

# **Energy Statement**

# 36 Lancaster Grove

For Nicholas Taylor and Associates

November 2016

### XCO2 energy

w: www.xco2energy.com :: e: mail@xco2energy.com t: +44 (0) 20 7700 1000 :: f: +44 (0) 020 7700 1000 17-18 Hayward's Place :: Clerkenwell :: London :: EC1R 0EQ



### Contents

| Executive Summary                                           | .3  |
|-------------------------------------------------------------|-----|
| Introduction                                                | 6   |
| Demand Reduction (Be Lean)                                  | 8   |
| Heating and Cooling Infrastructure (Be Clean)               | .10 |
| Renewable Energy (Be Green)                                 | .12 |
| Conclusion                                                  | .14 |
| Appendix A - SAP outputs for the existing building baseline |     |
| Appendix B - SAP outputs for the 'Be Lean' stage            |     |

About us:

XCO2 Energy are a low-carbon consultancy working in the built environment. We are a multi-disciplinary company consisting of both architects and engineers, with specialists including CIBSE low carbon consultants, Code for Sustainable Homes, EcoHomes and BREEAM assessors and LEED accredited professionals.

|                   | lssue 01   | lssue 02 | lssue 03  | lssue 04   | lssue 05 |
|-------------------|------------|----------|-----------|------------|----------|
| Remarks           | Draft      |          |           |            |          |
| Prepared by       | DB         | DB/SP    | DB/SP     | DB/SP      |          |
| Checked by        | SP         | SP       | SP        | SP         |          |
| Authorised by     | RM         | RM       | RM        | RM         |          |
| Date              | 28/01/2016 | 6/5/2016 | 19/5/2016 | 03/11/2016 |          |
| Project reference | 8612       | 8612     | 8612      | 8612       |          |



### **Executive Summary**

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 36 Lancaster Grove, based on the information provided by the design team.

The site is located between Lancaster Grove. Lambolle Place and Eton Ave within the London Borough of Camden, just north of Primrose Hill. The proposed scheme comprise the change of use, refurbishment and extension of the Grade II\* Listed former Belsize Park Fire Station Building into 18 units of apartment accommodation. This includes 11 units which formed part of the approved application application reference 2016/0745/P (Camden and listed building consent 2016/1128/L), and 7 additional units in the reminder of the building at ground and first floor levels. For completeness, this report covers the energy assessment of all 18 units.

As the former Belsize Park Fire Station is a Listed Building located within the Belsize Park conservation area, all of the existing facades, roof, windows and floors will be retained and re-used as far as possible to maintain the character of the existing building.

In line with the 'GLA Guidance on preparing energy assessments' (April 2015) Sections 8.11-8.14, the existing building with it's current fabric and building services systems are used as the baseline condition for the scheme in this Energy Statement.

The methodology used to determine the CO<sub>2</sub> emissions is in accordance with the London Plan's three-step Energy Hierarchy (Policy 5.2) outlined below.

#### **1. Be Lean** - use less energy

The first step deals with the reduction in energy use, through the adoption of sustainable design and construction measures. In accordance with this strategy, this development will incorporate a range of energy efficiency measures including the provision of a new and highly efficiency communal space heating and hot water system, electrical rewiring to include provision of low energy lighting throughout the scheme, and insulation levels meeting Part L1B targets for the any new thermal elements. Insulation will also be provided between and below the rafters at the existing pitched roof. The improvements in the building systems and fabric have reduced regulated CO<sub>2</sub> emissions by 46.2% in comparison to the existing building, thus exceeding the requirements outlined by the Camden Council and London Plan 2015.

#### 2. Be Clean - supply energy efficiently

The second strategy takes into account the efficient supply of energy, by prioritising decentralised energy generation. The feasibility study showed that no district heating network currently exists within close proximity of the site. Due to the nature of the development, a CHP unit would not be an economically viable option. Hence, a high efficiency centralised gas boiler will be installed to provide space heating and hot water to all apartments.

#### 3. Be Green - use renewable energy

The third strategy covers the use of renewable technologies. The feasibility study analysed a number of renewable technologies for their suitability for the site. The analysis included a biomass heating system, ground-source heat pumps, air-source heat pumps, photovoltaic panels, solar thermal and wind turbines.

The analysis demonstrated that due to the conservation requirements of the existing Grade II listed building, it will not be feasible to install renewable technologies without considerable alterations to the former Belsize Park Fire Station.

In total, the development is expected to reduce regulated  $CO_2$  emissions by 46.2% when compared to the existing baseline building. This meets the London Plan  $CO_2$  reduction target of 35% set out for all major developments.





#### Conclusion

The graph below provides a summary of the regulated  $CO_2$  savings at each stage of the London Plan Energy Hierarchy. The table below and on the following page detail the regulated and unregulated emissions at each stage of the hierarchy.

It can be seen on the graph below that the development at 36 Lancaster Grove will achieve a regulated  $CO_2$  saving exceeding the required 35% beyond the existing baseline building.



### **36 Lancaster Grove Energy Hierarchy**

#### CO, Emissions Breakdown from each stage of the energy hierarchy

|                               | Carbon Dioxide Emissions (tonnes CO <sub>2</sub> per annum) |       |  |
|-------------------------------|-------------------------------------------------------------|-------|--|
|                               | Regulated                                                   | Total |  |
| Existing building baseline    | 141.2                                                       | 165.5 |  |
| After energy demand reduction | 76.0                                                        | 100.3 |  |
| After CHP                     | 76.0                                                        | 100.3 |  |
| After renewable technologies  | 76.0                                                        | 100.3 |  |





### $\mathrm{CO}_{_2}$ Savings Breakdown from each stage of the energy hierarchy

|                                      | Regulated Carbon Dioxide Savings |                 |  |
|--------------------------------------|----------------------------------|-----------------|--|
|                                      | Tonnes CO <sub>2</sub> / year    | % over baseline |  |
| Savings from energy demand reduction | 65.2                             | 46.2%           |  |
| Savings from CHP                     | 0.0                              | 0.0%            |  |
| Savings from renewable energy        | 0.0                              | 0.0%            |  |
| Cumulative savings                   | 65.2                             | 46.2%           |  |





### Introduction

The proposed Belsize Park Fire Station development located at Lancaster, is a five-storey high Grade II listed building. It is a change of use development from a fire station to domestic units.

The site is located between Lancaster Grove. Lambolle Place and Eton Ave within the London Borough of Camden, just north of Primrose Hill. The proposed scheme comprise the change of use, refurbishment and extension of the Grade II\* Listed former Belsize Park Fire Station Building into 18 units of apartment accommodation. This includes 11 units which formed part of the approved application application reference 2016/0745/P (Camden and listed building consent 2016/1128/L), and 7 additional units in the reminder of the building at ground and first floor levels. For completeness, this report covers the energy assessment of all 18 units.

This document demonstrates how the proposed development addresses the relevant energy policies of the London Plan 2015 (Further Alterations to the London Plan) and the requirements of Camden Council as outlined in their Core Strategy 2010-2025.

In particular this report responds to the energy policies of section 5 in the London Plan, including:

- Policy 5.2 Minimising Carbon Dioxide Emissions
- Policy 5.3 Sustainable Design and Construction
- Policy 5.5 Decentralised Energy Networks
- Policy 5.6 Decentralised Energy in Development proposals
- Policy 5.7 Renewable Energy where feasible.

and the Policy CS13 of the Camden's Core Strategy 2010-2025, which states the following in relation to sustainable redevelopment in the local area:

Camden Core Strategy 2010-2025: CS13 -Tackling climate change through promoting high environmental standards

# Reducing the effects of and adapting to climate change

The Council will require all development to take measures to minimise the effects of, and adapt to, climate change and encourage all development to meet the highest feasible environmental standards that are financially viable during construction and occupation by:

- ensuring patterns of land use that minimise the need to travel by car and help support local energy networks;
- promoting the efficient use of land and buildings;
- minimising carbon emissions from the redevelopment, construction and occupation of buildings by implementing, in order, all of the elements of the following energy hierarchy:
- 1. ensuring developments use less energy,
- 2. making use of energy from efficient sources, such as the King's Cross, Gower Street, Bloomsbury and proposed Euston Road decentralised energy networks;
- 3. generating renewable energy on-site; and
- ensuring buildings and spaces are designed to cope with, and minimise the effects of, climate change.

The Council will have regard to the cost of installing measures to tackle climate change as well as the cumulative future costs of delaying reductions in carbon dioxide emissions

#### Local energy generation

The Council will promote local energy generation and networks by:

 working with our partners and developers to implement local energy networks in the parts of Camden most likely to support them, i.e. in the



vicinity of:

- 1. housing estates with community heating or the potential for community heating and other uses with large heating loads;
- 2. the growth areas of King's Cross; Euston; Tottenham Court Road; West Hampstead Interchange and Holborn;
- 3. schools to be redeveloped as part of Building Schools for the Future programme;
- 4. existing or approved combined heat and power/ local energy networks;

and other locations where land ownership would facilitate their implementation.

• protecting existing local energy networks where possible (e.g. at Gower Street and Bloomsbury) and safeguarding potential network routes (e.g. Euston Road);

#### Camden's carbon reduction measures

*The Council will take a lead in tackling climate change by:* 

- taking measures to reduce its own carbon emissions;
- triallng new energy efficient technologies, where feasible; and
- raising awareness on mitigation and adaptation measures



Furthermore, the Camden Core Strategy recommends that:

Given the large proportion of development in the borough that relates to existing buildings, we will expect proportionate measures to be taken to improve their environmental sustainability, where possible.

The methodology employed in this Energy Statement to determine the potential CO<sub>2</sub> savings for this development, is in accordance with the three step Energy Hierarchy outlined in the London Plan:

- Be Lean Improve the energy efficiency of the scheme
- Be Clean Supply as much of the remaining energy requirement with low-carbon technologies such as combined heat and power (CHP)
- Be Green Offset a proportion of the remaining carbon dioxide emissions by using renewable technologies.

It should be noted that due to the change-ofuse and refurbishment nature of the proposed development, the baseline conditions for the development are calculated based on the existing fabric and services of the retained building.

Energy calculations were carried out using the SAP (Standard Assessment Procedure) methodology. This is in line with Building Regulations Part L 2013. The SAP sheets for the existing building baseline is presented in Appendix A, while those for the proposed development is presented in Appendix B.



### **Demand Reduction (Be Lean)**

#### **Passive Design Measures**

#### **Enhanced Building Fabric**

The heat loss of different building elements is dependent upon their U-value. The lower the Uvalue, the better the level of insulation of a particular element. A building with low U-values has a reduced heating demand during the cooler months.

The extended portions of the development at 36 Lancaster Grove will incorporate insulation meeting building regulation Part L1B threshold U-values and high efficiency glazing where possible in order to reduce the demand for space heating (see tables below).

Insulation would be installed to between and below the rafters of the existing pitched roof of the building, to achieve a u-value of circa 0.28 W/m2.K. However, it must be noted that since the building is a Grade II\* listed structure of heritage interest, alteration of the existing fabric elements (external walls, floors, roofs and such) will impact the original character of the building, no changes apart from addition of roof insulation will be made to the existing fabric elements.

Heating and hot water to the apartments will be supplied by a communal heating system with a centralised high efficiency gas boiler.

#### **Air Tightness**

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration into a building.

Current Part L Building Regulations (2013) sets a maximum air permeability rate of 10m<sup>3</sup>/m<sup>2</sup> at 50Pa for new build dwellings. The development will achieve this air tightness as a minimum, through draught proofing and the application of best practice construction techniques.

#### Daylight

The development will aim to maintain the existing good sized windows to provide satisfactory levels of daylighting in all habitable spaces such as living rooms, as a way of improving the health and wellbeing of its occupants.

#### **Active Design Measures**

#### **High Efficacy Lighting**

The development intends to incorporate low energy lighting fittings throughout the dwellings and communal spaces. All light fittings will be specified as low energy lighting to minimise energy demand. Internal and external areas which are not frequently used will be fitted with occupant sensors, whereas daylit areas will be fitted with daylight sensors and timers.



#### **Energy Demand**

The table below shows a breakdown of energy demand for space conditioning and electricity. These figures indicate baseline and Lean demand after energy efficiency measures have been applied.

The table below demonstrates the energy savings achieved through energy efficiency measures (Lean stage of the Energy Hierarchy).

|                                    | Baseline Building    |                                                           |                                                          | Lean                 |                                                           |                                                          |
|------------------------------------|----------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------|-----------------------------------------------------------|----------------------------------------------------------|
|                                    | Energy<br>(kWh/year) | CO <sub>2</sub><br>emissions<br>(kgCO <sub>2</sub> /year) | CO <sub>2</sub> (kgCO <sub>2</sub> /<br>m <sup>2</sup> ) | Energy<br>(kWh/year) | CO <sub>2</sub><br>emissions<br>(kgCO <sub>2</sub> /year) | CO <sub>2</sub> (kgCO <sub>2</sub> /<br>m <sup>2</sup> ) |
| Hot Water                          | 41,020               | 13,820                                                    | 10.0                                                     | 37,290               | 9,140                                                     | 7.0                                                      |
| Space Heating                      | 361,740              | 122,300                                                   | 90.0                                                     | 260,080              | 63,770                                                    | 46.0                                                     |
| Cooling                            | 0                    | 0                                                         | 0                                                        | 0                    | 0                                                         | 0                                                        |
| Auxiliary                          | 0                    | 0                                                         | 0                                                        | 0                    | 0                                                         | 0                                                        |
| Lighting                           | 10,150               | 5,270                                                     | 4.0                                                      | 5,970                | 3,100                                                     | 2.0                                                      |
| Equipment (not<br>incl. in Part L) | 46,850               | 24,320                                                    | 18.0                                                     | 46,850               | 24,320                                                    | 18.0                                                     |
| Total Part L                       | 412,910              | 141,390                                                   | 102.0                                                    | 303,340              | 76,010                                                    | 55.0                                                     |
| Total (incl. Equip)                | 459,760              | 165,710                                                   | 120.0                                                    | 350,190              | 100,330                                                   | 73.0                                                     |

#### Breakdown of Energy Consumption and CO<sub>2</sub> Emissions

### CO<sub>2</sub> Emissions

The table below shows the regulated and unregulated carbon dioxide emissions for the baseline scheme and the emissions after the passive and active lean measures have been implemented. A saving exceeding the required 35% is expected from the regulated  $CO_2$  emission over the existing building.

#### CO<sub>2</sub> Emissions Breakdown at Lean stage

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |      |       |  |  |  |
|--------------------------------------|-------------------------------------------------------------|------|-------|--|--|--|
|                                      | Regulated Unregulated Total                                 |      |       |  |  |  |
| Baseline building                    | 141.2                                                       | 24.3 | 165.5 |  |  |  |
| After energy demand reduction (Lean) | 76.0                                                        | 24.3 | 100.3 |  |  |  |

|                                      | Carbon dioxide savings<br>(tonnes CO <sub>2</sub> per annum) |      | Carbon dioxide savings<br>(tonnes CO2 per annum)Carbon dioxide savin<br>baseline (%) |       | e savings from<br>ne (%) |
|--------------------------------------|--------------------------------------------------------------|------|--------------------------------------------------------------------------------------|-------|--------------------------|
|                                      | Regulated Total                                              |      | Regulated                                                                            | Total |                          |
| Savings from energy demand reduction | 65.2                                                         | 65.2 | 46.2%                                                                                | 39.4% |                          |





### Heating and Cooling Infrastructure (Be Clean)

#### **Energy System Hierarchy**

The energy system for the development has been selected in accordance with the London Plan decentralised energy hierarchy. The hierarchy listed in Policy 5.6 states that energy systems should consider:

- 1. Connection to existing heating and cooling networks
- 2. Site wide CHP network
- 3. Communal heating and cooling

Local supply of heat and power minimise distribution losses, thereby achieving a greater efficiency and reducing  $CO_2$  emissions, when compared to the individual systems.

In a communal energy system, energy in the form of heat, cooling, and/or electricity is generated from a central source and distributed via a network to surrounding residencies and commercial units.

# Connection to Existing Low Carbon Heat Distribution Networks

The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study. An excerpt from the London Heat Map below shows the energy demand for different areas. Darker shades of red signify areas where energy demand is high. The map also highlights any existing and proposed district heating network (DHN) within the vicinity of the development.

A review of the map shows that the closest existing or proposed heat networks approximately 1.4 miles to the south-east of the site. The scale of the development does not make it economically viable for connection with networks located at a distance from the site. For this reason connection to district heat networks are not currently considered feasible.



London Heat Map with proposed district heat network outlined in red



#### **Combined Heat and Power (CHP)**

CHP, or Co-generation is the production of electricity and useful heat from a single engine. Unlike conventional electricity generation, heat is re-used in a CHP system, primarily for hot water, thereby improving the overall energy conversion from 25-35% to around 80%.

Due to the type and size of the development, this technology would not be suitable for this site. The hot water load of the site would not be sufficient to justify the use of this technology.

Hence, this technology is deemed to be unsuitable for the development at 36 Lancaster Grove. The proposed development will be served by a communal heating network with a centralised gas boiler.

There will be no further reduction in  $\rm CO_2$  emissions at the Clean Stage.

#### CO<sub>2</sub> Emissions Breakdown at Clean stage

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |      |       |  |  |
|--------------------------------------|-------------------------------------------------------------|------|-------|--|--|
|                                      | Regulated Unregulated To                                    |      |       |  |  |
| Baseline building                    | 141.2                                                       | 24.3 | 165.5 |  |  |
| After energy demand reduction (Lean) | 76.0                                                        | 24.3 | 100.3 |  |  |
| After CHP (Clean)                    | 76.0 24.3 100.3                                             |      |       |  |  |

|                                      | Carbon dioxide savings<br>(tonnes CO, per annum) |       | Carbon dioxide savings fror<br>baseline (%) |       |  |
|--------------------------------------|--------------------------------------------------|-------|---------------------------------------------|-------|--|
|                                      | Regulated                                        | Total | Regulated                                   | Total |  |
| Savings from energy demand reduction | 65.2                                             | 65.2  | 46.2%                                       | 39.4% |  |
| Savings from clean technologies      | 0.0                                              | 0.0   | 0.0%                                        | 0.0%  |  |



An example of a CHP engine (courtesy of Baxi)



### **Renewable Energy (Be Green)**

Once the energy demand has been minimised, methods of generating low and zero carbon energy can be assessed. The renewable technologies to be considered for the development are:

- Biomass
- Photovoltaic panels
- Solar thermal panels
- Ground/water source heat pumps
- Air source heat pump
- Wind energy

The table below summarises the factors taken into account in determining the appropriate renewable technology for this project. This includes estimated lifetime, level of maintenance, and level of impact on external appearance. The final column indicates the feasibility of the technology in relation to the site conditions (10 being the most feasible and 0 being infeasible).

The analysis demonstrated that due to the conservation requirements of the existing Grade II\* listed building, it will not be feasible to install renewable technologies without considerable construction and alterations to the former Belsize Park Fire Station building.

|                  | 36 Lancaster Grove                                                                                                                                                          |          |             |                                     |                     |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------------------------------|---------------------|--|--|
|                  | Comments                                                                                                                                                                    | Lifetime | Maintenance | Impact on<br>External<br>Appearance | Site<br>Feasibility |  |  |
| Biomass          | Not adopted -burning of wood pellets releases<br>high NOx emissions and there are limitations<br>for their storage and delivery within an urban<br>location.                | 20yrs    | High        | High                                | 1                   |  |  |
| A                | Not adopted - PV panels mounted on the pitched<br>roof would significantly alter the appearance and<br>character of the Listed Building.                                    | 25yrs    | Low         | Med                                 | 3                   |  |  |
| Solar<br>Thermal | Not adopted - Solar thermal array mounted on<br>the pitched roof would significantly alter the<br>appearance and character of the Listed Building.                          | 25yrs    | Low         | Med                                 | 3                   |  |  |
| GSHP             | Not adopted -the installation of ground loops<br>require significant space, additional time at<br>the beginning of the construction process<br>and very high capital costs. | 20yrs    | Med         | Low                                 | 1                   |  |  |
| ASHP             | Not adopted -ASHP evaporator units are<br>located externally and produce noise which<br>can be an issue in a residential location,<br>especially at night.                  | 20yrs    | Med         | Med                                 | 3                   |  |  |
| Wind             | Not adopted - Wind turbines located at the site will have a significant visual impact on the existing building within the Conservation Area.                                | 25yrs    | Med         | High                                | 1                   |  |  |



### **CO<sub>2</sub> Emissions**

The table below shows the regulated and unregulated carbon dioxide emissions for the baseline scheme and the emissions after the lean, clean and green measures have been implemented.

The proposed Energy Strategy outlined in this document achieved significant CO<sub>2</sub> savings for this development. The savings achieved through sustainable design measures alone are significant.

The figures below show a CO<sub>2</sub> reduction in regulated emissions exceeding the required 35% when compared to the building with its existing fabric and systems.

#### CO<sub>2</sub> Emissions Breakdown

|                                      | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |             |       |  |  |
|--------------------------------------|-------------------------------------------------------------|-------------|-------|--|--|
|                                      | Regulated                                                   | Unregulated | Total |  |  |
| Baseline building                    | 141.2                                                       | 24.3        | 165.5 |  |  |
| After energy demand reduction (Lean) | 76.0                                                        | 24.3        | 100.3 |  |  |
| After CHP (Clean)                    | 76.0                                                        | 24.3        | 100.3 |  |  |
| After renewable technologies (Green) | 76.0                                                        | 24.3        | 100.3 |  |  |

#### CO<sub>2</sub> Savings Breakdown at all stages for the energy hierarchy

|                                      | Carbon dioxide savings<br>(tonnes CO <sub>2</sub> per annum) |      | Carbon dioxid<br>baseli | le savings over<br>ne (%) |
|--------------------------------------|--------------------------------------------------------------|------|-------------------------|---------------------------|
|                                      | Regulated Total                                              |      | Regulated               | Total                     |
| Savings from energy demand reduction | 65.2                                                         | 65.2 | 46.2%                   | 39.4%                     |
| Savings from CHP                     | 0.0                                                          | 0.0  | 0.0%                    | 0.0%                      |
| Savings from renewable energy        | 0.0                                                          | 0.0  | 0.0%                    | 0.0%                      |
| Cumulative savings                   | 65.2                                                         | 65.2 | 46.2%                   | 39.4%                     |



### Conclusion

In line with the London Plan's three step energy hierarchy, the regulated  $CO_2$  emission savings for this development will exceed 35% when energy efficiency measures are taken into account.

The tables on the following page provide a breakdown of the CO<sub>2</sub> savings made at each stage of the Energy Hierarchy. The reductions made through each step have been outlined below:

#### **1. Be Lean** - use less energy

The first step deals with the reduction in energy use, through the adoption of sustainable design and construction measures. In accordance with this strategy, this development will incorporate a range of energy efficiency measures including the provision of a new and highly efficiency communal space heating and hot water system, electrical rewiring to include provision of low energy lighting throughout the scheme, and insulation levels meeting Part L1B targets for the any new thermal elements.

Insulation will also be provided between and below the rafters at the existing pitched roof. The improvements in the building systems and fabric have reduced regulated  $CO_2$  emissions by 46.2% in comparison to the existing building, thus exceeding the requirements outlined by the Camden Council and London Plan 2015.

#### 2. Be Clean - supply energy efficiently

The second strategy takes into account the efficient supply of energy, by prioritising decentralised energy generation. The feasibility study showed that no district heating network currently exists within close proximity of the site. Due to the nature of the development, a CHP unit would not be an economically viable option. Hence, a high efficiency centralised gas boiler will be installed to provide space heating and hot water to all apartments.

#### 36 Lancaster Grove

#### 3. Be Green - use renewable energy

The feasibility study analysed a number of renewable technologies for their suitability for the site. The analysis included a biomass heating system, groundsource heat pumps, air-source heat pumps, photo voltaic panels, solar thermal and wind turbines.

The analysis demonstrated that due to the conservation requirements of the existing Grade II\* listed building, it will not be feasible to install renewable technologies without considerable alterations to the former Belsize Park Fire Station.

In total, the development is expected to reduce regulated  $CO_2$  emissions by 46.2% when compared to the existing baseline building. This meets the London Plan  $CO_2$  reduction target of 35% set out for all major developments.





# CO<sub>2</sub> Emissions Breakdown at all stages for the energy hierarchy

|                                       | Carbon Dioxide emissions (tonnes CO <sub>2</sub> per annum) |             |       |  |  |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------|-------------|-------|--|--|--|--|--|--|
|                                       | Regulated                                                   | Unregulated | Total |  |  |  |  |  |  |
| Baseline building                     | 141.2                                                       | 24.3        | 165.5 |  |  |  |  |  |  |
| After energy demand reduction (Lean)  | 76.0                                                        | 24.3        | 100.3 |  |  |  |  |  |  |
| After district heating system (Clean) | 76.0                                                        | 24.3        | 100.3 |  |  |  |  |  |  |
| After renewable technologies (Green)  | 76.0                                                        | 24.3        | 100.3 |  |  |  |  |  |  |

### CO<sub>2</sub> Savings Breakdown at all stages for the energy hierarchy

|                                      | Carbon diox<br>(tonnes CO <sub>2</sub> | kide savings<br>per annum) | Carbon dioxid<br>baseli | e savings over<br>ne (%) |
|--------------------------------------|----------------------------------------|----------------------------|-------------------------|--------------------------|
|                                      | Regulated                              | Total                      | Regulated               | Total                    |
| Savings from energy demand reduction | 65.2                                   | 65.2                       | 46.2%                   | 39.4%                    |
| Savings from district heating system | 0.0                                    | 0.0                        | 0.0%                    | 0.0%                     |
| Savings from renewable energy        | 0.0                                    | 0.0                        | 0.0%                    | 0.0%                     |
| Cumulative savings                   | 65.2                                   | 65.2                       | 46.2%                   | 39.4%                    |





# Appendix A - SAP outputs for the existing building baseline

The DER from the FSAP modelling of the proposed development with the existing fabric and building services systems were used to calculate the baseline  $CO_2$  emissions of the existing building.



|                                         |               |                           |                  |             | User D            | etails:                     |                              |                |          |           |                         |                         |
|-----------------------------------------|---------------|---------------------------|------------------|-------------|-------------------|-----------------------------|------------------------------|----------------|----------|-----------|-------------------------|-------------------------|
| Assessor Name:<br>Software Name:        | Str           | oma FS/                   | AP 201           | 2<br>P      | roperty           | Stroma<br>Softwa<br>Address | a Num<br>are Vei<br>: Unit 1 | ber:<br>rsion: |          | Versio    | on: 1.0.3.15            |                         |
| Address :                               | , lo          | ndon, NV                  | /3 4PB           |             |                   |                             |                              |                |          |           |                         |                         |
| 1. Overall dwelling d                   | imension      | IS:                       |                  |             |                   |                             |                              |                |          |           |                         |                         |
| _                                       |               |                           |                  |             | Area              | a(m²)                       | I                            | Av. Hei        | ight(m)  | -         | Volume(m <sup>3</sup> ) | -                       |
| Basement                                |               |                           |                  |             |                   | 33                          | (1a) x                       | 2              | .25      | (2a) =    | 74.25                   | (3a)                    |
| Ground floor                            |               |                           |                  |             |                   | 19                          | (1b) x                       | 1              | .65      | (2b) =    | 31.35                   | (3b)                    |
| Total floor area TFA =                  | = (1a)+(1l    | b)+(1c)+(                 | 1d)+(1e          | )+(1r       | ı)                | 52                          | (4)                          |                |          |           |                         |                         |
| Dwelling volume                         |               |                           |                  |             |                   |                             | (3a)+(3b)                    | )+(3c)+(3d     | l)+(3e)+ | .(3n) =   | 105.6                   | (5)                     |
| 2. Ventilation rate:                    |               |                           |                  |             |                   |                             |                              |                |          |           |                         | -                       |
|                                         |               | main                      | Se               | econdar     | у                 | other                       |                              | total          |          |           | m <sup>3</sup> per hour |                         |
| Number of chimneys                      | ſ             |                           | ייייייי<br>ר ד ר |             | ] + [             | 0                           | ] = [                        | 0              | x 4      | 40 =      | 0                       | (6a)                    |
| Number of open flues                    | L<br>L        | 0                         | 」<br>ヿ + ┌       | 0           | 」<br>ヿ + ┌        | 0                           | 」 に<br>ヿ = Г                 | 0              | x2       | 20 =      | 0                       | _<br>] <sub>(6b)</sub>  |
| Number of intermitten                   | L<br>t fans   | 0                         |                  | 0           |                   | •                           |                              |                | × ^      | 10 =      | 20                      | $\int_{(72)}^{(22)}$    |
| Number of passive ve                    | nto           |                           |                  |             |                   |                             |                              | 2              |          | 10 -      | 20                      | $\int (7a)$             |
| Number of flueless re                   |               |                           |                  |             |                   |                             |                              | 0              |          | 10 -      | 0                       |                         |
| Number of fideless ga                   | is mes        |                           |                  |             |                   |                             | L                            | 0              | ^-       | Air ch    | o<br>nanges per hou     | וג<br> ( <sub>יכ)</sub> |
| Infiltration due to chim                | neys, flu     | ies and fa                | ans = (6a        | a)+(6b)+(7  | <b>a)</b> +(7b)+( | 7c) =                       |                              | 20             | · ·      | ÷ (5) =   | 0.19                    | (8)                     |
| If a pressurisation test h              | as been ca    | rried out or              | is intende       | d, procee   | d to (17), d      | otherwise o                 | continue fr                  | om (9) to (    | (16)     |           |                         |                         |
| Additional infiltration                 | า<br>า        | ening (ns                 | )                |             |                   |                             |                              |                | [(9)-    | -11x0.1 = | 0                       | (9)                     |
| Structural infiltration                 | n: 0.25 fo    | r steel or                | timber f         | frame or    | 0.35 fo           | r masonr                    | rv constr                    | uction         | [(0)     | 11000 -   | 0                       | (10)                    |
| if both types of wall a                 | re present,   | use the val               | ue corres        | ponding to  | the great         | er wall are                 | a (after                     |                |          |           |                         | ], ,                    |
| deducting areas of op                   | enings); if   | equal user (<br>optor 0.2 | 0.35<br>(unsoal  | od) or 0    | 1 (soald          | d) else                     | ontor 0                      |                |          |           |                         |                         |
| If no draught lobby                     | enter 0 (     | 0.2<br>15 else e          | onter 0          |             | i (Seale          | u), eise                    |                              |                |          |           | 0                       | $\int_{(12)}^{(12)}$    |
| Percentage of wind                      | ows and       | doors dra                 | auaht st         | ripped      |                   |                             |                              |                |          |           | 0                       | $\int_{(14)}^{(13)}$    |
| Window infiltration                     |               |                           |                  |             |                   | 0.25 - [0.2                 | 2 x (14) ÷ 1                 | 00] =          |          | ·         | 0                       | (15)                    |
| Infiltration rate                       |               |                           |                  |             |                   | (8) + (10)                  | + (11) + (1                  | 2) + (13) -    | + (15) = |           | 0                       | (16)                    |
| Air permeability val                    | ue, q50,      | expresse                  | d in cub         | ic metre    | s per ho          | our per so                  | quare m                      | etre of e      | nvelope  | area      | 20                      | (17)                    |
| If based on air perme                   | ability va    | lue, then                 | (18) = [(1       | 7) ÷ 20]+(8 | 3), otherwi       | se (18) = (                 | (16)                         |                |          |           | 1.19                    | (18)                    |
| Air permeability value a                | oplies if a p | ressurisatio              | n test has       | s been don  | e or a deg        | gree air pe                 | rmeability                   | is being us    | sed      |           | r                       | ٦                       |
| Number of sides shell<br>Shelter factor | ered          |                           |                  |             |                   | (20) = 1 -                  | [0.075 x (1                  | 9)] =          |          |           | 1                       | (19)                    |
| Infiltration rate incorpo               | orating sh    | nelter fact               | or               |             |                   | (21) = (18)                 | ) x (20) =                   | /1             |          |           | 1 1                     | $\int_{(21)}^{(20)}$    |
| Infiltration rate modifie               | ed for mo     | onthly win                | d speed          |             |                   |                             |                              |                |          |           | 1.1                     |                         |
| Jan Feb                                 | Mar           | Apr                       | May              | Jun         | Jul               | Aug                         | Sep                          | Oct            | Nov      | Dec       |                         |                         |
| Monthly average wind                    | l speed fi    | rom Table                 | 97               |             |                   |                             |                              |                |          |           | ı                       |                         |
| (22)m= 5.1 5                            | 4.9           | 4.4                       | 4.3              | 3.8         | 3.8               | 3.7                         | 4                            | 4.3            | 4.5      | 4.7       |                         |                         |

| Wind F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | actor (2                                                                                                                                                                                      | 2a)m =                                                                                                                 | (22)m ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | _      |               |                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27                                                                                                                                                                                          | 1.25                                                                                                                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                         | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                     | 0.95                                                                                                                                                                                                                    | 0.92                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.08                                                                                                                         | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.18                |        |               |                                                                                                                                                                                    |
| Adjuste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed infiltra                                                                                                                                                                                   | ation rat                                                                                                              | e (allowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing for sł                                                                                                                  | nelter an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d wind s                                                                                                                 | speed) =                                                                                                                                                                                                                | (21a) x                                                                                                                                     | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                                                                                                                                                                                           | 1.38                                                                                                                   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.21                                                                                                                        | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05                                                                                                                     | 1.05                                                                                                                                                                                                                    | 1.02                                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18                                                                                                                         | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.29                |        |               |                                                                                                                                                                                    |
| Calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ate effec                                                                                                                                                                                     | tive air                                                                                                               | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rate for t                                                                                                                  | he appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cable ca                                                                                                                 | se                                                                                                                                                                                                                      |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               | (220)                                                                                                                                                                              |
| lf ovh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eust air he                                                                                                                                                                                   |                                                                                                                        | using Ann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | endiv N (2                                                                                                                  | 3h) - (23a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) v Emv (e                                                                                                              | auation (N                                                                                                                                                                                                              | (15)) other                                                                                                                                 | rwise (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) - (23a)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               | (23a)                                                                                                                                                                              |
| If bala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anced with                                                                                                                                                                                    | beat rec                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{2}$                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | for in-use $f$                                                                                                           | actor (from                                                                                                                                                                                                             | n Table <i>1</i> b                                                                                                                          | ) –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>(</i> 200)                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        | 0             | (230)                                                                                                                                                                              |
| a) If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               | d moob                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | with ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of rocov                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                             | $(2)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2b)m i ('                                                                                                                    | 22h) v [/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (22a)             | · 1001 | 0             | (23C)                                                                                                                                                                              |
| (24a)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                         | 0                                                                                                                                           | $\frac{1}{1} = \frac{2}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1-(230)}{0}$ | - 100j |               | (24a)                                                                                                                                                                              |
| (2 la)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | halance                                                                                                                                                                                       | d mech                                                                                                                 | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             | without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | heat rec                                                                                                                 |                                                                                                                                                                                                                         | 1)/) (24h                                                                                                                                   | $\int_{-\infty}^{-\infty} (2^{\prime})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1 \frac{1}{2}$                                                                                                              | 23h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ů                   | J      |               | ( ,                                                                                                                                                                                |
| (24b)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | 230)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                   | 1      |               | (24b)                                                                                                                                                                              |
| (2-10)III-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                        | tract vor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                         | n from c                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ů                                                                                                                            | Ů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ů                   | J      |               | ()                                                                                                                                                                                 |
| c) ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | if (22b)m                                                                                                                                                                                     | $0.5 \times 0.5$                                                                                                       | (23b). 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | then (24)                                                                                                                   | c) = (23b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b): other                                                                                                                | ventilatic<br>vise (24                                                                                                                                                                                                  | c) = (22b)                                                                                                                                  | m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5 × (23b                                                                                                                    | ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |               |                                                                                                                                                                                    |
| (24c)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                        | 0                                                                                                                                                                                                                       | 0                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                   |        |               | (24c)                                                                                                                                                                              |
| d) If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | natural                                                                                                                                                                                       | ventilatio                                                                                                             | n or wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lole hous                                                                                                                   | e positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve input '                                                                                                               | ventilatio                                                                                                                                                                                                              | n from l                                                                                                                                    | loft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | J      |               |                                                                                                                                                                                    |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if (22b)m                                                                                                                                                                                     | n = 1, th                                                                                                              | en (24d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m = (22                                                                                                                     | o)m othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | erwise (2                                                                                                                | 4d)m =                                                                                                                                                                                                                  | 0.5 + [(2                                                                                                                                   | 2b)m² x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5]                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | _      |               |                                                                                                                                                                                    |
| (24d)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                           | 1.38                                                                                                                   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.21                                                                                                                        | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05                                                                                                                     | 1.05                                                                                                                                                                                                                    | 1.02                                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18                                                                                                                         | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.29                |        |               | (24d <mark>)</mark>                                                                                                                                                                |
| Effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctive air                                                                                                                                                                                     | change                                                                                                                 | rate - er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nter (24a                                                                                                                   | ) or (24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o) or (24                                                                                                                | c) or (24                                                                                                                                                                                                               | d) in boy                                                                                                                                   | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               |                                                                                                                                                                                    |
| (25)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                                                                                           | 1.38                                                                                                                   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.21                                                                                                                        | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05                                                                                                                     | 1.05                                                                                                                                                                                                                    | 1.02                                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18                                                                                                                         | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.29                |        |               | (25)                                                                                                                                                                               |
| 2 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at losses                                                                                                                                                                                     | and he                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | naramet                                                                                                                     | ar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               |                                                                                                                                                                                    |
| 3. He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ai 10330.                                                                                                                                                                                     | s anu ne                                                                                                               | zai 1033 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | varancu                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |               |                                                                                                                                                                                    |
| S. FIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               | Gros                                                                                                                   | SS 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin                                                                                                                      | gs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Ar                                                                                                                   | ea                                                                                                                                                                                                                      | U-valu                                                                                                                                      | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AXU                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value             | )      | A X k         | (                                                                                                                                                                                  |
| ELEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | Gros<br>area                                                                                                           | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m                                                                                                                 | gs<br>J <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r                                                                                                           | ea<br>n²                                                                                                                                                                                                                | U-valu<br>W/m2                                                                                                                              | ue<br>2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A X U<br>(W/ł                                                                                                                | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²·l  | e<br>K | A X k<br>kJ/K | (                                                                                                                                                                                  |
| Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>IENT</b><br>Type 1                                                                                                                                                                         | Gros<br>area                                                                                                           | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>r                                                                                                                 | gs<br><sub>1</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3                                                                                                    | ea<br>m²<br>x                                                                                                                                                                                                           | U-valu<br>W/m2                                                                                                                              | ue<br>2K<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A X U<br>(W/ł<br>10.22                                                                                                       | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²·l  | e<br>K | A X k<br>kJ/K | (26)                                                                                                                                                                               |
| Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>IENT</b><br>Type 1<br>Type 2                                                                                                                                                               | Gros<br>area                                                                                                           | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>r                                                                                                                 | gs<br><sub>J2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Ar<br>A ,r<br>7.3                                                                                                    | ea<br>m <sup>2</sup> x                                                                                                                                                                                                  | U-valu<br>W/m2<br>1.4                                                                                                                       | ue<br>2K<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A X U<br>(W/I<br>10.22<br>6.02                                                                                               | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²·I  | e<br>K | A X k<br>kJ/K | (26)<br>(26)                                                                                                                                                                       |
| 3. He<br>ELEN<br>Doors<br>Doors<br>Windov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>AENT</b><br>Type 1<br>Type 2<br>ws Type                                                                                                                                                    | Gros<br>area                                                                                                           | ss<br>(m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>m                                                                                                                 | gs<br><sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6                                                                                      | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup>                                                                                                                                                                      | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+                                                                                                | 2K<br>2K<br>=<br>=<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A X U<br>(W/I<br>10.22<br>6.02<br>3.1                                                                                        | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²·I  | e<br>K | A X k<br>kJ/K | (26)<br>(26)<br>(27)                                                                                                                                                               |
| S. He<br>ELEN<br>Doors<br>Doors<br>Windov<br>Windov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type                                                                                                                                         | Gros<br>area                                                                                                           | ss<br>(m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>r                                                                                                                 | gs<br><sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97                                                                              | ea<br>n <sup>2</sup> x<br>x x<br>x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                                       | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+                                                                                | ue<br>2K<br>= =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82                                                                                | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²·I  | e<br>K | A X k<br>kJ/K | (26)<br>(26)<br>(27)<br>(27)                                                                                                                                                       |
| S. He<br>ELEN<br>Doors<br>Doors<br>Window<br>Window<br>Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Type 1</b><br>Type 2<br>ws Type<br>ws Type                                                                                                                                                 | Gros<br>area                                                                                                           | (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Openin<br>m                                                                                                                 | gs<br><sub>1</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3                                                                      | ea<br>n <sup>2</sup> x<br>x x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                     | U-valu<br>W/m2<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+                                                                         | ue<br>2K<br>= =<br>• 0.04] =<br>• 0.04] =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value<br>kJ/m²·I  | ×      | A X k<br>kJ/K | (26)<br>(26)<br>(27)<br>(27)<br>(28)                                                                                                                                               |
| S. He<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1                                                                                                                                | Grosarea                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Openin<br>m<br>15.1                                                                                                         | gs<br><sub>1</sub> 2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23                                                             | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup>                                                                                                                | U-valu<br>W/m2<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28                                                                        | ue<br>2K<br>= =<br>0.04] =<br>0.04] =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98                                                               | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²+l  |        | A X k<br>kJ/K | (26)<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)                                                                                                                                       |
| Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Type 1</b><br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                                                                               | Gros<br>area<br>1<br>2<br>29.<br>44.                                                                                   | 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m<br>15.1                                                                                                         | gs<br><sub>1</sub> 2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1                                                     | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x                                                                                       | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28                                                        | ue<br>2K<br>= =<br>0.04] =  <br>0.04] =  <br>=  <br>= =  <br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A X U<br>(W/)<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value<br>kJ/m²+l  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> </ul>                                                                                     |
| S. He<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>AENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                                                                       | Gros<br>area<br>1<br>2<br>29.<br>44.                                                                                   | 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Openin         m           15.1'         0           0         0                                                            | gs<br>,2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19                                               | ea<br>n <sup>2</sup> x x x x x x x x x x x x x x x x x x x                                                                                                                                                              | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.16                        | ue<br>2K<br>= = =<br>0.04] = =<br>= =<br>= = =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value<br>kJ/m²·l  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> </ul>                                                         |
| S. He<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e                                                                                                          | Gros<br>area<br>1<br>2<br>29.<br>44.<br>19.<br>19.<br>19.                                                              | 4<br>1<br>, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin         m           15.1         0           0         0                                                             | gs<br><sub>1</sub> 2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8                                      | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                                                                        | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.16                                        | ue<br>2K<br>= = =<br>0.04] = =<br>0.04] = =<br>= =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value<br>kJ/m²+l  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> </ul>                                                         |
| S. He<br>ELEN<br>Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A E NT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>wall                                                                                               | Grosarea                                                                                                               | 4<br>1<br>, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin           15.1           0           0                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Net Ar<br>A,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9                               | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                 | U-valu<br>W/m2<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.16                                 | ue<br>2K<br>= =<br>0.04] = =<br>0.04] = =<br>= =<br>= =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k-value<br>kJ/m²-I  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ul>                             |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windou<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALENT<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall<br>dows and<br>le the area                                                                             | Gros<br>area<br>1<br>2<br>29.<br>44.<br>19<br>lements<br>roof wind                                                     | 4<br>1<br>, m <sup>2</sup><br>ows, use 6<br>sides of it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>m<br>15.1<br>0<br>0<br>effective wi                                                                               | gs<br><sup>7</sup><br>ndow U-va<br><sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calcul<br>titions    | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                                                 | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16                 | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] a                          | K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²+l  |        | A X k<br>kJ/K | <ol> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ol>                                           |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Area of e<br>wall<br>dows and<br>heat los                                                                                                                                                     | Gros<br>area<br>1<br>2<br>2<br>9.<br>44.<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | 4<br>1<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Openin<br>m<br>15.1<br>0<br>0<br>effective wi<br>nternal wal                                                                | gs<br>j <sup>2</sup><br>7<br><br>ndow U-va<br>Is and par                                                                                                                                                                                                                                                                                                                                                                                                                                           | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>14.9<br>alue calculations | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x <sup>3</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | U-valu<br>W/m2<br>1.4<br>[1/( 2.1 )+<br>/[1/( 2.1 )+<br>[0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16<br>0.16<br>(26)(30)                   | $\begin{array}{c} ue \\ 2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ 0.04] = \\ = \\ = \\ = \\ 0.04] = \\ = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>12.35<br>3.04                             | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k-value<br>kJ/m²-I  |        | A X k<br>kJ/K | <ol> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ol>                                                         |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric<br>Heat c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area of e<br>wall<br>dows and<br>heat los<br>apacity (                                                                                                                                        | Gros<br>area<br>Grosarea122 $29.44.19lementsroof windas on boths, W/KCm = St$                                          | 4<br>1<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x<br>(A x k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Openin<br>m<br>15.1<br>0<br>0<br>effective winternal wall<br>U)                                                             | gs<br>j2<br>7<br><br>ndow U-va<br>Is and par                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calculations         | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x x<br>x x<br>x x<br>x x<br>x x<br>x x<br>x x<br>x x x<br>x x x x                                                               | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16        | $\begin{array}{c} ue \\ 2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ 0.04] = \\ = \\ = \\ = \\ = \\ 0 \\ = \\ 0 \\ 0.04] = \\ = \\ 0 \\ 0.04] = \\ = \\ 0 \\ 0.04] = \\ = \\ 0 \\ 0.04] = \\ = \\ 0 \\ 0.04] = \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] a                          | ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       () </td <td>k-value<br/>kJ/m²-I</td> <td></td> <td>A X k<br/>kJ/K</td> <td><ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> <li>(33)</li> <li>(34)</li> </ul></td> | k-value<br>kJ/m²-I  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> <li>(33)</li> <li>(34)</li> </ul>               |
| S. He<br>B. S. He<br>ELEN<br>Doors<br>Uindou<br>Windou<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALENT<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall<br>dows and<br>le the area<br>heat los<br>apacity (<br>al mass                              | Gros<br>area<br>Grosarea129. $44.19lementsroof windas on boths, W/KCm = Scparame$                                      | $\frac{4}{1}$ $\frac{4}{1}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}$ | Openin<br>r<br>$15.1^{\circ}$<br>0<br>$15.1^{\circ}$<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                | gs<br><sup>7</sup><br><sup>7</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>4</sup><br><sup>4</sup><br><sup>4</sup><br><sup>5</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calculations         | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                        | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16         | $\begin{bmatrix} ue\\2K \\ - & = \\ - & 0.04] = \\ - & 0.04] = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = \\ - & = $                                                                                                                                                                                                                                                                                                                                                                                                                                 | A X U<br>(WV/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>12.35<br>3.04<br>0<br>12.35<br>3.04 | <pre>K)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k-value<br>kJ/m²-l  |        |               | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> <li>(33)</li> <li>(34)</li> <li>(35)</li> </ul> |
| S. He<br>S. | ALENT<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall<br>dows and<br>le the area<br>heat los<br>apacity (<br>al mass<br>ign assess<br>used instea | Gros<br>area<br>Grosarea129.44.19191919191919191919191919                                                              | $\frac{4}{1}$ $\frac{4}{2}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{1}$ | Openin<br>m $ \begin{array}{c} 15.1\\ \hline 0\\ \hline $ | gs<br>2<br>7<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                             | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calcul<br>titions    | ea<br>n <sup>2</sup> x x x x x x x x x x x x x x x x x x x                                                                                                                                                              | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16<br>0.16 | $\frac{ue}{2K} = \frac{1}{2}$ $= \frac{1}$ | A X U<br>(WV/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>12.35<br>3.04<br>0<br>12.35<br>3.04 | <pre>K)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k-value<br>kJ/m²-I  |        | A X k<br>kJ/K | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> <li>(33)</li> <li>(34)</li> <li>(35)</li> </ul> |

| if details       | s of therma         | al bridging    | are not kr  | own (36) =                | = 0.15 x (3              | 1)                      |                     |             |                    |             |                        |              |         | _    |
|------------------|---------------------|----------------|-------------|---------------------------|--------------------------|-------------------------|---------------------|-------------|--------------------|-------------|------------------------|--------------|---------|------|
| Total f          | abric he            | at loss        |             |                           |                          |                         |                     |             | (33) +             | (36) =      |                        |              | 70.07   | (37) |
| Ventila          | ation hea           | at loss ca     | alculated   | monthly                   | Y                        | r                       | 1                   |             | (38)m              | = 0.33 × (  | 25)m x (5)             | 1            | 1       |      |
|                  | Jan                 | Feb            | Mar         | Apr                       | May                      | Jun                     | Jul                 | Aug         | Sep                | Oct         | Nov                    | Dec          |         |      |
| (38)m=           | 48.88               | 47.92          | 46.97       | 42.17                     | 41.21                    | 36.42                   | 36.42               | 35.46       | 38.34              | 41.21       | 43.13                  | 45.05        |         | (38) |
| Heat t           | ransfer o           | coefficie      | nt, W/K     |                           |                          |                         |                     |             | (39)m              | = (37) + (3 | 38)m                   |              |         |      |
| (39)m=           | 118.96              | 118            | 117.04      | 112.25                    | 111.29                   | 106.5                   | 106.5               | 105.54      | 108.41             | 111.29      | 113.21                 | 115.12       |         |      |
|                  |                     |                |             | /                         |                          |                         | -                   |             | (40)               | Average =   | Sum(39)1               | 12 /12=      | 112.01  | (39) |
| (40)m-           | 2 20                |                | 1LP), VV/   | 2.16                      | 2.14                     | 2.05                    | 2.05                | 2.03        | (40)m              | = (39)m -   | 2 18                   | 2 21         | 1       |      |
| (40)11-          | 2.23                | 2.21           | 2.20        | 2.10                      | 2.14                     | 2.00                    | 2.00                | 2.05        | 2.00               |             | Sum(40).               | 2.21<br>/12- | 2 15    | (40) |
| Numb             | er of day           | s in mo        | nth (Tab    | le 1a)                    |                          |                         |                     |             | ,                  | -verage -   | Sum(40)1               | 12 / 12-     | 2.15    |      |
|                  | Jan                 | Feb            | Mar         | Apr                       | May                      | Jun                     | Jul                 | Aug         | Sep                | Oct         | Nov                    | Dec          | ]       |      |
| (41)m=           | 31                  | 28             | 31          | 30                        | 31                       | 30                      | 31                  | 31          | 30                 | 31          | 30                     | 31           |         | (41) |
|                  |                     |                |             |                           |                          |                         |                     |             |                    |             |                        |              |         |      |
| 4. Wa            | ater heat           | ing ene        | rgy requ    | irement:                  |                          |                         |                     |             |                    |             |                        | kWh/y        | ear:    |      |
| Δεειιο           |                     | inancy         | N           |                           |                          |                         |                     |             |                    |             |                        | 75           | 1       | (42) |
| if TF            | A > 13.9            | 9, N = 1       | + 1.76 x    | [1 - exp                  | (-0.0003                 | 849 x (TF               | -<br>A -13.9        | )2)] + 0.0  | )013 x (           | TFA -13.    | 9)                     | 15           | J       | (42) |
| if TF            | A £ 13.9            | 9, N = 1       |             |                           |                          |                         |                     |             |                    |             |                        |              | ,       |      |
| Annua            | I averag            | e hot wa       | ater usag   | ge in litre<br>usage by : | es per da<br>5% if the o | ay Vd,av<br>Iwelling is | erage =<br>designed | (25 x N)    | + 36<br>a water us | se target o | 75                     | .74          |         | (43) |
| not mor          | e that 125          | litres per     | person pe   | r day (all w              | ater use, l              | hot and co              | ld)                 |             | a water at         | io larger e |                        |              |         |      |
|                  | Jan                 | Feb            | Mar         | Apr                       | May                      | Jun                     | Jul                 | Aug         | Sep                | Oct         | Nov                    | Dec          |         |      |
| Hot wat          | er usage i          | n litres per   | day for ea  | ach m <mark>onth</mark>   | Vd,m = fa                | ctor from               | Table 1c x          | (43)        |                    |             |                        |              | 1       |      |
| (44)m=           | <mark>8</mark> 3.31 | 80.28          | 77.26       | 74.23                     | 71.2                     | 68.17                   | 68.17               | 71.2        | 74.23              | 77.26       | 80.28                  | 83.31        |         |      |
|                  |                     |                | r           |                           |                          |                         |                     |             |                    | Total = Su  | m(44) <sub>112</sub> = | =            | 908.89  | (44) |
| Energy           | content of          | hot water      | used - cal  | culated mo                | onthly $= 4$ .           | 190 x Vd,r              | m x nm x E          | OTm / 3600  | ) kWh/mor          | nth (see Ta | ables 1b, 1            | c, 1d)       |         |      |
| (45)m=           | 123.55              | 108.06         | 111.51      | 97.22                     | 93.28                    | 80.49                   | 74.59               | 85.59       | 86.62              | 100.94      | 110.19                 | 119.65       |         |      |
| lf inctor        | tanoous w           | ratar haati    | na ot point | fuso (no                  | hot wata                 | r storago)              | ontor 0 in          | hoves (16   | ) to (61)          | Total = Su  | m(45) <sub>112</sub> = | =            | 1191.69 | (45) |
| ii iiistai       |                     |                |             |                           |                          | siorage),               |                     |             |                    |             |                        |              | 1       | (40) |
| (46)m=<br>Water  | 18.53<br>storage    | 16.21<br>loss: | 16.73       | 14.58                     | 13.99                    | 12.07                   | 11.19               | 12.84       | 12.99              | 15.14       | 16.53                  | 17.95        |         | (46) |
| Storag           | je volum            | e (litres)     | includir    | ng any so                 | olar or W                | /WHRS                   | storage             | within sa   | ame ves            | sel         |                        | 160          | 1       | (47) |
| If com           | ,<br>munity h       | eating a       | ind no ta   | ink in dw                 | velling, e               | nter 110                | ) litres in         | (47)        |                    |             |                        |              | 1       |      |
| Other            | vise if no          | stored         | hot wate    | er (this in               | icludes i                | nstantar                | neous co            | ombi boil   | ers) ente          | er '0' in ( | 47)                    |              |         |      |
| Water            | storage             | loss:          |             |                           |                          |                         |                     |             |                    |             |                        |              | _       |      |
| a) If n          | nanufact            | urer's de      | eclared I   | oss facto                 | or is kno                | wn (kWł                 | n/day):             |             |                    |             |                        | 0            |         | (48) |
| Temp             | erature f           | actor fro      | m Table     | 2b                        |                          |                         |                     |             |                    |             |                        | 0            |         | (49) |
| Energ            | y lost fro          | m water        | storage     | , kWh/ye                  | ear                      |                         |                     | (48) x (49) | =                  |             | 1                      | 10           | ]       | (50) |
| b) If n<br>Hot w | nanufact            | urer's de      | eclared (   | cylinder l<br>com Tabl    | oss fact                 | or is not<br>h/litre/da | known:              |             |                    |             |                        | 02           | 1       | (51) |
| If com           | munity h            | eating s       | ee secti    | on 4.3                    | 0 2 (100                 | 1,1110,00               | <b>xy</b> )         |             |                    |             | 0.                     | .02          |         | (31) |
| Volum            | e factor            | from Ta        | ble 2a      | -                         |                          |                         |                     |             |                    |             | 1.                     | .03          | ]       | (52) |
| Temp             | erature f           | actor fro      | m Table     | 2b                        |                          |                         |                     |             |                    |             | 0                      | .6           | ]       | (53) |
| Energ            | y lost fro          | m water        | · storage   | , kWh/ye                  | ear                      |                         |                     | (47) x (51) | x (52) x (         | 53) =       | 1.                     | 03           | ]       | (54) |
| Enter            | (50) or (           | (54) in (5     | 55)         |                           |                          |                         |                     |             |                    | 1.          | 03                     | ]            | (55)    |      |

| Water                                       | storage                                          | loss cal                                                | culated                               | for each                  | month                    |                         |                               | ((56)m = (                     | 55) × (41)                   | m                             |                              |                        |               |        |
|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------|---------------------------|--------------------------|-------------------------|-------------------------------|--------------------------------|------------------------------|-------------------------------|------------------------------|------------------------|---------------|--------|
| (56)m=                                      | 32.01                                            | 28.92                                                   | 32.01                                 | 30.98                     | 32.01                    | 30.98                   | 32.01                         | 32.01                          | 30.98                        | 32.01                         | 30.98                        | 32.01                  |               | (56)   |
| If cylind                                   | er contain                                       | s dedicate                                              | d solar sto                           | rage, (57)                | m = (56)m                | x [(50) – (             | H11)] ÷ (5                    | 0), else (5                    | 7)m = (56)                   | m where (                     | H11) is fro                  | m Append               | lix H         |        |
| (57)m=                                      | 32.01                                            | 28.92                                                   | 32.01                                 | 30.98                     | 32.01                    | 30.98                   | 32.01                         | 32.01                          | 30.98                        | 32.01                         | 30.98                        | 32.01                  |               | (57)   |
| Prima                                       | y circuit                                        | loss (ar                                                | nual) fro                             | om Table                  | 93                       | -                       |                               |                                |                              | -                             |                              | 0                      |               | (58)   |
| Prima                                       | y circuit                                        | loss cal                                                | culated                               | for each                  | month (                  | 59)m = (                | (58) ÷ 36                     | 65 × (41)                      | m                            |                               |                              |                        |               |        |
| (mo                                         | dified by                                        | factor f                                                | rom Tab                               | le H5 if t                | here is s                | solar wat               | ter heatii                    | ng and a                       | cylinde                      | r thermo                      | stat)                        |                        |               |        |
| (59)m=                                      | 23.26                                            | 21.01                                                   | 23.26                                 | 22.51                     | 23.26                    | 22.51                   | 23.26                         | 23.26                          | 22.51                        | 23.26                         | 22.51                        | 23.26                  |               | (59)   |
| Combi                                       | loss ca                                          | lculated                                                | for each                              | month                     | (61)m =                  | (60) ÷ 30               | 65 × (41)                     | )m                             |                              |                               |                              |                        |               |        |
| (61)m=                                      | 0                                                | 0                                                       | 0                                     | 0                         | 0                        | 0                       | 0                             | 0                              | 0                            | 0                             | 0                            | 0                      |               | (61)   |
| Total h                                     | neat req                                         | uired for                                               | water h                               | eating ca                 | alculated                | l for eac               | h month                       | (62)m =                        | 0.85 ×                       | (45)m +                       | (46)m +                      | (57)m +                | (59)m + (61)m | n      |
| (62)m=                                      | 178.83                                           | 157.99                                                  | 166.79                                | 150.71                    | 148.56                   | 133.99                  | 129.87                        | 140.87                         | 140.11                       | 156.22                        | 163.68                       | 174.93                 |               | (62)   |
| Solar D                                     | HW input                                         | calculated                                              | using App                             | endix G o                 | Appendix                 | H (negati               | ve quantity                   | y) (enter '0                   | ' if no sola                 | r contribut                   | ion to wate                  | er heating)            |               |        |
| (add a                                      | dditiona                                         | l lines if                                              | FGHRS                                 | and/or \                  | WWHRS                    | applies                 | , see Ap                      | pendix (                       | <u>3)</u>                    |                               |                              |                        |               |        |
| (63)m=                                      | 0                                                | 0                                                       | 0                                     | 0                         | 0                        | 0                       | 0                             | 0                              | 0                            | 0                             | 0                            | 0                      |               | (63)   |
| Outpu                                       | t from w                                         | ater hea                                                | ter                                   |                           |                          |                         |                               |                                |                              | -                             | -                            |                        |               |        |
| (64)m=                                      | 178.83                                           | 157.99                                                  | 166.79                                | 150.71                    | 148.56                   | 133.99                  | 129.87                        | 140.87                         | 140.11                       | 156.22                        | 163.68                       | 174.93                 |               | _      |
|                                             |                                                  |                                                         |                                       |                           |                          |                         |                               | Outp                           | out from w                   | ater heate                    | r (annual)₁                  | 12                     | 1842.53       | (64)   |
| Hea <mark>t g</mark>                        | ains fro                                         | m water                                                 | heating                               | , kWh/m                   | onth 0.2                 | <mark>5 ´</mark> [0.85  | × (45)m                       | n + (61)n                      | n] + 0.8 x                   | k [(46)m                      | + (57)m                      | + (59)m                | ]             |        |
| (65)m=                                      | <mark>5</mark> 9.69                              | 52.7 <mark>4</mark>                                     | 55.69                                 | 50.33                     | 49.63                    | 44.77                   | 43.41                         | 47.07                          | 46.81                        | 52.17                         | 54.65                        | 58.4                   |               | (65)   |
| inclu                                       | ude (57)                                         | m in calo                                               | culation                              | of (65)m                  | only if c                | ylinder i               | s in the o                    | dwelling                       | or hot w                     | ate <mark>r is f</mark> r     | om com                       | <mark>mu</mark> nity h | eating        |        |
| <b>5.</b> In                                | ternal ga                                        | ains (see                                               | e Table {                             | 5 and 5a                  | ):                       |                         |                               |                                |                              |                               |                              |                        |               |        |
| Metab                                       | olic gair                                        | s (Table                                                | 5), Wat                               | ts                        |                          |                         |                               | •                              |                              | _                             |                              |                        |               |        |
|                                             | Jan                                              | Feb                                                     | Mar                                   | Apr                       | May                      | Jun                     | Jul                           | Aug                            | Sep                          | Oct                           | Nov                          | Dec                    |               |        |
| (66)m=                                      | 87.45                                            | 87.45                                                   | 87.45                                 | 87.45                     | 87.45                    | 87.45                   | 87.45                         | 87.45                          | 87.45                        | 87.45                         | 87.45                        | 87.45                  |               | (66)   |
| Lightir                                     | ig gains                                         | (calcula                                                | ted in Ap                             | opendix                   | L, equat                 | ion L9 o                | r L9a), a                     | lso see                        | Table 5                      |                               |                              |                        |               |        |
| (67)m=                                      | 28.32                                            | 25.16                                                   | 20.46                                 | 15.49                     | 11.58                    | 9.77                    | 10.56                         | 13.73                          | 18.43                        | 23.4                          | 27.31                        | 29.11                  |               | (67)   |
| Applia                                      | nces ga                                          | ins (calc                                               | ulated ir                             | n Append                  | dix L, eq                | uation L                | 13 or L1                      | 3a), also                      | see Ta                       | ble 5                         |                              |                        |               |        |
| (68)m=                                      | 152.43                                           | 154.01                                                  | 150.02                                | 141.54                    | 130.83                   | 120.76                  | 114.03                        | 112.45                         | 116.44                       | 124.92                        | 135.63                       | 145.7                  |               | (68)   |
| Cookir                                      | ng gains                                         | (calcula                                                | ted in A                              | ppendix                   | L, equat                 | tion L15                | or L15a)                      | ), also se                     | e Table                      | 5                             | _                            | -                      |               |        |
| (69)m=                                      | 31.75                                            | 31.75                                                   | 31.75                                 | 31.75                     | 31.75                    | 31.75                   | 31.75                         | 31.75                          | 31.75                        | 31.75                         | 31.75                        | 31.75                  |               | (69)   |
| Pumps                                       | s and fa                                         | ns gains                                                | (Table \$                             | 5a)                       |                          |                         |                               |                                |                              |                               |                              |                        | _             |        |
| (70)m=                                      | 0                                                | 0                                                       | 0                                     | 0                         | 0                        | 0                       | 0                             | 0                              | 0                            | 0                             | 0                            | 0                      |               | (70)   |
| Losse                                       | s e.g. ev                                        | vaporatic                                               | on (nega                              | tive valu                 | es) (Tab                 | ole 5)                  |                               |                                |                              |                               |                              |                        | -             |        |
| (71)m=                                      |                                                  |                                                         |                                       | 1                         |                          | 00.00                   | 60.06                         | -60.06                         | -60.06                       | -69.96                        | -69.96                       | -69.96                 |               | (71)   |
| · · ·                                       | -69.96                                           | -69.96                                                  | -69.96                                | -69.96                    | -69.96                   | -69.96                  | -09.90                        | -03.30                         | -03.30                       | 00.00                         |                              | 00.00                  |               | (, , , |
| Water                                       | -69.96<br>heating                                | -69.96<br>gains (T                                      | -69.96<br>able 5)                     | -69.96                    | -69.96                   | -69.96                  | -09.90                        | -03.30                         | -03.30                       | 00.00                         |                              | 00.00                  | l             | (, , , |
| Water<br>(72)m=                             | -69.96<br>heating<br>80.23                       | -69.96<br>gains (T<br>78.48                             | -69.96<br>able 5)<br>74.85            | -69.96<br>69.91           | -69.96<br>66.7           | 62.19                   | 58.35                         | 63.27                          | 65.01                        | 70.12                         | 75.9                         | 78.49                  | ]             | (72)   |
| Water<br>(72)m=<br>Total                    | -69.96<br>heating<br>80.23                       | -69.96<br>gains (T<br>78.48<br><b>gains =</b>           | -69.96<br>able 5)<br>74.85            | -69.96<br>69.91           | -69.96<br>66.7           | -69.96<br>62.19<br>(66) | 58.35<br>)m + (67)m           | 63.27<br>n + (68)m -           | 65.01<br>+ (69)m +           | 70.12<br>(70)m + (7           | 75.9<br>1)m + (72)           | 78.49                  | ]             | (72)   |
| Water<br>(72)m=<br><b>Total</b> i<br>(73)m= | -69.96<br>heating<br>80.23<br>internal<br>310.22 | -69.96<br>gains (T<br>78.48<br><b>gains =</b><br>306.88 | -69.96<br>Table 5)<br>74.85<br>294.56 | -69.96<br>69.91<br>276.17 | -69.96<br>66.7<br>258.34 | 62.19<br>(66)<br>241.95 | 58.35<br>)m + (67)m<br>232.18 | 63.27<br>n + (68)m -<br>238.68 | 65.01<br>+ (69)m +<br>249.11 | 70.12<br>(70)m + (7<br>267.68 | 75.9<br>1)m + (72)<br>288.07 | 78.49<br>m<br>302.54   | ]             | (72)   |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta             | ation:         | Access F<br>Table 6d | actor           | •            | Area<br>m² | nrea Flu<br>m² Ta |               |                | x<br>ble 6a |       | Т     | g_<br>able 6b |       | FF<br>Table 60 | 5    |            | Gains<br>(W)        |       |
|---------------------|----------------|----------------------|-----------------|--------------|------------|-------------------|---------------|----------------|-------------|-------|-------|---------------|-------|----------------|------|------------|---------------------|-------|
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 1              | 0.63        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 7.72                | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 2              | 0.32        | ×     |       | 0.76          | x     | 0.7            |      | 1 =        | 14.76               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 3              | 4.53        | ×     |       | 0.76          | ×     | 0.7            |      | 1 =        | 25.08               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 5              | 5.46        | İ x   |       | 0.76          | ×     | 0.7            |      | <b>j</b> = | 40.28               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 7              | 4.72        | ×     |       | 0.76          | x     | 0.7            |      | 1 =        | 54.27               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 7              | 9.99        | ×     |       | 0.76          | ×     | 0.7            |      | ] =        | 58.09               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 7              | 4.68        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 54.24               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 5              | 9.25        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 43.03               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 4              | 1.52        | ×     |       | 0.76          | ×     | 0.7            |      | ] =        | 30.15               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 2              | 4.19        | ×     |       | 0.76          | ×     | 0.7            |      | ] =        | 17.57               | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 1              | 3.12        | x     |       | 0.76          | x     | 0.7            |      | ] =        | 9.53                | (74)  |
| North               | 0.9x           | 0.77                 |                 | x            | 1.9        | 7                 | x             | 8              | 3.86        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 6.44                | (74)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 4              | 6.75        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 27.58               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 7              | 6.57        | x     |       | 0.76          | x     | 0.7            |      | ] =        | 45.17               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 9              | 7.53        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 57.53               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 1              | 10.23       | x     |       | 0.76          | x     | 0.7            |      | =          | 65.03               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 3                 | х             | 1'             | 14.87       | x     |       | 0.76          | x     | 0.7            |      |            | 67.76               | (78)  |
| Sout <mark>h</mark> | 0.9x           | 0.77                 |                 | x            | 1.0        | 3                 | х             | 1              | 10.55       | İ 🗴   |       | 0.76          | x     | 0.7            |      | ] =        | <mark>6</mark> 5.21 | (78)  |
| Sout <mark>h</mark> | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | х             | 10             | 08.01       | x     |       | 0.76          | x     | 0.7            |      | ] =        | 63.71               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 10             | 04.89       | x     |       | 0.76          | ×     | 0.7            |      | ] =        | 61.88               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 3                 | x             | 10             | 01.89       | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 60.1                | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | х             | 8              | 2.59        | ×     |       | 0.76          | ×     | 0.7            |      | ] =        | 48.72               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 6                 | x             | 5              | 5.42        | ×     |       | 0.76          | ×     | 0.7            |      | ] =        | 32.69               | (78)  |
| South               | 0.9x           | 0.77                 |                 | x            | 1.0        | 3                 | x             | 4              | 40.4        | ×     |       | 0.76          | x     | 0.7            |      | ] =        | 23.83               | (78)  |
|                     |                |                      |                 |              |            |                   |               |                |             |       |       |               |       |                |      |            |                     |       |
| Solar g             | ains ir        | n watts, ca          |                 | ted          | for eac    | n mont            | h<br>. I      | 100.0          | 117.05      | (83)n | n = S | um(74)m .     | (82)m | 40.00          | 20   | 207        | l                   | (83)  |
| Total o             | oo.o<br>ains – | internal a           | 02.0            | olar         | (84)m -    | (73)m             | $\frac{2}{1}$ | 123.3<br>(83)m | watts       | 102   | 4.91  | 90.25         | 00.20 | 42.22          | 30   | ).27       |                     | (00)  |
| (84)m=              | 345.52         | 366.81               | 377.            | 18           | 381.48     | 380.37            | 7 3           | 365.26         | 350.13      | 343   | 3.59  | 339.37        | 333.9 | 6 330.29       | 9 33 | 32.8       |                     | (84)  |
|                     |                |                      |                 |              | (1         |                   |               |                |             |       |       |               |       |                | -    |            |                     | (- )  |
| 7. Me               | an inte        | ernal temp           | oeratu          | ire (<br>a p | neating    | seaso<br>the liv  | n)<br>vina    | aroa f         | rom Tok     |       | Th    | 1 (%C)        |       |                |      |            | 04                  |       |
| Litilion            |                | e during n           | neaun<br>aine f | y p<br>or li |            |                   | /iliy<br>m (c |                |             | Je s  | , 111 | I ( C)        |       |                |      |            | 21                  | (03)  |
| Ullise              | lan            | Feb                  |                 | ar I         |            | May               | /             |                |             | Δ     | ua    | Sen           | 00    |                | / r  | Dec        |                     |       |
| (86)m=              | 1              | 1                    | 1               |              | 1          | 1                 |               | 0.98           | 0.93        | 0.    | 94    | 0.99          | 1     | 1              |      | 1          |                     | (86)  |
| N/1                 |                |                      |                 |              |            | - <b>T</b> 4 /    |               |                | 0 4         | 7 :   |       | . 0)          |       |                |      |            |                     |       |
| Wean                | Intern         | al temper            |                 | in I<br>7    | IVING are  | ea 11 (           |               | 20 67          | 20.86       | / IN  | 1 abl | e 9C)         | 20.1  | 3 10 77        | 10   | 12         |                     | (87)  |
| (07)11-             | 19.59          | 19.49                | 13.             | '            | 20.05      | 20.55             | <u> </u>      | 20.07          | 20.00       |       | .04   | 20.09         | 20.10 | 19.77          |      | J.42       |                     | (01)  |
| Temp                | eratur         | e during h           |                 | g p          | eriods ir  | rest o            | t dv          |                | trom Ta     | able  | 9, TI | h2 (°C)       | 40.0  | 40.04          | 1.1  |            | l                   | (00)  |
| (88)m=              | 19.86          | 19.87                | 19.8            | 07           | 19.92      | 19.93             |               | 19.98          | 19.98       | 19    | .99   | 19.96         | 19.9  | 19.91          | 19   | 9.89       |                     | (00)  |
| Utilisa             | ation fa       | ctor for g           | ains f          | or r         | est of d   | welling           | , h2          | 2,m (se        | e Table     | 9a)   |       |               |       |                |      |            | I                   | (0-1) |
| (89)m=              | 1              | 1                    | 1               |              | 1          | 0.99              |               | 0.96           | 0.85        | 0.    | 87    | 0.98          | 1     | 1              |      | 1          |                     | (89)  |

