. to elev. 0.00 on PASSIVE side	No	No	No
2 Install strut no.1 at elev0.20	No	No	No
3 Excav. to elev0.80 on PASSIVE side	No	No	No
4 Apply water pressure profile no.1	No	No	No
5 Excav. to elev0.80 on PASSIVE side	No	No	No
6 Install strut no.2 at elev1.20	No	No	No
7 Excav. to elev1.80 on PASSIVE side	No	No	No
8 Apply water pressure profile no.2	No	No	No
9 Excav. to elev1.80 on PASSIVE side	No	No	No
10 Install strut no.3 at elev2.30	No	No	No
11 Excav. to elev2.80 on PASSIVE side	No	No	No
12 Apply water pressure profile no.3	No	No	No
13 Excav. to elev2.80 on PASSIVE side	No	No	No
14 Install strut no.4 at elev3.40	No	No	No
15 Excav. to elev3.60 on PASSIVE side	No	No	No
16 Fill to elev3.20 on PASSIVE side	No	No	No
17 Remove strut no.3 at elev2.30	No	No	No
18 Remove strut no.2 at elev1.20	No	No	No
19 Remove strut no.1 at elev0.20	No	No	No
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2014 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK www.geosolve.co.uk

SOILS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655
Licensed from GEOSOLVE	Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW1.3_SLS	
12 Platt's Lane, London NW3 7NR	Date: 4-12-2016
Please modify / add	Checked :
Units	kN,m

Stage No. 19 Remove strut or anchor no.1 at elevation -0.20

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

FoS for toe Toe elev. for elev. = -3.60 FoS = 1.000_____ _____ Stage --- G.L. --- Strut Factor Moment Toe Wall No. Act. Pass. Elev. of equilib. elev. Penetr Safety at elev. -ation 19 0.00 -3.20 -3.40 Conditions not suitable for FoS calc.

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 2400.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 11.30 from wall

Passive side 11.30 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces are to be multiplied by a factor of 1.35 to obtain values for structural design. See summary for factored values.

Node	e Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.00	0.00	0.002	-6.66E-04	0.0	-0.0	
2	-0.20	1.00	0.002	-6.66E-04	0.1	0.0	
3	-0.40	2.00	0.002	-6.66E-04	0.4	0.1	
4	-0.60	3.00	0.002	-6.66E-04	0.9	0.2	
5	-0.80	4.00	0.003	-6.66E-04	1.6	0.5	
6	-1.00	5.00	0.003	-6.67E-04	2.5	0.9	
7	-1.20	6.00	0.003	-6.69E-04	3.6	1.5	
8	-1.30	6.50	0.003	-6.70E-04	4.2	1.9	
9	-1.45	7.25	0.003	-6.72E-04	5.3	2.6	
10	-1.60	8.76	0.003	-6.75E-04	6.5	3.5	
11	-1.80	11.48	0.003	-6.81E-04	8.5	5.0	
12	-2.00	14.18	0.003	-6.89E-04	11.0	6.9	
13	-2.15	16.20	0.003	-6.97E-04	13.3	8.8	
14	-2.30	18.21	0.004	-7.07E-04	15.9	11.0	
15	-2.45	20.21	0.004	-7.19E-04	18.8	13.6	
16	-2.60	22.20	0.004	-7.35E-04	22.0	16.6	
17	-2.80	24.84	0.004	-7.60E-04	26.7	21.5	
18	-3.00	27.46	0.004	-7.93E-04	31.9	27.3	
19	-3.20	30.06	0.004	-8.34E-04	37.6	34.3	
		-2057.14	0.004	-8.34E-04	37.6	34.3	
20	-3.40	32.90	0.004	-8.58E-04	-164.8	0.7	-157.9
		32.90	0.004	-8.58E-04	-6.9	0.7	
21	-3.60	35.76	0.005	-8.58E-04	0.0	-0.0	
At	elev3.	40 Strut fo	rce = -	157.9 kN/st	rut = -1	57.9 kN/m	run

Run II 12 Pl Pleas	D. 1565 att's I e modif	5_Rev1.0 Lane, Lon Ty / add	5_GW1.3_ don NW3	SLS 7NR			Shee Date Cheo	et No. 2: 4-12-2016 2ked :
Stage	No.19	Remove	strut or	anchor 1	no.1 at el		(cor . 20	tinued)
Node	Y				- ACTIVE S	1de		
no.	coora	Matan		Errectiv	ve stresse	S	Total	COEII. OI
		water	vertic	ACLIVE	Passive	Earth	earth	subgrade
		press.	-dl	LIULL	LIUT (m 2	pressure	pressure	len /m2
1	0 00	KN/IIIZ			KIN/IIIZ			KIN/III.5
2	-0.20	Total>	2 73	0.00 1 00m	64 62	1 00	1 00=	2002 2582
2	_0.20	Total>	5 /5	2 00m	67 34	2 00	2 00-	2502
7	-0.40	Total>	9.19	2.00m	70 07	2.00	2.008	2502
5	-0.00	Total>	10 90	4 00m	70.07	1 00	4 00-	2502
5	-0.00	Total>	13 63	5 00m	75.52	5.00	5 00-	2502
7	1 20	Total>	16 26	5.00m	79.52	5.00	5.008	2502
0	1 20	Total>	17.30	6.00m	70.23	6.00	6 50-	1 2002 N 2502
0	1 15	Total>	20 41	0.30m	79.01 02.20	7 25	7 25-	1 2002 N 2502
10	-1.45	Total>	20.41	7.25m	81 99	8 76	8 76	2002
11	-1.80	Total>	23.10	8.00m	89 59	11 / 9	11 / 9	2002
10	2 00	Total>	20.09	10 00m	00.50	1/ 10	1/ 10	2502
⊥∠ 12	-2.00	Total>	30.20 22 Q0	10.00m	92.17	14.10	14.10	2002
11	2 20	Total>	25.90	11 E0m	94.07	10.20	10.20	2002
15	2.30	Total>	20.07	12.30m	100 25	20 21	20 21	2002
16	2.45	Total>	30.30 41 05	12.25m	100.25	20.21	20.21	2002
17	-2.00	Total>	41.05	14.00m	102.94	22.20	22.20	2002
10	-2.00	Total>	44.04	14.00m	110 12	24.04	24.04	2002
10	-3.00	Total>	40.23 E1 00	15.00m	112 71	27.40	27.40	2002
20	-3.20	Total>	51.02	17.00m	117 20	22 00	22 00	11000
21	-3.60	Total>	59.00	18.00m	120.89	37.76	37.76	11088
Node	Y				PASSIVE S	ide		
no.	coord			Effectiv	ve stresse	s	Total	Coeff. of
		Water	Vertic	Active	Passive	Earth	earth	subgrade
		press.	-al	limit	limit	pressure	pressure	e reaction
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	-0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	-0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	-0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	-1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	-1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	-1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	-1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	-1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	-2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
13	-2.15	0.00	0.00	0.00	0.00	0.00	0.00	0.0
14	-2.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0
15	-2.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0
16	-2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
17	-2.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
18	-3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
19	-3.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		Total>	0.00	0.00	17000.00	2087.19	2087.19	6.35E+08
20	-3.40	Total>	4.80	1.00m	17004.80	1.00	1.00a	a 46199904
21	-3.60	Total>	9.60	2.00m	17009.60	2.00	2.00=	46199904

Note: 2.00a Soil pressure at active limit 123.45p Soil pressure at passive limit

SOILS LIMITED	Sheet No.		
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655		
Licensed from GEOSOLVE	Made by : DVT		
Data filename/Run ID: 15655_Rev1.05_GW1.3_SLS			
12 Platt's Lane, London NW3 7NR	Date: 4-12-2016		
Please modify / add	Checked :		
Units	kN,m		

SOILS LIMITED	Sheet No.		
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655		
Licensed from GEOSOLVE	Made by : DVT		
Data filename/Run ID: 15655_Rev1.05_GW1.3_SLS			
12 Platt's Lane, London NW3 7NR	Date: 4-12-2016		
Please modify / add	Checked :		

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe Toe elev. for
				elev. = -3.60 FoS = 1.000
Stage	G.	L	Strut	Factor Moment Toe Wall
No.	Act.	Pass.	Elev.	of equilib. elev. Penetr
				Safety at elevation
1	0.00	0.00	Cant.	Conditions not suitable for FoS calc.
2	0.00	0.00		No analysis at this stage
3	0.00	-0.80	-0.20	11.077 n/a -0.81 0.01
4	0.00	-0.80	-0.20	9.469 n/a -0.81 0.01
5	0.00	-0.80	-0.20	4.464 n/a -0.83 0.03
6	0.00	-0.80		No analysis at this stage
7	0.00	-1.80		More than one strut
8	0.00	-1.80		More than one strut
9	0.00	-1.80		More than one strut
10	0.00	-1.80		No analysis at this stage
11	0.00	-2.80		More than one strut
12	0.00	-2.80		More than one strut
13	0.00	-2.80		More than one strut
14	0.00	-2.80		No analysis at this stage
15	0.00	-3.40		More than one strut
16	0.00	-3.20		More than one strut
17	0.00	-3.20		More than one strut
18	0.00	-3.20		More than one strut
19	0.00	-3.20	-3.40	Conditions not suitable for FoS calc.

