Project name:

81 AVENUE ROAD, LONDON, NWS 6JD

elliottwood

Project number:

Sheet:

Revision

2150623

NOVEMBER 2016

Engineer: SAM. Checked:

PRELIMINARY PILE SIZING LOADS. - ASSUME 400 & PILES @ 400 ctrs. PLES TO SIDE OF PROPERTY: | BUILDING HOADS: DEAD => 135 EN/m × 1.2 = 162 EN/m LIVE => 20 EN/m × 1.2 = 24 EN/m PEOESTEIANS: 1.5 KN/m2 x 2m x 0.4m x1.2 = 1.44 KN SOIL: 20RN/m3 x 2m x 0.4m x 1-2 x 1.5m = 29 KN > BUILDING LOADS: 162 EN/m × 0.4m ≈ 65 EN 24 EN/m× 0.4m ≈ 10EN . TOTAL PL = 1.44 + 29 + 65 + 10 = 106 EN Ps = 1/3 2h2 120 = 1/2 x 2012N/m3 x (5.5m)2 x0.5 x 1.2 = 18212N/m 1.0.5 182 EN/m x 04m = 73 EN Ps = 78 kN @ n = 2.75m. 10613 MOMENT (RNm, ULS)

Project		Job no.			
81	Avenue Road,	2150623			
Calcs for		Start page no./Revision			
	Preliminary		1		
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
SAm	29/11/2016				

RC COLUMN DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum January 2008 and the UK national annex

Tedds calculation version 1.2.14

10 no. 16 mm diameter longitudinal bars 8 mm diameter links Max link spacing 320 mm generally, 192 mm for

400 mm above and below slab/beam and at laps

Column geometry

Overall diameter h= 400 mm

Clear ht bet restr about y axis $l_y = 5500$ mm Clear ht bet restr about z axis $l_z = 5500$ mm

Stability in the z direction Unbraced Stability in the y direction Unbraced

Concrete details

Cylinder strength of concrete $f_{ck} = 28 \text{ MPa}$ Safety factor for concrete $\gamma_C = 1.50$

Coefficient α_{cc} $\alpha_{cc} = 0.85$ Maximum aggregate size $d_q = 20$ mm

Reinforcement details

Nominal cover to links $c_{nom} = 35 \text{ mm}$ Longitudinal bar diameter $\phi = 16 \text{ mm}$

Link diameter $\phi_V = 8 \text{ mm}$ Total no. of longitudinal bars N = 10

Area of longitudinal reinft $A_s = 2011 \text{ mm}^2$ Safety factor for reinforcement $\gamma_S = 1.15$

Modulus of elasticity of reinft E_s = 200000 MPa

Fire resistance details

Design axial load

Fire resistance period R = 60 min Exposure to fire More than one side

Ratio of fire design axial load to design resistance μ_{fi} = 0.70

 $N_{Ed} = 160.0 \text{ kN}$

Axial load and bending moments from frame analysis

Moment about y axis at top $M_{topy} = 0.0$ kNm Moment about y axis at btm $M_{btmy} = 80.0$ kNm Moment about z axis at btm $M_{btmz} = 80.0$ kNm Moment about z axis at btm $M_{btmz} = 80.0$ kNm

Column effective length factors

Eff length factor buck abt y axis $f_y = 1.80$

Eff length factor buck abt z axis $f_z = 1.80$

Check nominal cover for fire and bond requirements

Min cover to links for bond $c_{min,b} = 8 \text{ mm}$ Min axis distance for fire $a_{fi} = 40 \text{ mm}$

Allowance for deviations $\Delta c_{dev} = 10 \text{ mm}$ Min allowable nominal cover $c_{nom_min} = 24.0 \text{ mm}$

PASS - the nominal cover is greater than the minimum required

Project			Job no.		
81	Avenue Road,	2150623			
Calcs for		Start page no./Revision			
	Preliminary	2			
Calcs by SAm	Calcs date 29/11/2016	Checked by	Checked date	Approved by	Approved date

Column slenderness

Slend. ratio buckling abt y

 $\lambda_{y} = 99.0$

Slend. ratio buckling abt z

 $\lambda_z = 99.0$

Slend. limit about y

 $\lambda_{\text{limy}} = 47.4$

Slend. limit about z

 $\lambda_{\text{limz}} = 47.4$

Design bending moments

Design moment about y axis

 $M_{Edy} = 84.0 \text{ kNm}$

Design moment about z axis

 $M_{Edz} = 84.0 \text{ kNm}$

Resultant design bending moment for a circular column

Resultant design moment

 $M_{Ed} = 118.7 \text{ kNm}$

Moment of resistances

Mt of resistance about y axis

 $M_{Rdy} = 122.8 \text{ kNm}$

Mt of resistance about z axis

 $M_{Rdz} = 123.6 \text{ kNm}$

Minimum moment capacity with axial load N_{Ed}

Minimum moment capacity

 $M_{Rd} = 122.8 \text{ kNm}$

PASS - The moment capacity exceeds the resultant design bending moment