| Mean               | internal                 | l temper              | ature in                   | the rest                  | of dwelli                  | ng T2 (f                | ollow ste               | eps 3 to 7              | 7 in Tabl               | e 9c)         |             |             |           |        |
|--------------------|--------------------------|-----------------------|----------------------------|---------------------------|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------|-------------|-------------|-----------|--------|
| (90)m=             | 18.38                    | 18.49                 | 18.7                       | 19.07                     | 19.39                      | 19.75                   | 19.91                   | 19.91                   | 19.65                   | 19.23         | 18.8        | 18.44       |           | (90)   |
|                    |                          |                       |                            |                           |                            |                         |                         |                         | f                       | LA = Livin    | g area ÷ (4 | 4) =        | 0.66      | (91)   |
| Mean               | internal                 | l temper              | ature (fo                  | or the wh                 | ole dwe                    | lling) = fl             | LA × T1                 | + (1 – fL               | .A) × T2                |               |             |             |           |        |
| (92)m=             | 19.04                    | 19.15                 | 19.36                      | 19.7                      | 20.02                      | 20.36                   | 20.54                   | 20.52                   | 20.27                   | 19.86         | 19.44       | 19.08       |           | (92)   |
| Apply              | adjustr                  | nent to tl            | ne mear                    | internal                  | temper                     | ature fro               | m Table                 | 4e, whe                 | ere appro               | opriate       |             |             |           |        |
| (93)m=             | 19.04                    | 19.15                 | 19.36                      | 19.7                      | 20.02                      | 20.36                   | 20.54                   | 20.52                   | 20.27                   | 19.86         | 19.44       | 19.08       |           | (93)   |
| 8. Spa             | ace hea                  | ting requ             | uirement                   |                           |                            |                         |                         |                         |                         |               |             |             |           |        |
| Set T              | i to the r<br>ilisation  | nean int              | ernal ter                  | nperatur                  | re obtain                  | ed at ste               | ep 11 of                | Table 9t                | o, so tha               | t Ti,m=(      | 76)m an     | d re-calc   | ulate     |        |
| the ut             | Jan                      | Feb                   | Mar                        | Apr                       | Mav                        | Jun                     | Jul                     | Αυα                     | Sep                     | Oct           | Nov         | Dec         |           |        |
| Utilisa            | ation fac                | tor for g             | ains, hm                   | 1.<br>1.                  | may                        | ouri                    | 001                     | , tug                   | 000                     | 000           | 1101        | 200         |           |        |
| (94)m=             | 1                        | 1                     | 1                          | 1                         | 0.99                       | 0.97                    | 0.9                     | 0.92                    | 0.98                    | 1             | 1           | 1           |           | (94)   |
| Usefu              | I gains,                 | hmGm                  | W = (94                    | 4)m x (84                 | 4)m                        |                         |                         |                         |                         |               |             |             |           |        |
| (95)m=             | 345.37                   | 366.57                | 376.76                     | 380.53                    | 377.47                     | 354.11                  | 315.25                  | 315.19                  | 333.63                  | 333.05        | 330.05      | 332.69      |           | (95)   |
| Month              | nly avera                | age exte              | rnal tem                   | perature                  | e from Ta                  | able 8                  |                         |                         |                         |               |             |             |           |        |
| (96)m=             | 4.3                      | 4.9                   | 6.5                        | 8.9                       | 11.7                       | 14.6                    | 16.6                    | 16.4                    | 14.1                    | 10.6          | 7.1         | 4.2         |           | (96)   |
| Heat               | loss rate                | e for mea             | an interr                  | al tempe                  | erature,                   | Lm , W =                | =[(39)m :               | x [(93)m·               | – (96)m                 | ]             |             |             |           |        |
| (97)m=             | 1754.01                  | 1681.57               | 1505.17                    | 1212.46                   | 926.12                     | 613.51                  | 419.07                  | 434.87                  | 668.86                  | 1029.99       | 1396.61     | 1713.31     |           | (97)   |
| Space              | e heating                | g require             | ement fo                   | r each m                  |                            | /Vh/mon                 | th = 0.02               | 24 x [(97)              | )m – (95                | )m] x (4      | 1)m         | 1007 10     |           |        |
| (90)11=            | 1046.03                  | 003.00                | 039.34                     | 596.99                    | 400.19                     | 0                       | 0                       | Toto                    |                         | 010.02        | 107.92      | 1027.10     | 6002.05   | (08)   |
|                    |                          |                       |                            |                           |                            |                         |                         | TOta                    | i per year              | (күүп/уса     | ) = 3um(9   | 0)15,912 =  | 0092.03   |        |
| Space              | e heating                | g require             | ement in                   | kvvh/m <sup>2</sup>       | /year                      |                         |                         |                         |                         |               |             |             | 117.15    | (99)   |
| 9b. En             | ergy req                 | uiremer               | nts – Co                   | nmu <mark>nity</mark>     | heating                    | scheme                  |                         |                         |                         |               |             |             |           |        |
| This pa<br>Fractio | art is use<br>on of spa  | ed for sp<br>ace heat | ace hea<br>from se         | iting, spa<br>condarw     | ace cooli<br>/supplen      | ng or wa<br>pentary l   | ater heat<br>heating (  | ting prov<br>Table 1    | /ided by<br>1) '0' if n | a comm<br>one | unity scł   | neme.       | 0         | (301)  |
| Fractio            |                          |                       | fina                       | contact y/                |                            |                         |                         |                         | 1) 0 111                | one           |             | l           | 0         |        |
| Fractio            | n of spa                 | ice neat              | from co                    | mmunity                   | system                     | 1 – (30                 | 1) =                    |                         |                         |               |             | l           | 1         | (302)  |
| The con            | nmunity sc<br>boilers, h | heme mag<br>eat pumps | y obtain he<br>s. aeotherr | eat from se<br>mal and wa | everal sour<br>Aste heat f | rces. The p<br>rom powe | procedure<br>r stations | allows for<br>See Apper | CHP and ı<br>ndix C.    | up to four    | other heat  | sources; th | ne latter |        |
| Fractio            | n of hea                 | at from C             | Commun                     | ity boiler                | S                          | em perio                | otationio               | 0001.000                |                         |               |             |             | 1         | (303a) |
| Fractio            | n of tota                | al space              | heat fro                   | m Comn                    | nunity bo                  | oilers                  |                         |                         |                         | (3            | 02) x (303  | a) =        | 1         | (304a) |
| Factor             | for cont                 | rol and o             | charging                   | method                    | (Table 4                   | 4c(3)) fo               | r commu                 | unitv hea               | atina svs               | tem           |             | [           | 1.05      | (305)  |
| Distrib            | ution los                | s factor              | (Table 1                   | 2c) for c                 | commun                     | itv heatii              | na svste                | m                       | 5-7-                    |               |             | [           | 1.1       | (306)  |
| Space              | heating                  | 3                     | (                          | -,                        |                            | <b>,</b>                | 5 - )                   |                         |                         |               |             | l           | kWh/ve    | ar     |
| Annua              | l space l                | heating               | requiren                   | nent                      |                            |                         |                         |                         |                         |               |             | [           | 6092.05   |        |
| Space              | heat fro                 | m Comr                | nunity b                   | oilers                    |                            |                         |                         |                         | (98) x (30              | 04a) x (30    | 5) x (306)  | =           | 7036.32   | (307a) |
| Efficier           | ncy of se                | econdary              | /supple                    | mentary                   | heating                    | system                  | in % (fro               | m Table                 | e 4a or A               | ppendix       | E)          |             | 0         | (308   |
| Space              | heating                  | require               | ment fro                   | m secon                   | dary/su                    | plemen                  | tary syst               | tem                     | (98) x (30              | 01) x 100 -   | ÷ (308) =   |             | 0         | (309)  |
| Water              | heating                  | I                     |                            |                           |                            |                         |                         |                         |                         |               |             | •           |           |        |
| Annua              | l water h                | neating r             | equirem                    | ent                       |                            |                         |                         |                         |                         |               |             | [           | 1842.53   |        |
| If DHW             | / from co                | ommunit               | ty schem                   | ne:                       |                            |                         |                         |                         |                         |               |             | •           |           |        |

| Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (64) x (303a) x (3                                                                                                                                                                                                                                                                                        | 805) x (306) =                                                                                                                                                                                                                                   | 2128.12                                                                                                                                                                                    | (310a)                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01 × [(307a)(307e)                                                                                                                                                                                                                                                                                      | + (310a)(310e)] =                                                                                                                                                                                                                                | 91.64                                                                                                                                                                                      | (313)                                                                                            |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          | (314)                                                                                            |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = (107) ÷ (314) =                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          | (315)                                                                                            |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | outside                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          | (330a)                                                                                           |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          | (330b)                                                                                           |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          | (330g)                                                                                           |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =(330a) + (330b)                                                                                                                                                                                                                                                                                          | + (330g) =                                                                                                                                                                                                                                       | 0                                                                                                                                                                                          | (331)                                                                                            |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 500.21                                                                                                                                                                                     | (332)                                                                                            |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy<br>kWh/year                                                                                                                                                                                                                                                                                        | Emission factor kg CO2/kWh                                                                                                                                                                                                                       | Emissions<br>kg CO2/year                                                                                                                                                                   |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                | -                                                                                                                                                                                          |                                                                                                  |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | two fuels repeat (363) to (3                                                                                                                                                                                                                                                                              | 66) for the second fue                                                                                                                                                                                                                           | el 65                                                                                                                                                                                      | (367a)                                                                                           |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)If there is CHP usingCO2 associated with heat source 1[(307b)+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x                                                                                                                                                                                                                                                | 66) for the second fue                                                                                                                                                                                                                           | el 65<br>= 3045.42                                                                                                                                                                         | (367a)<br>(367)                                                                                  |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x                                                                                                                                                                                                                                     | 66) for the second fue<br>0 =<br>0.52 =                                                                                                                                                                                                          | 65<br>= 3045.42<br>= 47.56                                                                                                                                                                 | (367a)<br>(367)<br>(372)                                                                         |
| CO2 from other sources of space and water heating (not CHP)         Efficiency of heat source 1 (%)       If there is CHP using         CO2 associated with heat source 1       [(307b)+(         Electrical energy for heat distribution       [         Total CO2 associated with community systems       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)                                                                                                                                                                                                          | 66) for the second fue         0         0.52                                                                                                                                                                                                    | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> </ul>                                                                                                                    | (367a)<br>(367)<br>(372)<br>(373)                                                                |
| CO2 from other sources of space and water heating (not CHP)         Efficiency of heat source 1 (%)       If there is CHP using         CO2 associated with heat source 1       [(307b)+(         Electrical energy for heat distribution       [         Total CO2 associated with space heating (secondary)       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x                                                                                                                                                                                               | <ul> <li>66) for the second fue</li> <li>0</li> <li>0.52</li> <li>=</li> <li>0</li> <li>=</li> </ul>                                                                                                                                             | el 65<br>= 3045.42<br>= 47.56<br>= 3092.98<br>= 0                                                                                                                                          | (367a)<br>(367)<br>(372)<br>(373)<br>(374)                                                       |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)CO2 associated with heat source 1Electrical energy for heat distributionTotal CO2 associated with community systemsCO2 associated with space heating (secondary)CO2 associated with water from immersion heater or instantane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(312) x                                                                                                                                                                         | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.22       =                                                                | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>0</li> </ul>                                                                                              | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)                                              |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)CO2 associated with heat source 1Electrical energy for heat distributionTotal CO2 associated with community systemsCO2 associated with space heating (secondary)CO2 associated with water from immersion heater or instantaneTotal CO2 associated with space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(373) + (374) + (375) =                                                                                                                                                         | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.22       =          | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>0</li> <li>3092.98</li> </ul>                                                                             | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                                     |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)CO2 associated with heat source 1Electrical energy for heat distributionTotal CO2 associated with community systemsCO2 associated with space heating (secondary)CO2 associated with water from immersion heater or instantaneTotal CO2 associated with space and water heatingCO2 associated with electricity for pumps and fans within dwelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(373) + (374) + (375) =<br>ng (331)) x                                                                                                                                          | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.52       =         0       =         0.52       =                         | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> </ul>                                                 | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)                            |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)If there is CHP usingCO2 associated with heat source 1Electrical energy for heat distributionTotal CO2 associated with community systemsCO2 associated with space heating (secondary)CO2 associated with water from immersion heater or instantaneTotal CO2 associated with space and water heatingCO2 associated with electricity for pumps and fans within dwellingCO2 associated with electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>(309) x<br>(373) + (374) + (375) =<br>(373) + (374) + (375) =<br>(332))) x                                                                                                                 | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.52       =         0.52       =         0.52       =         0.52       = | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>259.61</li> </ul>                                 | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379)          |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)If there is CHP usingCO2 associated with heat source 1Electrical energy for heat distributionTotal CO2 associated with community systemsCO2 associated with space heating (secondary)CO2 associated with water from immersion heater or instantaneTotal CO2 associated with space and water heatingCO2 associated with electricity for pumps and fans within dwellingCO2 associated with electricity for lightingCO2 associated with electricity for lightingCO2 associated with electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{(310b)]} \times 100 \div (367b) \times \\ (310b)] \times 100 \div (367b) \times \\ (313) \times \\ (363) \dots (366) + (368) \dots (372) \\ (309) \times \\ \text{ous heater}  (312) \times \\ (373) + (374) + (375) = \\ \text{ng}  (331)) \times \\ (332))) \times \end{array}$ | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.52       =         0.52       =         0.52       =    | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>259.61</li> <li>3352.59</li> </ul>                | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379)<br>(383) |
| CO2 from other sources of space and water heating (not CHP)         Efficiency of heat source 1 (%)       If there is CHP using         CO2 associated with heat source 1       [(307b)+(         Electrical energy for heat distribution       [(307b)+(         Total CO2 associated with community systems       (         CO2 associated with space heating (secondary)       (         CO2 associated with water from immersion heater or instantane       (         Total CO2 associated with space and water heating       (         CO2 associated with electricity for pumps and fans within dwelling       (         CO2 associated with electricity for lighting       (         Electricity for lighting       (         CO3 associated with electricity for lighting       (         CO4 associated with electricity for lighting       ( | $\begin{array}{c} \text{(310b)]} \times 100 \div (367b) \times \\ (310b)] \times 100 \div (367b) \times \\ (313) \times \\ (363) \dots (366) + (368) \dots (372) \\ (309) \times \\ \text{ous heater}  (312) \times \\ (373) + (374) + (375) = \\ \text{ng}  (331)) \times \\ (332))) \times \end{array}$ | 0       =         0.52       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0       =         0.52       =         0.52       =       | <ul> <li>65</li> <li>3045.42</li> <li>47.56</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>3092.98</li> <li>0</li> <li>259.61</li> <li>3352.59</li> <li>64.47</li> </ul> | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(378)<br>(383)<br>(384) |

|                                                                                                                                                                                                                       |                                                                                                                                                           |                                                        | User D                                               | etails:                                        |                                     |                             |                       |                      |                                       |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------|-----------------------|----------------------|---------------------------------------|----------------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 20                                                                                                                                            | 12                                                     |                                                      | Stroma<br>Softwa                               | a Num<br>ire Ver                    | ber:<br>sion:               |                       | Versio               | n: 1.0.3.15                           |                            |
| A daha a a                                                                                                                                                                                                            | London                                                                                                                                                    | Pr                                                     | operty <i>i</i>                                      | Address:                                       | Unit 2                              |                             |                       |                      |                                       |                            |
| Address :                                                                                                                                                                                                             | , London                                                                                                                                                  |                                                        |                                                      |                                                |                                     |                             |                       |                      |                                       |                            |
| Basement                                                                                                                                                                                                              | 310113.                                                                                                                                                   |                                                        | Area                                                 | <b>a(m²)</b><br>55                             | (1a) x                              | <b>Av. He</b>               | <b>ight(m)</b><br>.17 | (2a) =               | <b>Volume(m<sup>3</sup></b><br>119.35 | <b>)</b><br>(3a)           |
| Total floor area TFA = (1a)                                                                                                                                                                                           | )+(1b)+(1c)+(1d)+(1                                                                                                                                       | e)+(1n                                                 | )                                                    | 55                                             | (4)                                 |                             |                       |                      |                                       |                            |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                                           |                                                        |                                                      |                                                | (3a)+(3b)                           | +(3c)+(3c                   | l)+(3e)+              | .(3n) =              | 119.35                                | (5)                        |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                                           |                                                        |                                                      |                                                |                                     |                             |                       |                      |                                       |                            |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | $ \begin{array}{c} \text{main} \\ \text{heating} \\ \hline 0 \\ \hline 0 \\ \end{array} + \begin{bmatrix} 0 \\ \hline 0 \\ \end{array} $                  | econdary<br>heating<br>0                               | y<br>] + [_<br>] + [_                                | 0<br>0                                         | ] = [                               | <b>total</b> 0 0            | x 4                   | 40 =<br>20 =         | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b)          |
| Number of intermittent fan                                                                                                                                                                                            | S                                                                                                                                                         |                                                        |                                                      |                                                | Γ                                   | 2                           | <b>x</b> ′            | 10 =                 | 20                                    | (7a)                       |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                                           |                                                        |                                                      |                                                | Ē                                   | 0                           | x ′                   | 10 =                 | 0                                     | (7b)                       |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                                        |                                                        |                                                      |                                                | Ē                                   | 0                           | X 4                   | 40 =                 | 0                                     | (7c)                       |
|                                                                                                                                                                                                                       |                                                                                                                                                           |                                                        |                                                      |                                                |                                     |                             |                       | Air ch               | anges per ho                          | our                        |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | s, flues and fans = (<br>en carried out or is intend<br>e dwelling (ns)<br>25 for steel or timber<br>sent, use the value corre<br>is); if equal user 0.35 | 6a)+(6b)+(7<br>led, proceed<br>frame or<br>sponding to | a)+(7b)+(7<br>I to (17), c<br>0.35 for<br>the greate | 7c) =<br>otherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to (<br>uction | (16)<br>[(9)          | ÷ (5) =<br>-1]x0.1 = | 0.17 0 0 0 0                          | (8)<br>(9)<br>(10)<br>(11) |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (unsea                                                                                                                                     | aled) or 0.                                            | 1 (seale                                             | ed), else                                      | enter 0                             |                             |                       |                      | 0                                     | (12)                       |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter 0                                                                                                                                     |                                                        |                                                      |                                                |                                     |                             |                       |                      | 0                                     | (13)                       |
| Percentage of windows                                                                                                                                                                                                 | and doors draught s                                                                                                                                       | stripped                                               |                                                      |                                                |                                     |                             |                       |                      | 0                                     | (14)                       |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                                           |                                                        |                                                      | 0.25 - [0.2                                    | x (14) ÷ 1                          | = [00                       |                       |                      | 0                                     | (15)                       |
| Infiltration rate                                                                                                                                                                                                     |                                                                                                                                                           |                                                        |                                                      | (8) + (10) ·                                   | + (11) + (1                         | 2) + (13) -                 | + (15) =              |                      | 0                                     | (16)                       |
| Air permeability value, q                                                                                                                                                                                             | 50, expressed in cu                                                                                                                                       | bic metres                                             | s per ho                                             | our per so $(18) = ($                          | quare m                             | etre of e                   | envelope              | area                 | 20                                    | (17)                       |
| Air permeability value applies                                                                                                                                                                                        | y value, then $(10) = [($                                                                                                                                 | 17) - 20]+(0<br>as been don                            | e or a dec                                           | se (10) = (                                    | meability                           | is heina u                  | sod                   |                      | 1.17                                  | (18)                       |
| Number of sides sheltered                                                                                                                                                                                             |                                                                                                                                                           |                                                        |                                                      |                                                | meability                           | s being u                   | 300                   |                      | 2                                     | (19)                       |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                                           |                                                        |                                                      | (20) = 1 - [                                   | 0.075 x (1                          | 9)] =                       |                       |                      | 0.85                                  | (20)                       |
| Infiltration rate incorporatir                                                                                                                                                                                        | ng shelter factor                                                                                                                                         |                                                        |                                                      | (21) = (18)                                    | x (20) =                            |                             |                       |                      | 0.99                                  | (21)                       |
| Infiltration rate modified for                                                                                                                                                                                        | r monthly wind spee                                                                                                                                       | d                                                      |                                                      |                                                |                                     |                             |                       |                      |                                       | _                          |
| Jan Feb M                                                                                                                                                                                                             | <i>I</i> lar Apr May                                                                                                                                      | Jun                                                    | Jul                                                  | Aug                                            | Sep                                 | Oct                         | Nov                   | Dec                  |                                       |                            |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                                           |                                                        |                                                      |                                                |                                     |                             |                       |                      |                                       |                            |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | .9 4.4 4.3                                                                                                                                                | 3.8                                                    | 3.8                                                  | 3.7                                            | 4                                   | 4.3                         | 4.5                   | 4.7                  |                                       |                            |
| Wind Factor (22a)m = (22)                                                                                                                                                                                             | )m ÷ 4                                                                                                                                                    |                                                        |                                                      |                                                |                                     |                             |                       |                      | I                                     |                            |
| (22a)m= 1.27 1.25 1.                                                                                                                                                                                                  | 23 1.1 1.08                                                                                                                                               | 0.95                                                   | 0.95                                                 | 0.92                                           | 1                                   | 1.08                        | 1.12                  | 1.18                 |                                       |                            |

| Adjuste                | ed infiltr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation rat                 | e (allow                  | ing for sh                  | elter an                 | d wind s               | peed) =         | (21a) x      | (22a)m            |                          |             |             |              |        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|--------------------------|------------------------|-----------------|--------------|-------------------|--------------------------|-------------|-------------|--------------|--------|
|                        | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                      | 1.22                      | 1.09                        | 1.07                     | 0.94                   | 0.94            | 0.92         | 0.99              | 1.07                     | 1.12        | 1.17        |              |        |
| Calcula                | ate effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ctive air                 | change                    | rate for t                  | he appli                 | cable ca               | se              |              |                   |                          |             |             |              | (220)  |
| lf exh                 | aust air h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eat pump                  | usina App                 | endix N. (2                 | 3b) = (23a               | i) x Fmv (e            | equation (N     | N5)), othe   | rwise (23b        | (23a) = (23a)            |             |             | 0            | (23a)  |
| lf bala                | anced wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h heat reco               | overv: effi               | ciency in %                 | allowing f               | or in-use f            | actor (from     | n Table 4h   | ) =               | (200)                    |             |             | 0            | (230)  |
| a) If                  | halance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d mech                    | anical v                  | entilation                  | with he                  | at recove              | ⊃rv (M\/I       | -IR) (24:    | ′<br>a)m – (2'    | 2h)m + (                 | (23h) ¥ [   | 1 – (23c)   | 0<br>.∸ 100] | (200)  |
| (24a)m=                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                           |                             | 0                        | 0                      |                 |              |                   |                          |             |             | ]            | (24a)  |
| b) If                  | balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d mech                    | anical v                  | entilation                  | without                  | heat rec               | coverv (N       | ///) (24h    | 1 = (2)           | 1<br>2h)m + (            | (23b)       |             | I            |        |
| (24b)m=                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                         | 0                         | 0                           | 0                        | 0                      | 0               | 0            | 0                 | 0                        | 0           | 0           |              | (24b)  |
| c) If                  | unter unter unter unter unter un terretaria de la constana de la c | i<br>ouse ex              | ract ve                   | ntilation o                 | or positiv               | re input v             | ı<br>ventilatio | n from o     | utside            |                          |             | 1           | I            |        |
| i i                    | if (22b)r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n < 0.5 >                 | (23b),                    | then (24d                   | c) = (23b                | ); other               | wise (24        | c) = (22     | o) m + 0          | .5 × (23                 | c)          |             |              |        |
| (24c)m=                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                         | 0                         | 0                           | 0                        | 0                      | 0               | 0            | 0                 | 0                        | 0           | 0           |              | (24c)  |
| d) If                  | natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ventilation               | on or wh                  | nole hous                   | e positiv                | /e input               | ventilatio      | on from      | loft              | •                        | -           |             |              |        |
| i                      | if (22b)r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n = 1, th                 | en (24d                   | )m = (22t                   | o)m othe                 | erwise (2              | 4d)m =          | 0.5 + [(2    | 2b)m² x           | 0.5]                     | 1           | ·           | 1            |        |
| (24d)m=                | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                      | 1.22                      | 1.09                        | 1.07                     | 0.94                   | 0.94            | 0.92         | 0.99              | 1.07                     | 1.12        | 1.17        |              | (24d)  |
| Effe                   | ctive air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | change                    | rate - e                  | nter (24a                   | ) or (24b                | o) or (24              | c) or (24       | d) in bo     | x (25)            |                          |             |             | 1            |        |
| (25)m=                 | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                      | 1.22                      | 1.09                        | 1.07                     | 0.94                   | 0.94            | 0.92         | 0.99              | 1.07                     | 1.12        | 1.17        |              | (25)   |
| 3. He                  | at l <mark>osse</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s and he                  | eat loss                  | paramete                    | er:                      |                        |                 |              |                   |                          |             |             |              |        |
| ELEN                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gros                      | s                         | Openin                      | gs                       | Net Ar                 | ea              | U-val        | ue                | AXU                      |             | k-value     | e            | AXk    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area                      | (m <sup>2</sup> )         | m                           | 2                        | A ,r                   | n²              | W/m2         | 2K                | (VV/                     | K)          | kJ/m²·l     | K            | kJ/K   |
| Doors                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                           |                             |                          | 1.9                    | ×               | 1.4          | =                 | 2.66                     |             |             |              | (26)   |
| Windo                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | €1                        |                           |                             |                          | 9.03                   | x1,             | /[1/( 1.6 )+ | • 0.04] =         | 13.58                    |             |             |              | (27)   |
| Windo                  | ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e 2                       |                           |                             |                          | 1.82                   | x <sup>1.</sup> | /[1/( 4.8 )+ | • <b>0</b> .04] = | 7.33                     |             |             |              | (27)   |
| Windo                  | ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e 3                       |                           |                             |                          | 0.87                   | x1.             | /[1/( 4.8 )+ | 0.04] =           | 3.5                      |             |             |              | (27)   |
| Floor                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                           |                             |                          | 55                     | x               | 0.93         | =                 | 51.15                    |             |             |              | (28)   |
| Walls 7                | Гуре1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.                       | 9                         | 10.8                        | 5                        | 18.05                  | 5 X             | 2.1          | =                 | 37.9                     |             |             |              | (29)   |
| Walls 7                | Гуре2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                       | 1                         | 2.77                        |                          | 5.04                   | x               | 2.1          | =                 | 10.58                    |             |             |              | (29)   |
| Total a                | rea of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elements                  | , m²                      |                             |                          | 91.71                  |                 |              |                   |                          |             |             |              | (31)   |
| Party v                | vall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                           |                             |                          | 27.9                   | x               | 0            | =                 | 0                        |             |             |              | (32)   |
| Party v                | vall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                           |                             |                          | 1.13                   | x               | 0            | =                 | 0                        |             |             |              | (32)   |
| * for win<br>** includ | dows and<br>le the are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l roof wind<br>as on both | ows, use<br>sides of i    | effective wi<br>nternal wal | ndow U-va<br>Is and part | alue calcul<br>titions | ated using      | formula 1    | /[(1/U-valu       | ue)+0.04] a              | as given in | n paragraph | n 3.2        |        |
| Fabric                 | heat lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ss, W/K                   | = S (A x                  | : U)                        |                          |                        |                 | (26)(30      | ) + (32) =        |                          |             |             | 126.7        | 1 (33) |
| Heat c                 | apacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cm = S                    | (Axk)                     |                             |                          |                        |                 |              | ((28).            | (30) + (3                | 2) + (32a)  | (32e) =     | 0            | (34)   |
| Therm                  | al mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | parame                    | ter (TM                   | P = Cm ÷                    | - TFA) in                | n kJ/m²K               |                 |              | Indica            | ative Value              | e: High     |             | 450          | (35)   |
| For desi<br>can be ι   | gn asses<br>ised inste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sments wh<br>ad of a de   | ere the de<br>tailed calc | etails of the<br>culation.  | constructi               | ion are noi            | t known pr      | ecisely the  | e indicative      | e values o               | f TMP in T  | able 1f     |              |        |
| Therm                  | al bridg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es : S (L                 | x Y) ca                   | Iculated u                  | using Ap                 | pendix I               | <               |              |                   |                          |             |             | 14.4         | (36)   |
| if details             | of therm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al bridging               | are not ki                | nown (36) =                 | = 0.15 x (3              | 1)                     |                 |              |                   |                          |             |             |              |        |
| Fotal fa               | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at loss                   |                           |                             |                          |                        |                 |              | (33) +            | - (36) =                 |             |             | 141.1        | 1 (37) |
| Ventila                | ition hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at loss ca                | alculate                  | d monthly                   | /                        |                        |                 | <b>.</b>     | (38)m             | $= 0.33 \times 10^{-10}$ | (25)m x (5  | )           | 1            |        |
|                        | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                       | Mar                       | Apr                         | Мау                      | Jun                    | Jul             | Aug          | Sep               | Oct                      | Nov         | Dec         |              |        |

| (38)m=             | 49.84                  | 48.86                      | 47.88                   | 43                         | 42.02                      | 37.2                      | 37.2              | 36.29            | 39.09        | 42.02                  | 43.97                  | 45.93               |                      | (38) |
|--------------------|------------------------|----------------------------|-------------------------|----------------------------|----------------------------|---------------------------|-------------------|------------------|--------------|------------------------|------------------------|---------------------|----------------------|------|
| Heat tr            | ansfer o               | coefficier                 | nt, W/K                 |                            |                            |                           |                   |                  | (39)m        | = (37) + (3            | -<br>38)m              |                     |                      |      |
| (39)m=             | 190.95                 | 189.97                     | 188.99                  | 184.11                     | 183.13                     | 178.31                    | 178.31            | 177.4            | 180.2        | 183.13                 | 185.08                 | 187.04              |                      |      |
| Heat In            | iss nara               | meter (F                   |                         | /m²K                       |                            |                           |                   |                  | (40)m        | Average =<br>- (39)m ÷ | Sum(39) <sub>1</sub>   | 12 /12=             | 183.88               | (39) |
| (40)m=             | 3.47                   | 3.45                       | 3.44                    | 3.35                       | 3.33                       | 3.24                      | 3.24              | 3.23             | 3.28         | 3.33                   | 3.37                   | 3.4                 |                      |      |
| ( - )              | -                      |                            |                         |                            |                            | -                         | _                 |                  |              | Average =              | Sum(40)1               | 12 /12=             | 3.34                 | (40) |
| Numbe              | er of day              | vs in moi                  | nth (Tab                | le 1a)                     |                            |                           |                   |                  |              |                        |                        | -<br>               |                      |      |
|                    | Jan                    | Feb                        | Mar                     | Apr                        | May                        | Jun                       | Jul               | Aug              | Sep          | Oct                    | Nov                    | Dec                 |                      | (    |
| (41)m=             | 31                     | 28                         | 31                      | 30                         | 31                         | 30                        | 31                | 31               | 30           | 31                     | 30                     | 31                  |                      | (41) |
|                    |                        |                            |                         |                            |                            |                           |                   |                  |              |                        |                        |                     |                      |      |
| 4. Wa              | ter heat               | ting enei                  | rgy requi               | irement:                   |                            |                           |                   |                  |              |                        |                        | kWh/ye              | ar:                  |      |
| Assum              | ed occu                | ipancy, l                  | N                       |                            |                            |                           |                   |                  |              |                        | 1.                     | 84                  |                      | (42) |
| if TF.             | A > 13.9<br>A £ 13.9   | 9, N = 1<br>9. N = 1       | + 1.76 x                | [1 - exp                   | (-0.0003                   | 49 x (TF                  | -A -13.9          | )2)] + 0.0       | 0013 x (     | IFA -13.               | 9)                     |                     |                      |      |
| Annual             | averag                 | e hot wa                   | ater usag               | ge in litre                | es per da                  | iy Vd,av                  | erage =           | (25 x N)         | + 36         |                        | 77                     | .84                 |                      | (43) |
| Reduce<br>not more | the annua<br>that 125  | al average<br>litres per l | hot water<br>person per | usage by :<br>r day (all w | 5% if the a<br>ater use, l | lwelling is<br>not and co | designed t<br>ld) | to achieve       | a water us   | se target o            | f                      |                     |                      |      |
|                    | Jan                    | Feb                        | ,<br>Mar                | Apr                        | May                        | Jun                       | , jul             | Aug              | Sen          | Oct                    | Nov                    | Dec                 |                      |      |
| Hot wate           | er usage i             | n litres per               | day for ea              | ach month                  | Vd,m = fa                  | ctor from T               | Table 1c x        | (43)             |              | 001                    | 1100                   |                     |                      |      |
| (44)m=             | <mark>8</mark> 5.62    | 82.51                      | 79.39                   | 76.28                      | 73.17                      | 70.05                     | 70.05             | 73.17            | 76.28        | 79.39                  | 82.51                  | <mark>8</mark> 5.62 |                      |      |
|                    |                        |                            |                         |                            |                            |                           |                   |                  |              | Total = Su             | m(44) <sub>112</sub> = | -                   | 9 <mark>34.05</mark> | (44) |
| Energy o           | content of             | hot water                  | used - cal              | culated mo                 | onthly = $4$ .             | 190 x Vd,r                | n x nm x C        | 0Tm / 3600       | ) kWh/mor    | nth (see Ta            | bles 1b, 1             | c, 1d)              |                      |      |
| (45)m=             | 126.97                 | 111.05                     | 114.6                   | 99.91                      | 95. <mark>86</mark>        | 82.72                     | 76.65             | 87.96            | 89.01        | 103.74                 | 113.24                 | 122.97              | 4004.00              |      |
| lf instant         | aneous w               | ater heatii                | ng at point             | t of use (no               | o hot water                | • storage),               | enter 0 in        | boxes (46        | ) to (61)    | 1 otal = Su            | <b>m(45)</b> 112 =     | =                   | 1224.68              | (43) |
| (46)m=             | 19.05                  | 16.66                      | 17.19                   | 14.99                      | 14.38                      | 12.41                     | 11.5              | 13.19            | 13.35        | 15.56                  | 16.99                  | 18.45               |                      | (46) |
| Water              | storage                | loss:                      |                         |                            |                            |                           |                   |                  |              |                        |                        |                     |                      |      |
| Storag             | e volum                | e (litres)                 | includir                | ng any so                  | olar or W                  | WHRS                      | storage           | within sa        | ame ves      | sel                    |                        | 160                 |                      | (47) |
| It comr<br>Otherw  | nunity n<br>vise if no | eating a                   | ind no ta<br>hot wate   | ink in dw<br>er (this in   | /elling, e<br>icludes i    | nter 110<br>nstantar      | eous co           | (47)<br>mbi boil | ers) ente    | er '0' in (            | 47)                    |                     |                      |      |
| Water              | storage                | loss:                      |                         | . (                        |                            |                           |                   |                  | ,            |                        | ,                      |                     |                      |      |
| a) If m            | anufact                | urer's de                  | eclared I               | oss facto                  | or is kno                  | wn (kWł                   | n/day):           |                  |              |                        |                        | 0                   |                      | (48) |
| Tempe              | rature f               | actor fro                  | m Table                 | 2b                         |                            |                           |                   |                  |              |                        |                        | 0                   |                      | (49) |
| Energy             | lost fro               | m water                    | storage                 | , kWh/ye                   | ear                        | or io not                 | known             | (48) x (49)      | ) =          |                        | 1                      | 10                  |                      | (50) |
| Hot wa             | ter stor               | age loss                   | factor fr               | om Tabl                    | e 2 (kW                    | h/litre/da                | known.<br>iy)     |                  |              |                        | 0.                     | .02                 |                      | (51) |
| If comr            | nunity h               | eating s                   | ee secti                | on 4.3                     | ,                          |                           |                   |                  |              |                        |                        | -                   |                      |      |
| Volume             | e factor               | from Ta                    | ble 2a                  | Oh                         |                            |                           |                   |                  |              |                        | 1.                     | .03                 |                      | (52) |
| i empe             | rature t               | actor fro                  | m I able                | 20                         |                            |                           |                   |                  | (50) (       | 50)                    | 0                      | .6                  |                      | (53) |
| Energy             | (50) or (              | m water<br>(54) in (5      | storage                 | , KVVN/Ye                  | ear                        |                           |                   | (47) x (51)      | ) x (52) x ( | 53) =                  | 1.                     | 03                  |                      | (54) |
| Water              | storage                | loss cal                   | culated f               | for each                   | month                      |                           |                   | ((56)m = (       | 55) × (41)   | m                      | L                      |                     |                      | (00) |
| (56)m=             | 32.01                  | 28.92                      | 32.01                   | 30.98                      | 32.01                      | 30.98                     | 32.01             | 32.01            | 30.98        | 32.01                  | 30.98                  | 32.01               |                      | (56) |
| If cylinde         | er contains            | s dedicate                 | d solar sto             | rage, (57)                 | m = (56)m                  | x [(50) – (               | H11)] ÷ (5        | 0), else (5      | 7)m = (56)   | m where (              | H11) is fro            | m Appendi           | хH                   |      |
| (57)m=             | 32.01                  | 28.92                      | 32.01                   | 30.98                      | 32.01                      | 30.98                     | 32.01             | 32.01            | 30.98        | 32.01                  | 30.98                  | 32.01               |                      | (57) |

| Primar       | y circuit           | loss (ar   | nnual) fro |                     |           | 0         | ]              | (58)                 |                  |                           |                 |             |               |      |
|--------------|---------------------|------------|------------|---------------------|-----------|-----------|----------------|----------------------|------------------|---------------------------|-----------------|-------------|---------------|------|
| Primar       | y circuit           | loss cal   | culated    | for each            | month (   | 59)m = (  | (58) ÷ 36      | 65 × (41)            | m                |                           |                 |             |               |      |
| (moo         | dified by           | factor f   | rom Tab    | le H5 if t          | here is s | solar wat | ter heati      | ng and a             | a cylinde        | r thermo                  | stat)           |             | 1             | (50) |
| (59)m=       | 23.26               | 21.01      | 23.26      | 22.51               | 23.26     | 22.51     | 23.26          | 23.26                | 22.51            | 23.26                     | 22.51           | 23.26       | J             | (59) |
| Combi        | loss ca             | culated    | for each   | month               | (61)m =   | (60) ÷ 36 | 65 × (41       | )m                   |                  | -                         |                 | -           | _             |      |
| (61)m=       | 0                   | 0          | 0          | 0                   | 0         | 0         | 0              | 0                    | 0                | 0                         | 0               | 0           |               | (61) |
| Total h      | eat requ            | uired for  | water h    | eating ca           | alculated | for eac   | h month        | (62)m =              | 0.85 ×           | (45)m +                   | (46)m +         | (57)m +     | (59)m + (61)m | I    |
| (62)m=       | 182.25              | 160.98     | 169.87     | 153.4               | 151.14    | 136.22    | 131.93         | 143.24               | 142.51           | 159.01                    | 166.73          | 178.24      |               | (62) |
| Solar DH     | -IW input o         | calculated | using App  | endix G o           | Appendix  | H (negati | ve quantity    | y) (enter '0         | ' if no sola     | r contribut               | ion to wate     | er heating) |               |      |
| (add a       | dditiona            | l lines if | FGHRS      | and/or \            | WWHRS     | applies   | , see Ap       | pendix (             | G)               |                           |                 |             | -             |      |
| (63)m=       | 0                   | 0          | 0          | 0                   | 0         | 0         | 0              | 0                    | 0                | 0                         | 0               | 0           |               | (63) |
| Output       | from w              | ater hea   | ter        |                     | -         |           |                |                      |                  |                           |                 |             | _             |      |
| (64)m=       | 182.25              | 160.98     | 169.87     | 153.4               | 151.14    | 136.22    | 131.93         | 143.24               | 142.51           | 159.01                    | 166.73          | 178.24      |               | _    |
|              |                     |            |            |                     |           |           |                | Outp                 | out from w       | ater heate                | r (annual)₁     | 12          | 1875.52       | (64) |
| Heat g       | ains fro            | m water    | heating    | , kWh/m             | onth 0.2  | 5 ´ [0.85 | × (45)m        | ı + (61)m            | n] + 0.8 x       | (46)m                     | + (57)m         | + (59)m     | ·]            |      |
| (65)m=       | 60.83               | 53.73      | 56.71      | 51.23               | 50.48     | 45.51     | 44.1           | 47.86                | 47.61            | 53.1                      | 55.66           | 59.5        |               | (65) |
| inclu        | ıde (57)            | m in calo  | culation   | of (65)m            | only if c | ylinder i | s in the o     | dwelling             | or hot w         | ate <mark>r is f</mark> r | om com          | munity h    | ieating       |      |
| 5. Int       | ternal ga           | ains (see  | Table 8    | 5 and 5a            | ):        |           |                |                      |                  |                           |                 |             |               |      |
| Metabo       | olic gain           | s (Table   | 5), Wat    | ts                  |           |           |                |                      |                  |                           |                 |             |               |      |
|              | Jan                 | Feb        | Mar        | Apr                 | May       | Jun       | Jul            | Aug                  | Sep              | Oct                       | Nov             | Dec         |               |      |
| (66)m=       | 9 <mark>1.87</mark> | 91.87      | 91.87      | 91. <mark>87</mark> | 91.87     | 91.87     | 91.87          | 91.87                | 91.87            | 9 <mark>1.87</mark>       | 91.87           | 91.87       |               | (66) |
| Lightin      | g gains             | (calcula   | ted in A   | opendix             | L, equat  | ion L9 o  | r L9a), a      | lso see <sup>.</sup> | Table 5          |                           |                 | -           |               |      |
| (67)m=       | 24.29               | 21.57      | 17.54      | 13.28               | 9.93      | 8.38      | 9.06           | 11.77                | 15.8             | 20.06                     | 23.42           | 24.96       |               | (67) |
| Applia       | nces ga             | ins (calc  | ulated ir  | Append              | dix L, eq | uation L  | 13 or L1       | 3a), also            | see Ta           | ble 5                     |                 |             |               |      |
| (68)m=       | 160.19              | 161.85     | 157.66     | 148.74              | 137.49    | 126.91    | 119.84         | 118.18               | 122.36           | 131.28                    | 142.54          | 153.12      | ]             | (68) |
| Cookir       | ng gains            | (calcula   | Ited in A  | ppendix             | L, equat  | tion L15  | or L15a)       | ), also se           | ee Table         | 5                         | •               |             |               |      |
| (69)m=       | 32.19               | 32.19      | 32.19      | 32.19               | 32.19     | 32.19     | 32.19          | 32.19                | 32.19            | 32.19                     | 32.19           | 32.19       | 1             | (69) |
| Pumps        | and fai             | ns gains   | (Table !   | 5a)                 |           |           |                |                      |                  |                           |                 |             |               |      |
| (70)m=       | 0                   | 0          | 0          | 0                   | 0         | 0         | 0              | 0                    | 0                | 0                         | 0               | 0           | ]             | (70) |
| Losses       | se.g. ev            | aporatic   | n (nega    | tive valu           | es) (Tab  | le 5)     |                |                      |                  |                           |                 |             | 1             |      |
| (71)m=       | -73.49              | -73.49     | -73.49     | -73.49              | -73.49    | -73.49    | -73.49         | -73.49               | -73.49           | -73.49                    | -73.49          | -73.49      | ]             | (71) |
| Water        | heating             | gains (T   | able 5)    | ļ                   | I         | 1         | I              | ļ                    | ļ                | I                         | ļ               | I           | 1             |      |
| (72)m=       | 81.76               | 79.96      | 76.23      | 71.15               | 67.86     | 63.22     | 59.27          | 64.32                | 66.12            | 71.37                     | 77.31           | 79.97       | 1             | (72) |
| Total i      | nternal             | gains =    | !          |                     |           | (66)      | l<br>m + (67)m | י<br>1 + (68)m -     | I<br>+ (69)m + ( | <u>.</u><br>(70)m + (7    | 1<br>1)m + (72) | l<br>Im     | 1             |      |
| (73)m=       | 316.79              | 313.94     | 301.99     | 283.74              | 265.83    | 249.06    | 238.73         | 244.83               | 254.85           | 273.28                    | 293.82          | 308.61      | ]             | (73) |
| 6. <u>So</u> | lar gains           | 5:         |            | I                   |           | 1         | 1              | I                    | I                | 1                         | I               | 1           |               |      |
| Solar g      | ains are o          | alculated  | using sola | r flux from         | Table 6a  | and assoc | iated equa     | ations to co         | onvert to th     | e applicat                | ole orientat    | ion.        |               |      |
| Orienta      | ation: A            | Access F   | actor      | Area                |           | Flu       | X              |                      | g_               |                           | FF              |             | Gains         |      |

| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 2     | 20.32   | x        | 0.85       | x     | 0.7      |      | =   | 15.25  | (74) |
|--------|--------------------------------------------------------------------------------------------------|------------|---------|-------|----------|---------|------------|-------|---------|----------|------------|-------|----------|------|-----|--------|------|
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 2     | 20.32   | Īx       | 0.85       | x     | 0.7      |      | =   | 7.29   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 3     | 34.53   | x        | 0.85       | ×     | 0.7      |      | =   | 25.91  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 3     | 34.53   | x        | 0.85       | x     | 0.7      |      | =   | 12.39  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 5     | 55.46   | Ī×       | 0.85       | ×     | 0.7      |      | =   | 41.62  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 5     | 55.46   | x        | 0.85       | x     | 0.7      |      | =   | 19.9   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 7     | 74.72   | x        | 0.85       | x     | 0.7      |      | =   | 56.07  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 7     | 74.72   | x        | 0.85       | x     | 0.7      |      | =   | 26.8   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 7     | 79.99   | x        | 0.85       | x     | 0.7      |      | =   | 60.02  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 7     | 79.99   | x        | 0.85       | x     | 0.7      |      | =   | 28.69  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 7     | 74.68   | x        | 0.85       | x     | 0.7      |      | =   | 56.04  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 7     | 74.68   | x        | 0.85       | x     | 0.7      |      | =   | 26.79  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 5     | 59.25   | x        | 0.85       | x     | 0.7      |      | = [ | 44.46  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 5     | 59.25   | x        | 0.85       | x     | 0.7      |      | =   | 21.25  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 4     | 11.52   | x        | 0.85       | x     | 0.7      |      | =   | 31.16  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 4     | 11.52   | x        | 0.85       | x     | 0.7      |      | = [ | 14.89  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          | 2     | 24.19   | x        | 0.85       | x     | 0.7      |      | =   | 18.15  | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          | 2     | 24.19   | х        | 0.85       | x     | 0.7      |      | =   | 8.68   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | х          | 1     | 3.12    | ] x      | 0.85       | x     | 0.7      |      | =   | 9.84   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | х          | 1     | 3.12    | ] ×      | 0.85       | x     | 0.7      |      | =   | 4.71   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 1.8      | 2       | x          |       | 8.86    | <b>x</b> | 0.85       | x     | 0.7      |      | =   | 6.65   | (74) |
| North  | 0.9x                                                                                             | 0.77       |         | x     | 0.8      | 7       | x          |       | 8.86    | x        | 0.85       | x     | 0.7      |      | =   | 3.18   | (74) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 4     | 46.75   | x        | 0.76       | x     | 0.7      |      | =   | 155.64 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 7     | 6.57    | x        | 0.76       | x     | 0.7      |      | =   | 254.91 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | g     | 97.53   | x        | 0.76       | x     | 0.7      |      | =   | 324.7  | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 10.23   | x        | 0.76       | X     | 0.7      |      | =   | 366.99 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 14.87   | x        | 0.76       | x     | 0.7      |      | =   | 382.42 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 10.55   | x        | 0.76       | x     | 0.7      |      | =   | 368.03 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 08.01   | x        | 0.76       | x     | 0.7      |      | =   | 359.59 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 04.89   | x        | 0.76       | x     | 0.7      |      | =   | 349.21 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 1     | 01.89   | x        | 0.76       | x     | 0.7      |      | =   | 339.19 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 8     | 32.59   | x        | 0.76       | x     | 0.7      |      | = [ | 274.94 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          | 5     | 55.42   | x        | 0.76       | x     | 0.7      |      | = [ | 184.49 | (78) |
| South  | 0.9x                                                                                             | 0.77       |         | x     | 9.0      | 3       | x          |       | 40.4    | <b>x</b> | 0.76       | x     | 0.7      |      | =   | 134.49 | (78) |
| Solar  | agine in                                                                                         | watte or   |         | ьч    | for each | n mont  | h          |       |         | (83)m    | - Sum(74)m | (82)m |          |      |     |        |      |
| (83)m= | 167.44                                                                                           | 277.44     | 363     |       | 428.51   | 465.3   | 4          | 56.75 | 442.42  | 414      | .92 385.24 | 301.7 | 7 199.04 | 144. | 32  |        | (83) |
| Total  | gains – i                                                                                        | internal a | nd so   | lar   | (84)m =  | : (73)m | 1<br>) + ( | 83)m  | , watts | I        |            |       | 1        |      |     |        |      |
| (84)m= | 484.23                                                                                           | 591.39     | 665     |       | 712.24   | 731.13  | 3 7        | 05.81 | 681.14  | 659      | .76 640.09 | 575.0 | 5 492.86 | 452. | 93  |        | (84) |
| 7. M   | ean inte                                                                                         | rnal temp  | eratur  | re (  | heating  | seaso   | n)         |       |         |          |            |       |          |      |     |        |      |
| Tem    | Femperature during heating periods in the living area from Table 9, Th1 (°C)       21       (85) |            |         |       |          |         |            |       |         |          |            |       |          |      |     |        |      |
| Utilis | ation fa                                                                                         | ctor for g | ains fo | or li | ving are | ea, h1, | m (s       | ее Та | ble 9a) |          |            |       |          |      | •   |        | _    |

Apr

May

Jun

Jul

Aug

Mar

Feb

Jan

Oct

Nov

Dec

Sep

| (86)m=               | 1                                                                                            | 1                     | 0.99                       | 0.99                      | 0.97                       | 0.92                    | 0.83                    | 0.86                              | 0.95                      | 0.99         | 1           | 1           |          | (86)          |
|----------------------|----------------------------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|----------------------------|-------------------------|-------------------------|-----------------------------------|---------------------------|--------------|-------------|-------------|----------|---------------|
| Mean                 | internal                                                                                     | temper                | ature in                   | living are                | ea T1 (fo                  | ollow ste               | ps 3 to 7               | in Table                          | e 9c)                     |              |             |             |          |               |
| (87)m=               | 18.75                                                                                        | 18.95                 | 19.27                      | 19.72                     | 20.16                      | 20.58                   | 20.82                   | 20.79                             | 20.46                     | 19.88        | 19.25       | 18.75       |          | (87)          |
| Temp                 | erature                                                                                      | during h              | eating p                   | eriods ir                 | n rest of                  | dwelling                | from Ta                 | able 9, Tl                        | h2 (°C)                   |              |             |             |          |               |
| (88)m=               | 19.26                                                                                        | 19.27                 | 19.28                      | 19.33                     | 19.34                      | 19.38                   | 19.38                   | 19.39                             | 19.36                     | 19.34        | 19.32       | 19.3        |          | (88)          |
| Utilisa              | ation fac                                                                                    | tor for g             | ains for                   | rest of d                 | welling,                   | h2,m (se                | e Table                 | 9a)                               |                           |              |             |             |          |               |
| (89)m=               | 1                                                                                            | 1                     | 0.99                       | 0.98                      | 0.95                       | 0.85                    | 0.64                    | 0.69                              | 0.9                       | 0.98         | 1           | 1           |          | (89)          |
| Mean                 | internal                                                                                     | temper                | ature in                   | the rest                  | of dwelli                  | ng T2 (f                | ollow ste               | eps 3 to 7                        | 7 in Tabl                 | e 9c)        |             |             |          |               |
| (90)m=               | 17.29                                                                                        | 17.49                 | 17.82                      | 18.3                      | 18.74                      | 19.16                   | 19.33                   | 19.32                             | 19.05                     | 18.46        | 17.83       | 17.32       |          | (90)          |
|                      |                                                                                              |                       |                            |                           |                            |                         |                         |                                   | f                         | LA = Livin   | g area ÷ (4 | 4) =        | 0.55     | (91)          |
| Mean                 | internal                                                                                     | temper                | ature (fo                  | or the wh                 | ole dwe                    | lling) = f              | LA × T1                 | + (1 – fL                         | A) × T2                   |              |             | _           |          |               |
| (92)m=               | 18.09                                                                                        | 18.29                 | 18.61                      | 19.08                     | 19.52                      | 19.94                   | 20.15                   | 20.13                             | ,<br>19.83                | 19.24        | 18.61       | 18.1        |          | (92)          |
| Apply                | adjustn                                                                                      | nent to tl            | ne mear                    | internal                  | temper                     | ature fro               | m Table                 | 4e, whe                           | ere appro                 | opriate      |             |             |          |               |
| (93)m=               | 18.09                                                                                        | 18.29                 | 18.61                      | 19.08                     | 19.52                      | 19.94                   | 20.15                   | 20.13                             | 19.83                     | 19.24        | 18.61       | 18.1        |          | (93)          |
| 8. Spa               | ace hea                                                                                      | ting requ             | uirement                   |                           |                            |                         |                         |                                   |                           |              |             |             |          |               |
| Set T                | i to the r                                                                                   | nean int              | ernal ter                  | nperatui                  | re obtain                  | ied at st               | ep 11 of                | Table 9                           | o, so tha                 | t Ti,m=(     | 76)m an     | d re-calc   | ulate    |               |
| the ut               | lan                                                                                          | Eeb                   | Mar                        |                           | May                        | lup                     |                         | Δυσ                               | Son                       | Oct          | Nov         | Dec         |          |               |
| Utilisa              | ation fac                                                                                    | tor for g             | ains hm                    | l. Vbi                    | Iviay                      | Jun                     |                         | <u>Aug</u>                        | Jep                       | Oci          | INOV        | Dec         |          |               |
| (94)m=               | 1                                                                                            | 0.99                  | 0.99                       | 0.98                      | 0.95                       | 0.88                    | 0.75                    | 0.78                              | 0.92                      | 0.98         | 1           | 1           |          | (94)          |
| Us <mark>efu</mark>  | ll gains,                                                                                    | hmGm ,                | W = (94                    | 4)m x (84                 | 4)m                        |                         |                         |                                   |                           |              |             |             |          |               |
| (95)m=               | <mark>48</mark> 2.98                                                                         | 588.26                | <mark>6</mark> 58.13       | 696.95                    | 695.46                     | 621.84                  | 511.73                  | 516.37                            | 589.56                    | 564.37       | 490.53      | 452.03      |          | (95)          |
| Mo <mark>nt</mark> ł | nly avera                                                                                    | age exte              | rnal terr                  | perature                  | e from Ta                  | able 8                  |                         |                                   |                           |              |             |             |          |               |
| (96)m=               | 4.3                                                                                          | 4.9                   | 6.5                        | 8.9                       | 11.7                       | 14.6                    | 16.6                    | 16.4                              | 14.1                      | 10.6         | 7.1         | 4.2         |          | (96)          |
| Heat                 | loss rate                                                                                    | e for mea             | an intern                  | al tempe                  | erature,                   | Lm , W =                | =[(39)m :               | x [(93)m                          | – (96)m                   | ]            |             |             |          | ()            |
| (97)m=               | 2633.88                                                                                      | 2543.64               | 2289.38                    | 1874.09                   | 1432.54                    | 952.89                  | 632.32                  | 661.17                            | 1031.77                   | 1582.17      | 2130.94     | 2600.63     |          | (97)          |
| Space                | e heating                                                                                    | g require             | ement fo                   | r each n                  |                            | /Vh/mon <sup>-</sup>    | th = 0.02               | 24 x [(97]                        | )m – (95                  | )m] x (4′    | 1)m         | 1500 55     |          |               |
| (90)11=              | 1000.27                                                                                      | 1314.02               | 1213.05                    | 047.04                    | 540.50                     | 0                       | 0                       | U<br>Toto                         | 0                         | 101.24       | 1101.1      | 1096.00     | 0000 75  |               |
| -                    |                                                                                              |                       |                            |                           | .,                         |                         |                         | Tota                              | i per year                | (күүп/уеаг   | ) = Sum(9   | 0)15,912 =  | 9060.75  |               |
| Space                | e heating                                                                                    | g require             | ement in                   | kWh/m <sup>2</sup>        | /year                      |                         |                         |                                   |                           |              |             |             | 164.74   | (99)          |
| 9b. En               | ergy req                                                                                     | luiremer              | nts – Cor                  | nmunity                   | heating                    | scheme                  | ;                       |                                   |                           |              |             |             |          |               |
| This pa<br>Fractio   | art is use                                                                                   | ed for sp             | ace hea                    | iting, spa                | ace cooli<br>/supplen      | ing or wa               | ater heat<br>beating (  | ting prov<br>Table 1 <sup>.</sup> | rided by a<br>1) '0' if p | a comm       | unity sch   | neme.       | 0        | <b>(</b> 301) |
| Fractio              | n of spe                                                                                     |                       | fina                       |                           |                            |                         |                         |                                   | 1) 0 11 1                 | one          |             | L           | 0        |               |
| Fractio              | n or spa                                                                                     | ice neat              | from co                    | mmunity                   | system                     | 1 – (30                 | 1) =                    |                                   |                           |              |             | l           | 1        | (302)         |
| The con              | nmunity so<br>boilers, h                                                                     | heme may<br>eat pumps | y obtain he<br>s. aeotherr | eat from se<br>mal and wa | everal sour<br>Aste heat f | rces. The p<br>rom powe | procedure<br>r stations | allows for<br>See Appel           | CHP and ι<br>ndix C.      | up to four o | other heat  | sources; th | e latter |               |
| Fractio              | n of hea                                                                                     | at from C             | Commun                     | ity boiler                | 'S                         | ioni pono               |                         | 0007.pp0                          |                           |              |             | [           | 1        | (303a)        |
| Fractio              | n of tota                                                                                    | al space              | heat fro                   | m Comn                    | nunity bo                  | oilers                  |                         |                                   |                           | (3           | 02) x (303  | a) =        | 1        | (304a)        |
| Factor               | Factor for control and charging method (Table 4c(3)) for community heating system       1.05 |                       |                            |                           |                            |                         |                         |                                   |                           |              |             |             |          | (305)         |
| Distrib              | ution los                                                                                    | s factor              | (Table 1                   | 2c) for c                 | commun                     | ity heati               | ng syste                | m                                 |                           |              |             | [           | 1.1      | (306)         |
| Space                | heating                                                                                      | 9                     |                            |                           |                            |                         |                         |                                   |                           |              |             | L           | kWh/year |               |
| Annua                | space                                                                                        | heating               | requiren                   | nent                      |                            |                         |                         |                                   |                           |              |             | [           | 9060.75  |               |
|                      |                                                                                              |                       |                            |                           |                            |                         |                         |                                   |                           |              |             |             |          |               |

| Space heat from Community boilers                                                                                            | (98) x (304a) x (305) x (306) =                  | 10465.17                 | (307a)  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|---------|
| Efficiency of secondary/supplementary heating system in % (fi                                                                | rom Table 4a or Appendix E)                      | 0                        | (308    |
| Space heating requirement from secondary/supplementary sys                                                                   | stem (98) x (301) x 100 ÷ (308) =                | 0                        | (309)   |
| Water heating<br>Annual water heating requirement                                                                            |                                                  | 1875.52                  | 7       |
| If DHW from community scheme:<br>Water heat from Community boilers                                                           | (64) x (303a) x (305) x (306) =                  | 2166.23                  | (310a)  |
| Electricity used for heat distribution                                                                                       | 0.01 × [(307a)(307e) + (310a)(310e)] =           | 126.31                   | (313)   |
| Cooling System Energy Efficiency Ratio                                                                                       |                                                  | 0                        | (314)   |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                           | ) = (107) ÷ (314) =                              | 0                        | (315)   |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input fror | n outside                                        | 0                        | (330a)  |
| warm air heating system fans                                                                                                 |                                                  | 0                        | (330b)  |
| pump for solar water heating                                                                                                 |                                                  | 0                        | (330g)  |
| Total electricity for the above, kWh/year                                                                                    | =(330a) + (330b) + (330g) =                      | 0                        | (331)   |
| Energy for lighting (calculated in Appendix L)                                                                               |                                                  | 428.94                   | (332)   |
| 12b. CO2 Emissions – Community heating scheme                                                                                |                                                  |                          |         |
| CO2 from other sources of space and water heating (not CHP<br>Efficiency of heat source 1 (%)                                | Energy<br>kWh/year Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year | ](367a) |
| CO2 associated with heat source 1 [(307b)                                                                                    | )+(310b)] x 100 ÷ (367b) x 0                     | = 4197.51                | (367)   |
| Electrical energy for heat distribution                                                                                      | [(313) x 0.52                                    | = 65.56                  | (372)   |
| Total CO2 associated with community systems                                                                                  | (363)(366) + (368)(372)                          | = 4263.07                | (373)   |
| CO2 associated with space heating (secondary)                                                                                | (309) x 0                                        | = 0                      | (374)   |
| CO2 associated with water from immersion heater or instantar                                                                 | neous heater (312) x 0.22                        | = 0                      | (375)   |
| Total CO2 associated with space and water heating                                                                            | (373) + (374) + (375) =                          | 4263.07                  | (376)   |
| CO2 associated with electricity for pumps and fans within dwe                                                                | lling (331)) x 0.52                              | = 0                      | (378)   |
| CO2 associated with electricity for lighting                                                                                 | (332))) x 0.52                                   | = 222.62                 | (379)   |
| Total CO2, kg/year sum of (376)(382) =                                                                                       |                                                  | 4485.69                  | (383)   |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                     |                                                  | 81.56                    | (384)   |
| El rating (section 14)                                                                                                       |                                                  | 43.08                    | (385)   |