SOILS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655
Licensed from GEOSOLVE	Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW1.3_SLS	
12 Platt's Lane, London NW3 7NR	Date: 4-12-2016
Please modify / add	Checked :
Uni	ts: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 2400.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 11.30 from wall

Passive side 11.30 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	Y	Displa	acement	H	Bending	moment			- Shear	force	
no.	coord			Calcul	lated	Facto	ored	Calcul	ated	Fact	ored
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN	.m/m	kN.	.m/m	kN/m	kN/m	kN/m	kN/m
1	0.00	0.002	-0.000	0	- 0	0	-0	0	0	0	0
2	-0.20	0.002	-0.000	0	0	0	0	37	-10	50	-13
3	-0.40	0.002	-0.000	8	-2	10	-2	37	-9	50	-13
4	-0.60	0.002	0.000	15	-4	20	-5	38	-9	51	-12
5	-0.80	0.003	0.000	23	-5	31	-7	39	-8	53	-10
б	-1.00	0.003	0.000	31	-7	41	-9	40	-7	54	-9
7	-1.20	0.003	0.000	39	- 8	52	-11	42	-33	56	-44
8	-1.30	0.003	0.000	36	- 8	48	-11	4	-32	6	-43
9	-1.45	0.003	0.000	32	-9	43	-12	5	-31	7	-41
10	-1.60	0.003	0.000	29	-9	39	-12	б	-29	9	-39
11	-1.80	0.003	0.000	26	-9	35	-13	8	-26	11	-36
12	-2.00	0.003	0.000	23	-9	31	-12	11	-23	15	-31
13	-2.15	0.003	0.000	22	- 8	29	-11	13	-21	18	-28
14	-2.30	0.004	0.000	21	-7	28	-9	16	-31	21	-42
15	-2.45	0.004	0.000	16	-5	22	-7	19	-28	25	-38
16	-2.60	0.004	0.000	17	-3	22	-4	22	-25	30	-34
17	-2.80	0.004	0.000	21	-1	29	-2	27	-20	36	-27
18	-3.00	0.004	0.000	27	-1	37	-1	32	-15	43	-20
19	-3.20	0.004	0.000	34	- 0	46	-1	38	-9	51	-13
20	-3.40	0.005	0.000	1	- 0	1	-0	1	-165	1	-222
21	-3.60	0.005	0.000	0	- 0	0	-0	0	0	0	0

Run ID. 15655_Rev1.05_GW1.3_SLS| Sheet No.12 Platt's Lane, London NW3 7NR| Date: 4-12-2016Please modify / add| Checked :

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Maximum and minimum bending moment and shear force at each stage

Stage			Bendin	g moment	:				Shear	force -	
no.		Calc	ulated		Facto	ored		Calc	ulated		Factored
	max.	elev.	min.	elev.	max.	min.	max.	elev.	min.	elev.	max.
min.											
	kN.m/m	L	kN.m/m		kN.	m/m	kN/m		kN/m		kN/m
kN/m											
1	0	-2.30	- 0	-3.60	0	-0	0	-0.40	0	0.00	0
0											
2	No ca	lculati	on at t	his sta	ge						
3	0	-0.20	-4	-1.45	0	-5	3	-2.45	-6	-0.20	3
-8											
4	0	-0.20	-4	-1.45	0	-5	3	-2.60	-5	-0.20	4
-7											
5	0	-0.20	-4	-1.45	0	-5	3	-2.60	-5	-0.20	4
-7											
6	No ca	lculati	on at t	his sta	ge						
7	26	-1.20	- 0	-3.60	34	-0	28	-1.20	-24	-1.20	38
-33											
8	34	-1.20	- 0	-3.60	45	-0	36	-1.20	-29	-1.20	49
-39											
9	34	-1.20	- 0	-3.60	45	-0	36	-1.20	-29	-1.20	49
-39											
10	No ca	lculati	on at t	his sta	ge						
11	36	-1.20	- 0	-3.60	49	-0	39	-1.20	-29	-2.30	53
-40											
12	36	-1.20	- 0	-3.60	49	-0	39	-1.20	-31	-2.30	53
-42											
13	36	-1.20	- 0	-3.60	49	-0	39	-1.20	-31	-2.30	53
-42											
14	No ca	lculati	on at t	his sta	ge						
15	37	-1.20	- 0	-3.60	49	-0	39	-1.20	-31	-2.30	53
-42											
16	37	-1.20	- 0	-3.60	49	-0	39	-1.20	-31	-2.30	53
-42											
17	39	-1.20	- 0	-3.60	52	-0	42	-1.20	-33	-1.20	56
-44											
18	11	-3.20	-9	-1.80	15	-13	32	-3.20	-48	-3.40	43
-65											
19	34	-3.20	- 0	0.00	46	-0	38	-3.20	-165	-3.40	51
-222											

Maximum and minimum displacement at each stage

	am arra mar	and an or	-ppracomon	ic ac caci	i beage
Stage		Displac	cement		Stage description
no.	maximum	elev.	minimum	elev.	
	m		m		
1	0.000	-3.60	-0.000	0.00	Excav. to elev. 0.00 on PASSIVE side
2	No calc	ulation	at this s	stage	Install strut no.1 at elev0.20
3	0.003	-3.60	-0.000	0.00	Excav. to elev0.80 on PASSIVE side
4	0.004	-3.60	-0.000	0.00	Apply water pressure profile no.1
5	0.004	-3.60	-0.000	0.00	Excav. to elev0.80 on PASSIVE side
б	No calc	ulation	at this s	stage	Install strut no.2 at elev1.20
7	0.005	-3.60	-0.000	0.00	Excav. to elev1.80 on PASSIVE side
8	0.005	-3.60	-0.000	0.00	Apply water pressure profile no.2
9	0.005	-3.60	-0.000	0.00	Excav. to elev1.80 on PASSIVE side

10	No calcu	lation	at this	stage	Install strut no.3 at elev2.30
11	0.005	-3.60	-0.000	0.00	Excav. to elev2.80 on PASSIVE side
12	0.005	-3.60	-0.000	0.00	Apply water pressure profile no.3
13	0.005	-3.60	-0.000	0.00	Excav. to elev2.80 on PASSIVE side
14	No calcu	ulation	at this	stage	Install strut no.4 at elev3.40
15	0.005	-3.60	-0.000	0.00	Excav. to elev3.60 on PASSIVE side
16	0.005	-3.60	-0.000	0.00	Fill to elev3.20 on PASSIVE side
17	0.005	-3.60	-0.000	0.00	Remove strut no.3 at elev2.30
18	0.005	-3.60	-0.000	0.00	Remove strut no.2 at elev1.20
19	0.005	-3.60	0.000	0.00	Remove strut no.1 at elev0.20

Run ID. 15655_Rev1.05_GW1.3_SLS	Sheet No.
12 Platt's Lane, London NW3 7NR	Date: 4-12-2016
Please modify / add	Checked :

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Strut forces at each stage (horizontal components)

Stage	S	trut no.	1	S	trut no.	2	S	trut no.	3		
no.	at	elev0	.20	at	elev1	.20	at	at elev2.3			
	Calcu	lated	Factored	Calcu	lated	Factored	Calcu	lated	Factored		
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per		
	m run	strut	strut	m run	strut	strut	m run	strut	strut		
3	6	6	8								
4	6	6	8								
5	6	6	8								
7	-23	-23	-31	53	53	71					
8	-31	-31	-42	65	65	88					
9	-31	-31	-42	65	65	88					
11	-33	-33	-45	61	61	83	22	22	30		
12	-34	-34	-45	60	60	82	25	25	33		
13	-34	-34	-45	60	60	82	25	25	33		
15	-34	-34	-46	60	60	81	26	26	35		
16	-34	-34	-46	60	60	81	26	26	35		
17	-36	-36	-49	74	74	100					
18	11	11	14								

Stage	S	trut no.	4				
no.	at	at elev3.40					
	Calcu	Calculated Factored					
	kN per	kN per	kN per				
	m run	strut	strut				
15	4	4	5				
16	4	4	5				
17	-4	-4	-5				
18	-42	-42	-57				
19	-158	-158	-213				

SOILS LIMITED Program: WALLAP Version 6.05 Revision A46.B59.R49 Licensed from GEOSOLVE	Sheet No. Job No. 15655 Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW1.3_SLS 12 Platt's Lane, London NW3 7NR Please modify / add	Date: 4-12-2016 Checked :
Units	 kN,m

Bending moment, shear force, displacement envelopes

SOILS LIMITED		Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49		Job No. 15655
Licensed from GEOSOLVE		Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW_remedial2_SLS		
12 Platt's Lane, London NW3 7NR		Date: 2-12-2016
Remedial Measures Applied		Checked :
	Units:	ĸn,m

INPUT DATA

SOIL PROFILE Stratum Elevation of

Stratum no.	Elevation of top of stratum	Active side	Soil types Passive side
1	0.00	1 MG	1 MG
2	-3.60	2 CLGB	2 CLGB
3	-6.40	3 CLGB	3 CLGB

SOIL PROPERTIES

	Bulk	Young's	At rest	Consol	Active	Passive	
Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No. Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1 MG	13.63a	5040	0.658	OC	1.000	1.000	25.00u
	17.95b			(0.490)	(2.389)	(2.476)	
2 CLGB	17.85a	12490	0.658	OC	1.000	1.000	50.00u
	18.53b			(0.490)	(2.389)	(2.476)	
3 CLGB	19.91a	16960	0.658	OC	1.000	1.000	65.00u
	21.87b			(0.490)	(2.389)	(2.476)	
4 Concrete	24.00	2.10E+7	0.000	OC	1.000	1.000	8500u
				(0.490)	(2.000)	(2.000)	

Note: (a) and (b) are Bulk Densities above and below the water table

Additional soil parameters associated with Ka and Kp

		parameters for Ka			parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	MG	0.00	0.500	0.00	0.00	0.667	0.00
2	CLGB	0.00	0.500	0.00	0.00	0.667	0.00
3	CLGB	0.00	0.500	0.00	0.00	0.667	0.00
4	Concrete	0.00	0.000	0.00	0.00	0.000	0.00

GROUND WATER CONDITIONS

Density of water =	10.00	kN/m3
--------------------	-------	-------

				Active s	side	Passive	side
Initial	water	table	elevation	-2.00	0	-2.	00

Automatic water pressure balancing at toe of wall : No

Water	Active side				Passive side			
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.
1	1	m -2.00	m -2.00	KN/m2 0.0	1	m -2.00	m -2.00	KN/m2 0.0 MC
2 3	Not de: 1	fined -2.00	-2.00	0.0	1	-3.60	-3.60	0.0 MC
4 5	Not de: 1	fined -1.30	-1.30	0.0	1	-3.60	-3.60	0.0 WC

6 1 -1.30 -1.30 0.0 1 -2.00 -2.00 0	.01	WC
-------------------------------------	-----	----

WALL PROPERTIES

```
Type of structure = Fully Embedded Wall
Elevation of toe of wall = -3.60
Maximum finite element length = 0.20 m
Youngs modulus of wall E = 2.1000E+07 kN/m2
Moment of inertia of wall I = 7.0987E-03 m4/m run
E.I = 149073 kN.m2/m run
Yield Moment of wall = Not defined
```

STRUTS and ANCHORS

Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	-0.20	1.00	0.300000	2.100E+07	5.65	0.00	0	Yes
2	-1.20	1.00	0.030000	2.000E+08	5.65	0.00	0	No
3	-2.30	1.00	0.030000	2.000E+08	5.65	0.00	0	No
4	-3.40	1.00	0.300000	2.100E+07	5.65	0.00	0	Yes

CONSTRUCTION STAGES

Construction	Stage description					
stage no.	European to alouation 0.00 an DAGGIVE side					
T	Too of horm at alguation 1 20					
	Nidth of top of horm $= 0.10$					
	Width of too of berm = 1.40					
C	Tratall strut or angler no 1 at elevation 0 20					
2	Install strut or anchor no 2 at elevation -0.20					
3	Fusculto to allowation 1.20 on DAGGIUE side					
4	Excavate to elevation -1.30 on PASSIVE side					
5	Apply water pressure profile no.1 (Mod. Conserv.)					
6	Excavate to elevation -1.30 on PASSIVE side					
	The of Derm at elevation -1.80					
	Width of top of berm = 0.10					
_	Width of toe of berm = 0.60					
7	Excavate to elevation -1.80 on PASSIVE side					
8	Apply water pressure profile no.3 (Mod. Conserv.)					
9	Excavate to elevation -1.80 on PASSIVE side					
	Toe of berm at elevation -2.80					
	Width of top of berm = 0.10					
	Width of toe of berm = 1.10					
10	Install strut or anchor no.3 at elevation -2.30					
11	Excavate to elevation -2.80 on PASSIVE side					
12	Excavate to elevation -2.80 on PASSIVE side					
	Toe of berm at elevation -3.60					
	Width of top of berm = 0.10					
	Width of toe of berm = 0.90					
13	Install strut or anchor no.4 at elevation -3.40					
14	Excavate to elevation -3.60 on PASSIVE side					
15	Fill to elevation -3.20 on PASSIVE side with soil type 4					
16	Remove strut or anchor no.3 at elevation -2.30					
17	Remove strut or anchor no.2 at elevation -1.20					
18	Remove strut or anchor no.1 at elevation -0.20					

FACTORS OF SAFETY and ANALYSIS OPTIONS

Limit State options: Serviceability Limit State All loads and soil strengths are unfactored

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m
Bending moment and displacement calculation:
Method - Subgrade reaction model using Influence Coefficients
Open Tension Crack analysis? - No
Non-linear Modulus Parameter (L) = 0 m
Boundary conditions:
Length of wall (normal to plane of analysis) = 2400.00 m
Width of excavation on active side of wall = 11.30 m
Width of excavation on passive side of wall = 11.30 m
Distance to rigid boundary on active side = 11.30 m

OUTPUT OPTIONS

Stag	ge Stage description	Output	t options	
no		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	5
1	Excav. to elev. 0.00 on PASSIVE side	Yes	Yes	Yes
2	Install strut no.1 at elev0.20	Yes	Yes	Yes
3	Install strut no.2 at elev1.20	Yes	Yes	Yes
4	Excav. to elev1.30 on PASSIVE side	Yes	Yes	Yes
5	Apply water pressure profile no.1	Yes	Yes	Yes
б	Excav. to elev1.30 on PASSIVE side	Yes	Yes	Yes
7	Excav. to elev1.80 on PASSIVE side	Yes	Yes	Yes
8	Apply water pressure profile no.3	Yes	Yes	Yes
9	Excav. to elev1.80 on PASSIVE side	Yes	Yes	Yes
10	Install strut no.3 at elev2.30	Yes	Yes	Yes
11	Excav. to elev2.80 on PASSIVE side	No	No	No
12	Excav. to elev2.80 on PASSIVE side	No	No	No
13	Install strut no.4 at elev3.40	Yes	Yes	Yes
14	Excav. to elev3.60 on PASSIVE side	Yes	Yes	Yes
15	Fill to elev3.20 on PASSIVE side	Yes	Yes	Yes
16	Remove strut no.3 at elev2.30	Yes	Yes	Yes
17	Remove strut no.2 at elev1.20	Yes	Yes	Yes
18	Remove strut no.1 at elev0.20	Yes	Yes	Yes
*	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2014 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK www.geosolve.co.uk

SOILS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655
Licensed from GEOSOLVE	Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW_remedial2_SLS	
12 Platt's Lane, London NW3 7NR	Date: 2-12-2016
Please modify / add	Checked :
Units	kN,m

Stage No. 18 Remove strut or anchor no.1 at elevation -0.20

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

FoS for toe Toe elev. for elev. = -3.60 FoS = 1.000_____ _____ Stage --- G.L. --- Strut Factor Moment Toe Wall No. Act. Pass. Elev. of equilib. elev. Penetr Safety at elev. -ation 18 0.00 -3.20 -3.40 Conditions not suitable for FoS calc.

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 2400.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 11.30 from wall

Passive side 11.30 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces are to be multiplied by a factor of 1.35 to obtain values for structural design. See summary for factored values.

Node	e Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	0.00	0.00	0.002	3.04E-04	0.0	0.0	
2	-0.20	1.00	0.002	3.04E-04	0.1	0.0	
3	-0.40	2.00	0.002	3.04E-04	0.4	0.1	
4	-0.60	3.00	0.002	3.04E-04	0.9	0.2	
5	-0.80	4.00	0.002	3.03E-04	1.6	0.4	
6	-1.00	5.00	0.002	3.02E-04	2.5	0.8	
7	-1.20	6.54	0.002	3.01E-04	3.7	1.5	
8	-1.30	7.50	0.002	3.00E-04	4.4	1.9	
9	-1.45	8.94	0.002	2.97E-04	5.6	2.6	
10	-1.60	10.38	0.002	2.94E-04	7.0	3.6	
11	-1.80	12.27	0.002	2.88E-04	9.3	5.2	
12	-2.00	14.15	0.001	2.80E-04	11.9	7.3	
13	-2.15	16.48	0.001	2.72E-04	14.2	9.3	
14	-2.30	18.81	0.001	2.61E-04	16.9	11.6	
15	-2.45	21.13	0.001	2.48E-04	19.9	14.4	
16	-2.60	23.44	0.001	2.32E-04	23.2	17.6	
17	-2.80	26.50	0.001	2.05E-04	28.2	22.7	
18	-3.00	29.54	0.001	1.70E-04	33.8	28.9	
19	-3.20	32.57	0.001	1.27E-04	40.0	36.3	
		-2177.84	0.001	1.27E-04	40.0	36.3	
20	-3.40	35.89	0.001	1.02E-04	-174.2	0.8	-166.6
		35.89	0.001	1.02E-04	-7.5	0.8	
21	-3.60	39.23	0.001	1.01E-04	0.0	-0.0	
At	elev3.	40 Strut fo	orce = -1	L66.6 kN/st	rut = -1	66.6 kN/m	run