| Assessor Name:<br>Software Name:<br>Strom FSAP 2012Strom A Bunder:<br>Software Version:Version:<br>Version:Version:<br>I.0.3.15Address:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Image:<br>Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | User D                | etails:                  |                             |                  |                      |              |                                       |                         |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|--------------------------|-----------------------------|------------------|----------------------|--------------|---------------------------------------|-------------------------|------|--|--|
| Address :         , london           Address :         , london           Address :         , london           Basement $51$ (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) ×           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+((1n)         51 (d)         (d) $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) =         (la) × $2.17$ (2a) (2a) × $2.17$ (2a) (2a) × $2.17$ (2b) (2a) × $2.17$ (2b) (2a) × $2.17$ (2b) (2b) × $2.10$ (2b) × $2.10$ (2b) ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assessor Name:<br>Software Name:                                                                                                                                              | Stroma FSAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 2012                                  | roporti (             | Stroma<br>Softwa         | a Num<br>ire Ver            | ber:<br>sion:    |                      | Versio       | n: 1.0.3.15                           |                         |      |  |  |
| Autres:       , (0)(0) <b>Area(m<sup>2</sup>)</b> (a) x         (b) x         (c) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               | london                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                       | roperty <i>i</i>      | Address:                 | Unit 3                      |                  |                      |              |                                       |                         |      |  |  |
| Area(m <sup>2</sup> )       Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         Basement       51       110, ar       2.17       (2a)       110,67       (3a)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       51       (4)       (a)       (a)       (a)         Dwelling volume       (3a)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Overall dwelling dime                                                                                                                                                       | nsions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |                          |                             |                  |                      |              |                                       |                         |      |  |  |
| Total floor area TFA = (1a)+(1b)+(1c)+(1c)+(1c)+(1e)+(1n)       51       (4)         Dwelling volume       (3a)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Basement                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | Area                  | <b>a(m²)</b><br>51       | (1a) x                      | <b>Av. He</b>    | <b>ight(m)</b><br>17 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>110.67 | <b>)</b><br>(3a)        |      |  |  |
| Detelling volume       (3a)+(3b)+(3c)+(3d)+(2a)+((3n) = 10.67 (5)         2. Ventilation rate:       main heating       o ther       total       m <sup>3</sup> per hour         Number of chimneys       0       +       0       =       0       x40 = 0       0       (6a)         Number of open flues       0       +       0       =       0       x40 = 0       0       (6a)         Number of intermittent fans       2       x10 = 0       7(a)       0       x40 = 0       0       7(a)         Number of flueless gas fires       0       x10 = 0       7(b)       0       x40 = 0       0       7(b)         Number of storeys in the dwalling (ns)       x10 = 0       0       7(b)       0       x40 = 0       0       7(b)         Number of storeys in the dwalling (ns)       x10 = 0       0       (9)       4(b)       0       (9)       (10)       0       (9)         Structural infiltration       0.25 for statel or timber frame or 0.35 for masony construction       0       (11)       1       0       (12)       1       1       0       (12)         If no draught lobby, enter 0.5, else enter 0       0       0       1       0       (12)       1       0       (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total floor area TFA = (1a                                                                                                                                                    | a)+(1b)+(1c)+(1c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d)+(1e)+(1n                             | )                     | 51                       | (4)                         |                  |                      |              |                                       |                         |      |  |  |
| 2. Ventilation rate:       main<br>heating<br>0       secondary<br>heating<br>0       other       total       m³ per hour         Number of chimneys       0       +       0       =       0       x40 =       0       (6a)         Number of open flues       0       +       0       =       0       x40 =       0       (6b)         Number of open flues       0       +       0       =       0       x40 =       0       (6b)         Number of intermittent fans.       2       x10 =       0       (7a)       0       x40 =       0       (7a)         Number of bluess gas fires       0       x40 =       0       (7b)       (7a)       0       x40 =       0       (7b)         If a presurisation test has been carried out or is intentied, proceed to (17), attenties contrue form (01 to (16)       0       (10)       0       (10)       0       (10)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)       0       (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dwelling volume                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                       |                          | (3a)+(3b)                   | +(3c)+(3c        | d)+(3e)+             | .(3n) =      | 110.67                                | (5)                     |      |  |  |
| main<br>heating<br>heatingsecondary<br>heatingothertotalm² per hourNumber of chimneys $0$ $+$ $0$ $=$ $0$ $x40$ $=$ $0$ $(6a)$ Number of pon flues $0$ $+$ $0$ $=$ $0$ $x20$ $0$ $(6b)$ Number of intermittent flans $2$ $x10$ $=$ $0$ $x20$ $0$ $(6b)$ Number of passive vents $0$ $x10$ $0$ $0$ $720$ Number of flueless gas fires $0$ $x40$ $0$ $0$ $720$ Number of storeys in the dwelling (ns) $A$ $0$ $x40$ $0$ $0$ $720$ Additional infiltration $0.5$ for steel or timber frame or 0.35 for masonry construction $0$ $110$ $0$ $110$ $t^{10}$ but hypes of wall are present, use the value corresponding to the greater wall area (after<br>deducting rates of opening); if equal user 0.35 $0$ $0$ $120$ $0$ $110$ $t^{10}$ but hypes of wall are present, use the value corresponding to the greater wall area (after<br>deducting rates of quenting); if equal user 0.35 $0$ $0$ $110$ $t^{10}$ but hypes of wall are present, use the value corresponding to the greater wall area (after<br>deducting rates of quenting); if equal user 0.35 $0$ $0$ $110$ $t^{11}$ but hypes of wall are present, use the value corresponding to the greater wall area (after<br>deducting rates of quenting); if equal user 0.35 $0$ $0$ $110$ $t^{11}$ but hypes of wall are present use on one or a degree are presentility is user and area (after<br>dedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Ventilation rate:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                       |                          |                             |                  |                      |              |                                       |                         |      |  |  |
| Number of intermittent fans       2       x 10 =       20       (7a)         Number of passive vents       0       x 10 =       0       (7b)         Number of flueless gas fires       0       x 40 =       0       (7c)         Air changes per hour       air changes per hour $x(5) =$ 0.18       (8)         Inflitration due to chimneys, flues and fans = (6i)+(6b)+(7a)+(7b)=       20 $x(5) =$ 0.18       (8)         Number of storeys in the dwelling (ns) $x(5) =$ 0.18       (9)       (10)       0       (10)         Addictional infitration       0.25 for steel or timber frame or 0.35 for masonry construction       0       (11)       0       (11)         If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0       0       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       (12)       0       (14)         Window infiltration rate       (20) + (10) + (11) + (12) + (13) + (15) =       0       (16)         Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area       20       (17)         I based on air permeability value applies if a pressurisation test has been done or a degree air permeability is being used       0       (14)         Air permeability value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of chimneys<br>Number of open flues                                                                                                                                    | main<br>heating<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | secondar<br>heating<br>+ 0<br>+ 0       | y<br>] + [_<br>] + [_ | 0<br>0                   | ] = [                       | <b>total</b> 0 0 | x 4                  | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b)       |      |  |  |
| Number of passive vents0 $x 10 =$ 0(7b)Number of flueless gas fires0 $x 40 =$ 0(7c)Air changes per hourInfiltration due to chimneys, flues and fans = $ 60 +(60)+(7a)+(7b)+(7c) =$ 20 $+(5) =$ 0.18(6)If a pressurisation test has been camed out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)Additional infiltration(9)0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionIf both types of wall are present, use the value corresponding to the greater wall are alfater<br>deducting areas of openings); if equal use 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If a purpose 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 0OIf or draught lobby, enter 0.05, else enter 0If the apresability value, q50, expressed in cubic metres per hour per square metre of envelope areaAir permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaNumber of sides shelteredNumber of sides shelteredIf permeability value, applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredIf permeability value, applies if a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of intermittent far                                                                                                                                                    | าร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                       |                          | Γ                           | 2                | x ′                  | 10 =         | 20                                    | (7a)                    |      |  |  |
| Number of flueless gas fires0x 40 =0 $c_{cc}$ Air changes per hourInfiltration due to chimneys, flues and fans = $(60)+(60)+(70)+(7c) =$ 20 $+(5) =$ 0.18(8)If a pressurisation test has been camed out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)Additional infiltration((9)-1):0.1 =00Additional infiltration(19)-1):0.1 =00000Additional infiltration(19)-1):0.1 =0000000Additional infiltration0.25 c for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35If supended wooden floor, enter 0.2 (Lisealed), else enter 0000011/1000011/10000 <td c<="" td=""><td>Number of passive vents</td><td></td><td></td><td></td><td></td><td>Ē</td><td>0</td><td><b>x</b> ′</td><td>10 =</td><td>0</td><td>(7b)</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td>Number of passive vents</td> <td></td> <td></td> <td></td> <td></td> <td>Ē</td> <td>0</td> <td><b>x</b> ′</td> <td>10 =</td> <td>0</td> <td>(7b)</td>                     | Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |                          |                             | Ē                | 0                    | <b>x</b> ′   | 10 =                                  | 0                       | (7b) |  |  |
| Air changes per hourInfiltration due to chimneys, flues and fans = $(66)+(6b)+(7a)+(7c) = 20 + (5) = 0.16$ (6)It a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76)Number of storeys in the dwelling (ns)Additional infiltrationStructural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If on draught lobby, enter 0.05, else enter 0Percentage of windows and doors draught strippedWindow infiltration0.25 - [0.2 x (14) + 100] =Infiltration rate(b) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaAir permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)Air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredJonInfiltration rate incorporating shelter factor(21) = (18) × (20) =JanFebMarAprMayJunJunJunJunJunJunJunJunJunJunJunJunJun <t< td=""><td>Number of flueless gas fir</td><td>es</td><td></td><td></td><td></td><td>Ē</td><td>0</td><td>X 4</td><td>40 =</td><td>0</td><td>(7c)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of flueless gas fir                                                                                                                                                    | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                       |                          | Ē                           | 0                | X 4                  | 40 =         | 0                                     | (7c)                    |      |  |  |
| Infiltration due to chimneys, flues and fans = $(6)^{+}(6b)^{+}(7a)^{+}(7b)^{+}(7c)^{+} = 20 + (5)^{+} = 0.18$ (6)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (7c)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (19)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masony construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>0 (12)<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $25 - [0.2 \times (14) \pm 100] =$<br>Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (18) = [(17) $\pm 20)^{+}(8)$ , otherwise (18) = (16)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor (22) = 1 - [0.075 \times (19)] =<br>Infiltration rate incorporating shelter factor (21) = (18) $\times (20) =$<br>3 (19)<br>Shelter factor (22) m $\pm 1.18$ (20) =<br>20 (21)<br>Infiltration rate modified for monthly wind speed<br>3 (19)<br>3 (19)<br>3 (19)<br>3 (19)<br>3 (20)<br>Infiltration rate modified for monthly wind speed<br>$3$ (21) = (18) $\times (20) =$<br>$3$ (22) $= 1 - [0.075 \times (19)] =$<br>3 (22) $= 2$ (21)<br>Infiltration rate modified for monthly wind speed<br>$3$ (22) $= 1 - [0.075 \times (19)] =$<br>3 (22) $= 0.92$ (21)<br>Infiltration rate modified for monthly wind speed<br>$3$ (20) $= 1 - [0.075 \times (19)] =$<br>3 (22) $= 0.92$ (21)<br>Infiltration rate modified for monthly wind speed<br>3 (20) $= 0.92$ (21)<br>Infiltration rate modified for monthly wind speed<br>$3$ (22) $= 1 - [0.075 \times (19)] =$<br>$3$ (22) $= 1 - [0.075 \times (19)] =$<br>$3$ (22) $= 1 - [0.075 \times (19)] =$<br>3 (20) $= 0.92$ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                       |                          |                             |                  |                      | Air ch       | anges per ho                          | ur                      |      |  |  |
| Additional infiltration[[9]-1]x0.1 =0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350(11)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area20(17)If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)1.18(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used3(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.78(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.92(21)Infiltration rate modified for monthly wind speed0(14)0.78(20)Infiltration rate modified for monthly wind speed3(19)0.78(20)Infiltration rate modified for monthly wind speed00.9210.92(21)Monthly average wind speed from Table 7(22)m =0.920.9211.081.121.18(22)m =1.231.11.080.950.9211.081.121.18 </td <td>Infilt<mark>ration</mark> due to chimney<br/>If a pressurisation test has be<br/>Number of storeys in th</td> <td colspan="13">Air channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel c</td> | Infilt <mark>ration</mark> due to chimney<br>If a pressurisation test has be<br>Number of storeys in th                                                                       | Air channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel channel c |                                         |                       |                          |                             |                  |                      |              |                                       |                         |      |  |  |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings): if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 0Percentage of windows and doors draught strippedWindow infiltration0.25 - [0.2 x (14) $\div$ 100] =Infiltration rate(B) $+$ (10) $+$ (11) $+$ (12) $+$ (13) $+$ (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area1f based on air permeability value, then (18) = [(17) $+$ 20]+(8), otherwise (18) = (16)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredShelter factorInfiltration rate incorporating shelter factor(21) = (18) x (20) =Infiltration rate modified for monthly wind speedJanFebMarAprMud Factor (22a)m = (22)m $\div$ 4(22)m=1.121.251.231.11.080.950.951.1081.121.261.271.251.231.11.241.251.231.241.251.251.261.271.261.281.291.271.26 <td>Additional infiltration</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[(9)</td> <td>-1]x0.1 =</td> <td>0</td> <td>(10)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Additional infiltration                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                       |                          |                             |                  | [(9)                 | -1]x0.1 =    | 0                                     | (10)                    |      |  |  |
| If subpended wooden noon, enter 0.2 (difference) of 0.1 (sealed), enserence of $0$ (12)<br>If no draught lobby, enter 0.05, else enter 0 $0$ (13)<br>Percentage of windows and doors draught stripped $0$ (14)<br>Window infiltration rate $0.25 \cdot [0.2 \times (14) \pm 100] = 0$ (15)<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 20 (17)<br>If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 1.18 (18)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered $(20) = 1 - [0.075 \times (19)] = 0.78$ (20)<br>Infiltration rate modified for monthly wind speed<br><u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</u><br>Monthly average wind speed from Table 7<br>(22)m= <u>5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7</u><br>Wind Factor (22a)m = (22)m ÷ 4<br>(22a)m= <u>1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Structural infiltration: 0.<br>if both types of wall are pro-<br>deducting areas of openin                                                                                    | 25 for steel or tin<br>esent, use the value<br>gs); if equal user 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mber frame or<br>corresponding to<br>35 | 0.35 for<br>the great | r masonr<br>er wall area | y constr<br>a <i>(after</i> | uction           |                      |              | 0                                     | ](11)                   |      |  |  |
| In the dragen robust, once once of the or0Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaIf based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredShelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate modified for monthly wind speedJanFebMarAprMayJunJunAu4.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.34.44.34.34.44.34.44.34.34.44.34.44.34.44.44.54.7Wind F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If no draught lobby, ent                                                                                                                                                      | 001, chief $0.2$ ( $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ter 0                                   | i (Scale              | ,u), cisc                |                             |                  |                      |              | 0                                     | $- \frac{(12)}{(13)}$   |      |  |  |
| Uniform of the table of the table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Percentage of windows                                                                                                                                                         | and doors drau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aht stripped                            |                       |                          |                             |                  |                      |              | 0                                     | $= \frac{(10)}{(14)}$   |      |  |  |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area20(17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 1.18(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used1.18(18)Number of sides sheltered3(19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.78(20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.92(21)Infiltration rate modified for monthly wind speed $\overline{10} + 4$ $\overline{3} + 3$ $\overline{3} + 3$ $\overline{3} + 3$ Monthly average wind speed from Table 7 $(22)m = 5.1 + 5 + 4.9 + 4.4 + 4.3 + 3.8 + 3.8 + 3.7 + 4 + 4.3 + 4.5 + 4.7$ $\overline{1.22} + 1.23 + 1.1 + 1.08 + 0.95 + 0.92 + 1 + 1.08 + 1.12 + 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Window infiltration                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                       |                       | 0.25 - [0.2              | x (14) ÷ 1                  | 00] =            |                      |              | 0                                     | (15)                    |      |  |  |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $20$ (17)If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ $1.18$ (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered3(20) = 1 - $[0.075 \times (19)] =$ One of sides sheltered3Shelter factor(20) = 1 - $[0.075 \times (19)] =$ One of sides sheltered3(19)Shelter factor(21) = $(18) \times (20) =$ One of sides shelteredJanFeb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonthly average wind speed from Table 7(22)m= $5.1$ 54.44.33.83.74.44.33.83.744.33.83.744.33.83.744.33.83.74.44.33.8 <td colsp<="" td=""><td>Infiltration rate</td><td></td><td></td><td></td><td>(8) + (10) -</td><td>+ (11) + (1</td><td>2) + (13) -</td><td>+ (15) =</td><td></td><td>0</td><td>(16)</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>Infiltration rate</td> <td></td> <td></td> <td></td> <td>(8) + (10) -</td> <td>+ (11) + (1</td> <td>2) + (13) -</td> <td>+ (15) =</td> <td></td> <td>0</td> <td>(16)</td> | Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                       |                          | (8) + (10) -                | + (11) + (1      | 2) + (13) -          | + (15) =     |                                       | 0                       | (16) |  |  |
| If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 1.18       (18)         Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used       3       (19)         Number of sides sheltered       3       (19)         Shelter factor       (20) = 1 - [0.075 x (19)] =       0.78       (20)         Infiltration rate incorporating shelter factor       (21) = (18) x (20) =       0.92       (21)         Infiltration rate modified for monthly wind speed       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m=       5.1       5       4.9       4.4       4.3       3.8       3.7       4       4.3       4.5       4.7         Wind Factor (22a)m = (22)m ÷ 4       (22a)m = 1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Air permeability value,                                                                                                                                                       | q50, expressed i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in cubic metre                          | s per ho              | our per so               | quare m                     | etre of e        | envelope             | area         | 20                                    | (17)                    |      |  |  |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered3Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed0.92JanFebMarAprMayJunJunAugSepOctNovDecMonthly average wind speed from Table 7 $(22)m =$ $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.3$ $4.5$ $4.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | If based on air permeabili                                                                                                                                                    | ty value, then (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(17) \div 20] + (8)$                   | 3), otherwi           | se (18) = (              | 16)                         |                  |                      |              | 1.18                                  | (18)                    |      |  |  |
| Number of sides sheltered       3       (19)         Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.78$ (20)         Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.92$ (21)         Infiltration rate modified for monthly wind speed $18) \times (20) =$ $0.92$ (21)         Infiltration rate modified for monthly wind speed $0.92$ (21)         Monthly average wind speed from Table 7 $(22)m =$ $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ $(22)m \div 4$ $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Air permeability value applies                                                                                                                                                | s if a pressurisation t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | test has been don                       | e or a deg            | gree air pei             | meability                   | is being u       | sed                  |              |                                       | _                       |      |  |  |
| Infiltration rate incorporating shelter factor       (21) = (18) × (20) =       0.78       (20)         Infiltration rate modified for monthly wind speed       (21) = (18) × (20) =       0.92       (21)         Infiltration rate modified for monthly wind speed       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m=       5.1       5       4.9       4.4       4.3       3.8       3.7       4       4.3       4.5       4.7         Wind Factor (22a)m = (22)m ÷ 4       (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of sides sheltered                                                                                                                                                     | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                       | (20) = 1 - 1             | 0 075 x (1                  | 9)] =            |                      |              | 3                                     | (19)                    |      |  |  |
| Infiltration rate modified for monthly wind speed         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4         (22a)m= $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Infiltration rate incorporati                                                                                                                                                 | na shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                                       |                       | (20) = (18)              | x(20) =                     | 0)] –            |                      |              | 0.78                                  | $ - \frac{(20)}{(21)} $ |      |  |  |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Infiltration rate modified for                                                                                                                                                | r monthly wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sneed                                   |                       | (21) = (10)              | x (20) -                    |                  |                      |              | 0.92                                  |                         |      |  |  |
| Image of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               | Mar Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May Jun                                 | Jul                   | Αυσ                      | Sen                         | Oct              | Nov                  | Dec          |                                       |                         |      |  |  |
| (22)m=       5.1       5       4.9       4.4       4.3       3.8       3.7       4       4.3       4.5       4.7         Wind Factor (22a)m = (22)m ÷ 4         (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monthly average wind an                                                                                                                                                       | and from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                       | 501                   | l ''uy                   | 000                         |                  |                      |              | l                                     |                         |      |  |  |
| Wind Factor (22a)m = (22)m $\div 4$ (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (22)m= 5.1 5                                                                                                                                                                  | 4.9 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3 3.8                                 | 3.8                   | 3.7                      | 4                           | 4.3              | 4.5                  | 4.7          |                                       |                         |      |  |  |
| (22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1  1.08  1.12  1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                               | ))m : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       | 1                        | -                           |                  |                      | I            | I                                     |                         |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (22a)m= 1.27 1.25 1                                                                                                                                                           | 1.23 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.08 0.95                               | 0.95                  | 0.92                     | 1                           | 1.08             | 1.12                 | 1.18         |                                       |                         |      |  |  |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adjuste               | ed infiltr              | ation rat               | e (allowi                 | ing for sh               | nelter an   | d wind s       | peed) =     | (21a) x        | (22a)m           | -                    |                       |                    | _                |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------------|---------------------------|--------------------------|-------------|----------------|-------------|----------------|------------------|----------------------|-----------------------|--------------------|------------------|---------------|
| Calculate effective air dange rate for the applicable case<br>If mechanical ventilation:<br>If enchanical ventilation with (23b) = (23a) × Fm (equation (N5)), otherwise (23b) = (23a)<br>If balanced with heat recovery, efficiency in % allowing for in-use factor (from Table 4h) =<br>0 (23a)<br>If balanced mechanical ventilation with heat recovery, (MV-RP) (24a)m = (22b)m + (23b) × [1 – (23c) + 100]<br>(24a)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>              | 1.17                    | 1.14                    | 1.12                      | 1.01                     | 0.98        | 0.87           | 0.87        | 0.85           | 0.92             | 0.98                 | 1.03                  | 1.08               | ĺ                |               |
| $ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calcula<br>If me      | ate ette<br>echanica    | ctive air<br>al ventila | cnange                    | rate for t               | ne appli    | cable ca       | se          |                |                  |                      |                       |                    | 0                | (23a)         |
| If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =<br>a) If balanced mechanical ventilation with heat recovery (MV/RF) (24a)m = (22b)m + (23b) × [1 - (23c) ÷ 100] (24a)m $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lf exh                | aust air h              | eat pump                | using App                 | endix N, (2              | 3b) = (23a  | a) × Fmv (e    | equation (I | N5)) , othei   | rwise (23b       | ) = (23a)            |                       |                    |                  | (23b)         |
| a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) x [1 - (23c) + 100] (24a)m $0$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lf bala               | anced with              | n heat reco             | overy: effic              | iency in %               | allowing f  | or in-use f    | actor (fron | n Table 4h     | ) =              |                      |                       |                    |                  | (23c)         |
| $ \begin{array}{c cl} \hline cl \\ cl \\ cl \\ cl \\ cl \\ cl \\ cl \\ cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a) If                 | balance                 | ed mecha                | anical ve                 | entilation               | with he     | at recove      | erv (MVI    | HR) (24a       | a)m = (22)       | 2b)m + (             | 23b) x [ <sup>,</sup> | 1 – (23c)          | ÷ 100]           | (200)         |
| b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b)<br>(24b)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (24a)m=               | 0                       | 0                       | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0                    | 0                     | 0                  |                  | (24a)         |
| $ \begin{array}{c classical conditions of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of th$                                                                                                                                               | b) If                 | balance                 | d mecha                 | anical ve                 | entilation               | without     | heat rec       | covery (N   | и<br>VV) (24b  | )m = (22         | 1<br>2b)m + (2       | 23b)                  |                    | 1                |               |
| c) If whole house extract ventilation or positive input ventilation from outside<br>if (22b)m < 0.5 x (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 x (23b)<br>(24c)m $-0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,<br>(24b)m=          | 0                       | 0                       | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0                    | 0                     | 0                  |                  | (24b)         |
| $ \begin{array}{c} \text{if } (22b)\text{m} < 0.5 \times (23b), \text{ then } (24c) = (23b); \text{ otherwise } (24c) = (22b) \text{ m} + 0.5 \times (23b) \\ (24c)\text{m} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) If                 | whole h                 | ouse ex                 | tract ver                 | ntilation c              | or positiv  | ve input v     | ventilatio  | on from c      | outside          |                      |                       |                    | 1                |               |
| $ \begin{array}{c} (24c)n & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i                     | f (22b)n                | n < 0.5 ×               | (23b), t                  | hen (24o                 | c) = (23b   | ); otherv      | wise (24    | c) = (22b      | o) m + 0.        | 5 × (23b             | <b>)</b> )            |                    | _                |               |
| d) If natural ventilation or whole house positive input ventilation from loft<br>if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + f(22b)m <sup>2</sup> x 0.5]<br>(24d)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.86 0.92 0.98 1.03 1.08 (24d)<br>Effective air change rate - enter (24a) or (24d) or (24d) in box (25)<br>(25)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(25)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(26)m = 1.17 1.14 1.12 1.01 0.98 0.88 0.88 0.88 0.88 0.92 0.98 1.03 1.08 (25)<br>(27) 1.14 1.15 0.04] = 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.14 1.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.04 (27) 1.15 0.15 0.05 (27) 1.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15                                                                                                                                                                                                                                                                                                                                                                                                      | (24c)m=               | 0                       | 0                       | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0                    | 0                     | 0                  | ĺ                | (24c)         |
| $\begin{array}{c} \text{if } (226)\text{m} = 1, \text{ then } (224)\text{m} = (225)\text{m} \text{ otherwise } (224)\text{m} = 0.5 + [(225)\text{m} \times 0.5] \\ (24)\text{m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.88 & 0.88 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline \text{Effective air change rate - enter (24a) or (24b) or (24c) or (24c) or (24d) in box (25) \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.82 & 0.98 & 1.03 & 1.08 \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.82 & 0.98 & 1.03 & 1.08 \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.82 & 0.98 & 1.03 & 1.08 \\ \hline \text{(25)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.82 & 0.98 & 1.03 & 1.08 \\ \hline \text{(26)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.82 & 0.98 & 1.03 & 1.08 \\ \hline \text{(26)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline \text{(27)m} = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.$ | d) If                 | natural                 | ventilatio              | on or wh                  | ole hous                 | e positiv   | ve input       | ventilatio  | on from I      | oft              |                      |                       |                    |                  |               |
| $ \begin{array}{c} [240]m = 1.17 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 1.03 & 1.08 & (243) \\ \hline \text{Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) \\ \hline \text{C} \end{tabular} \end$                                                                                                                           | (0,4,1)               | f (22b)n                | n = 1, th               | en (24d)                  | m = (22k)                | o)m othe    | erwise (2      | .4d)m =     | 0.5 + [(2      | 2b)m² x          | 0.5]                 | 1 4 99                | 4.00               | 1                | (244)         |
| $\begin{array}{c} \text{Lifective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25)} \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (25)_{\text{ma}} & 1.47 & 1.14 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (26)_{\text{ma}} & 1.9 & 1.41 & 1.12 & 1.01 & 0.98 & 0.88 & 0.88 & 0.86 & 0.92 & 0.98 & 1.03 & 1.08 \\ \hline (26)_{\text{midows Type 1}} & 1.9 & 1.9 & 1.9 & 1.9 & 1.14 & 1.14 & 1.28 & 1.14 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28 & 1.28$                                                 | (24d)m=               | 1.17                    | 1.14                    | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98                 | 1.03                  | 1.08               | İ                | (240)         |
| L2 /r =       L1/2       L1/2 <thl1 2<="" th=""> <thl1 2<="" th=""> <thl1 2<="" th=""></thl1></thl1></thl1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Effec                 | ctive air               | change                  | rate - er                 | nter (24a                | ) or (24t   | o) or (240     | c) or (24   | d) in boy      | (25)             | 0.00                 | 4.00                  | 4.00               | 1                | (25)          |
| 3. Heat losses and heat loss parameter:         ELEMENT       Gross<br>area (m?)       Openings<br>m²       Net Area<br>A, m²       U-value<br>W/m2K       A X U<br>(W/K)       k-value<br>kJ/m²-K       A X k<br>kJ/K         Doors       19       x       1.4       =       2.66       (27)         Windows Type 1       9.03       x/l1/(1.6.)+0.04) =       13.58       (27)         Windows Type 2       51       x       0.99       =       50.49       (28)         Walls Type1       16.1       9.03       7.11       x       2.1       =       14.33       (29)         Walls Type2       16.1       4.79       11.31       x       2.1       =       23.75       (29)         Total area of elements, m²       83.24       (31)       (31)       (32)       *       (31)         Party wall       33.3       0       =       0       (32)       *       (34)         Heat capacity Cm = S(A x k)       (26)(30) + (32) =       (17.05)       (33)       (34)       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 11       (36)       (35)       For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (25)m=                | 1.17                    | 1.14                    | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98                 | 1.03                  | 1.08               | J                | (25)          |
| ELEMENT       Gross<br>area (m <sup>2</sup> )       Openings<br>m <sup>2</sup> Net Area<br>A,m <sup>2</sup> U-value<br>W/m2K       A X k<br>(W/K)       K-value<br>KJ/K       A X k<br>KJ/K         Doors       1.9 $A, m^2$ W/m2K       K-value<br>(W/K)       A X k<br>KJ/K       (26)         Windows Type 1       1.9 $A, m^2$ W/m2K       (W/m2K       (27)         Windows Type 2       1.14       =       2.66       (27)         Floor       51 $0.99$ =       50.49       (28)         Walls Type 1       16.14       9.03       7.11 $2.1$ =       14.93       (29)         Walls Type 2       16.1       4.79       11.31 $2.1$ =       23.75       (29)         Value area of elements, m <sup>2</sup> $63.24$ (31)       (31)       Party wall       (33) $0$ =       0       (32)       *         * for windows and root windows, use effective window U-value calculated using formula 1/f(1/U-value)+0.04] a given in paragraph 3.2       (31)         Party wall       33.3 $0$ =       0       (32)       *         * include the areas on both sides of internal walls and partitions       Table if (28)       (33)       (34)       (35)       (35)       (36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3. He                 | at l <mark>osse</mark>  | s and he                | eat loss                  | paramete                 | er:         |                |             |                |                  |                      |                       |                    |                  |               |
| Doors       1.9       x       1.4       =       2.66       (26)         Windows Type 1       9.03       x1111(1.6 )+ 0.04)       =       13.58       (27)         Windows Type 2       51       x       0.99       =       50.49       (28)         Walls Type 1       16.1       9.03       7.11       x       2.1       =       14.93       (29)         Walls Type 2       16.1       4.79       11.31       x       2.1       =       23.75       (29)         Total area of elements, m <sup>2</sup> 83.24       (31)       (32)       (32)       (32)       (32)         * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2       (31)         * include the areas on both sides of internal walls and partitions       (26)(30) + (32) =       117.05       (33)         Fabric heat loss, W/K = S (A x U)       (26)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       ((28)(30) + (32) =       117.05       (33)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 11       can be used instead of a detailed calculation.       12.8       (36)         Thermal mass parameter (TMP = Cm ÷ TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ELEN                  |                         | Gros<br>area            | ss<br>(m²)                | Openin<br>m              | gs<br>2     | Net Ar<br>A ,r | rea<br>m²   | U-valı<br>W/m2 | ue<br>K          | A X U<br>(W/I        | K)                    | k-value<br>kJ/m²·l | )<br>K           | A X k<br>kJ/K |
| Windows Type 1       9.03       x111/(1.6) + 0.04) =       13.58       (27)         Windows Type 2       2.89       x111/(1.6) + 0.04) =       13.58       (27)         Floor       51       x       0.99       =       50.49       (28)         Walls Type 1       16.14       9.03       7.11       x       2.1       =       14.93       (29)         Walls Type 2       16.1       4.79       11.31       x       2.1       =       23.75       (29)         Total area of elements, m <sup>2</sup> 83.24       (31)       (32)       (31)       (32)       (32)         * include the areas on both sides of internal walls and partitions       5       (26)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       (28)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       (28)(30) + (32) + (32a)(32e) =       0       (34)         Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m <sup>2</sup> K       Indicative Value: High       450       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       (36)       (31)       (32) + (32)       (36)       (37)         Total fabric heat loss       (1.5 x (31)) <t< td=""><td>Doo<mark>rs</mark></td><td></td><td></td><td></td><td></td><td></td><td>1.9</td><td>x</td><td>1.4</td><td>=</td><td>2.66</td><td></td><td></td><td></td><td>(26)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Doo <mark>rs</mark>   |                         |                         |                           |                          |             | 1.9            | x           | 1.4            | =                | 2.66                 |                       |                    |                  | (26)          |
| Windows Type 2       2.89       x1/1/1(4.8) + 0.04]       =       11.64       (27)         Floor       51       x       0.99       =       50.49       (28)         Walls Type 1       16.14       9.03       7.11       x       2.1       =       14.93       (29)         Walls Type 2       16.1       4.79       11.31       x       2.1       =       23.75       (29)         Total area of elements, m <sup>2</sup> 83.24       (31)       (32)       *       (31)         Party wall       33.3       x       0       =       0       (32)         * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2       **         ** include the areas on both sides of internal walls and partitions       Fabric heat loss, W/K = S (A x U)       (26)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       ((28)(30) + (32) =       0       (34)       450       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       can be used instead of a detailed calculation.       12.8       (36)         If details of thermal bridging are not known (36) = 0.15 x (31)       133 + (36) =       129.85       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Win <mark>do</mark> v | ws Type                 | e 1                     |                           |                          |             | 9.03           | x1          | /[1/( 1.6 )+   | 0.04] =          | 13.58                |                       |                    |                  | (27)          |
| Floor       51       x       0.99       =       50.49       (28)         Walls Type1       16.14       9.03       7.11       x       2.1       =       14.93       (29)         Walls Type2       16.1       4.79       11.31       x       2.1       =       23.75       (29)         Total area of elements, m <sup>2</sup> 83.24       (31)       (32)       *       (31)         Party wall       33.3       x       0       =       0       (32)         * for windows and roof windows, use effective window U-value calculated using formula 1/(1/U-value)+0.04] as given in paragraph 3.2       **       **         * include the areas on both sides of internal walls and paritions       (26)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       (26)(30) + (32) =       0       (34)       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       can be used instead of a detailed calculation.       12.8       (36)         Thermal bridges : S (L x Y) calculated using Appendix K       (12)       12.8       (36)         if details of thermal bridging are not known (36) = 0.15 x (31)       (33) + (36) =       129.85       (37)         Ventilation heat loss calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Windov                | ws Type                 | 2                       |                           |                          |             | 2.89           | x1          | /[1/( 4.8 )+   | 0.04] =          | 11.64                | F                     |                    |                  | (27)          |
| Walls Type116.149.037.11x2.1=14.93(29)Walls Type216.14.7911.31x2.1=23.75(29)Total area of elements, m² $83.24$ (31)Party wall $33.3$ x0=0(32)* for windows and roof windows, use effective window U-value calculated using formula 1/(1/U-value)+0.04] as given in paragraph 3.2(31)** include the areas on both sides of internal walls and partitions(26)(30) + (32) =(32)Fabric heat loss, W/K = S (A x U)(26)(30) + (32) =(34)Heat capacity Cm = S(A x k)((28)(30) + (32) + (32a)(32e) =0Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m²KIndicative Value: High450For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f(36)can be used instead of a detailed calculation.12.8(35)Thermal bridges : S (L x Y) calculated using Appendix K12.8(36)if details of themal bridging are not known (36) = 0.15 x (31)(38) m = 0.33 x (25) m x (5)(38)Ventilation heat loss calculated monthly(38) m = 0.33 x (25) m x (5)(38)(38)m= $42.61$ $41.77$ $40.94$ $36.76$ $35.93$ $32.06$ $31.34$ $33.55$ $35.93$ $37.6$ $39.27$ (38)(38)m= $172.46$ $171.62$ $170.79$ $166.61$ $165.78$ $161.91$ $161.91$ $161.91$ $161.41$ $165.78$ $167.44$ $169.12$ <td>Floor</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>51</td> <td>×</td> <td>0.99</td> <td></td> <td>50.49</td> <td>F r</td> <td></td> <td></td> <td>(28)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Floor                 |                         |                         |                           |                          |             | 51             | ×           | 0.99           |                  | 50.49                | F r                   |                    |                  | (28)          |
| Walls Type216.14.7911.31x2.1=23.75(29)Total area of elements, m2 $33.3$ x0=0(31)Party wall $33.3$ x0=0(32)* for windows and roof windows, use effective window U-value calculated using formula $1/[(1/U-value)+0.04]$ as given in paragraph 3.2(31)** include the areas on both sides of internal walls and partitions(26)(30) + (32) =(32)Fabric heat loss, W/K = S (A x U)(26)(30) + (32) =(33)Heat capacity Cm = S(A x k)((28)(30) + (32) + (32a)(32e) =0Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m²KIndicative Value: High450For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f(36)can be used instead of a detailed calculation.12.8(36)Thermal bridges : S (L x Y) calculated using Appendix K12.8(36)if details of thermal bridging are not known (36) = 0.15 x (31)(33) + (36) =129.85(37)Ventilation heat loss calculated monthly(38)m = 0.33 x (25)m x (5)(38)m =(38)m =(37)(38)m= $42.61$ $41.77$ $40.94$ $36.76$ $35.93$ $32.06$ $31.34$ $33.55$ $35.93$ $37.6$ $39.27$ (38)Heat transfer coefficient, W/K(39)m = (37) + (38)m(39)m =(37) + (38)m(39)m =(37) + (38)m(39)m = $172.46$ $171.62$ $170.79$ $166.61$ $165.78$ $161.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Walls 7               | Гуре1                   | 16.1                    | 4                         | 9.03                     |             | 7.11           | x           | 2.1            | =                | 14.93                | i F                   |                    | $\exists \vdash$ | (29)          |
| Total area of elements, m <sup>2</sup> B3.24       (31)         Party wall       33.3       x       0       =       0       (32)         * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2       (32)         * include the areas on both sides of internal walls and partitions       (26)(30) + (32) =       (17.05       (33)         Heat capacity Cm = S(A x k)       (26)(30) + (32) =       0       (34)         Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m <sup>2</sup> K       Indicative Value: High       450       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       (33) + (36) =       12.8       (36)         if details of thermal bridges : S (L x Y) calculated using Appendix K       (12.8       (36)       (37)         Ventilation heat loss calculated monthly       (38) = 0.33 × (25) m × (5)       (38)       (39) = 0.33 × (25) m × (5)       (38)         (38)m=       42.61       41.77       40.94       36.76       35.93       32.06       32.06       31.34       33.55       35.93       37.6       39.27       (38)         (39)m=       172.46       171.62       170.79       166.61       165.78       161.91       161.91       161.91       161.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Walls 1               | Гуре2                   | 16.                     | 1                         | 4.79                     |             | 11.31          | x           | 2.1            |                  | 23.75                | F i                   |                    | $\dashv$         | (29)          |
| Party wall<br>3.3.3 x 0 = 0 (32)<br>* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2<br>* include the areas on both sides of internal walls and partitions<br>Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = (117.05 (33)<br>Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 0 (34)<br>Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m <sup>2</sup> K Indicative Value: High (450 (35)<br>For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f<br>can be used instead of a detailed calculation.<br>Thermal bridges : S (L x Y) calculated using Appendix K (33) + (36) = (12.8 (36))<br>if details of thermal bridging are not known (36) = 0.15 x (31)<br>Total fabric heat loss calculated monthly (38)m = 0.33 x (25)m x (5)<br>Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)<br>(38)m = $\frac{12.8 (36)}{42.61 41.77 40.94 36.76 35.93 32.06 32.06 31.34 33.55 35.93 37.6 39.27} (38)$<br>Heat transfer coefficient, W/K (39)m = (37) + (38)m<br>(39)m = $172.46 171.62 170.79 166.61 165.78 161.91 161.91 161.19 163.4 165.78 167.44 169.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total a               | rea of e                | lements                 | , m²                      |                          |             | 83.24          |             |                | I                |                      |                       |                    |                  | (31)          |
| * for windows and roof windows, use effective window U-value calculated using formula $1/[(1/U-value)+0.04]$ as given in paragraph 3.2<br>** include the areas on both sides of internal walls and partitions<br>Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 117.05 (33)<br>Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 0 (34)<br>Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m <sup>2</sup> K Indicative Value: High 450 (35)<br>For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f<br>can be used instead of a detailed calculation.<br>Thermal bridges : S (L x Y) calculated using Appendix K 12.8 (36)<br>if details of thermal bridging are not known (36) = 0.15 x (31)<br>Total fabric heat loss (33) + (36) = 129.85 (37)<br>Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)<br>(38)m = $\frac{1}{42.61}$ $\frac{1}{41.77}$ $\frac{1}{40.94}$ $\frac{1}{36.76}$ $\frac{1}{35.93}$ $\frac{3}{32.06}$ $\frac{3}{32.06}$ $\frac{3}{31.34}$ $\frac{3}{33.55}$ $\frac{1}{35.93}$ $\frac{3}{37.6}$ $\frac{3}{39.27}$ (38)<br>Heat transfer coefficient, W/K (39)m = (37) + (38)m<br>(39)m = $172.46$ $171.62$ $170.79$ $166.61$ $165.78$ $161.91$ $161.91$ $161.19$ $161.41$ $165.78$ $167.44$ $169.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Party v               | vall                    |                         |                           |                          |             | 33.3           | x           | 0              |                  | 0                    |                       |                    |                  | (32)          |
| ** include the areas on both sides of internal walls and partitions<br>Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 117.05 (33)<br>Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 0 (34)<br>Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m <sup>2</sup> K Indicative Value: High 450 (35)<br>For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f<br>can be used instead of a detailed calculation.<br>Thermal bridges : S (L x Y) calculated using Appendix K 12.8 (36)<br>if details of thermal bridging are not known (36) = 0.15 x (31)<br>Total fabric heat loss (33) + (36) = 129.85 (37)<br>Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5)<br>(38)m $42.61 41.77 40.94 36.76 35.93 32.06 32.06 31.34 33.55 35.93 37.6 39.27$ (38)<br>Heat transfer coefficient, W/K (39)m = (37) + (38)m<br>(39)m $172.46 171.62 170.79 166.61 165.78 161.91 161.91 161.19 163.4 165.78 167.44 169.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * for win             | dows and                | roof wind               | ows, use e                | effective wil            | ndow U-va   | alue calcul    | ated using  | formula 1      | I<br>/[(1/U-valu | ie)+0.04] a          | as given in           | paragraph          | <br>≀ 3.2        | ` `           |
| Fabric heat loss, W/K = S (A x U)       (26)(30) + (32) =       117.05       (33)         Heat capacity Cm = S(A x k)       ((28)(30) + (32) + (32a)(32e) =       0       (34)         Thermal mass parameter (TMP = Cm $\div$ TFA) in kJ/m²K       Indicative Value: High       450       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       (36)       (37)         Thermal bridges : S (L x Y) calculated using Appendix K       12.8       (36)         if details of thermal bridging are not known (36) = 0.15 x (31)       (33) + (36) =       129.85       (37)         Total fabric heat loss       (33) + (36) =       129.85       (37)         Ventilation heat loss calculated monthly       (38)m = 0.33 x (25)m x (5)       (38)         (38)m=       42.61       41.77       40.94       36.76       35.93       32.06       31.34       33.55       35.93       37.6       39.27       (38)         Heat transfer coefficient, W/K       (39)m = (37) + (38)m       (39)m = (37) + (38)m       (39)m = (37) + (38)m       (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ** includ             | e the area              | as on both              | sides of ir               | nternal wall             | ls and par  | titions        |             |                |                  |                      |                       |                    |                  |               |
| Heat capacity $Cm = S(A \times k)$ ((28)(30) + (32) + (32a)(32e) = 0 (34)         Thermal mass parameter (TMP = $Cm \div TFA$ ) in kJ/m <sup>2</sup> K       Indicative Value: High (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       (35)         For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f       (36)         ran be used instead of a detailed calculation.       12.8         Thermal bridges : S (L x Y) calculated using Appendix K       12.8         if details of thermal bridging are not known (36) = 0.15 x (31)       12.8         Total fabric heat loss       (33) + (36) =         Ventilation heat loss calculated monthly       (38)m = 0.33 × (25)m x (5)         (38)m=       42.61       41.77       40.94       36.76       35.93       32.06       31.34       33.55       35.93       37.6       39.27       (38)         Heat transfer coefficient, W/K       (39)m = (37) + (38)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fabric                | heat los                | ss, W/K :               | = S (A x                  | U)                       |             |                |             | (26)(30)       | + (32) =         |                      |                       |                    | 117.0            | (33)          |
| Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²KIndicative Value: High(35)For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1fcan be used instead of a detailed calculation.Thermal bridges : S (L x Y) calculated using Appendix K(33) + (36) =12.8(36)if details of thermal bridging are not known (36) = 0.15 x (31)Total fabric heat loss(38)m = 0.33 x (25)m x (5)Ventilation heat loss calculated monthly(38)m = 0.33 x (25)m x (5)(38)m =(38)m = 0.33 x (25)m x (5)(38)m = 0.33 x (25)m x (5)(38)m =(37) + (38)m(38)m = (37) + (38)m(39)m = (37) + (38)m(39)m = 172.46171.62170.79166.61165.78161.91161.91161.91161.91161.91161.91161.91161.91161.91161.91161.91161.91161.9112.8(36)(37) + (38)(38) m <td< td=""><td>Heat c</td><td>apacity</td><td>Cm = S(</td><td>(A x k )</td><td></td><td></td><td></td><td></td><td></td><td>((28)</td><td>(30) + (32</td><td>2) + (32a).</td><td>(32e) =</td><td>0</td><td>(34)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat c                | apacity                 | Cm = S(                 | (A x k )                  |                          |             |                |             |                | ((28)            | (30) + (32           | 2) + (32a).           | (32e) =            | 0                | (34)          |
| For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f<br>can be used instead of a detailed calculation.<br>Thermal bridges : S (L x Y) calculated using Appendix K<br>if details of thermal bridging are not known (36) = $0.15 \times (31)$<br>Total fabric heat loss<br>Ventilation heat loss calculated monthly<br>(38)m = $0.33 \times (25)m \times (5)$<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>(38)m = $42.61$ 41.77 40.94 36.76 35.93 32.06 32.06 31.34 33.55 35.93 37.6 39.27<br>Heat transfer coefficient, W/K<br>(39)m = $172.46$ 171.62 170.79 166.61 165.78 161.91 161.91 161.19 163.4 165.78 167.44 169.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Therm                 | al mass                 | parame                  | ter (TM                   | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K       |             |                | Indica           | tive Value           | : High                |                    | 450              | (35)          |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         (38)m=       42.61       41.77       40.94       36.76       35.93       32.06       31.34       33.55       35.93       37.6       39.27       (38)         (39)m = $(172.46$ 171.62       170.79       166.61       165.78       161.91       161.91       161.19       163.4       165.78       167.44       169.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | For desi<br>can be u  | gn assess<br>Ised inste | sments wh<br>ad of a de | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are not    | t known pr  | recisely the   | e indicative     | e values of          | TMP in Ta             | able 1f            |                  |               |
| (33) + (36) =       (33) + (36) =       (33) + (36) =       (33) + (36) =       (33) + (36) =       (37)         (38) m = $0.33 \times (25)m \times (5)$ (38) m = $0.33 \times (25)m \times (5)$ (38) m = $0.33 \times (25)m \times (5)$ (38) m         (38) m         (38) m         (39) m = (37) + (38) m         (39) m = (37) + (38) m         (39) m = (37) + (38) m         (39) m = (37) + (38) m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Therma                | al bridg                | es : S (L               | x Y) cal                  | culated u                | using Ap    | pendix ł       | <           |                |                  |                      |                       |                    | 12.8             | (36)          |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         (38)m = $42.61$ $41.77$ $40.94$ $36.76$ $35.93$ $32.06$ $31.34$ $33.55$ $35.93$ $37.6$ $39.27$ (38)         Heat transfer coefficient, W/K       (39)m = (37) + (38)m         (39)m = (37) + (38)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | if details            | of therma               | al bridging             | are not kr                | own (36) =               | = 0.15 x (3 | 1)             |             |                | (00)             | (0.0)                |                       |                    |                  |               |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec $(38)m =$ 42.61       41.77       40.94       36.76       35.93       32.06       31.34       33.55       35.93       37.6       39.27       (38)         Heat transfer coefficient, W/K       (39)m = (37) + (38)m         (39)m = (172.46       171.62       170.79       166.61       165.78       161.91       161.91       161.19       163.4       165.78       167.44       169.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | abric ne                | at loss                 |                           | 1                        |             |                |             |                | (33) +           | (36) =               | (05)                  |                    | 129.8            | .5 (37)       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ventila               | tion nea                |                         |                           |                          | /           | lun            | 1.1         | A              | (38)m            | = 0.33 × (           | (25)m x (5)           |                    | 1                |               |
| Heat transfer coefficient, W/K       (39)m = $(37) + (38)m$ (39)m = $172.46$ 171.62       170.79       166.61       165.78       161.91       161.91       161.19       163.4       165.78       167.44       169.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (38)m-                | Jan<br>42.61            | 11 77                   |                           | Apr<br>36.76             | 1VIAY       | Jun            | JUI         | Aug            | 32 55            | 35.02                | 1NOV                  | 20.27              |                  | (38)          |
| Heat transfer coefficient, W/K       (39)m = (37) + (38)m         (39)m=       172.46       171.62       170.79       166.61       165.78       161.91       161.19       163.4       165.78       167.44       169.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (30)11=               | 42.01                   | 41.//                   | 40.94                     | 30.70                    | 55.93       | 32.00          | 32.00       | 51.34          | 33.35            | 30.93                | 37.0                  | 39.21              | I                | (50)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat tr               | anster o                |                         | $\frac{1}{170.70}$        | 100.01                   | 105 70      | 101.01         | 101.01      | 101.10         | (39)m            | = (37) + (37) + (37) | 38)m                  | 100.10             | 1                |               |
| Average = $Sum(39)$ , $m/12$ = 166.5 (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (29)11=               | 172.40                  | 171.02                  | 170.79                    | 100.01                   | 103.78      | 101.91         | 101.91      | 101.19         | 103.4            | Average =            | Sum(39)               | 12/12=             | 166 4            | 5 (39)        |

| Heat lo                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat loss parameter (HLP), W/m²K       (40)m = (39)m ÷ (4)         40)m=       3.38       3.37       3.35       3.27       3.25       3.17       3.16       3.2       3.25       3.28       3.32 |                                   |                   |                 |                |             |            |                    |                       |             |                        |          |            |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|-----------------|----------------|-------------|------------|--------------------|-----------------------|-------------|------------------------|----------|------------|----------|
| (40)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.38                                                                                                                                                                                             | 3.37                              | 3.35              | 3.27            | 3.25           | 3.17        | 3.17       | 3.16               | 3.2                   | 3.25        | 3.28                   | 3.32     |            |          |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                      | r of day                                                                                                                                                                                         |                                   | nth (Tab          | le 12)          |                | 1           |            |                    | ,                     | Average =   | Sum(40)1               | 12 /12=  | 3.26       | (40)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan                                                                                                                                                                                              | Feb                               | Mar               | Apr             | Mav            | Jun         | Jul        | Aua                | Sep                   | Oct         | Nov                    | Dec      |            |          |
| (41)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                               | 28                                | 31                | 30              | 31             | 30          | 31         | 31                 | 30                    | 31          | 30                     | 31       |            | (41)     |
| Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                |                                   | _                 |                 |                |             |            |                    |                       |             |                        | _        |            |          |
| 4. Wat                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter heat                                                                                                                                                                                         | ting enei                         | rgy requ          | irement:        |                |             |            |                    |                       |             |                        | kWh/ye   | ear:       |          |
| Assume<br>if TF/<br>if TF/                                                                                                                                                                                                                                                                                                                                                                                                             | ed occu<br>A > 13.9<br>A £ 13.9                                                                                                                                                                  | upancy, l<br>9, N = 1<br>9, N = 1 | N<br>+ 1.76 x     | : [1 - exp      | (-0.0003       | 349 x (TF   | -A -13.9   | )2)] + 0.(         | 0013 x ( <sup>-</sup> | TFA -13     | 1.<br>.9)              | 72       |            | (42)     |
| Annual average hot water usage in litres per day Vd,average = (25 x N) + 36       75.04       (43)         Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)       [43]         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec |                                                                                                                                                                                                  |                                   |                   |                 |                |             |            |                    |                       |             |                        |          |            | (43)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jan                                                                                                                                                                                              | Feb                               | Mar               | Apr             | May            | Jun         | Jul        | Aug                | Sep                   | Oct         | Nov                    | Dec      |            |          |
| Hot wate                                                                                                                                                                                                                                                                                                                                                                                                                               | r usage ii                                                                                                                                                                                       | n litres per<br>I                 | r day for ea<br>T | ach month<br>I  | Vd,m = fa<br>I | ctor from T | Table 1c x | (43)               |                       |             |                        |          | I          |          |
| (44)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.54                                                                                                                                                                                            | 79.54                             | 76.54             | 73.54           | 70.54          | 67.54       | 67.54      | 70.54              | 73.54                 | 76.54       | 79.54                  | 82.54    | 000.48     |          |
| Energy c                                                                                                                                                                                                                                                                                                                                                                                                                               | ontent of                                                                                                                                                                                        | hot water                         | used - cal        | culated mo      | onthly $= 4$ . | 190 x Vd,r  | n x nm x D | 0Tm / 3600         | ) kWh/mor             | f(see Ta)   | ables 1b, 1            | c, 1d)   | 900.48     | (44)     |
| (45)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.41                                                                                                                                                                                           | 107.06                            | 110.48            | 96.32           | 92.42          | 79.75       | 73.9       | 84.8               | 85.81                 | 100.01      | 109.17                 | 118.55   |            | <b>-</b> |
| lf instanta                                                                                                                                                                                                                                                                                                                                                                                                                            | aneous w                                                                                                                                                                                         | ater heatii                       | ng at point       | t of use (no    | o hot water    | r storage), | enter 0 in | boxes (46          | ) to (61)             | Total = Su  | m(45) <sub>112</sub> = | •        | 1180.67    | (45)     |
| (46)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.36                                                                                                                                                                                            | 16.06                             | 16.57             | 14.45           | 13.86          | 11.96       | 11.08      | 12.72              | 12.87                 | 15          | 16.37                  | 17.78    |            | (46)     |
| Storage                                                                                                                                                                                                                                                                                                                                                                                                                                | e volum                                                                                                                                                                                          | ie (litres)                       | includir          | ng any so       | olar or M      | /WHRS       | storage    | within sa          | ame ves               | sel         |                        | 160      |            | (47)     |
| If comm                                                                                                                                                                                                                                                                                                                                                                                                                                | nunity h                                                                                                                                                                                         | eating a                          | and no ta         | ink in dw       | velling, e     | nter 110    | litres in  | (47)               |                       |             |                        |          |            |          |
| Otherw                                                                                                                                                                                                                                                                                                                                                                                                                                 | ise if no                                                                                                                                                                                        | o stored                          | hot wate          | er (this ir     | ncludes i      | nstantar    | neous co   | mbi boil           | ers) ente             | er '0' in ( | (47)                   |          |            |          |
| Water s                                                                                                                                                                                                                                                                                                                                                                                                                                | storage                                                                                                                                                                                          | loss:                             |                   | <i>.</i>        |                | (1) • (1)   | (1)        |                    |                       |             |                        |          | I          |          |
| a) If ma                                                                                                                                                                                                                                                                                                                                                                                                                               | anufact                                                                                                                                                                                          | urer's de                         | eclared I         | oss facto       | or is kno      | wn (kWł     | n/day):    |                    |                       |             |                        | 0        |            | (48)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | rature fa                                                                                                                                                                                        | actor fro                         | m Table           | 2b              |                |             |            |                    |                       |             |                        | 0        |            | (49)     |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                 | lost fro                                                                                                                                                                                         | m water                           | storage           | e, kWh/ye       | ear            | or io not   | known:     | (48) x (49)        | ) =                   |             | 1                      | 10       |            | (50)     |
| Hot wat                                                                                                                                                                                                                                                                                                                                                                                                                                | ter stora                                                                                                                                                                                        | age loss                          | factor fr         | om Tabl         | e 2 (kW        | h/litre/da  | iy)        |                    |                       |             | 0.                     | 02       |            | (51)     |
| If comm                                                                                                                                                                                                                                                                                                                                                                                                                                | hunity h                                                                                                                                                                                         | from To                           | ee secti          | on 4.3          |                |             |            |                    |                       |             |                        |          | I          | (50)     |
| Tempe                                                                                                                                                                                                                                                                                                                                                                                                                                  | rature f                                                                                                                                                                                         | Irom Ta                           | bie za<br>m Table | 2h              |                |             |            |                    |                       |             | 1.                     | 03       |            | (52)     |
| Enorm                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                   |                   |                 |                |             |            | $(47) \times (51)$ | x (52) x (            | <b>5</b> 2) | 0                      | .0       |            | (55)     |
| Energy<br>Enter (                                                                                                                                                                                                                                                                                                                                                                                                                      | 50) or (                                                                                                                                                                                         | (54) in (5                        | 501age            | ;, KVVII/ye     | al             |             |            | (47) X (31)        | )                     | 55) =       | 1.                     | 03       |            | (54)     |
| Water s                                                                                                                                                                                                                                                                                                                                                                                                                                | storage                                                                                                                                                                                          | loss cal                          | culated t         | for each        | month          |             |            | ((56)m = (         | 55) × (41)ı           | m           | L'.                    | 00       |            | ()       |
| (56)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.01                                                                                                                                                                                            | 28.92                             | 32.01             | 30.98           | 32.01          | 30.98       | 32.01      | 32.01              | 30.98                 | 32.01       | 30.98                  | 32.01    |            | (56)     |
| If cylinder                                                                                                                                                                                                                                                                                                                                                                                                                            | r contains                                                                                                                                                                                       | s dedicate                        | d solar sto       | rage, (57)      | m = (56)m      | x [(50) – ( | H11)] ÷ (5 | 0), else (5        | 7)m = (56)            | m where (   | H11) is fro            | m Append | l<br>lix H |          |
| (57)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.01                                                                                                                                                                                            | 28.92                             | 32.01             | 30.98           | 32.01          | 30.98       | 32.01      | 32.01              | 30.98                 | 32.01       | 30.98                  | 32.01    |            | (57)     |
| Primary                                                                                                                                                                                                                                                                                                                                                                                                                                | / circuit                                                                                                                                                                                        | loss (ar                          | nnual) fro        | om Table        | e 3            |             |            |                    |                       |             |                        | 0        |            | (58)     |
| Primary                                                                                                                                                                                                                                                                                                                                                                                                                                | / circuit                                                                                                                                                                                        | loss cal                          | culated           | for each        | month (        | 59)m = (    | (58) ÷ 36  | 65 × (41)          | m                     |             |                        |          | -          |          |
| mod)<br>٦                                                                                                                                                                                                                                                                                                                                                                                                                              | ified by                                                                                                                                                                                         | factor fi                         | rom Tab           | le H5 if t<br>I | here is s      | solar wat   | er heati   | ng and a           | cylinde               | r thermo    | ostat)                 | -        | I          |          |
| (59)m=                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.26                                                                                                                                                                                            | 21.01                             | 23.26             | 22.51           | 23.26          | 22.51       | 23.26      | 23.26              | 22.51                 | 23.26       | 22.51                  | 23.26    |            | (59)     |

| Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m |           |            |            |              |            |           |             |              |              |                     |              |             |               |                                       |
|-----------------------------------------------------------------|-----------|------------|------------|--------------|------------|-----------|-------------|--------------|--------------|---------------------|--------------|-------------|---------------|---------------------------------------|
| (61)m=                                                          | 0         | 0          | 0          | 0            | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (61)                                  |
| Total hea                                                       | at req    | uired for  | water h    | eating ca    | alculated  | l for eac | h month     | (62)m =      | 0.85 × (     | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |                                       |
| (62)m= 1                                                        | 177.69    | 156.99     | 165.75     | 149.81       | 147.69     | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)                                  |
| Solar DHW                                                       | V input o | calculated | using App  | pendix G o   | r Appendix | H (negati | ve quantity | /) (enter '0 | ' if no sola | r contribut         | ion to wate  | er heating) |               |                                       |
| (add add                                                        | ditiona   | l lines if | FGHRS      | and/or \     | NWHRS      | applies   | , see Ap    | pendix (     | G)           |                     |              | -           |               |                                       |
| (63)m=                                                          | 0         | 0          | 0          | 0            | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (63)                                  |
| Output fr                                                       | rom w     | ater heat  | ter        |              |            |           |             |              |              |                     |              |             |               |                                       |
| (64)m= 1                                                        | 177.69    | 156.99     | 165.75     | 149.81       | 147.69     | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               |                                       |
|                                                                 |           |            |            |              |            |           |             | Outp         | out from w   | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)                                  |
| Heat gair                                                       | ns fro    | m water    | heating    | , kWh/m      | onth 0.2   | 5 ´ [0.85 | × (45)m     | + (61)m      | n] + 0.8 x   | ‹ [(46)m            | + (57)m      | + (59)m     | ]             |                                       |
| (65)m=                                                          | 59.31     | 52.41      | 55.34      | 50.03        | 49.34      | 44.53     | 43.18       | 46.81        | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)                                  |
| include                                                         | e (57)    | m in calc  | ulation    | of (65)m     | only if c  | ylinder i | s in the c  | dwelling     | or hot w     | ater is fi          | rom com      | munity h    | eating        |                                       |
| 5. Inter                                                        | rnal ga   | ains (see  | Table      | 5 and 5a     | ):         |           |             |              |              |                     |              |             |               |                                       |
| Metaboli                                                        | ic gain   | s (Table   | 5). Wa     | tts          | /          |           |             |              |              |                     |              |             |               |                                       |
|                                                                 | Jan       | Feb        | Mar        | Apr          | May        | Jun       | Jul         | Aug          | Sep          | Oct                 | Nov          | Dec         |               |                                       |
| (66)m= 8                                                        | 85.98     | 85.98      | 85.98      | 85.98        | 85.98      | 85.98     | 85.98       | 85.98        | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)                                  |
| Lighting                                                        | gains     | (calculat  | ted in A   | ppendix      | L, equat   | ion L9 o  | r L9a), a   | lso see      | Table 5      |                     |              |             |               |                                       |
| (67)m=                                                          | 22.71     | 20.17      | 16.4       | 12.42        | 9.28       | 7.84      | 8.47        | 11.01        | 14.77        | 18.76               | 21.89        | 23.34       |               | (67)                                  |
| Applianc                                                        | es da     | ins (calc  | ulated i   | n Appeno     | dix L. ea  | uation L  | 13 or L1    | 3a), also    | see Ta       | ble 5               | 1            |             |               |                                       |
| (68)m= 1                                                        | 149.83    | 151.39     | 147.47     | 139.13       | 128.6      | 118.7     | 112.09      | 110.54       | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)                                  |
| Cooking                                                         | gains     | (calcula   | ted in A   | ppendix      | L equat    | ion I 15  | or I 15a)   | also se      | e Table      | 5                   |              |             |               |                                       |
| (69)m=                                                          | 31.6      | 31.6       | 31.6       | 31.6         | 31.6       | 31.6      | 31.6        | 31.6         | 31.6         | 31.6                | 31.6         | 31.6        |               | (69)                                  |
| Pumps a                                                         | and fa    | ns gains   | (Table     | 5a)          |            |           |             |              |              |                     |              |             |               |                                       |
| (70)m=                                                          | 0         |            | 0          |              | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (70)                                  |
|                                                                 |           | anoratio   | n (neas    | tive valu    | es) (Tab   | l         |             |              |              |                     |              |             |               |                                       |
| (71)m= -                                                        | -68.78    | -68.78     | -68.78     | -68.78       | -68.78     | -68.78    | -68.78      | -68.78       | -68.78       | -68.78              | -68.78       | -68.78      | l             | (71)                                  |
|                                                                 | aating    | (T         | able 5)    |              |            |           |             |              |              |                     |              |             |               |                                       |
| (72)m =                                                         | 79 72     | 77 99      | 74.39      | 69 49        | 66.32      | 61 84     | 58.04       | 62 91        | 64 64        | 69 71               | 75 43        | 77 99       |               | (72)                                  |
|                                                                 | tornal    | gaine –    | 1 1100     |              | 00.02      | (66)      | m + (67)m   | + (68)m -    | + (69)m + 1  | (70)m + (7)         | (1)m + (72)  | m           |               | ( )                                   |
| (73)m = 3                                                       | 301.05    | 298 33     | 287.05     | 269.83       | 252.99     | 237 17    | 227 39      | 233.25       | 242 66       | 260.05              | 279 44       | 293 35      |               | (73)                                  |
| 6 Solar                                                         | r gaing   | 200.00     | 207.00     | 200.00       | 202.00     | 201.11    | 221.00      | 200.20       | 242.00       | 200.00              | 275.44       | 200.00      |               | ()                                    |
| Solar gair                                                      | ns are o  | alculated  | using sola | ar flux from | Table 6a   | and assoc | iated equa  | tions to co  | onvert to th | e applicat          | ole orientat | ion.        |               |                                       |
| Orientati                                                       | ion: A    | Access F   | actor      | Area         |            | Flu       | x           |              | q            |                     | FF           |             | Gains         |                                       |
|                                                                 | ٦         | Table 6d   |            | m²           |            | Tal       | ble 6a      | Т            | able 6b      | Т                   | able 6c      |             | (W)           |                                       |
| North                                                           | 0.9x      | 0.77       | ×          | 2.8          | 39         | x 1       | 0.63        | x            | 0.85         | ☐ x [               | 0.7          | =           | 12.67         | (74)                                  |
| North                                                           | 0.9x      | 0.77       | ×          | 2.8          | 39         | x 2       | 20.32       | x            | 0.85         |                     | 0.7          | =           | 24.22         | (74)                                  |
| North                                                           | 0.9x      | 0.77       | ×          | 2.8          | 39         | x 3       | 34.53       | x            | 0.85         | ╡╷┝                 | 0.7          |             | 41.15         | (74)                                  |
| North                                                           | 0.9x [    | 0.77       | <b></b> ×  | 2.8          | 39         | x .       | 5.46        | ×            | 0.85         | ╡╷╞                 | 0.7          | =           | 66.09         | ]<br>(74)                             |
|                                                                 |           |            |            |              |            |           |             |              |              |                     |              | 1           |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 7       | 9.99         | x        | 0.85        | :             | < [ | 0.7           |      | =    | 95.31  | (74) |
|-----------------------|------------------------|------------------------|---------|------|-----------|----------|------------|---------|--------------|----------|-------------|---------------|-----|---------------|------|------|--------|------|
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 7       | 4.68         | X        | 0.85        |               | < [ | 0.7           |      | = [  | 88.99  | (74) |
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 5       | 9.25         | x        | 0.85        | :             | < [ | 0.7           |      | = [  | 70.6   | (74) |
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 4       | 1.52         | <b>x</b> | 0.85        | 2             | < [ | 0.7           |      | = [  | 49.47  | (74) |
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 2       | 4.19         | ] x      | 0.85        |               | < [ | 0.7           |      | = [  | 28.83  | (74) |
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          | 1       | 3.12         | x        | 0.85        | ;             | < [ | 0.7           |      | = [  | 15.63  | (74) |
| North                 | 0.9x                   | 0.77                   |         | x    | 2.8       | 9        | x          |         | 8.86         | <b>x</b> | 0.85        |               | < [ | 0.7           |      | = [  | 10.56  | (74) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 4       | 6.75         | x        | 0.76        | ;             | < [ | 0.7           |      | = [  | 155.64 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 7       | 6.57         | x        | 0.76        | ;             | < [ | 0.7           |      | = [  | 254.91 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 9       | 7.53         | x        | 0.76        | :             | < [ | 0.7           |      | = [  | 324.7  | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 10.23        | x        | 0.76        | :             | < [ | 0.7           |      | = [  | 366.99 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 14.87        | x        | 0.76        | :             | < [ | 0.7           |      | =    | 382.42 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 10.55        | x        | 0.76        |               | < [ | 0.7           |      | = [  | 368.03 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 08.01        | x        | 0.76        | ;             | < [ | 0.7           |      | = [  | 359.59 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 04.89        | x        | 0.76        | :             | < [ | 0.7           |      | =    | 349.21 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 1       | 01.89        | <b>x</b> | 0.76        | :             | < [ | 0.7           |      | = [  | 339.19 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 8       | 2.59         | x        | 0.76        | :             | < [ | 0.7           |      | = [  | 274.94 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          | 5       | 5.42         | х        | 0.76        | 2             | ĸ   | 0.7           |      | =    | 184.49 | (78) |
| Sout <mark>h</mark>   | 0.9x                   | 0.77                   |         | x    | 9.0       | 3        | x          |         | 40.4         | x        | 0.76        | ;             | ĸ   | 0.7           |      | = [  | 134.49 | (78) |
|                       |                        |                        |         |      |           |          |            |         |              |          |             |               |     |               |      |      |        |      |
| Sola <mark>r</mark> ( | <mark>gain</mark> s in | watts, <mark>ca</mark> | lculate | ed   | for eacl  | n mont   | :h         |         |              | (83)m    | n = Sum(74) | m(82)         | m   |               |      |      |        |      |
| (83)m=                | 168.32                 | 279.12                 | 365.85  | 5    | 433.08    | 471.46   | 5 4        | 63.34   | 448.58       | 419      | .81 388.6   | 67 <u>303</u> | .76 | 200.12        | 145  | .05  |        | (83) |
| Total g               | gains – i              | nternal ar             | nd sol  | ar   | (84)m =   | : (73)n  | ו + (<br>ד | 83)m    | , watts      | r        |             |               |     | _             |      |      |        |      |
| (84)m=                | 469.37                 | 577.45                 | 652.9   |      | 702.91    | 724.4    | 5 7        | 00.52   | 675.97       | 653      | .06 631.3   | 3 563         | .82 | 479.56        | 438  | 8.4  |        | (84) |
| 7. Me                 | ean inter              | nal temp               | eratur  | e (  | heating   | seasc    | n)         |         |              |          |             |               |     |               |      |      |        |      |
| Temp                  | perature               | during he              | eating  | pe   | eriods ir | the liv  | ving       | area    | from Tal     | ole 9    | , Th1 (°C)  |               |     |               |      |      | 21     | (85) |
| Utilis                | ation fac              | tor for ga             | ins fo  | r li | ving are  | ea, h1,  | m (s       | ee Ta   | ble 9a)      |          |             |               |     |               |      |      |        |      |
|                       | Jan                    | Feb                    | Mai     | ·    | Apr       | May      | /          | Jun     | Jul          | A        | ug Se       | p C           | ct  | Nov           | D    | ec   |        |      |
| (86)m=                | 1                      | 1                      | 0.99    |      | 0.98      | 0.96     |            | 0.91    | 0.8          | 0.8      | 0.94        | 0.9           | 99  | 1             | 1    |      |        | (86) |
| Mear                  | interna                | l tempera              | ature i | n li | iving are | ea T1 (  | follo      | ow ste  | ps 3 to 7    | 7 in T   | able 9c)    |               |     |               |      |      |        |      |
| (87)m=                | 18.82                  | 19.02                  | 19.34   |      | 19.79     | 20.23    |            | 20.63   | 20.84        | 20.      | 82 20.5     | 1 19.         | 93  | 19.31         | 18.8 | 82   |        | (87) |
| Temp                  | oerature               | during he              | eating  | pe   | eriods ir | n rest o | of dv      | velling | from Ta      | able 9   | 9, Th2 (°C  | ;)            |     |               |      |      |        |      |
| (88)m=                | 19.31                  | 19.32                  | 19.33   |      | 19.37     | 19.37    | ·          | 19.41   | 19.41        | 19.      | 42 19.4     | 19.           | 37  | 19.36         | 19.3 | 34   |        | (88) |
| Utilis                | ation fac              | tor for a              | ins fo  | r re | est of d  | vellina  | . h2       | .m (se  | e Table      | 9a)      |             | -             |     | -             |      |      |        |      |
| (89)m=                | 1                      | 1                      | 0.99    | Т    | 0.98      | 0.94     |            | 0.82    | 0.61         | 0.6      | 6 0.89      | 0.9           | 98  | 1             | 1    |      |        | (89) |
| Mear                  | interna                | l tempera              | aturo i | n ti | he rest   | of dwe   | lling      | T2 (f   | n<br>Now ste |          | to 7 in Ta  | ahle 9c       | •)  |               |      |      |        |      |
| (90)m=                | 17.39                  | 17.6                   | 17.93   | Т    | 18.4      | 18.83    |            | 19.23   | 19.37        | 19.      | 37 19.12    | 2 18.         | 55  | 17.92         | 17.4 | 41   |        | (90) |
| . /                   |                        |                        |         |      |           |          |            | -       | ļ            |          |             | fLA =         | Liv | ing area ÷ (4 | ) =  | -+   | 0.55   | (91) |
| Mag                   | interne                | Itomnorr               | turo (  | for  | thouch    | 010 dv   |            | a) 4    | Δ            | . /4     | fl A\ ¬     | го            |     |               |      | L    |        |      |
| (92)m-                |                        |                        | 18 71   |      | 19 17     | 19 61    |            | y = 1   | 20.19        | + (1     | - ILA) × 1  | 1∠<br>9 10    | 32  | 18.7          | 18   | 19   |        | (92) |
| ( <u>S</u> =)=        | 1 .0.10                | 1 .0.00 L              | .0.71   | - 1  |           | 10.01    | 1 4        |         |              | 1 -0.    | 1 10.00     | ~ 1 '3        | 22  | 10.7          | 10.  | ·~ 1 |        | ()   |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                 | 18.19                       | 18.39                 | 18.71                 | 19.17                    | 19.61                   | 20.01                   | 20.19         | 20.17      | 19.89       | 19.32        | 18.7         | 18.19       |           | (93)   |
|------------------------|-----------------------------|-----------------------|-----------------------|--------------------------|-------------------------|-------------------------|---------------|------------|-------------|--------------|--------------|-------------|-----------|--------|
| 8. Spa                 | ace hea                     | ting requ             | uirement              |                          |                         |                         |               |            |             |              |              |             |           |        |
| Set Ti<br>the ut       | i to the r<br>ilisation     | mean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta     | re obtain<br>Ible 9a    | ed at ste               | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(     | 76)m an      | d re-calc   | ulate     |        |
|                        | Jan                         | Feb                   | Mar                   | Apr                      | May                     | Jun                     | Jul           | Aug        | Sep         | Oct          | Nov          | Dec         |           |        |
| Utilisa                | ation fac                   | tor for g             | ains, hm              | :                        |                         |                         |               |            |             |              |              |             |           |        |
| (94)m=                 | 1                           | 0.99                  | 0.99                  | 0.97                     | 0.94                    | 0.86                    | 0.72          | 0.76       | 0.91        | 0.98         | 0.99         | 1           |           | (94)   |
| Usefu                  | ıl gains,                   | hmGm ,                | , W = (94             | 4)m x (84                | 4)m                     |                         |               |            |             |              | -            |             |           |        |
| (95)m=                 | 468.03                      | 573.98                | 645.06                | 685.03                   | 682.48                  | 603.48                  | 487.47        | 493.33     | 573.38      | 551.64       | 476.99       | 437.44      |           | (95)   |
| Month                  | nly avera                   | age exte              | rnal tem              | perature                 | e from Ta               | able 8                  |               |            |             |              |              |             |           |        |
| (96)m=                 | 4.3                         | 4.9                   | 6.5                   | 8.9                      | 11.7                    | 14.6                    | 16.6          | 16.4       | 14.1        | 10.6         | 7.1          | 4.2         |           | (96)   |
| Heat                   | loss rate                   | e for mea             | an intern             | al tempe                 | erature,                | Lm , W =                | =[(39)m :     | x [(93)m-  | – (96)m     | ]            |              |             |           |        |
| (97)m=                 | 2394.85                     | 2314.88               | 2085.85               | 1711.55                  | 1310.84                 | 875.22                  | 581.23        | 607.94     | 946.16      | 1445.15      | 1941.59      | 2366.26     |           | (97)   |
| Space                  | e heatin                    | g require             | ement fo              | r each n                 | honth, k                | Nh/mont                 | th = 0.02     | 4 x [(97)  | )m – (95    | )m] x (4′    | 1)m          |             |           |        |
| (98)m=                 | 1433.55                     | 1169.89               | 1071.95               | 739.1                    | 467.5                   | 0                       | 0             | 0          | 0           | 664.77       | 1054.51      | 1435.04     |           | _      |
|                        |                             |                       |                       |                          |                         |                         |               | Tota       | l per year  | (kWh/year    | ) = Sum(9    | 8)15,912 =  | 8036.31   | (98)   |
| Space                  | e heating                   | g require             | ement in              | kWh/m²                   | /year                   |                         |               |            |             |              |              |             | 157.57    | (99)   |
| 9b En                  | erav rea                    | wiremer               | nts – Cor             | nmunitv                  | heating                 | scheme                  |               |            |             |              |              | L           |           | 1      |
| This pa                | art is use                  | ed for sp             | ace hea               | ting, spa                | ace cool                | ng or wa                | ater heat     | ina prov   | ided by     | a comm       | unitv sch    | neme.       |           |        |
| Fractio                | n of spa                    | ace heat              | from se               | condary/                 | /supplen                | nentary l               | neating       | Table 1    | 1) '0' if n | one          |              |             | 0         | (301)  |
| Fractio                | n of spa                    | ace heat              | from co               | mmunity                  | system                  | 1 - (301                | 1) =          |            |             |              |              |             | 1         | (302)  |
| The com                | n<br>munitv so              | heme may              | v obtain he           | eat from se              | everal sour             | ces. The r              | procedure     | allows for | CHP and i   | up to four a | other heat   | sources: th | ne latter | 1      |
| includes               | boilers, h                  | eat pumps             | s, geothern           | nal and wa               | aste heat f             | rom power               | r stations.   | See Apper  | ndix C.     | ,            |              |             |           | _      |
| Fractio                | <mark>n o</mark> f hea      | at from C             | Commun                | <mark>ity bo</mark> iler | 'S                      |                         |               |            |             |              |              |             | 1         | (303a) |
| Fractio                | n of tota                   | al space              | heat fro              | m Comn                   | nunity bo               | oilers                  |               |            |             | (3           | 02) x (303   | a) =        | 1         | (304a) |
| Factor                 | for cont                    | rol and o             | charging              | method                   | (Table                  | 4c(3)) fo               | r commu       | unity hea  | ting sys    | tem          |              |             | 1.05      | (305)  |
| Distrib                | ution los                   | s factor              | (Table 1              | 2c) for c                | commun                  | ity heatir              | ng syste      | m          |             |              |              |             | 1.1       | (306)  |
| Space                  | heating                     | 9                     |                       |                          |                         |                         |               |            |             |              |              |             | kWh/year  |        |
| Annua                  | space                       | heating               | requirem              | nent                     |                         |                         |               |            |             |              |              | [           | 8036.31   | ]      |
| Space                  | heat fro                    | m Comr                | nunity b              | oilers                   |                         |                         |               |            | (98) x (30  | 04a) x (308  | 5) x (306) = | =           | 9281.94   | (307a) |
| Efficier               | ncy of se                   | econdary              | //supple              | mentary                  | heating                 | system                  | in % (fro     | m Table    | 4a or A     | ppendix      | E)           | [           | 0         | (308   |
| Space                  | heating                     | requirer              | ment froi             | m secon                  | dary/su                 | oplemen                 | tary syst     | em         | (98) x (30  | 01) x 100 ÷  | + (308) =    |             | 0         | (309)  |
| <b>Water</b><br>Annual | <b>heating</b><br>I water h | <b>l</b><br>neating r | equirem               | ent                      |                         |                         |               |            |             |              |              | [           | 1831.51   | 1      |
| If DHW                 | from co                     | ommunit               | y schem               | ne:                      |                         |                         |               |            |             |              |              | ı<br>r      |           | ]      |
| vvater                 | neat fro                    | m Comn                |                       | bilers                   |                         |                         |               | 0.04       | (64) x (30  | J3a) x (30   | 5) X (306) = | =           | 2115.39   | (310a) |
|                        |                             | a for nea             |                       |                          | -                       |                         |               | 0.01       | × [(307a).  | (307e) +     | · (310a)(    | 310e)] =    | 113.97    | (313)  |
| Cooling                | y Syster                    | n ⊨nerg               | y ⊨mciei              | ncy Ratio                | U<br>                   |                         |               |            |             | (04.1)       |              | ļ           | 0         | (314)  |
| Space                  | cooling                     | (If there             | is a fixe             | a cooling                | g system                | n, if not e             | enter 0)      |            | = (107) ÷   | (314) =      |              |             | 0         | (315)  |
| Electric<br>mecha      | city for p<br>nical ve      | oumps an<br>ntilation | nd fans \<br>- balanc | within dw<br>ed, extra   | velling (1<br>act or po | ⊺able 4f)<br>sitive inj | :<br>put from | outside    |             |              |              | [           | 0         | (330a) |
| warm air heating system fans                                                                                         |                             |                               | (                 | D            | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------|--------------|--------|
| pump for solar water heating                                                                                         |                             |                               | (                 |              | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  | (                 | D            | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               | 401               | 1.03         | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |                   |              |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emissio<br>kg CO2 | ons<br>/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | el                | 65           | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 10b)] x 100 ÷ (367b) x      | 0                             | = 37              | 87.42        | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | = 5               | 9.15         | (372)  |
| Total CO2 associated with community systems (3                                                                       | 63)(366) + (368)(372)       |                               | = 38              | 46.57        | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 09) x                       | 0                             | =                 | 0            | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | =                 | 0            | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 673) + (374) + (375) =      |                               | 38                | 46.57        | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | g (331)) x                  | 0.52                          | =                 | 0            | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 32))) x                     | 0.52                          | = _2(             | 08.13        | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               | 40                | 54.71        | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               | 7                 | 79.5         | (384)  |
| El rating (section 14)                                                                                               |                             |                               | 4                 | 5.56         | (385)  |

|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | User D                                               | etails:                                        |                                     |                             |                      |                      |                                       |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------|----------------------|----------------------|---------------------------------------|------------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                             |                                                      | Stroma<br>Softwa                               | a Num<br>ire Ver                    | ber:<br>sion:               |                      | Versio               | n: 1.0.3.15                           |                        |
|                                                                                                                                                                                                                       | london                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PI                             | operty <i>i</i>                                      | Address:                                       | Unit 4                              |                             |                      |                      |                                       |                        |
| 1 Overall dwelling dimer                                                                                                                                                                                              | , ionuon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                      |                                                |                                     |                             |                      |                      |                                       |                        |
| Basement                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | Area                                                 | a <b>(m²)</b><br>51                            | (1a) x                              | <b>Av. He</b>               | <b>ight(m)</b><br>18 | (2a) =               | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)       |
| Total floor area TFA = (1a                                                                                                                                                                                            | )+(1b)+(1c)+(1d)+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e)+(1n                         | )                                                    | 51                                             | (4)                                 |                             |                      |                      |                                       |                        |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      |                                                | (3a)+(3b)                           | +(3c)+(3c                   | d)+(3e)+             | .(3n) =              | 111.18                                | (5)                    |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      | _                                              |                                     |                             |                      |                      |                                       |                        |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | main         s           heating         •           0         +           0         +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | secondary<br>heating<br>0<br>0 | / +<br>] +                                           | 0<br>0<br>0                                    | ] = [                               | <b>total</b> 0 0            | x 4                  | 40 =<br>20 =         | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b)      |
| Number of intermittent fan                                                                                                                                                                                            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                      |                                                |                                     | 2                           | x ′                  | 10 =                 | 20                                    | (7a)                   |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      |                                                | Г                                   | 0                           | <b>x</b> ′           | 10 =                 | 0                                     | (7b)                   |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                      |                                                | Ē                                   | 0                           | X 4                  | 40 =                 | 0                                     | (7c)                   |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      |                                                | _                                   |                             |                      | Air ch               | anges per no                          | ur                     |
| Infiltration due to chimney<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre-<br>deducting areas of opening | s, flues and fans = (<br>en carried out or is intende<br>e dwelling (ns)<br>25 for steel or timber<br>sent, use the value corre<br>as); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ded, proceed                   | a)+(7b)+(7<br>1 to (17), c<br>0.35 for<br>the greate | (c) =<br>htherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to (<br>uction | (16)<br>[(9)         | ÷ (5) =<br>-1]x0.1 = | 0.18 0 0 0 0 0 0                      | (9)<br>(10)<br>(11)    |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (unsea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aled) or 0.                    | 1 (seale                                             | d), else                                       | enter 0                             |                             |                      |                      | 0                                     | (12)                   |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                      |                                                |                                     |                             |                      |                      | 0                                     | (13)                   |
| Percentage of windows                                                                                                                                                                                                 | and doors draught s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stripped                       |                                                      | 0.05 50.0                                      |                                     | 0.01                        |                      |                      | 0                                     | (14)                   |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      | 0.25 - [0.2                                    | X (14) ÷ 1                          | 00] =                       | . (45)               |                      | 0                                     | (15)                   |
| Air permechility value                                                                                                                                                                                                | 50 overessed in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bio motro                      | o nor ho                                             | (0) + (10)                                     |                                     | 2) + (13)                   |                      | araa                 | 0                                     | (16)                   |
| If based on air permeabilit                                                                                                                                                                                           | (50, expressed in conversion of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | $(17) \div 20]+(8)$            | ), otherwis                                          | ui pei so<br>se (18) = (                       | 16)                                 |                             | invelope             | alea                 | 20                                    | $= \binom{(17)}{(18)}$ |
| Air permeability value applies                                                                                                                                                                                        | if a pressurisation test h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as been done                   | e or a deg                                           | iree air pei                                   | ,<br>meability                      | is being u                  | sed                  |                      | 1.10                                  |                        |
| Number of sides sheltered                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      |                                                |                                     |                             |                      |                      | 2                                     | (19)                   |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      | (20) = 1 - [                                   | 0.075 x (1                          | 9)] =                       |                      |                      | 0.85                                  | (20)                   |
| Infiltration rate incorporation                                                                                                                                                                                       | ng shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                      | (21) = (18)                                    | x (20) =                            |                             |                      |                      | 1                                     | (21)                   |
| Infiltration rate modified fo                                                                                                                                                                                         | r monthly wind spee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                              |                                                      |                                                |                                     |                             |                      |                      | 1                                     |                        |
| Jan Feb M                                                                                                                                                                                                             | /lar Apr May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun                            | Jul                                                  | Aug                                            | Sep                                 | Oct                         | Nov                  | Dec                  |                                       |                        |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                      |                                                |                                     |                             |                      |                      |                                       |                        |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | .9 4.4 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8                            | 3.8                                                  | 3.7                                            | 4                                   | 4.3                         | 4.5                  | 4.7                  |                                       |                        |
| Wind Factor (22a)m = (22<br>(22a)m = $1.27$ $1.25$ $1$                                                                                                                                                                | )m÷4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                           | 0.95                                                 | 0.92                                           | 1                                   | 1.08                        | 1 12                 | 1 18                 | l                                     |                        |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 0.00                                                 | 0.02                                           | •                                   |                             | L 2                  |                      |                                       |                        |

| Adjust          | ed infiltr             | ation rat                      | e (allow             | ing for sh         | nelter an   | d wind s    | speed) =       | (21a) x                                 | (22a)m      | -              | -                | -                    | _            |       |
|-----------------|------------------------|--------------------------------|----------------------|--------------------|-------------|-------------|----------------|-----------------------------------------|-------------|----------------|------------------|----------------------|--------------|-------|
| ~ ' '           | 1.28                   | 1.25                           | 1.23                 | 1.1                | 1.08        | 0.95        | 0.95           | 0.93                                    | 1           | 1.08           | 1.13             | 1.18                 | ĺ            |       |
| Calcul<br>If me | ate etter              | <i>ctive air</i><br>al ventila | change               | rate for t         | ne appli    | cable ca    | Se             |                                         |             |                |                  |                      | 0            | (23a) |
| lf exh          | aust air h             | eat pump                       | using App            | endix N, (2        | 3b) = (23a  | a) × Fmv (e | equation (I    | N5)) , othei                            | wise (23b   | ) = (23a)      |                  |                      | 0            | (23b) |
| lf bala         | anced with             | h heat reco                    | overy: effic         | iency in %         | allowing f  | or in-use f | actor (fron    | n Table 4h                              | ) =         | , , ,          |                  |                      |              | (23c) |
| a) If           | balance                | ed mech                        | ,<br>anical ve       | entilation         | with he     | at recove   | erv (MVI       | HR) (24a                                | m = (2)     | 2h)m + (       | 23b) <b>x</b> [* | 1 – (23c)            | <br>_ ÷ 1001 | (200) |
| (24a)m=         | 0                      | 0                              | 0                    | 0                  | 0           | 0           | 0              | 0                                       | 0           | 0              | 0                | 0                    |              | (24a) |
| b) If           | balance                | ed mecha                       | ı<br>anical ve       | entilation         | without     | heat rec    | L<br>Coverv (N | u<br>MV) (24b                           | )m = (22    | 1<br>2b)m + () | 1<br>23b)        |                      | 1            |       |
| (24b)m=         | 0                      | 0                              | 0                    | 0                  | 0           | 0           | 0              | 0                                       | 0           | 0              | 0                | 0                    |              | (24b) |
| c) If           | whole h                | iouse ex                       | tract ver            | ntilation of       | or positiv  | ve input v  | ventilatio     | on from c                               | outside     |                |                  |                      | 1            |       |
| , i             | if (22b)n              | n < 0.5 ×                      | (23b), t             | then (24d          | c) = (23b   | ); otherv   | wise (24       | c) = (22b                               | ) m + 0.    | .5 × (23b      | ))               |                      |              |       |
| (24c)m=         | 0                      | 0                              | 0                    | 0                  | 0           | 0           | 0              | 0                                       | 0           | 0              | 0                | 0                    |              | (24c) |
| d) If           | natural                | ventilatio                     | on or wh             | ole hous           | e positiv   | /e input    | ventilatio     | on from I                               | oft         | -              | -                | -                    |              |       |
|                 | if (22b)n              | n = 1, th                      | en (24d)             | m = (22l           | o)m othe    | erwise (2   | 24d)m =        | 0.5 + [(2                               | 2b)m² x     | 0.5]           |                  |                      | 1            |       |
| (24d)m=         | 1.28                   | 1.25                           | 1.23                 | 1.1                | 1.08        | 0.95        | 0.95           | 0.93                                    | 1           | 1.08           | 1.13             | 1.18                 | I            | (24d) |
| Effe            | ctive air              | change                         | rate - er            | nter (24a          | ) or (24t   | o) or (240  | c) or (24<br>I | d) in boy                               | (25)        |                |                  |                      | 1            |       |
| (25)m=          | 1.28                   | 1.25                           | 1.23                 | 1.1                | 1.08        | 0.95        | 0.95           | 0.93                                    | 1           | 1.08           | 1.13             | 1.18                 |              | (25)  |
| 3. He           | at l <mark>osse</mark> | s and he                       | eat loss             | paramete           | er:         |             |                |                                         |             |                |                  |                      |              |       |
| ELEN            | /IENT                  | Gros                           | ss                   | Openin             | gs          | Net Ar      | ea             | U-valu                                  | Je          | AXU            |                  | k-value              | ÷            | AXk   |
| <b>D</b>        |                        | area                           | (m²)                 | m                  | 12          | A ,r        | n²             | VV/m2                                   | ĸ           | (VV/           | K)               | kJ/m <sup>2</sup> ·I | ۲.           | kJ/K  |
| Doors           | -                      |                                |                      |                    |             | 1.9         | X              | 1.4                                     | =           | 2.66           |                  |                      |              | (26)  |
| Windo           | ws Type                | €1                             |                      |                    |             | 9.03        | x <sup>1</sup> | /[1/( 1.6 )+                            | 0.04] =     | 13.58          |                  |                      |              | (27)  |
| Windo           | ws Type                | e 2                            |                      |                    |             | 0.39        | x <sup>1</sup> | /[1/( 4.8 )+                            | 0.04] =     | 1.57           | Ц.               |                      | _            | (27)  |
| Floor           |                        |                                |                      |                    |             | 51          | ×              | 0.97                                    | = [         | 49.47          |                  |                      |              | (28)  |
| Walls           | Type1                  | 39.                            | 2                    | 0.39               |             | 38.81       | X              | 2.1                                     | =           | 81.5           |                  |                      |              | (29)  |
| Walls           | Type2                  | 10.9                           | 99                   | 10.9               | 3           | 0.06        | X              | 2.1                                     | =           | 0.13           |                  |                      |              | (29)  |
| Total a         | area of e              | elements                       | , m²                 |                    |             | 101.1       | 9              |                                         |             |                |                  |                      |              | (31)  |
| Party v         | wall                   |                                |                      |                    |             | 16.1        | x              | 0                                       | =           | 0              |                  |                      |              | (32)  |
| * for win       | ndows and              | l roof wind                    | ows, use e           | effective wi       | ndow U-va   | alue calcul | ated using     | g formula 1                             | /[(1/U-valu | ıe)+0.04] a    | as given in      | paragraph            | 1 3.2        |       |
| Eabric          | he the area            | as on both $N/K$               |                      | nternal wal<br>TIN | is and pari | titions     |                | (26) (30)                               | + (32) =    |                |                  |                      | 1 40 04      | (22)  |
| Heat c          | anacity                | Cm - SI                        | - 0 (~ ^<br>′A v k ) | 0)                 |             |             |                | ()(00)                                  | ((28)       | $(30) \pm (3)$ | 2) + (32a)       | (32e) -              | 148.91       | (34)  |
| Therm           | apacity                | narame                         | (TAN)<br>Iter (TMI   | ⊃ – Cm ≟           | - TFΔ) ir   | n k l/m²K   |                |                                         | Indica      | tive Value     | · Hiah           | (020) =              | 450          | (34)  |
| For desi        | ian assess             | sments wh                      | ere the de           | etails of the      | construct   | ion are not | t known pi     | reciselv the                            | indicative  | e values of    | TMP in Ta        | able 1f              | 450          | (33)  |
| can be ı        | used inste             | ad of a de                     | tailed calc          | ulation.           |             |             |                | , , , , , , , , , , , , , , , , , , , , |             |                |                  |                      |              |       |
| Therm           | al bridg               | es : S (L                      | x Y) cal             | culated (          | using Ap    | pendix ł    | <              |                                         |             |                |                  |                      | 15.2         | (36)  |
| if details      | of therma              | al bridging                    | are not kr           | nown (36) =        | = 0.15 x (3 | 1)          |                |                                         | (2.2)       |                |                  |                      |              |       |
| i otal fa       | abric he               | at loss                        | . 1                  | 1                  |             |             |                |                                         | (33) +      | (36) =         | (O.F.) (1)       |                      | 164.11       | (37)  |
| ventila         | ation hea              | at loss ca                     | aiculated            | a monthly          | /           |             |                |                                         | (38)m       | = 0.33 × (     | 25)m x (5)       |                      | 1            |       |
| (20)            | Jan                    | Feb                            | Mar                  | Apr                | May         | Jun         | Jul            | Aug                                     | Sep         | Oct            | Nov              | Dec                  |              | (20)  |
| (38)M=          | 40.91                  | 45.99                          | 45.08                | 40.48              | 39.56       | 35          | 35             | 34.13                                   | 30.8        | 39.56          | 41.4             | 43.24                | l            | (30)  |
| Heat tr         | ransfer o              | coefficier                     | nt, W/K              | oc :               | 000         | 400         | 4.55           | 400                                     | (39)m       | = (37) + (     | 38)m             | 0.00                 | 1            |       |
| (39)m=          | 211.02                 | 210.1                          | 209.18               | 204.58             | 203.66      | 199.1       | 199.1          | 198.24                                  | 200.9       | 203.66         | 205.5<br>Sum(20) | 207.34               | 204.27       | (30)  |
|                 |                        |                                |                      |                    |             |             |                |                                         | 4           | nvelaye =      | Jun (38)1        | 12 / 14=             | 204.3/       | (33)  |