Run ID. 15655_Rev1.05_GW_remedial2_SLS12 Platt's Lane, London NW3 7NRPlease modify / add							Shee Date Chec	Sheet No. Date: 2-12-2016 Checked :		
Stage	No.18	Remove	strut or	anchor r	no.1 at ele	evation -0	(con . 20	tinued)		
Node	Y				- ACTIVE s:	ide				
no.	coord			Effectiv	ve stresses	s	Total	Coeff. of		
		Water	Vertic	Active	Passive	Earth	earth	subgrade		
		press.	-al	limit	limit	pressure	pressure	reaction		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	0.00	Total>	0.00	0.00	61.89	0.00	0.00a	2589		
2	-0.20	Total>	2.73	1.00m	64.62	1.00	1.00a	2589		
3	-0.40	Total>	5.45	2.00m	67.34	2.00	2.00a	2589		
4	-0.60	Total>	8.18	3.00m	70.07	3.00	3.00a	2589		
5	-0.80	Total>	10.90	4.00m	72.79	4.00	4.00a	2589		
6	-1.00	Total>	13.63	5.00m	75.52	5.00	5.00a	2589		
./	-1.20	Total>	16.36	6.00m	78.25	6.54	6.54	2589		
8	-1.30	Total>	17.72	6.50m	79.61	7.50	7.50	2589		
10	-1.45	Total>	19.76	7.25m	81.65	8.94	8.94	2589		
10 11	-1.60	Total>	21.81	8.00m	83.70	10.38	10.38	2589		
10	-1.80	IOLAI>	24.53	9.00m	80.42	14.15	14.27	2589		
12	-2.00	Total>	27.20	10.00m	89.15	16 40	14.15	2589		
14	-2.15	TOLAI>	29.95 22.65	10.75m	91.04	10.40	10.40	2509		
15	-2.30	Total>	32.05 25 24	12.50m	94.55	10.01 21 12	10.01 21 12	2509		
16	-2.45	Total>	38 03	13 00m	97.23	21.13	21.13	2589		
17	2.00	Total>	41 62	14 00m	102 51	25.44	25.44	2509		
10	2.00	Total>	41.02	14.00m	103.51	20.50	20.50	2509		
10	-3.00	Total>	49.21	16 00m	110 69	29.54	29.54	2589		
20	-3.20	Total>	52 39	17 00m	114 28	36.89	36.89	11087		
21	-3.60	Total>	55.98	18.00m	117.87	41.23	41.23	11087		
Node	Y				PASSIVE s	ide				
no.	coord			Effectiv	ve stresses	з	Total	Coeff. of		
		Water	Vertic	Active	Passive	Earth	earth	subgrade		
		press.	-al	limit	limit	pressure	pressure	reaction		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
2	-0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
3	-0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
4	-0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
5	-0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
6	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
7	-1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
8	-1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
9	-1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
10	-1.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
11	-1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
12	-2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
13	-2.15	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
14	-2.30	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
15	-2.45	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
16	-2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
1.7	-2.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
18	-3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		
19	-3.20		0.00	0.00	0.00	0.00	0.00	0.0		
20	2 40	Total>	0.00	0.00	17004 00	ZZIU.41	2210.41	0.35E+U8		
∠U 21	-3.40	TOTAL>	4.80	1.00m	17000 60	1.00	1.UUa	4019/302		
∠ ⊥	-3.60	IUTAI>	9.60	⊿.uum	T/003.00	⊿.00	2.00a	4019/302		

Note: 2.00a Soil pressure at active limit 123.45p Soil pressure at passive limit

SOILS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655
Licensed from GEOSOLVE	Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW_remedial2_SLS	
12 Platt's Lane, London NW3 7NR	Date: 2-12-2016
Please modify / add	Checked :
Units	kN,m

SOILS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49	Job No. 15655
Licensed from GEOSOLVE	Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW_remedial2_SLS	
12 Platt's Lane, London NW3 7NR	Date: 2-12-2016
Please modify / add	Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe Toe elev. for
				elev. = -3.60 FoS = 1.000
Stade	G	T	Strut	Factor Moment Toe Wall
No	∆at	Deca	Flor	of orgilib clow Donotr
NO.	ACL.	Pass.	Elev.	Of equilib. elev. Penetr
				Salety at elevation
1	0.00	0.00	Cant.	Conditions not suitable for FoS calc.
2	0.00	0.00		No analysis at this stage
3	0.00	0.00		No analysis at this stage
4	0.00	-1.30		More than one strut
5	0.00	-1.30		More than one strut
6	0.00	-1.30		More than one strut
7	0.00	-1.80		More than one strut
8	0.00	-1.80		More than one strut
9	0.00	-1.80		More than one strut
10	0.00	-1.80		No analysis at this stage
11	0.00	-2.80		More than one strut
12	0.00	-2.80		More than one strut
13	0.00	-2.80		No analysis at this stage
14	0.00	-3.40		More than one strut
15	0.00	-3.20		More than one strut
16	0.00	-3.20		More than one strut
17	0.00	-3.20		More than one strut
18	0.00	-3.20	-3.40	Conditions not suitable for FoS calc.

SOILS LIMITED		Sheet No.
Program: WALLAP Version 6.05 Revision A46.B59.R49		Job No. 15655
Licensed from GEOSOLVE		Made by : DVT
Data filename/Run ID: 15655_Rev1.05_GW_remedial2_SLS		
12 Platt's Lane, London NW3 7NR		Date: 2-12-2016
Please modify / add		Checked :
	Units:	kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 2400.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 11.30 from wall

Passive side 11.30 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	Y	Displa	acement		Bending	moment			Shear	force	
no.	coord			Calcu	lated	Facto	ored	Calcul	ated	Fact	ored
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN	.m/m	kN	.m/m	kN/m	kN/m	kN/m	kN/m
1	0.00	0.002	-0.000	0	-0	0	-0	0	0	0	0
2	-0.20	0.002	-0.000	0	0	0	0	59	-10	80	-14
3	-0.40	0.002	-0.000	12	-2	16	-3	60	-10	81	-13
4	-0.60	0.002	-0.000	24	-4	32	-5	61	-9	82	-12
5	-0.80	0.002	0.000	36	-5	49	-7	62	-8	84	-10
б	-1.00	0.002	0.000	49	-7	66	-9	63	-6	86	-8
7	-1.20	0.002	0.000	62	-8	83	-11	65	-46	88	-61
8	-1.30	0.002	0.000	57	-8	77	-11	4	-44	6	-60
9	-1.45	0.002	0.000	51	-9	69	-12	б	-43	8	-58
10	-1.60	0.002	0.000	46	-9	62	-12	7	-41	10	-55
11	-1.80	0.002	0.000	39	-9	53	-12	9	-38	13	-51
12	-2.00	0.001	0.000	33	-8	45	-10	12	-35	16	-47
13	-2.15	0.001	0.000	29	-7	39	-9	14	-32	19	-43
14	-2.30	0.001	0.000	26	-5	35	-7	17	-37	23	-49
15	-2.45	0.001	0.000	20	-3	27	-4	20	-33	27	-45
16	-2.60	0.001	0.000	18	-1	24	-1	23	-30	31	-40
17	-2.80	0.001	0.000	23	0	31	0	28	-25	38	-33
18	-3.00	0.001	0.000	29	0	39	0	34	-19	46	-26
19	-3.20	0.001	0.000	36	0	49	0	40	-13	54	-17
20	-3.40	0.001	0.000	1	0	1	0	0	-174	0	-235
21	-3.60	0.001	0.000	0	- 0	0	-0	0	0	0	0

Run ID. 15655_Rev1.05_GW_remedial2_SLS	Sheet No.
12 Platt's Lane, London NW3 7NR	Date: 2-12-2016
Please modify / add	Checked :

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Maximum and minimum bending moment and shear force at each stage

Stage			Bending	g moment					Shear	force -	
no.		Calc	ulated		Facto	ored		Calc	ulated		Factored
	max.	elev.	min.	elev.	max.	min.	max.	elev.	min.	elev.	max.
min.											
	kN.m/m	ı	kN.m/m		kN.	.m/m	kN/m		kN/m		kN/m
kN/m											
1	0	-3.00	- 0	-2.15	0	-0	0	-0.20	0	0.00	0
0											
2	No ca	lculati	on at t	his stag	je						
3	No ca	lculati	on at t	his stag	je						
4	38	-1.20	- 0	-3.60	51	-0	42	-1.20	-31	-1.20	56
-42											
5	38	-1.20	-0	-3.60	51	-0	42	-1.20	-31	-1.20	56
-42											
6	38	-1.20	-0	-3.60	51	-0	42	-1.20	-31	-1.20	56
-42											
7	51	-1.20	-0	-3.60	68	-0	54	-1.20	-40	-1.20	74
-54											
8	59	-1.20	-0	-3.60	79	-0	62	-1.20	-44	-1.20	84
-59											
9	59	-1.20	-0	-3.60	79	-0	62	-1.20	-44	-1.20	84
-59											
10	No ca	lculati	on at t	his stag	je						
11	60	-1.20	- 0	-3.60	81	-0	64	-1.20	-39	-1.20	87
-53											
12	60	-1.20	- 0	-3.60	81	-0	64	-1.20	-39	-1.20	87
-53											
13	No ca	lculati	on at t	his stag	je						
14	60	-1.20	- 0	-3.60	81	-0	64	-1.20	-39	-1.20	87
-53											
15	60	-1.20	- 0	-3.60	81	-0	64	-1.20	-39	-1.20	87
-53											
16	62	-1.20	-0	-3.60	83	-0	65	-1.20	-46	-1.20	88
-61											
17	15	-3.20	-9	-1.60	20	-12	35	-3.20	-67	-3.40	47
-90											
18	36	-3.20	- 0	-3.60	49	-0	40	-3.20	-174	-3.40	54
-235											

Maximum and minimum displacement at each stage

			_		-
Stage		Displa	cement		Stage description
no.	maximum	elev.	minimun	n elev.	
	m		m		
1	0.000	-3.60	-0.000	0.00	Excav. to elev. 0.00 on PASSIVE side
2	No calc	ulation	at this	stage	Install strut no.1 at elev0.20
3	No calc	ulation	at this	stage	Install strut no.2 at elev1.20
4	0.001	-3.60	-0.000	0.00	Excav. to elev1.30 on PASSIVE side
5	0.001	-3.60	-0.000	0.00	Apply water pressure profile no.1
6	0.001	-3.60	-0.000	0.00	Excav. to elev1.30 on PASSIVE side
7	0.001	-3.60	-0.000	0.00	Excav. to elev1.80 on PASSIVE side
8	0.001	-3.60	-0.000	0.00	Apply water pressure profile no.3
9	0.001	-3.60	-0.000	0.00	Excav. to elev1.80 on PASSIVE side
10	No calc	ulation	at this	stage	Install strut no.3 at elev2.30
11	0.001	-3.60	-0.000	0.00	Excav. to elev2.80 on PASSIVE side