| Heat lo                        | ss para                         | meter (H                                | HLP), W/                             | ′m²K                                  |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |         |          |
|--------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|---------|----------|
| (40)m=                         | 4.14                            | 4.12                                    | 4.1                                  | 4.01                                  | 3.99                                     | 3.9                                   | 3.9                          | 3.89                   | 3.94                  | 3.99                      | 4.03                                  | 4.07     |         |          |
| Numbo                          | r of dov                        |                                         | uth (Tab                             |                                       |                                          |                                       |                              | 1                      | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 4.01    | (40)     |
|                                | lan                             | Feb                                     | Mar                                  |                                       | May                                      | lun                                   | 6.1                          | Δυσ                    | Sen                   | Oct                       | Nov                                   | Dec      |         |          |
| (41)m=                         | 31                              | 28                                      | 31                                   | 30                                    | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |         | (41)     |
| (, L                           |                                 |                                         |                                      |                                       | 0.                                       |                                       |                              |                        |                       |                           |                                       | 0.       |         |          |
| 4. Wat                         | ter heat                        | ting ener                               | gy requi                             | irement:                              |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:    |          |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, I<br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 x                        | [1 - exp                              | (-0.0003                                 | 849 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 72       |         | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person per | ge in litre<br>usage by<br>day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      |         | (43)     |
| [                              | Jan                             | Feb                                     | Mar                                  | Apr                                   | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |         |          |
| Hot wate                       | r usage i                       | n litres per                            | day for ea                           | ach month                             | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          | I       |          |
| (44)m=                         | 82.54                           | 79.54                                   | 76.54                                | 73.54                                 | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |         | <b>-</b> |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                               | used - cal                           | culated mo                            | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x E                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48  | (44)     |
| (45)m=                         | 122.41                          | 107.06                                  | 110.48                               | 96.32                                 | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 10 <mark>0.01</mark>      | 109.17                                | 118.55   |         | _        |
| lf instanta                    | aneous w                        | vater heatii                            | ng at point                          | of use (no                            | hot water                                | storage),                             | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67 | (45)     |
| (46)m=                         | 18.36                           | 16.06                                   | 16.57                                | 14. <mark>45</mark>                   | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |         | (46)     |
| Water s                        | storage                         | loss:                                   |                                      |                                       |                                          |                                       |                              |                        |                       |                           |                                       |          |         |          |
| Storage                        |                                 | ie (litres)                             |                                      | ig any so                             |                                          | IVVHRS                                | storage                      |                        | ame ves               | sei                       |                                       | 160      |         | (47)     |
| Otherw                         | ise if no                       | stored                                  | hot wate                             | er (this in                           | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |         |          |
| Water s                        | storage                         | loss:                                   |                                      | (1)                                   |                                          |                                       |                              |                        |                       | (                         |                                       |          |         |          |
| a) If m                        | anufact                         | urer's de                               | eclared I                            | oss facto                             | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |         | (48)     |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                    |                                          |                                       |                              |                        |                       |                           |                                       | 0        |         | (49)     |
| Energy                         | lost fro                        | m water                                 | storage                              | , kWh/ye                              | ear                                      |                                       |                              | (48) x (49)            | ) =                   |                           | 1                                     | 10       |         | (50)     |
| b) If ma                       | anufact                         | urer's de                               | eclared of factor fr                 | cylinder l                            | oss fact                                 | or is not                             | known:                       |                        |                       |                           |                                       |          |         | (54)     |
| If comm                        | nunitv h                        | age ioss<br>neating s                   | ee secti                             | on 4.3                                |                                          | 1/11110/02                            | iy)                          |                        |                       |                           | 0.                                    | 02       |         | (51)     |
| Volume                         | factor                          | from Tal                                | ble 2a                               |                                       |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |         | (52)     |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                    |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |         | (53)     |
| Energy                         | lost fro                        | m water                                 | storage                              | , kWh/ye                              | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |         | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                              | 55)                                  |                                       |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |         | (55)     |
| Water s                        | storage                         | loss cal                                | culated f                            | for each                              | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |         |          |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                 | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (56)     |
| If cylinde                     | r contains                      | s dedicate                              | d solar sto                          | rage, (57)                            | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | lix H   |          |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                 | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (57)     |
| Primary                        | / circuit                       | loss (an                                | inual) fro                           | om Table                              | 93                                       |                                       |                              |                        |                       |                           |                                       | 0        |         | (58)     |
| Primary                        | / circuit                       | loss cal                                | culated                              | for each                              | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           | _                                     |          |         |          |
| mod)<br>۲                      | lified by                       | factor fi                               | om Tab                               | le H5 if t<br>I                       | here is s                                | solar wat                             | ter heati                    | ng and a               | ı cylinde             | r thermo                  | stat)                                 | -        | I       | · ·      |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                                | 22.51                                 | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |         | (59)     |

| Combi    | loss ca             | alculated   | for eac   | h month         | (61)m =       | (60) ÷ 3 | 65 × (41)                   | )m           |              |                     |              |             |               |       |
|----------|---------------------|-------------|-----------|-----------------|---------------|----------|-----------------------------|--------------|--------------|---------------------|--------------|-------------|---------------|-------|
| (61)m=   | 0                   | 0           | 0         | 0               | 0             | 0        | 0                           | 0            | 0            | 0                   | 0            | 0           |               | (61)  |
| Total h  | eat req             | uired for   | water h   | neating c       | alculated     | for eac  | ch month                    | (62)m =      | • 0.85 ×     | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |       |
| (62)m=   | 177.69              | 156.99      | 165.75    | 149.81          | 147.69        | 133.24   | 129.18                      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)  |
| Solar DH | IW input            | calculated  | using Ap  | pendix G o      | r Appendix    | H (nega  | tive quantity               | /) (enter 'C | ' if no sola | r contribut         | tion to wate | er heating) |               |       |
| (add a   | dditiona            | al lines if | FGHRS     | and/or          | WWHRS         | applies  | s, see Ap                   | pendix (     | G)           |                     |              | -           | _             |       |
| (63)m=   | 0                   | 0           | 0         | 0               | 0             | 0        | 0                           | 0            | 0            | 0                   | 0            | 0           |               | (63)  |
| Output   | from w              | vater hea   | ter       |                 |               |          |                             |              |              |                     |              |             |               |       |
| (64)m=   | 177.69              | 156.99      | 165.75    | 149.81          | 147.69        | 133.24   | 129.18                      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               |       |
|          |                     |             |           |                 |               |          | -                           | Out          | out from w   | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)  |
| Heat g   | ains fro            | om water    | heating   | ı, kWh/m        | onth 0.2      | 5 ´ [0.8 | 5 × (45)m                   | ı + (61)n    | n] + 0.8 x   | k [(46)m            | + (57)m      | + (59)m     | ]             |       |
| (65)m=   | 59.31               | 52.41       | 55.34     | 50.03           | 49.34         | 44.53    | 43.18                       | 46.81        | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)  |
| inclu    | de (57)             | )m in calo  | ulation   | of (65)m        | only if c     | ylinder  | is in the o                 | dwelling     | or hot w     | ater is f           | rom com      | munity h    | eating        |       |
| 5. Int   | ernal g             | ains (see   | Table     | 5 and 5a        | ):            |          |                             |              |              |                     |              |             |               |       |
| Metabo   | olic daii           | ns (Table   | 5). Wa    | tts             | ,             |          |                             |              |              |                     |              |             |               |       |
| motab    | Jan                 | Feb         | Mar       | Apr             | May           | Jun      | Jul                         | Aug          | Sep          | Oct                 | Nov          | Dec         |               |       |
| (66)m=   | 85.98               | 85.98       | 85.98     | 85.98           | 85.98         | 85.98    | 85.98                       | 85.98        | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)  |
| Lightin  | g gains             | (calcula    | ted in A  | ppendix         | L, equat      | ion L9 d | r L9a), a                   | lso see      | Table 5      |                     |              |             |               |       |
| (67)m=   | 2 <mark>3.08</mark> | 20.5        | 16.67     | 12.62           | 9.44          | 7.97     | 8.61                        | 11.19        | 15.02        | 19.07               | 22.26        | 23.72       |               | (67)  |
| Appliar  | nces aa             | ains (calc  | ulated i  | n Appen         | dix L. ea     | uation I | 13 or L1                    | 3a), also    | see Ta       | ble 5               |              |             | I             |       |
| (68)m=   | 149.83              | 151.39      | 147.47    | 139.13          | 128.6         | 118.7    | 112.09                      | 110.54       | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)  |
| Cookin   | a dains             | s (calcula  | ited in A | ppendix         | L equat       | ion   15 | or L 15a                    | also s       | ee Table     | 5                   |              |             | ]             |       |
| (69)m=   | 31.6                | 31.6        | 31.6      | 31.6            | 31.6          | 31.6     | 31.6                        | 31.6         | 31.6         | 31.6                | 31.6         | 31.6        |               | (69)  |
| Pumps    | and fa              | ins gains   | (Table    | 5a)             |               |          |                             | I            |              |                     |              |             |               |       |
| (70)m=   |                     |             |           |                 | 0             | 0        | 0                           | 0            | 0            | 0                   | 0            | 0           | l             | (70)  |
|          |                     | Vanoratio   |           | l<br>ative valu | L<br>es) (Tab | le 5)    | -                           |              |              |                     | _            |             | l             |       |
| (71)m=   | -68.78              | -68.78      | -68.78    | -68.78          | -68.78        | -68.78   | -68.78                      | -68.78       | -68.78       | -68.78              | -68.78       | -68.78      | l             | (71)  |
| Water    | heating             |             | able 5)   |                 |               |          |                             |              |              |                     |              |             | l             | . ,   |
| (72)m=   | 79.72               | 77.99       | 74.39     | 69.49           | 66.32         | 61.84    | 58.04                       | 62,91        | 64.64        | 69.71               | 75.43        | 77.99       | l             | (72)  |
| Total i  | ntorna              | Lasine –    |           |                 |               | (66      | $h_{0}^{0} + (67)m_{0}^{0}$ | 1 + (68)m    | + (69)m +    | (70)m + (7          | (1)m + (72)  | m           | ł             | . ,   |
| (73)m-   | 301 43              | 298.67      | 287 32    | 270.04          | 253 14        | 237.3    | 227 53                      | 233.43       | 242 91       | 260.36              | 279.8        | 293 73      | I             | (73)  |
| 6 Sol    | ar gain             | S.          | 207.02    | 210.01          | 200.11        | 20110    | 221.00                      | 200.10       | 2 12:01      | 200.00              | 210.0        | 200.10      |               | ( - / |
| Solar g  | ains are            | calculated  | using sol | ar flux from    | Table 6a      | and asso | ciated equa                 | itions to co | onvert to th | ne applical         | ole orientat | ion.        |               |       |
| Orienta  | ation:              | Access F    | actor     | Area            | l             | FI       | ,<br>xu                     |              | q            |                     | FF           |             | Gains         |       |
|          |                     | Table 6d    |           | m²              |               | Та       | able 6a                     | Т            | able 6b      | Т                   | able 6c      |             | (VV)          |       |
| North    | 0.9x                | 0.77        | )         | 0.3             | 39            | x        | 10.63                       | x            | 0.85         | ☐ x [               | 0.7          | =           | 1.71          | (74)  |
| North    | 0.9x                | 0.77        | ,         | . 0.:           | 39            | x        | 20.32                       | i x 🗖        | 0.85         | ╡ <u> </u>          | 0.7          |             | 3.27          | (74)  |
| North    | 0.9x                | 0.77        | ,         | 0.;             | 39            | x        | 34.53                       | x [          | 0.85         | =                   | 0.7          | =           | 5.55          | (74)  |
| North    | 0.9x                | 0.77        | <u> </u>  | 0.:             | 39            | x        | 55.46                       | ;            | 0.85         | ╡╷╞                 | 0.7          |             | 8.92          | (74)  |
| North    | 0.9x                | 0.77        | ,         | . 0.:           | 39            | x        | 74.72                       | i × 🗆        | 0.85         | ╡ × Г               | 0.7          | =           | 12.02         | (74)  |

| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 7       | 9.99      | x          | 0.8      | 85    | ) × [                 | 0.7        |       | =    | 12.86  | (74)  |
|---------|------------------------|------------------------|--------|-------|-----------|---------|--------|---------|-----------|------------|----------|-------|-----------------------|------------|-------|------|--------|-------|
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 7       | 4.68      | x          | 3.0      | 85    | ] × [                 | 0.7        |       | = [  | 12.01  | (74)  |
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 5       | 59.25     | x          | 3.0      | 85    | _ × [                 | 0.7        |       | = [  | 9.53   | (74)  |
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | ×      | 4       | 1.52      | x          | 3.0      | 85    | ] × [                 | 0.7        |       | = [  | 6.68   | (74)  |
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 2       | 24.19     | x          | 3.0      | 85    | _ × [                 | 0.7        |       | = [  | 3.89   | (74)  |
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 1       | 3.12      | x          | 3.0      | 85    | _ × [                 | 0.7        |       | = [  | 2.11   | (74)  |
| North   | 0.9x                   | 0.77                   |        | x     | 0.3       | 9       | x      | 6       | 8.86      | x          | 3.0      | 85    | _ × [                 | 0.7        |       | = [  | 1.43   | (74)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 4       | 6.75      | x          | 0.7      | 76    | ×                     | 0.7        |       | = [  | 155.64 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 7       | 6.57      | x          | 0.7      | 76    | <b>x</b>              | 0.7        |       | = [  | 254.91 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | g       | 97.53     | x          | 0.7      | 76    | ) × [                 | 0.7        |       | =    | 324.7  | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 10.23     | x          | 0.7      | 76    | _ × [                 | 0.7        |       | =    | 366.99 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 14.87     | x          | 0.7      | 76    | <b>x</b>              | 0.7        |       | =    | 382.42 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 10.55     | x          | 0.7      | 76    | ] × [                 | 0.7        |       | =    | 368.03 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 08.01     | x          | 0.7      | 76    | ) × [                 | 0.7        |       | =    | 359.59 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 04.89     | x          | 0.7      | 76    | ) × [                 | 0.7        |       | = [  | 349.21 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 1       | 01.89     | x          | 0.7      | 76    | ) × [                 | 0.7        |       | =    | 339.19 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      | 8       | 32.59     | x          | 0.7      | 76    | <b>x</b>              | 0.7        |       | = [  | 274.94 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | ×      | 5       | 5.42      | x          | 0.7      | 76    | ×                     | 0.7        |       | =[   | 184.49 | (78)  |
| South   | 0.9x                   | 0.77                   |        | x     | 9.0       | 3       | x      |         | 40.4      | ] x        | 0.7      | 76    | ×                     | 0.7        |       | = [  | 134.49 | (78)  |
|         |                        |                        |        |       |           |         |        |         |           |            |          |       |                       |            |       |      |        |       |
| Solar ( | <mark>gain</mark> s in | watts, <mark>ca</mark> | alcula | ted   | for eacl  | n mon   | th     |         |           | (83)m      | n = Sum( | 74)m  | . <mark>(8</mark> 2)m |            |       |      |        | (22)  |
| (83)m=  | 157.35                 | 258.17                 | 330.2  | 26    | 375.91    | 394.44  | 4 3    | 80.89   | 371.6     | 358        | .74 34   | 5.87  | 278.83                | 186.6      | 135   | 5.92 |        | (83)  |
| Total   | gains – I              | nternal a              |        | Diar  | (84)m =   | : (73)n | 1 + (  | 83)m    | , watts   | 500        | 47 50    | 0.70  | 500.40                | 400.4      | 1 400 | 0.05 |        | (0.4) |
| (84)m=  | 458.78                 | 556.84                 | 617.5  | 58    | 645.94    | 647.5   | 5 6    | 518.2   | 599.13    | 592        | .17 58   | 58.78 | 539.19                | 466.4      | 429   | 9.65 |        | (04)  |
| 7. Me   | ean inter              | rnal temp              | eratu  | ire ( | heating   | seaso   | on)    |         |           |            |          |       |                       |            |       | F    |        |       |
| Temp    | perature               | during h               | eatin  | g pe  | eriods ir | the li  | ving   | area    | from Tab  | ole 9      | , Th1 (° | °C)   |                       |            |       |      | 21     | (85)  |
| Utilis  | ation fac              | ctor for g             | ains f | or li | ving are  | a, h1,  | m (s   | ee Ta   | ible 9a)  | <b>.</b> . |          |       |                       | <u> </u>   |       |      |        |       |
| ( )     | Jan                    | Feb                    | Ma     | ar    | Apr       | Ma      | /      | Jun     | Jul       | A          | ug S     | Sep   | Oct                   | Nov        |       | )ec  |        | (00)  |
| (86)m=  | 1                      | 1                      | 0.99   | 9     | 0.99      | 0.98    |        | 0.94    | 0.88      | 0.8        | 39 0     | .96   | 0.99                  | 1          | ,     | 1    |        | (00)  |
| Mear    | n interna              | l temper               | ature  | in li | iving are | ea T1   | (follo | w ste   | ps 3 to 7 | 7 in T     | able 90  | c)    |                       |            |       |      |        | ()    |
| (87)m=  | 18.41                  | 18.6                   | 18.9   | 5     | 19.43     | 19.92   |        | 20.4    | 20.7      | 20.        | 67 20    | 0.29  | 19.64                 | 18.96      | 18    | 3.4  |        | (87)  |
| Temp    | perature               | during h               | eatin  | g pe  | eriods ir | rest o  | of dw  | elling  | from Ta   | able 9     | 9, Th2 ( | (°C)  |                       |            | _     |      |        |       |
| (88)m=  | 18.93                  | 18.94                  | 18.9   | 5     | 18.99     | 19      | 1      | 9.05    | 19.05     | 19.        | 06 19    | 9.03  | 19                    | 18.99      | 18.   | .97  |        | (88)  |
| Utilis  | ation fac              | ctor for g             | ains f | or r  | est of d  | welling | j, h2  | ,m (se  | e Table   | 9a)        |          |       |                       |            |       |      |        |       |
| (89)m=  | 1                      | 0.99                   | 0.99   | 9     | 0.98      | 0.96    |        | 0.87    | 0.68      | 0.7        | 71 0     | .91   | 0.98                  | 0.99       | ,     | 1    |        | (89)  |
| Mear    | n interna              | l temper               | ature  | in t  | he rest   | of dwe  | elling | T2 (f   | ollow ste | eps 3      | to 7 in  | Table | e 9c)                 |            |       |      |        |       |
| (90)m=  | 16.71                  | 16.91                  | 17.2   | 6     | 17.77     | 18.26   |        | 18.75   | 18.98     | 18.        | 97 18    | 8.64  | ,<br>17.99            | 17.3       | 16    | .73  |        | (90)  |
|         | ·                      |                        |        |       |           |         |        |         | •         | •          |          | fL    | A = Liv               | ing area ÷ | (4) = |      | 0.47   | (91)  |
| Mear    | n interna              | l temper               | ature  | (for  | the wh    | ole dw  | ellin  | a) = fl | LA x T1   | + (1       | – fLA) : | x T2  |                       |            |       | L    |        |       |
| (92)m=  | 17.51                  | 17.71                  | 18.0   | 6     | 18.55     | 19.04   |        | 19.53   | 19.79     | 19.        | 77 19    | 9.42  | 18.77                 | 18.08      | 17.   | .52  |        | (92)  |
|         | L                      | 1                      |        |       |           |         |        |         | 1         |            |          |       |                       | 1          | -     |      |        |       |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 17.51                       | 17.71                 | 18.06                 | 18.55                  | 19.04                   | 19.53                 | 19.79         | 19.77      | 19.42       | 18.77        | 18.08        | 17.52       |           | (93)   |
|-----------------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|-----------------------|---------------|------------|-------------|--------------|--------------|-------------|-----------|--------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                        |                         |                       |               |            |             |              |              |             |           |        |
| Set T<br>the ut       | i to the r<br>ilisation     | mean int<br>factor fo | ernal ter             | mperatui<br>using Ta   | re obtain<br>able 9a    | ed at ste             | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(     | 76)m an      | d re-calc   | ulate     |        |
|                       | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                   | Jul           | Aug        | Sep         | Oct          | Nov          | Dec         |           |        |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | 1:                     |                         |                       |               |            |             |              |              |             |           |        |
| (94)m=                | 1                           | 0.99                  | 0.99                  | 0.98                   | 0.96                    | 0.9                   | 0.78          | 0.8        | 0.92        | 0.98         | 0.99         | 1           |           | (94)   |
| Usefu                 | ıl gains,                   | hmGm                  | , W = (94             | 4)m x (84              | 4)m                     |                       |               |            |             |              |              |             |           |        |
| (95)m=                | 457.11                      | 553.06                | 610.21                | 631.85                 | 618.93                  | 555.19                | 467.2         | 475.12     | 543.64      | 527.84       | 463.46       | 428.4       |           | (95)   |
| Month                 | nly avera                   | age exte              | rnal tem              | perature               | e from Ta               | able 8                |               |            |             |              |              |             |           |        |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                  | 16.6          | 16.4       | 14.1        | 10.6         | 7.1          | 4.2         |           | (96)   |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe               | erature,                | Lm , W =              | =[(39)m >     | < [(93)m-  | – (96)m     | ]            |              |             |           |        |
| (97)m=                | 2787.46                     | 2691.51               | 2417.34               | 1975.04                | 1495.61                 | 981.87                | 635.17        | 668.14     | 1068.9      | 1664.17      | 2256.73      | 2761.2      |           | (97)   |
| Space                 | e heatin                    | g require             | ement fo              | r each n               | nonth, k\               | Wh/mont               | th = 0.02     | 4 x [(97)  | m – (95     | )m] x (4     | 1)m          |             |           |        |
| (98)m=                | 1733.78                     | 1437.04               | 1344.51               | 967.1                  | 652.25                  | 0                     | 0             | 0          | 0           | 845.43       | 1291.15      | 1735.6      |           | _      |
|                       |                             |                       |                       |                        |                         |                       |               | Tota       | l per year  | (kWh/year    | ) = Sum(9    | 8)15,912 =  | 10006.86  | (98)   |
| Space                 | e heatin                    | g require             | ement in              | kWh/m <sup>2</sup>     | ²/year                  |                       |               |            |             |              |              |             | 196.21    | (99)   |
| 9b En                 | erav rea                    | uiremer               | nts – Cor             | mmunitv                | heating                 | scheme                |               |            |             |              |              | I           |           | 7      |
| This pa               | art is use                  | ed for sp             | ace hea               | iting spa              | ace cooli               | ng or wa              | ater heat     | ing prov   | ided by a   | a comm       | unity sch    | neme        |           |        |
| Fractic               | on of spa                   | ace heat              | from se               | condary,               | /supplen                | nentary l             | neating       | Table 1    | 1) '0' if n | one          |              |             | 0         | (301)  |
| Fractic               | on of spa                   | ace heat              | from co               | mmunity                | v system                | 1 - (301              | 1) =          |            |             |              |              |             | 1         | (302)  |
| The con               | nmunitv so                  | cheme ma              | v obtain he           | eat from se            | everal sour             | ces. The p            | procedure a   | allows for | CHP and u   | up to four ( | other heat   | sources: tl | ne latter | 1      |
| includes              | boilers, h                  | eat pumps             | s, geotherr           | mal and wa             | aste heat f             | rom powei             | r stations. S | See Apper  | ndix C.     |              |              |             |           | _      |
| Fractic               | on of hea                   | at from C             | Commun                | ity boiler             | rs                      |                       |               |            |             |              |              |             | 1         | (303a) |
| Fractic               | on of tota                  | al space              | heat fro              | m Comn                 | nunity bo               | oilers                |               |            |             | (3           | 02) x (303   | a) =        | 1         | (304a) |
| Factor                | for cont                    | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo             | r commu       | inity hea  | ting syst   | tem          |              | [           | 1.05      | (305)  |
| Distrib               | ution los                   | s factor              | (Table 1              | 2c) for a              | commun                  | ity heatir            | ng syster     | m          |             |              |              |             | 1.1       | (306)  |
| Space                 | heating                     | g                     |                       |                        |                         |                       |               |            |             |              |              |             | kWh/year  | _      |
| Annua                 | l space                     | heating               | requirem              | nent                   |                         |                       |               |            |             |              |              |             | 10006.86  |        |
| Space                 | heat fro                    | om Comr               | nunity b              | oilers                 |                         |                       |               |            | (98) x (30  | 04a) x (30   | 5) x (306) = | =           | 11557.93  | (307a) |
| Efficier              | ncy of se                   | econdary              | y/supple              | mentary                | heating                 | system                | in % (fro     | m Table    | 4a or A     | ppendix      | E)           |             | 0         | (308   |
| Space                 | heating                     | require               | ment froi             | m secon                | dary/sup                | plemen                | tary syst     | em         | (98) x (30  | 01) x 100 -  | ÷ (308) =    |             | 0         | (309)  |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | <b>j</b><br>neating r | equirem               | ent                    |                         |                       |               |            |             |              |              |             | 1831.51   | 1      |
| lf DHW<br>Water       | / from c<br>heat fro        | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                       |               |            | (64) x (30  | )3a) x (30   | 5) x (306) = | =           | 2115.39   | (310a) |
| Electri               | city used                   | d for hea             | at distribu           | ution                  |                         |                       |               | 0.01       | × [(307a).  | (307e) +     | · (310a)(    | 310e)] =    | 136.73    | (313)  |
| Coolin                | g Syster                    | m Energ               | y Efficiei            | ncy Rati               | 0                       |                       |               |            |             |              |              |             | 0         | (314)  |
| Space                 | cooling                     | (if there             | is a fixe             | d coolin               | g system                | n, if not e           | enter 0)      |            | = (107) ÷   | (314) =      |              |             | 0         | (315)  |
| Electri<br>mecha      | city for p<br>nical ve      | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra | velling (1<br>act or po | able 4f)<br>sitive in | :<br>put from | outside    |             |              |              |             | 0         | (330a) |

| warm air heating system fans                                                                                           |                             |                               |             | 0                  | (330b) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------|--------------------|--------|
| pump for solar water heating                                                                                           |                             |                               |             | 0                  | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)            | ) + (330g) =                  |             | 0                  | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                         |                             |                               |             | 407.66             | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                             |                               |             |                    |        |
|                                                                                                                        | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emi<br>kg C | ssions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | two fuels repeat (363) to ( | 366) for the second fu        | el          | 65                 | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x      | 0                             | =           | 4543.75            | (367)  |
| Electrical energy for heat distribution [(                                                                             | 313) x                      | 0.52                          | =           | 70.96              | (372)  |
| Total CO2 associated with community systems (3                                                                         | 63)(366) + (368)(372)       |                               | =           | 4614.71            | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 09) x                       | 0                             | =           | 0                  | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | ous heater (312) x          | 0.22                          | =           | 0                  | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =       |                               |             | 4614.71            | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                      | g (331)) x                  | 0.52                          | - [         | 0                  | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                     | 0.52                          | -           | 211.57             | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                             |                               |             | 4826.29            | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                             |                               |             | 94.63              | (384)  |
| El rating (section 14)                                                                                                 |                             |                               |             | 38.37              | (385)  |

|                                                                                     |                                                                                                                    | ι                          | Jser De      | etails:                  |                  |                  |                       |              |                                        |                     |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------------------|------------------|------------------|-----------------------|--------------|----------------------------------------|---------------------|
| Assessor Name:<br>Software Name:                                                    | Stroma FSAP 2012                                                                                                   | 2                          | 5            | Stroma<br>Softwa         | a Num<br>ire Ver | ber:<br>sion:    |                       | Versio       | n: 1.0.3.15                            |                     |
|                                                                                     | landen                                                                                                             | Pro                        | perty A      | ddress:                  | Unit 5           |                  |                       |              |                                        |                     |
| Address :                                                                           | , london                                                                                                           |                            |              |                          |                  |                  |                       |              |                                        |                     |
| Basement                                                                            | 1510115.                                                                                                           |                            | Area         | ( <b>m²)</b><br>28       | (1a) x           | Av. Hei          | <b>ight(m)</b><br>.08 | (2a) =       | <b>Volume(m</b> <sup>3</sup><br>522.24 | <b>')</b><br>(3a)   |
| Total floor area TFA = (1a                                                          | )+(1b)+(1c)+(1d)+(1e)                                                                                              | +(1n)                      | 12           | 28                       | (4)              | L                |                       |              |                                        |                     |
| Dwelling volume                                                                     |                                                                                                                    | ~ /                        | L            |                          | (3a)+(3b)        | +(3c)+(3d        | l)+(3e)+              | .(3n) =      | 522.24                                 | (5)                 |
| 2. Ventilation rate:                                                                | -                                                                                                                  |                            |              |                          |                  |                  |                       |              |                                        |                     |
| Number of chimneys<br>Number of open flues                                          | $\begin{array}{c} main & se \\ heating & he \\ \hline 0 & + \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$ | condary<br>eating<br>0     | +<br>+       | 0<br>0                   | ] = [            | <b>total</b> 0 0 | × 4                   | 40 =<br>20 = | 0<br>0                                 | (6a)<br>(6b)        |
| Number of intermittent fan                                                          | s Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa Landa L    |                            |              |                          |                  | 3                | x 1                   | I0 = [       | 30                                     | (7a)                |
| Number of passive vents                                                             | -                                                                                                                  |                            |              |                          |                  |                  | x 1                   | <br> 0 = 0   |                                        |                     |
| Number of passive vents                                                             |                                                                                                                    |                            |              |                          | Ļ                | 0                |                       |              | 0                                      | (70)                |
| number of flueless gas fire                                                         |                                                                                                                    | ) ((ch) ((7c))             | 1 (7b) 1 (7c |                          |                  | 0                |                       | Air ch       | 0<br>anges per ho                      | (7c)                |
| Inflitration due to chimney                                                         | s, flues and fans = $(ba)$                                                                                         | (b) + (b) + (7a)           | +(70)+(70)   | c) =<br>herwise c        | ontinuo fr       | 30               | (16)                  | ÷ (5) =      | 0.06                                   | (8)                 |
| Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2 | e dwelling (ns)<br>25 for steel or timber fi                                                                       | rame or 0                  | .35 for 1    | masonr                   | y constru        | uction           | [(9)-                 | ·1]x0.1 =    | 0 0 0                                  | (9)<br>(10)<br>(11) |
| deducting areas of opening                                                          | gs); if equal user 0.35                                                                                            |                            | ie greater   | wall alea                | a (allel         |                  |                       |              |                                        |                     |
| If suspended wooden flo                                                             | oor, enter 0.2 (unseale                                                                                            | ed) or 0.1                 | (sealed      | d), else (               | enter 0          |                  |                       |              | 0                                      | (12)                |
| If no draught lobby, ente                                                           | er 0.05, else enter 0                                                                                              |                            |              |                          |                  |                  |                       |              | 0                                      | (13)                |
| Percentage of windows                                                               | and doors draught str                                                                                              | ipped                      |              | 05 10 0                  |                  | 0.01             |                       |              | 0                                      | (14)                |
| Window infiltration                                                                 |                                                                                                                    |                            | 0            | .25 - [0.2               | x (14) ÷ 1       | [00] =           | (45)                  |              | 0                                      | (15)                |
| Inflitration rate                                                                   | EQ averaged in subi                                                                                                | a matraa                   | oor hou      | 5) + (10) +              | + (11) + (1      | 2) + (13) -      | + (15) =              |              | 0                                      | (16)                |
| If based on air permeabilit                                                         | po, expressed in cubi                                                                                              | 2  metres<br>() ÷ 20]+(8). | otherwise    | ir per so<br>e (18) = (* | uare m<br>16)    | elle ol e        | nvelope               | area         | 20                                     | (17)                |
| Air permeability value applies                                                      | if a pressurisation test has                                                                                       | been done o                | or a degr    | ee air per               | meability i      | s being us       | sed                   | l            | 1.06                                   |                     |
| Number of sides sheltered                                                           |                                                                                                                    |                            | -            | ·                        | -                | -                |                       |              | 2                                      | (19)                |
| Shelter factor                                                                      |                                                                                                                    |                            | (2           | 20) = 1 - [              | 0.075 x (1       | 9)] =            |                       |              | 0.85                                   | (20)                |
| Infiltration rate incorporatir                                                      | ng shelter factor                                                                                                  |                            | (2           | 21) = (18)               | x (20) =         |                  |                       | [            | 0.9                                    | (21)                |
| Infiltration rate modified fo                                                       | r monthly wind speed                                                                                               |                            |              |                          |                  |                  |                       |              |                                        |                     |
| Jan Feb M                                                                           | Mar Apr May                                                                                                        | Jun                        | Jul          | Aug                      | Sep              | Oct              | Nov                   | Dec          |                                        |                     |
| Monthly average wind spe                                                            | ed from Table 7                                                                                                    |                            |              |                          |                  |                  | r                     |              |                                        |                     |
| (22)m= 5.1 5 4                                                                      | .9 4.4 4.3                                                                                                         | 3.8                        | 3.8          | 3.7                      | 4                | 4.3              | 4.5                   | 4.7          |                                        |                     |
| Wind Factor (22a)m = (22)                                                           | )m ÷ 4                                                                                                             | 1                          |              |                          |                  |                  | I                     |              |                                        |                     |
| (22a)m= 1.27 1.25 1.                                                                | .23 1.1 1.08                                                                                                       | 0.95                       | 0.95         | 0.92                     | 1                | 1.08             | 1.12                  | 1.18         |                                        |                     |

| Adjusted infiltra           | ation rate  | e (allowi                 | ng for sł           | nelter an            | d wind s                  | peed) =        | : (21a) x       | (22a)m               |                |             |                      |               |         |
|-----------------------------|-------------|---------------------------|---------------------|----------------------|---------------------------|----------------|-----------------|----------------------|----------------|-------------|----------------------|---------------|---------|
| 1.15                        | 1.12        | 1.1                       | 0.99                | 0.97                 | 0.85                      | 0.85           | 0.83            | 0.9                  | 0.97           | 1.01        | 1.06                 |               |         |
| Calculate effect            | ctive air i | change i<br>tion.         | rate for t          | he appli             | cable ca                  | se             |                 |                      | -              | -           | -                    | -             | (00-)   |
| If exhaust air be           |             |                           | andix N (2          | 3h) - (23a           | a) v Emv (e               | auation (      | N5)) othe       | nwise (23h           | (232)          |             |                      | 0             | (23a)   |
| If balanced with            | best reco   |                           | iency in %          | (200) = (200)        | $\frac{1}{2}$ or in-use f | actor (from    | n Table 4h      | ) –                  | ) – (23a)      |             |                      | 0             | (23D)   |
|                             |             |                           |                     |                      |                           |                |                 | n) —                 | 0h)            | 00h) [/     | 1 (00 a)             | 0             | (23c)   |
| a) If balance               |             |                           |                     |                      |                           |                | HR) (248<br>1   | a)m = (2, 1)         | 20)m + (.<br>1 | 23D) × [*   | 1 - (23C)            | i ÷ 100j<br>1 | (24a)   |
| (24a)m= 0                   | 0           | 0                         |                     |                      | 0                         | 0              |                 |                      |                |             | 0                    | J             | (24d)   |
| b) If balance               |             |                           |                     |                      |                           |                | VIV) (240<br>1  | D)m = (22)           | 20)m + (/<br>  | 230)        |                      | 1             | (24b)   |
| (24b)m= 0                   | 0           | 0                         |                     | 0                    |                           | 0              |                 |                      | 0              | 0           | 0                    | J             | (240)   |
| c) If whole h               | ouse exit   | tract ven                 | itilation (         | or positiv           | ve input v                | /entilatio     | c) = (22)       | b) $m \pm 0$         | 5 v (23h       |             |                      |               |         |
| (24c)m = 0                  | 0.5         | 0                         |                     | (200) = (200)        |                           | 0              | $\frac{1}{1}$ 0 |                      |                | /)<br>0     | 0                    | 1             | (24c)   |
| d) If natural               | vontilatio  |                           |                     |                      |                           | vontilati      | on from         |                      | 0              | Ū           | 0                    | ]             | (=)     |
| if (22b)n                   | r = 1, the  | en (24d)                  | m = (22             | o)m othe             | erwise (2                 | 4d)m =         | 0.5 + [(2       | 22b)m <sup>2</sup> x | 0.5]           |             |                      |               |         |
| (24d)m= 1.15                | 1.12        | 1.1                       | 0.99                | 0.97                 | 0.86                      | 0.86           | 0.85            | 0.9                  | 0.97           | 1.01        | 1.06                 |               | (24d)   |
| Effective air               | change      | rate - er                 | nter (24a           | ) or (24t            | o) or (24                 | c) or (24      | ld) in bo       | x (25)               |                |             |                      | 1             |         |
| (25)m= 1.15                 | 1.12        | 1.1                       | 0.99                | 0.97                 | 0.86                      | 0.86           | 0.85            | 0.9                  | 0.97           | 1.01        | 1.06                 | 1             | (25)    |
|                             |             |                           |                     |                      |                           |                |                 |                      |                |             |                      |               | _       |
|                             |             |                           |                     | er.                  | Not Ar                    | 00             |                 |                      |                |             | k volu               |               |         |
|                             | area        | (m²)                      | r                   | 95<br>1 <sup>2</sup> | A,r                       | n <sup>2</sup> | W/m2            | 2K                   | (W/I           | <)          | kJ/m <sup>2</sup> ·l | K             | kJ/K    |
| Doo <mark>rs Ty</mark> pe 1 |             |                           |                     |                      | 2.8                       | x              | 1.4             | =                    | 3.92           |             |                      |               | (26)    |
| Doo <mark>rs Ty</mark> pe 2 |             |                           |                     |                      | 1.5                       | X              | 1.4             |                      | 2.1            | F           |                      |               | (26)    |
| Windows Type                | 1           |                           |                     |                      | 17.35                     |                | /[1/( 4.8 )+    | - 0,04] =            | 69.87          | F           |                      |               | (27)    |
| Windows Type                | 2           |                           |                     |                      | 2.48                      |                | /[1/( 1.6 )+    | - 0.04] =            | 373            | H           |                      |               | (27)    |
| Windows Type                | 3           |                           |                     |                      | 1.5                       |                | /[1/( 4.8 )+    | - 0.041 –            | 6.04           | $\exists$   |                      |               | (27)    |
| Floor                       | •           |                           |                     |                      | 1.0                       |                | 0.70            |                      | 101 12         |             |                      |               | (28)    |
|                             | 74.0        |                           | 40.0                |                      | 120                       |                | 0.79            |                      | 101.12         | ╡╏          |                      | $\dashv$      | (20)    |
|                             | 74.2        | .0                        | 18.8                | <u>&gt;</u>          | 55.41                     |                | 2.1             |                      | 116.36         | ╡╎          |                      | $\dashv$      | (29)    |
|                             | 46.4        | 4                         | 5.28                |                      | 41.12                     | <u> </u>       | 0.28            | =                    | 11.51          | ╡╎          |                      | $\dashv$      | (29)    |
| vvalis Type3                | 71.1        | 6                         | 1.5                 |                      | 69.66                     | 5 X            | 2.1             | =                    | 146.29         |             |                      | $\dashv$      | (29)    |
| Walls Type4                 | 5.34        | 4                         | 0                   |                      | 5.34                      | X              | 0.3             | =                    | 1.6            |             |                      | $\_$ $\_$     | (29)    |
| Roof                        | 17          |                           | 0                   |                      | 17                        | x              | 0.1             | =                    | 1.7            |             |                      |               | (30)    |
| Total area of e             | lements     | , m²                      |                     |                      | 342.1                     | 6              |                 |                      |                |             |                      |               | (31)    |
| Party wall                  |             |                           |                     |                      | 22.1                      | x              | 0               | =                    | 0              |             |                      |               | (32)    |
| * for windows and           | roof winde  | ows, use e<br>sides of ir | effective wi        | ndow U-va            | alue calcul               | ated using     | g formula f     | 1/[(1/U-valu         | ue)+0.04] a    | ns given in | paragraph            | 1 3.2         |         |
| Fabric heat los             | s. W/K =    | = S (A x                  | U)                  | o ana pan            |                           |                | (26)(30         | ) + (32) =           |                |             |                      | 464 '         | 24 (33) |
| Heat capacity               | Cm = S(     | Axk)                      | - /                 |                      |                           |                |                 | ((28).               | (30) + (32     | 2) + (32a). | (32e) =              |               | (34)    |
| Thermal mass                | parame      | ter (TMF                  | <sup>2</sup> = Cm - | - TFA) ir            | ו kJ/m²K                  |                |                 | Indica               | ative Value:   | : High      | . /                  | 450           | (35)    |
|                             | •           | `                         |                     | ,                    |                           |                |                 |                      |                |             |                      |               | · · /   |

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

52

(36)

| if detail        | s of therma           | al bridging           | are not kn           | own (36) =              | = 0.15 x (3           | 1)                      |             |             | (22)                  | (26) -            |                        |         |                        |      |
|------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-------------------------|-------------|-------------|-----------------------|-------------------|------------------------|---------|------------------------|------|
| Vontil           | abitic he             | al 1055               | alaulataa            | Imanthl                 |                       |                         |             |             | (33) +                | (50) =            | 25)m v (5)             |         | 516.24                 | (37) |
| ventila          |                       |                       |                      |                         | y<br>May              | lun                     | lul         | Δυσ         | (38)m                 | $= 0.33 \times ($ | 25)m x (5)             | Dec     | 1                      |      |
| (38)m=           | 197.5                 | 193.63                | 189.76               | 170.4                   | 166.62                | 149                     | 149         | 145.73      | 155.79                | 166.62            | 174.27                 | 182.01  |                        | (38) |
| Heat t           | ransfer (             | L                     | nt W/K               |                         |                       |                         |             |             | (39)m                 | = (37) + (3       | 1<br>38)m              |         | 1                      |      |
| (39)m=           | 713.74                | 709.87                | 705.99               | 686.64                  | 682.86                | 665.24                  | 665.24      | 661.97      | 672.02                | 682.86            | 690.5                  | 698.25  | 1                      |      |
|                  |                       |                       |                      |                         | 1                     | I                       |             |             |                       | Average =         | Sum(39)1               |         | 686.26                 | (39) |
| Heat I           | oss para              | meter (H              | HLP), W              | /m²K                    |                       |                         |             |             | (40)m                 | = (39)m ÷         | (4)                    |         | _                      |      |
| (40)m=           | 5.58                  | 5.55                  | 5.52                 | 5.36                    | 5.33                  | 5.2                     | 5.2         | 5.17        | 5.25                  | 5.33              | 5.39                   | 5.46    |                        | _    |
| Numb             | er of day             | /s in mo              | nth (Tab             | le 1a)                  |                       |                         |             |             |                       | Average =         | Sum(40)1               | 12 /12= | 5.36                   | (40) |
|                  | Jan                   | Feb                   | Mar                  | Apr                     | May                   | Jun                     | Jul         | Aug         | Sep                   | Oct               | Nov                    | Dec     |                        |      |
| (41)m=           | 31                    | 28                    | 31                   | 30                      | 31                    | 30                      | 31          | 31          | 30                    | 31                | 30                     | 31      |                        | (41) |
|                  |                       |                       |                      |                         |                       |                         |             |             |                       |                   |                        |         |                        |      |
| 4. W             | ater hea              | ting ene              | rgy requ             | irement:                |                       |                         |             |             |                       |                   |                        | kWh/y   | ear:                   |      |
| Accur            |                       | IDODOV                | NI                   |                         |                       |                         |             |             |                       |                   |                        |         | 1                      | (40) |
| if TF            | FA > 13.9             | 9, N = 1              | + 1.76 x             | [1 - exp                | (-0.0003              | 849 x (TF               | A -13.9     | )2)] + 0.0  | )013 x ( <sup>-</sup> | TFA -13.          | .9)                    | 89      | J                      | (42) |
| if TF            | -A £ 13.              | 9, N = 1              |                      |                         |                       | ·                       |             |             |                       |                   |                        |         | _                      |      |
| Annua            | al averag             | e hot wa              | ater usag            | ge in litre             | es per da             | ay Vd,av                | erage =     | (25 x N)    | + 36<br>a water us    | se target o       | 10                     | 2.83    |                        | (43) |
| not mor          | e that 125            | litres per            | person pe            | day (all w              | ater use, l           | hot and co              | ld)         |             | a water at            | se larger o       | 1                      |         |                        |      |
|                  | Jan                   | Feb                   | Mar                  | Apr                     | May                   | Jun                     | Jul         | Aug         | Sep                   | Oct               | Nov                    | Dec     |                        |      |
| Hot wat          | ter usage i           | n litres per          | r day for ea         | ach m <mark>onth</mark> | Vd,m = fa             | ctor from T             | Table 1c x  | (43)        |                       |                   |                        |         | 1                      |      |
| (44)m=           | 113.11                | 109                   | 104.88               | 100.77                  | 96.66                 | 92.55                   | 92.55       | 96.66       | 100.77                | 104.88            | 109                    | 113.11  |                        |      |
|                  |                       |                       | <u> </u>             |                         |                       |                         |             |             |                       | Total = Su        | m(44) <sub>112</sub> = | =       | 1 <mark>2</mark> 33.94 | (44) |
| Energy           | content of            | hot water             | used - cal           | culated m               | onthly = 4.           | 190 x Vd,r              | n x nm x D  | 0Tm / 3600  | ) kWh/mor             | nth (see Ta       | ables 1b, 1            | c, 1d)  | _                      |      |
| (45)m=           | 167.74                | 146.71                | 151.39               | 131.98                  | 126.64                | 109.28                  | 101.27      | 116.2       | 117.59                | 137.04            | 149.59                 | 162.45  |                        | _    |
| lf instar        | tanoous               | ator hooti            | na ot point          | of uso (n               | hot wata              | r storago)              | ontor 0 in  | boxos (16   | ) to (61)             | Total = Su        | m(45) <sub>112</sub> = | =       | 1617.89                | (45) |
|                  |                       |                       |                      |                         |                       | siorage),               |             |             |                       |                   |                        |         | 1                      | (40) |
| (46)m=<br>Water  | 25.16<br>storage      | 22.01                 | 22.71                | 19.8                    | 19                    | 16.39                   | 15.19       | 17.43       | 17.64                 | 20.56             | 22.44                  | 24.37   | J                      | (46) |
| Storag           | ge volum              | e (litres)            | ) includir           | ng any se               | olar or W             | /WHRS                   | storage     | within sa   | ame ves               | sel               |                        | 160     | ]                      | (47) |
| If com           | -<br>munity h         | eating a              | and no ta            | ink in dw               | velling, e            | nter 110                | litres in   | (47)        |                       |                   |                        |         | 1                      |      |
| Other            | wise if no            | o stored              | hot wate             | er (this ir             | ncludes i             | nstantar                | neous co    | mbi boil    | ers) ente             | er '0' in (       | 47)                    |         |                        |      |
| Water            | storage               | loss:                 |                      |                         |                       |                         |             |             |                       |                   |                        |         | -                      |      |
| a) If n          | nanufact              | urer's de             | eclared I            | oss facto               | or is kno             | wn (kWł                 | n/day):     |             |                       |                   |                        | 0       |                        | (48) |
| Temp             | erature f             | actor fro             | m Table              | 2b                      |                       |                         |             |             |                       |                   |                        | 0       |                        | (49) |
| Energ            | y lost fro            | m water               | storage              | , kWh/y                 | ear                   |                         |             | (48) x (49) | ) =                   |                   | 1                      | 10      |                        | (50) |
| D) IT N<br>Hot w | nanutaci<br>ater stor | urer's de<br>age loss | eclared (            | om Tabl                 | ioss fact<br>le 2 (kW | or is not<br>h/litre/da | KNOWN:      |             |                       |                   | 0                      | 02      | 1                      | (51) |
| If com           | munity h              | leating s             | ee secti             | on 4.3                  | 0 2 (101              | n, na 0, ac             | <b>'y</b> / |             |                       |                   | 0.                     | .02     | J                      | (01) |
| Volum            | ,<br>ne factor        | from Ta               | ble 2a               |                         |                       |                         |             |             |                       |                   | 1.                     | 03      | ]                      | (52) |
| Temp             | erature f             | actor fro             | m Table              | 2b                      |                       |                         |             |             |                       |                   | 0                      | .6      | ]                      | (53) |
| Energ            | y lost fro            | m water               | <sup>-</sup> storage | , kWh/ye                | ear                   |                         |             | (47) x (51) | x (52) x (            | 53) =             | 1.                     | .03     | ]                      | (54) |
| Enter            | (50) or               | (54) in (5            | 55)                  |                         |                       |                         |             |             |                       |                   | 1.                     | .03     |                        | (55) |

| Water                | storage               | loss cal                 | culated        | for each    | month      |                        |                     | ((56)m = (           | 55) × (41)          | m                         |                      |                        |               |      |
|----------------------|-----------------------|--------------------------|----------------|-------------|------------|------------------------|---------------------|----------------------|---------------------|---------------------------|----------------------|------------------------|---------------|------|
| (56)m=               | 32.01                 | 28.92                    | 32.01          | 30.98       | 32.01      | 30.98                  | 32.01               | 32.01                | 30.98               | 32.01                     | 30.98                | 32.01                  |               | (56) |
| If cylind            | er contain            | s dedicate               | d solar sto    | orage, (57) | m = (56)m  | x [(50) – (            | [H11)] ÷ (5         | 0), else (5          | 7)m = (56)          | m where (                 | H11) is fro          | m Append               | lix H         |      |
| (57)m=               | 32.01                 | 28.92                    | 32.01          | 30.98       | 32.01      | 30.98                  | 32.01               | 32.01                | 30.98               | 32.01                     | 30.98                | 32.01                  |               | (57) |
| Prima                | v circuit             | loss (ar                 | nual) fro      | om Table    | e 3        |                        |                     |                      |                     | -                         |                      | 0                      |               | (58) |
| Prima                | y circuit             | loss cal                 | culated        | for each    | month (    | (59)m = (              | (58) ÷ 36           | 65 × (41)            | m                   |                           |                      |                        |               |      |
| (mo                  | dified by             | factor f                 | rom Tab        | le H5 if t  | here is s  | solar wat              | ter heati           | ng and a             | cylinde             | r thermo                  | stat)                |                        |               |      |
| (59)m=               | 23.26                 | 21.01                    | 23.26          | 22.51       | 23.26      | 22.51                  | 23.26               | 23.26                | 22.51               | 23.26                     | 22.51                | 23.26                  |               | (59) |
| Combi                | loss ca               | lculated                 | for each       | month       | (61)m =    | (60) ÷ 30              | 65 × (41            | )m                   |                     |                           |                      |                        |               |      |
| (61)m=               | 0                     | 0                        | 0              | 0           | 0          | 0                      | 0                   | 0                    | 0                   | 0                         | 0                    | 0                      |               | (61) |
| Total h              | neat req              | uired for                | water h        | eating ca   | alculated  | d for eac              | h month             | (62)m =              | 0.85 × (            | (45)m +                   | (46)m +              | (57)m +                | (59)m + (61)m | 1    |
| (62)m=               | 223.02                | 196.63                   | 206.67         | 185.48      | 181.92     | 162.78                 | 156.54              | 171.48               | 171.09              | 192.32                    | 203.09               | 217.72                 |               | (62) |
| Solar D              | HW input              | calculated               | using App      | endix G o   | r Appendix | (H (negati             | ve quantity         | y) (enter '0         | ' if no sola        | r contribut               | ion to wate          | er heating)            |               |      |
| (add a               | dditiona              | l lines if               | FGHRS          | and/or \    | NWHRS      | applies                | , see Ap            | pendix (             | G)                  | -                         | -                    | -                      |               |      |
| (63)m=               | 0                     | 0                        | 0              | 0           | 0          | 0                      | 0                   | 0                    | 0                   | 0                         | 0                    | 0                      |               | (63) |
| Outpu                | t from w              | ater hea                 | ter            |             |            |                        |                     |                      |                     |                           |                      |                        |               |      |
| (64)m=               | 223.02                | 196.63                   | 206.67         | 185.48      | 181.92     | 162.78                 | 156.54              | 171.48               | 171.09              | 192.32                    | 203.09               | 217.72                 |               | _    |
|                      |                       |                          |                |             |            |                        |                     | Outp                 | out from w          | ater heate                | r (annual)₁          | 12                     | 2268.73       | (64) |
| Hea <mark>t g</mark> | lains fro             | m water                  | heating        | , kWh/m     | onth 0.2   | <mark>5 ´</mark> [0.85 | × (45)n             | ı + (61)n            | n] + 0.8 x          | ( <mark>46)m</mark> (     | + (57)m              | + (59)m                | 1             |      |
| (65)m=               | 74.38                 | 65.5 <mark>9</mark>      | 68.95          | 61.89       | 60.72      | 54.35                  | 52.28               | 57.25                | 57.11               | 6 <mark>4.18</mark>       | 67.75                | 72.62                  |               | (65) |
| inclu                | ude (57)              | m in calo                | culation       | of (65)m    | only if c  | ylinder i              | s in the o          | dwelling             | or hot w            | ate <mark>r is f</mark> r | om com               | <mark>mu</mark> nity h | eating        |      |
| 5. In                | ternal ga             | ains (see                | e Table {      | 5 and 5a    | ):         |                        |                     |                      |                     |                           |                      |                        |               |      |
| Metab                | olic gair             | s (Table                 | <u>5), Wat</u> | tts         |            |                        |                     |                      |                     |                           |                      |                        |               |      |
|                      | Jan                   | Feb                      | Mar            | Apr         | May        | Jun                    | Jul                 | Aug                  | Sep                 | Oct                       | Nov                  | Dec                    |               |      |
| (66)m=               | 144.48                | 144.48                   | 144.48         | 144.48      | 144.48     | 144.48                 | 144.48              | 144.48               | 144.48              | 144.48                    | 144.48               | 144.48                 |               | (66) |
| Lightir              | ig gains              | (calcula                 | ted in Ap      | opendix     | L, equat   | ion L9 o               | r L9a), a           | lso see              | Table 5             |                           |                      |                        |               |      |
| (67)m=               | 45.52                 | 40.43                    | 32.88          | 24.89       | 18.61      | 15.71                  | 16.97               | 22.06                | 29.61               | 37.6                      | 43.88                | 46.78                  |               | (67) |
| Applia               | nces ga               | ins (calc                | ulated ir      | n Appeno    | dix L, eq  | uation L               | 13 or L1            | 3a), also            | see Ta              | ble 5                     | -                    | -                      |               |      |
| (68)m=               | 295.29                | 298.36                   | 290.64         | 274.2       | 253.45     | 233.94                 | 220.91              | 217.85               | 225.57              | 242.01                    | 262.76               | 282.26                 |               | (68) |
| Cookir               | ng gains              | (calcula                 | ted in A       | ppendix     | L, equa    | tion L15               | or L15a             | ), also se           | e Table             | 5                         |                      |                        | _             |      |
| (69)m=               | 37.45                 | 37.45                    | 37.45          | 37.45       | 37.45      | 37.45                  | 37.45               | 37.45                | 37.45               | 37.45                     | 37.45                | 37.45                  |               | (69) |
| Pumps                | s and fai             | ns gains                 | (Table &       | 5a)         |            |                        |                     |                      |                     |                           |                      |                        |               |      |
| (70)m=               | 0                     | 0                        | 0              | 0           | 0          | 0                      | 0                   | 0                    | 0                   | 0                         | 0                    | 0                      |               | (70) |
| Losse                | s e.g. ev             | aporatio                 | on (nega       | tive valu   | es) (Tab   | ole 5)                 |                     |                      |                     |                           |                      |                        |               |      |
| (71)m=               | -115.58               | -115.58                  | -115.58        | -115.58     | -115.58    | -115.58                | -115.58             | -115.58              | -115.58             | -115.58                   | -115.58              | -115.58                |               | (71) |
| Water                | heating               | gains (T                 | able 5)        |             |            |                        |                     |                      |                     |                           |                      |                        | -             |      |
| (72)m=               | 99.98                 | 97.6                     | 92.67          | 85.96       | 81.61      | 75.48                  | 70.27               | 76.95                | 79.32               | 86.26                     | 94.1                 | 97.61                  |               | (72) |
|                      |                       |                          |                |             |            |                        |                     |                      |                     |                           |                      |                        | -             |      |
| Total                | internal              | gains =                  |                |             |            | (66)                   | )m + (67)n          | n + (68)m -          | + (69)m +           | (70)m + (7                | (1)m + (72)          | m                      |               |      |
| Total i<br>(73)m=    | <b>nternal</b> 507.13 | <b>gains =</b><br>502.73 | 482.53         | 451.4       | 420.01     | (66)<br>391.48         | )m + (67)m<br>374.5 | 1 + (68)m -<br>383.2 | + (69)m +<br>400.85 | (70)m + (7<br>432.21      | 1)m + (72)<br>467.08 | 493                    |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta             | ition: | Access Factor<br>Table 6d | - | Area<br>m² |   | Flux<br>Table 6a |     | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |                  |
|---------------------|--------|---------------------------|---|------------|---|------------------|-----|----------------|---|----------------|------------|--------------|------------------|
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 10.63            | ) × | 0.76           | × | 0.7            | ] =        | 9.72         | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 20.32            | x   | 0.76           | × | 0.7            | =          | 18.58        | (74)             |
| North               | 0.9×   | 0.77                      | x | 2.48       | × | 34.53            | x   | 0.76           | × | 0.7            | ] =        | 31.57        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 55.46            | x   | 0.76           | × | 0.7            | ] =        | 50.71        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 74.72            | x   | 0.76           | × | 0.7            | =          | 68.31        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 79.99            | x   | 0.76           | × | 0.7            | ] =        | 73.13        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 74.68            | x   | 0.76           | × | 0.7            | ] =        | 68.28        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | x | 59.25            | x   | 0.76           | x | 0.7            | ] =        | 54.17        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 41.52            | x   | 0.76           | × | 0.7            | <b>j</b> = | 37.96        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | x | 24.19            | x   | 0.76           | x | 0.7            | 1 =        | 22.12        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 13.12            | x   | 0.76           | × | 0.7            | 1 =        | 11.99        | (74)             |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 8.86             | x   | 0.76           | × | 0.7            | 1 =        | 8.1          | (74)             |
| South               | 0.9×   | 0.77                      | x | 17.35      | x | 46.75            | x   | 0.85           | x | 0.7            | <b>i</b> = | 334.46       | (78)             |
| South               | 0.9x   | 0.77                      | x | 17.35      | × | 76.57            | x   | 0.85           | × | 0.7            | <b>i</b> = | 547.77       | (78)             |
| South               | 0.9×   | 0.77                      | x | 17.35      | x | 97.53            | x   | 0.85           | x | 0.7            | <b>i</b> = | 697.76       | (78)             |
| South               | 0.9×   | 0.77                      | x | 17.35      | × | 110.23           | x   | 0.85           | х | 0.7            | 1          | 788.62       | (78)             |
| Sout <mark>h</mark> | 0.9×   | 0.77                      | x | 17.35      | x | 114.87           | x   | 0.85           | x | 0.7            | i -        | 821.79       | (78)             |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 110.55           | i 🖌 | 0.85           | x | 0.7            | <b>i</b> = | 790.86       | -<br>(78)        |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 108.01           | x   | 0.85           | x | 0.7            | 1 =        | 772.72       | (78)             |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 104.89           | x   | 0.85           | x | 0.7            | =          | 750.42       | <b>–</b> (78)    |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 101.89           | ×   | 0.85           | x | 0.7            | i =        | 728.89       | <br>(78)         |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 82.59            | x   | 0.85           | x | 0.7            | <b>i</b> = | 590.82       | (78)             |
| South               | 0.9×   | 0.77                      | x | 17.35      | × | 55.42            | x   | 0.85           | × | 0.7            | <b>i</b> = | 396.45       | (78)             |
| South               | 0.9x   | 0.77                      | x | 17.35      | × | 40.4             | x   | 0.85           | × | 0.7            | <b>]</b> = | 289.01       | <b>–</b><br>(78) |
| West                | 0.9×   | 0.77                      | x | 1.5        | x | 19.64            | x   | 0.85           | x | 0.7            | i =        | 12.15        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 38.42            | x   | 0.85           | x | 0.7            | 1 =        | 23.76        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 63.27            | x   | 0.85           | × | 0.7            | 1 =        | 39.13        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 92.28            | x   | 0.85           | × | 0.7            | i =        | 57.08        | (80)             |
| West                | 0.9×   | 0.77                      | x | 1.5        | × | 113.09           | x   | 0.85           | × | 0.7            | <b>j</b> = | 69.95        | (80)             |
| West                | 0.9×   | 0.77                      | x | 1.5        | x | 115.77           | x   | 0.85           | x | 0.7            | <b>i</b> = | 71.6         | (80)             |
| West                | 0.9×   | 0.77                      | x | 1.5        | x | 110.22           | x   | 0.85           | x | 0.7            | i =        | 68.17        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 94.68            | x   | 0.85           | × | 0.7            | 1 =        | 58.56        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 73.59            | x   | 0.85           | × | 0.7            | <b>]</b> = | 45.52        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 45.59            | x   | 0.85           | × | 0.7            | <b>j</b> = | 28.2         | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | x | 24.49            | İ x | 0.85           | × | 0.7            | <b>j</b> = | 15.15        | (80)             |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 16.15            | l x | 0.85           | × | 0.7            | i =        | 9.99         | (80)             |

| Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m |           |           |          |         |           |         |         |         |         |         |        |       |      |
|-----------------------------------------------------------------------|-----------|-----------|----------|---------|-----------|---------|---------|---------|---------|---------|--------|-------|------|
| (83)m=                                                                | 356.33    | 590.11    | 768.46   | 896.41  | 960.05    | 935.6   | 909.17  | 863.14  | 812.37  | 641.13  | 423.6  | 307.1 | (83) |
| Total g                                                               | ains – ir | nternal a | nd solar | (84)m = | = (73)m - | ⊦ (83)m | , watts |         |         |         |        |       | -    |
| (84)m=                                                                | 863.47    | 1092.84   | 1250.99  | 1347.8  | 1380.06   | 1327.07 | 1283.67 | 1246.35 | 1213.21 | 1073.34 | 890.68 | 800.1 | (84) |

| 7. Mean internal temperature (heating season) |                         |                       |                    |                       |                       |                       |                        |                     |                          |                                       |             |             |           |       |
|-----------------------------------------------|-------------------------|-----------------------|--------------------|-----------------------|-----------------------|-----------------------|------------------------|---------------------|--------------------------|---------------------------------------|-------------|-------------|-----------|-------|
| Temp                                          | erature                 | during h              | eating p           | eriods ir             | n the livir           | ng area f             | from Tab               | ole 9, Th           | 1 (°C)                   |                                       |             |             | 21        | (85)  |
| Utilisa                                       | ation fac               | tor for g             | ains for I         | iving are             | ea, h1,m              | (see Ta               | ble 9a)                |                     |                          |                                       |             | I           |           |       |
|                                               | Jan                     | Feb                   | Mar                | Apr                   | May                   | Jun                   | Jul                    | Aug                 | Sep                      | Oct                                   | Nov         | Dec         |           |       |
| (86)m=                                        | 1                       | 1                     | 1                  | 0.99                  | 0.98                  | 0.97                  | 0.93                   | 0.94                | 0.98                     | 0.99                                  | 1           | 1           |           | (86)  |
| Mean                                          | interna                 | l temper              | ature in           | living are            | ea T1 (fo             | ollow ste             | ps 3 to 7              | r in Table          | e 9c)                    |                                       |             |             |           |       |
| (87)m=                                        | 17.67                   | 17.88                 | 18.28              | 18.87                 | 19.47                 | 20.08                 | 20.46                  | 20.42               | 19.94                    | 19.15                                 | 18.34       | 17.68       |           | (87)  |
| Temp                                          | erature                 | durina h              | eating p           | eriods ir             | rest of               | dwellina              | from Ta                | ble 9 Tl            | n2 (°C)                  |                                       |             |             |           |       |
| (88)m=                                        | 18.21                   | 18.23                 | 18.24              | 18.32                 | 18.33                 | 18.4                  | 18.4                   | 18.41               | 18.37                    | 18.33                                 | 18.3        | 18.27       |           | (88)  |
| Utilisa                                       | ation fac               | tor for a             | ains for i         | rest of d             | welling l             | n2 m (se              | e Table                | 9a)                 |                          |                                       |             |             |           |       |
| (89)m=                                        | 1                       | 1                     | 0.99               | 0.99                  | 0.97                  | 0.9                   | 0.7                    | 0.75                | 0.93                     | 0.99                                  | 1           | 1           |           | (89)  |
| Mean                                          | interna                 | l<br>I temper         | ature in           | the rest              | of dwelli             | na T2 (f              | l<br>ollow ste         | une 3 to 7          | T in Tahl                | ـــــــــــــــــــــــــــــــــــــ |             |             |           |       |
| (90)m=                                        | 15.48                   | 15.7                  | 16.11              | 16.75                 | 17.35                 | 17.99                 | 18.31                  | 18.29               | 17.84                    | 17.04                                 | 16.21       | 15.53       |           | (90)  |
|                                               |                         |                       |                    |                       |                       |                       |                        |                     | f                        | LA = Livin                            | g area ÷ (4 | 4) =        | 0.36      | (91)  |
| Maan                                          | intorno                 | ltompor               | oturo (fo          | r tha wh              | مام طيروا             | ling) fl              | ΔΤ4                    | , (1 fl             | A) TO                    |                                       |             | l           |           |       |
|                                               | 16 27                   | 16 49                 |                    | 17 51                 | 18 12                 | 18 74                 |                        | + (1 – 1L           | A) X IZ                  | 17.8                                  | 16.08       | 16.31       |           | (92)  |
|                                               | adiustr                 | nent to t             | he mear            | internal              | temper                | ature fro             | m Table                | 4e whe              |                          |                                       | 10.00       | 10.01       |           | (0-)  |
| (93)m=                                        | 16.27                   | 16.49                 | 16.9               | 17.51                 | 18.12                 | 18.74                 | 19.09                  | 19.06               | 18.6                     | 17.8                                  | 16.98       | 16.31       |           | (93)  |
| 8. Spa                                        | ace hea                 | ting regi             | uirement           |                       |                       |                       |                        |                     |                          |                                       |             |             |           |       |
| Set Ti                                        | i to the r              | mean int              | ernal ter          | nperatur              | e obtain              | ed at ste             | ep 11 of               | Table 9             | o, so tha                | t Ti,m=(1                             | 76)m an     | d re-calc   | ulate     |       |
| the ut                                        | ilisation               | factor fo             | or gains           | using Ta              | ble 9a                |                       |                        |                     |                          |                                       |             |             |           |       |
|                                               | Jan                     | Feb                   | Mar                | Apr                   | May                   | Jun                   | Jul                    | Aug                 | Sep                      | Oct                                   | Nov         | Dec         |           |       |
| Utilisa                                       | ation fac               | tor for g             | ains, hm           | :                     |                       |                       |                        |                     |                          |                                       |             |             |           | 62.00 |
| (94)m=                                        | 1                       | 0.99                  | 0.99               | 0.98                  | 0.96                  | 0.92                  | 0.81                   | 0.83                | 0.94                     | 0.98                                  | 1           | 1           |           | (94)  |
| Usefu                                         | Il gains,               | hmGm                  | , W = (94          | 4)m x (84             | 4)m                   |                       |                        |                     |                          |                                       |             |             |           | (05)  |
| (95)m=                                        | 860.91                  | 1086.77               | 1238.76            | 1323.83               | 1330.27               | 1216.5                | 1035.48                | 1038.91             | 1142                     | 1056.28                               | 886.33      | 798.23      |           | (95)  |
| Montr                                         | nly avera               | age exte              | rnal tem           | perature              |                       | able 8                | 16.6                   | 16.4                | 111                      | 10.6                                  | 74          | 4.2         |           | (06)  |
|                                               | 4.3                     | 4.9                   | 0.5                | 0.9                   |                       | 14.0                  | [(20)m)                | 10.4                | (06)m                    | 10.6                                  | 7.1         | 4.2         |           | (30)  |
| (97)m-                                        | 8546 27                 | 8226.8                | 7339.05            | 5013 0                | 4382 20               | _111 , VV =           | 1653 59                | 1759 51             | - (90)III<br>3021 12     | 4917.46                               | 6823.00     | 8453 98     |           | (97)  |
| Space                                         | heatin                  |                       | ment fo            | r each m              | -1002.20              | N/h/mont              | h = 0.02               | 24 x [/97]          | m = (95)                 | )ml v $(4^{\prime})$                  | 1)m         | 0400.00     |           | (0.)  |
| (98)m=                                        | 5717.9                  | 4798.1                | 4538.62            | 3304.85               | 2270.7                | 0                     | 0.02                   |                     | 0                        | 2872.72                               | 4275.12     | 5695.88     |           |       |
| (/                                            |                         |                       |                    |                       | -                     | -                     | -                      | Tota                | l per vear               | (kWh/vear                             | ) = Sum(9   | 8)1 59 12 = | 33473.89  | (98)  |
| Snoo                                          | a hoatin                | a roquir              | omont in           | $kM/h/m^2$            | woor                  |                       |                        |                     |                          | (                                     | ,(-         | - / 1       | 261 51    |       |
| Space                                         | eneaun                  | y require             |                    |                       | year                  |                       |                        |                     |                          |                                       |             | l           | 201.01    | (33)  |
| 96. En                                        | ergy rec                | quiremer              | nts – Cor          | nmunity               | heating               | scheme                |                        |                     |                          |                                       |             |             |           |       |
| Fractio                                       | art is use<br>In of spa | ed for sp<br>ace heat | ace hea<br>from se | ting, spa<br>condary/ | ace cooli<br>/supplem | ng or wa<br>nentary ł | ater heat<br>heating ( | ing prov<br>Table 1 | ided by a<br>1) '0' if n | a commi<br>one                        | unity scr   | neme.       | 0         | (301) |
| Fractio                                       | n of spa                | ace heat              | from co            | ,<br>mmunitv          | system                | -<br>1 – (301         | 1) =                   |                     |                          |                                       |             | l           | 1         | (302) |
| The corr                                      | nmunitv so              | cheme ma              | v obtain he        | eat from se           | everal sour           | ces. The r            | ,<br>procedure         | allows for          | CHP and i                | up to four a                          | other heat  | sources: fl | he latter | ` ´   |
| includes                                      | boilers, h              | eat pumps             | s, geotherr        | nal and wa            | aste heat fi          | rom power             | r stations.            | See Apper           | ndix C.                  |                                       |             |             |           |       |