12	0.001	-3.60	-0.000	0.00	Excav. to elev2.80 on PASSIVE side
13	No calc	ulation	at this	stage	Install strut no.4 at elev3.40
14	0.001	-3.60	-0.000	0.00	Excav. to elev3.60 on PASSIVE side
15	0.001	-3.60	-0.000	0.00	Fill to elev3.20 on PASSIVE side
16	0.001	-3.60	-0.000	0.00	Remove strut no.3 at elev2.30
17	0.001	-3.60	-0.000	0.00	Remove strut no.2 at elev1.20
18	0.002	0.00	0.000	0.00	Remove strut no.1 at elev0.20

Run ID. 15655_Rev1.05_GW_remedial2_SLS	Sheet No.
12 Platt's Lane, London NW3 7NR	Date: 2-12-2016
Please modify / add	Checked :

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Strut forces at each stage (horizontal components)

S	trut no.	1	5	strut no.	. 2	S	trut no.	. 3
at	elevC	0.20	at	elev1	.20	at	elev2	2.30
Calcu	lated	Factored	Calcu	lated	Factored	Calcu	lated	Factored
kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per
m run	strut	strut	m run	strut	strut	m run	strut	strut
-35	-35	-48	73	73	99			
-35	-35	-48	73	73	99			
-35	-35	-48	73	73	99			
-48	-48	-65	94	94	127			
-56	-56	-75	106	106	143			
-56	-56	-75	106	106	143			
-58	-58	-78	103	103	139	14	14	19
-58	-58	-78	103	103	139	14	14	19
-58	-58	-78	103	103	139	14	14	19
-58	-58	-78	103	103	139	14	14	19
-59	-59	-79	111	111	150			
11	11	14						
	S at Calcu kN per m run -35 -35 -35 -48 -56 -56 -58 -58 -58 -58 -58 -58 -58 -58 -59 11	Strut no. at elev0 Calculated kN per kN per m run strut -35 -35 -35 -35 -35 -35 -48 -48 -56 -56 -56 -56 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -59 -59 11 11	Strut no. 1 at elev0.20 Calculated Factored kN per kN per kN per m run strut strut -35 -35 -48 -35 -35 -48 -35 -35 -48 -48 -48 -65 -56 -56 -75 -56 -56 -75 -58 -58 -78 -58 -58 -78 -58 -58 -78 -58 -58 -78 -58 -58 -78 -59 -59 -79 11 11 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Strut no. 1strut no.at elev0.20at elev1CalculatedFactoredCalculatedkN perkN perkN perkN perm runstrutstrutm run-35-35-4873-35-35-4873-35-35-4873-35-35-4873-35-35-4873-35-35-4873-35-35-4873-35-35-4873-48-48-6594-56-56-75106-56-56-75106-58-58-78103-58-58-78103-58-58-78103-59-59-79111111114	Strut no. 1 at elev0.20 Strut no. 2 at elev1.20CalculatedFactored kN perCalculatedFactored kN perCalculatedFactored kN perm runstrutstrutm runstrutm runstrut-35-35-48737399-35-35-48737399-35-35-48737399-35-35-48737399-48-48-659494127-56-56-75106106143-56-56-75106106143-58-58-78103103139-58-58-78103103139-58-58-78103103139-58-58-78103103139-59-59-79111111150111114	Strut no. 1 Strut no. 2 Strut no. 2 Strut no. 2 at elev0.20 at elev1.20 at Calculated Factored Calculated Factored Calculated Calculated Factored kN per m run strut m run strut m run strut -35 -35 -48 73 73 99 -35 -35 -48 73 73 99 -35 -35 -48 73 73 99 -35 -35 -48 73 73 99 -56 -56 -75 106 106 143 -56 -56 -75 106 106 143 -58 -58 -78 103 103 139 14 -58 -58 -78 103 103 139 14 -58 -58 -78 103 103 139 14 -58 -58 -78 103 103 139 14 -59	Strut no. 1 at elev0.20 Strut no. 2 at elev1.20 Strut no. at elev2 Calculated Factored kN per kN per kN per m run strut strut Calculated Factored kN per kN per kN per kN per m run strut strut Calculated kN per kN per kN per m run strut strut Calculated kN per kN per m run strut strut m run strut strut

Stage	S	trut no.	4					
no.	at elev3.40							
	Calcu	Calculated Factored						
	kN per	kN per	kN per					
	m run	strut	strut					
14	1	1	2					
15	1	1	1					
16	-3	-3	-4					
17	-60	-60	-81					
18	-167	-167	-225					

SOILS LIMITED Program: WALLAP Version 6.05 Revision A46.B59.R49 Licensed from GEOSOLVE	Sheet No. Job No. 15655 Made by : DVT
<pre>Data filename/Run ID: 15655_Rev1.05_GW_remedia12_SLS 12 Platt's Lane, London NW3 7NR Please modify / add</pre>	Date: 2-12-2016 Checked :
Units	s: kN,m

Appendix J Tree Survey Report

Pre-development Arboricultural Survey and Report

Land at 12 Platts Lane, Hampstead London NW3 7NR

A report to: Orly Weinberger, 12 Platts lane NW3 7NR

Date: 9th June 2016

Report No: WAS42/2016 REV1

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk WWW.wassells.co.uk

Table of Contents

Report Verification	4
Disclaimer	4
Validity of Data	4
Introduction and Scope of Report	5
Abbreviations:	5
Arboricultural Impact Assessment	6
Proximity of Proposed Development to existing Trees	6
Tree Protection Measures (Provisional)	7
Excavation within RPA of Retained Trees	7
Tree Protection Barriers & Construction Exclusion Zone	7
Ground Protection of Existing Surfaces within Root Protection Area (RPA) of Retained Trees	7
Access Facilitation Pruning & Tree Works	7
Site Access and Construction Working Area (CWA)	7
Site Storage and Accommodation	7
Installation of Services	8
Arboricultural Supervision (AS)	8
Conclusion	8
Tree Grading Categories	9
Trees categorized within this report:	9
References	11
Declaration	11
Addendum 1 – Tree Protection	12
Table 1 -Tree protection measurements	12
Protecting Root Zone of Trees (BS 5837:2012 section 6.2 Figs. 2 & 3):	13
The Root Protection Area (RPA)	13
Key Points	13
Excavation within Root Protection Area of trees	13
Site Hoarding	14
Ground Protection System Specification:	14
Addendum 2 – Tree Works	15
Schedule of Tree Works	15

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk WWW.wassells.co.uk

Addendum 3 - Schedule of Tree Survey Information – BS5837:2012 section 4.4	
TREE SURVEY KEY:	17
Addendum 4 – Tree Protection Barriers and Tree Care Flow Chart	19
Addendum 5 – Plans and Picture Gallery	23

Report Verification

This study has been undertaken in accordance with British Standard 5837:2012 "Trees in relation to design, demolition and construction - Recommendations".

Disclaimer

The contents of this report are the responsibility of Wassells Arboricultural Services Ltd. It should be noted that, whilst every effort is made to meet the client's brief, no site investigation can ensure complete assessment or prediction of the natural environment.

Wassells Arboricultural Services Ltd accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared.

Validity of Data

The findings of this study are valid for a period of 12 months from the date of survey. If works have not commenced by this date, an updated site visit should be carried out by a suitably qualified and experienced arboriculturist to assess any changes to the trees and groups on site and to inform a review of the conclusions and recommendations made.

It should be noted that trees are dynamic living organisms that are subject to natural changes as they age or are influenced by changes in their environment. As such following any significant meteorological event or changes in the growing environment of the trees they should be reassessed by a suitably qualified and experienced arboriculturist.

Introduction and Scope of Report

This document has been produced to provide a detailed survey of trees that could be affected by the proposed development and that are within, surrounding and nearby to this reports site demise.

The scope of this report follows the recommendations and guidance described within **BS 5837: 2012 Trees in Relation to Design, Demolition and Construction – Recommendations** which sets out the principles and procedures to be applied to achieve a harmonious and sustainable relationship between trees and structures.

The report will assess the quality, amenity and landscape value of all surveyed trees as described by the tree category system within BS 5837 (see section below).

The protection of all trees to be retained and where they are likely to be affected by the proposed development construction activities are described as provisional tree protection measures for information purposes only and shall require a site specific AMS once final plan are agreed.

The report will also indicate, where necessary, the likely impact the proposals may have on those trees in the future.

The report will also recommend any required tree works to enable access and also to mitigate potential damage from construction activity and for the future well being of the trees concerned.

This is intended to support the planning application for development of this site.

The tree survey for the site can be found in Addendum 3 below

Abbreviations:

RPA = root protection area

- CEZ = construction exclusion zone
- CWA = construction working area (including materials storage)
- AMS = arboricultural method statement

Arboricultural Impact Assessment

Proximity of Proposed Development to existing Trees

Ref: Addendum 1 - Table 1, Addendum 3

All trees in or near the above site have been surveyed and that information is shown in addendum 3 below.

The proposed development of this site involves the construction of a new basement that extends into a sunken patio at the rear of the property.

There is a good massing of trees along the rear boundary of the site, which act as a good local amenity and screening for the school and playground to the rear of the garden. There is a large and good specimen Ash tree in the eastern rear corner of the site that is a dominant tree within the local area.

None of these trees comprising of T1 to T7 shall be affected by the proposed development.

Tree protection barrier should be erected across the rear garden at 2 metres behind the proposed rear of the sunken patio to protect the trees from construction activity and storage of waste/ materials.