Fraction of heat from Community boilers

| 1 (303a) |
|----------|
|----------|

| Fraction of total space heat from Commur                                               | nity boilers                                           |                      | (302) x (303a) =              |             | 1                    | (304a)     |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|-------------------------------|-------------|----------------------|------------|
| Factor for control and charging method (T                                              | able 4c(3)) for community he                           | ating system         |                               |             | 1.05                 | (305)      |
| Distribution loss factor (Table 12c) for con                                           | nmunity heating system                                 |                      |                               |             | 1.1                  | (306)      |
| Space heating                                                                          |                                                        |                      |                               |             | kWh/year             | ,          |
| Annual space heating requirement                                                       |                                                        |                      |                               |             | 33473.89             |            |
| Space heat from Community boilers                                                      |                                                        | (98) x (304a) x (3   | 305) x (306) =                |             | 38662.34             | (307a)     |
| Efficiency of secondary/supplementary he                                               | ating system in % (from Table                          | e 4a or Append       | lix E)                        |             | 0                    | (308       |
| Space heating requirement from seconda                                                 | ry/supplementary system                                | (98) x (301) x 10    | 0 ÷ (308) =                   |             | 0                    | (309)      |
| Water heating<br>Annual water heating requirement                                      |                                                        |                      |                               | Γ           | 2268.73              | 1          |
| If DHW from community scheme:<br>Water heat from Community boilers                     |                                                        | (64) x (303a) x (3   | 305) x (306) =                |             | 2620.38              | (310a)     |
| Electricity used for heat distribution                                                 | 0.01                                                   | 1 × [(307a)(307e     | ) + (310a)(310e)]             | =           | 412.83               | (313)      |
| Cooling System Energy Efficiency Ratio                                                 |                                                        |                      |                               |             | 0                    | (314)      |
| Space cooling (if there is a fixed cooling s                                           | ystem, if not enter 0)                                 | = (107) ÷ (314) =    | :                             |             | 0                    | (315)      |
| Electricity for pumps and fans within dwell mechanical ventilation - balanced, extract | ing (Table 4f):<br>or positive input from outside      |                      |                               |             | 0                    | (330a)     |
| warm air heating system fans                                                           |                                                        |                      |                               |             | 0                    | (330b)     |
| pump for solar water heating                                                           |                                                        |                      |                               |             | 0                    | (330g)     |
| Total electricity for the above, kWh/year                                              |                                                        | =(330a) + (330b)     | ) + (330g) =                  |             | 0                    | (331)      |
| Energy for lighting (calculated in Appendix                                            | (L)                                                    |                      |                               |             | 803.82               | (332)      |
| 12b. CO2 Emissions – Community heating                                                 | g scheme                                               |                      |                               |             |                      | 1          |
|                                                                                        | En<br>kW                                               | ergy<br>/h/year      | Emission factor<br>kg CO2/kWh | or En<br>kg | nissions<br>CO2/year |            |
| CO2 from other sources of space and wat<br>Efficiency of heat source 1 (%)             | er heating (not CHP)<br>If there is CHP using two fuel | s repeat (363) to (3 | 366) for the second           | fuel        | 65                   | (367a)     |
| CO2 associated with heat source 1                                                      | [(307b)+(310b)] x                                      | 100 ÷ (367b) x       | 0                             | =           | 13718.57             | (367)      |
| Electrical energy for heat distribution                                                | [(313) x                                               |                      | 0.52                          | =           | 214.26               | (372)      |
| Total CO2 associated with community sys                                                | stems (363)(3                                          | 66) + (368)(372)     |                               | = [         | 13932.82             | (373)      |
| CO2 associated with space heating (seco                                                | ndary) (309) x                                         |                      | 0                             | = [         | 0                    | (374)      |
| CO2 associated with water from immersio                                                | n heater or instantaneous he                           | ater (312) x         | 0.22                          | = [         | 0                    | (375)      |
| Total CO2 associated with space and wat                                                | er heating (373) + (3                                  | 374) + (375) =       |                               | [           | 13932.82             | (376)      |
| CO2 associated with electricity for pumps                                              | and fans within dwelling (33                           | 1)) x                | 0.52                          | = [         | 0                    | (378)      |
| CO2 associated with electricity for lighting                                           | (332))) x                                              |                      | 0.52                          | = [         | 417.18               | _<br>(379) |
| Total CO2, kg/vear                                                                     | um of (376)(382) =                                     |                      |                               |             | 14350.01             | (383)      |
| Dwelling CO2 Emission Rate                                                             | 383) ÷ (4) =                                           |                      |                               |             | 112.11               | (384)      |
| El rating (section 14)                                                                 |                                                        |                      |                               |             | 17.71                | (385)      |
|                                                                                        |                                                        |                      |                               |             |                      |            |

|                                  |                                         | L                 | Jser De                 | etails:          |                    |               |                     |           |                           |                                                       |
|----------------------------------|-----------------------------------------|-------------------|-------------------------|------------------|--------------------|---------------|---------------------|-----------|---------------------------|-------------------------------------------------------|
| Assessor Name:<br>Software Name: | Stroma FSAP 2012                        | 2                 | 9                       | Stroma<br>Softwa | a Num<br>ire Ver   | ber:<br>sion: |                     | Versio    | n: 1.0.3.15               |                                                       |
|                                  |                                         | Pro               | perty A                 | ddress:          | Unit 6             |               |                     |           |                           |                                                       |
| Address :                        |                                         |                   |                         |                  |                    |               |                     |           |                           |                                                       |
| 1. Overall dwelling dimer        | nsions:                                 |                   | -                       | ( a)             |                    |               |                     |           |                           |                                                       |
| Bacamont                         |                                         |                   | Area                    | (m²)             | (10)               | Av. He        |                     |           | Volume(m <sup>3</sup> )   |                                                       |
|                                  | \ . / 4 L \ . / 4 - \ . / 4 - \ . / 4 - | . (4)             | 2                       | 47               | (ia) x             | 4.            | .09                 | (2a) =    | 1010.23                   | (38)                                                  |
| Total floor area $IFA = (1a)$    | l)+(1b)+(1c)+(1d)+(1e)                  | +(1n)             | 2                       | 47               | (4)<br>(2-) : (25) |               | ) . ( <b>2</b> -) . | (2)       |                           | -                                                     |
|                                  |                                         |                   |                         |                  | (38)+(30)          | 1+(30)+(30    | )+(3e)+             | .(31) =   | 1010.23                   | (5)                                                   |
| 2. Ventilation rate:             |                                         |                   |                         | . 4              |                    | 4 - 4 - 1     |                     |           |                           |                                                       |
|                                  | heating he                              | condary<br>eating | C                       | otner            |                    | total         |                     |           | m <sup>3</sup> per nou    | ,                                                     |
| Number of chimneys               | 0 +                                     | 0                 | +                       | 0                | ] = [              | 0             | X 4                 | 40 =      | 0                         | (6a)                                                  |
| Number of open flues             | 0 +                                     | 0                 | +                       | 0                | ] = [              | 0             | × 2                 | 20 =      | 0                         | (6b)                                                  |
| Number of intermittent fan       | IS                                      |                   |                         |                  |                    | 4             | x ^                 | 10 =      | 40                        | (7a)                                                  |
| Number of passive vents          |                                         |                   |                         |                  | Г                  | 0             | x ^                 | 10 =      | 0                         | (7b)                                                  |
| Number of flueless gas fire      | es                                      |                   |                         |                  | Γ                  | 0             | x 4                 | 40 =      | 0                         | (7c)                                                  |
|                                  |                                         |                   |                         |                  |                    |               |                     | Air ch    | anges <mark>per</mark> ho | ur                                                    |
| Infiltration due to chimney      | s, flues and fans = (6a                 | )+(6b)+(7a)+      | + <mark>(7</mark> b)+(7 | (C) =            |                    | 40            |                     | ÷ (5) =   | 0.04                      | (8)                                                   |
| If a pressurisation test has be  | en carried out or is intended           | d, proceed to     | o (17), oi              | therwise c       | ontinue fro        | om (9) to (   | 16)                 |           |                           |                                                       |
| Additional infiltration          | e dwelling (lis)                        |                   |                         |                  |                    |               | [(9)-               | -11x0.1 = | 0                         | (9)                                                   |
| Structural infiltration: 0.2     | 25 for steel or timber fr               | ame or 0.         | .35 for                 | masonr           | v constr           | uction        | [(0)                | 1,100.1 - | 0                         | $= \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$   |
| if both types of wall are pre    | esent, use the value corresp            | onding to th      | e greate                | er wall area     | a (after           |               |                     | I         |                           |                                                       |
| deducting areas of opening       | gs); if equal user 0.35                 | d) or 0.1         |                         | d) alaa          | ontor O            |               |                     | I         |                           |                                                       |
| If suspended wooden in           | 001, enter $0.2$ (unseale               | u) 01 0. 1        | (Sealed                 | u), eise         |                    |               |                     |           | 0                         | $ = \begin{bmatrix} (12) \\ - \\ (12) \end{bmatrix} $ |
| Percentage of windows            | and doors draught str                   | ipped             |                         |                  |                    |               |                     |           | 0                         | $\int_{(14)}^{(13)}$                                  |
| Window infiltration              |                                         | ippou             | C                       | 0.25 - [0.2      | x (14) ÷ 1         | 00] =         |                     |           | 0                         | $1^{(17)}_{(15)}$                                     |
| Infiltration rate                |                                         |                   | (                       | (8) + (10) -     | + (11) + (1        | 2) + (13) +   | + (15) =            |           | 0                         | (16)                                                  |
| Air permeability value, o        | q50, expressed in cubi                  | c metres p        | per hou                 | ur per so        | quare m            | etre of e     | nvelope             | area      | 20                        | <b>–</b> (17)                                         |
| If based on air permeabilit      | ty value, then (18) = [(17              | ) ÷ 20]+(8),      | otherwis                | se (18) = (      | 16)                |               |                     |           | 1.04                      | (18)                                                  |
| Air permeability value applies   | if a pressurisation test has            | been done d       | or a degi               | ree air per      | meability i        | is being us   | sed                 |           |                           | _                                                     |
| Number of sides sheltered        | b                                       |                   | (                       | (20) - 1 [       | 0 075 v (1         | 0)] _         |                     |           | 1                         | (19)                                                  |
| Sheller lactor                   | na choltor footor                       |                   | (                       | (20) = 1 - [     | 0.075 X (1         | 9)] =         |                     |           | 0.92                      | (20)                                                  |
| Inititration rate incorporation  | ng sneiter lactor                       |                   | (                       | (21) = (10)      | x (20) =           |               |                     | ļ         | 0.96                      | _(21)                                                 |
|                                  | or monthly wind speed                   | luna              | 11                      | A                | Can                | Oct           | Nev                 |           |                           |                                                       |
|                                  |                                         | Jun               | Jui                     | Aug              | Sep                | 001           | INOV                | Dec       |                           |                                                       |
| Monthly average wind spe         |                                         | 2.0               | 2.0                     | 27               | 4                  | 4.2           | 4.5                 | 47        |                           |                                                       |
|                                  | <del>1.3</del>   4.4   4.3              | 3.0               | 5.0                     | J.I              | 4                  | 4.3           | 4.0                 | 4.7       |                           |                                                       |
| Wind Factor (22a)m = (22         | )m ÷ 4                                  |                   |                         |                  |                    |               |                     |           |                           |                                                       |
| (22a)m= 1.27 1.25 1              | .23 1.1 1.08                            | 0.95              | 0.95                    | 0.92             | 1                  | 1.08          | 1.12                | 1.18      |                           |                                                       |

| Adjusted                                                                                                                                                       | infiltra                                                                                                                                                                    | tion rate                                                                       | e (allowi                                                                                                | ng for sh                                                                | nelter and                  | d wind s                                                                                                                  | peed) =                                                        | : (21a) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |            |                    |        |                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                | 1.23                                                                                                                                                                        | 1.2                                                                             | 1.18                                                                                                     | 1.06                                                                     | 1.03                        | 0.91                                                                                                                      | 0.91                                                           | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03                                                                                                                        | 1.08       | 1.13               |        |                                                                                                                                               |
| Calculate                                                                                                                                                      | e effect                                                                                                                                                                    | tive air i<br>Lvontilo                                                          | change i                                                                                                 | rate for t                                                               | he applic                   | cable ca                                                                                                                  | se                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                           |            |                    | -<br>  | (22.0)                                                                                                                                        |
| If exhaus                                                                                                                                                      | st air he                                                                                                                                                                   | at pump i                                                                       | using Appe                                                                                               | endix N (2                                                               | 3b) = (23a                  | ) x Fmv (e                                                                                                                | equation (                                                     | N5)) othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rwise (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (23a) = (23a)                                                                                                               |            |                    |        | ) (238)                                                                                                                                       |
| If balanc                                                                                                                                                      | ed with                                                                                                                                                                     | heat reco                                                                       | overv: effic                                                                                             | iencv in %                                                               | allowing fo                 | or in-use fa                                                                                                              | actor (fro                                                     | n Table 4h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>,)</i> = (200)                                                                                                           |            |                    |        | ) (23c)                                                                                                                                       |
| a) If ha                                                                                                                                                       | lancer                                                                                                                                                                      | d mecha                                                                         | anical ve                                                                                                | ntilation                                                                | with her                    | at recove                                                                                                                 | ⊳rv (M\/                                                       | HR) (24a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /<br>a)m = (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2h)m + (                                                                                                                    | 23h) x [   | 1 – (23c)          | ⊥ 1001 | (200)                                                                                                                                         |
| (24a)m=                                                                                                                                                        |                                                                                                                                                                             | 0                                                                               |                                                                                                          | 0                                                                        | 0                           | 0                                                                                                                         | 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |            | 0                  |        | (24a)                                                                                                                                         |
| b) If ba                                                                                                                                                       | lanced                                                                                                                                                                      | d mecha                                                                         | ı<br>anical ve                                                                                           | entilation                                                               | without                     | heat rec                                                                                                                  | overv (                                                        | 1<br>MV) (24b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m = (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>2b)m + (;                                                                                                              | 1<br>23b)  |                    | 1      |                                                                                                                                               |
| (24b)m=                                                                                                                                                        | 0                                                                                                                                                                           | 0                                                                               | 0                                                                                                        | 0                                                                        | 0                           | 0                                                                                                                         | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0          | 0                  |        | (24b)                                                                                                                                         |
| c) If wh                                                                                                                                                       | nole ho                                                                                                                                                                     | ouse ext                                                                        | tract ver                                                                                                | tilation o                                                               | positiv                     | e input v                                                                                                                 | /entilati                                                      | on from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                                                                                                           |            | I                  | 1      |                                                                                                                                               |
| if (                                                                                                                                                           | 22b)m                                                                                                                                                                       | < 0.5 ×                                                                         | (23b), t                                                                                                 | hen (240                                                                 | c) = (23b                   | ); otherv                                                                                                                 | vise (24                                                       | -c) = (22k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o) m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .5 × (23b                                                                                                                   | <b>)</b> ) |                    | _      |                                                                                                                                               |
| (24c)m=                                                                                                                                                        | 0                                                                                                                                                                           | 0                                                                               | 0                                                                                                        | 0                                                                        | 0                           | 0                                                                                                                         | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0          | 0                  |        | (24c)                                                                                                                                         |
| d) If na<br>if (:                                                                                                                                              | atural v<br>22b)m                                                                                                                                                           | entilation = 1, the                                                             | on or wh<br>en (24d)                                                                                     | ole hous<br>m = (22t                                                     | e positiv<br>c)m othe       | ve input v<br>rwise (24                                                                                                   | ventilati<br>4d)m =                                            | on from l<br>0.5 + [(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oft<br>2b)m² x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5]                                                                                                                        |            |                    |        |                                                                                                                                               |
| (24d)m=                                                                                                                                                        | 1.23                                                                                                                                                                        | 1.2                                                                             | 1.18                                                                                                     | 1.06                                                                     | 1.03                        | 0.92                                                                                                                      | 0.92                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03                                                                                                                        | 1.08       | 1.13               |        | (24d)                                                                                                                                         |
| Effectiv                                                                                                                                                       | ve air d                                                                                                                                                                    | change                                                                          | rate - er                                                                                                | nter (24a                                                                | ) or (24b                   | ) or (24d                                                                                                                 | c) or (24                                                      | ld) in bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                           | -          | -                  | -      |                                                                                                                                               |
| (25)m=                                                                                                                                                         | 1.23                                                                                                                                                                        | 1.2                                                                             | 1.18                                                                                                     | 1.06                                                                     | 1.03                        | 0.92                                                                                                                      | 0.92                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03                                                                                                                        | 1.08       | 1.13               |        | (25)                                                                                                                                          |
|                                                                                                                                                                |                                                                                                                                                                             |                                                                                 |                                                                                                          |                                                                          |                             |                                                                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |            |                    |        |                                                                                                                                               |
| 3. Heat                                                                                                                                                        | losses                                                                                                                                                                      | and he                                                                          | eat loss r                                                                                               | paramete                                                                 | er:                         |                                                                                                                           |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |            |                    |        |                                                                                                                                               |
| 3. Heat                                                                                                                                                        | losses<br>NT                                                                                                                                                                | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>1 <sup>2</sup> | Net Are<br>A ,n                                                                                                           | ea<br>n²                                                       | U-valı<br>W/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ue<br>2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A X U<br>(W/I                                                                                                               | K)         | k-value<br>kJ/m²-l | e<br>K | A X k<br>kJ/K                                                                                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty                                                                                                                                   | Iosses<br>NT<br>/pe 1                                                                                                                                                       | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>1 <sup>2</sup> | Net Are<br>A ,n<br>13.1                                                                                                   | ea<br>n²<br>X                                                  | U-valı<br>W/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ue<br>:K<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A X U<br>(W/I<br>39.3                                                                                                       | K)         | k-value<br>kJ/m²-l | e<br>K | A X k<br>kJ/K<br>(26)                                                                                                                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty                                                                                                                       | Iosses<br>NT<br>vpe 1<br>vpe 2                                                                                                                                              | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>2              | Net Arc<br>A ,n<br>13.1<br>13.1                                                                                           | ea<br>n²<br>X                                                  | U-valu<br>W/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ue<br>:K<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A X U<br>(W/I<br>39.3<br>39.3                                                                                               | k)         | k-value<br>kJ/m²+l | ÷<br>K | A X k<br>kJ/K<br>(26)<br>(26)                                                                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty                                                                                                           | iosses<br>NT<br>vpe 1<br>vpe 2<br>vpe 3                                                                                                                                     | and he<br>Gros<br>area                                                          | eat loss ;<br>ss<br>(m²)                                                                                 | Daramete<br>Openin<br>m                                                  | er:<br>gs<br>2              | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1                                                                                   | ea<br>n²<br>X<br>X                                             | U-valu<br>W/m2<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ue<br>2K<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A X U<br>(W/I<br>39.3<br>39.3<br>39.3                                                                                       | K)         | k-value<br>kJ/m²·l | e<br>K | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)                                                                                                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Doors Ty                                                                                               | iosses<br>NT<br>vpe 1<br>vpe 2<br>vpe 3<br>vpe 4                                                                                                                            | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>,2             | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5                                                                            | ea<br>n <sup>2</sup> ×<br>×<br>×                               | U-valu<br>W/m2<br>3<br>3<br>3<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ue<br>:K<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>3.5                                                                                | K)         | k-value<br>kJ/m²-l | ⇒<br>≺ | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)                                                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows                                                                                    | rpe 1<br>rpe 2<br>rpe 3<br>rpe 4<br>s Type                                                                                                                                  | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>,2             | Net Are<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22                                                                   | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×                          | U-valu<br>W/m2<br>3<br>3<br>3<br>1.4<br>/[1/(4.8)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ue<br>K<br>=<br>=<br>=<br>=<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34                                                               | K)         | k-value<br>kJ/m²·l | e<br>K | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)                                                                                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows                                                                                     | vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type                                                                                                                                  | and he<br>Gros<br>area                                                          | eat loss p<br>ss<br>(m²)                                                                                 | oaramete<br>Openin<br>m                                                  | er:<br>gs<br>2              | Net Are<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6                                                            | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×<br>×                     | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/(4.8)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ue<br>K<br>=<br>=<br>=<br>=<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42                                                       | K)         | k-value<br>kJ/m²-l | e<br>K | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)                                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows                                                                          | vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type                                                                                                              | and he<br>Gros<br>area<br>1<br>2<br>3                                           | eat loss p<br>ss<br>(m²)                                                                                 | Openin<br>M                                                              | er:<br>gs<br>,2             | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6                                                       | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×<br>×<br>×                | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ue<br>!K<br>=<br>=<br>=<br>=<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16                                                      | K)         | k-value            | €<br>K | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)                                                                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows<br>Windows                                                               | vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type                                                                                                              | and he<br>Gros<br>area<br>1<br>2<br>3<br>102.                                   | eat loss p<br>ss<br>(m <sup>2</sup> )                                                                    | Openin<br>M                                                              | er:<br>gs<br>, <sup>2</sup> | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48                                              | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×<br>×<br>×<br>×           | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ue<br>K<br>=<br>=<br>=<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91                                     | k)         | k-value            | ×      | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows<br>Windows<br>Walls Typ                                                  | vpe 1<br>vpe 2<br>vpe 3<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type<br>pe1<br>pe2                                                                                       | and he<br>Gros<br>area<br>1<br>2<br>3<br><u>102.</u><br>54.8                    | eat loss r<br>ss<br>(m <sup>2</sup> )                                                                    | Openin<br>M<br>63.12                                                     | er:<br>gs<br>, <sup>2</sup> | Net Are<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48<br>54.8                                      | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×<br>×<br>×                | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ue<br>K<br>=<br>=<br>=<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>0.04] =<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91<br>15.34                            |            | k-value            | ×      | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)                                                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows<br>Walls Typ<br>Walls Typ                                                | vpe 1<br>vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type<br>pe1<br>pe2<br>pe3                                                                                | and he<br>Gros<br>area<br>1<br>2<br>3<br>102.<br>54.8<br>43.5                   | .6<br>56                                                                                                 | 0penin<br>m<br>63.12<br>0<br>2.5                                         | er:<br>gs<br>,2             | Net Are<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48<br>54.8<br>41.06                             |                                                                | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>2.1<br>0.28<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ue<br>K<br>=<br>=<br>=<br>=<br>0.04] =<br>=<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91<br>15.34<br>86.23                           |            | k-value<br>kJ/m²-l |        | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)                                                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Walls Ty<br>Walls Ty<br>Walls Ty<br>Walls Ty                                     | vpe 1<br>vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type<br>pe1<br>pe2<br>pe3<br>pe4                                                                         | and he<br>Gros<br>area<br>1<br>2<br>3<br>102.<br>54.8<br>43.5<br>15.0           | .6<br>.6<br>.6<br>.6<br>.5<br>.5                                                                         | Openin           m           63.12           0           2.5           0 | er:<br>gs<br>,2             | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48<br>54.8<br>41.06                             |                                                                | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+ | ue<br>K<br>=<br>=<br>=<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91<br>15.34<br>86.23<br>4.52                   |            | k-value<br>kJ/m²-l |        | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(29)                                 |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows<br>Walls Ty<br>Walls Ty<br>Walls Ty<br>Walls Ty<br>Roof                  | vpe 1<br>vpe 1<br>vpe 2<br>vpe 3<br>vpe 4<br>s Type<br>s Type<br>s Type<br>pe1<br>pe2<br>pe3<br>pe4                                                                         | and he<br>Gros<br>area<br>1<br>2<br>3<br>102.<br>43.5<br>43.5<br>15.0<br>85.2   | 6<br>6<br>8<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                        | 0penin<br>m<br>63.12<br>0<br>2.5<br>0<br>0                               | er:<br>gs<br>,2<br>2        | Net Ard<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48<br>54.8<br>41.06<br>15.05<br>85.21           |                                                                | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ue<br>K<br>=<br>=<br>=<br>=<br>0.04] =<br>=<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                         | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91<br>15.34<br>86.23<br>4.52<br>195.98 |            | k-value<br>kJ/m²-I |        | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)                         |
| 3. Heat<br>ELEME<br>Doors Ty<br>Doors Ty<br>Doors Ty<br>Windows<br>Windows<br>Windows<br>Walls Typ<br>Walls Typ<br>Walls Typ<br>Walls Typ<br>Roof<br>Total are | in osses<br>in T<br>in pe 1<br>in pe 2<br>in pe 3<br>in type<br>is Type<br>is Type<br>is Type<br>is Type<br>pe 1<br>in pe 2<br>in pe 3<br>in pe 3<br>in pe 4<br>in a of ele | and he<br>Gros<br>area<br>1<br>2<br>3<br>102.<br>43.5<br>15.0<br>85.2<br>ements | .6<br>.6<br>.6<br>.6<br>.6<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7<br>.7 | 0penin<br>m<br>63.12<br>0<br>2.5<br>0<br>0                               | er:<br>gs<br>,2<br>2        | Net Are<br>A ,n<br>13.1<br>13.1<br>13.1<br>2.5<br>17.22<br>0.6<br>6<br>39.48<br>54.8<br>41.06<br>15.05<br>85.21<br>301.22 | ea<br>n <sup>2</sup> ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× | U-valu<br>W/m2<br>3<br>3<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ue         =         =         =         0.04]         =         0.04]         =         0.04]         =         0.04]         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         = | A X U<br>(W/I<br>39.3<br>39.3<br>39.3<br>39.3<br>3.5<br>69.34<br>2.42<br>24.16<br>82.91<br>15.34<br>86.23<br>4.52<br>195.98 |            | k-value<br>kJ/m²-I |        | A X k<br>kJ/K<br>(26)<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(30)<br>(31) |

| Fabric heat loss, $W/K = S (A \times U)$                                                                                        | (26)(30) + (32) =                                | 602.3 | (33) |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------|------|
| Heat capacity $Cm = S(A \times k)$                                                                                              | ((28)(30) + (32) + (32a)(32e) =                  | 0     | (34) |
| Thermal mass parameter (TMP = $Cm \div TFA$ ) in kJ/m <sup>2</sup> K                                                            | Indicative Value: High                           | 450   | (35) |
| For design assessments where the details of the construction are not known pr<br>can be used instead of a detailed calculation. | ecisely the indicative values of TMP in Table 1f |       | _    |

Thermal bridges : S (L x Y) calculated using Appendix K

| if details                                                                                                              | of therma     | al bridging           | are not kn    | own (36) =              | = 0.15 x (3     | 1)          |              |             | (00)                  | (00)                 |                        |          |                       |      |
|-------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|---------------|-------------------------|-----------------|-------------|--------------|-------------|-----------------------|----------------------|------------------------|----------|-----------------------|------|
| I otal fabric heat loss $(33) + (36) =$ Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ |               |                       |               |                         |                 |             |              |             |                       |                      |                        | 648.7    | (37)                  |      |
| Ventila                                                                                                                 | ation hea     | at loss ca            | alculated     | monthly                 | /               |             |              |             | (38)m                 | = 0.33 × (           | 25)m x (5)             |          | 1                     |      |
| (38)m-                                                                                                                  | Jan<br>408 74 | Feb                   | Mar<br>302 71 | Apr<br>352.64           | May             | 305.8       | 305.8        | Aug         | Sep                   | OCt                  | NOV                    | 276 68   |                       | (38) |
| (30)11=                                                                                                                 | 400.74        | 400.73                | 592.71        | 552.04                  | 544.05          | 303.0       | 303.0        | 290.57      | 320.03                | 344.03               | 300.00                 | 370.00   | J                     | (00) |
| Heat t                                                                                                                  | ransfer o     |                       | nt, W/K       | 4004.04                 | 000.00          | 054.40      | 054.40       | 0.47.07     | (39)m                 | = (37) + (37)        | 38)m                   | 4005.00  | 1                     |      |
| (39)m=                                                                                                                  | 1057.44       | 1049.42               | 1041.41       | 1001.34                 | 993.32          | 954.49      | 954.49       | 947.27      | 969.52                | 993.32               | 1009.35<br>Sum(20)     | 1025.38  | 000.72                | (30) |
| Heat le                                                                                                                 | oss para      | meter (H              | HLP), W/      | ′m²K                    |                 |             |              |             | ر<br>(40)m            | = (39)m ÷            | Sum(39)₁.<br>· (4)     | 12 / 12= | 999.75                |      |
| (40)m=                                                                                                                  | 4.28          | 4.25                  | 4.22          | 4.05                    | 4.02            | 3.86        | 3.86         | 3.84        | 3.93                  | 4.02                 | 4.09                   | 4.15     |                       |      |
| Numb                                                                                                                    | er of day     | vs in mo              | nth (Tab      | le 1a)                  |                 |             |              |             |                       | Average =            | Sum(40)1.              | 12 /12=  | 4.05                  | (40) |
|                                                                                                                         | Jan           | Feb                   | Mar           | Apr                     | May             | Jun         | Jul          | Aug         | Sep                   | Oct                  | Nov                    | Dec      |                       |      |
| (41)m=                                                                                                                  | 31            | 28                    | 31            | 30                      | 31              | 30          | 31           | 31          | 30                    | 31                   | 30                     | 31       |                       | (41) |
|                                                                                                                         |               |                       |               |                         |                 |             | •            |             |                       |                      |                        |          |                       |      |
| 4. Wa                                                                                                                   | ater heat     | ting ene              | rgy requi     | rement:                 |                 |             |              |             |                       |                      |                        | kWh/ye   | ear:                  |      |
| A                                                                                                                       |               |                       | NI            |                         |                 |             |              |             |                       |                      |                        |          | 1                     | (10) |
| if TF                                                                                                                   | A > 13.9      | ipancy, 1<br>9, N = 1 | n<br>+ 1.76 x | [1 - exp                | (-0.0003        | 849 x (TF   | -<br>A -13.9 | )2)] + 0.0  | )013 x ( <sup>-</sup> | TFA -13.             | <u>3.</u><br>.9)       | 06       |                       | (42) |
| if TF                                                                                                                   | A £ 13.9      | 9, N = 1              | - 1           |                         |                 | ,           |              |             | ,                     |                      | ,<br>                  |          |                       |      |
| Annua                                                                                                                   | l averag      | e hot wa              | ater usac     | ge in litre             | s per da        | ay Vd,av    | erage =      | (25 x N)    | + 36                  | se target o          | 100                    | 6.95     |                       | (43) |
| not mor                                                                                                                 | e that 125    | litres per            | person per    | day (all w              | ater use, l     | hot and co  | ld)          |             | a water us            | se largel o          | 1                      |          |                       |      |
|                                                                                                                         | Jan           | Feb                   | Mar           | Apr                     | May             | Jun         | Jul          | Aug         | Sep                   | Oct                  | Nov                    | Dec      |                       |      |
| Hot wat                                                                                                                 | er usage i    | n litres per          | day for ea    | ich m <mark>onth</mark> | Vd,m = fa       | ctor from T | Table 1c x   | (43)        |                       |                      |                        |          | J                     |      |
| (44)m=                                                                                                                  | 117.64        | 113.36                | 109.09        | 104.81                  | 100.53          | 96.25       | 96.25        | 100.53      | 104.81                | 10 <mark>9.09</mark> | 113.36                 | 117.64   |                       |      |
|                                                                                                                         |               |                       | ·             |                         |                 |             |              |             |                       | Total = Su           | m(44) <sub>112</sub> = | =        | 12 <mark>83.36</mark> | (44) |
| Energy                                                                                                                  | content of    | hot water             | used - cal    | culated mo              | onthly $= 4$ .  | 190 x Vd,r  | n x nm x C   | 0Tm / 3600  | ) kWh/mor             | nth (see Ta          | ables 1b, 1            | c, 1d)   | _                     |      |
| (45)m=                                                                                                                  | 174.46        | 152.58                | 157.45        | 137.27                  | 131.71          | 113.66      | 105.32       | 120.86      | 122.3                 | 142.53               | 155.58                 | 168.95   |                       | _    |
| lf instar                                                                                                               | tanoous w     | ator hoati            | na at noint   | of use (no              | hot water       | r storaga)  | ontor () in  | hoves (16   | ) to (61)             | Total = Su           | m(45) <sub>112</sub> = | =        | 1682.69               | (45) |
| (10)                                                                                                                    |               |                       |               |                         | 40.70           | 310/2gc),   |              |             | 10 (01)               | 04.00                | 00.04                  | 05.04    | 1                     | (AC) |
| (46)m=<br>Water                                                                                                         | storage       | 22.89<br>loss:        | 23.62         | 20.59                   | 19.76           | 17.05       | 15.8         | 18.13       | 18.35                 | 21.38                | 23.34                  | 25.34    |                       | (40) |
| Storag                                                                                                                  | je volum      | e (litres)            | includin      | ig any so               | olar or W       | /WHRS       | storage      | within sa   | ame ves               | sel                  |                        | 160      | ]                     | (47) |
| If com                                                                                                                  | munity h      | eating a              | ind no ta     | nk in dw                | elling, e       | nter 110    | litres in    | (47)        |                       |                      |                        |          | 1                     |      |
| Other                                                                                                                   | vise if no    | o stored              | hot wate      | er (this in             | cludes i        | nstantar    | neous co     | mbi boil    | ers) ente             | er '0' in (          | 47)                    |          |                       |      |
| Water                                                                                                                   | storage       | loss:                 |               |                         |                 |             | <i>.</i>     |             |                       |                      |                        |          | 1                     |      |
| a) If n<br>_                                                                                                            | nanufact      | urer's de             | eclared l     | oss facto               | or is kno       | wn (kvvr    | n/day):      |             |                       |                      |                        | 0        |                       | (48) |
| Tempe                                                                                                                   | erature f     | actor fro             | m Table       | 2b                      |                 |             |              |             |                       |                      |                        | 0        |                       | (49) |
| Energ                                                                                                                   | y lost fro    | m water               | storage       | , kWh/ye<br>wlindor l   | ear<br>See fact | or is not   | known:       | (48) x (49) | ) =                   |                      | 1                      | 10       |                       | (50) |
| Hot wa                                                                                                                  | ater stor     | age loss              | factor fr     | om Tabl                 | e 2 (kW         | h/litre/da  | ay)          |             |                       |                      | 0.                     | 02       | 1                     | (51) |
| If com                                                                                                                  | munity h      | eating s              | ee secti      | on 4.3                  | ·               |             | • ·          |             |                       |                      |                        | -        | 1                     |      |
| Volum                                                                                                                   | e factor      | from Ta               | ble 2a        |                         |                 |             |              |             |                       |                      | 1.                     | 03       |                       | (52) |
| Tempe                                                                                                                   | erature f     | actor fro             | m Table       | 2b                      |                 |             |              |             |                       |                      | 0                      | .6       |                       | (53) |
| Energ                                                                                                                   | y lost fro    | m water               | storage       | , kWh/ye                | ear             |             |              | (47) x (51) | x (52) x (            | 53) =                | 1.                     | 03       |                       | (54) |
| Enter                                                                                                                   | (50) or (     | 54) in (5             | o5)           |                         |                 |             |              |             |                       |                      | 1.                     | 03       | J                     | (55) |

| Water                                                                                                            | storage                                                                                                                    | loss cal                                                                                                                            | culated                                                                                                              | for each                                                                                      | month                                                                         |                                                                                             |                                                                                                  | ((56)m = (                                                                                            | 55) × (41)                                                                                         | m                                                                                       |                                                                           |                                                                   |                       |                                                                                                              |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|
| (56)m=                                                                                                           | 32.01                                                                                                                      | 28.92                                                                                                                               | 32.01                                                                                                                | 30.98                                                                                         | 32.01                                                                         | 30.98                                                                                       | 32.01                                                                                            | 32.01                                                                                                 | 30.98                                                                                              | 32.01                                                                                   | 30.98                                                                     | 32.01                                                             |                       | (56)                                                                                                         |
| If cylind                                                                                                        | er contain                                                                                                                 | s dedicate                                                                                                                          | d solar sto                                                                                                          | rage, (57)                                                                                    | m = (56)m                                                                     | x [(50) – (                                                                                 | H11)] ÷ (5                                                                                       | 0), else (5                                                                                           | 7)m = (56)                                                                                         | m where (                                                                               | H11) is fro                                                               | m Append                                                          | lix H                 |                                                                                                              |
| (57)m=                                                                                                           | 32.01                                                                                                                      | 28.92                                                                                                                               | 32.01                                                                                                                | 30.98                                                                                         | 32.01                                                                         | 30.98                                                                                       | 32.01                                                                                            | 32.01                                                                                                 | 30.98                                                                                              | 32.01                                                                                   | 30.98                                                                     | 32.01                                                             |                       | (57)                                                                                                         |
| Prima                                                                                                            | v circuit                                                                                                                  | loss (ar                                                                                                                            | nual) fro                                                                                                            | om Table                                                                                      | e 3                                                                           | -                                                                                           |                                                                                                  |                                                                                                       |                                                                                                    |                                                                                         |                                                                           | 0                                                                 |                       | (58)                                                                                                         |
| Primar                                                                                                           | y circuit                                                                                                                  | loss cal                                                                                                                            | culated                                                                                                              | for each                                                                                      | month (                                                                       | 59)m = (                                                                                    | (58) ÷ 36                                                                                        | 65 × (41)                                                                                             | m                                                                                                  |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
| (mo                                                                                                              | dified by                                                                                                                  | factor f                                                                                                                            | rom Tab                                                                                                              | le H5 if t                                                                                    | here is s                                                                     | solar wat                                                                                   | er heatii                                                                                        | ng and a                                                                                              | cylinde                                                                                            | r thermo                                                                                | stat)                                                                     |                                                                   |                       |                                                                                                              |
| (59)m=                                                                                                           | 23.26                                                                                                                      | 21.01                                                                                                                               | 23.26                                                                                                                | 22.51                                                                                         | 23.26                                                                         | 22.51                                                                                       | 23.26                                                                                            | 23.26                                                                                                 | 22.51                                                                                              | 23.26                                                                                   | 22.51                                                                     | 23.26                                                             |                       | (59)                                                                                                         |
| Combi                                                                                                            | loss ca                                                                                                                    | lculated                                                                                                                            | for each                                                                                                             | month                                                                                         | (61)m =                                                                       | (60) ÷ 36                                                                                   | 65 × (41)                                                                                        | )m                                                                                                    |                                                                                                    |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
| (61)m=                                                                                                           | 0                                                                                                                          | 0                                                                                                                                   | 0                                                                                                                    | 0                                                                                             | 0                                                                             | 0                                                                                           | 0                                                                                                | 0                                                                                                     | 0                                                                                                  | 0                                                                                       | 0                                                                         | 0                                                                 |                       | (61)                                                                                                         |
| Total h                                                                                                          | neat req                                                                                                                   | uired for                                                                                                                           | water h                                                                                                              | eating ca                                                                                     | alculated                                                                     | for eac                                                                                     | h month                                                                                          | (62)m =                                                                                               | 0.85 × (                                                                                           | (45)m +                                                                                 | (46)m +                                                                   | (57)m +                                                           | (59)m + (61)m         |                                                                                                              |
| (62)m=                                                                                                           | 229.74                                                                                                                     | 202.51                                                                                                                              | 212.73                                                                                                               | 190.76                                                                                        | 186.99                                                                        | 167.15                                                                                      | 160.6                                                                                            | 176.14                                                                                                | 175.8                                                                                              | 197.81                                                                                  | 209.08                                                                    | 224.23                                                            |                       | (62)                                                                                                         |
| Solar DI                                                                                                         | HW input                                                                                                                   | calculated                                                                                                                          | using App                                                                                                            | endix G o                                                                                     | r Appendix                                                                    | H (negati                                                                                   | ve quantity                                                                                      | /) (enter '0                                                                                          | if no sola                                                                                         | r contribut                                                                             | ion to wate                                                               | er heating)                                                       |                       |                                                                                                              |
| (add a                                                                                                           | dditiona                                                                                                                   | l lines if                                                                                                                          | FGHRS                                                                                                                | and/or \                                                                                      | WWHRS                                                                         | applies                                                                                     | , see Ap                                                                                         | pendix C                                                                                              | G)                                                                                                 | -                                                                                       | -                                                                         |                                                                   |                       |                                                                                                              |
| (63)m=                                                                                                           | 0                                                                                                                          | 0                                                                                                                                   | 0                                                                                                                    | 0                                                                                             | 0                                                                             | 0                                                                                           | 0                                                                                                | 0                                                                                                     | 0                                                                                                  | 0                                                                                       | 0                                                                         | 0                                                                 |                       | (63)                                                                                                         |
| Output                                                                                                           | t from w                                                                                                                   | ater hea                                                                                                                            | ter                                                                                                                  |                                                                                               |                                                                               |                                                                                             |                                                                                                  |                                                                                                       |                                                                                                    |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
| (64)m=                                                                                                           | 229.74                                                                                                                     | 202.51                                                                                                                              | 212.73                                                                                                               | 190.76                                                                                        | 186.99                                                                        | 167.15                                                                                      | 160.6                                                                                            | 176.14                                                                                                | 175.8                                                                                              | 197.81                                                                                  | 209.08                                                                    | 224.23                                                            |                       | _                                                                                                            |
|                                                                                                                  |                                                                                                                            |                                                                                                                                     |                                                                                                                      |                                                                                               |                                                                               |                                                                                             |                                                                                                  | Outp                                                                                                  | out from wa                                                                                        | ater heate                                                                              | r (annual)₁                                                               | 12                                                                | 2333.53               | (64)                                                                                                         |
| Hea <mark>t g</mark>                                                                                             | jains fro                                                                                                                  | m water                                                                                                                             | heating                                                                                                              | kWh/m                                                                                         | onth 0.2                                                                      | <mark>5 ´</mark> [0.85                                                                      | × (45)m                                                                                          | ı + (61)n                                                                                             | n] + 0.8 >                                                                                         | ( <mark>46)m</mark>                                                                     | + (57)m                                                                   | + (59)m                                                           | 1                     |                                                                                                              |
| (65)m=                                                                                                           | 76.62                                                                                                                      | 67.54                                                                                                                               | 70.96                                                                                                                | 63.65                                                                                         | 62.4                                                                          | 55.8                                                                                        | 53.63                                                                                            | 58.8                                                                                                  | 58.68                                                                                              | 66                                                                                      | 69.74                                                                     | 74.79                                                             |                       | (65)                                                                                                         |
| inclu                                                                                                            | ude (57)                                                                                                                   | m in calc                                                                                                                           | culation                                                                                                             | of (65)m                                                                                      | only if c                                                                     | ylinder i                                                                                   | s in t <mark>he</mark> o                                                                         | dwelling                                                                                              | or hot w                                                                                           | ate <mark>r is f</mark> r                                                               | om com                                                                    | <mark>mu</mark> nity h                                            | neating               |                                                                                                              |
| <b>5.</b> In                                                                                                     | ternal ga                                                                                                                  | ains (see                                                                                                                           | Table {                                                                                                              | 5 and 5a                                                                                      | ):                                                                            |                                                                                             |                                                                                                  |                                                                                                       |                                                                                                    |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
| Metab                                                                                                            | olic gair                                                                                                                  | s (Table                                                                                                                            | 5), Wat                                                                                                              | ts                                                                                            |                                                                               |                                                                                             |                                                                                                  |                                                                                                       |                                                                                                    |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
|                                                                                                                  | Jan                                                                                                                        | Feb                                                                                                                                 | Mar                                                                                                                  | Apr                                                                                           | May                                                                           | Jun                                                                                         | Jul                                                                                              | Aug                                                                                                   | Sep                                                                                                | Oct                                                                                     | Nov                                                                       | Dec                                                               |                       |                                                                                                              |
| (66)m=                                                                                                           | 153.15                                                                                                                     | 153.15                                                                                                                              | 153.15                                                                                                               | 153.15                                                                                        | 153.15                                                                        | 153.15                                                                                      | 153.15                                                                                           | 153.15                                                                                                | 153.15                                                                                             | 153.15                                                                                  | 153.15                                                                    | 153.15                                                            |                       | (66)                                                                                                         |
| Lightin                                                                                                          | ig gains                                                                                                                   | (calcula                                                                                                                            | ted in Ap                                                                                                            | opendix                                                                                       | L, equat                                                                      | ion L9 o                                                                                    | r L9a), a                                                                                        | lso see                                                                                               | Table 5                                                                                            |                                                                                         |                                                                           |                                                                   |                       |                                                                                                              |
| (67)m=                                                                                                           | 71.16                                                                                                                      | 63.21                                                                                                                               | 51.4                                                                                                                 | 38.92                                                                                         | 29.09                                                                         | 24.56                                                                                       | 26.54                                                                                            |                                                                                                       |                                                                                                    |                                                                                         |                                                                           |                                                                   | 1                     |                                                                                                              |
| Applia                                                                                                           |                                                                                                                            |                                                                                                                                     |                                                                                                                      |                                                                                               |                                                                               |                                                                                             | 20.54                                                                                            | 34.49                                                                                                 | 46.3                                                                                               | 58.78                                                                                   | 68.61                                                                     | 73.14                                                             |                       | (67)                                                                                                         |
| (00)                                                                                                             | nces ga                                                                                                                    | ins (calc                                                                                                                           | ulated ir                                                                                                            | n Append                                                                                      | dix L, eq                                                                     | uation L                                                                                    | 13 or L1                                                                                         | <sup>34.49</sup><br>3a), alsc                                                                         | 46.3<br>see Ta                                                                                     | 58.78<br>ble 5                                                                          | 68.61                                                                     | 73.14                                                             |                       | (67)                                                                                                         |
| (68)m=                                                                                                           | nces ga<br>413.78                                                                                                          | ins (calc<br>418.07                                                                                                                 | ulated ir<br>407.25                                                                                                  | Append<br>384.21                                                                              | dix L, eq<br>355.14                                                           | uation L<br>327.81                                                                          | 20.54<br>13 or L1<br>309.55                                                                      | 34.49<br>3a), alsc<br>305.26                                                                          | 46.3<br>see Ta<br>316.08                                                                           | 58.78<br>ble 5<br>339.11                                                                | 68.61<br>368.19                                                           | 73.14<br>395.52                                                   | ]                     | (67)                                                                                                         |
| Cookir                                                                                                           | nces ga<br>413.78<br>ng gains                                                                                              | ins (calc<br>418.07<br>(calcula                                                                                                     | ulated ir<br>407.25<br>ited in A                                                                                     | Append<br>384.21<br>ppendix                                                                   | dix L, eq<br>355.14<br>L, equat                                               | uation L<br>327.81<br>tion L15                                                              | 13 or L1<br>309.55<br>or L15a)                                                                   | 34.49<br>3a), alsc<br>305.26<br>), also se                                                            | 46.3<br>9 see Ta<br>316.08<br>9 Table                                                              | 58.78<br>ble 5<br>339.11<br>5                                                           | 68.61<br>368.19                                                           | 73.14<br>395.52                                                   | ]                     | (67)                                                                                                         |
| (68)m=<br>Cookir<br>(69)m=                                                                                       | nces ga<br>413.78<br>ng gains<br>38.32                                                                                     | ins (calc<br>418.07<br>(calcula<br>38.32                                                                                            | ulated ir<br>407.25<br>ted in A<br>38.32                                                                             | Append<br>384.21<br>ppendix<br>38.32                                                          | dix L, eq<br>355.14<br>L, equat<br>38.32                                      | uation L<br>327.81<br>tion L15<br>38.32                                                     | 20.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32                                                 | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | 46.3<br>9 see Ta<br>316.08<br>ee Table<br>38.32                                                    | 58.78<br>ble 5<br>339.11<br>5<br>38.32                                                  | 68.61<br>368.19<br>38.32                                                  | 73.14<br>395.52<br>38.32                                          | ]<br>]                | (67)<br>(68)<br>(69)                                                                                         |
| Cookir<br>(69)m=<br>Pumps                                                                                        | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa                                                                         | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains                                                                                | ulated ir<br>407.25<br>Ited in A<br>38.32<br>(Table \$                                                               | Append<br>384.21<br>ppendix<br>38.32<br>5a)                                                   | dix L, eq<br>355.14<br>L, equat<br>38.32                                      | uation L<br>327.81<br>tion L15<br>38.32                                                     | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32                                                 | 34.49<br>3a), alsc<br>305.26<br>), also se<br>38.32                                                   | 46.3<br>9 see Ta<br>316.08<br>9e Table<br>38.32                                                    | 58.78<br>ble 5<br>339.11<br>5<br>38.32                                                  | 68.61<br>368.19<br>38.32                                                  | 73.14<br>395.52<br>38.32                                          | ]<br>]                | (67)<br>(68)<br>(69)                                                                                         |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                                                    | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0                                                                    | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0                                                                           | ulated ir<br>407.25<br>ted in A<br>38.32<br>(Table 9                                                                 | Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0                                              | dix L, eq<br>355.14<br>L, equat<br>38.32                                      | uation L<br>327.81<br>tion L15<br>38.32                                                     | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32                                                 | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | 46.3<br>9 see Ta<br>316.08<br>9 e Table<br>38.32<br>0                                              | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0                                             | 68.61<br>368.19<br>38.32<br>0                                             | 73.14<br>395.52<br>38.32<br>0                                     | ]<br>]<br>]           | <ul><li>(67)</li><li>(68)</li><li>(69)</li><li>(70)</li></ul>                                                |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses                                                          | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev                                                       | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>vaporatic                                                              | ulated ir<br>407.25<br>Ited in A<br>38.32<br>(Table 9<br>0<br>n (nega                                                | Appendix<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu                               | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab                     | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)                                       | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0                                            | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | 46.3<br>9 see Ta<br>316.08<br>9 e Table<br>38.32<br>0                                              | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0                                             | 68.61<br>368.19<br>38.32<br>0                                             | 73.14<br>395.52<br>38.32<br>0                                     | ]<br>]<br>]           | (67)<br>(68)<br>(69)<br>(70)                                                                                 |
| (68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                                                | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52                                            | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>raporatic<br>-122.52                                                   | ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 9<br>0<br>n (nega<br>-122.52                                     | Appendix<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52                    | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52          | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52                            | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0                                            | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32<br>0                                              | 46.3<br>9 see Ta<br>316.08<br>9e Table<br>38.32<br>0<br>-122.52                                    | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52                                  | 68.61<br>368.19<br>38.32<br>0<br>-122.52                                  | 73.14<br>395.52<br>38.32<br>0<br>-122.52                          | ]<br>]<br>]<br>]      | <ul> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> </ul>                             |
| (69)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water                                       | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating                                 | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>raporatic<br>-122.52<br>gains (T                                       | ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 9<br>0<br>n (nega<br>-122.52<br>āble 5)                          | Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52                      | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab                     | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52                            | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0                                            | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32<br>0                                              | 46.3<br>9 see Ta<br>316.08<br>9 Table<br>38.32<br>0<br>-122.52                                     | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0                                             | 68.61<br>368.19<br>38.32<br>0<br>-122.52                                  | 73.14<br>395.52<br>38.32<br>0<br>-122.52                          | ]<br>]<br>]<br>]      | <ul><li>(67)</li><li>(68)</li><li>(69)</li><li>(70)</li><li>(71)</li></ul>                                   |
| (69)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=                             | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98                       | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>vaporatic<br>-122.52<br>gains (T<br>100.51                             | ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 9<br>0<br>n (nega<br>-122.52<br>Table 5)<br>95.38                | Appendix<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41           | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>77.5                    | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0<br>-122.52<br>72.08                        | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03                          | 46.3<br>9 see Ta<br>316.08<br>9 e Table<br>38.32<br>0<br>-122.52<br>81.49                          | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71                         | 68.61<br>368.19<br>38.32<br>0<br>-122.52<br>96.86                         | 73.14<br>395.52<br>38.32<br>0<br>-122.52<br>100.52                | ]<br>]<br>]<br>]      | <ul> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> </ul>               |
| (69)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i           | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98                       | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>-122.52<br>gains (T<br>100.51<br><b>gains =</b>                        | ulated ir<br>407.25<br>tted in A<br>38.32<br>(Table 5<br>0<br>n (nega<br>-122.52<br>Table 5)<br>95.38                | Appendix<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41           | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>777.5<br>(66)           | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0<br>-122.52<br>72.08<br>m + (67)m           | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03<br>n + (68)m +           | 46.3<br>9 see Ta<br>316.08<br>9 e Table<br>38.32<br>0<br>-122.52<br>81.49<br>+ (69)m + (           | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71<br>(70)m + (7           | 68.61<br>368.19<br>38.32<br>0<br>-122.52<br>96.86<br>1)m + (72)           | 73.14<br>395.52<br>38.32<br>0<br>-122.52<br>100.52<br>m           | ]<br>]<br>]<br>]      | <ul> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> </ul>               |
| (69)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i<br>(73)m= | nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98<br>internal<br>656.86 | ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>vaporatic<br>-122.52<br>gains (T<br>100.51<br><b>gains =</b><br>650.73 | ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 9<br>0<br>(Table 9<br>0<br>-122.52<br>able 5)<br>95.38<br>622.98 | Appendix<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41<br>580.48 | dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>777.5<br>(66)<br>498.82 | 26.34<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0<br>-122.52<br>72.08<br>m + (67)m<br>477.12 | 34.49<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03<br>1 + (68)m +<br>487.72 | 46.3<br>9 see Ta<br>316.08<br>9 e Table<br>38.32<br>0<br>-122.52<br>81.49<br>+ (69)m + (<br>512.81 | 58.78<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71<br>(70)m + (7<br>555.55 | 68.61<br>368.19<br>38.32<br>0<br>-122.52<br>96.86<br>1)m + (72)<br>602.61 | 73.14<br>395.52<br>38.32<br>0<br>-122.52<br>100.52<br>m<br>638.13 | ]<br>]<br>]<br>]<br>] | <ul> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> <li>(73)</li> </ul> |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta | ation: | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |               |
|---------|--------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|---------------|
| North   | 0.9x   | 0.77                      | x | 0.6        | x | 10.63            | × | 0.85           | x | 0.7            | ] =        | 2.63         | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | x | 20.32            | x | 0.85           | x | 0.7            | ] =        | 5.03         | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 34.53            | × | 0.85           | x | 0.7            | ] =        | 8.54         | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 55.46            | × | 0.85           | x | 0.7            | ] =        | 13.72        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 74.72            | × | 0.85           | x | 0.7            | ] =        | 18.48        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 79.99            | × | 0.85           | x | 0.7            | ] =        | 19.79        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 74.68            | × | 0.85           | x | 0.7            | ] =        | 18.48        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | x | 59.25            | x | 0.85           | x | 0.7            | ] =        | 14.66        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 41.52            | × | 0.85           | x | 0.7            | <b>j</b> = | 10.27        | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 24.19            | × | 0.85           | x | 0.7            | ] =        | 5.98         | <b>–</b> (74) |
| North   | 0.9x   | 0.77                      | x | 0.6        | × | 13.12            | × | 0.85           | x | 0.7            | 1 =        | 3.25         | (74)          |
| North   | 0.9x   | 0.77                      | x | 0.6        | x | 8.86             | × | 0.85           | x | 0.7            | 1 =        | 2.19         | <b>–</b> (74) |
| East    | 0.9×   | · 1                       | x | 17.22      | x | 19.64            | x | 0.85           | x | 0.7            | i =        | 139.45       | (76)          |
| East    | 0.9x   |                           | x | 17.22      | x | 38.42            | × | 0.85           | x | 0.7            | <b>i</b> = | 272.8        | (76)          |
| East    | 0.9×   | ( 1                       | x | 17.22      | x | 63.27            | x | 0.85           | x | 0.7            | 1 =        | 449.27       | <b>–</b> (76) |
| East    | 0.9x   | ( 1                       | x | 17.22      | × | 92.28            | x | 0.85           | х | 0.7            | i<br>  =   | 655.23       | (76)          |
| East    | 0.9×   |                           | x | 17.22      | x | 113.09           | x | 0.85           | x | 0.7            | i -        | 803          | (76)          |
| East    | 0.9×   | ( 1                       | x | 17.22      | x | 115.77           | × | 0.85           | x | 0.7            | <b>]</b> = | 822.02       | <b>–</b> (76) |
| East    | 0.9×   | ( 1                       | x | 17.22      | x | 110.22           | x | 0.85           | x | 0.7            | 1 =        | 782.59       | <b>–</b> (76) |
| East    | 0.9×   | ( 1                       | x | 17.22      | x | 94.68            | x | 0.85           | x | 0.7            | 1 =        | 672.24       | <b>–</b> (76) |
| East    | 0.9×   | 1                         | x | 17.22      | x | 73.59            | × | 0.85           | x | 0.7            | <b>j</b> = | 522.51       | ╡<br>(76)     |
| East    | 0.9×   | . 1                       | x | 17.22      | x | 45.59            | x | 0.85           | x | 0.7            | 1 =        | 323.7        | <b>–</b> (76) |
| East    | 0.9×   | ( 1                       | x | 17.22      | × | 24.49            | x | 0.85           | x | 0.7            | <b>i</b> = | 173.88       | (76)          |
| East    | 0.9×   | ( 1                       | x | 17.22      | x | 16.15            | x | 0.85           | x | 0.7            | <b>j</b> = | 114.68       | <b>–</b> (76) |
| West    | 0.9×   | 0.77                      | x | 6          | x | 19.64            | x | 0.85           | x | 0.7            | i =        | 48.59        | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 38.42            | × | 0.85           | x | 0.7            | 1 =        | 95.05        | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 63.27            | × | 0.85           | x | 0.7            | 1 =        | 156.54       | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 92.28            | × | 0.85           | x | 0.7            | i =        | 228.3        | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 113.09           | × | 0.85           | x | 0.7            | 1 =        | 279.79       | (80)          |
| West    | 0.9×   | 0.77                      | x | 6          | x | 115.77           | x | 0.85           | x | 0.7            | 1 =        | 286.42       | (80)          |
| West    | 0.9×   | 0.77                      | x | 6          | x | 110.22           | x | 0.85           | x | 0.7            | i =        | 272.68       | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 94.68            | × | 0.85           | x | 0.7            | 1 =        | 234.23       | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | × | 73.59            | × | 0.85           | x | 0.7            | <b>]</b> = | 182.06       | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | × | 45.59            | × | 0.85           | x | 0.7            | <b>j</b> = | 112.79       | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 24.49            | x | 0.85           | x | 0.7            | <b>j</b> = | 60.59        | (80)          |
| West    | 0.9x   | 0.77                      | x | 6          | x | 16.15            | x | 0.85           | x | 0.7            | i =        | 39.96        | <b>–</b> (80) |

| Solar g | ains in   | watts, ca | alculated | for eac | h month   |         |         | (83)m = S | um(74)m . | (82)m  |        |        |      |
|---------|-----------|-----------|-----------|---------|-----------|---------|---------|-----------|-----------|--------|--------|--------|------|
| (83)m=  | 190.67    | 372.88    | 614.35    | 897.25  | 1101.28   | 1128.22 | 1073.75 | 921.12    | 714.85    | 442.47 | 237.71 | 156.83 | (83) |
| Total g | ains – ir | nternal a | nd solar  | (84)m = | = (73)m - | ⊦ (83)m | , watts |           |           |        |        |        |      |
| (84)m=  | 847.54    | 1023.61   | 1237.32   | 1477.73 | 1638.33   | 1627.04 | 1550.87 | 1408.85   | 1227.66   | 998.03 | 840.32 | 794.96 | (84) |

| 7. Me                 | 7. Mean internal temperature (heating season)                                                                                                                                                                                        |           |           |                    |            |              |           |            |             |            |             |                        |          |       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------------|------------|--------------|-----------|------------|-------------|------------|-------------|------------------------|----------|-------|
| Temp                  | Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85)                                                                                                                                                 |           |           |                    |            |              |           |            |             |            |             |                        |          |       |
| Utilisa               | ation fac                                                                                                                                                                                                                            | tor for g | ains for  | living are         | a, h1,m    | (see Ta      | ble 9a)   |            |             |            |             | I                      |          |       |
|                       | Jan                                                                                                                                                                                                                                  | Feb       | Mar       | Apr                | Mav        | Jun          | Jul       | Aua        | Sep         | Oct        | Nov         | Dec                    |          |       |
| (86)m=                | 1                                                                                                                                                                                                                                    | 1         | 1         | 1                  | 1          | 0.99         | 0.97      | 0.98       | 1           | 1          | 1           | 1                      |          | (86)  |
| Mean                  | interna                                                                                                                                                                                                                              | l temper  | ature in  | living ar          | a T1 (fr   | L<br>Mow ste | ns 3 to 7 | r in Table | - 9c)       |            |             |                        |          |       |
| (87)m=                | 18.1                                                                                                                                                                                                                                 | 18.25     | 18.59     | 19.13              | 19.66      | 20.2         | 20.52     | 20.47      | 20.03       | 19.35      | 18.69       | 18.13                  |          | (87)  |
| -                     |                                                                                                                                                                                                                                      |           |           |                    |            |              | ·         |            |             |            |             |                        |          |       |
| 1 emp                 | erature                                                                                                                                                                                                                              | auring n  | 18 89     | eriods ir          | 18 99      |              | 19.07     |            | 12 (°C)     | 18 99      | 18.96       | 18.92                  |          | (88)  |
| (00)11-               | 10.00                                                                                                                                                                                                                                | 10.00     | 10.00     | 10.57              | 10.00      | 10.07        | 10.07     | 10.00      | 13.04       | 10.00      | 10.00       | 10.52                  |          | (00)  |
| Utilisa               | ation fac                                                                                                                                                                                                                            | tor for g | ains for  | rest of d          | welling, l | h2,m (se     | e Table   | 9a)        |             |            |             |                        |          |       |
| (89)m=                | 1                                                                                                                                                                                                                                    | 1         | 1         | 1                  | 0.99       | 0.97         | 0.89      | 0.93       | 0.99        | 1          | 1           | 1                      |          | (89)  |
| Mean                  | interna                                                                                                                                                                                                                              | l temper  | ature in  | the rest           | of dwelli  | ng T2 (fe    | ollow ste | eps 3 to 7 | 7 in Tabl   | e 9c)      |             |                        |          |       |
| (90)m=                | 16.35                                                                                                                                                                                                                                | 16.51     | 16.87     | 17.46              | 18         | 18.59        | 18.89     | 18.86      | 18.4        | 17.7       | 17          | 16.43                  |          | (90)  |
|                       |                                                                                                                                                                                                                                      |           |           |                    |            |              |           |            | f           | LA = Livin | g area ÷ (4 | +) =                   | 0.55     | (91)  |
| Mean                  | interna                                                                                                                                                                                                                              | l temper  | ature (fo | r the wh           | ole dwe    | llina) – fl  | Δ 🗙 Τ1    | + (1 – fl  | A) x T2     |            |             | •                      |          |       |
| (92)m=                | 17.3                                                                                                                                                                                                                                 | 17.46     | 17.81     | 18.37              | 18,91      | 19.47        | 19.78     | 19.74      | 19.29       | 18.6       | 17.92       | 17.36                  |          | (92)  |
| Apply                 | adiustr                                                                                                                                                                                                                              | nent to t | he mear   | internal           | temper     | ature fro    | m Table   | 4e whe     | re appro    | poriate    |             |                        |          |       |
| (93)m=                | 17.3                                                                                                                                                                                                                                 | 17.46     | 17.81     | 18.37              | 18.91      | 19.47        | 19.78     | 19.74      | 19.29       | 18.6       | 17.92       | 17.36                  |          | (93)  |
| 8. Spa                | ace hea                                                                                                                                                                                                                              | tina real | Jirement  |                    |            |              |           |            |             |            |             |                        |          |       |
| Set Ti                | i to the i                                                                                                                                                                                                                           | mean int  | ernal ter | nperatu            | e obtain   | ed at ste    | ep 11 of  | Table 9    | so tha      | t Ti m=('  | 76)m an     | d re-calc              | ulate    |       |
| the ut                | ilisation                                                                                                                                                                                                                            | factor fo | or gains  | using Ta           | ble 9a     |              |           | T GDTO OI  | , 00 ina    | ,          | 0)          |                        |          |       |
|                       | Jan                                                                                                                                                                                                                                  | Feb       | Mar       | Apr                | May        | Jun          | Jul       | Aug        | Sep         | Oct        | Nov         | Dec                    |          |       |
| Util <mark>isa</mark> | ation fac                                                                                                                                                                                                                            | tor for g | ains, hm  | 1                  |            |              |           |            |             |            |             |                        |          |       |
| (94)m=                | 1                                                                                                                                                                                                                                    | 1         | 1         | 1                  | 0.99       | 0.98         | 0.94      | 0.96       | 0.99        | 1          | 1           | 1                      |          | (94)  |
| Usefu                 | ıl gains,                                                                                                                                                                                                                            | hmGm      | , W = (94 | 4)m x (84          | 4)m        | -            |           |            |             |            |             |                        |          |       |
| (95)m=                | 847.32                                                                                                                                                                                                                               | 1023.12   | 1235.97   | 1473.47            | 1624.68    | 1587.98      | 1453.96   | 1346.66    | 1216.3      | 996.54     | 840         | 794.81                 |          | (95)  |
| Month                 | nly aver                                                                                                                                                                                                                             | age exte  | rnal tem  | perature           | e from Ta  | able 8       |           |            |             |            |             |                        |          |       |
| (96)m=                | 4.3                                                                                                                                                                                                                                  | 4.9       | 6.5       | 8.9                | 11.7       | 14.6         | 16.6      | 16.4       | 14.1        | 10.6       | 7.1         | 4.2                    |          | (96)  |
| Heat                  | loss rate                                                                                                                                                                                                                            | e for mea | an intern | al tempe           | erature,   | Lm , W =     | =[(39)m : | x [(93)m   | – (96)m     | ]          |             |                        |          |       |
| (97)m=                | 13751.53                                                                                                                                                                                                                             | 13185.49  | 11779.18  | 9483.44            | 7157.6     | 4644.93      | 3036.91   | 3162.42    | 5032.37     | 7948.12    | 10924.76    | 13494.1                |          | (97)  |
| Space                 | e heatin                                                                                                                                                                                                                             | g require | ement fo  | r each n           | nonth, k\  | Wh/mont      | h = 0.02  | 24 x [(97) | )m – (95    | )m] x (4   | 1)m         |                        |          |       |
| (98)m=                | 9600.73                                                                                                                                                                                                                              | 8173.11   | 7844.15   | 5767.18            | 4116.49    | 0            | 0         | 0          | 0           | 5171.97    | 7261.03     | 9448.27                |          |       |
|                       |                                                                                                                                                                                                                                      |           |           |                    |            |              |           | Tota       | l per year  | (kWh/year  | ) = Sum(98  | B) <sub>15,912</sub> = | 57382.93 | (98)  |
| Space                 | e heatin                                                                                                                                                                                                                             | g require | ement in  | kWh/m <sup>2</sup> | /year      |              |           |            |             |            |             |                        | 232.32   | (99)  |
| 9b. En                | erav rea                                                                                                                                                                                                                             | uiremer   | nts – Cor | nmunitv            | heating    | scheme       |           |            |             |            |             |                        |          |       |
| This pa               | art is us                                                                                                                                                                                                                            | ed for sn | ace hea   | ting spa           | ace cooli  | ing or wa    | ater heat | ting prov  | ided by :   | a comm     | unity sch   | eme                    |          |       |
| Fractio               | n of spa                                                                                                                                                                                                                             | ace heat  | from se   | condary/           | /supplen   | nentary I    | neating ( | Table 1    | 1) '0' if n | one        |             |                        | 0        | (301) |
| Fractio               | n of spa                                                                                                                                                                                                                             | ace heat  | from co   | mmunity            | system     | 1 – (301     | l) =      |            |             |            |             |                        | 1        | (302) |
| The com<br>includes   | he community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter<br>Includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. |           |           |                    |            |              |           |            |             |            |             |                        |          |       |