At the front of the property there is a reasonable quality False Acacia T8 growing right in the northern corner within a raised bed. This tree has pushed out the front boundary wall due to proximity and is close to the adjoining property number 14. Some builder's rubble has been stacked around the base of this tree and should be removed ASAP to prevent damage to the stem of the tree.

It is proposed to retain this tree but shall require future pruning for encroachment to the next door property. The proposed basement light well to the front of the property is unlikely to impact the RPA of this tree.

Tree protection barrier for this tree shall be required to prevent any construction activity damage.

Tree Protection Measures (Provisional)

Ref: Addendum 1 & 2

** These measures shall be seen as provisional for planning purposes and subject to a detailed follow up AMS submission as part of a construction plan once proposals are agreed and to conform to any specific planning conditions made **

Excavation within RPA of Retained Trees

Ref: Addendum 1

* Please see addendum 1 section on Excavation within RPA of retained trees.

None for T1 to T7

Potential for T8 but unlikely to be significant – AS required when excavating the front basement lightwell

Tree Protection Barriers & Construction Exclusion Zone

*Please see specification for tree protection barriers shown below

Trees T1 to T7 shall be protected as shown in tree survey plan below and using barrier as per figure 3 in addendum 4 below.

Tree T8 shall be protected using barrier as per figure 3 in addendum 4 below and constructed as 3 metre square around the tree on house side.

Ground Protection of Existing Surfaces within Root Protection Area (RPA) of Retained Trees

Ref: Addendum 1

* Please see addendum 1 section on Ground Protection System

Tree T8 to be protected using existing hard paving during construction phase

Access Facilitation Pruning & Tree Works

Ref: Addendum 2

Recommended tree works are shown in the end column of addendum 3 below

Site Access and Construction Working Area (CWA)

CWA to be outside of tree barriers and CEZ

Site Storage and Accommodation

Not within the RPA of retained trees.

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk WWW.Wassells.co.uk

Installation of Services

Arrangements for this element of the development of the site are unknown as at time of writing this report but are likely to remain as existing.

Changes to the service routes will be carefully considered using the AS below to advise on protection of nearby trees prior to commencement on site.

Arboricultural Supervision (AS)

AS shall be required during work within and adjacent to the RPA of retained trees. It must be undertaken at regular intervals with a written record of the meetings maintained with suitable photographic record in support.

The AS must include a pre-construction commencement site visit, to be arranged by the Site Manager under instruction from Architects, and thereafter at specific events that affect the retained trees on site to enable sign-off by the AS. These are typically as follows:

- 1. Erection of tree protection fencing
- 2. Installation of ground protection to retained trees whose RPA are effected by the CWA
- 3. Start of Excavation/piling of foundations within the RPA of retained trees
- 4. Tree pruning requirements to prevent crown damage from construction activity
- 5. Start of Excavation/installation of paths, roads and car parking within RPA of retained trees
- 6. Installation of underground services within the RPA of retained trees
- 7. Tree condition survey on completion of construction work

Conclusion

Provided the recommendations shown above and the methodology for protection of any retained trees are followed, there will not be an effect on the current or future condition of those trees that are retained as part of the proposed scheme.

Tree Grading Categories

Ref: Grading Category as per BS 5837:2012 Section 4.5 Table 1 & Table 2 – Tree quality assessment chart. Tree Survey Schedule in Addendum3 below for description of trees categorized

The grading categories are based on the following criteria:

A= those trees of high quality and value suitable for retention for longer than 10years and worthy of being a material constraint to development

B= those trees of moderate quality and value suitable for retention for longer than 10years and worthy of being a material constraint to development

C= those trees of low quality and not worthy of being a material constraint to development

U=trees of such a condition that they cannot realistically be retained as living trees in the context of the current land use

NG = not graded. Those trees not considered to be in any of the above categories

Categories A, B and C have further sub-categories (not qualified in BS) with regards to the

reasons for tree retention as follows:

- 1: Mainly arboricultural qualities.
- 2: Mainly landscape qualities.
- 3: Mainly cultural values, including conservation.

Trees categorized within this report:

- 1 Category A trees = T1
- 2 Category B trees = T8
- 3 Category C trees = T3, T4 and T6
- 4 Category U trees = T2, T5 and T7
- 5 NG = none

Age Categories and Distribution

Those trees assessed as being young (Y) in age can generally be considered to have significant growth potential. Whilst these specimens are not likely to make a substantial contribution to the landscape character of the site at present they will, if retained, provide succession for the eventual removal of mature or over- mature trees as a result of declining physiological or structural condition.

Semi mature trees (SM) will generally make a significant contribution to the landscape character and appearance of the site and their retention will provide more immediate succession. These trees will also have significant growth potential.

Mature trees (M) are not considered to have significant future growth potential and have generally reached their maximum expected size for the location. These trees will generally make the highest contribution to the landscape contribution of the site however a tree stock over dominated by mature trees will require careful management to ensure that continuation of canopy cover can be achieved.

Over-mature trees (OM) do not have the potential to increase in size and may in fact reduce in size as their crowns begin to break up. These trees will often make a significant contribution to the landscape character of the site and are likely to have ecological value. However the retention of these trees within new development must be carefully planned as they are approaching the end of their useful life expectancy and they will often have structural defects. Where over-mature trees are to be retained in new development it is essential that access is available for their eventual removal.

Veteran trees (V) are those that show features of biological, cultural or aesthetic value that are characteristic of an individual surviving beyond the typical age range for the species. These trees have negligible potential to increase in size. Veteran trees are usually of a high ecological value and they will require sensitive management where they are to be retained in new development. As such it is again essential that they are located in areas where access is available to undertake management operations and where there is a reduced risk of harm occurring from failure of the trees.

References

- 1. BS 5837:2012 Trees in Relation to Design, Demolition and Construction Recommendations
- 2. BS3998:2010 Tree Work Recommendations
- 3. NJUG Volume 4 Issue2 2007 Guidelines for the planning, installation and maintenance of utility apparatus in proximity to trees.
- 4. NHBC Standards Section 4.2 Building Near Trees
- 5. British Geological Survey London & the Thames Valley
- 6. Principles of Tree Hazard Assessment Lonsdale 2001
- 7. Diagnosis of Ill Health in Trees Stouts & Winter 2004
- 8. Tree Survey Plan at end of report
- 9. Existing and proposed plans XUL Architecture drawings 1610 suite

Declaration

This Tree Survey, Impact Assessment and provisional tree protection measures have been written and checked by Richard Wassell of Wassells Arboricultural Services Ltd. and are provided without prejudice as an objective and professional assessment of the trees described.

Signed: R.J.WASSELL Date: 09.06.MMXVI

Richard Wassell. Director

MCIHort MArborA NDArb (RFS) Kew Diploma NEBOSHlevel3

Addendum 1 – Tree Protection

Ref: BS 5837:2012 in Tables C.1 & D.1of annex C & D

Table 1 - Tree protection measurements

Tree Number As per tree survey plan & schedule	Stem Diameter @ 1.5 metres agl. Millimetres	Root Protection Area (RPA) - Radius *measured from centre of stem* Metres	Tree/Root Protection Area (RPA) Sq. Metres	Comment and potential affect of building proposal on the total RPA
T1	900	10.8	366	Not affected
T2	200	2.4	18	Proposed for removal
Т3	275	3.3	34	Not affected
T4	450	5.4	92	Not affected
T5				Dead
Т6	300	3.6	41	Not affected
Τ7	250	3	28	Proposed for removal
Т8	400	4.8	72	Not affected. AS required when excavating front light well

Protecting Root Zone of Trees (BS 5837:2012 section 6.2 Figs. 2 & 3):

The Root Protection Area (RPA)

This is the area surrounding a tree that is deemed to contain sufficient roots and rooting volume to maintain the trees viability in the future. The root system is typically concentrated in the uppermost 600 – 1200mm of the soil and is not necessarily symmetrical around the tree, being dependant on a number of factors such as water, nutrients, oxygen, soil penetrability and physical obstructions such as existing foundations or changes in level (terracing).

The RPA is a design layout tool that is deemed to be a minimum area around a tree where the protection of roots and soil structure are treated as a priority. This area is envisaged as and portrayed with a circle around each tree but where there appears to be restrictions to root growth the circle is reshaped to reflect more accurately the likely distribution of the rooting area of the tree concerned.

Key Points

- 1. AVOID building works within the RPA if at all possible but if not then carefully consider the following: where the RPA is likely to be severely affected because of site design constraints then felling and planting replacement(s) trees in a more suitable location on the site will need to be considered.
- 2. Where possible do not use strip foundations within the RPA, if absolutely necessary consider using a trenching saw or excavate by hand to avoid 'shatter damage' to the root system.
- 3. Consider using piling techniques for foundations @ maximum 350 mm diameter with ground beams on or above the surface of the root zone.
- 4. Unless unavoidable, do not exceed entering the root zone by more than one fifth of RPA radius.
- 5. Do not trench tangentially across the root zone for footings and services unless it cannot be avoided.
- 6. Consider 'no dig' techniques for services installation, with radial service lines being preferable to tangential across the root zone. Where this is undertaken then boring must be carried out below 600mm deep.
- 7. Any hard surfacing, paths and roads need to have the same considerations for the RPA and as in the above points. Where possible paths and hard surfacing (patios etc) need to be surface constructed (cellular) and semi-porous to allow water penetration and gaseous exchange into the root system of trees.