Fraction of heat from Community boilers

| Fraction of total space heat from Communit                                                 | y boilers                                                                  |                       | (302) x (303a) =            |              | 1                        | (304a) |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|-----------------------------|--------------|--------------------------|--------|
| Factor for control and charging method (Tab                                                | ole 4c(3)) for community he                                                | ating system          |                             |              | 1.05                     | (305)  |
| Distribution loss factor (Table 12c) for comm                                              | nunity heating system                                                      |                       |                             |              | 1.1                      | (306)  |
| Space heating<br>Annual space heating requirement                                          |                                                                            |                       |                             |              | <b>kWh/year</b> 57382.93 | ]      |
| Space heat from Community boilers                                                          |                                                                            | (98) x (304a) x (     | 305) x (306) =              |              | 66277.28                 | (307a) |
| Efficiency of secondary/supplementary heat                                                 | ting system in % (from Tabl                                                | e 4a or Append        | lix E)                      |              | 0                        | (308   |
| Space heating requirement from secondary                                                   | /supplementary system                                                      | (98) x (301) x 10     | 0 ÷ (308) =                 |              | 0                        | (309)  |
| Water heating<br>Annual water heating requirement                                          |                                                                            |                       |                             |              | 2333.53                  | ]      |
| If DHW from community scheme:<br>Water heat from Community boilers                         |                                                                            | (64) x (303a) x (     | 305) x (306) =              |              | 2695.23                  | (310a) |
| Electricity used for heat distribution                                                     | 0.0                                                                        | 1 × [(307a)(307e      | ) + (310a)(310e)            | ] =          | 689.73                   | (313)  |
| Cooling System Energy Efficiency Ratio                                                     |                                                                            |                       |                             |              | 0                        | (314)  |
| Space cooling (if there is a fixed cooling sys                                             | stem, if not enter 0)                                                      | = (107) ÷ (314) =     | :                           |              | 0                        | (315)  |
| Electricity for pumps and fans within dwellin mechanical ventilation - balanced, extract o | g (Table 4f):<br><mark>r posi</mark> tive input from <mark>outsid</mark> e | 9                     |                             |              | 0                        | (330a) |
| warm air heating system fans                                                               |                                                                            |                       |                             |              | 0                        | (330b) |
| pump for solar water heating                                                               |                                                                            |                       |                             |              | 0                        | (330g) |
| Total electricity for th <mark>e above, kWh/year</mark>                                    |                                                                            | =(330a) + (330b)      | ) + (330g) =                |              | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L                                              | _)                                                                         |                       |                             |              | 1256.76                  | (332)  |
| 12b. CO2 Emissions – Community heating s                                                   | scheme                                                                     |                       |                             |              |                          | -      |
|                                                                                            | En<br>kV                                                                   | ergy<br>/h/year       | Emission fact<br>kg CO2/kWh | tor En<br>kg | nissions<br>CO2/year     |        |
| CO2 from other sources of space and water<br>Efficiency of heat source 1 (%)               | r heating (not CHP)<br>If there is CHP using two fue                       | ls repeat (363) to (: | 366) for the second         | d fuel       | 65                       | (367a) |
| CO2 associated with heat source 1                                                          | [(307b)+(310b)] x                                                          | 100 ÷ (367b) x        | 0                           | = [          | 22920.1                  | (367)  |
| Electrical energy for heat distribution                                                    | [(313) x                                                                   |                       | 0.52                        | = [          | 357.97                   | (372)  |
| Total CO2 associated with community syste                                                  | ems (363)(3                                                                | 866) + (368)(372)     |                             | = [          | 23278.06                 | (373)  |
| CO2 associated with space heating (second                                                  | dary) (309) x                                                              |                       | 0                           | = [          | 0                        | (374)  |
| CO2 associated with water from immersion                                                   | heater or instantaneous he                                                 | ater (312) x          | 0.22                        | = [          | 0                        | (375)  |
| Total CO2 associated with space and water                                                  | • heating (373) + (3                                                       | 374) + (375) =        |                             | [            | 23278.06                 | (376)  |
| CO2 associated with electricity for pumps a                                                | nd fans within dwelling (33                                                | 1)) x                 | 0.52                        | = [          | 0                        | (378)  |
| CO2 associated with electricity for lighting                                               | (332))) x                                                                  |                       | 0.52                        | = [          | 652.26                   | (379)  |
| Total CO2, kg/year sun                                                                     | n of (376)(382) =                                                          |                       |                             |              | 23930.32                 | (383)  |
| Dwelling CO2 Emission Rate (38)                                                            | 3) ÷ (4) =                                                                 |                       |                             |              | 96.88                    | (384)  |
| El rating (section 14)                                                                     |                                                                            |                       |                             |              | 18.21                    | (385)  |

| User Details:                                               |                                                                                                                                          |                                 |                         |                     |                  |                   |                       |              |                                      |                   |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|---------------------|------------------|-------------------|-----------------------|--------------|--------------------------------------|-------------------|--|
| Assessor Name:<br>Software Name:                            | Stroma FSAP 20                                                                                                                           | 12<br>Dro                       |                         | Stroma<br>Softwa    | a Num<br>ire Ver | ber:<br>sion:     |                       | Versio       | on: 1.0.3.15                         |                   |  |
|                                                             | london                                                                                                                                   | PIC                             | openy <i>F</i>          | Address:            | Unit 7           |                   |                       |              |                                      |                   |  |
| 1 Overall dwelling dimen                                    | , ionuon                                                                                                                                 |                                 |                         |                     |                  |                   |                       |              |                                      |                   |  |
| Basement                                                    |                                                                                                                                          |                                 | Area                    | 1 <b>(m²)</b><br>82 | (1a) x           | <b>Av. He</b>     | <b>ight(m)</b><br>.05 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>250.1 | <b>)</b><br>(3a)  |  |
| Total floor area TFA = (1a)                                 | )+(1b)+(1c)+(1d)+(1                                                                                                                      | e)+(1n)                         |                         | 82                  | (4)              |                   |                       |              |                                      |                   |  |
| Dwelling volume                                             |                                                                                                                                          |                                 |                         |                     | (3a)+(3b)        | +(3c)+(3d         | l)+(3e)+              | .(3n) =      | 250.1                                | (5)               |  |
| 2. Ventilation rate:                                        |                                                                                                                                          | _                               |                         |                     |                  |                   |                       |              |                                      |                   |  |
| Number of chimneys<br>Number of open flues                  | $ \begin{array}{c} \text{main} \\ \text{heating} \\ \hline 0 \\ \hline 0 \\ \end{array} + \begin{bmatrix} 0 \\ \hline 0 \\ \end{array} $ | econdary<br>heating<br>0        | +                       | 0<br>0<br>0         | ] = [            | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou               | r<br>(6a)<br>(6b) |  |
| Number of intermittent fan                                  | S                                                                                                                                        |                                 |                         |                     | Г                | 2                 | x ´                   | 10 =         | 20                                   | (7a)              |  |
| Number of passive vents                                     |                                                                                                                                          |                                 |                         |                     | Ē                | 0                 | x ^                   | 10 =         | 0                                    | (7b)              |  |
| Number of flueless gas fire                                 | es                                                                                                                                       |                                 |                         |                     |                  | 0                 | x 4                   | 40 =         | 0                                    | (7c)              |  |
|                                                             |                                                                                                                                          |                                 |                         |                     |                  |                   |                       | Air ch       | ange <mark>s per</mark> ho           | our               |  |
| Infiltration due to chimneys                                | s, flues and fans = (<br>en carried out or is intend                                                                                     | 6a)+(6b)+(7a)<br>led, proceed i | )+(7b)+(7<br>to (17), o | (c) =<br>therwise c | ontinue fro      | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.08                                 | (8)               |  |
| Number of storeys in the<br>Additional infiltration         | e dwelling (ns)                                                                                                                          | frame or (                      | ) 35 for                | masonr              | v constr         | uction            | [(9)                  | -1]x0.1 =    | 0                                    | (9)<br>(10)       |  |
| if both types of wall are pre<br>deducting areas of opening | sent, use the value corre<br>s); if equal user 0.35                                                                                      | sponding to ti                  | he greate               | er wall area        | a (after         |                   |                       |              | 0                                    |                   |  |
| If suspended wooden flo                                     | oor, enter 0.2 (unsea                                                                                                                    | led) or 0.1                     | (seale                  | d), else            | enter 0          |                   |                       |              | 0                                    | (12)              |  |
| If no draught lobby, ente                                   | er 0.05, else enter 0                                                                                                                    |                                 |                         |                     |                  |                   |                       |              | 0                                    | (13)              |  |
| Percentage of windows                                       | and doors draught s                                                                                                                      | tripped                         |                         | 0 25 - [0 2         | v(14) - 1        | 001 -             |                       |              | 0                                    | (14)              |  |
|                                                             |                                                                                                                                          |                                 |                         | (8) + (10) -        | ~ (14) ÷ 1       | 2) + (13) -       | + (15) =              |              | 0                                    | (15)              |  |
| Air permeability value                                      | 50 expressed in cu                                                                                                                       | bic metres                      | per ho                  | ur per so           | uare m           | etre of e         | nvelope               | area         | 20                                   |                   |  |
| If based on air permeabilit                                 | y value, then $(18) = [($                                                                                                                | 17) ÷ 20]+(8),                  | , otherwis              | se(18) = (18)       | 16)              |                   | involopo              | aioa         | 1.08                                 |                   |  |
| Air permeability value applies                              | if a pressurisation test ha                                                                                                              | is been done                    | or a deg                | ree air per         | meability i      | s being u         | sed                   |              |                                      |                   |  |
| Number of sides sheltered                                   | l                                                                                                                                        |                                 |                         |                     |                  |                   |                       |              | 2                                    | (19)              |  |
| Shelter factor                                              |                                                                                                                                          |                                 | (                       | (20) = 1 - [        | 0.075 x (1       | 9)] =             |                       |              | 0.85                                 | (20)              |  |
| Infiltration rate incorporatir                              | ng shelter factor                                                                                                                        |                                 | (                       | (21) = (18)         | x (20) =         |                   |                       |              | 0.92                                 | (21)              |  |
| Infiltration rate modified fo                               | r monthly wind spee                                                                                                                      | d<br>T                          |                         | i                   |                  |                   |                       | i            | 1                                    |                   |  |
| Jan Feb M                                                   | Mar Apr May                                                                                                                              | Jun                             | Jul                     | Aug                 | Sep              | Oct               | Nov                   | Dec          |                                      |                   |  |
| Monthly average wind spe                                    | ed from Table 7                                                                                                                          | · · · ·                         |                         |                     |                  |                   |                       |              | 1                                    |                   |  |
| (22)m= 5.1 5 4                                              | .9 4.4 4.3                                                                                                                               | 3.8                             | 3.8                     | 3.7                 | 4                | 4.3               | 4.5                   | 4.7          |                                      |                   |  |
| Wind Factor (22a)m = (22)                                   | )m ÷ 4                                                                                                                                   | · · ·                           |                         |                     |                  |                   | 1                     |              | I                                    |                   |  |
| (22a)m= 1.27 1.25 1.                                        | .23 1.1 1.08                                                                                                                             | 0.95                            | 0.95                    | 0.92                | 1                | 1.08              | 1.12                  | 1.18         |                                      |                   |  |

| Adjust               | ed infiltra                | tion rate              | e (allowi                   | ng for sł                | nelter ar             | nd wind s             | speed) =             | = (21a) x            | (22a)m                       |                |             |           |               |           |                  |
|----------------------|----------------------------|------------------------|-----------------------------|--------------------------|-----------------------|-----------------------|----------------------|----------------------|------------------------------|----------------|-------------|-----------|---------------|-----------|------------------|
|                      | 1.17                       | 1.15                   | 1.12                        | 1.01                     | 0.99                  | 0.87                  | 0.87                 | 0.85                 | 0.92                         | 0.99           | 1.03        | 1.08      | ]             |           |                  |
| Calcul               | ate effec                  | tive air (             | change i                    | ate for t                | he appli              | cable ca              | ise                  |                      |                              |                |             | -         | -<br>         |           |                  |
| II Me                | eustoirbo                  | i ventila              |                             | ndiv NL (2               | (26) = (22)           |                       | oquation (           | NE)) othe            | nuico (22h                   | ) - (220)      |             |           |               | 0         | (23a)            |
| li exn               |                            |                        | using Appe                  | nuix in, (∠              | .3D) = (238           | a) × FIIIV (6         |                      | no)), otne           |                              | ) = (23a)      |             |           |               | 0         | (23b)            |
|                      |                            | neat reco              |                             | ency in %                |                       | or in-use i           |                      |                      | i) =                         |                |             |           |               | 0         | (23c)            |
| a) If                | balance                    | d mecha                | anical ve                   | ntilation                | with he               | at recove             | ery (MV              | HR) (24a<br>T        | a)m = (22                    | 2b)m + ()      | 23b) × [*   | 1 – (23c) | ) ÷ 100]<br>1 |           | (0.1.5)          |
| (24a)m=              | 0                          | 0                      | 0                           | 0                        | 0                     | 0                     | 0                    | 0                    | 0                            | 0              | 0           | 0         | ]             |           | (24a)            |
| b) If                | balance                    | d mecha                | anical ve                   | ntilation                | without               | heat red              | covery (             | MV) (24t<br>T        | o)m = (22                    | 2b)m + (2<br>1 | 23b)        | <u> </u>  | 1             |           |                  |
| (24b)m=              | 0                          | 0                      | 0                           | 0                        | 0                     | 0                     | 0                    | 0                    | 0                            | 0              | 0           | 0         | ]             |           | (24b)            |
| c) If                | whole ho                   | ouse ex                | tract ven                   | tilation of              | or positiv            | /e input v            | ventilati            | on from              | outside                      | - (00)         | <b>、</b>    |           |               |           |                  |
| (2.4.)               | if (22b)m                  | < 0.5 ×                | (23b), t                    | nen (240                 | c) = (23t             | b); other             | wise (24             | ic) = (22            | b) m + 0.                    | .5 × (23b      | )           |           | 1             |           | $(0.1 \circ)$    |
| (24c)m=              | 0                          | 0                      | 0                           | 0                        | 0                     | 0                     | 0                    | 0                    | 0                            | 0              | 0           | 0         | ]             |           | (24C)            |
| d) If                | natural v<br>if (22b)m     | entilation             | on or whe<br>en (24d)       | ole hous<br>m = (22l     | se positi<br>o)m othe | ve input<br>erwise (2 | ventilati<br>24d)m = | on from<br>0.5 + [(2 | loft<br>22b)m <sup>2</sup> x | 0.5]           |             |           | _             |           |                  |
| (24d)m=              | 1.17                       | 1.15                   | 1.12                        | 1.01                     | 0.99                  | 0.88                  | 0.88                 | 0.86                 | 0.92                         | 0.99           | 1.03        | 1.08      |               |           | (24d)            |
| Effe                 | ctive air o                | change                 | rate - en                   | ter (24a                 | ) or (24l             | o) or (24             | c) or (24            | 1d) in bo            | x (25)                       |                |             |           |               |           |                  |
| (25)m=               | 1.17                       | 1.15                   | 1.12                        | 1.01                     | 0.99                  | 0.88                  | 0.88                 | 0.86                 | 0.92                         | 0.99           | 1.03        | 1.08      |               |           | (25)             |
| 3 He                 | at losses                  | and he                 | at loss r                   | aramet                   | er.                   |                       |                      |                      |                              |                |             | _         |               |           |                  |
| ELEN                 |                            | Gros                   | 65<br>(m²)                  | Openin                   | gs<br>2               | Net Ar<br>A .r        | rea<br>m²            | U-val<br>W/m2        | ue                           | A X U<br>(W/I  | K)          | k-value   | e<br>K        | A )<br>kJ | X k<br>/K        |
| Doors                | Type 1                     |                        |                             |                          |                       | 18                    | ×                    | 3                    |                              | 5.4            |             |           |               |           | (26)             |
| Doors                | Type 2                     |                        |                             |                          |                       | 1.0                   |                      |                      |                              | 2.24           | Ħ           |           |               |           | (26)             |
| Windo                | ws Type                    | 1                      |                             |                          |                       | 5.56                  | <b>X</b>             | I/[1/( 4.8 )+        | 0.04] =                      | 22.39          | Ħ           |           |               |           | (27)             |
| Windo                | ws Type                    | 2                      |                             |                          |                       | 4                     | x                    | I/[1/( 4.8 )+        | 0.04] =                      | 16.11          | 5           |           |               |           | (27)             |
| Windo                | ws Type                    | 3                      |                             |                          |                       | 1.21                  | x                    | I/[1/( 4.8 )+        | 0.04] =                      | 4.87           | =           |           |               |           | (27)             |
| Floor                |                            |                        |                             |                          |                       | 82                    | ×                    | 1.25                 | =                            | 102.5          | Ξ r         |           |               |           | (28)             |
| Walls <sup>-</sup>   | Type1                      | 79.8                   | 5                           | 12.5                     | 7                     | 67.28                 | 3 X                  | 2.1                  |                              | 141.29         |             |           | ה ה           |           | <br>(29)         |
| Walls <sup>-</sup>   |                            | 20.2                   | 23                          | 1.6                      |                       | 18.63                 | X                    | 21                   |                              | 39 12          | $\dashv$    |           | ; ۲           |           | (29)             |
| Roof                 | 51                         | 10.7                   | 7                           |                          |                       | 19.77                 | ~<br>7               | 23                   | <b>-</b>                     | 45.47          | = 1         |           | ≓ ¦           |           | $ \boxed{(30)} $ |
| Total a              | area of el                 | ements                 | , m²                        |                          |                       | 201.8                 | 5                    | 2.0                  |                              | -017           | L           |           | J L           |           | (31)             |
| Party v              | vall                       |                        |                             |                          |                       | 16.8                  | x                    | 0                    |                              | 0              |             |           |               |           | (32)             |
| Party v              | vall                       |                        |                             |                          |                       | 5.8                   | ×                    | 0                    |                              | 0              | = i         |           | ۲ F           |           | (32)             |
| * for win            | dows and                   | roof winde             | ows, use e                  | ffective wi              | ndow U-v              | alue calcul           | lated usin           | g formula 1          | 1/[(1/U-valu                 | ıe)+0.04] a    | as given in | paragraph | L             |           |                  |
| ** inclua            | le the area                | s on both              | sides of in                 | ternal wal               | ls and par            | titions               |                      |                      |                              |                |             |           |               |           | _                |
| Fabric               | heat los                   | s, W/K =               | = S (A x                    | U)                       |                       |                       |                      | (26)(30              | ) + (32) =                   |                |             |           | 37            | 9.39      | (33)             |
| Heat c               | apacity (                  | Cm = S(                | (Axk)                       |                          |                       |                       |                      |                      | ((28).                       | (30) + (32     | 2) + (32a). | (32e) =   |               | 0         | (34)             |
| Therm                | al mass                    | parame                 | ter (TMF                    | ? = Cm -                 | - TFA) iı             | ר kJ/m²K              |                      |                      | Indica                       | tive Value     | : High      |           | 4             | 50        | (35)             |
| For desi<br>can be t | ign assessi<br>ised instea | ments wh<br>d of a dei | ere the dei<br>tailed calcu | tails of the<br>ılation. | construct             | ion are no            | t known p            | recisely the         | e indicative                 | e values of    | TMP in Ta   | able 1f   |               |           |                  |
| Therm                | al bridge                  | s : S (L               | x Y) cale                   | culated                  | using Ap              | pendix l              | K                    |                      |                              |                |             |           | 1:            | 8.4       | (36)             |

if details of thermal bridging are not known  $(36) = 0.15 \times (31)$ 

| Total fa               | abric hea            | at loss                   |                    |                          |                  |                    |                   |             | (33) +     | (36) =                 |                              |                    | 397.79  | (37) |
|------------------------|----------------------|---------------------------|--------------------|--------------------------|------------------|--------------------|-------------------|-------------|------------|------------------------|------------------------------|--------------------|---------|------|
| Ventila                | tion hea             | t loss ca                 | alculated          | I monthly                | /                |                    |                   |             | (38)m      | = 0.33 × (             | 25)m x (5)                   |                    |         |      |
|                        | Jan                  | Feb                       | Mar                | Apr                      | Мау              | Jun                | Jul               | Aug         | Sep        | Oct                    | Nov                          | Dec                |         |      |
| (38)m=                 | 96.6                 | 94.7                      | 92.81              | 83.34                    | 81.45            | 72.65              | 72.65             | 71.02       | 76.04      | 81.45                  | 85.23                        | 89.02              |         | (38) |
| Heat tr                | ansfer c             | oefficier                 | nt, W/K            |                          |                  |                    |                   |             | (39)m      | = (37) + (3            | 38)m                         |                    |         |      |
| (39)m=                 | 494.39               | 492.49                    | 490.6              | 481.13                   | 479.24           | 470.44             | 470.44            | 468.81      | 473.83     | 479.24                 | 483.02                       | 486.81             |         |      |
| Heat lo                | ss para              | meter (H                  | HLP). W/           | ′m²K                     |                  |                    |                   |             | /<br>(40)m | Average =<br>= (39)m ÷ | Sum(39) <sub>1.</sub><br>(4) | <sub>12</sub> /12= | 480.87  | (39) |
| (40)m=                 | 6.03                 | 6.01                      | 5.98               | 5.87                     | 5.84             | 5.74               | 5.74              | 5.72        | 5.78       | 5.84                   | 5.89                         | 5.94               | ]       |      |
|                        | I                    |                           |                    | I                        |                  |                    |                   |             | /          | Average =              | Sum(40)1.                    | <sub>12</sub> /12= | 5.86    | (40) |
| Numbe                  | r of day             | s in mor                  | nth (Tab           | le 1a)                   | Mov              | lun                | 11                | A           | San        | Oct                    | Nov                          | Dee                | 1       |      |
| (41)m-                 | Jan<br>31            | 28                        | 1VIA1<br>31        | Арі<br>30                | 1VIAY            | 30<br>30           | 31                | Aug<br>31   | 30         | 31                     | 30                           | 21<br>21           |         | (41) |
| (41)11=                | 51                   | 20                        | 51                 | 30                       | 31               | 30                 | 51                | 51          | 30         | 51                     | 30                           | 51                 | J       | (++) |
| 4 304                  |                      |                           |                    |                          |                  |                    |                   |             |            |                        |                              |                    |         |      |
| 4. Wa                  | ter heat             | ing ener                  | gy requi           | rement:                  |                  |                    |                   |             |            |                        |                              | kvvh/ye            | ear:    |      |
| Assum                  | ed occu              | pancy, I                  | N                  |                          |                  |                    |                   | <b>.</b>    |            |                        | 2                            | .5                 | ]       | (42) |
| if TF.<br>if TF.       | A > 13.9<br>A £ 13.9 | 9, N = 1<br>9 N = 1       | + 1.76 x           | [1 - exp                 | (-0.0003         | 649 x (TF          | -A -13.9          | )2)] + 0.0  | 013 x (1   | FFA -13.               | 9)                           |                    |         |      |
| Annual                 | average              | e hot wa                  | ater usa           | ge in litre              | s per da         | y Vd,av            | erage =           | (25 x N)    | + 36       |                        | 93                           | .57                |         | (43) |
| Reduce :               | the annua            | l average<br>litres per r | hot water          | usage by {<br>day (all w | 5% if the d      | welling is o       | designed t<br>Id) | to achieve  | a water us | e target o             | f                            |                    |         |      |
|                        |                      |                           | berson per         |                          |                  |                    |                   |             |            |                        |                              |                    | 1       |      |
| Hot wate               | Jan<br>Ir usage in   | Feb<br>litres per         | Mar<br>dav for ea  | Apr<br>ach month         | May<br>Vd.m = fa | Jun<br>ctor from T | JUI<br>Fable 1c x | (43)        | Sep        | Oct                    | NOV                          | Dec                | J       |      |
| (44)m=                 | 102.93               | 99.18                     | 95 44              | 91 7                     | 87.95            | 84 21              | 84 21             | 87.95       | 91 7       | 95 44                  | 99.18                        | 102.93             | 1       |      |
| (,                     | 102.00               | 00.10                     | 00.11              | 01.1                     | 01.00            | 0                  | 01.21             | 01.00       | -          | Fotal = Su             | m(44) <sub>1,12</sub> =      | 102.00             | 1122.82 | (44) |
| Ener <mark>gy</mark> a | content of           | hot water                 | used - cal         | culated mo               | onthly $= 4$ .   | 190 x Vd,n         | n x nm x C        | 0Tm / 3600  | kWh/mon    | th (see Ta             | bles 1b, 1                   | c, 1d)             |         |      |
| (45)m=                 | 152.63               | 133.5                     | 137.76             | 120.1                    | 115.24           | 99.44              | 92.15             | 105.74      | 107        | 124.7                  | 136.12                       | 147.82             |         | _    |
| lf instant             | aneous w             | ater heatir               | ng at point        | of use (no               | hot water        | storage),          | enter 0 in        | boxes (46)  | ) to (61)  | Fotal = Su             | m(45) <sub>112</sub> =       | =                  | 1472.19 | (45) |
| (46)m=                 | 22.9                 | 20.02                     | 20.66              | 18.01                    | 17.29            | 14.92              | 13.82             | 15.86       | 16.05      | 18.71                  | 20.42                        | 22.17              | ]       | (46) |
| Water                  | storage              | loss:                     |                    |                          |                  |                    |                   |             |            |                        |                              |                    | J       |      |
| Storage                | e volum              | e (litres)                | includin           | ig any so                | olar or W        | /WHRS              | storage           | within sa   | ime vess   | sel                    |                              | 160                | ]       | (47) |
| If comr                | nunity h             | eating a                  | nd no ta           | nk in dw                 | elling, e        | nter 110           | litres in         | (47)        |            |                        |                              |                    |         |      |
| Water of               | vise it no           | stored                    | hot wate           | er (this in              | ICIUDES I        | nstantan           | ieous co          | mbi boile   | ers) ente  | er '0' in (            | 47)                          |                    |         |      |
| a) If m                | anufacti             | urer's de                 | eclared l          | oss facto                | or is kno        | wn (kWł            | n/day):           |             |            |                        |                              | 0                  | 1       | (48) |
| Tempe                  | rature fa            | actor fro                 | m Table            | 2b                       |                  | ·                  | • /               |             |            |                        |                              | 0                  |         | (49) |
| Energy                 | lost fro             | m water                   | storage            | , kWh/ye                 | ear              |                    |                   | (48) x (49) | =          |                        | 1.                           | 10                 |         | (50) |
| b) If m                | anufacti             | urer's de                 | eclared o          | ylinder l                | oss fact         | or is not          | known:            |             |            |                        |                              |                    | 1       |      |
| Hot wa                 | ter stora            | age loss                  | factor fr          | om Tabl                  | e 2 (kWl         | h/litre/da         | iy)               |             |            |                        | 0.                           | 02                 |         | (51) |
| Volume                 | e factor             | from Tal                  | ee secli<br>ble 2a | 011 4.3                  |                  |                    |                   |             |            |                        | 1                            | 03                 | 1       | (52) |
| Tempe                  | rature fa            | actor fro                 | m Table            | 2b                       |                  |                    |                   |             |            |                        | 0                            | .6                 | 1       | (53) |
| Energy                 | lost fro             | m water                   | storage            | , kWh/ye                 | ear              |                    |                   | (47) x (51) | x (52) x ( | 53) =                  | 1.                           | 03                 | j       | (54) |
| Enter                  | (50) or (            | 54) in (5                 | 5)                 |                          |                  |                    |                   |             |            |                        | 1.                           | 03                 | ]       | (55) |

| Water                    | storage                     | loss cal                 | culated     | for each    | month      |                |                      | ((56)m = (            | 55) × (41)          | m                         |                      |                        |               |      |
|--------------------------|-----------------------------|--------------------------|-------------|-------------|------------|----------------|----------------------|-----------------------|---------------------|---------------------------|----------------------|------------------------|---------------|------|
| (56)m=                   | 32.01                       | 28.92                    | 32.01       | 30.98       | 32.01      | 30.98          | 32.01                | 32.01                 | 30.98               | 32.01                     | 30.98                | 32.01                  |               | (56) |
| If cylind                | er contain                  | s dedicate               | d solar sto | orage, (57) | m = (56)m  | x [(50) – (    | [H11)] ÷ (5          | 0), else (5           | 7)m = (56)          | m where (                 | H11) is fro          | m Append               | lix H         |      |
| (57)m=                   | 32.01                       | 28.92                    | 32.01       | 30.98       | 32.01      | 30.98          | 32.01                | 32.01                 | 30.98               | 32.01                     | 30.98                | 32.01                  |               | (57) |
| Prima                    | y circuit                   | loss (ar                 | nual) fro   | om Table    | e 3        |                |                      |                       |                     |                           |                      | 0                      |               | (58) |
| Prima                    | y circuit                   | loss cal                 | culated     | for each    | month (    | (59)m = (      | (58) ÷ 36            | 65 × (41)             | m                   |                           |                      |                        |               |      |
| (mo                      | dified by                   | factor f                 | rom Tab     | le H5 if t  | here is s  | solar wat      | ter heati            | ng and a              | cylinde             | r thermo                  | stat)                |                        |               |      |
| (59)m=                   | 23.26                       | 21.01                    | 23.26       | 22.51       | 23.26      | 22.51          | 23.26                | 23.26                 | 22.51               | 23.26                     | 22.51                | 23.26                  |               | (59) |
| Combi                    | loss ca                     | lculated                 | for each    | month       | (61)m =    | (60) ÷ 30      | 65 × (41             | )m                    |                     |                           |                      |                        |               |      |
| (61)m=                   | 0                           | 0                        | 0           | 0           | 0          | 0              | 0                    | 0                     | 0                   | 0                         | 0                    | 0                      |               | (61) |
| Total h                  | neat req                    | uired for                | water h     | eating ca   | alculated  | d for eac      | h month              | (62)m =               | 0.85 × (            | (45)m +                   | (46)m +              | (57)m +                | (59)m + (61)m | Ì    |
| (62)m=                   | 207.91                      | 183.42                   | 193.03      | 173.59      | 170.51     | 152.93         | 147.42               | 161.02                | 160.5               | 179.98                    | 189.61               | 203.1                  |               | (62) |
| Solar D                  | HW input                    | calculated               | using App   | endix G o   | r Appendix | cH (negati     | ve quantity          | y) (enter '0          | ' if no sola        | r contribut               | ion to wate          | er heating)            |               |      |
| (add a                   | dditiona                    | l lines if               | FGHRS       | and/or \    | NWHRS      | applies        | , see Ap             | pendix (              | G)                  |                           |                      |                        |               |      |
| (63)m=                   | 0                           | 0                        | 0           | 0           | 0          | 0              | 0                    | 0                     | 0                   | 0                         | 0                    | 0                      |               | (63) |
| Outpu                    | t from w                    | ater hea                 | ter         |             |            |                |                      |                       |                     |                           |                      |                        |               |      |
| (64)m=                   | 207.91                      | 183.42                   | 193.03      | 173.59      | 170.51     | 152.93         | 147.42               | 161.02                | 160.5               | 179.98                    | 189.61               | 203.1                  |               | _    |
|                          |                             |                          |             |             |            |                |                      | Outp                  | out from w          | ater heate                | r (annual)₁          | 12                     | 2123.03       | (64) |
| Hea <mark>t g</mark>     | ains fro                    | m water                  | heating     | , kWh/m     | onth 0.2   | 5 ´ [0.85      | × (45)m              | n + (61)m             | n] + 0.8 x          | ( <mark>46)m</mark>       | + (57)m              | + (59)m                | ]             |      |
| (65)m=                   | <mark>6</mark> 9.36         | 61.2                     | 64.41       | 57.94       | 56.93      | 51.07          | 49.25                | 53.77                 | 53.59               | 60.07                     | 63.27                | 67.76                  |               | (65) |
| inclu                    | ude (57)                    | m in calo                | culation    | of (65)m    | only if c  | ylinder i      | s in the o           | dwelling              | or hot w            | ate <mark>r is f</mark> r | om com               | <mark>mu</mark> nity h | eating        |      |
| <b>5.</b> In             | ternal ga                   | ains (see                | e Table S   | 5 and 5a    | ):         |                |                      |                       |                     |                           |                      |                        |               |      |
| Metab                    | olic gair                   | s (Table                 | 5), Wat     | tts         |            |                |                      | •                     |                     | _                         |                      |                        |               |      |
|                          | Jan                         | Feb                      | Mar         | Apr         | May        | Jun            | Jul                  | Aug                   | Sep                 | Oct                       | Nov                  | Dec                    |               |      |
| (66)m=                   | 124.99                      | 124.99                   | 124.99      | 124.99      | 124.99     | 124.99         | 124.99               | 124.99                | 124.99              | 124.99                    | 124.99               | 124.99                 |               | (66) |
| Lightir                  | g gains                     | (calcula                 | ted in A    | opendix     | L, equat   | ion L9 o       | r L9a), a            | lso see               | Table 5             |                           | -                    |                        |               |      |
| (67)m=                   | 35.93                       | 31.91                    | 25.95       | 19.65       | 14.69      | 12.4           | 13.4                 | 17.42                 | 23.38               | 29.68                     | 34.64                | 36.93                  |               | (67) |
| Applia                   | nces ga                     | ins (calc                | ulated in   | n Append    | dix L, eq  | uation L       | 13 or L1             | 3a), also             | see Ta              | ble 5                     |                      | -                      |               |      |
| (68)m=                   | 223.57                      | 225.89                   | 220.04      | 207.6       | 191.89     | 177.12         | 167.26               | 164.94                | 170.78              | 183.23                    | 198.94               | 213.71                 |               | (68) |
| Cookir                   | ng gains                    | (calcula                 | ted in A    | ppendix     | L, equa    | tion L15       | or L15a)             | ), also se            | e Table             | 5                         |                      | -                      |               |      |
| (69)m=                   | 35.5                        | 35.5                     | 35.5        | 35.5        | 35.5       | 35.5           | 35.5                 | 35.5                  | 35.5                | 35.5                      | 35.5                 | 35.5                   |               | (69) |
| Pumps                    | s and fa                    | ns gains                 | (Table s    | 5a)         |            |                |                      |                       | -                   |                           |                      |                        | _             |      |
| (70)m=                   | 0                           | 0                        | 0           | 0           | 0          | 0              | 0                    | 0                     | 0                   | 0                         | 0                    | 0                      |               | (70) |
| Losse                    | s e.g. ev                   | vaporatio                | n (nega     | tive valu   | es) (Tab   | ole 5)         |                      |                       |                     |                           |                      |                        | _             |      |
| (71)m=                   | -99.99                      | -99.99                   | -99.99      | -99.99      | -99.99     | -99.99         | -99.99               | -99.99                | -99.99              | -99.99                    | -99.99               | -99.99                 |               | (71) |
| Water                    | heating                     | gains (T                 | able 5)     |             |            |                |                      |                       |                     |                           |                      |                        | _             |      |
| (72)m=                   | 02.22                       | 91.07                    | 86 58       | 90.49       | 76.51      | 70.94          | 66.19                | 72.27                 | 74.43               | 80.74                     | 87.87                | 91.07                  |               | (72) |
| (/                       | 93.23                       | 01.01                    | 00.00       | 00.40       |            |                |                      |                       |                     |                           |                      |                        | 1             |      |
| Total                    | internal                    | gains =                  | 00.00       | 00.40       |            | (66)           | )m + (67)m           | n + (68)m -           | + (69)m +           | (70)m + (7                | 1)m + (72)           | )m                     |               |      |
| <b>Total</b> i<br>(73)m= | 93.23<br>internal<br>413.22 | <b>gains =</b><br>409.37 | 393.07      | 368.22      | 343.58     | (66)<br>320.95 | )m + (67)m<br>307.35 | n + (68)m -<br>315.12 | + (69)m +<br>329.08 | (70)m + (7<br>354.15      | 1)m + (72)<br>381.95 | m<br>402.21            |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta | ation: | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W)         |               |
|---------|--------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|----------------------|---------------|
| North   | 0.9x   | 0.77                      | x | 4          | × | 10.63            | × | 0.85           | × | 0.7            | ] =        | 17.54                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 20.32            | x | 0.85           | × | 0.7            | ] =        | 33.52                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 34.53            | × | 0.85           | × | 0.7            | ] =        | 56.95                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 55.46            | × | 0.85           | × | 0.7            | =          | 91.48                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 74.72            | x | 0.85           | x | 0.7            | ] =        | 123.23               | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 79.99            | × | 0.85           | × | 0.7            | ] =        | 131.92               | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 74.68            | × | 0.85           | × | 0.7            | =          | 123.17               | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 59.25            | x | 0.85           | × | 0.7            | ] =        | 97.72                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 41.52            | x | 0.85           | × | 0.7            | =          | 68.47                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 24.19            | × | 0.85           | × | 0.7            | =          | 39.9                 | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 13.12            | x | 0.85           | × | 0.7            | =          | 21.64                | (74)          |
| North   | 0.9x   | 0.77                      | x | 4          | x | 8.86             | × | 0.85           | × | 0.7            | ] =        | 14.62                | (74)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 19.64            | x | 0.85           | × | 0.7            | ] =        | 45.03                | <b>–</b> (76) |
| East    | 0.9x   | 1                         | x | 5.56       | x | 38.42            | x | 0.85           | × | 0.7            | 1 =        | 88.08                | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 63.27            | x | 0.85           | x | 0.7            | <b>j</b> = | 145.06               | <b>–</b> (76) |
| East    | 0.9x   | 1                         | x | 5.56       | x | 92.28            | x | 0.85           | х | 0.7            | 1 =        | 211.56               | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 113.09           | x | 0.85           | x | 0.7            | i -        | 259.27               | <b>–</b> (76) |
| East    | 0.9x   | 1                         | x | 5.56       | x | 115.77           | × | 0.85           | x | 0.7            | ] =        | 2 <mark>65.41</mark> | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 110.22           | x | 0.85           | x | 0.7            | ] =        | 252.68               | <b>–</b> (76) |
| East    | 0.9x   | 1                         | x | 5.56       | x | 94.68            | x | 0.85           | x | 0.7            | ] =        | 217.05               | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 73.59            | × | 0.85           | x | 0.7            | ] =        | 168.71               | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 45.59            | x | 0.85           | x | 0.7            | =          | 104.52               | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 24.49            | × | 0.85           | × | 0.7            | ] =        | 56.14                | (76)          |
| East    | 0.9x   | 1                         | x | 5.56       | x | 16.15            | × | 0.85           | × | 0.7            | =          | 37.03                | (76)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 19.64            | x | 0.85           | x | 0.7            | ] =        | 9.8                  | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 38.42            | × | 0.85           | × | 0.7            | ] =        | 19.17                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 63.27            | × | 0.85           | × | 0.7            | ] =        | 31.57                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 92.28            | x | 0.85           | x | 0.7            | ] =        | 46.04                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 113.09           | × | 0.85           | × | 0.7            | ] =        | 56.42                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 115.77           | x | 0.85           | x | 0.7            | ] =        | 57.76                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 110.22           | x | 0.85           | × | 0.7            | =          | 54.99                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 94.68            | × | 0.85           | × | 0.7            | ] =        | 47.24                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 73.59            | x | 0.85           | x | 0.7            | ] =        | 36.72                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 45.59            | x | 0.85           | x | 0.7            | ] =        | 22.75                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | × | 24.49            | × | 0.85           | × | 0.7            | ] =        | 12.22                | (80)          |
| West    | 0.9x   | 0.77                      | x | 1.21       | x | 16.15            | x | 0.85           | x | 0.7            | =          | 8.06                 | (80)          |

| Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m |                                                                |        |        |        |        |        |        |        |        |        |        |        |      |
|-----------------------------------------------------------------------|----------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| (83)m=                                                                | 72.36                                                          | 140.77 | 233.58 | 349.08 | 438.93 | 455.1  | 430.84 | 362.01 | 273.9  | 167.16 | 90     | 59.71  | (83) |
| Total g                                                               | Fotal gains – internal and solar (84)m = (73)m + (83)m , watts |        |        |        |        |        |        |        |        |        |        | -      |      |
| (84)m=                                                                | 485.59                                                         | 550.13 | 626.65 | 717.3  | 782.52 | 776.05 | 738.19 | 677.12 | 602.98 | 521.31 | 471.95 | 461.91 | (84) |

| 7. Me                                                                        | an inter                | nal temp  | perature                                                                                                                              | (heating   | season     | )           |           |            |             |            |             |            |          |       |
|------------------------------------------------------------------------------|-------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|-----------|------------|-------------|------------|-------------|------------|----------|-------|
| Temperature during heating periods in the living area from Table 9, Th1 (°C) |                         |           |                                                                                                                                       |            |            |             |           |            |             | 21         | (85)        |            |          |       |
| Utilisa                                                                      | ation fac               | tor for g | ains for                                                                                                                              | living are | ea, h1,m   | (see Ta     | ble 9a)   |            |             |            |             | Ľ          |          |       |
|                                                                              | Jan                     | Feb       | Mar                                                                                                                                   | Apr        | May        | Jun         | Jul       | Aug        | Sep         | Oct        | Nov         | Dec        |          |       |
| (86)m=                                                                       | 1                       | 1         | 1                                                                                                                                     | 0.99       | 0.99       | 0.97        | 0.95      | 0.96       | 0.99        | 1          | 1           | 1          |          | (86)  |
| Mean                                                                         | interna                 | l temper  | ature in                                                                                                                              | living are | ea T1 (fo  | ollow ste   | ps 3 to 7 | r in Tabl  | e 9c)       |            |             |            |          |       |
| (87)m=                                                                       | 17.47                   | 17.64     | 18.04                                                                                                                                 | 18.65      | 19.3       | 19.95       | 20.36     | 20.3       | 19.76       | 18.94      | 18.14       | 17.47      |          | (87)  |
| Temp                                                                         | erature                 | during h  | eating p                                                                                                                              | eriods ir  | n rest of  | dwelling    | from Ta   | able 9, Ti | h2 (°C)     |            |             |            |          |       |
| (88)m=                                                                       | 18                      | 18        | 18.01                                                                                                                                 | 18.07      | 18.08      | 18.13       | 18.13     | 18.14      | 18.11       | 18.08      | 18.05       | 18.03      |          | (88)  |
| Utilisa                                                                      | ation fac               | tor for g | ains for                                                                                                                              | rest of d  | welling, I | h2,m (se    | e Table   | 9a)        |             |            |             |            |          |       |
| (89)m=                                                                       | 1                       | 1         | 1                                                                                                                                     | 0.99       | 0.97       | 0.91        | 0.7       | 0.77       | 0.96        | 0.99       | 1           | 1          |          | (89)  |
| Mean                                                                         | interna                 | l temper  | ature in                                                                                                                              | the rest   | of dwelli  | ng T2 (fo   | ollow ste | eps 3 to 3 | 7 in Tabl   | e 9c)      |             |            |          |       |
| (90)m=                                                                       | 15.14                   | 15.31     | 15.72                                                                                                                                 | 16.37      | 17.02      | 17.69       | 18.04     | 18.01      | 17.5        | ,<br>16.67 | 15.84       | 15.16      |          | (90)  |
|                                                                              |                         |           |                                                                                                                                       |            |            |             |           |            | f           | LA = Livin | g area ÷ (4 | 4) =       | 0.53     | (91)  |
| Mean                                                                         | interna                 | l temper  | ature (fc                                                                                                                             | or the wh  | ole dwel   | llina) = fl | _A x T1   | + (1 – fL  | A) x T2     |            |             | L          |          |       |
| (92)m=                                                                       | 16.38                   | 16.55     | 16.95                                                                                                                                 | 17.58      | 18.23      | 18.89       | 19.27     | 19.23      | ,<br>18.7   | 17.88      | 17.06       | 16.39      |          | (92)  |
| vlqqA                                                                        | adiustr                 | nent to t | he mear                                                                                                                               | internal   |            | ature fro   | m Table   | 4e, whe    | ere appro   | opriate    | I           |            |          |       |
| (93)m=                                                                       | 16.38                   | 16.55     | 16.95                                                                                                                                 | 17.58      | 18.23      | 18.89       | 19.27     | 19.23      | 18.7        | 17.88      | 17.06       | 16.39      |          | (93)  |
| 8. Spa                                                                       | ace hea                 | tina reau | uirement                                                                                                                              |            |            |             |           |            |             |            |             |            |          |       |
| Set Ti                                                                       | i to the i              | mean int  | ernal ter                                                                                                                             | nperatu    | re obtain  | ed at ste   | ep 11 of  | Table 9    | o, so tha   | t Ti,m=(   | 76)m an     | d re-calc  | ulate    |       |
| the ut                                                                       | <mark>ilis</mark> ation | factor fo | or gains                                                                                                                              | using Ta   | ble 9a     |             |           |            |             | í í        | ,           |            |          |       |
|                                                                              | Jan                     | Feb       | Mar                                                                                                                                   | Apr        | May        | Jun         | Jul       | Aug        | Sep         | Oct        | Nov         | Dec        |          |       |
| Utilisa                                                                      | ation fac               | tor for g | ains, hm                                                                                                                              | 11         |            |             |           |            |             |            |             |            |          |       |
| (94)m=                                                                       | 1                       | 1         | 0.99                                                                                                                                  | 0.99       | 0.97       | 0.94        | 0.87      | 0.9        | 0.97        | 0.99       | 1           | 1          |          | (94)  |
| Usefu                                                                        | Il gains,               | hmGm      | , W = (94                                                                                                                             | 4)m x (84  | 4)m        |             |           |            |             |            |             |            |          |       |
| (95)m=                                                                       | 484.46                  | 548.29    | 623.05                                                                                                                                | 708.92     | 762.04     | 728.53      | 640.12    | 606.56     | 583.86      | 516.89     | 470.39      | 460.99     |          | (95)  |
| Month                                                                        | nly aver                | age exte  | rnal tem                                                                                                                              | perature   | e from Ta  | able 8      |           |            |             |            |             |            |          |       |
| (96)m=                                                                       | 4.3                     | 4.9       | 6.5                                                                                                                                   | 8.9        | 11.7       | 14.6        | 16.6      | 16.4       | 14.1        | 10.6       | 7.1         | 4.2        |          | (96)  |
| Heat                                                                         | loss rate               | e for mea | an interr                                                                                                                             | al tempe   | erature,   | Lm , W =    | =[(39)m : | x [(93)m   | – (96)m     | ]          |             |            |          |       |
| (97)m=                                                                       | 5972.31                 | 5738.37   | 5128.98                                                                                                                               | 4176.77    | 3131.71    | 2019.47     | 1258.17   | 1324.54    | 2180.79     | 3487.6     | 4811.71     | 5934.28    |          | (97)  |
| Space                                                                        | e heatin                | g require | ement fo                                                                                                                              | r each n   | nonth, k\  | Nh/mont     | h = 0.02  | 24 x [(97  | )m – (95    | )m] x (4   | 1)m         |            |          |       |
| (98)m=                                                                       | 4082.96                 | 3487.73   | 3352.41                                                                                                                               | 2496.85    | 1763.04    | 0           | 0         | 0          | 0           | 2210.21    | 3125.75     | 4072.12    |          |       |
|                                                                              |                         |           |                                                                                                                                       |            |            |             |           | Tota       | l per year  | (kWh/year  | r) = Sum(9  | 8)15,912 = | 24591.08 | (98)  |
| Space                                                                        | e heatin                | g require | ement in                                                                                                                              | kWh/m²     | /year      |             |           |            |             |            |             |            | 299.89   | (99)  |
| 9b. En                                                                       | ergy rec                | quiremer  | nts – Coi                                                                                                                             | mmunity    | heating    | scheme      |           |            |             |            |             | -          |          |       |
| This pa                                                                      | art is us               | ed for sp | ace hea                                                                                                                               | iting, spa | ace cooli  | ing or wa   | ater heat | ting prov  | ided by     | a comm     | unity sch   | neme.      |          | _     |
| Fractio                                                                      | n of spa                | ace heat  | from se                                                                                                                               | condary    | /supplen   | nentary h   | neating ( | (Table 1   | 1) '0' if n | one        |             |            | 0        | (301) |
| Fractio                                                                      | n of spa                | ace heat  | from co                                                                                                                               | mmunity    | system     | 1 – (301    | ) =       |            |             |            |             | [          | 1        | (302) |
| The com                                                                      | nmunity so              | cheme mag | the community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter |            |            |             |           |            |             |            |             |            |          |       |

includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.

Fraction of heat from Community boilers

| 1 (303a) |
|----------|
|----------|

| Fraction of total space heat from Community boilers                                                                         | (302) x (3                                                | 03a) =                | 1                        | (304a)     |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|--------------------------|------------|
| Factor for control and charging method (Table 4c(3)) for com                                                                | munity heating system                                     | L<br>L                | 1.05                     | ]<br>(305) |
| Distribution loss factor (Table 12c) for community heating sys                                                              | tem                                                       | L<br>L                | 1.1                      | (306)      |
| Space heating                                                                                                               |                                                           | L                     | kWh/year                 | J          |
| Annual space heating requirement                                                                                            |                                                           | [                     | 24591.08                 | ]          |
| Space heat from Community boilers                                                                                           | (98) x (304a) x (305) x (306                              | ٥) =                  | 28402.69                 | (307a)     |
| Efficiency of secondary/supplementary heating system in % (                                                                 | from Table 4a or Appendix E)                              | [                     | 0                        | (308       |
| Space heating requirement from secondary/supplementary s                                                                    | ystem (98) x (301) x 100 ÷ (308) =                        | - [                   | 0                        | (309)      |
| Water heating<br>Annual water heating requirement                                                                           |                                                           | Γ                     | 2123.03                  | ]          |
| If DHW from community scheme:<br>Water heat from Community boilers                                                          | (64) x (303a) x (305) x (306                              | 5) =                  | 2452.1                   | (310a)     |
| Electricity used for heat distribution                                                                                      | 0.01 × [(307a)(307e) + (310a)                             | (310e)] =             | 308.55                   | (313)      |
| Cooling System Energy Efficiency Ratio                                                                                      |                                                           | Ī                     | 0                        | (314)      |
| Space cooling (if there is a fixed cooling system, if not enter (                                                           | <b>))</b> = (107) ÷ (314) =                               | Ī                     | 0                        | (315)      |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input fro | m outside                                                 |                       | 0                        | (330a)     |
| warm air heating system fans                                                                                                |                                                           | T T                   | 0                        | (330b)     |
| pump for solar water heating                                                                                                |                                                           | <b>Γ</b>              | 0                        | (330g)     |
| Total electricity for the above, kWh/year                                                                                   | =(330a) + (330b) + (330g)                                 | - ī                   | 0                        | (331)      |
| Energy for lighting (calculated in Appendix L)                                                                              |                                                           | Ī                     | 634.57                   | (332)      |
| 12b. CO2 Emissions – Community heating scheme                                                                               |                                                           |                       |                          | -          |
|                                                                                                                             | Energy Emission<br>kWh/year kg CO2                        | on factor E<br>/kWh k | Emissions<br>kg CO2/year |            |
| CO2 from other sources of space and water heating (not CHI<br>Efficiency of heat source 1 (%) If there is CHP u             | <b>P)</b><br>sing two fuels repeat (363) to (366) for the | e second fuel         | 65                       | (367a)     |
| CO2 associated with heat source 1 [(307                                                                                     | b)+(310b)] x 100 ÷ (367b) x 0                             | =                     | 10253.29                 | (367)      |
| Electrical energy for heat distribution                                                                                     | [(313) x 0.5                                              | 2 =                   | 160.14                   | (372)      |
| Total CO2 associated with community systems                                                                                 | (363)(366) + (368)(372)                                   | =                     | 10413.42                 | (373)      |
| CO2 associated with space heating (secondary)                                                                               | (309) x 0                                                 | =                     | 0                        | (374)      |
| CO2 associated with water from immersion heater or instanta                                                                 | neous heater (312) x 0.2                                  | 2 =                   | 0                        | (375)      |
| Total CO2 associated with space and water heating                                                                           | (373) + (374) + (375) =                                   |                       | 10413.42                 | (376)      |
| CO2 associated with electricity for pumps and fans within dw                                                                | elling (331)) x 0.5                                       | 2 =                   | 0                        | (378)      |
| CO2 associated with electricity for lighting                                                                                | (332))) x 0.5                                             | 2 =                   | 329.34                   | (379)      |
| Total CO2, kg/year sum of (376)(382) =                                                                                      |                                                           | [                     | 10742.76                 | (383)      |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                    |                                                           | [                     | 131.01                   | (384)      |
| El rating (section 14)                                                                                                      |                                                           | [                     | 16.91                    | (385)      |

| Assessor Name:Stroma FSAP 2012Stroma Number:Software Name:Stroma FSAP 2012Software Version:Version: 1.0.3.15Property Address: Unit 8Address: Unit 8Address: iisAddress: Unit 8Address: Init 8Address: Init 8Address: Init 8Address: Init 8Address: Init 8Address: Init 8Adv. Height(m)Volume(m³)Basement70(1a) x3.5(2a) =245(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)70(4)Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =245(5)Colspan="2">Aventilation rate:Mumber of chimneysO+0+0=0(6a)Number of chimneys0+0+0=0(6a)Number of chimneys0+0+0=0(6a)Number of chimneys0+0+0=0(6a) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Property Address. On to 3Address :, london1. Overall dwelling dimensions:Area(m²)Av. Height(m)Volume(m³)Basement70(1a) x3.5(2a) =245(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)70(4)Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$ 245(5)2. Ventilation rate:main heatingsecondary heatingothertotalm³ per hour heatingNumber of chimneys0+0=0x 40 =0(6a)Number of chimneys0+0+0=0x 40 =0(6a)                                                                                                                                                                                   |
| Address :, interview1. Overall dwelling dimensions:Area(m²)Av. Height(m)Volume(m³)Basement $70$ $(1a) \times 3.5$ $(2a) = 245$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ $70$ $(4)$ $70$ $(4)$ Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245$ $(5)$ 2. Ventilation rate:main heatingsecondary heatingothertotalm³ per hour hourNumber of chimneys $0$ $+$ $0$ $=$ $0$ $x 40 =$ $0$ $(6a)$ Number of chimneys $0$ $+$ $0$ $+$ $0$ $=$ $0$ $(6a)$                                                                                                                      |
| Area(m²)Av. Height(m)Volume(m³)Basement $70$ $(1a) \times$ $3.5$ $(2a) =$ $245$ $(3a)$ Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ $70$ $(4)$ Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$ $245$ $(5)$ 2. Ventilation rate:Number of chimneys $0$ $+$ $0$ $=$ $0$ $x 40 =$ $0$ $(6a)$ Number of chimneys $0$ $+$ $0$ $=$ $0$ $x 40 =$ $0$ $(6a)$                                                                                                                                                                                                                                |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$<br>Dwelling volume<br>(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245 (5)<br>2. Ventilation rate:<br>Number of chimneys<br>0 + 0 + 0 = 0 x 40 = 0 (6a)<br>Number of area floor                                                                                                                                                                                                                                                                                                                                                                       |
| Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 245$ (5)2. Ventilation rate:Number of chimneys $0$ + $0$ + $total$ $m^3$ per hourNumber of chimneys $0$ + $0$ + $0$ = $0$ $x 40 = 0$ (6a)Number of chimneys $0$ + $0$ + $0$ = $0$ $x 40 = 0$ (6a)                                                                                                                                                                                                                                                                                                                                              |
| 2. Ventilation rate:<br>Number of chimneys $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| main<br>heatingsecondary<br>heatingothertotal $m^3$ per hourNumber of chimneys0+0=0 $x 40 =$ 0(6a)Number of energine(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of open flues $0 + 0 + 0 = 0$ (6b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of intermittent fans 2 × 10 = 20 (7a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of passive vents $0 	 x 	 10 = 0 	 (7b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Air changes per hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                     |
| Additional infiltration $[(9)-1]x0.1 = 0$ (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction       0       (11)         if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35       0       (11)                                                                                                                                                                                                                                                                                                          |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 $0$ (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Percentage of windows and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vindow infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 1.08 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of sides sheltered     1     (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Siletter factor $(20) = 1 - [0.075 \times (19)] = 0.92$ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Infiltration rate modified for monthly wind speed $(21) = (10) \times (20) = 1$ (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lan Feb Mar Anr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wind Easter (22a)m = (22)m : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1  1.08  1.12  1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Adjuste          | ed infilti             | ration rat                     | e (allow               | ing for sh    | elter an                 | d wind s              | peed) =     | (21a) x       | (22a)m       |               |                        |           |                                         |           |
|------------------|------------------------|--------------------------------|------------------------|---------------|--------------------------|-----------------------|-------------|---------------|--------------|---------------|------------------------|-----------|-----------------------------------------|-----------|
| <u> </u>         | 1.28                   | 1.25                           | 1.23                   | 1.1           | 1.08                     | 0.95                  | 0.95        | 0.93          | 1            | 1.08          | 1.13                   | 1.18      |                                         |           |
| Calcula<br>If me | ate effe<br>echanic    | <i>ctive air</i><br>al ventila | change                 | rate for t    | he appli                 | cable ca              | se          |               |              |               |                        |           | 0                                       | (23a)     |
| lf exh           | aust air h             | eat pump                       | using App              | endix N, (2   | 3b) = (23a               | ) × Fmv (e            | equation (N | N5)) , othe   | rwise (23b   | o) = (23a)    |                        |           | 0                                       | (23b)     |
| If bala          | anced wit              | h heat reco                    | overy: effic           | ciency in %   | allowing f               | or in-use f           | actor (from | n Table 4h    | ) =          | , , ,         |                        |           | 0                                       | (23c)     |
| a) If            | balance                | ed mech                        | anical v               | entilation    | with hea                 | at recove             | erv (MVI    | HR) (24a      | a)m = $(2)$  | 2b)m + (      | (23b) × [ <sup>-</sup> | 1 – (23c) | ÷ 100]                                  | (200)     |
| (24a)m=          | 0                      | 0                              | 0                      | 0             | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0         | ]                                       | (24a)     |
| b) If            | balance                | ed mech                        | anical v               | entilation    | without                  | heat rec              | covery (N   | и<br>ЛV) (24b | )m = (22     | 1<br>2b)m + ( | (23b)                  |           | 1                                       |           |
| ,<br>(24b)m=     | 0                      | 0                              | 0                      | 0             | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0         | ]                                       | (24b)     |
| c) If            | whole ł                | nouse ex                       | tract ve               | ntilation of  | or positiv               | e input v             | /entilatic  | n from c      | outside      | <u>.</u>      |                        |           | 1                                       |           |
| i                | f (22b)r               | m < 0.5 >                      | (23b),                 | then (24d     | c) = (23b                | ); other              | vise (24    | c) = (22k     | o) m + 0     | .5 × (23      | b)                     |           | _                                       |           |
| (24c)m=          | 0                      | 0                              | 0                      | 0             | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0         |                                         | (24c)     |
| d) If            | natural                | ventilati                      | on or wh               | nole hous     | e positiv                | e input               | ventilatio  | on from I     | oft          |               |                        |           |                                         |           |
| i                | f (22b)r               | m = 1, th                      | en (24d                | )m = (22t     | o)m othe                 | rwise (2              | 4d)m = (    | 0.5 + [(2     | 2b)m² x      | 0.5]          |                        | 4.40      | 1                                       |           |
| (24d)m=          | 1.28                   | 1.25                           | 1.23                   | 1.1           | 1.08                     | 0.95                  | 0.95        | 0.93          |              | 1.08          | 1.13                   | 1.18      | J                                       | (240)     |
| Effec            | ctive air              |                                | rate - e               | nter (24a     | ) or (24b                | o) or (24             | c) or (24   | d) in box     | x (25)       | 4.00          | 4.40                   | 4.40      | 1                                       | (25)      |
| (25)m=           | 1.28                   | 1.25                           | 1.23                   | 1.1           | 1.08                     | 0.95                  | 0.95        | 0.93          |              | 1.08          | 1.13                   | 1.18      |                                         | (23)      |
| 3. He            | at l <mark>osse</mark> | es and he                      | eat loss               | paramete      | er:                      |                       |             |               |              |               |                        |           |                                         |           |
| ELEN             | 1ENT                   | Gros                           | SS (m2)                | Openin        | gs                       | Net Ar                | ea          | U-valu        | ue           | AXU           |                        | k-value   | e l                                     | A X k     |
| Doors            |                        | area                           | (111-)                 | II.           | -                        | A ,r                  |             | VV/III2       |              | (             | r)                     | KJ/111-•1 | n i i i i i i i i i i i i i i i i i i i | KJ/K (26) |
| Windo            |                        | 0.1                            |                        |               |                          | 1.9                   |             | <u> </u>      | 0.041        | 5.7           |                        |           |                                         | (20)      |
| Windo            |                        |                                |                        |               |                          | 8.7                   |             | /[1/(4.0)+    | 0.04]        | 35.03         |                        |           |                                         | (27)      |
| Windo            | ws Typ                 |                                |                        |               |                          | 6.5                   |             | /[1/(4.0)+    | 0.04] =      | 26.17         | 4                      |           |                                         | (27)      |
|                  | ws typ                 | 83                             |                        |               |                          | 2.2                   | X1/         | /[1/( 4.0 )+  | 0.04] =      | 8.86          | ╡,                     |           |                                         | (27)      |
| FIOOr            |                        |                                |                        |               |                          | 70                    | ×           | 1.25          | =            | 87.5          |                        |           | $\dashv$                                | (28)      |
| walls            |                        | 116                            | .5                     | 19.3          |                          | 97.2                  | ×           | 2.1           | =            | 204.12        | 2                      |           | $\dashv$                                | (29)      |
| Roof             |                        | 26.                            | 7                      | 0             |                          | 26.7                  | x           | 2.3           | =            | 61.41         |                        |           |                                         | (30)      |
| Total a          | rea of e               | elements                       | , m²                   |               |                          | 213.2                 | 2           |               |              |               |                        |           |                                         | (31)      |
| Party v          | vall                   |                                |                        |               |                          | 24.2                  | x           | 0             | =            | 0             |                        |           |                                         | (32)      |
| Party v          | vall                   |                                |                        |               |                          | 8.6                   | x           | 0             | =            | 0             |                        |           |                                         | (32)      |
| * for win        | dows and<br>le the are | d roof wind<br>as on both      | ows, use<br>sides of i | effective wi  | ndow U-va<br>Is and part | ilue calcul<br>itions | ated using  | formula 1     | /[(1/U-valı  | ue)+0.04] a   | as given in            | paragraph | 1 3.2                                   |           |
| Fabric           | heat lo                | ss. W/K                        | = S (A x               | : U)          | o ana pan                |                       |             | (26)(30)      | ) + (32) =   |               |                        |           | 428                                     | 8 (33)    |
| Heat c           | apacity                | Cm = S(                        | (Axk)                  | - /           |                          |                       |             |               | ((28).       | (30) + (3     | 2) + (32a).            | (32e) =   | 0                                       | (34)      |
| Therma           | al mass                | parame                         | ter (TM                | P = Cm ÷      | - TFA) in                | ⊨kJ/m²K               |             |               | Indica       | ative Value   | : High                 |           | 450                                     | ) (35)    |
| For desi         | gn asses               | sments wh                      | ere the de             | etails of the | ,<br>constructi          | on are no             | t known pr  | ecisely the   | e indicative | e values o    | f TMP in Ta            | able 1f   | 100                                     |           |
| can be u         | ised inste             | ead of a de                    | tailed cald            | culation.     |                          |                       | _           |               |              |               |                        |           |                                         |           |
| Therma           | al bridg               | es : S (L                      | x Y) ca                | Iculated u    | using Ap                 | pendix ł              | <           |               |              |               |                        |           | 84.8                                    | 3 (36)    |
| it details       | ot therm<br>abric he   | al bridging<br>eat loss        | are not ki             | nown (36) =   | = 0.15 x (3              | 1)                    |             |               | (33) +       | - (36) =      |                        |           | E10                                     | 6 (37)    |
| Ventila          | tion he                | at loss c                      | alculate               | d monthly     | /                        |                       |             |               | (38)m        | i = 0.33 × i  | (25)m x (5)            | )         | <u> </u>                                | <u> </u>  |
|                  | Jan                    | Feb                            | Mar                    | Apr           | Mav                      | Jun                   | Jul         | Aua           | Sep          | Oct           | Nov                    | Dec       | ]                                       |           |
|                  |                        | 1                              | 1                      | 1 1           |                          |                       | I           |               | I - I        |               | 1                      |           | 1                                       |           |

| (38)m=                                                                                                                                             | 103.14                | 101.11            | 99.09                                                                                                           | 88.98                | 86.96       | 76.95       | 76.95           | 75.05                  | 80.89            | 86.96       | 91                       | 95.05     |         | (38) |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-----------------|------------------------|------------------|-------------|--------------------------|-----------|---------|------|
| Heat tr                                                                                                                                            | ansfer o              | coefficier        | nt, W/K                                                                                                         |                      |             |             |                 |                        | (39)m            | = (37) + (3 | -<br>38)m                |           |         |      |
| (39)m=                                                                                                                                             | 616.73                | 614.71            | 612.69                                                                                                          | 602.58               | 600.56      | 590.54      | 590.54          | 588.65                 | 594.49           | 600.56      | 604.6                    | 608.64    |         |      |
| Heatle                                                                                                                                             | ee nara               | motor (F          |                                                                                                                 | /m2k                 |             |             |                 |                        | (40)m            | Average =   | Sum(39)1.                | 12 /12=   | 602.11  | (39) |
| (40)m=                                                                                                                                             | 8.81                  | 8.78              | 8.75                                                                                                            | 8.61                 | 8.58        | 8.44        | 8.44            | 8.41                   | (40)m<br>8.49    | = (39)m ÷   | ( <del>4</del> )<br>8.64 | 8.69      |         |      |
| (10)                                                                                                                                               | 0.01                  | 0.10              | 0.10                                                                                                            | 0.01                 | 0.00        | 0.11        | 0.11            | 0.11                   | 0.10             | Average =   | Sum(40)1                 | 12 /12=   | 8.6     | (40) |
| Numbe                                                                                                                                              | er of day             | vs in moi         | nth (Tab                                                                                                        | le 1a)               |             |             |                 |                        |                  |             | . ,                      |           |         |      |
|                                                                                                                                                    | Jan                   | Feb               | Mar                                                                                                             | Apr                  | May         | Jun         | Jul             | Aug                    | Sep              | Oct         | Nov                      | Dec       |         |      |
| (41)m=                                                                                                                                             | 31                    | 28                | 31                                                                                                              | 30                   | 31          | 30          | 31              | 31                     | 30               | 31          | 30                       | 31        |         | (41) |
|                                                                                                                                                    |                       |                   |                                                                                                                 |                      |             |             |                 |                        |                  |             |                          |           |         |      |
| 4. Wa                                                                                                                                              | iter heat             | ting ene          | rgy requi                                                                                                       | irement:             |             |             |                 |                        |                  |             |                          | kWh/ye    | ar:     |      |
| Assumed occupancy, N 2.25 (42)<br>if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)                         |                       |                   |                                                                                                                 |                      |             |             |                 |                        |                  |             |                          |           |         |      |
| if TF                                                                                                                                              | A £ 13.9              | $\theta$ , N = 1  | ator usar                                                                                                       | no in litre          | e nor da    | ve hV ve    | erade -         | (25 v NI)              | + 36             |             | 07                       |           |         | (12) |
| Reduce                                                                                                                                             | the annua             | al average        | hot water                                                                                                       | usage by             | 5% if the a | lwelling is | designed t      | (25 X N)<br>to achieve | a water us       | se target o | 87<br>f                  | .55       |         | (43) |
| not more                                                                                                                                           | e that 125            | litres per        | person per                                                                                                      | r day (all w         | ater use, l | hot and co  | ld)             |                        |                  |             |                          |           |         |      |
|                                                                                                                                                    | Jan                   | Feb               | Mar                                                                                                             | Apr                  | May         | Jun         | Jul             | Aug                    | Sep              | Oct         | Nov                      | Dec       |         |      |
| Hot wate                                                                                                                                           | er usage il           | n litres per      | r day for ea                                                                                                    | ach month            | Vd,m = fa   | ctor from   | Table 1c x      | (43)                   |                  |             |                          |           |         |      |
| (44)m=                                                                                                                                             | 96.3                  | 92.8              | 89.3                                                                                                            | 85. <mark>7</mark> 9 | 82.29       | 78.79       | 78.79           | 82.29                  | 85.79            | 89.3        | 92.8                     | 96.3      |         |      |
| Energy content of hot water used - calculated monthly = $4.190 \times Vd$ , $m \times nm \times DTm / 3600 kWh/month$ (see Tables 1b, 1c, 1d) (44) |                       |                   |                                                                                                                 |                      |             |             |                 |                        |                  |             |                          |           |         |      |
| (45)m=                                                                                                                                             | 142.81                | 124.9             | 128.89                                                                                                          | 112.37               | 107.82      | 93.04       | 86.22           | 98.93                  | 100.12           | 116.67      | 127.36                   | 138.3     |         |      |
|                                                                                                                                                    |                       |                   | r                                                                                                               |                      |             |             |                 |                        |                  | Total = Su  | m(45) <sub>112</sub> =   | =         | 1377.43 | (45) |
| lf instant                                                                                                                                         | aneous w              | ater heatii       | ng at point                                                                                                     | of use (no           | hot water   | r storage), | enter 0 in      | boxes (46              | ) to (61)        |             |                          |           |         |      |
| (46)m=                                                                                                                                             | 21.42                 | 18.74             | 19.33                                                                                                           | 16.86                | 16.17       | 13.96       | 12.93           | 14.84                  | 15.02            | 17.5        | 19.1                     | 20.75     |         | (46) |
| Storag                                                                                                                                             | storage<br>e volum    | IOSS:             | includir                                                                                                        | na anv so            | olar or M   | /WHRS       | storane         | within sa              | ame ves          | ما          |                          | 160       |         | (47) |
| If comr                                                                                                                                            | nunity h              | eating a          | nd no ta                                                                                                        | ing any so           | vellina e   | nter 110    | litres in       | (47)                   |                  | 501         |                          | 160       |         | (47) |
| Otherw<br>Water                                                                                                                                    | /ise if no<br>storage | o stored<br>loss: | hot wate                                                                                                        | er (this in          | icludes i   | nstantar    | neous co        | ombi boil              | ers) ente        | er '0' in ( | 47)                      |           |         |      |
| a) If m                                                                                                                                            | anufact               | urer's de         | eclared I                                                                                                       | oss facto            | or is kno   | wn (kWł     | n/day):         |                        |                  |             |                          | 0         |         | (48) |
| Tempe                                                                                                                                              | rature f              | actor fro         | m Table                                                                                                         | 2b                   |             |             |                 |                        |                  |             |                          | 0         |         | (49) |
| Energy                                                                                                                                             | v lost fro            | m water           | · storage                                                                                                       | , kWh/y€             | ear         |             |                 | (48) x (49)            | ) =              |             | 1                        | 10        |         | (50) |
| b) If m                                                                                                                                            | anufact               | urer's de         | eclared of force for the second second second second second second second second second second second second se | cylinder l           | oss fact    | or is not   | known:          |                        |                  |             |                          |           |         | (54) |
| If comr                                                                                                                                            | nunity h              | leating s         | ee secti                                                                                                        | on 4.3               |             |             | iy)             |                        |                  |             | 0.                       | .02       |         | (51) |
| Volume                                                                                                                                             | e factor              | from Ta           | ble 2a                                                                                                          |                      |             |             |                 |                        |                  |             | 1.                       | .03       |         | (52) |
| Tempe                                                                                                                                              | rature f              | actor fro         | m Table                                                                                                         | 2b                   |             |             |                 |                        |                  |             | 0                        | .6        |         | (53) |
| Energy                                                                                                                                             | v lost fro            | m water           | · storage                                                                                                       | e, kWh/y€            | ear         |             |                 | (47) x (51)            | ) x (52) x (     | 53) =       | 1.                       | 03        |         | (54) |
| Enter                                                                                                                                              | (50) or (             | (54) in (5        | 55)                                                                                                             | -                    | -           |             |                 |                        |                  |             | 1.                       | 03        |         | (55) |
| Water                                                                                                                                              | storage               | loss cal          | culated f                                                                                                       | tor each             | month       |             |                 | ((56)m = (             | 55) × (41)       | m           |                          |           |         |      |
| (56)m=                                                                                                                                             | 32.01                 | 28.92             | 32.01                                                                                                           | 30.98                | 32.01       | 30.98       | 32.01           | 32.01                  | 30.98            | 32.01       | 30.98                    | 32.01     | S-11    | (56) |
| it cylinde                                                                                                                                         | er contains           | s dedicate        | a solar sto<br>r                                                                                                | rage, (57)i          | m = (56)m   | x [(50) – ( | H11)] ÷ (5<br>I | u), else (5<br>1       | / )m = (56)<br>I | m where (I  | H11) is fro              | m Appendi | хн      |      |
| (57)m=                                                                                                                                             | 32.01                 | 28.92             | 32.01                                                                                                           | 30.98                | 32.01       | 30.98       | 32.01           | 32.01                  | 30.98            | 32.01       | 30.98                    | 32.01     |         | (57) |

| Primar              | y circuit    | loss (ar   | nnual) fro           | om Table         | e 3           |           |             |                      |              |                           |                         | 0           |               | (58) |
|---------------------|--------------|------------|----------------------|------------------|---------------|-----------|-------------|----------------------|--------------|---------------------------|-------------------------|-------------|---------------|------|
| Primar              | y circuit    | loss cal   | culated              | for each         | month (       | 59)m = (  | (58) ÷ 36   | 65 × (41)            | m            |                           |                         |             |               |      |
| (moo                | dified by    | factor f   | rom lab              | le H5 if t       | here is s     | solar wat | ter heatil  | ng and a             | cylinde      | r thermo                  | stat)                   |             | I             | (50) |
| (59)m=              | 23.26        | 21.01      | 23.26                | 22.51            | 23.26         | 22.51     | 23.26       | 23.26                | 22.51        | 23.26                     | 22.51                   | 23.26       |               | (59) |
| Combi               | loss ca      | culated    | for each             | month (          | (61)m =       | (60) ÷ 36 | 65 × (41    | )m                   | -            | -                         | -                       |             |               |      |
| (61)m=              | 0            | 0          | 0                    | 0                | 0             | 0         | 0           | 0                    | 0            | 0                         | 0                       | 0           |               | (61) |
| Total h             | eat requ     | uired for  | water h              | eating ca        | alculated     | for eac   | h month     | (62)m =              | 0.85 × 0     | (45)m +                   | (46)m +                 | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 198.09       | 174.83     | 184.17               | 165.86           | 163.1         | 146.53    | 141.49      | 154.21               | 153.61       | 171.95                    | 180.85                  | 193.58      |               | (62) |
| Solar DH            | HW input o   | calculated | using App            | endix G or       | Appendix      | H (negati | ve quantity | y) (enter '0         | ' if no sola | r contribut               | ion to wate             | er heating) |               |      |
| (add a              | dditiona     | l lines if | FGHRS                | and/or \         | WWHRS         | applies   | , see Ap    | pendix (             | G)           | -                         | -                       | -           |               |      |
| (63)m=              | 0            | 0          | 0                    | 0                | 0             | 0         | 0           | 0                    | 0            | 0                         | 0                       | 0           |               | (63) |
| Output              | from w       | ater hea   | ter                  |                  |               |           |             |                      |              |                           |                         |             |               |      |
| (64)m=              | 198.09       | 174.83     | 184.17               | 165.86           | 163.1         | 146.53    | 141.49      | 154.21               | 153.61       | 171.95                    | 180.85                  | 193.58      |               | _    |
|                     |              |            | -                    |                  |               |           | -           | Outp                 | out from w   | ater heate                | r (annual) <sub>1</sub> | 12          | 2028.27       | (64) |
| Heat g              | ains fro     | m water    | heating              | , kWh/m          | onth 0.2      | 5 ´ [0.85 | × (45)m     | ı + (61)m            | n] + 0.8 x   | ۲ ((46)m                  | + (57)m                 | + (59)m     | ]             |      |
| (65)m=              | 66.09        | 58.34      | 61.47                | 55.37            | 54.46         | 48.95     | 47.28       | 51.51                | 51.3         | 57.4                      | 60.36                   | 64.6        |               | (65) |
| in <mark>clu</mark> | ide (57)     | m in calo  | culation             | of (65)m         | only if c     | ylinder i | s in the o  | dwelling             | or hot w     | ate <mark>r is f</mark> r | om com                  | munity h    | leating       |      |
| 5. Int              | ernai ga     | ains (see  | Table {              | 5 and <b>5</b> a | ):            |           |             |                      |              |                           |                         | _           |               |      |
| Metab               | olic gain    | s (Table   | 5) Wat               | ts               |               |           |             |                      |              |                           |                         |             |               |      |
| motor               | Jan          | Feb        | Mar                  | Apr              | May           | Jun       | Jul         | Aug                  | Sep          | Oct                       | Nov                     | Dec         |               |      |
| (66)m=              | 112.31       | 112.31     | 11 <mark>2.31</mark> | 112.31           | 112.31        | 112.31    | 112.31      | 112.31               | 112.31       | 11 <mark>2.31</mark>      | 112.31                  | 112.31      |               | (66) |
| Lightin             | g gains      | (calcula   | ted in A             | pendix           | L, equat      | ion L9 o  | r L9a), a   | lso see <sup>-</sup> | Table 5      |                           |                         |             | J             |      |
| (67)m=              | 29.9         | 26.56      | 21.6                 | 16.35            | 12.22         | 10.32     | 11.15       | 14.49                | 19.45        | 2 <mark>4.7</mark>        | 28.83                   | 30.73       |               | (67) |
| Applia              | nces da      | ins (calc  | ulated ir            | Append           | dix L. ea     | uation L  | 13 or L1    | 3a), also            | see Ta       | ble 5                     |                         |             |               |      |
| (68)m=              | 197.3        | 199.34     | 194.19               | 183.2            | 169.34        | 156.31    | 147.6       | 145.55               | 150.71       | 161.7                     | 175.56                  | 188.59      |               | (68) |
| Cookir              | na aains     | (calcula   | ted in A             | r<br>Doendix     | L. equat      | ion L15   | or L15a     | ). also se           | e Table      | 5                         | 1                       | 1           | 1             |      |
| (69)m=              | 34.23        | 34.23      | 34.23                | 34.23            | 34.23         | 34.23     | 34.23       | 34.23                | 34.23        | 34.23                     | 34.23                   | 34.23       |               | (69) |
| Pumps               | and fai      | ns gains   | (Table !             | 1                |               |           |             |                      |              |                           |                         |             | 1             |      |
| (70)m=              | 0            | 0          | 0                    | 0                | 0             | 0         | 0           | 0                    | 0            | 0                         | 0                       | 0           | 1             | (70) |
| Losses              |              | anoratic   | n (nega              | tive valu        | L<br>es) (Tab | le 5)     |             |                      |              |                           |                         |             | 4             |      |
| (71)m=              | -89.84       | -89.84     | -89.84               | -89.84           | -89.84        | -89.84    | -89.84      | -89.84               | -89.84       | -89.84                    | -89.84                  | -89.84      | ĺ             | (71) |
| Water               | L<br>heating | nains (1   | able 5)              | ļ                | ļ             |           | ļ           | ļ                    | ļ            | ļ                         | <u> </u>                | <u> </u>    | ł             |      |
| (72)m=              | 88.84        | 86.81      | 82.61                | 76.91            | 73.2          | 67.98     | 63.54       | 69.23                | 71.25        | 77.16                     | 83.83                   | 86.82       | 1             | (72) |
| Total i             | ntornal      | asine -    |                      |                  |               | (66)      | m + (67)m   | 1 + (68)m +          | + (69)m + (  | (70)m + (7                | 1)m + (72)              | m           | i             |      |
| (73)m=              | 372 73       | 369 41     | 355.09               | 333 15           | 311 45        | 291.3     | 278.99      | 285.97               | 298 11       | 320.24                    | 344 91                  | 362 84      | 1             | (73) |
| 6So                 | lar gains    | 3          | 1 000.00             |                  |               | 20110     | 1 21 0.00   |                      |              |                           |                         |             |               | ( -) |
| Solar o             | ains are o   | alculated  | using sola           | r flux from      | Table 6a      | and assoc | iated equa  | ations to co         | onvert to th | e applicat                | ole orientat            | ion.        |               |      |
| Orienta             | ation: A     | Access F   | actor                | Area             |               | Flu       | X           |                      | g_           |                           | FF                      |             | Gains         |      |

| North               | 0.0x      | 0.77        | =        |      | 0.7              | 」        |                                       |          | ] ^<br>] _ | 0.05         | ╡ Û                     | 0.7      |        | 123.07 |      |
|---------------------|-----------|-------------|----------|------|------------------|----------|---------------------------------------|----------|------------|--------------|-------------------------|----------|--------|--------|------|
| North               | 0.9x      | 0.77        | <u> </u> |      | 8.7              | 」 ^<br>1 |                                       | 5.46     | ] X<br>1   | 0.85         |                         | 0.7      | =      | 198.97 |      |
| North               | 0.9x      | 0.77        |          |      | 8.7              | 」×<br>」  |                                       | 4.72     | ] X<br>1   | 0.85         | <b>_</b>   <sup>×</sup> | 0.7      |        | 268.03 |      |
| North               | 0.9x      | 0.77        | ×        |      | 8.7              | 」 ×      |                                       | 79.99    | ] X<br>1   | 0.85         | _ ×                     | 0.7      | =      | 286.93 | (74) |
| North               | 0.9x      | 0.77        | ×        | (    | 8.7              | ¦ ×      |                                       | 74.68    | X          | 0.85         | ×                       | 0.7      | =      | 267.89 | (74) |
| North               | 0.9x      | 0.77        | ×        |      | 8.7              | ļ ×      | < <u>5</u>                            | 59.25    | X          | 0.85         | ×                       | 0.7      | =      | 212.54 | (74) |
| North               | 0.9x      | 0.77        | ×        |      | 8.7              | ļ×       |                                       | 1.52     | X          | 0.85         | ×                       | 0.7      | =      | 148.93 | (74) |
| North               | 0.9x      | 0.77        | ×        | (    | 8.7              | ļ×       | ( 2                                   | 24.19    | X          | 0.85         | ×                       | 0.7      | =      | 86.78  | (74) |
| North               | 0.9x      | 0.77        | ×        |      | 8.7              | ļ×       | ۲ <u>ا</u>                            | 3.12     | x          | 0.85         | ×                       | 0.7      | =      | 47.06  | (74) |
| North               | 0.9x      | 0.77        | ×        | (    | 8.7              | _ ×      | ( )                                   | 8.86     | x          | 0.85         | ×                       | 0.7      | =      | 31.8   | (74) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ×        | 4                                     | 6.75     | x          | 0.85         | x                       | 0.7      | =      | 42.41  | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ×        | ( 7                                   | 6.57     | x          | 0.85         | x                       | 0.7      | =      | 69.46  | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ) ×      | <u>د</u> ع                            | 97.53    | x          | 0.85         | x                       | 0.7      | =      | 88.48  | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ×        | ( 1                                   | 10.23    | x          | 0.85         | x                       | 0.7      | =      | 100    | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ) ×      | ( 1                                   | 14.87    | x          | 0.85         | x                       | 0.7      | =      | 104.2  | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ] ×      | ( 1                                   | 10.55    | x          | 0.85         | x                       | 0.7      | =      | 100.28 | (78) |
| South               | 0.9x      | 0.77        | ×        | (    | 2.2              | ) ×      | ( 1)                                  | 08.01    | x          | 0.85         | x                       | 0.7      | =      | 97.98  | (78) |
| South               | 0.9x      | 0.77        | ×        |      | 2.2              | ×        | ( 1                                   | 04.89    | х          | 0.85         | x                       | 0.7      | =      | 95.15  | (78) |
| South               | 0.9x      | 0.77        | ×        |      | 2.2              | ×        | ( 1                                   | 01.89    | x          | 0.85         | x                       | 0.7      | =      | 92.42  | (78) |
| South               | 0.9x      | 0.77        | ×        | Ì    | 2.2              | ×        | 4                                     | 32.59    | ×          | 0.85         | x                       | 0.7      | =      | 74.92  | (78) |
| South               | 0.9x      | 0.77        | ×        | ł    | 2.2              | Ī×       | 5                                     | 5.42     | x          | 0.85         | x                       | 0.7      | =      | 50.27  | (78) |
| Sout <mark>h</mark> | 0.9x      | 0.77        | ×        | į    | 2.2              | Ī,       | ،                                     | 40.4     | x          | 0.85         | x                       | 0.7      | =      | 36.65  | (78) |
| West                | 0.9x      | 0.77        | ×        | į    | 6.5              | Ī ×      | · 1                                   | 9.64     | ×          | 0.85         | x                       | 0.7      | =      | 52.64  | (80) |
| West                | 0.9x      | 0.77        | ×        | į    | 6.5              | Ī ×      | ( 3                                   | 8.42     | x          | 0.85         | x                       | 0.7      | =      | 102.97 | (80) |
| West                | 0.9x      | 0.77        | ×        |      | 6.5              | ] >      | ( 6                                   | 3.27     | ×          | 0.85         | x                       | 0.7      | =      | 169.58 | (80) |
| West                | 0.9x      | 0.77        | ×        |      | 6.5              | Ī,       | (                                     | 2.28     | x          | 0.85         | x                       | 0.7      | =      | 247.33 | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | Ī,       | ( 1                                   | 13.09    | x          | 0.85         | x                       | 0.7      | =      | 303.11 | (80) |
| West                | 0.9x      | 0.77        | ×        |      | 6.5              | į,       | ( 1                                   | 15.77    | x          | 0.85         | ×                       | 0.7      | =      | 310.29 | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | į,       | ( 1                                   | 10.22    | x          | 0.85         | ×                       | 0.7      | =      | 295.4  | (80) |
| West                | 0.9x      | 0.77        | ×        |      | 6.5              | į ,      | <u></u>                               | 94.68    | x          | 0.85         | ×                       | 0.7      | =      | 253.75 | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | į,       | ( 7                                   | 3.59     | x          | 0.85         | ×                       | 0.7      | =      | 197.23 | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | i,       | ( 4                                   | 5.59     | x          | 0.85         | ×                       | 0.7      | =      | 122.19 | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | i,       | ( 2                                   | 24.49    | x          | 0.85         | ×                       | 0.7      | =      | 65.64  | (80) |
| West                | 0.9x      | 0.77        | ×        | (    | 6.5              | i,       | ـــــــــــــــــــــــــــــــــــــ | 6.15     | x          | 0.85         | ×                       | 0.7      | =      | 43.29  | (80) |
|                     | L         |             |          |      |                  | 1        |                                       |          | 1          |              |                         |          |        |        |      |
| Solar               | gains in  | watts, ca   | lculate  | d :  | for each mon     | th       |                                       |          | (83)m      | n = Sum(74)m | (82)m                   | l        |        |        |      |
| (83)m=              | 133.2     | 245.33      | 381.93   | Τ    | 546.29 675.3     | 4        | 697.5                                 | 661.27   | 561        | .44 438.59   | 283.8                   | 8 162.96 | 111.73 | ]      | (83) |
| Total o             | gains – i | nternal a   | nd sola  | ır ( | (84)m = (73)r    | n +      | (83)m                                 | , watts  |            | •            |                         | •        | •      |        |      |
| (84)m=              | 505.92    | 614.74      | 737.02   |      | 879.44 986.7     | 9        | 988.8                                 | 940.26   | 847        | 7.4 736.69   | 604.1                   | 2 507.87 | 474.57 | ]      | (84) |
| 7. Me               | ean inter | rnal temp   | erature  | e (l | heating seaso    | on)      |                                       |          |            |              |                         |          |        | -      |      |
| Temp                | perature  | during h    | eating   | ре   | eriods in the li | vin      | g area                                | from Tab | ole 9      | , Th1 (°C)   |                         |          |        | 21     | (85) |
| Utilis              | ation fac | ctor for ga | ains for | liv  | ving area, h1,   | ,m (     | (see Ta                               | ble 9a)  |            |              |                         |          |        | L      |      |
|                     | Jan       | Feb         | Mar      | Τ    | Apr Ma           | y        | Jun                                   | Jul      | A          | ug Sep       | Oc                      | t Nov    | Dec    | ]      |      |