Excavation within Root Protection Area of trees

Where trees are to be retained then any proposed foundation, underground services work and hard surfacing such as roads/paths falling within the RPA of trees that are to be retained shall be kept as far away from tree stems as possible(SEE NOTE 1 ABOVE). Where any such works are necessary within the RPA there will be a requirement to dig carefully by hand and ensure any roots encountered of maximum 25mm in diameter shall be exposed and correctly pruned back by a competent Arborist. Where larger roots are encountered of above 25mm in diameter then advice from the Arboricultural Supervisor (AS) for the site must be sought prior to any work being undertaken.

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk www.wassells.co.uk Any roots exposed/ pruned back as part of the above operation shall NOT be left exposed to drying out. All roots exposed/pruned shall be either covered with damp Hessian sacking prior to backfill or backfilled/covered immediately with a suitable open and free draining compost/loam.

Site Hoarding

Site hoarding shall be no closer than 1.5 metres away from the stem of retained trees and consist of 20mm plywood sheets supported by minimum 100mm square posts and 100 x 50mm rails with posts at 2.5 metre centres.

Post holes for site hoarding that are required within the RPA of nearby trees shall be dug by hand and are to be a maximum of 300 x 300mm and 450mm deep

Ground Protection System Specification:

- Level area of RPA concerned by blinding with sharp sand at maximum depth of 50mm
- Lay geo-textile membrane such as 'Terram' to cover area concerned
- Cover geo-textile with maximum of 100mm MOT Type 1 sub-base
- Retain MOT type 1 with edge restraint such as 30 x 100mm edging board pegged every 2 metres to prevent migration of the sub-base

Schedule of Tree Works

- 1. All proposed tree removal and tree pruning works are described in the management recommendations of the tree survey in addendum 3
- 2. Tree work to be carried out to the following standards and guidelines:
 - BS 3998:2010 Recommendations for Tree Work
 - Tree pruning cuts will be carried out using the 'Natural Target Pruning' technique as defined by: BS 3998:2010 section 7.2.5 and Fig. 2 The Pruning of Trees, Shrubs and Conifers: George E. Brown & Tony Kirkham – 2nd edition revised & enlarged 2004 and Section 3.1.27 of The Arboricultural Association Specification for Tree Works June 2008.
 - Crown clean involves removal of dead, diseased & dying wood from tree crown, thinning of overcrowded crown, and removal of Ivy and all epicormic growth within crown including stem & basal epicormic growth.

Addendum 3 - Schedule of Tree Survey Information – BS5837:2012 section 4.4

SITE: 12 Platts Lane NW3 7NR

DATE: 26th May 2016

Tree Number	Species	Diameter Class mm	RPA radius metres	Height metres	Crown Spread metres	Crown height	Age Class	Grading Category	Estimated Life Expectancy	Structure	Physiology, Condition & other factors	Management recommendation
1	Common Ash	900	10.8	25	N= S= E= W=	L/M	Μ	A2	>30	G	A Good specimen with wide spreading canopy. Some deadwood	RETAIN CC
2	Elderberry	200	2.4	5		L	М	U		Р	Leaning towards the house and suppressed by T1	REMOVE
3	Norway Maple	275	3.3	12	N= S= E= W=	Μ	SM	C2	>10	М	A Twin stem from 2 metres	RETAIN CC and remove Ivy
4	False Acacia	450	5.4	12	N= S= E= W=	Μ	Μ	C2	>10	М	A Ivy clad stem and leaning out over school playground to the rear	RETAIN CC and remove Ivy
5	Cherry							U		Р	Dead	REMOVE
6	Silver Birch	300	3.6	12	N= S= E= W=	Μ	Μ	C2	>10	М	A Ivy clad stem and lower crown	RETAIN CC and remove Ivy
7	Elderberry	250	3	6		L	М	U		Р	Twin stem from 1 metre	REMOVE
8	False Acacia	400	4.8	11	N= S= E= W=	М	Μ	B2	>20	M	A Growing in raised bed right in the corner of front boundary wall with next door. Wall has been pushed out over pavement and damaged. Crown v. close to No. 14 next door. Deadwood	RETAIN CC RC on No. 14 side by 2M and balance

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk WWW.Wassells.co.uk

TREE SURVEY KEY:

Tree Number and Species = number of tree on plan and Common Name as per reference book: A Field Guide to the Trees of Britain and Northern Europe by Alan Mitchell 1974 ISBN: 0 00 219213 6

Height = estimated height of tree from surrounding ground level +/- 3 metres

Diameter Class = diameter of main stem @ 1.5 metres above ground level

Crown Spread = maximum extent of branches measured radially from the base of the tree, trees with asymmetrical crowns are shown with distances in relation to compass points. N = north etc.

Crown Height = height of canopy and/or first major branch above ground level. Low (L) = below 3 metres | Medium (M) = 3 to 6 metres | High (H) = above 6 metres

Age Class = Young(Y): age less than 1/3rd life expectancy | Semi-mature(SM): 1/3rd to 2/3rd life expectancy | Mature (M): Over 2/3rd life expectancy | Over mature (OM): mature and in state of decline | Veteran (V): Surviving beyond typical age range for species

Grading Category: As per BS 5837:2012 Table 1 – Tree quality assessment, which refers to tree quality and landscape/amenity value; A=high, B=moderate, C=low, U = not suitable for retention, NG= not graded Estimated Life Expectancy = estimated useful and remaining contribution to the site in years

Structure = structural condition of the tree based on roots, trunk, and major stems/branches along with the presence of any structural defects and decay organisms. Categories are: Very Good (VG); Good (G); Moderate (M); Poor (P); Hazardous (H)

Physiology/Condition = Overall health, condition and function of the tree in comparison to a 'normal' specimen of its species and age. Categories are: Above average (AA); Average (A); Declining (D)

Other factors = any other physical/environmental factors that could influence the tree now/in the future

Management Recommendations: N = no work required. CC = removal of dead, diseased & dying wood from tree crown, thinning of overcrowded crown, removal of Ivy from crown & stem and removal of all epicormic growth within crown including stem & basal epicormic growth on Lime trees.LC = lift crown. TC = thin crown. RC = reduce crown. P = pollard. SP = scaffold pollard. RE = remove epicormic and basal growth. FP = Formative prune F = fell to ground level. FG = fell and grind out stump. R = carry out replacement planting. AI = 3 yearly Arboricultural inspection

RPA radius = radius of typical root protection area, described as a circle and measured around centre of the tree

N/K = not known

= estimated data

NDG = Next door garden

g.l. = ground level

Alan Mitchell System = Estimate of tree age based on open grown tree with full crown. Age in years = Girth (circumference) in centimetres measured at 1.5 metres above ground level and divided by 2.5 i.e. Tree of girth 250 cm = 100 years old

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk www.wassells.co.uk

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk WWW.Wassells.co.uk

Addendum 4 - Tree Protection Barriers and Tree Care Flow Chart

20 • © The British Standards Institution 2012

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk www.wassells.co.uk

BRITISH STANDARD

BS 5837:2012

BS 5837:2012

BRITISH STANDARD

Figure 1 The design and construction process and tree care

2 • © The British Standards Institution 2012

Office: 15 Norcombe House, Wedmore St., Islington N19 4RD Tel: 07860 445380 Email: office@wassells.co.uk www.wassells.co.uk

Addendum 5 – Plans and Picture Gallery

*Proposed and existing site plans

*Tree survey details

*Tree protection measures

The manhous cover The manhous cover The Remained This manhous cover The Remained This pump curve be Removed This pump curve be Removed	ENERTING FRONT DOOR TO THE PROPERTY BE REPLACED WITH NEW SOLD TWEER DOOR UIGHT ABOVE TO BE REPLACED WITH TIMBER SASH WINDOWS Project 12 Platts Lane NW3 7NR EXISTING WINDOWS TO BE REPLACED WITH TIMBER SASH WINDOWS Title PROPOSED Ground Floor Plan	REVISIONS No Date Description 00 25/05/16 INFORMAT 01 26/05/16 INFORMAT 02 27/05/16 INFORMAT 03 01/06/16 INFORMAT 03 01/06/16 INFORMAT 04 03 01/06/16 05 INFORMAT	PLEASE NOTE: 1. ALL DIMENSIONS TO BE CHECKED ON FABRICATION. 2. CONTRACTOR TO REFER TO ENGINE BEFORE PROCEEDING WITH WORKS. 3. ALL DRAWINGS AND DESIGNS ARE RIGHT (INTELECTUAL PROPERTY), AN DISTRIBUTED, COPED OR ISSUE WITH PERMISSION OF XUL ARCHITECTURE ALL DESION CONCEPTS ARE THE SOL XUL ARCHITECTURE NO NO ADAPTA REPRODUCTIONS OR COPES MAY BE UTHORITY, OR FOR THE BETTER CAT THIS MANHOLE TO BE REAVINED OR RECOMMENDATION BY AUTHORITY, OR FOR THE BETTER CAT ACHITECTURE NO NO ADAPTA ARCHITECTURE ADAPOVAL. 1. ALL DRAWINGS TO BE APPROVAL. 2. ALL DRAWINGS TO BE APPROVAL. 3. ALL FINISHES TO XUL ARCHITECTURE 8. ALL DRAWINGS TO BE APPROVAL ARCHITECTURE BEFORE CONSTRUCT ADDITIONAL NOTES: ADDITIONAL NOTES:	ARCHITECT Ground Floor 33 Belsize London NW Office: +44 (0) 2074 s.sandler@xularchitectur
A3 PA-02 00 Project Number 1610	ATE CLIENT	te Description Issue For 16 INFORMATION 5/16 INFORMATION 5/16 INFORMATION 5/16 INFORMATION	E NOTE: SIONS TO BE CHECKED ON SITE BEFOR ION. ROCEEDING WITH WORKS. ROCEEDING WITH WORKS. ROCEEDING WITH WORKS. ROCEEDING WITH WORKS. ROCEPTS ARE THE SULE PROPERTY TECTURE AND NO ADAPTATIONS. TO COVED ARCHITECTURE. N CONCEPTS ARE SUBJECT TO AVY VARIATI OR RECOMMENDATION BY MANY STATUS. TO RE PROVIDED BY CONTRACTOR FOR TURE APPROVAL. ISS TO BL APCHITECTURE SATISFACTIN NGS AND SATURATION. ON ALL NOTES SATE SATISFACTION. ON ALL NOTES: ONAL NOTES:	CHITECTURE bund Floor Office Belsize Lane n d o n N W 3 5 AS e: +44 (0) 207 431 9014 andler@xularchitecture.co.uk v.xularchitecture.co.uk
		л с н н н н н н н н н н н н н н н н н н	OUT OFRY OR N.	

		\mathbf{X}			
		A R C	HITE	CTUF	2 E
		33	Belsiz	e Lar	ne
		Lon	don	NW354	A S
		Office:	+44 (0)	207 431 90 [.]	14
		s.sanc www.xu	ler@xulare larchite	chitecture.co. cture.co.u	uk i k
	PL		IOTE:		
	1. ALL FA 2. CC BE 3. AL RIG PE 4. AL XUI RE WR 5. TH RE AU THI 6. SA AR 7. AL 8. AL 8. AL	L DIMENSIONS BRICATION. INTRACTOR T FORE PROCE L DRAWINGS J GHT (INTELEC STRIBUTED, C RMISSION OF L DESIGN CO'L L ARCHITECTION RODUCTION RODUCTION RODUCTION RODUCTION L DRAWINGS CHITECTURE L DINISHES TO E WORKS.	CONTRACTOR OF CONTRACTOR OF CONTRACTOR CONT	KED ON SITE BI SIGINEER'S DR JORKS. ARE COVERED ITY), AND MAY UE WITHOUT W CTURE. HE SOLE PROF DAPTATIONS, VAY BE MADE U ARCHITECTUR CT TO ANY VAI TER CARRYING CONTRACTOF CONTRACTOF CONTRACTOF CONTRACTOF CONTRACTOF CONTRACTOF CONTRACTOF CONTRACTOR C	EFORE AWINGS BY DESIGN NOT BE RITTEN PERTY OF WITHOUT E. RIATION ATUTORY OUT OF & FOR XUL ACTION.
			AL NO	IES:	
	R No	EVISIOI Date	VS Descrij	otion	issue By
	00 01 02 03	25/05/16 27/05/16 03/06/16 07/06/16	INFORI INFORI INFORI INFORI	-or MATION MATION MATION MATION	JH JH JH AM
D OPENING R OPENING IING TO BE EXISTING					
	Cli Pl	^{ent} RIVATE		ЛТ	
	Pro 12 NV	oject Platt's Lar V3 7NR	1e		
	⊤itl E> Gr	e (ISTING round Flo	oor Plan		
	Sca 1/1	le 00@A3	Dwg. No. FX-01		Rev.
	Date 07/	e 06/16			
	Dra JH	wn	Project Nu 1610	Imber	
	Che CC	cked			

 EXISTING WINDOW REMOVED AND OPENING LOWERED TO FORM A NEW DOOR OPENING EXISTING DOOR REMOVED, OPENING TO BE INFILLED WITH BRICK TO MATCH EXISTING

Ash tree T1 from rear of house

View of rear of garden trees from house

False Acacia T8 with front of number 12 on RHS

Appendix K Programme of Works

Aleck Associates Ltd, 707 High Road London N12 0BT		Job no. 2956																																							
Site: 12 Platts Lane London NW3 7NR		By: SIA				Date:	1 Jul	y 201	6.																																
PROVISIONAL PROJECT PROGRAMME		Vers	Version: 0.1																																						
		weeks	1	2	3	4 5	5 6	7	8	9 10	11 3	12 13	3 14	15 1	.6 17	/ 18	19	20 2	1 2	2 23	3 24	25	26 2	7 28	29	30 31	1 32	33	34 3	5 36	5 37	38 3	9 40	41	42 43	3 44	45	46 4	47 4	8 49	9 50
1	Set up site																																								
2	Gantry		erec	t													9	strike																							
3	Strip out ground floor																																								
4	First floor beams																																								
5	Excavation phase 1	400m3																																							
6	Sequential walls 1	50 lin m																																							
7	Excavation phase 2	900 m3																																							
8	Sequential walls 2	50 lin m + slab																																							
9	Complete slab																																								
10	Piled walls lining	20 lin m																																							
11	Ground floor																																								
12	Waterproofing																																								
13	Superstructure works	structural																																							
14	Finishing and decoration	basement																																							
15	do.	ground																																							
16	do.	first																																							
17	do.	second																																							
18	do.	exterior																																							
19	do.	external works																																							
20	Snag, c and h/o																																								
21																																									
22																																									
23																																									
24																																									
25																																									

Appendix L Non-Technical Summary of the BIA

The construction of basements in Central London becomes more frequent and the London Borough of Camden developed a procedure for the authorisation of the construction based upon a series of stages for the estimation of the impact of the basement construction on the built environment.

A Basement Impact Assessment (BIA) must comprise five main stages:

- 1. Screening;
- 2. Scoping;
- 3. Site Investigation and study;
- 4. Impact Assessment;
- 5. Review and decision making.

The screening stage was based on a series of queries regarding issues as groundwater flow, land stability and surface flow and flooding and related flowcharts allowing to clarify if the development of a full BIA was needed.

The scoping stage was intended to evaluate the potential impact of the proposed scheme on the built environment in the sites surroundings.

The site investigation and study was intended to determine an understanding of the site and of its immediate surroundings. The understanding should also be based on the results of the screening and scoping stages, but in general comprises a desk study, site walkover, field investigation (including intrusive investigation), monitoring, reporting and interpretation. The site investigation must be able to determine the ground model to be used for further stages of the development of the site.

The basement impact assessment (BIA) was carried out as the proposed development introduced a considerable increase in the differential depth with regards to the foundations of the neighbouring buildings.

The excavation and construction of the basement could potentially induce the development of damages on the neighbouring building due to the development of ground movements remote from the development site.

The geotechnical parameters of the soils involved in the development were evaluated on the basis of the results of the site investigation and on published data.

The geometry and the loads of the proposed development were provided by the Client. The reduction in load at the formation level due to the removal of soils was calculated by applying the soil densities derived from the site investigation to the removed volume of soil derived from the geometry of the development. The excavation and erection of the basement refer to the Construction Method Statement prepared by the Structural Engineer and provided by the Client. The process introduces the development of both vertical and horizontal movements on site and in the immediate surroundings.

The excavation of the basement will unload the soils at the formation level. The presence of overconsolidated clays implies the development of a certain degree of heave, which will happen in the short term (undrained conditions) and will undergo a further development in the long period.

As the construction proceeds, however, the application of the construction loads will interact with the heave developing in the long term. They will therefore take place on the same time scale and the development of long term heave remains theoretical because of the sequential procedures adopted for the excavation and erection of the underpinning in small bays.

The excavation to the formation level must not be carried out in a single operation, but must be staged to allow the retention of adequate passive resistance of the soils acting on the face of the excavation before the application of temporary propping and the proper construction of the walls.

The excavation of two adjacent bays or in close proximity on the same side of the footprint or on the opposite side of the excavation must not be permitted, as this could destabilise the system and increase the risk for damage to the building, adjacent buildings and of the safety of workers.

The evaluation of heave and/or settlements in the long and in the short term was carried out using the commercial software PDISP. In order to evaluate the vertical deflection induced by excavation and erection on the neighbouring buildings, the vertical movements were calculated along lines linking the outer face of the underpinning with the neighbouring buildings within the zone of influence of the development.

The maximum vertical deflection under the foundations of the neighbouring building must be evaluated in accordance with CIRIA C580. For buildings with adjoining foundations, in general the deflection will be calculated on the movements profile identified from the outer face of the underpinning to the next closest bearing structure. In the case of detached buildings within the zone of influence, the deflection will be evaluated considering the movements profile under the neighbouring buildings themselves.

The software Wallap was used to evaluate the horizontal movements induced on the underpinning and, provoking the formation of further vertical movements due to soil relaxation. The process for the evaluation of the horizontal deflection on adjoining buildings considers the stages needed for the construction sequence. The horizontal deflection on buildings at a distance from the proposed development was undertaken using the correlations from CIRIA C580.

The horizontal strain and the vertical deflection ratio were then calculated according to the procedures reported in CIRIA C580 and combined with reference to the method proposed by Burland (2001) to allow for the evaluation of the expected damage induced by the development on the neighbouring buildings.

The construction of basements is generally acceptable when a maximum category damage 2 (slight) was achieved. However, when the expected damage exceeds a category damage 1 (very slight), mitigation measures must be applied in order to reduce this to a potential category damage 0 (negligible) to preserve the existing buildings, generally identified as brittle and extremely sensitive to ground movements.

When suitable mitigation measures are applied, a further assessment must be carried out to confirm the improvement.

It must be pointed out that the procedure is generally conservative and the real movements and damages induced by the development are typically lower than the calculated values.

Soils Limited Geotechnical & Environmental Consultants

Newton House Cross Road, Tadworth Surrey KT20 5SR

T 01737 814221W soilslimited.co.uk