| (86)m=                                                                 | 1                      | 1                     | 0.99                 | 0.99             | 0.97        | 0.95                | 0.91         | 0.93       | 0.97          | 0.99                   | 1                        | 1           |           | (86)   |
|------------------------------------------------------------------------|------------------------|-----------------------|----------------------|------------------|-------------|---------------------|--------------|------------|---------------|------------------------|--------------------------|-------------|-----------|--------|
| Mean                                                                   | interna                | l temper              | ature in             | living are       | ea T1 (fo   | ollow ste           | ps 3 to 7    | in Tabl    | e 9c)         |                        |                          |             |           |        |
| (87)m=                                                                 | 16.67                  | 16.89                 | 17.38                | 18.12            | 18.92       | 19.71               | 20.21        | 20.13      | 19.47         | 18.47                  | 17.47                    | 16.66       |           | (87)   |
| Temp                                                                   | erature                | durina h              | eating p             | periods ir       | n rest of   | dwelling            | from Ta      | able 9. T  | h2 (°C)       |                        |                          |             |           |        |
| (88)m=                                                                 | 18                     | 18                    | 18                   | 18               | 18          | 18                  | 18           | 18         | 18            | 18                     | 18                       | 18          |           | (88)   |
| Utilisation factor for gains for rest of dwelling, h2 m (see Table 9a) |                        |                       |                      |                  |             |                     |              |            |               |                        |                          |             |           |        |
| (89)m=                                                                 | 1                      | 0.99                  | 0.99                 | 0.98             | 0.95        | 0.86                | 0.62         | 0.7        | 0.93          | 0.98                   | 0.99                     | 1           |           | (89)   |
| `´´                                                                    |                        |                       | - 4                  | 44- 0 11 0 0 0 0 |             | L                   |              |            |               |                        |                          |             |           |        |
|                                                                        | 14 49                  |                       |                      |                  |             | ng 12 (li           |              | 20 3 10    | 17 26         | 16 9C)                 | 15.28                    | 14.47       |           | (90)   |
| (30)11-                                                                | 14.43                  | 14.7                  | 15.2                 | 10.95            | 10.72       | 17.40               | 17.05        | 17.04      | 17.20         | fl A = l ivin          | $a_{\text{rea}} \div (4$ | (4, 4) =    | 0.91      | (91)   |
|                                                                        |                        |                       |                      |                  |             |                     |              |            |               |                        |                          |             |           |        |
| Mean                                                                   | interna                | temper                | ature (fo            | or the wh        | ole dwe     | lling) = f          | LA × T1      | + (1 – fL  | .A) × T2      | 1                      |                          |             |           | (22)   |
| (92)m=                                                                 | 16.25                  | 16.47                 | 16.96                | 17.7             | 18.5        | 19.28               | 19.77        | 19.69      | 19.05         | 18.05                  | 17.05                    | 16.24       |           | (92)   |
| Apply                                                                  | adjustn                | nent to th            | he mear              | internal         | temper      | ature fro           | m Table      | 4e, whe    | ere appro     | opriate                | 47.05                    |             |           | (02)   |
| (93)m=                                                                 | 16.25                  | 16.47                 | 16.96                | 17.7             | 18.5        | 19.28               | 19.77        | 19.69      | 19.05         | 18.05                  | 17.05                    | 16.24       |           | (93)   |
| 8. Spa                                                                 | ace nea                | ung requ              |                      | moorotuu         | ra abtair   |                     | on 11 of     |            | h aa tha      | +Tim ('                | 76) m on                 |             | ulata     |        |
| the ut                                                                 | ilisation              | factor fo             | or gains             | using Ta         | ble 9a      | ieu al si           | epiror       | Table 9    | 0, so ina     | u 11,m=(               | 70)m and                 | u re-caic   | ulate     |        |
|                                                                        | Jan                    | Feb                   | Mar                  | Apr              | May         | Jun                 | Jul          | Aua        | Sep           | Oct                    | Nov                      | Dec         |           |        |
| Util <mark>isa</mark>                                                  | ation fac              | tor for g             | ains, hm             | n:               |             |                     |              | <u> </u>   |               |                        |                          |             |           |        |
| (94)m=                                                                 | 0.99                   | 0.99                  | 0.99                 | 0.98             | 0.95        | 0.91                | 0.85         | 0.88       | 0.95          | 0.98                   | 0.99                     | 1           |           | (94)   |
| Us <mark>efu</mark>                                                    | <mark>l g</mark> ains, | hmGm ,                | W = (9               | 4)m x (84        | 4)m         |                     |              |            |               |                        |                          |             |           |        |
| (95)m=                                                                 | <mark>50</mark> 3.35   | 609. <mark>98</mark>  | <mark>72</mark> 7.44 | 857.98           | 940.63      | 902.61              | 803.57       | 747.04     | 700.58        | 594                    | 504.26                   | 472.49      |           | (95)   |
| Mo <mark>nt</mark> h                                                   | nly avera              | age exte              | rnal terr            | nperature        | e from Ta   | able 8              |              |            |               |                        |                          |             |           |        |
| (96)m=                                                                 | 4.3                    | 4.9                   | 6.5                  | 8.9              | 11.7        | 14.6                | 16.6         | 16.4       | 14.1          | 1 <mark>0.6</mark>     | 7.1                      | 4.2         |           | (96)   |
| Heat                                                                   | oss rate               | e for mea             | an interr            | al tempe         | erature,    | Lm , W =            | =[(39)m :    | x [(93)m   | – (96)m       | ]                      |                          |             |           |        |
| (97)m=                                                                 | 7370.53                | 7111.39               | 6410.78              | 5304.13          | 4085.3      | 2766.28             | 1870.17      | 1937.31    | 2942.15       | 4471.55                | 6015.4                   | 7326.33     |           | (97)   |
| Space                                                                  | e heatin               | g require             | ement fo             | or each n        | honth, k    | Nh/mon <sup>-</sup> | th = 0.02    | 24 x [(97  | )m – (95<br>I | 5)m] x (4 <sup>-</sup> | 1)m                      |             |           |        |
| (98)m=                                                                 | 5109.18                | 4368.95               | 4228.4               | 3201.23          | 2339.63     | 0                   | 0            | 0          | 0             | 2884.9                 | 3968.03                  | 5099.26     |           |        |
|                                                                        |                        |                       |                      |                  |             |                     |              | Tota       | l per year    | (kWh/year              | ) = Sum(98               | 8)15,912 =  | 31199.58  | (98)   |
| Space                                                                  | e heatin               | g require             | ement in             | kWh/m²           | /year       |                     |              |            |               |                        |                          |             | 445.71    | (99)   |
| 9b. En                                                                 | ergy rec               | luiremer              | nts – Coi            | mmunity          | heating     | scheme              | <del>)</del> |            |               |                        |                          |             |           |        |
| This pa                                                                | art is use             | ed for sp             | ace hea              | ating, spa       | ace cooli   | ing or wa           | ater heat    | ting prov  | vided by      | a comm                 | unity sch                | neme.       |           |        |
| Fractio                                                                | n of spa               | ace heat              | from se              | condary          | /supplen    | nentary l           | heating (    | (Table 1   | 1) '0' if n   | one                    |                          |             | 0         | (301)  |
| Fractio                                                                | n of spa               | ace heat              | from co              | mmunity          | system      | 1 – (30             | 1) =         |            |               |                        |                          | [           | 1         | (302)  |
| The com                                                                | munity so              | heme may              | y obtain he          | eat from se      | everal sour | rces. The p         | orocedure    | allows for | CHP and u     | up to four o           | other heat               | sources; th | ne latter |        |
| includes                                                               | boilers, h             | eat pumps             | s, geotheri          | mal and wa       | aste heat f | rom powe            | r stations.  | See Appel  | ndix C.       |                        |                          | r           |           |        |
| Fractio                                                                | n of hea               | at from C             | Commun               | ity boiler       | S           |                     |              |            |               |                        |                          |             | 1         | (303a) |
| Fractio                                                                | n of tota              | al space              | heat fro             | m Comn           | nunity bo   | oilers              |              |            |               | (3                     | 02) x (303a              | a) =        | 1         | (304a) |
| Factor                                                                 | for cont               | rol and o             | charging             | method           | (Table      | 4c(3)) fo           | r commu      | unity hea  | ating sys     | tem                    |                          |             | 1.05      | (305)  |
| Distrib                                                                | ution los              | s factor              | (Table 1             | 12c) for (       | commun      | itv heati           | na svste     | m          |               |                        |                          | ו<br>[      |           | (306)  |
|                                                                        | hactin                 |                       |                      |                  |             | .,au                | 5,5,5        |            |               |                        |                          |             |           |        |
| Annual                                                                 | space                  | <b>J</b><br>heating : | requiren             | nent             |             |                     |              |            |               |                        |                          | I           | 31100.59  |        |
| , uniudi                                                               | opace                  | licating              | Squiren              | ion              |             |                     |              |            |               |                        |                          | l           | 51159.00  |        |

| Space heat from Community boilers                                                                                           | (98) x (304a) x                                            | (98) x (304a) x (305) x (306) = |                          |         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|--------------------------|---------|--|--|--|--|
| Efficiency of secondary/supplementary heating system in % (                                                                 | from Table 4a or Appen                                     | dix E)                          | 0                        | (308    |  |  |  |  |
| Space heating requirement from secondary/supplementary s                                                                    | ystem (98) x (301) x 1                                     | 00 ÷ (308) =                    | 0                        | (309)   |  |  |  |  |
| Water heating<br>Annual water heating requirement                                                                           |                                                            |                                 | 2028.27                  | ]       |  |  |  |  |
| If DHW from community scheme:<br>Water heat from Community boilers                                                          | (64) x (303a) x                                            | (305) x (306) =                 | 2342.65                  | (310a)  |  |  |  |  |
| Electricity used for heat distribution                                                                                      | 0.01 × [(307a)(307                                         | e) + (310a)(310e)] =            | 383.78                   | (313)   |  |  |  |  |
| Cooling System Energy Efficiency Ratio                                                                                      |                                                            |                                 | 0                        | (314)   |  |  |  |  |
| Space cooling (if there is a fixed cooling system, if not enter (                                                           | <b>))</b> = (107) ÷ (314)                                  | =                               | 0                        | (315)   |  |  |  |  |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input fro | om outside                                                 |                                 | 0                        | (330a)  |  |  |  |  |
| warm air heating system fans                                                                                                | 0                                                          | (330b)                          |                          |         |  |  |  |  |
| pump for solar water heating                                                                                                |                                                            |                                 | 0                        | (330g)  |  |  |  |  |
| Total electricity for the above, kWh/year                                                                                   | 0                                                          | (331)                           |                          |         |  |  |  |  |
| Energy for lighting (calculated in Appendix L)                                                                              |                                                            |                                 | 528.07                   | (332)   |  |  |  |  |
| 12b. CO2 Emissions – Community heating scheme                                                                               |                                                            |                                 |                          | -       |  |  |  |  |
| CO2 from other sources of space and water heating (not CHI<br>Efficiency of heat source 1 (%)                               | Energy<br>kWh/year<br>P)<br>sing two fuels repeat (363) to | Emission factor<br>kg CO2/kWh   | Emissions<br>kg CO2/year | ](367a) |  |  |  |  |
| CO2 associated with heat source 1 [(307                                                                                     | b)+(310b)] x 100 ÷ (367b) x                                | 0 =                             | 1 <mark>2753.3</mark> 6  | (367)   |  |  |  |  |
| Electrical energy for heat distribution                                                                                     | [(313) x                                                   | 0.52 =                          | 199.18                   | (372)   |  |  |  |  |
| Total CO2 associated with community systems                                                                                 | (363)(366) + (368)(372                                     | 2) =                            | 12952.54                 | (373)   |  |  |  |  |
| CO2 associated with space heating (secondary)                                                                               | (309) x                                                    | 0 =                             | 0                        | (374)   |  |  |  |  |
| CO2 associated with water from immersion heater or instanta                                                                 | aneous heater (312) x                                      | 0.22 =                          | 0                        | (375)   |  |  |  |  |
| Total CO2 associated with space and water heating                                                                           | (373) + (374) + (375) =                                    |                                 | 12952.54                 | (376)   |  |  |  |  |
| CO2 associated with electricity for pumps and fans within dw                                                                | elling (331)) x                                            | 0.52 =                          | 0                        | (378)   |  |  |  |  |
| CO2 associated with electricity for lighting                                                                                | (332))) x                                                  | 0.52 =                          | 274.07                   | (379)   |  |  |  |  |
| Total CO2, kg/year sum of (376)(382) =                                                                                      |                                                            |                                 | 13226.61                 | (383)   |  |  |  |  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                    |                                                            |                                 | 188.95                   | (384)   |  |  |  |  |
| El rating (section 14)                                                                                                      |                                                            |                                 | 4.23                     | (385)   |  |  |  |  |
|                                                                                             |                                                                                                                                          |                              | User D                   | etails:              |                  |                   |                       |              |                                       |                   |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|----------------------|------------------|-------------------|-----------------------|--------------|---------------------------------------|-------------------|
| Assessor Name:<br>Software Name:                                                            | Stroma FSAP 20                                                                                                                           | 12<br>Dr                     | on orthu                 | Stroma<br>Softwa     | a Num<br>ire Ver | ber:<br>sion:     |                       | Versio       | n: 1.0.3.15                           |                   |
| Addrose J                                                                                   | london                                                                                                                                   | PI                           | openy r                  | Address.             | Unit 9           |                   |                       |              |                                       |                   |
| 1 Overall dwelling dimen                                                                    | sions:                                                                                                                                   |                              |                          |                      |                  |                   |                       |              |                                       |                   |
| Basement                                                                                    |                                                                                                                                          |                              |                          | <b>a(m²)</b><br>124  | (1a) x           | <b>Av. He</b>     | <b>ight(m)</b><br>.37 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>293.88 | <b>)</b><br>(3a)  |
| Total floor area TFA = (1a)                                                                 | )+(1b)+(1c)+(1d)+(1                                                                                                                      | e)+(1n                       | ) 1                      | 124                  | (4)              |                   |                       |              |                                       |                   |
| Dwelling volume                                                                             |                                                                                                                                          |                              |                          |                      | (3a)+(3b)        | +(3c)+(3c         | d)+(3e)+              | .(3n) =      | 293.88                                | (5)               |
| 2. Ventilation rate:                                                                        | -                                                                                                                                        |                              |                          |                      |                  |                   |                       |              |                                       |                   |
| Number of chimneys<br>Number of open flues                                                  | $ \begin{array}{c} \text{main} \\ \text{heating} \\ \hline 0 \\ \hline 0 \\ \end{array} + \begin{bmatrix} 0 \\ \hline 0 \\ \end{array} $ | beating<br>0<br>0            | / +<br>] +               | 0<br>0               | ] = [            | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b) |
| Number of intermittent fan                                                                  | S                                                                                                                                        |                              |                          |                      | Γ                | 2                 | х ′                   | 10 =         | 20                                    | (7a)              |
| Number of passive vents                                                                     |                                                                                                                                          |                              |                          |                      | Ē                | 0                 | x /                   | 10 =         | 0                                     | (7b)              |
| Number of flueless gas fire                                                                 | es                                                                                                                                       |                              |                          |                      | Ē                | 0                 | X 4                   | 40 =         | 0                                     | (7c)              |
|                                                                                             |                                                                                                                                          |                              |                          |                      |                  |                   |                       | Air ch       | anges per ho                          | ur                |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the | s, flues and fans = (<br>en carried out or is intend<br>e dwelling (ns)                                                                  | 6a)+(6b)+(7a<br>led, proceed | a)+(7b)+(7<br>to (17), c | 7c) =<br>otherwise c | ontinue fro      | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.07                                  | (8)               |
| Additional infiltration                                                                     |                                                                                                                                          |                              |                          |                      |                  |                   | [(9)                  | -1]x0.1 =    | 0                                     | (0)               |
| Structural infiltration: 0.2                                                                | 25 for steel or timber                                                                                                                   | frame or                     | 0.35 for                 | masonr               | y constr         | uction            |                       | -            | 0                                     | (11)              |
| if both types of wall are pre<br>deducting areas of opening                                 | sent, use the value corre<br>is); if equal user 0.35                                                                                     | sponding to                  | the greate               | er wall area         | a (after         |                   |                       |              |                                       | _                 |
| If suspended wooden flo                                                                     | or, enter 0.2 (unsea                                                                                                                     | aled) or 0.                  | 1 (seale                 | d), else             | enter 0          |                   |                       |              | 0                                     | (12)              |
| If no draught lobby, ente                                                                   | er 0.05, else enter 0                                                                                                                    | tuin n a d                   |                          |                      |                  |                   |                       |              | 0                                     | (13)              |
| Window infiltration                                                                         | and doors draught s                                                                                                                      | stripped                     |                          | 0 25 - [0 2          | x (14) ∸ 1       | 001 =             |                       |              | 0                                     | (14)              |
| Infiltration rate                                                                           |                                                                                                                                          |                              |                          | (8) + (10) -         | F (11) + (1      | 2) + (13) ·       | + (15) =              |              | 0                                     | (15)              |
| Air permeability value, o                                                                   | 50. expressed in cu                                                                                                                      | bic metres                   | s per ho                 | ur per so            | uare m           | etre of e         | envelope              | area         | 20                                    | -1(17)            |
| If based on air permeabilit                                                                 | y value, then $(18) = [($                                                                                                                | 17) ÷ 20]+(8                 | ), otherwis              | se (18) = (          | 16)              |                   |                       |              | 1.07                                  | (18)              |
| Air permeability value applies                                                              | if a pressurisation test ha                                                                                                              | as been done                 | e or a deg               | ıree air per         | meability        | is being u        | sed                   |              |                                       |                   |
| Number of sides sheltered                                                                   |                                                                                                                                          |                              |                          |                      |                  |                   |                       |              | 1                                     | (19)              |
| Shelter factor                                                                              |                                                                                                                                          |                              |                          | (20) = 1 - [         | 0.075 x (1       | 9)] =             |                       |              | 0.92                                  | (20)              |
| Infiltration rate incorporatir                                                              | ng shelter factor                                                                                                                        |                              |                          | (21) = (18)          | x (20) =         |                   |                       |              | 0.99                                  | (21)              |
| Infiltration rate modified fo                                                               | r monthly wind spee                                                                                                                      | d                            |                          |                      |                  |                   |                       |              | I                                     |                   |
| Jan Feb N                                                                                   | /lar Apr May                                                                                                                             | Jun                          | Jul                      | Aug                  | Sep              | Oct               | Nov                   | Dec          |                                       |                   |
| Monthly average wind spe                                                                    | ed from Table 7                                                                                                                          |                              |                          |                      |                  |                   | i                     |              | I                                     |                   |
| (22)m= 5.1 5 4                                                                              | .9 4.4 4.3                                                                                                                               | 3.8                          | 3.8                      | 3.7                  | 4                | 4.3               | 4.5                   | 4.7          |                                       |                   |
| Wind Factor $(22a)m = (22)$                                                                 | )m ÷ 4                                                                                                                                   | · · · ·                      |                          |                      |                  |                   | 1                     | 1            | I                                     |                   |
| (22a)m= 1.27 1.25 1.                                                                        | 23 1.1 1.08                                                                                                                              | 0.95                         | 0.95                     | 0.92                 | 1                | 1.08              | 1.12                  | 1.18         |                                       |                   |

| Adjust               | ed infiltr               | ation rat                  | e (allowi                 | ng for sh                | nelter an   | d wind s       | speed) =    | (21a) x        | (22a)m           | -              | -                     |                    | _        |                      |
|----------------------|--------------------------|----------------------------|---------------------------|--------------------------|-------------|----------------|-------------|----------------|------------------|----------------|-----------------------|--------------------|----------|----------------------|
| ~ ' '                | 1.26                     | 1.23                       | 1.21                      | 1.09                     | 1.06        | 0.94           | 0.94        | 0.91           | 0.99             | 1.06           | 1.11                  | 1.16               |          |                      |
| Calcula<br>If me     | ate etter                | ctive air<br>al ventila    | change                    | rate for t               | he appli    | cable ca       | ISE         |                |                  |                |                       |                    | 0        | (23a)                |
| lf exh               | aust air h               | eat pump                   | using App                 | endix N, (2              | 3b) = (23a  | a) × Fmv (e    | equation (N | N5)), othei    | rwise (23b       | ) = (23a)      |                       |                    | 0        | (23b)                |
| lf bala              | anced with               | n heat reco                | overy: effic              | iency in %               | allowing f  | or in-use f    | actor (fron | n Table 4h     | ) =              | , , ,          |                       |                    | 0        | (23c)                |
| a) If                | balance                  | ed mecha                   | anical ve                 | entilation               | with he     | at recove      | erv (MVI    | HR) (24a       | ı)m = (22        | 2b)m + ()      | 23b) x [ <sup>-</sup> | 1 – (23c)          | ÷ 1001   | (200)                |
| (24a)m=              | 0                        | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  | ]        | (24a)                |
| b) If                | balance                  | d mecha                    | anical ve                 | entilation               | without     | heat rec       | covery (N   | и<br>ЛV) (24b  | )m = (22         | 1<br>2b)m + (2 | 23b)                  |                    | 1        |                      |
| (24b)m=              | 0                        | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  | 1        | (24b)                |
| c) If                | whole h                  | iouse ex                   | tract ver                 | tilation of              | or positiv  | ve input v     | ventilatio  | on from c      | outside          |                |                       |                    | 1        |                      |
| í                    | if (22b)n                | n < 0.5 ×                  | (23b), t                  | hen (240                 | c) = (23b   | ); otherv      | wise (24    | c) = (22b      | o) m + 0.        | 5 × (23b       | )                     |                    |          |                      |
| (24c)m=              | 0                        | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  | ]        | (24c)                |
| d) If                | natural                  | ventilatio                 | on or wh                  | ole hous                 | e positiv   | /e input       | ventilatio  | on from I      | oft              |                |                       |                    |          |                      |
| i                    | if (22b)n                | n = 1, th                  | en (24d)                  | m = (22t                 | o)m othe    | erwise (2      | 24d)m =     | 0.5 + [(2      | 2b)m² x          | 0.5]           |                       |                    | 1        |                      |
| (24d)m=              | 1.26                     | 1.23                       | 1.21                      | 1.09                     | 1.06        | 0.94           | 0.94        | 0.92           | 0.99             | 1.06           | 1.11                  | 1.16               |          | (240)                |
| Effe                 | ctive air                | change                     | rate - er                 | nter (24a                | ) or (24t   | o) or (24)     | c) or (24   | d) in boy      | (25)             | 4.00           |                       | 4.40               | 1        | (25)                 |
| (25)m=               | 1.26                     | 1.23                       | 1.21                      | 1.09                     | 1.06        | 0.94           | 0.94        | 0.92           | 0.99             | 1.06           | 1.11                  | 1.16               |          | (25)                 |
| 3. He                | at l <mark>osse</mark>   | s and he                   | at loss                   | oaramete                 | er:         |                |             |                |                  |                |                       |                    |          |                      |
| ELEN                 |                          | Gros<br>are <mark>a</mark> | ss<br>(m²)                | Openin<br>m              | gs<br>2     | Net Ar<br>A ,r | rea<br>m²   | U-valı<br>W/m2 | le<br>K          | A X U<br>(W/I  | K)                    | k-value<br>kJ/m²·l | e<br>K   | A X k<br>kJ/K        |
| Doo <mark>rs</mark>  |                          |                            |                           |                          |             | 1.6            | x           | 1.4            | = [              | 2.24           |                       |                    |          | (26)                 |
| Win <mark>do</mark>  | <mark>ws</mark> Type     | ə1                         |                           |                          |             | 5.49           | x1.         | /[1/( 4.8 )+   | 0.04] =          | 22.11          |                       |                    |          | (27)                 |
| Windo                | ws Type                  | e 2                        |                           |                          |             | 4.7            | x1.         | /[1/( 4.8 )+   | 0.04] =          | 18.93          | F                     |                    |          | (27)                 |
| Walls 7              | Type1                    | 11.8                       | 5                         | 1.6                      |             | 10.25          | 5 X         | 2.1            |                  | 21.52          | F r                   |                    |          | (29)                 |
| Walls <sup>-</sup>   | Type2                    | 122                        | 2                         | 10.19                    | ə           | 111.8          | 1 X         | 1.27           | = [              | 142.22         |                       |                    | $\dashv$ | (29)                 |
| Roof                 |                          | 68.                        | 1                         | 0                        |             | 68.1           | x           | 2.3            |                  | 156.63         |                       |                    | 7 6      | (30)                 |
| Total a              | area of e                | elements                   | , m²                      |                          |             | 201.9          | 5           |                | I                |                |                       |                    |          | (31)                 |
| Party v              | wall                     |                            |                           |                          |             | 4.8            | x           | 0              | = [              | 0              |                       |                    |          | (32)                 |
| * for win            | dows and<br>le the area  | l roof winde               | ows, use e<br>sides of ir | effective wi             | ndow U-va   | alue calcul    | lated using | formula 1,     | L<br>/[(1/U-valu | ie)+0.04] a    | as given in           | paragraph          | 1 3.2    | ]、 /                 |
| Fabric               | heat los                 | ss, W/K :                  | = S (A x                  | U)                       |             |                |             | (26)(30)       | + (32) =         |                |                       |                    | 363.6    | i5 (33)              |
| Heat c               | apacity                  | Cm = S(                    | (Axk)                     |                          |             |                |             |                | ((28)            | .(30) + (32    | 2) + (32a).           | (32e) =            | 0        | (34)                 |
| Therm                | al mass                  | parame                     | ter (TMI                  | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K       |             |                | Indica           | tive Value     | : High                |                    | 450      | (35)                 |
| For desi<br>can be u | ign asses:<br>Jsed inste | sments wh<br>ad of a de    | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are not    | t known pr  | ecisely the    | indicative       | values of      | TMP in T              | able 1f            |          |                      |
| Therm                | al bridg                 | es : S (L                  | x Y) cal                  | culated u                | using Ap    | pendix ł       | K           |                |                  |                |                       |                    | 30.4     | (36)                 |
| if details           | of therma                | al bridging                | are not kr                | own (36) =               | = 0.15 x (3 | 1)             |             |                |                  |                |                       |                    |          |                      |
| Total fa             | abric he                 | at loss                    |                           |                          |             |                |             |                | (33) +           | (36) =         |                       |                    | 394.0    | 15 <mark>(37)</mark> |
| Ventila              | ation hea                | at loss ca                 | alculated                 | monthly                  | /           | i              |             |                | (38)m            | = 0.33 × (     | 25)m x (5)            | )                  | 1        |                      |
|                      | Jan                      | Feb                        | Mar                       | Apr                      | May         | Jun            | Jul         | Aug            | Sep              | Oct            | Nov                   | Dec                |          |                      |
| (38)m=               | 122.16                   | 119.76                     | 117.37                    | 105.39                   | 103         | 91.2           | 91.2        | 88.99          | 95.82            | 103            | 107.79                | 112.58             | ]        | (38)                 |
| Heat tr              | ransfer o                | coefficier                 | nt, W/K                   |                          |             |                |             |                | (39)m            | = (37) + (3    | 38)m                  | -                  |          |                      |
| (39)m=               | 516.21                   | 513.81                     | 511.42                    | 499.44                   | 497.04      | 485.25         | 485.25      | 483.03         | 489.86           | 497.04         | 501.83                | 506.62             |          |                      |
|                      |                          |                            |                           |                          |             |                |             |                |                  | Average =      | Sum(39)1              | 12 /12=            | 498.9    | ) ( <b>3</b> 9)      |

| Heat lo                        | ss para                         | meter (H                                | HLP), W                             | /m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |                        |          |
|--------------------------------|---------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------------------|----------|
| (40)m=                         | 4.16                            | 4.14                                    | 4.12                                | 4.03                                    | 4.01                                     | 3.91                                  | 3.91                         | 3.9                    | 3.95                  | 4.01                      | 4.05                                  | 4.09     |                        |          |
|                                |                                 |                                         |                                     |                                         | <u> </u>                                 |                                       |                              | ļ                      | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 4.02                   | (40)     |
| Numbe                          | r of day                        | /s in moi                               | nth (Tab                            |                                         | Mov                                      | lun                                   | 1.1                          | <u> </u>               | Son                   | Oct                       | Nov                                   | Dee      |                        |          |
| (41)m-                         | 21                              | 29                                      | 1VId1                               | 20<br>20                                | 1VIAY                                    | 20                                    | 21                           | Aug                    | 30<br>30              | 21                        | 20                                    | 21       |                        | (41)     |
| (41)11=                        | 51                              | 20                                      | 51                                  | - 50                                    | 51                                       | - 30                                  | 51                           | 51                     | 30                    | 51                        | - 50                                  | 51       |                        | (+1)     |
| 4. Wat                         | ter heat                        | ting ene                                | rgy requ                            | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:                   |          |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy,  <br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 ×                       | : [1 - exp                              | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13.                  | 2.<br>.9)                             | 88       |                        | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pe | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 102<br>f                              | 2.54     |                        | (43)     |
| [                              | Jan                             | Feb                                     | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |                        |          |
| Hot wate                       | r usage i                       | n litres per                            | r day for ea                        | ach month                               | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          | I                      |          |
| (44)m=                         | 112.8                           | 108.69                                  | 104.59                              | 100.49                                  | 96.39                                    | 92.29                                 | 92.29                        | 96.39                  | 100.49                | 104.59                    | 108.69                                | 112.8    |                        | <b>-</b> |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                               | used - ca                           | lculated mo                             | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x E                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1230.5                 | (44)     |
| (45)m=                         | 1 <mark>6</mark> 7.27           | 146.3                                   | 150.97                              | 131.62                                  | 126.29                                   | 108.98                                | 100.98                       | 115.88                 | 117.26                | 13 <mark>6.66</mark>      | 149.18                                | 161.99   |                        | _        |
| lf instanta                    | aneous w                        | vater heati                             | ing at point                        | t of use (no                            | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1 <mark>6</mark> 13.38 | (45)     |
| (46)m=                         | 25.09                           | 21.94                                   | 22.64                               | 19. <mark>7</mark> 4                    | 18.94                                    | 16.35                                 | 15.15                        | 17.38                  | 17.59                 | 20.5                      | 22.38                                 | 24.3     |                        | (46)     |
| Storage                        | storage                         | loss:<br>le (litres)                    | Vincludir                           | ng any se                               | olar or M                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |                        | (47)     |
| lf com                         | nunity h                        | neating a                               | and no ta                           | ank in dw                               | velling e                                | nter 110                              | litres in                    | (47)                   |                       |                           | L                                     | 100      |                        | (47)     |
| Otherw                         | ise if no                       | o stored                                | hot wate                            | er (this in                             | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |                        |          |
| Water s                        | storage                         | loss:                                   |                                     |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          |                        |          |
| a) If m                        | anufact                         | urer's de                               | eclared I                           | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |                        | (48)     |
| Tempe                          | rature f                        | actor fro                               | m Table                             | e 2b                                    |                                          |                                       |                              |                        |                       |                           |                                       | 0        |                        | (49)     |
| Energy                         | lost fro                        | m water                                 | r storage                           | e, kWh/ye                               | ear                                      |                                       |                              | (48) x (49)            | ) =                   |                           | 1                                     | 10       |                        | (50)     |
| b) If ma<br>Hot wat            | anufact                         | urer's de                               | eclared (                           | cylinder l<br>rom Tabl                  | OSS fact  = 2 (k)/                       | or is not<br>h/litre/da               | known:                       |                        |                       |                           | 0                                     | 00       | l                      | (51)     |
| If comm                        | nunity h                        | neating s                               | see secti                           | on 4.3                                  |                                          | n/ nti 0/ dc                          | <b>xy</b> )                  |                        |                       |                           | 0.                                    | 02       |                        | (01)     |
| Volume                         | factor                          | from Ta                                 | ble 2a                              |                                         |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |                        | (52)     |
| Tempe                          | rature f                        | actor fro                               | m Table                             | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |                        | (53)     |
| Energy                         | lost fro                        | m water                                 | r storage                           | e, kWh/ye                               | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |                        | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                              | 55)                                 |                                         |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |                        | (55)     |
| Water s                        | storage                         | loss cal                                | culated                             | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |                        |          |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                               | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                        | (56)     |
| If cylinde                     | r contains                      | s dedicate                              | d solar sto                         | orage, (57)                             | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | lix H                  |          |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                               | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                        | (57)     |
| Primary                        | / circuit                       | loss (ar                                | nnual) fro                          | om Table                                | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |                        | (58)     |
| Primary                        | / circuit                       | loss cal                                | lculated                            | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |                        |          |
| (mod                           | lified by                       | factor f                                | rom Tab                             | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | , cylinde             | r thermo                  | stat)                                 |          |                        |          |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                               | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |                        | (59)     |

| Combi    | loss ca   | lculated       | for each       | n month      | (61)m =    | (60) ÷  | 365 × (41      | )m           |               |                  |              |             | _             |               |
|----------|-----------|----------------|----------------|--------------|------------|---------|----------------|--------------|---------------|------------------|--------------|-------------|---------------|---------------|
| (61)m=   | 0         | 0              | 0              | 0            | 0          | 0       | 0              | 0            | 0             | 0                | 0            | 0           |               | (61)          |
| Total h  | eat req   | uired for      | water h        | eating ca    | alculated  | for e   | ach month      | (62)m =      | = 0.85 ×      | (45)m +          | (46)m +      | (57)m +     | (59)m + (61)m |               |
| (62)m=   | 222.55    | 196.23         | 206.24         | 185.11       | 181.57     | 162.4   | 17 156.26      | 171.16       | 170.76        | 191.94           | 202.67       | 217.27      |               | (62)          |
| Solar DH | HW input  | calculated     | using App      | pendix G o   | r Appendix | H (ne   | gative quantit | y) (enter '( | )' if no sola | r contribut      | tion to wate | er heating) | -             |               |
| (add a   | dditiona  | al lines if    | FGHRS          | and/or \     | NWHRS      | appli   | es, see Ap     | pendix       | G)            |                  |              |             |               |               |
| (63)m=   | 0         | 0              | 0              | 0            | 0          | 0       | 0              | 0            | 0             | 0                | 0            | 0           |               | (63)          |
| Output   | from w    | ater hea       | ter            |              |            |         |                |              |               |                  |              |             |               |               |
| (64)m=   | 222.55    | 196.23         | 206.24         | 185.11       | 181.57     | 162.4   | 17 156.26      | 171.16       | 170.76        | 191.94           | 202.67       | 217.27      |               | _             |
|          |           |                |                |              |            |         |                | Out          | put from w    | ater heate       | r (annual)   | 112         | 2264.22       | (64)          |
| Heat g   | ains fro  | m water        | heating        | , kWh/m      | onth 0.2   | 5 ´ [O. | 85 × (45)m     | n + (61)r    | n] + 0.8 x    | k [(46)m         | + (57)m      | + (59)m     | ]             |               |
| (65)m=   | 74.23     | 65.45          | 68.81          | 61.77        | 60.6       | 54.2    | 4 52.19        | 57.14        | 57            | 64.05            | 67.61        | 72.47       |               | (65)          |
| inclu    | ide (57)  | m in calo      | culation       | of (65)m     | only if c  | ylinde  | r is in the    | dwelling     | or hot w      | ater is f        | rom com      | munity h    | neating       |               |
| 5. Int   | ernal g   | ains (see      | Table          | 5 and 5a     | ):         |         |                |              |               |                  |              |             |               |               |
| Metabo   | olic dair | ns (Table      | 5). Wa         | tts          |            |         |                |              |               |                  |              |             |               |               |
|          | Jan       | Feb            | Mar            | Apr          | May        | Ju      | n Jul          | Aug          | Sep           | Oct              | Nov          | Dec         |               |               |
| (66)m=   | 143.88    | 143.88         | 143.88         | 143.88       | 143.88     | 143.8   | 38 143.88      | 143.88       | 143.88        | 143.88           | 143.88       | 143.88      |               | (66)          |
| Lightin  | g gains   | (calcula       | ted in A       | ppendix      | L, equati  | ion LS  | ) or L9a), a   | also see     | Table 5       |                  |              |             |               |               |
| (67)m=   | 51.64     | 45.87          | <b>3</b> 7.3   | 28.24        | 21.11      | 17.8    | 2 19.26        | 25.03        | 33.6          | 42.66            | 49.79        | 53.08       |               | (67)          |
| Applia   | nces da   | ins (calc      | ulated in      | n Appeno     | dix L. eq  | Jatior  | L13 or L1      | 3a), also    | see Ta        | ble 5            | •            |             |               |               |
| (68)m=   | 290.33    | 293.35         | <b>28</b> 5.75 | 269.59       | 249.19     | 230.0   | )1 217.2       | 214.19       | 221.78        | 237.95           | 258.35       | 277.52      |               | (68)          |
| Cookin   | a dains   | s (calcula     | ted in A       | ppendix      | L. equat   | ion L   | 15 or L15a     | ), also s    | ee Table      | 5                |              |             |               |               |
| (69)m=   | 37.39     | 37.39          | 37.39          | 37.39        | 37.39      | 37.3    | 9 37.39        | 37.39        | 37.39         | 37.39            | 37.39        | 37.39       |               | (69)          |
| Pumps    | and fa    | ns gains       | (Table         | 5a)          |            |         |                |              |               |                  |              | I           |               |               |
| (70)m=   |           |                |                |              | 0          | 0       | 0              | 0            | 0             | 0                | 0            | 0           |               | (70)          |
|          |           |                | n (nega        | tive valu    | es) (Tab   | le 5)   | -              |              |               |                  |              |             |               |               |
| (71)m=   | -115.1    | -115.1         | -115.1         | -115.1       | -115.1     | -115    | 1 -115.1       | -115.1       | -115.1        | -115.1           | -115.1       | -115,1      | ]             | (71)          |
| Wator    | heating   |                | able 5)        |              |            |         |                |              |               |                  |              |             | I             |               |
| (72)m=   | 99 77     | 97.4           | 92 48          | 85 79        | 81 45      | 75.3    | 4 70 14        | 76.8         | 79 17         | 86.09            | 93.9         | 97 41       | ]             | (72)          |
| Total i  | ntornal   |                | 02.10          | 00.10        | 01110      | 10.0    | (66)m + (67)n  | 1 + (68)m    | + (69)m +     | (70)m + (7)      | (1)m + (72)  |             |               | (/            |
| (73)m-   | 507.91    | 502 78         | 481.7          | 449 79       | 417.91     | 380 3   | 372 77         | 382.10       | 400.71        | 432.85           | 468.2        | 494 17      | 1             | (73)          |
| (70)III- | ar gain   | s <sup>.</sup> | 401.7          | ++0.10       | 417.51     | 000.0   | 572.11         | 002.10       | 400.71        | 402.00           | 400.2        | 434.17      |               | ()            |
| Solar g  | ains are  | calculated     | using sola     | ar flux from | Table 6a a | and as  | sociated equa  | ations to c  | onvert to th  | ne applical      | ole orienta  | tion.       |               |               |
| Orienta  | ation:    | Access F       | actor          | Area         |            | I       | -<br>Flux      |              | a             |                  | FF           |             | Gains         |               |
|          |           | Table 6d       |                | m²           |            | -       | Table 6a       | ٦            | Table 6b      | Т                | able 6c      |             | (VV)          |               |
| North    | 0.9x      | 0.77           | x              | 5.4          | 19         | x       | 10.63          | ) x [        | 0.85          | ר × ר            | 0.7          | =           | 24.07         | (74)          |
| North    | 0.9x      | 0.77           | ×              | 5.4          | 49         | ×       | 20.32          | 」            | 0.85          | ╡╷┝              | 0.7          |             | 46            | (74)          |
| North    | 0.9x      | 0.77           | ×              | 5.4          | 19         | ×       | 34.53          | 」<br>] [     | 0.85          | ╡╷┝              | 0.7          |             | 78.17         | ](74)         |
| North    | 0.9x      | 0.77           | x              | 54           | 19         | ×       | 55.46          | i . ⊢        | 0.85          | ╡╷┝              | 0.7          |             | 125.56        | ](74)         |
| North    | 0.9x      | 0.77           | ×              | 54           | 19         | x F     | 74.72          | i x ⊢        | 0.85          | ╡ <sub>╸</sub> ┟ | 0.7          |             | 169.14        | _`´´<br>](74) |
|          | 0.07      | 0.77           | ^              | 5.4          | +9         | ^       | 14.12          |              | 0.85          | ^ L              | 0.7          | _           | 109.14        | (1-1)         |

| North                 | 0.9x                   | 0.77                    | x        | 5.4       | 19           | x        | 7      | 79.99          | x      | 0.85               | x        | 0.7          |         | ] = [ | 181.06 | (74) |
|-----------------------|------------------------|-------------------------|----------|-----------|--------------|----------|--------|----------------|--------|--------------------|----------|--------------|---------|-------|--------|------|
| North                 | 0.9x                   | 0.77                    | x        | 5.4       | 19           | x        | 7      | 74.68          | X      | 0.85               | x        | 0.7          |         | ] = [ | 169.05 | (74) |
| North                 | 0.9x                   | 0.77                    | x        | 5.4       | 19           | x        | 5      | 59.25          | x      | 0.85               | x        | 0.7          |         | ] = [ | 134.12 | (74) |
| North                 | 0.9x                   | 0.77                    | x        | 5.4       | 49           | x        | 4      | 11.52          | x      | 0.85               | x        | 0.7          |         | ] = [ | 93.98  | (74) |
| North                 | 0.9x                   | 0.77                    | x        | 5.4       | 19           | x        | 2      | 24.19          | x      | 0.85               | x        | 0.7          |         | ] = [ | 54.76  | (74) |
| North                 | 0.9x                   | 0.77                    | ×        | 5.4       | 19           | x        | 1      | 3.12           | x      | 0.85               | x        | 0.7          |         | ] = [ | 29.69  | (74) |
| North                 | 0.9x                   | 0.77                    | ×        | 5.4       | 19           | x        |        | 8.86           | x      | 0.85               | x        | 0.7          |         | ] = [ | 20.07  | (74) |
| South                 | 0.9x                   | 0.77                    | ×        | 4.        | 7            | x        | 4      | 16.75          | x      | 0.85               | x        | 0.7          |         | ] = [ | 90.6   | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 7      | 76.57          | x      | 0.85               | ×        | 0.7          |         | ] = [ | 148.39 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 9      | 97.53          | x      | 0.85               | x        | 0.7          |         | ] = [ | 189.02 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 10.23          | x      | 0.85               | x        | 0.7          |         | ] = [ | 213.63 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 14.87          | x      | 0.85               | x        | 0.7          |         | ] = [ | 222.62 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 10.55          | x      | 0.85               | ×        | 0.7          |         | ] = [ | 214.24 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 08.01          | x      | 0.85               | ×        | 0.7          |         | ] = [ | 209.32 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 04.89          | x      | 0.85               | x        | 0.7          |         | ] = [ | 203.28 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 1      | 01.89          | x      | 0.85               | ×        | 0.7          |         | ] = [ | 197.45 | (78) |
| South                 | 0.9x                   | 0.77                    | ×        | 4.        | 7            | x        | 8      | 32.59          | x      | 0.85               | x        | 0.7          |         | ] = [ | 160.05 | (78) |
| South                 | 0.9x                   | 0.77                    | x        | 4.        | 7            | x        | 5      | 55.42          | х      | 0.85               | ×        | 0.7          |         | ] = [ | 107.4  | (78) |
| Sout <mark>h</mark>   | 0.9x                   | 0.77                    | ×        | 4.        | 7            | x        |        | 40.4           | x      | 0.85               | ×        | 0.7          |         | = [   | 78.29  | (78) |
|                       |                        |                         |          |           |              |          |        |                |        |                    |          |              |         |       |        |      |
| Sola <mark>r (</mark> | <mark>gain</mark> s in | watts, <mark>cal</mark> | lculated | for eac   | h mont       | h        |        |                | (83)m  | n = Sum(74)m       | n(82)r   | n            |         |       |        |      |
| (83)m=                | 114.68                 | 194.39                  | 267.18   | 339.19    | 391.75       |          | 395.3  | 378.37         | 337    | 7.4 291.43         | 3 214.   | 81 137.0     | 9 98    | 3.36  |        | (83) |
| Total g               | gains – i              | nternal ar              | nd sola  | r (84)m = | = (73)m<br>I | ) + (    | 83)m   | , watts        | 1      |                    |          |              |         |       |        |      |
| (84)m=                | 622.58                 | 697.16                  | 748.88   | 788.98    | 809.67       |          | 84.64  | 751.14         | 719    | .59 692.14         | 4 647.   | 605.2        | 9 59    | 2.53  |        | (84) |
| 7. Me                 | ean inter              | nal tempe               | erature  | (heating  | seaso        | n)       |        |                |        |                    |          |              |         |       |        |      |
| Temp                  | perature               | during he               | eating p | eriods i  | n the liv    | ving     | area   | from Tal       | ble 9  | , Th1 (°C)         |          |              |         |       | 21     | (85) |
| Utilis                | ation fac              | tor for ga              | ins for  | living ar | ea, h1,i     | n (s     | ee Ta  | ble 9a)        |        |                    |          |              |         |       |        |      |
|                       | Jan                    | Feb                     | Mar      | Apr       | May          | ′        | Jun    | Jul            | A      | ug Sep             | 00       | t Nov        | / [     | Dec   |        |      |
| (86)m=                | 1                      | 1                       | 1        | 1         | 1            |          | 0.99   | 0.98           | 0.9    | 0.99               | 1        | 1            |         | 1     |        | (86) |
| Mear                  | interna                | l tempera               | iture in | living ar | ea T1 (      | follc    | w ste  | ps 3 to 7      | 7 in T | able 9c)           |          |              |         |       |        |      |
| (87)m=                | 18.22                  | 18.37                   | 18.68    | 19.15     | 19.66        | 2        | 20.17  | 20.5           | 20.    | 46 20.05           | 19.4     | 1 18.77      | 18      | 3.23  |        | (87) |
| Temp                  | perature               | during he               | eating p | eriods i  | n rest o     | f dw     | elling | from Ta        | able 9 | 9, Th2 (°C)        | )        |              |         |       |        |      |
| (88)m=                | 18.92                  | 18.93                   | 18.94    | 18.99     | 19           | 1        | 9.04   | 19.04          | 19.    | 05 19.02           | 19       | 18.98        | 3 18    | 3.96  |        | (88) |
| Utilis                | ation fac              | tor for a               | ins for  | rest of d | wellina      | . h2     | .m (se | ee Table       | 9a)    |                    | •        |              |         |       |        |      |
| (89)m=                | 1                      | 1                       | 1        | 1         | 0.99         | <u> </u> | 0.97   | 0.9            | 0.9    | 0.99               | 1        | 1            |         | 1     |        | (89) |
| Moor                  |                        | l tempera               | ituro in | the rest  | of dwo       | lling    | T2 (f  | I<br>ollow sta |        | to 7 in Ta         |          |              |         |       |        |      |
| (90)m=                | 16.51                  | 16.66                   | 16.98    | 17.49     | 18           |          | 12 (1  | 18.86          | 18.    | 83 18.41           | 17.7     | 6 17.1       | 16      | 6.55  |        | (90) |
| · /                   |                        |                         |          |           |              |          | -      |                |        |                    | fLA = L  | iving area - | ÷ (4) = |       | 0.3    | (91) |
| Maar                  | intorne                | l tomas-                | turo /f- | vr tha we |              | oll:~    | a) f   | ۲۸۰۰ ۲۷        | . /4   | fl ۸ \ ┯           | Э        |              |         | L     |        | ` ´  |
|                       |                        |                         | 17 49    | 17 QQ     |              |          | 9) = T | LA X 11        | + (1   | - ILA) × 1.        | <u>۲</u> | 5 176        | 17      | 7 06  |        | (92) |
| 102111-               | 1                      |                         | 11.43    | 1         | I 10.0       |          | +      | 1 .0.00        | 1 .9.  | - 1 10. <b>7</b> 1 | 1 10.2   | ~ I ''.0     | 1 ''    |       |        | (54) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=          | 17.03                       | 17.18                 | 17.49                 | 17.99                  | 18.5                    | 19.04                  | 19.36         | 19.32                | 18.91                    | 18.25                | 17.6                   | 17.06                                        |           | (93)           |
|-----------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|---------------|----------------------|--------------------------|----------------------|------------------------|----------------------------------------------|-----------|----------------|
| 8. Sp           | ace hea                     | ting requ             | uirement              |                        |                         |                        |               |                      |                          |                      |                        |                                              |           |                |
| Set T<br>the ut | i to the r<br>tilisation    | nean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta   | e obtain<br>ble 9a      | ed at ste              | ep 11 of      | Table 9t             | o, so tha                | t Ti,m=(             | 76)m an                | d re-calc                                    | ulate     |                |
|                 | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                    | Jul           | Aug                  | Sep                      | Oct                  | Nov                    | Dec                                          |           |                |
| Utilisa         | ation fac                   | tor for g             | ains, hm              | :                      |                         |                        |               |                      |                          |                      |                        |                                              |           |                |
| (94)m=          | 1                           | 1                     | 1                     | 1                      | 0.99                    | 0.97                   | 0.92          | 0.94                 | 0.98                     | 1                    | 1                      | 1                                            |           | (94)           |
| Usefu           | ıl gains,                   | hmGm ,                | W = (94               | 4)m x (84              | 4)m                     |                        |               |                      |                          |                      |                        |                                              |           |                |
| (95)m=          | 622.1                       | 696.35                | 747.41                | 785.94                 | 802.09                  | 763.16                 | 691.52        | 674.31               | 681.21                   | 645.35               | 604.58                 | 592.16                                       |           | (95)           |
| Month           | nly avera                   | age exte              | rnal tem              | perature               | e from Ta               | able 8                 |               |                      |                          |                      |                        |                                              |           |                |
| (96)m=          | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                   | 16.6          | 16.4                 | 14.1                     | 10.6                 | 7.1                    | 4.2                                          |           | (96)           |
| Heat            | loss rate                   | e for mea             | an intern             | al tempe               | erature,                | _m , W =               | =[(39)m >     | < [(93)m∙            | – (96)m                  | ]                    |                        |                                              |           |                |
| (97)m=          | 6571.1                      | 6307.98               | 5622.35               | 4542.03                | 3380.85                 | 2154.23                | 1337.63       | 1412.34              | 2354.41                  | 3804.33              | 5270.14                | 6514.35                                      |           | (97)           |
| Space           | e heatin                    | g require             | ement fo              | r each m               | honth, k\               | Wh/mont                | th = 0.02     | 4 x [(97)            | )m – (95                 | )m] x (4′            | 1)m                    |                                              |           |                |
| (98)m=          | 4426.05                     | 3771.02               | 3626.95               | 2704.38                | 1918.59                 | 0                      | 0             | 0                    | 0                        | 2350.28              | 3359.2                 | 4406.11                                      |           | 1              |
|                 |                             |                       |                       |                        |                         |                        |               | Tota                 | l per year               | (kWh/year            | <sup>.</sup> ) = Sum(9 | 8)15,912 =                                   | 26562.59  | (98)           |
| Space           | e heatin                    | g require             | ement in              | kWh/m²                 | /year                   |                        |               |                      |                          |                      |                        |                                              | 214.21    | (99)           |
| 9b. En          | ergy rec                    | luiremer              | nts – Cor             | nmunity                | heating                 | scheme                 |               |                      |                          |                      |                        | -                                            |           |                |
| This pa         | art is use                  | ed for sp<br>ace heat | ace hea<br>from se    | ting, spa              | ace cooli<br>/supplen   | ng or wa               | ater heat     | ing prov<br>Table 1′ | ided by a<br>1) '0' if n | a c <mark>omm</mark> | unity sch              | neme.                                        | 0         | (301)          |
| Freetie         |                             |                       | from co               |                        |                         | 4 (204                 | 1)            |                      | ,                        | 0110                 |                        |                                              |           |                |
| Fractic         | on of spa                   | ace neat              | from col              | mmunity                | system                  | 1 – (30                | 1) =          |                      |                          |                      |                        | [                                            | 1         | (302)          |
| The con         | nmunity so                  | cheme may             | y obtain he           | eat from se            | everal sour             | ces. The p             | procedure a   | allows for           | CHP and ι                | up to four o         | other heat             | sources; th                                  | ne latter |                |
| Fractic         | on of hea                   | at from C             | commun                | ity boiler             | 'S                      | ioni power             | stations.     | зее дррег            | idix C.                  |                      |                        | [                                            | 1         | (303a)         |
| Fractic         | on of tota                  | al space              | heat fro              | m Comm                 | nunity bo               | oilers                 |               |                      |                          | (3                   | 02) x (303             | a) =                                         | 1         | (304a)         |
| Factor          | for cont                    | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo              | r commu       | inity hea            | ting syst                | tem                  |                        | [                                            | 1.05      | (305)          |
| Distrib         | ution los                   | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatir             | ng syster     | n                    |                          |                      |                        |                                              | 1.1       | (306)          |
| Space           | heating                     | 9                     |                       |                        |                         |                        |               |                      |                          |                      |                        |                                              | kWh/year  | _              |
| Annua           | l space                     | heating               | requirem              | nent                   |                         |                        |               |                      |                          |                      |                        |                                              | 26562.59  | ]              |
| Space           | heat fro                    | m Comr                | nunity b              | oilers                 |                         |                        |               |                      | (98) x (30               | 04a) x (308          | 5) x (306) =           | - [                                          | 30679.79  | (307a)         |
| Efficier        | ncy of se                   | econdary              | /supple               | mentary                | heating                 | system                 | in % (fro     | m Table              | e 4a or A                | ppendix              | E)                     | [                                            | 0         | (308           |
| Space           | heating                     | requirer              | ment froi             | m secon                | dary/sup                | plemen                 | tary syst     | em                   | (98) x (30               | 01) x 100 ÷          | ÷ (308) =              | [                                            | 0         | (309)          |
| Water<br>Annua  | <b>heating</b><br>I water h | <b>l</b><br>neating r | equirem               | ent                    |                         |                        |               |                      |                          |                      |                        | ſ                                            | 2264.22   | 1              |
| If DHW          | / from co                   | ommunit               | ty schem              | ne:<br>Dilers          |                         |                        |               |                      | (64) x (3(               | 13a) x (304          | 5) x (306) -           | ו<br>_ [                                     | 2615 17   | ](310a)        |
| Flectri         |                             | h for boo             | numry DC              | ution                  |                         |                        |               | 0.01                 | (0-r) ∧ (00<br>× [(307-) | (3070) -             | (310a)                 | -<br>310e)] - [                              | 2010.17   | ](313)         |
| Coolin          |                             |                       |                       |                        | h                       |                        |               | 0.01                 | ~ [(307a).               | (3078) +             | (J 10a)(               | <u>                                     </u> | JJZ.95    | (31 <i>3</i> ) |
| Space           |                             |                       |                       | d cooling              |                         | , if not a             | ontor 0       |                      | - (107) ·                | (314) -              |                        | ]<br>I                                       | 0         | (315)          |
| Space           |                             |                       | is a lixe             |                        | y system                |                        | iner U)       |                      | $=(107) \div$            | (314) =              |                        |                                              | U         | (313)          |
| Electric        | city for p<br>inical ve     | oumps aintilation     | nd fans v<br>- balanc | within dw<br>ed, extra | velling (1<br>act or po | able 4f)<br>sitive inj | :<br>put from | outside              |                          |                      |                        | [                                            | 0         | (330a)         |

| warm air heating system fans                                                                                         |                             |                               |             | 0                   | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------|---------------------|--------|
| pump for solar water heating                                                                                         |                             |                               |             | 0                   | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  |             | 0                   | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               |             | 911.99              | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |             |                     |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emi<br>kg ( | issions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | el          | 65                  | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 310b)] x 100 ÷ (367b) x     | 0                             | =           | 11064.17            | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | =           | 172.8               | (372)  |
| Total CO2 associated with community systems (3                                                                       | 363)(366) + (368)(372)      |                               | =           | 11236.97            | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 309) x                      | 0                             | =           | 0                   | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | =           | 0                   | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 373) + (374) + (375) =      |                               |             | 11236.97            | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | g (331)) x                  | 0.52                          | = [         | 0                   | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 332))) x                    | 0.52                          | =           | 473.32              | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               |             | 11710.3             | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               |             | 94.44               | (384)  |
| El rating (section 14)                                                                                               |                             |                               |             | 25.14               | (385)  |

|                                                                                              |                                                                                 |                            | User D                      | etails:                |                      |                   |            |              |                        |                         |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------------|------------------------|----------------------|-------------------|------------|--------------|------------------------|-------------------------|
| Assessor Name:<br>Software Name:                                                             | Stroma FSAP 201                                                                 | 2                          |                             | Stroma<br>Softwa       | a Num<br>Ire Ver     | ber:<br>sion:     |            | Versio       | n: 1.0.3.15            |                         |
|                                                                                              |                                                                                 | Pr                         | operty A                    | Address:               | Unit 10              |                   |            |              |                        |                         |
| Address :                                                                                    | , Iondon                                                                        |                            |                             |                        |                      |                   |            |              |                        |                         |
|                                                                                              | 1510115.                                                                        |                            | Area                        | ı(m²)                  |                      | Av. He            | ight(m)    |              | Volume(m <sup>3</sup>  | )                       |
| Basement                                                                                     |                                                                                 |                            |                             | 79                     | (1a) x               | 2                 | 2.6        | (2a) =       | 205.4                  | (3a)                    |
| Total floor area TFA = (1a                                                                   | )+(1b)+(1c)+(1d)+(1e                                                            | e)+(1n)                    |                             | 79                     | (4)                  |                   |            | -            |                        | _                       |
| Dwelling volume                                                                              |                                                                                 |                            |                             |                        | (3a)+(3b)            | +(3c)+(3d         | l)+(3e)+   | .(3n) =      | 205.4                  | (5)                     |
| 2. Ventilation rate:                                                                         |                                                                                 |                            |                             |                        |                      |                   |            |              |                        | _                       |
| Number of chimneys                                                                           | main si<br>heating h                                                            | econdary<br>neating<br>0   | / · · ·                     | 0                      | ] = [                | total<br>0        | ×4         | 40 =<br>20 - | m <sup>3</sup> per hou | (6a)                    |
| Number of intermittent for                                                                   |                                                                                 | 0                          | ] · L                       | 0                      | 」  └                 | 0                 |            | -0 -         | 0                      |                         |
| Number of intermittent fan                                                                   | S                                                                               |                            |                             |                        | Ļ                    | 2                 | ×          | 10 =         | 20                     | (7a)                    |
| Number of passive vents                                                                      |                                                                                 |                            |                             |                        | Ļ                    | 0                 | <b>X</b> 1 | 10 =         | 0                      | (7b)                    |
| Number of flueless gas fire                                                                  | es la la la la la la la la la la la la la                                       |                            |                             |                        | L                    | 0                 | X 2        | Air ch       | 0<br>anges per ho      | (7c)<br>ur              |
| Infiltration due to chimney<br>If a pressurisation test has be<br>Number of storeys in the   | s, flues and fans = (6<br>en carried out or is intende<br>e dwelling (ns)       | a)+(6b)+(7a<br>ed, proceed | a)+(7b)+(7<br>b) to (17), c | 7c) =<br>otherwise c   | ontinue fre          | 20<br>om (9) to ( | (16)       | ÷ (5) =      | 0.1                    | (8)                     |
| Structural infiltration: 0.2<br>if both types of wall are pre-<br>deducting areas of opening | 25 for steel or timber<br>sent, use the value corres<br>gs); if equal user 0.35 | frame or ponding to        | 0.35 for<br>the greate      | masonr<br>er wall area | y constr<br>a (after | uction            | [(9)-      | ·1]XU. 1 =   | 0                      | ](10)<br>](11)          |
| If no draught lobby enter                                                                    | 201, effici 0.2 (unsea)                                                         |                            | i (Seale                    | u), eise               |                      |                   |            |              | 0                      | $ = \frac{(12)}{(13)} $ |
| Percentage of windows                                                                        | and doors draught st                                                            | ripped                     |                             |                        |                      |                   |            |              | 0                      |                         |
| Window infiltration                                                                          | <b>j</b>                                                                        |                            |                             | 0.25 - [0.2            | x (14) ÷ 1           | 00] =             |            |              | 0                      | (15)                    |
| Infiltration rate                                                                            |                                                                                 |                            |                             | (8) + (10) -           | + (11) + (1          | 2) + (13) -       | + (15) =   |              | 0                      | (16)                    |
| Air permeability value, c                                                                    | 150, expressed in cub                                                           | oic metres                 | s per ho                    | ur per so              | quare m              | etre of e         | nvelope    | area         | 20                     | (17)                    |
| If based on air permeabilit                                                                  | y value, then (18) = [(1                                                        | 7) ÷ 20]+(8)               | ), otherwis                 | se (18) = (            | 16)                  |                   |            |              | 1.1                    | (18)                    |
| Air permeability value applies                                                               | if a pressurisation test ha                                                     | s been done                | e or a deg                  | ree air per            | meability            | is being u        | sed        |              |                        |                         |
| Shelter factor                                                                               | l                                                                               |                            |                             | (20) = 1 - [           | 0.075 x (1           | 9)] =             |            |              | 0.92                   | -(19)                   |
| Infiltration rate incorporation                                                              | ng shelter factor                                                               |                            |                             | (21) = (18)            | x (20) =             |                   |            |              | 1.02                   | ](21)                   |
| Infiltration rate modified fo                                                                | r monthly wind speed                                                            | ł                          |                             |                        |                      |                   |            |              |                        |                         |
| Jan Feb M                                                                                    | Mar Apr May                                                                     | Jun                        | Jul                         | Aug                    | Sep                  | Oct               | Nov        | Dec          |                        |                         |
| Monthly average wind spe                                                                     | ed from Table 7                                                                 |                            |                             |                        |                      |                   |            |              |                        |                         |
| (22)m= 5.1 5 4                                                                               | 4.9 4.4 4.3                                                                     | 3.8                        | 3.8                         | 3.7                    | 4                    | 4.3               | 4.5        | 4.7          |                        |                         |
| Wind Factor (22a)m = (22                                                                     | )m ÷ 4                                                                          |                            |                             |                        |                      |                   |            |              | I                      |                         |
| (22a)m= 1.27 1.25 1                                                                          | .23 1.1 1.08                                                                    | 0.95                       | 0.95                        | 0.92                   | 1                    | 1.08              | 1.12       | 1.18         |                        |                         |

| Adjust               | ed infiltr               | ation rat                | e (allowi                 | ng for sh                | nelter an   | d wind s    | peed) =         | (21a) x       | (22a)m       | -             | -           |                      |            |       |
|----------------------|--------------------------|--------------------------|---------------------------|--------------------------|-------------|-------------|-----------------|---------------|--------------|---------------|-------------|----------------------|------------|-------|
|                      | 1.29                     | 1.27                     | 1.24                      | 1.12                     | 1.09        | 0.96        | 0.96            | 0.94          | 1.02         | 1.09          | 1.14        | 1.19                 |            |       |
| Calcul<br>If m       | ate etter                | ctive air                | change                    | rate for t               | he appli    | cable ca    | se              |               |              |               |             |                      | 0          | (220) |
| lf exh               | aust air h               | eat pump i               | usina App                 | endix N. (2              | 3b) = (23a  | i) x Fmv (e | equation (I     | N5)) . othei  | rwise (23b   | ) = (23a)     |             |                      | 0          | (23a) |
| If bala              | anced with               | heat reco                | overv: effic              | iencv in %               | allowing f  | or in-use f | actor (fron     | n Table 4h    | ) =          | , ( ,         |             |                      | 0          | (23c) |
| a) If                | balance                  | d mech:                  | ,<br>anical ve            | ntilation                | with he     | at recove   | ∍rv (MVI        | HR) (24a      | n)m = (2)    | 2h)m + (      | 23h) x [1   | l – (23c)            | <br>∸ 1001 | (200) |
| (24a)m=              |                          |                          |                           | 0                        | 0           | 0           |                 |               | 0            |               |             | 0                    |            | (24a) |
| b) If                | balance                  | d mech:                  | I<br>anical ve            | Intilation               | without     | heat rec    | L<br>coverv (N  | L<br>MV) (24b | l = (2)      | I<br>2b)m + ( | L<br>23b)   |                      |            |       |
| (24b)m=              | 0                        | 0                        |                           | 0                        | 0           | 0           | 0               | 0             | 0            | 0             | 0           | 0                    |            | (24b) |
| c) If                | whole h                  | use ex                   | ract ver                  | tilation o               | or positiv  | re input v  | ı<br>ventilatio | on from c     | utside       |               |             |                      |            |       |
| 0)                   | if (22b)n                | n < 0.5 ×                | (23b), 1                  | hen (240                 | c) = (23b   | ); otherv   | wise (24        | c) = (22b     | o) m + 0.    | .5 × (23t     | ))          |                      |            |       |
| (24c)m=              | 0                        | 0                        | 0                         | 0                        | 0           | 0           | 0               | 0             | 0            | 0             | 0           | 0                    |            | (24c) |
| d) If                | natural                  | ventilatio               | on or wh                  | ole hous                 | e positiv   | /e input    | ventilatio      | on from l     | oft          | •             | •           |                      |            |       |
|                      | if (22b)n                | n = 1, the               | en (24d)                  | m = (22                  | o)m othe    | erwise (2   | 4d)m =          | 0.5 + [(2     | 2b)m² x      | 0.5]          |             | r                    | 1          |       |
| (24d)m=              | 1.29                     | 1.27                     | 1.24                      | 1.12                     | 1.09        | 0.96        | 0.96            | 0.94          | 1.02         | 1.09          | 1.14        | 1.19                 |            | (24d) |
| Effe                 | ctive air                | change                   | rate - er                 | nter (24a                | ) or (24b   | o) or (24   | c) or (24       | d) in boy     | (25)         | i             |             | i                    |            |       |
| (25)m=               | 1.29                     | 1.27                     | 1.24                      | 1.12                     | 1.09        | 0.96        | 0.96            | 0.94          | 1.02         | 1.09          | 1.14        | 1.19                 |            | (25)  |
| 3. He                | at l <mark>osse</mark>   | s and he                 | eat loss                  | oaramete                 | er:         |             |                 |               |              |               |             |                      |            |       |
|                      | /ENT                     | Gros                     | s                         | Openin                   | gs          | Net Ar      | ea              | U-valu        | Je           | AXU           |             | k-value              | e l        | AXk   |
| _                    |                          | area                     | (m²)                      | m                        | 2           | A ,r        | n²              | W/m2          | K            | (VV/          | K)          | kJ/m <sup>2</sup> ·l | <          | kJ/K  |
| Doors                |                          |                          |                           |                          |             | 1.6         | ×               | 1.4           | =            | 2.24          |             |                      |            | (26)  |
| Windo                | ws Type                  | e 1                      |                           |                          |             | 3.12        | x1              | /[1/( 4.8 )+  | 0.04] =      | 12.56         |             |                      |            | (27)  |
| Windo                | ws Type                  | e 2                      |                           |                          |             | 3.66        | x1              | /[1/( 4.8 )+  | 0.04] =      | 14.74         |             |                      |            | (27)  |
| Walls                | Type1                    | 89.2                     | 2                         | 6.78                     |             | 82.42       | <u>x</u>        | 1.27          | =            | 104.83        |             |                      |            | (29)  |
| Walls                | Type2                    | 26.6                     | 63                        | 1.6                      |             | 25.03       | 3 X             | 2.1           | =            | 52.56         |             |                      |            | (29)  |
| Roof                 |                          | 46.                      | 5                         | 0                        |             | 46.5        | x               | 2.3           | =            | 106.95        |             |                      |            | (30)  |
| Total a              | area of e                | lements                  | , m²                      |                          |             | 162.3       | 3               |               |              |               |             |                      |            | (31)  |
| Party v              | wall                     |                          |                           |                          |             | 5.3         | x               | 0             | =            | 0             |             |                      |            | (32)  |
| * for win            | idows and                | roof wind                | ows, use e                | effective wi             | ndow U-va   | alue calcul | ated using      | g formula 1   | /[(1/U-valu  | ıe)+0.04] a   | as given in | paragraph            | 3.2        |       |
| ** incluc            | le the area              | as on both               | sides of in               | nternal wal              | ls and part | titions     |                 | (00) (00)     | (22)         |               |             |                      |            |       |
| Fabric               | heat los                 | SS, W/K =                | = S (A x                  | U)                       |             |             |                 | (26)(30)      | (32) =       | (0.0)         |             |                      | 293.89     | (33)  |
| Heat c               | apacity                  | Cm = S(                  | (A X K )                  |                          |             | 1 1/ 21/    |                 |               | ((28)        | (30) + (32    | 2) + (32a). | (32e) =              | 0          | (34)  |
| I nerm               | al mass                  | parame                   |                           | $P = Cm + \frac{1}{2}$   | - IFA) Ir   | i KJ/M²K    |                 |               | Indica       | tive Value    | : High      | - h l = 15           | 450        | (35)  |
| ror desi<br>can be ι | ign assess<br>used inste | sments wn<br>ad of a dei | ere the de<br>tailed calc | talis of the<br>ulation. | construct   | on are not  | t known pi      | recisely the  | e indicative | e values of   | TMPINT      | adie 11              |            |       |
| Therm                | al bridge                | es : S (L                | x Y) cal                  | culated u                | using Ap    | pendix ł    | <               |               |              |               |             |                      | 24.8       | (36)  |
| if details           | of therma                | al bridging              | are not kr                | own (36) =               | = 0.15 x (3 | 1)          |                 |               |              |               |             |                      |            |       |
| Total f              | abric he                 | at loss                  |                           |                          |             |             |                 |               | (33) +       | (36) =        |             |                      | 318.69     | (37)  |
| Ventila              | ation hea                | at loss ca               | alculated                 | monthly                  | /           |             |                 |               | (38)m        | = 0.33 × (    | 25)m x (5)  |                      |            |       |
|                      | Jan                      | Feb                      | Mar                       | Apr                      | May         | Jun         | Jul             | Aug           | Sep          | Oct           | Nov         | Dec                  |            |       |
| (38)m=               | 87.72                    | 86                       | 84.28                     | 75.68                    | 73.96       | 65.41       | 65.41           | 63.77         | 68.8         | 73.96         | 77.4        | 80.84                |            | (38)  |
| Heat ti              | ransfer o                | coefficier               | nt, W/K                   |                          |             |             |                 |               | (39)m        | = (37) + (    | 38)m        |                      |            |       |
| (39)m=               | 406.41                   | 404.69                   | 402.97                    | 394.37                   | 392.65      | 384.1       | 384.1           | 382.46        | 387.49       | 392.65        | 396.09      | 399.53               |            |       |
|                      |                          |                          |                           |                          |             |             |                 |               |              | Average =     | Sum(39)1    | 12 /12=              | 393.96     | (39)  |

| Heat lo                        | ss para                         | imeter (H                              | HLP), W                              | /m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | · (4)                                 |          |            |              |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|--------------|
| (40)m=                         | 5.14                            | 5.12                                   | 5.1                                  | 4.99                                    | 4.97                                     | 4.86                                  | 4.86                         | 4.84                   | 4.9                   | 4.97                      | 5.01                                  | 5.06     |            |              |
| L                              | r of day                        |                                        | I                                    |                                         |                                          | <u> </u>                              |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 4.99       | (40)         |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Αυσ                    | Sep                   | Oct                       | Nov                                   | Dec      |            |              |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41)         |
| `´                             |                                 |                                        |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          |            |              |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |              |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | :[1 - exp                               | (-0.0003                                 | 849 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 2.<br>.9)                             | 44       |            | (42)         |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the a<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 92<br>f                               | .24      |            | (43)         |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |              |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea                         | ach month                               | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          | L          |              |
| (44)m=                         | 101.46                          | 97.77                                  | 94.08                                | 90.39                                   | 86.7                                     | 83.01                                 | 83.01                        | 86.7                   | 90.39                 | 94.08                     | 97.77                                 | 101.46   |            | <b>—</b> (1) |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1106.83    | (44)         |
| (45)m=                         | 150.46                          | 131.59                                 | 135.79                               | 118.39                                  | 113.6                                    | 98.02                                 | 90.83                        | 104.23                 | 105.48                | 122.93                    | 134.18                                | 145.71   |            | _            |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                              | hot water                                | storage),                             | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | •        | 1451.23    | (45)         |
| (46)m=                         | 22.57                           | 19.74                                  | 20.37                                | 17.76                                   | 17.04                                    | 14.7                                  | 13.63                        | 15.64                  | 15.82                 | 18.44                     | 20.13                                 | 21.86    |            | (46)         |
| Storage                        | e volum                         | loss:<br>le (litres)                   | includir                             | na anv so                               | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |            | (47)         |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                               | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |                           |                                       |          |            |              |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this ir                             | ncludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |            |              |
| Water s                        | storage                         | loss:                                  |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          |            |              |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48)         |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49)         |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/y∉<br>≫dindorl                   | ear                                      | or io not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50)         |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                 | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       |            | (51)         |
| Volume                         | e factor                        | from Ta                                | ble 2a                               | 011 4.3                                 |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |            | (52)         |
| Temper                         | rature f                        | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53)         |
| Enerav                         | lost fro                        | m water                                | storage                              | . kWh/ve                                | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 03       |            | (54)         |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  | , <b>,</b>                              |                                          |                                       |                              |                        |                       | ,                         | 1.                                    | 03       |            | (55)         |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |            |              |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56)         |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)                              | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | l<br>lix H |              |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (57)         |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |            | (58)         |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |              |
| mod)<br>ר                      | ified by                        | factor fi                              | rom Tab                              | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | stat)                                 |          | I          |              |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59)         |

| Combi                 | loss ca               | alculated                | for ea   | ch   | month     | (61)m =    | (60  | ) ÷ 36  | 65 × (41)              | m                          |              |                    |               |             |               |      |
|-----------------------|-----------------------|--------------------------|----------|------|-----------|------------|------|---------|------------------------|----------------------------|--------------|--------------------|---------------|-------------|---------------|------|
| (61)m=                | 0                     | 0                        | 0        |      | 0         | 0          |      | 0       | 0                      | 0                          | 0            | 0                  | 0             | 0           | ]             | (61) |
| Total h               | eat rec               | quired for               | water    | he   | ating ca  | alculated  | l fo | r eacl  | n month                | (62)m =                    | 0.85 ×       | (45)m +            | · (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=                | 205.74                | 181.52                   | 191.0    | 7    | 171.88    | 168.87     | 15   | 51.52   | 146.11                 | 159.51                     | 158.97       | 178.2              | 187.68        | 200.99      |               | (62) |
| Solar DI              | -IW input             | calculated               | using A  | ppe  | ndix G o  | r Appendix | н (  | negativ | ve quantity            | <ul><li>enter '0</li></ul> | ' if no sola | r contribu         | ition to wate | er heating) |               |      |
| (add a                | dditiona              | al lines if              | FGHR     | S a  | and/or \  | NWHRS      | ap   | plies   | , see Ap               | pendix (                   | G)           | -                  |               |             | -             |      |
| (63)m=                | 0                     | 0                        | 0        |      | 0         | 0          |      | 0       | 0                      | 0                          | 0            | 0                  | 0             | 0           |               | (63) |
| Output                | from v                | vater hea                | ter      |      |           |            |      |         |                        |                            |              | •                  | _             |             | -             |      |
| (64)m=                | 205.74                | 181.52                   | 191.0    | 7    | 171.88    | 168.87     | 15   | 51.52   | 146.11                 | 159.51                     | 158.97       | 178.2              | 187.68        | 200.99      |               | -    |
|                       |                       |                          |          |      |           |            |      |         |                        | Out                        | out from w   | ater heat          | er (annual)₁  | 12          | 2102.07       | (64) |
| Heat g                | ains fro              | om water                 | heatir   | ıg,  | kWh/m     | onth 0.2   | 5 ´  | [0.85   | × (45)m                | + (61)n                    | n] + 0.8 x   | k [(46)n           | n + (57)m     | + (59)m     | <u>[</u> ]    |      |
| (65)m=                | 68.64                 | 60.56                    | 63.76    | 6    | 57.37     | 56.38      | 5    | 50.6    | 48.81                  | 53.27                      | 53.08        | 59.48              | 62.63         | 67.06       |               | (65) |
| inclu                 | ide (57               | )m in calo               | culatio  | n o  | f (65)m   | only if c  | ylir | nder is | s in the c             | dwelling                   | or hot w     | ater is            | from com      | munity ł    | neating       |      |
| 5. Int                | ternal g              | jains (see               | e Table  | e 5  | and 5a    | ):         |      |         |                        |                            |              |                    |               |             |               |      |
| Metab                 | olic gai              | ns (Table                | e 5), W  | att  | S         | -          | _    |         |                        |                            | -            | -                  |               | -           | _             |      |
|                       | Jan                   | Feb                      | Ма       | r    | Apr       | May        |      | Jun     | Jul                    | Aug                        | Sep          | Oct                | Nov           | Dec         |               |      |
| (66)m=                | 122.18                | 122.18                   | 122.1    | 8    | 122.18    | 122.18     | 12   | 22.18   | 122.18                 | 122.18                     | 122.18       | 122.18             | 122.18        | 122.18      |               | (66) |
| Ligh <mark>tin</mark> | <mark>g g</mark> ains | s (calcula               | ted in   | Ap   | pendix    | L, equat   | ion  | L9 oi   | r L9a), <mark>a</mark> | lso see                    | Table 5      |                    |               |             |               |      |
| (67)m=                | 3 <mark>8.31</mark>   | 34.03                    | 27.68    | 3    | 20.95     | 15.66      | 1    | 3.22    | 14.29                  | 18.57                      | 24.93        | 31.65              | 36.94         | 39.38       |               | (67) |
| App <mark>lia</mark>  | nces ga               | ains (ca <mark>lc</mark> | ulated   | lin  | Append    | dix L, eq  | uat  | ion L'  | 13 or L1               | 3a), also                  | o see Ta     | ble <mark>5</mark> |               |             |               |      |
| (68)m=                | 217.34                | 219.5 <mark>9</mark>     | 213.9    | 1    | 201.81    | 186.54     | 17   | 72.18   | 162.59                 | 160.34                     | 166.02       | 178.12             | 193.39        | 207.75      |               | (68) |
| Cookir                | ng gains              | s (calcula               | ated in  | Ap   | pendix    | L, equat   | ion  | L15     | or L15a)               | , also se                  | ee Table     | 5                  |               |             | -             |      |
| (69)m=                | 35.22                 | 35.22                    | 35.22    | 2    | 35.22     | 35.22      | 3    | 5.22    | 35.22                  | 35.22                      | 35.22        | 35.22              | 35.22         | 35.22       |               | (69) |
| Pumps                 | and fa                | ans gains                | (Table   | e 5  | a)        |            |      |         |                        |                            |              |                    |               |             |               |      |
| (70)m=                | 0                     | 0                        | 0        |      | 0         | 0          |      | 0       | 0                      | 0                          | 0            | 0                  | 0             | 0           |               | (70) |
| Losses                | s e.g. e              | vaporatic                | n (neg   | gati | ve valu   | es) (Tab   | le : | 5)      |                        |                            |              | -                  |               |             | -             |      |
| (71)m=                | -97.74                | -97.74                   | -97.7    | 4    | -97.74    | -97.74     | -9   | 97.74   | -97.74                 | -97.74                     | -97.74       | -97.74             | -97.74        | -97.74      | ]             | (71) |
| Water                 | heating               | g gains (T               | able 5   | 5)   |           |            | -    |         |                        |                            | -            | •                  | •             |             | -             |      |
| (72)m=                | 92.26                 | 90.13                    | 85.7     |      | 79.69     | 75.78      | 7    | 0.28    | 65.61                  | 71.6                       | 73.72        | 79.95              | 86.98         | 90.13       | ]             | (72) |
| Total i               | nterna                | l gains =                |          |      |           |            |      | (66)    | m + (67)m              | + (68)m ·                  | + (69)m +    | (70)m + (          | 71)m + (72)   | m           | -             |      |
| (73)m=                | 407.56                | 403.4                    | 386.9    | 4    | 362.1     | 337.64     | 3′   | 15.34   | 302.14                 | 310.16                     | 324.33       | 349.38             | 376.97        | 396.92      | ]             | (73) |
| 6. So                 | lar gain              | is:                      | •        |      |           |            |      |         |                        |                            | •            |                    |               |             | -             |      |
| Solar g               | ains are              | calculated               | using so | olar | flux from | Table 6a   | and  | associ  | ated equa              | tions to co                | onvert to th | ne applica         | ble orientat  | ion.        |               |      |
| Orienta               | ation:                | Access F                 | actor    |      | Area      |            |      | Flu     | X                      | -                          | g            | -                  | FF            |             | Gains         |      |
|                       |                       | l able 6d                |          |      | m²        |            |      | lat     | ole 6a                 | I                          | able 6b      |                    | able 6c       |             | (VV)          | _    |
| North                 | 0.9x                  | 0.77                     |          | x    | 3.6       | 66         | x    | 1       | 0.63                   | x                          | 0.85         | x                  | 0.7           | =           | 16.05         | (74) |
| North                 | 0.9x                  | 0.77                     |          | x    | 3.6       | 66         | x    | 2       | 0.32                   | x                          | 0.85         | ×                  | 0.7           | =           | 30.67         | (74) |
| North                 | 0.9x                  | 0.77                     |          | x    | 3.6       | 66         | x    | 3       | 4.53                   | x                          | 0.85         | x [                | 0.7           | =           | 52.11         | (74) |
| North                 | 0.9x                  | 0.77                     |          | x    | 3.6       | 66         | x    | 5       | 5.46                   | x                          | 0.85         | x                  | 0.7           | =           | 83.7          | (74) |
| North                 | 0.9x                  | 0.77                     |          | x    | 3.6       | 66         | x    | 7       | 4.72                   | x                          | 0.85         | x                  | 0.7           | =           | 112.76        | (74) |

| North   | 0.9x                   | 0.77                   |          | x    | 3.66            | ) ×        | ĸ          | 79.99                             | x        | 0.85              | x                   | 0.7           | =       | 120.71 | (74)         |
|---------|------------------------|------------------------|----------|------|-----------------|------------|------------|-----------------------------------|----------|-------------------|---------------------|---------------|---------|--------|--------------|
| North   | 0.9x                   | 0.77                   |          | x    | 3.66            | Ī ×        | ĸ          | 74.68                             | ×        | 0.85              | ×                   | 0.7           | =       | 112.7  | (74)         |
| North   | 0.9x                   | 0.77                   | :        | x    | 3.66            | _<br>} ×   | ×          | 59.25                             | x        | 0.85              | x                   | 0.7           | =       | 89.41  | (74)         |
| North   | 0.9x                   | 0.77                   |          | x    | 3.66            | _ ×        | ĸ          | 41.52                             | x        | 0.85              | x                   | 0.7           | =       | 62.65  | (74)         |
| North   | 0.9x                   | 0.77                   | :        | x    | 3.66            | _<br>_     | ×          | 24.19                             | x        | 0.85              | ×                   | 0.7           | =       | 36.51  | (74)         |
| North   | 0.9x                   | 0.77                   | :        | x    | 3.66            | _<br>_ ×   | ×          | 13.12                             | x        | 0.85              | ×                   | 0.7           | =       | 19.8   | (74)         |
| North   | 0.9x                   | 0.77                   | :        | x    | 3.66            | _<br>_ ×   | ×          | 8.86                              | x        | 0.85              | ×                   | 0.7           | =       | 13.38  | (74)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | _<br>} ×   | ×          | 46.75                             | x        | 0.85              | x                   | 0.7           | =       | 60.15  | (78)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | _<br>_ ×   | ×          | 76.57                             | x        | 0.85              | ×                   | 0.7           | =       | 98.5   | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | _ ×        | ĸ          | 97.53                             | x        | 0.85              | ×                   | 0.7           | =       | 125.48 | (78)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | _<br>_     | ×          | 110.23                            | x        | 0.85              | ×                   | 0.7           | =       | 141.81 | (78)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | _<br>_ ×   | ×          | 114.87                            | x        | 0.85              | ×                   | 0.7           | =       | 147.78 | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | ] ×        | ×          | 110.55                            | <b>x</b> | 0.85              | x                   | 0.7           | =       | 142.22 | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | Ī ×        | ĸ          | 108.01                            | ×        | 0.85              | ×                   | 0.7           | =       | 138.96 | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | Ī ×        | ĸ          | 104.89                            | x        | 0.85              | ×                   | 0.7           | =       | 134.95 | (78)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | ] ×        | ×          | 101.89                            | <b>x</b> | 0.85              | x                   | 0.7           | =       | 131.07 | (78)         |
| South   | 0.9x                   | 0.77                   | :        | x    | 3.12            | _<br>_ ×   | ×          | 82.59                             | x        | 0.85              | ×                   | 0.7           | =       | 106.25 | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | ×          | ĸ          | 55.42                             | x        | 0.85              | x                   | 0.7           | =       | 71.29  | (78)         |
| South   | 0.9x                   | 0.77                   |          | x    | 3.12            | ×          | x          | 40.4                              | x        | 0.85              | x                   | 0.7           |         | 51.97  | (78)         |
|         |                        |                        |          |      |                 |            |            |                                   |          |                   |                     |               |         |        |              |
| Solar g | <mark>gain</mark> s in | watts, <mark>ca</mark> | lculate  | d    | for each mon    | th         |            |                                   | (83)m    | n = Sum(74)m      | <mark>(8</mark> 2)m |               |         |        |              |
| (83)m=  | 76.19                  | 129.17                 | 177.59   |      | 225.52 260.5    | 4          | 26         | 62.93 251.65                      | 224      | .36 193.73        | 142.7               | 5 91.09       | 65.35   |        | (83)         |
| Total ( | gains – i              | nternal a              | nd sola  | ar   | (84)m = (73)r   | n +        | - (8       | 33)m , watts                      | 1        |                   |                     | _             | i       |        |              |
| (84)m=  | 483.76                 | 532.57                 | 564.53   |      | 587.62 598.1    | 7          | 57         | 78.27 553.8                       | 534      | .52 518.06        | 492.1               | 3 468.06      | 462.27  |        | (84)         |
| 7. Me   | ean inter              | nal temp               | erature  | Э (  | heating seas    | on)        |            |                                   |          |                   |                     |               |         |        |              |
| Temp    | perature               | during h               | eating   | pe   | eriods in the I | ivin       | g          | area from Tal                     | ble 9    | , Th1 (°C)        |                     |               |         | 21     | (85)         |
| Utilis  | ation fac              | tor for ga             | ains fo  | r li | ving area, h1   | ,m (       | (se        | ee Table 9a)                      |          |                   |                     |               |         | 1      |              |
|         | Jan                    | Feb                    | Mar      |      | Apr Ma          | y          |            | Jun Jul                           | A        | ug Sep            | Oct                 | t Nov         | Dec     | -      |              |
| (86)m=  | 1                      | 1                      | 1        |      | 1 0.99          |            | (          | 0.98 0.97                         | 0.9      | 0.99              | 1                   | 1             | 1       |        | (86)         |
| Mear    | n interna              | l tempera              | ature ir | n li | ving area T1    | (fol       | llo        | w steps 3 to 7                    | 7 in T   | able 9c)          |                     |               | -       | _      |              |
| (87)m=  | 17.82                  | 17.98                  | 18.33    |      | 18.87 19.44     | 4          | 2          | 0.03 20.41                        | 20.      | 36 19.89          | 19.17               | 7 18.44       | 17.83   |        | (87)         |
| Tem     | oerature               | during h               | eating   | ре   | eriods in rest  | of c       | wb         | elling from Ta                    | able 9   | 9, Th2 (°C)       |                     |               |         |        |              |
| (88)m=  | 18.43                  | 18.44                  | 18.45    | T    | 18.5 18.5       | 1          | 1          | 8.57 18.57                        | 18.      | 58 18.55          | 18.51               | 18.49         | 18.47   | ]      | (88)         |
| Utilis  | ation fac              | tor for a              | ains fo  | r re | est of dwelling | n h        | 12         | m (see Table                      | .9a)     |                   |                     |               |         | -      |              |
| (89)m=  | 1                      | 1 1                    | 1        | Ť    | 0.99 0.99       |            | ( <u> </u> | 0.95 0.83                         | 0.8      | 37 0.97           | 0.99                | 1             | 1       | ]      | (89)         |
| Moor    |                        |                        | oturo ir |      | ho rost of dw   |            |            | T2 (follow etc                    |          | to 7 in Tabl      |                     |               |         | J      |              |
| (90)m=  | 15.78                  | 15.94                  | 16.3     | Т    | 16.87 17.4      | 5          | 1<br>1     | 8.07 18.42                        | 18.      | 39 17.92          | 17.18               | 3 16.43       | 15.81   | 1      | (90)         |
| ()      |                        |                        |          |      |                 | - <u> </u> |            |                                   | 1        | f                 | LA = Li             | ving area ÷ ( | 4) =    | 0.28   | <b>(</b> 91) |
| N /     |                        | 1.40.00.000            |          |      | المعاملة        |            |            | ~) {I ^ · · <b>T</b> 4            | . /4     |                   |                     |               |         |        | `` ´         |
|         |                        | 165                    | 16 86    | T    |                 |            | ni<br>1    | $\frac{y}{8.61} = 12.4 \times 11$ | +(1      | $-ILA) \times I2$ | 17 73               | 16.00         | 16.37   | 1      | (92)         |
| 134/11= | 1 10.04                | I 10.0 I               | 10.00    |      | 11.74   0       |            | - 1        | 0.01 1 10.3/                      | I 10.    |                   | 11.15               | , I IU.33     | 1 10.07 |        | (04)         |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                     | 16.34                     | 16.5                     | 16.86                             | 17.42                           | 18                   | 18.61                  | 18.97         | 18.93      | 18.47         | 17.73                | 16.99        | 16.37                      |           | (93)                                                         |
|----------------------------|---------------------------|--------------------------|-----------------------------------|---------------------------------|----------------------|------------------------|---------------|------------|---------------|----------------------|--------------|----------------------------|-----------|--------------------------------------------------------------|
| 8. Spa                     | ace hea                   | ting requ                | uirement                          | i                               |                      |                        |               |            |               |                      |              |                            |           |                                                              |
| Set Ti<br>the ut           | i to the r<br>ilisation   | mean int<br>factor fo    | ernal ter<br>or gains             | mperatui<br>using Ta            | e obtain<br>Ible 9a  | ed at ste              | ep 11 of      | Table 9t   | o, so tha     | t Ti,m=(             | 76)m an      | d re-calc                  | ulate     |                                                              |
|                            | Jan                       | Feb                      | Mar                               | Apr                             | May                  | Jun                    | Jul           | Aug        | Sep           | Oct                  | Nov          | Dec                        |           |                                                              |
| Utilisa                    | ation fac                 | tor for g                | ains, hm                          | 1:                              |                      |                        |               |            |               |                      |              |                            |           |                                                              |
| (94)m=                     | 1                         | 1                        | 1                                 | 0.99                            | 0.98                 | 0.96                   | 0.88          | 0.9        | 0.97          | 0.99                 | 1            | 1                          |           | (94)                                                         |
| Usefu                      | Il gains,                 | hmGm                     | W = (94                           | 4)m x (84                       | 4)m                  |                        |               |            |               |                      |              |                            |           |                                                              |
| (95)m=                     | 482.74                    | 531.02                   | 562.01                            | 583                             | 587.96               | 552.27                 | 486.72        | 481.18     | 503.12        | 488.25               | 466.61       | 461.44                     |           | (95)                                                         |
| Month                      | nly avera                 | age exte                 | rnal tem                          | perature                        | from Ta              | able 8                 |               |            |               |                      |              |                            |           |                                                              |
| (96)m=                     | 4.3                       | 4.9                      | 6.5                               | 8.9                             | 11.7                 | 14.6                   | 16.6          | 16.4       | 14.1          | 10.6                 | 7.1          | 4.2                        |           | (96)                                                         |
| Heat                       | loss rate                 | e for mea                | an intern                         | al tempe                        | erature,             | Lm , W =               | =[(39)m :     | x [(93)m   | – (96)m       | ]                    |              |                            |           |                                                              |
| (97)m=                     | 4894.57                   | 4696.37                  | 4175.08                           | 3360.71                         | 2473.16              | 1539.74                | 908.64        | 968.7      | 1691.43       | 2798.15              | 3916.09      | 4862.41                    |           | (97)                                                         |
| Space                      | e heatin                  | g require                | ement fo                          | r each n                        | nonth, k\            | Nh/mont                | th = 0.02     | 24 x [(97) | )m – (95      | )m] x (4             | 1)m          |                            |           |                                                              |
| (98)m=                     | 3282.4                    | 2799.11                  | 2688.12                           | 1999.95                         | 1402.58              | 0                      | 0             | 0          | 0             | 1718.57              | 2483.62      | 3274.32                    |           | _                                                            |
|                            |                           |                          |                                   |                                 |                      |                        |               | Tota       | l per year    | (kWh/year            | ) = Sum(9    | 8)15,912 =                 | 19648.68  | (98)                                                         |
| Space                      | e heating                 | g require                | ement in                          | kWh/m²                          | /year                |                        |               |            |               |                      |              |                            | 248.72    | (99)                                                         |
| 9b. En                     | ergy rec                  | uiremer                  | nts – Cor                         | mmunity                         | heating              | scheme                 | )             |            |               |                      |              | L                          |           | 1                                                            |
| This pa                    | art is use                | ed for sp                | ace hea                           | iting, spa                      | ace cooli            | ng or wa               | ater heat     | ing prov   | ided by       | a c <mark>omm</mark> | unity sch    | neme.                      |           | ,                                                            |
| Fractio                    | n of spa                  | ace heat                 | from se                           | condary                         | /supplen             | nentary I              | neating (     | Table 1    | 1) '0' if n   | one                  |              |                            | 0         | (301)                                                        |
| Fractio                    | <mark>n o</mark> f spa    | ace heat                 | from co                           | <mark>mmu</mark> nity           | syste <mark>m</mark> | 1 – (301               | 1) =          |            |               |                      |              |                            | 1         | (302)                                                        |
| The com                    | n <mark>mu</mark> nity so | cheme m <mark>a</mark> g | y obtain he                       | eat from se                     | everal sour          | ces. The p             | procedure     | allows for | CHP and u     | up to four (         | other heat   | sou <mark>rces; t</mark> l | ne latter |                                                              |
| <i>includes</i><br>Fractio | boilers, h<br>n of hea    | eat pumps<br>at from C   | s, ge <sup>otherr</sup><br>Commun | <i>mal and wa</i><br>ity boiler | aste heat fi<br>'S   | rom powei              | r stations.   | See Apper  | ndix C.       |                      |              | [                          | 1         | (303a)                                                       |
| Fractio                    | n of tota                 | al space                 | heat fro                          | <mark>m Co</mark> mn            | nunity bo            | oilers                 |               |            |               | (3                   | 02) x (303   | a) =                       | 1         | (304a)                                                       |
| Factor                     | for cont                  | rol and o                | charging                          | method                          | (Table 4             | 4c(3)) fo              | r commu       | unity hea  | ting sys      | tem                  |              | [                          | 1.05      | (305)                                                        |
| Distrib                    | ution los                 | s factor                 | (Table 1                          | I2c) for c                      | commun               | ity heatir             | ng syste      | m          |               |                      |              | [                          | 1.1       | (306)                                                        |
| Space                      | heating                   | 9                        |                                   |                                 |                      |                        |               |            |               |                      |              | L                          | kWh/year  | 1                                                            |
| Annua                      | space                     | heating                  | requirem                          | nent                            |                      |                        |               |            |               |                      |              | [                          | 19648.68  | ]                                                            |
| Space                      | heat fro                  | om Comr                  | nunity b                          | oilers                          |                      |                        |               |            | (98) x (30    | 04a) x (30           | 5) x (306) = | = [                        | 22694.22  | (307a)                                                       |
| Efficier                   | ncy of se                 | econdary                 | /supple                           | mentary                         | heating              | system                 | in % (fro     | m Table    | e 4a or A     | ppendix              | E)           | [                          | 0         | (308                                                         |
| Space                      | heating                   | require                  | ment fro                          | m secon                         | dary/sup             | plemen                 | tary syst     | em         | (98) x (30    | 01) x 100 -          | - (308) =    | [                          | 0         | (309)                                                        |
| <b>Water</b><br>Annual     | <b>heating</b><br>water h | <b>j</b><br>neating r    | eauirem                           | ent                             |                      |                        |               |            |               |                      |              | ſ                          | 2102.07   | 1                                                            |
| If DHW                     | / from co                 | ommunit                  | ty schem                          | ne:<br>Dilers                   |                      |                        |               |            | (64) x (3(    | 13a) x (304          | 5) x (306) - | ו<br>- ר                   | 2427.80   | ]<br>](310a)                                                 |
| Flootrid                   |                           |                          | t diatrib                         | ution                           |                      |                        |               | 0.04       | v [(2070)     | (207~)               | (3100) -     | -<br>3100)] -              | 2421.03   | $\left  \begin{array}{c} (312) \\ (312) \end{array} \right $ |
| Cooling                    |                           |                          |                                   |                                 | 2                    |                        |               | 0.01       | × [(ou≀a).    | (3078) +             | (J 10a)(     | 5100)] =                   | 251.22    | $\left  \begin{pmatrix} 3 & 3 \end{pmatrix} \right $         |
| Cooline                    |                           |                          | y ⊑niciel                         |                                 |                      | . :f                   | nter 0)       |            | (407)         | (24.4)               |              | l                          | 0         | $\left  \begin{array}{c} (314) \\ (345) \end{array} \right $ |
| Space                      | cooling                   | (ii there                | is a fixe                         |                                 | y system             |                        | enter U)      |            | $=(107) \div$ | (314) =              |              |                            | 0         | (315)                                                        |
| mecha                      | nical ve                  | ntilation                | na tans v<br>- balanc             | within dv<br>ed, extra          | act or po            | able 4f)<br>sitive inj | :<br>put from | outside    |               |                      |              | [                          | 0         | (330a)                                                       |

| warm air heating system fans                                                                                                                  |                               | 0                                     | (330b) |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|--------|
| pump for solar water heating                                                                                                                  |                               | 0                                     | (330g) |
| Total electricity for the above, kWh/year =(330a) + (33                                                                                       | 30b) + (330g) =               | 0                                     | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                                |                               | 676.65                                | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                                 |                               |                                       |        |
| Energy<br>kWh/year                                                                                                                            | Emission factor<br>kg CO2/kWh | <sup>·</sup> Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using two fuels repeat (363) t | o (366) for the second fu     | iel 65                                | (367a) |
| CO2 associated with heat source 1 $[(307b)+(310b)] \times 100 \div (367b) \times$                                                             | 0                             | = 8348.27                             | (367)  |
| Electrical energy for heat distribution [(313) x                                                                                              | 0.52                          | = 130.38                              | (372)  |
| Total CO2 associated with community systems (363)(366) + (368)(3                                                                              | 72)                           | = 8478.65                             | (373)  |
| CO2 associated with space heating (secondary) (309) x                                                                                         | 0                             | = 0                                   | (374)  |
| CO2 associated with water from immersion heater or instantaneous heater (312) x                                                               | 0.22                          | = 0                                   | (375)  |
| Total CO2 associated with space and water heating $(373) + (374) + (375) =$                                                                   |                               | 8478.65                               | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling (331)) x                                                                   | 0.52                          | = 0                                   | (378)  |
| CO2 associated with electricity for lighting (332))) x                                                                                        | 0.52                          | = 351.18                              | (379)  |
| Total CO2, kg/year         sum of (376)(382) =                                                                                                |                               | <mark>8829.8</mark> 4                 | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                                      |                               | 111.77                                | (384)  |
| El rating (section 14)                                                                                                                        |                               | 24.01                                 | (385)  |

|                                                                                       |                                                        |                               | User D                | etails:              |                  |                   |                       |              |                                     |                     |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|-----------------------|----------------------|------------------|-------------------|-----------------------|--------------|-------------------------------------|---------------------|
| Assessor Name:<br>Software Name:                                                      | Stroma FSAP 20                                         | )12                           |                       | Stroma<br>Softwa     | a Num<br>ire Ver | ber:<br>sion:     |                       | Versic       | on: 1.0.3.15                        |                     |
|                                                                                       | landan                                                 | PI                            | roperty <i>i</i>      | Address:             | Unit 11          |                   |                       |              |                                     |                     |
| Address :                                                                             |                                                        |                               |                       |                      |                  |                   |                       |              |                                     |                     |
| Basement                                                                              |                                                        |                               | Area                  | <b>a(m²)</b><br>51   | (1a) x           | Av. He            | <b>ight(m)</b><br>1.9 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>96.9 | <b>)</b><br>(3a)    |
| Total floor area TFA = (1a                                                            | )+(1b)+(1c)+(1d)+(1                                    | le)+(1n                       | )                     | 51                   | (4)              |                   |                       |              |                                     |                     |
| Dwelling volume                                                                       |                                                        |                               |                       |                      | (3a)+(3b)        | +(3c)+(3c         | d)+(3e)+              | .(3n) =      | 96.9                                | (5)                 |
| 2. Ventilation rate:                                                                  |                                                        | _                             |                       |                      |                  |                   |                       |              |                                     |                     |
| Number of chimneys<br>Number of open flues                                            | main<br>heating<br>0 +<br>0 +                          | secondar<br>heating<br>0<br>0 | y<br>] + [_<br>] + [_ | 0<br>0               | ] = [            | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou              | r<br>(6a)<br>(6b)   |
| Number of intermittent far                                                            | IS                                                     |                               |                       |                      | Γ                | 2                 | <b>x</b> ′            | 10 =         | 20                                  | (7a)                |
| Number of passive vents                                                               |                                                        |                               |                       |                      | Ē                | 0                 | x ^                   | 10 =         | 0                                   | (7b)                |
| Number of flueless gas fir                                                            | es                                                     |                               |                       |                      |                  | 0                 | X                     | 40 =         | 0                                   | (7c)                |
|                                                                                       |                                                        |                               |                       |                      |                  |                   |                       | Air ch       | anges per ho                        | our                 |
| Infiltration due to chimney                                                           | s, flues and fans =                                    | (6a)+(6b)+(7<br>ded. proceed  | a)+(7b)+(7            | 7c) =<br>otherwise c | ontinue fro      | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.21                                | (8)                 |
| Number of storeys in th<br>Additional infiltration<br>Structural infiltration: 0.3    | e dw <mark>elling</mark> (ns)<br>25 for steel or timbe | r frame or                    | 0.35 for              | . masonr             | y constr         | uction            | [(9)                  | -1]x0.1 =    | 0 0 0                               | (9)<br>(10)<br>(11) |
| if both types of wall are pre<br>deducting areas of opening                           | esent, use the value corre<br>gs); if equal user 0.35  | esponding to                  | the greate            | er wall area         | a (after         |                   |                       |              |                                     |                     |
| If no draught lobby, ont                                                              | or $0.05$ else enter $0$                               |                               | i (Seale              | iu), eise            |                  |                   |                       |              | 0                                   | (12)                |
| Percentage of windows                                                                 | and doors draught                                      | stripped                      |                       |                      |                  |                   |                       |              | 0                                   |                     |
| Window infiltration                                                                   | and doore dradging                                     | omppou                        |                       | 0.25 - [0.2          | x (14) ÷ 1       | 00] =             |                       |              | 0                                   | (15)                |
| Infiltration rate                                                                     |                                                        |                               |                       | (8) + (10) -         | + (11) + (1      | 2) + (13) ·       | + (15) =              |              | 0                                   | (16)                |
| Air permeability value, o                                                             | q50, expressed in cu                                   | ubic metre                    | s per ho              | our per so           | quare m          | etre of e         | envelope              | area         | 20                                  | (17)                |
| If based on air permeabili                                                            | ty value, then (18) = [                                | (17) ÷ 20]+(8                 | 3), otherwi           | se (18) = (          | 16)              |                   |                       |              | 1.21                                | (18)                |
| Air permeability value applies                                                        | if a pressurisation test h                             | as been don                   | e or a deg            | gree air pei         | meability        | is being u        | sed                   |              |                                     | _                   |
| Number of sides sheltered                                                             | t                                                      |                               |                       | (20) – 1 - 1         | 0 075 v (1       | Q)] —             |                       |              | 1                                   | (19)                |
| Infiltration rate incorporati                                                         | na chaltar factor                                      |                               |                       | (20) = (18)          | x (20) -         | 5)] –             |                       |              | 0.92                                | (20)                |
| Infiltration rate modified for                                                        | ry sheller laciol                                      | od.                           |                       | (21) = (10)          | x (20) -         |                   |                       |              | 1.12                                | (21)                |
|                                                                                       | Mar Apr May                                            |                               | hul                   | Διια                 | Sen              | Oct               | Nov                   | Dec          |                                     |                     |
| Monthly over an wind on                                                               | ad from Toble 7                                        |                               | 501                   | Aug                  | Oep              | 001               |                       | Dec          |                                     |                     |
| $(22)m = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ |                                                        | 3.8                           | 3.8                   | 37                   | 4                | 43                | 4.5                   | 47           |                                     |                     |
|                                                                                       | ····   ···                                             | 0.0                           | 0.0                   | 0.7                  | т                | 7.0               | 1.0                   |              | l                                   |                     |
| Wind Factor (22a)m = (22           (22a)m =           1.27           1.25             | )m ÷ 4<br>.23 1.1 1.08                                 | 0.95                          | 0.95                  | 0.92                 | 1                | 1.08              | 1.12                  | 1.18         |                                     |                     |
| · · · · ·                                                                             |                                                        |                               |                       |                      |                  |                   | •                     |              | •                                   |                     |

| Adjust                 | ed infiltra               | ation rat                  | e (allowi                 | ng for sł                   | nelter an                | d wind s               | speed) =    | (21a) x        | (22a)m               |                                 |             |                           | _           |             |         |
|------------------------|---------------------------|----------------------------|---------------------------|-----------------------------|--------------------------|------------------------|-------------|----------------|----------------------|---------------------------------|-------------|---------------------------|-------------|-------------|---------|
|                        | 1.42                      | 1.39                       | 1.37                      | 1.23                        | 1.2                      | 1.06                   | 1.06        | 1.03           | 1.12                 | 1.2                             | 1.26        | 1.31                      |             |             |         |
| Calcul                 | ate effec                 | ctive air                  | change                    | rate for t                  | he appli                 | cable ca               | se          |                |                      |                                 |             |                           |             |             |         |
| lf exh                 | aust air he               |                            | using App                 | andix N (2                  | (23a) – (23a             | a) x Emv (e            | equation (N | (15)) other    | rwise (23h           | ) – (23a)                       |             |                           | 0           |             |         |
| lf bal                 | anced with                | heat reco                  | overv: effic              | iency in %                  | allowing f               | or in-use f            | actor (from | n Table 4h     | ) –                  | ) = (200)                       |             |                           | 0           |             |         |
| a) If                  |                           | d moch                     |                           |                             | with ho                  | of in ase in           |             |                | ) = (2)              | )<br>b)m i (                    | 22P) ^ [    | 1 (22a)                   | 0<br>· 1001 |             | (230)   |
| a) II<br>(24a)m-       |                           |                            |                           |                             |                          |                        |             |                | (22                  | $\frac{20}{10} + \frac{10}{10}$ |             | $\frac{1 - (230)}{1 - 0}$ | - 100j      |             | (24a)   |
| (240)11-               |                           | d moob                     |                           |                             | without                  | boot roc               |             |                | $\sqrt{m} = (2)$     |                                 | )<br>22h)   | Ū                         | I           |             | (2.103) |
| (24b)m-                |                           |                            |                           |                             |                          |                        |             | 0 (240         | 0 $11 = (22)$        |                                 | 230)        | 0                         | 1           |             | (24b)   |
| (240)III-              |                           |                            |                           |                             |                          |                        |             |                |                      | 0                               | Ū           | 0                         | l           |             | (=)     |
| C) II                  | if (22b)n                 | use ex<br>ו < 0.5 ×        | (23b), t                  | hen (240                    | c) = (23b)               | ); other               | wise (24    | c) = (22b)     | butside<br>b) m + 0. | 5 × (23b                        | )           |                           |             |             |         |
| (24c)m=                | 0                         | 0                          | 0                         | 0                           | 0                        | 0                      | 0           | 0              | 0                    | 0                               | 0           | 0                         |             |             | (24c)   |
| d) If                  | natural                   | ventilatio                 | on or wh                  | ole hous                    | se positiv               | /e input               | ventilatio  | on from I      | oft                  | 0.51                            |             |                           |             |             |         |
| (24d)m                 |                           | 1 = 1, th                  | en (240)                  | m = (22)                    |                          |                        | (40)m =     | 0.5 + [(2<br>  | 20)m² x              | 0.5]                            | 1.26        | 1 21                      | 1           |             | (24d)   |
| (240)m=                | 1.42                      | 1.39                       | 1.37                      | 1.23                        | 1.2                      | 1.00                   | 1.00        | 1.03           | 1.12                 | 1.2                             | 1.20        | 1.31                      | J           |             | (24u)   |
| Effe                   | ctive air                 |                            | rate - er                 | nter (24a                   | ) or (240                | b) or (240             | c) or (24   |                | (25)                 | 1.2                             | 1.26        | 1 21                      | 1           |             | (25)    |
| (25)11=                | 1.42                      | 1.39                       | 1.37                      | 1.23                        | 1.2                      | 1.00                   | 1.00        | 1.03           | 1.12                 | 1.2                             | 1.20        | 1.31                      |             |             | (23)    |
| 3. He                  | at losse                  | s and he                   | eat loss                  | oaramet                     | er:                      |                        |             |                |                      |                                 |             |                           |             |             |         |
| ELEN                   |                           | Gros<br>are <mark>a</mark> | ss<br>(m²)                | Openin<br>m                 | gs<br>1 <sup>2</sup>     | Net Ar<br>A ,r         | rea<br>m²   | U-valı<br>W/m2 | ue<br>K              | A X U<br>(W/I                   | ≺)          | k-value<br>kJ/m²·l        | e<br>K      | A X<br>kJ/ł | k<br>K  |
| Doo <mark>rs</mark>    |                           |                            |                           |                             |                          | 1.9                    | x           | 1.4            | = [                  | 2.66                            |             |                           |             |             | (26)    |
| Windo                  | ws Type                   | e 1                        |                           |                             |                          | 1.67                   | x1.         | /[1/( 4.8 )+   | 0.04] =              | 6.72                            | F           |                           |             |             | (27)    |
| Windo                  | ws Type                   | 2                          |                           |                             |                          | 0.84                   | x1          | /[1/( 4.8 )+   | 0.04] =              | 3.38                            | Ξ           |                           |             |             | (27)    |
| Walls                  | Type1                     | 45.                        | 3                         | 2.51                        |                          | 42.79                  | ) X         | 2.1            | =                    | 89.86                           |             |                           |             |             | (29)    |
| Walls                  | Type2                     | 15.3                       | 39                        | 1.9                         |                          | 13.49                  | ) X         | 2.1            | = [                  | 28.33                           |             |                           |             |             | (29)    |
| Roof                   |                           | 31.                        | 9                         | 0                           |                          | 31.9                   | x           | 2.3            | =                    | 73.37                           |             |                           |             |             | (30)    |
| Total a                | area of e                 | lements                    | , m²                      |                             |                          | 92.59                  | )           |                |                      |                                 |             |                           |             |             | (31)    |
| * for win<br>** inclua | ndows and<br>le the area  | roof wind<br>as on both    | ows, use e<br>sides of ir | effective wi<br>nternal wal | ndow U-va<br>Is and part | alue calcul<br>titions | ated using  | ı formula 1,   | /[(1/U-valu          | e)+0.04] a                      | ns given in | paragraph                 | 3.2         |             |         |
| Fabric                 | heat los                  | s, W/K                     | = S (A x                  | U)                          |                          |                        |             | (26)(30)       | + (32) =             |                                 |             |                           | 204.        | 33          | (33)    |
| Heat c                 | apacity                   | Cm = S(                    | (Axk)                     |                             |                          |                        |             |                | ((28)                | .(30) + (32                     | 2) + (32a)  | (32e) =                   | 0           |             | (34)    |
| Therm                  | al mass                   | parame                     | eter (TMF                 | - = Cm -                    | - TFA) ir                | n kJ/m²K               |             |                | Indica               | tive Value                      | : High      |                           | 450         | <br>)       | (35)    |
| For desi<br>can be u   | ign assess<br>used instea | ments wh<br>ad of a de     | ere the de<br>tailed calc | tails of the<br>ulation.    | construct                | ion are not            | t known pr  | ecisely the    | e indicative         | values of                       | TMP in T    | able 1f                   |             |             | _       |
| Therm                  | al bridge                 | es : S (L                  | x Y) cal                  | culated                     | using Ap                 | pendix ł               | <           |                |                      |                                 |             |                           | 14          |             | (36)    |
| if details             | s of therma               | al bridging                | are not kn                | own (36) =                  | = 0.15 x (3              | 1)                     |             |                |                      |                                 |             |                           |             |             |         |
| Total f                | abric he                  | at loss                    |                           |                             |                          |                        |             |                | (33) +               | (36) =                          |             |                           | 218.        | 33          | (37)    |
| Ventila                | ation hea                 | at loss ca                 | alculated                 | monthl                      | y                        |                        |             | 1              | (38)m                | = 0.33 × (                      | 25)m x (5   | )                         | 1           |             |         |
|                        | Jan                       | Feb                        | Mar                       | Apr                         | May                      | Jun                    | Jul         | Aug            | Sep                  | Oct                             | Nov         | Dec                       |             |             |         |
| (38)m=                 | 45.5                      | 44.6                       | 43.71                     | 39.25                       | 38.36                    | 33.9                   | 33.9        | 33.01          | 35.68                | 38.36                           | 40.14       | 41.93                     |             |             | (38)    |
| Heat tr                | ransfer o                 | coefficie                  | nt, W/K                   |                             |                          |                        |             |                | (39)m                | = (37) + (3                     | 38)m        |                           |             |             |         |
| (39)m=                 | 263.82                    | 262.93                     | 262.04                    | 257.58                      | 256.69                   | 252.22                 | 252.22      | 251.33         | 254.01               | 256.69                          | 258.47      | 260.25                    |             |             | -       |
|                        |                           |                            |                           |                             |                          |                        |             |                | 1                    | Average =                       | Sum(39)     | 12 /12=                   | 257.        | 35          | (39)    |

| Heat lo                        | ss para                         | imeter (H                              | HLP), W                              | /m²K                                      |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 5.17                            | 5.16                                   | 5.14                                 | 5.05                                      | 5.03                                     | 4.95                                  | 4.95                         | 4.93                   | 4.98                  | 5.03                      | 5.07                                  | 5.1      |            |      |
| L                              | r of day                        |                                        | nth (Tab                             | le 12)                                    |                                          | 1                                     | 1                            |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 5.05       | (40) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                        | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41) |
| Ϋ́ L                           |                                 |                                        |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | l          |      |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                  |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br>r day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]          | (43) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                       | Мау                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea                         | ach month                                 | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           | 1                                     |          | 1          |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                     | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            |      |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                                | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                     | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | vater heatii                           | ng at point                          | of use (no                                | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                     | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46) |
| Storage                        | e volum                         | loss.<br>le (litres)                   | includir                             | na anv so                                 | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      | 1          | (47) |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                                 | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |                           |                                       | 100      |            | ()   |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                               | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | (47)                                  |          |            |      |
| Water s                        | storage                         | loss:                                  |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | 1          |      |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                                 | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/y∉<br>≫dindor l                    | ear<br>ann faot                          | or io not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50) |
| Hot wat                        | ter stor                        | age loss                               | factor fr                            | om Tabl                                   | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       | ]          | (51) |
| Volume                         | factor                          | from Ta                                | ble 2a                               | 011 4.3                                   |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |            | (52) |
| Temper                         | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53) |
| Enerav                         | lost fro                        | m water                                | storage                              | . kWh/ve                                  | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 03       | ]          | (54) |
| Enter (                        | 50) or (                        | (54) in (5                             | 55)                                  | , <b>,</b>                                |                                          |                                       |                              |                        |                       | ,                         | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                  | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1          |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)ı                               | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | i0), else (5           | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | I<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    | ]          | (57) |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                  | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |            | (58) |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                  | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |      |
| (mod                           | ified by                        | factor fi                              | rom Tab                              | le H5 if t                                | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | ostat)                                |          | 1          |      |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                     | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59) |

| Combi    | loss ca             | alculated                | for eac   | h month      | (61)m =     | (60) ÷                                | 365 × (41      | )m               |               |                     |                  |             |               |      |
|----------|---------------------|--------------------------|-----------|--------------|-------------|---------------------------------------|----------------|------------------|---------------|---------------------|------------------|-------------|---------------|------|
| (61)m=   | 0                   | 0                        | 0         | 0            | 0           | 0                                     | 0              | 0                | 0             | 0                   | 0                | 0           | ]             | (61) |
| Total h  | eat req             | uired for                | water I   | neating c    | alculated   | l for ea                              | ch month       | (62)m =          | = 0.85 ×      | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 177.69              | 156.99                   | 165.75    | 149.81       | 147.69      | 133.24                                | 129.18         | 140.08           | 139.31        | 155.28              | 162.66           | 173.82      |               | (62) |
| Solar DH | -<br>IW input       | calculated               | using Ap  | pendix G c   | or Appendix | H (nega                               | ative quantity | y) (enter 'C     | )' if no sola | r contribu          | tion to wate     | er heating) | -             |      |
| (add a   | dditiona            | al lines if              | FGHR      | S and/or     | WWHRS       | applie                                | es, see Ap     | pendix (         | G)            |                     |                  |             | _             |      |
| (63)m=   | 0                   | 0                        | 0         | 0            | 0           | 0                                     | 0              | 0                | 0             | 0                   | 0                | 0           |               | (63) |
| Output   | from w              | ater hea                 | ter       |              |             |                                       |                |                  |               |                     |                  |             |               |      |
| (64)m=   | 177.69              | 156.99                   | 165.75    | 149.81       | 147.69      | 133.24                                | 129.18         | 140.08           | 139.31        | 155.28              | 162.66           | 173.82      |               | _    |
|          |                     |                          |           |              |             |                                       |                | Out              | put from w    | ater heate          | er (annual)₁     | 12          | 1831.51       | (64) |
| Heat g   | ains fro            | m water                  | heating   | g, kWh/m     | onth 0.2    | 5 ´ [0.8                              | 5 × (45)m      | n + (61)n        | n] + 0.8 x    | x [(46)m            | + (57)m          | + (59)m     | 1]            |      |
| (65)m=   | 59.31               | 52.41                    | 55.34     | 50.03        | 49.34       | 44.53                                 | 43.18          | 46.81            | 46.54         | 51.86               | 54.31            | 58.03       |               | (65) |
| inclu    | de (57)             | m in calo                | culation  | of (65)m     | n only if c | ylinde                                | is in the      | dwelling         | or hot w      | ater is f           | rom com          | munity h    | neating       |      |
| 5. Int   | ernal g             | ains (see                | e Table   | 5 and 5a     | a):         |                                       |                |                  |               |                     |                  |             |               |      |
| Metabo   | olic daii           | ns (Table                | e 5). Wa  | atts         |             |                                       |                |                  |               |                     |                  |             |               |      |
|          | Jan                 | Feb                      | Mar       | Apr          | May         | Jun                                   | Jul            | Aug              | Sep           | Oct                 | Nov              | Dec         |               |      |
| (66)m=   | 85.98               | 85.98                    | 85.98     | 85.98        | 85.98       | 85.98                                 | 85.98          | 85.98            | 85.98         | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66) |
| Lightin  | g gains             | (calcula                 | ted in A  | ppendix      | L, equat    | ion L9                                | or L9a), a     | lso see          | Table 5       |                     |                  |             |               |      |
| (67)m=   | 2 <mark>9.11</mark> | 25.86                    | 21.03     | 15.92        | 11.9        | 10.05                                 | 10.86          | 14.11            | 18.94         | 24.05               | 28.07            | 29.92       | 1             | (67) |
| Applia   | nces ga             | ains (ca <mark>lc</mark> | ulated    | n Appen      | dix L, ea   | uation                                | L13 or L1      | 3a), also        | see Ta        | ble 5               |                  |             |               |      |
| (68)m=   | 149.83              | 151.39                   | 147.47    | 139.13       | 128.6       | 118.7                                 | 112.09         | 110.54           | 114.45        | 122.8               | 133.32           | 143.22      | ]             | (68) |
| Cookin   | g gains             | s (calcula               | ted in /  | Appendix     | L, equat    | tion L1                               | 5 or L15a      | ), also s        | ee Table      | 5                   |                  |             | ,             |      |
| (69)m=   | 31.6                | 31.6                     | 31.6      | 31.6         | 31.6        | 31.6                                  | 31.6           | 31.6             | 31.6          | 31.6                | 31.6             | 31.6        | ]             | (69) |
| Pumps    | and fa              | ns gains                 | (Table    | 5a)          |             |                                       |                |                  | 1             |                     |                  |             |               |      |
| (70)m=   | 0                   | 0                        | 0         | 0            | 0           | 0                                     | 0              | 0                | 0             | 0                   | 0                | 0           | ]             | (70) |
| Losses   | s e.q. e            | vaporatio                | n (neg    | ative valu   | ues) (Tab   | le 5)                                 | 1              | ļ                | 1             | ļ                   | 1                | Į           | 1             |      |
| (71)m=   | -68.78              | -68.78                   | -68.78    | -68.78       | -68.78      | -68.78                                | -68.78         | -68.78           | -68.78        | -68.78              | -68.78           | -68.78      | ]             | (71) |
| Water    | heatinc             | ı gains (T               | able 5    |              |             | 1                                     |                |                  | Į             | <u> </u>            |                  |             | 1             |      |
| (72)m=   | 79.72               | 77.99                    | 74.39     | 69.49        | 66.32       | 61.84                                 | 58.04          | 62.91            | 64.64         | 69.71               | 75.43            | 77.99       | ]             | (72) |
| Total i  | nterna              | l gains =                | I         |              |             | ـــــــــــــــــــــــــــــــــــــ |                | ו<br>1 + (68)m - | + (69)m +     | l<br>(70)m + (7     | 1<br>71)m + (72) | m           | 1             |      |
| (73)m=   | 307.46              | 304.02                   | 291.68    | 273.33       | 255.61      | 239.3                                 | 3 229.78       | 236.35           | 246.83        | 265.35              | 285.61           | 299.93      | 1             | (73) |
| 6. Sol   | lar gain            | s:                       | 1         |              | 1           | 1                                     | 1              | 1                | 1             |                     | 1                |             | 1             |      |
| Solar g  | ains are            | calculated               | using sol | ar flux fron | n Table 6a  | and ass                               | ociated equa   | ations to co     | onvert to th  | ne applical         | ble orientat     | ion.        |               |      |
| Orienta  | ation:              | Access F                 | actor     | Area         | a           | F                                     | lux            |                  | g_            |                     | FF               |             | Gains         |      |
|          |                     | Table 6d                 |           | m²           |             | Т                                     | able 6a        | Т                | Table 6b      | Т                   | able 6c          |             | (W)           |      |
| East     | 0.9x                | 1                        |           | <b>(</b> 1.  | 67          | x                                     | 19.64          | x                | 0.85          | x                   | 0.7              | =           | 13.52         | (76) |
| East     | 0.9x                | 1                        | ;         | (1.          | 67          | ×                                     | 38.42          | x                | 0.85          | x                   | 0.7              | =           | 26.46         | (76) |
| East     | 0.9x                | 1                        |           | < <u> </u>   | 67          | x                                     | 63.27          | x 🗌              | 0.85          | x                   | 0.7              | =           | 43.57         | (76) |
| East     | 0.9x                | 1                        |           | ( 1.         | 67          | x                                     | 92.28          | x 🗌              | 0.85          | x                   | 0.7              | =           | 63.54         | (76) |
| East     | 0.9x                | 1                        |           | (1.          | 67          | x                                     | 113.09         | ) × [            | 0.85          | ×                   | 0.7              | =           | 77.88         | (76) |

| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 1                | 15.77         | x      | 0.85                |           | x     | 0.7            |        | =        | 79.72 | (76) |
|---------|------------------------|------------------------|--------|------------------|-----------|----------|------------|------------------|---------------|--------|---------------------|-----------|-------|----------------|--------|----------|-------|------|
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 1                | 10.22         | x      | 0.85                |           | x     | 0.7            |        | = [      | 75.9  | (76) |
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 9                | 94.68         | x      | 0.85                |           | x     | 0.7            |        | = [      | 65.19 | (76) |
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 7                | '3.59         | x      | 0.85                |           | x     | 0.7            |        | = [      | 50.67 | (76) |
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 4                | 5.59          | x      | 0.85                |           | x     | 0.7            |        | = [      | 31.39 | (76) |
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 2                | 24.49         | x      | 0.85                |           | x     | 0.7            |        | = [      | 16.86 | (76) |
| East    | 0.9x                   | 1                      |        | x                | 1.6       | 7        | x          | 1                | 6.15          | x      | 0.85                |           | x     | 0.7            |        | = [      | 11.12 | (76) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 1                | 9.64          | x      | 0.85                |           | x     | 0.7            |        | = [      | 6.8   | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 3                | 88.42         | x      | 0.85                |           | x     | 0.7            |        | = [      | 13.31 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 6                | 3.27          | x      | 0.85                |           | x     | 0.7            |        | = [      | 21.92 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | g                | 92.28         | x      | 0.85                |           | x     | 0.7            |        | = [      | 31.96 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 1                | 13.09         | x      | 0.85                |           | x     | 0.7            |        | = [      | 39.17 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 1                | 15.77         | x      | 0.85                |           | x     | 0.7            |        | = [      | 40.1  | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 1                | 10.22         | x      | 0.85                |           | x     | 0.7            |        | = [      | 38.18 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | g                | 94.68         | x      | 0.85                |           | x     | 0.7            |        | = [      | 32.79 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 7                | '3.59         | x      | 0.85                |           | x     | 0.7            |        | = [      | 25.49 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 4                | 5.59          | x      | 0.85                |           | x     | 0.7            |        | = [      | 15.79 | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 2                | 24.49         | х      | 0.85                |           | х     | 0.7            |        | =[       | 8.48  | (80) |
| West    | 0.9x                   | 0.77                   |        | x                | 0.8       | 4        | x          | 1                | 6.15          | x      | 0.85                |           | x     | 0.7            |        | = [      | 5.59  | (80) |
|         |                        |                        |        |                  |           |          |            |                  |               |        |                     |           |       |                |        |          |       |      |
| Solar - | <mark>gain</mark> s in | watts, <mark>ca</mark> | alcula | ated             | for eacl  | n mon    | th         |                  |               | (83)m  | n = Sum(74)         | )m(8      | 82)m  |                |        |          |       |      |
| (83)m=  | 20.33                  | 39.76                  | 65.4   | 19               | 95.51     | 117.0    | 5 1        | 19.82            | 114.07        | 97.    | 99 76.1             | 6 4       | 7.18  | 25.35          | 16.7   | 72       |       | (83) |
| Total ( | gains – i              | nternal a              | ind so | olar             | (84)m =   | : (73)n  | ו + (<br>ד | 83)m             | , watts       | r      |                     |           |       | _              | ·      |          |       |      |
| (84)m=  | 327.78                 | 343.79                 | 357.   | 16               | 368.84    | 372.6    |            | 359.2            | 343.85        | 334    | .34 322.9           | 99 3      | 12.53 | 3 310.96       | 316.   | .64      |       | (84) |
| 7. Me   | ean inter              | nal temp               | oeratu | ure (            | heating   | seaso    | on)        |                  |               |        |                     |           |       |                |        | _        |       |      |
| Tem     | perature               | during h               | eatin  | ig pe            | eriods ir | the li   | ving       | area             | from Tab      | ole 9  | , Th1 (°C)          | )         |       |                |        |          | 21    | (85) |
| Utilis  | ation fac              | tor for g              | ains f | for li           | ving are  | ea, h1,  | m (s       | ee Ta            | ble 9a)       |        |                     |           |       |                |        |          |       |      |
|         | Jan                    | Feb                    | Ma     | ar               | Apr       | Ma       | /          | Jun              | Jul           | A      | ug Se               | ep 📃      | Oct   | Nov            | De     | ec       |       |      |
| (86)m=  | 1                      | 1                      | 1      |                  | 1         | 0.99     |            | 0.99             | 0.97          | 0.9    | 0.99                | 9         | 1     | 1              | 1      |          |       | (86) |
| Mear    | n interna              | l temper               | ature  | in li            | iving are | ea T1    | (follo     | ow ste           | ps 3 to 7     | 7 in T | able 9c)            |           |       |                |        |          |       |      |
| (87)m=  | 17.82                  | 17.97                  | 18.3   | 31               | 18.84     | 19.41    |            | 20               | 20.38         | 20.    | 34 19.8             | 37 1      | 9.14  | 18.42          | 17.8   | 33       |       | (87) |
| Tem     | perature               | during h               | eatin  | ig pe            | eriods ir | n rest o | of dv      | velling          | from Ta       | able 9 | 9, Th2 (°0          | C)        |       |                |        |          |       |      |
| (88)m=  | 18.41                  | 18.42                  | 18.4   | 43               | 18.47     | 18.48    |            | 18.53            | 18.53         | 18.    | 54 18.5             | 51 1      | 8.48  | 18.47          | 18.4   | 45       |       | (88) |
| Utilis  | ation fac              | tor for a              | ains f | for re           | est of d  | wellinc  | . h2       | .m (se           | e Table       | 9a)    |                     |           |       | •              |        |          |       |      |
| (89)m=  | 1                      | 1                      | 1      |                  | 0.99      | 0.99     |            | 0.96             | 0.84          | 0.8    | 37 0.97             | 7 (       | 0.99  | 1              | 1      |          |       | (89) |
| Mear    | interna                | l temper               | ature  | in t             | he rest   | of dwe   |            | 1 T2 (f          | n<br>Now ste  |        | to 7 in T           | ahle (    | Ac)   |                |        |          |       |      |
| (90)m=  | 15.77                  | 15.92                  | 16.2   | 27               | 16.82     | 17.4     |            | 18.01            | 18.37         | 18.    | 34 17.8             | 37 1      | 7.14  | 16.4           | 15.7   | 79       |       | (90) |
|         | L                      | I                      | -      |                  |           |          |            |                  | I             |        |                     | fLA       | = Liv | ving area ÷ (4 | 4) =   | $\dashv$ | 0.56  | (91) |
| Maar    | interne                | Itomner                | oture  | (for             | thouch    | olo d.:  |            | (a) f            | ΙΛ <b>Τ</b> 4 | . /4   | fl ^ \              | то        |       |                |        | L        | -     | ` ′  |
| (92)m-  | 16.93                  |                        |        | $\frac{101}{12}$ | 17.96     | 18 54    |            | iy) = T<br>19.14 | LA X 11       | + (1   | - ILA) X<br>47   10 | $1 \ge 1$ | 8 27  | 17 54          | 16 (   | 94       |       | (92) |
| 102/11- | 10.00                  | 1 17.00                |        | - 1              | 11.00     | 10.04    |            |                  | 10.01         | I 10.  |                     |           | 0.21  | 1 17.07        | 1 10.0 |          |       |      |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 16.93                       | 17.08                 | 17.42                 | 17.96                  | 18.54                   | 19.14                 | 19.51         | 19.47      | 19          | 18.27                 | 17.54        | 16.94       |           | (93)   |
|-----------------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|-----------------------|---------------|------------|-------------|-----------------------|--------------|-------------|-----------|--------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                        |                         |                       |               |            |             |                       |              |             |           |        |
| Set T<br>the ut       | i to the r<br>tilisation    | mean int<br>factor fo | ernal ter             | nperatur<br>using Ta   | re obtain<br>Ible 9a    | ed at ste             | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(              | 76)m an      | d re-calc   | ulate     |        |
|                       | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                   | Jul           | Aug        | Sep         | Oct                   | Nov          | Dec         |           |        |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | :                      |                         |                       |               |            |             |                       |              |             |           |        |
| (94)m=                | 1                           | 1                     | 1                     | 0.99                   | 0.99                    | 0.97                  | 0.93          | 0.94       | 0.98        | 0.99                  | 1            | 1           |           | (94)   |
| Usefu                 | ıl gains,                   | hmGm                  | , W = (94             | 4)m x (84              | 4)m                     |                       |               |            |             |                       |              |             |           |        |
| (95)m=                | 327.09                      | 342.89                | 355.83                | 366.5                  | 367.85                  | 348.07                | 318.4         | 313.43     | 316.45      | 310.54                | 310.05       | 316.05      |           | (95)   |
| Month                 | nly avera                   | age exte              | ernal tem             | perature               | e from Ta               | able 8                |               |            |             |                       |              |             |           |        |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                  | 16.6          | 16.4       | 14.1        | 10.6                  | 7.1          | 4.2         |           | (96)   |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe               | erature,                | _m , W =              | =[(39)m :     | x [(93)m   | – (96)m     | ]                     |              |             |           |        |
| (97)m=                | 3332.06                     | 3201.23               | 2862.09               | 2334.25                | 1755.12                 | 1144.26               | 733.51        | 771.75     | 1244.54     | 1968.7                | 2699.55      | 3315.79     |           | (97)   |
| Space                 | e heatin                    | g require             | ement fo              | r each m               | nonth, k\               | Wh/mont               | th = 0.02     | 24 x [(97) | )m – (95    | )m] x (4 <sup>-</sup> | 1)m          |             |           |        |
| (98)m=                | 2235.7                      | 1920.8                | 1864.66               | 1416.78                | 1032.13                 | 0                     | 0             | 0          | 0           | 1233.67               | 1720.44      | 2231.8      |           | -      |
|                       |                             |                       |                       |                        |                         |                       |               | Tota       | l per year  | (kWh/year             | ) = Sum(9    | 8)15,912 =  | 13655.97  | (98)   |
| Space                 | e heatin                    | g require             | ement in              | kWh/m²                 | /year                   |                       |               |            |             |                       |              |             | 267.76    | (99)   |
| 9b. En                | ergy rec                    | quiremer              | nts – Cor             | nmunity                | heating                 | scheme                | )             |            |             |                       |              |             |           | -      |
| This pa               | art is use                  | ed for sp             | ace hea               | ting, spa              | ace cooli               | ng or wa              | ater heat     | ing prov   | ided by a   | a c <mark>omm</mark>  | unity sch    | neme.       |           |        |
| Fractic               | on of spa                   | ace heat              | from se               | condary/               | /supplen                | nentary l             | neating (     | Table 1    | 1) '0' if n | one                   |              |             | 0         | (301)  |
| Fractic               | on of spa                   | ace heat              | from co               | <mark>mmu</mark> nity  | , syste <mark>m</mark>  | 1 - (301              | 1) =          |            |             |                       |              |             | 1         | (302)  |
| The con               | nmunity so                  | cheme may             | y obtain he           | eat from se            | everal sour             | ces. The p            | orocedure     | allows for | CHP and u   | up to four (          | other heat   | sources; ti | he latter | 1      |
| includes              | <mark>bo</mark> ilers, h    | eat pumps             | s, geothern           | nal and wa             | aste heat f             | rom powei             | r stations.   | See Apper  | ndix C.     |                       |              |             |           | -      |
| Fractic               | on of hea                   | at from C             | Commun                | ity boiler             | s                       |                       |               |            |             |                       |              |             | 1         | (303a) |
| Fractic               | on of tota                  | al space              | heat fro              | m Comn                 | nunity bo               | oilers                |               |            |             | (3                    | 02) x (303   | a) =        | 1         | (304a) |
| Factor                | for cont                    | trol and o            | charging              | method                 | (Table 4                | 4c(3)) fo             | r commu       | inity hea  | iting syst  | tem                   |              |             | 1.05      | (305)  |
| Distrib               | ution los                   | ss factor             | (Table 1              | 2c) for c              | commun                  | ity heatir            | ng syste      | m          |             |                       |              |             | 1.1       | (306)  |
| Space                 | heating                     | g                     |                       |                        |                         |                       |               |            |             |                       |              |             | kWh/year  | 1      |
| Annua                 | l space                     | heating               | requirem              | nent                   |                         |                       |               |            |             |                       |              |             | 13655.97  |        |
| Space                 | heat fro                    | om Comr               | munity b              | oilers                 |                         |                       |               |            | (98) x (30  | 04a) x (30            | 5) x (306) = | =           | 15772.65  | (307a) |
| Efficier              | ncy of se                   | econdary              | y/supple              | mentary                | heating                 | system                | in % (fro     | m Table    | 4a or A     | ppendix               | E)           |             | 0         | (308   |
| Space                 | heating                     | require               | ment froi             | m secon                | dary/sup                | plemen                | tary syst     | em         | (98) x (30  | 01) x 100 -           | ÷ (308) =    |             | 0         | (309)  |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | <b>)</b><br>neating r | equirem               | ent                    |                         |                       |               |            |             |                       |              |             | 1831.51   | 1      |
| lf DHW<br>Water       | / from c<br>heat fro        | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                       |               |            | (64) x (30  | 03a) x (30            | 5) x (306) = | =           | 2115.39   | (310a) |
| Electri               | city used                   | d for hea             | at distribu           | ution                  |                         |                       |               | 0.01       | × [(307a).  | (307e) +              | (310a)(      | 310e)] =    | 178.88    | (313)  |
| Coolin                | g Syster                    | m Energ               | y Efficiei            | ncy Ratio              | D                       |                       |               |            |             |                       |              |             | 0         | (314)  |
| Space                 | cooling                     | (if there             | is a fixe             | d cooling              | g system                | n, if not e           | enter 0)      |            | = (107) ÷   | (314) =               |              |             | 0         | (315)  |
| Electri<br>mecha      | city for p<br>inical ve     | oumps aintilation     | nd fans v<br>- balanc | within dw<br>ed, extra | velling (1<br>act or po | able 4f)<br>sitive in | :<br>put from | outside    |             |                       |              |             | 0         | (330a) |

| warm air heating system fans                                                                                         |                             |                               |              | 0                | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------|------------------|--------|
| pump for solar water heating                                                                                         |                             |                               |              | 0                | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  |              | 0                | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               |              | 514.14           | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |              |                  |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emis<br>kg C | sions<br>O2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | el           | 65               | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 10b)] x 100 ÷ (367b) x      | 0                             | =            | 5944.33          | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | -            | 92.84            | (372)  |
| Total CO2 associated with community systems (3                                                                       | 63)(366) + (368)(372)       |                               | -            | 6037.17          | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 09) x                       | 0                             | =            | 0                | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | -            | 0                | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 73) + (374) + (375) =       |                               |              | 6037.17          | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | g (331)) x                  | 0.52                          | -            | 0                | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 32))) x                     | 0.52                          | =            | 266.84           | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               |              | 6304.01          | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               |              | 123.61           | (384)  |
| El rating (section 14)                                                                                               |                             |                               |              | 27.35            | (385)  |

|                                                                                                                                                                                                                       |                                                                                                                                                            |                                                           | User D                                            | etails:                                       |                                     |                             |                       |                      |                                       |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------|-----------------------|----------------------|---------------------------------------|----------------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 207                                                                                                                                            | 12                                                        |                                                   | Stroma<br>Softwa                              | a Num<br>ire Ver                    | ber:<br>sion:               |                       | Versio               | n: 1.0.3.15                           |                            |
| A daha a a                                                                                                                                                                                                            | London                                                                                                                                                     | Pro                                                       | operty A                                          | Address:                                      | Unit 12                             |                             |                       |                      |                                       |                            |
| Address :                                                                                                                                                                                                             | , LUNUUN                                                                                                                                                   |                                                           |                                                   |                                               |                                     |                             |                       |                      |                                       |                            |
| Basement                                                                                                                                                                                                              | 310113.                                                                                                                                                    |                                                           | Area                                              | 1 <b>(m²)</b><br>55                           | (1a) x                              | <b>Av. He</b>               | <b>ight(m)</b><br>.17 | (2a) =               | <b>Volume(m<sup>3</sup></b><br>119.35 | <b>)</b><br>(3a)           |
| Total floor area TFA = (1a)                                                                                                                                                                                           | )+(1b)+(1c)+(1d)+(1e                                                                                                                                       | e)+(1n)                                                   |                                                   | 55                                            | (4)                                 |                             |                       |                      |                                       |                            |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                                            |                                                           |                                                   |                                               | (3a)+(3b)                           | +(3c)+(3c                   | l)+(3e)+              | .(3n) =              | 119.35                                | (5)                        |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                                            |                                                           |                                                   | _                                             |                                     |                             |                       |                      |                                       |                            |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | $\begin{array}{c c} main & s \\ heating & l \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$                                                         | econdary<br>heating<br>0<br>0                             | , + [                                             | 0<br>0                                        | ] = [                               | <b>total</b> 0 0            | x 4                   | 40 =<br>20 =         | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b)          |
| Number of intermittent fan                                                                                                                                                                                            | s                                                                                                                                                          |                                                           |                                                   |                                               |                                     | 2                           | <b>x</b> ′            | 10 =                 | 20                                    | (7a)                       |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                                            |                                                           |                                                   |                                               | Γ                                   | 0                           | x ′                   | 10 =                 | 0                                     | (7b)                       |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                                         |                                                           |                                                   |                                               | Ľ                                   | 0                           | X 4                   | 40 =                 | 0                                     | (7c)                       |
|                                                                                                                                                                                                                       |                                                                                                                                                            |                                                           |                                                   |                                               |                                     |                             |                       | Air ch               | anges per ho                          | our                        |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | s, flues and fans = (<br>en carried out or is intend<br>e dwelling (ns)<br>25 for steel or timber<br>sent, use the value corres<br>is); if equal user 0.35 | a)+(6b)+(7a<br>ed, proceed<br>frame or (<br>sponding to t | )+(7b)+(7<br>to (17), o<br>0.35 for<br>the greate | c) =<br>htherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to (<br>uction | (16)<br>[(9)          | ÷ (5) =<br>-1]x0.1 = | 0.17 0 0 0 0                          | (8)<br>(9)<br>(10)<br>(11) |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (unsea                                                                                                                                      | led) or 0.1                                               | (seale                                            | d), else                                      | enter 0                             |                             |                       |                      | 0                                     | (12)                       |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter 0                                                                                                                                      |                                                           |                                                   |                                               |                                     |                             |                       |                      | 0                                     | (13)                       |
| Percentage of windows                                                                                                                                                                                                 | and doors draught s                                                                                                                                        | tripped                                                   |                                                   |                                               |                                     |                             |                       |                      | 0                                     | (14)                       |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                                            |                                                           | (                                                 | 0.25 - [0.2                                   | x (14) ÷ 1                          | = [00                       |                       |                      | 0                                     | (15)                       |
| Infiltration rate                                                                                                                                                                                                     | 50 1. 1                                                                                                                                                    |                                                           |                                                   | (8) + (10) -                                  | + (11) + (1                         | 2) + (13) ·                 | + (15) =              |                      | 0                                     | (16)                       |
| Air permeability value, q                                                                                                                                                                                             | 50, expressed in cul                                                                                                                                       | DIC metres $(7) \div 201+(8)$                             | per ho                                            | ur per so<br>so (18) – (                      | quare m                             | etre of e                   | envelope              | area                 | 20                                    | (17)                       |
| Air permeability value applies                                                                                                                                                                                        | if a pressurisation test ha                                                                                                                                | s been done                                               | or a dec                                          | iree air nei                                  | meability                           | is heina u                  | sed                   |                      | 1.17                                  | (18)                       |
| Number of sides sheltered                                                                                                                                                                                             |                                                                                                                                                            |                                                           | or a dog                                          |                                               | incusinty i                         | o bonng u                   |                       |                      | 2                                     | (19)                       |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                                            |                                                           |                                                   | (20) = 1 - [                                  | 0.075 x (1                          | 9)] =                       |                       |                      | 0.85                                  | (20)                       |
| Infiltration rate incorporatir                                                                                                                                                                                        | ng shelter factor                                                                                                                                          |                                                           |                                                   | (21) = (18)                                   | x (20) =                            |                             |                       |                      | 0.99                                  | (21)                       |
| Infiltration rate modified for                                                                                                                                                                                        | r monthly wind spee                                                                                                                                        | d                                                         |                                                   |                                               |                                     |                             | _                     |                      |                                       |                            |
| Jan Feb M                                                                                                                                                                                                             | <i>l</i> lar Apr May                                                                                                                                       | Jun                                                       | Jul                                               | Aug                                           | Sep                                 | Oct                         | Nov                   | Dec                  |                                       |                            |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                                            |                                                           |                                                   |                                               |                                     |                             |                       |                      |                                       |                            |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | .9 4.4 4.3                                                                                                                                                 | 3.8                                                       | 3.8                                               | 3.7                                           | 4                                   | 4.3                         | 4.5                   | 4.7                  |                                       |                            |
| Wind Factor (22a)m = (22)                                                                                                                                                                                             | )m ÷ 4                                                                                                                                                     |                                                           |                                                   | _                                             |                                     |                             |                       |                      | I                                     |                            |
| (22a)m= 1.27 1.25 1.                                                                                                                                                                                                  | 23 1.1 1.08                                                                                                                                                | 0.95                                                      | 0.95                                              | 0.92                                          | 1                                   | 1.08                        | 1.12                  | 1.18                 |                                       |                            |

| Adjuste                          | d infiltra              | tion rat                   | e (allowi                  | ng for sh                | elter an      | d wind s    | speed) =    | (21a) x                       | (22a)m              |                |                       |                      |                    |              |
|----------------------------------|-------------------------|----------------------------|----------------------------|--------------------------|---------------|-------------|-------------|-------------------------------|---------------------|----------------|-----------------------|----------------------|--------------------|--------------|
|                                  | 1.27                    | 1.24                       | 1.22                       | 1.09                     | 1.07          | 0.94        | 0.94        | 0.92                          | 0.99                | 1.07           | 1.12                  | 1.17                 |                    |              |
| Calculā                          | te effect               | tive air                   | change i                   | rate for t               | he appli      | cable ca    | se          |                               |                     |                |                       | -                    |                    |              |
|                                  | ust air ba              |                            | using App                  | andix N (2               | 3h) - (23a    | ) x Emv (e  | auation (I  | N5)) othe                     | nuisa (23h          | (232)          |                       | l                    | 0                  | (238)        |
| lf balar                         | acod with               | hoot rock                  |                            |                          | ollowing f    | or in uso f | actor (from | a Tabla 4b                    | ) _                 | <i>(</i> 200)  |                       | l                    | 0                  | (23D)        |
|                                  |                         |                            |                            |                          |               |             |             |                               | ) = (0)             |                | 00h) [                | 1 (00 a)             | 0                  | (230)        |
| a) if b                          |                         |                            | anical ve                  |                          |               |             |             | HR) (248                      | a m = (2)           | 20)m + (.<br>1 | 23D) × [ <sup>-</sup> | 1 - (23C)            | ÷ 100]             | (242)        |
| (24a)m=                          | •                       | 0                          | 0                          |                          | 0<br>         | 0           | 0           |                               |                     |                |                       | 0                    |                    | (24a)        |
| מזו (מ<br>סיוו (מ                |                         |                            | anicai ve                  |                          | without       | neat rec    | covery (r   | VIV) (240<br>T                | m = (22)            | 2b)m + (2<br>T | 230)                  |                      |                    | (246)        |
| (24b)m=                          | 0                       | 0                          | 0                          | 0                        | 0             | 0           | 0           | 0                             | 0                   | 0              | 0                     | 0                    |                    | (240)        |
| C) It w                          | vhole ho                |                            | tract ven                  | itilation c              | or positiv    | e input v   | ventilatio  | on from (                     | outside $a = 0$     | 5 v (23h       |                       |                      |                    |              |
| (24c)m=                          | 0                       | 0.57                       | 0                          |                          | ) = (200<br>0 |             | 0           | $\frac{0}{0} = \frac{221}{0}$ |                     |                | ,,<br>0               | 0                    |                    | (24c)        |
|                                  |                         | ontilati                   |                            |                          | o pocitiv     |             | vontilativ  |                               | oft                 |                | ů                     | Ů                    |                    | ( <b>/</b>   |
| if                               | (22b)m                  | = 1, th                    | en (24d)                   | m = (22k)                | b)m othe      | rwise (2    | 24d)m =     | 0.5 + [(2                     | 2b)m <sup>2</sup> x | 0.5]           |                       |                      |                    |              |
| (24d)m=                          | 1.27                    | 1.24                       | 1.22                       | 1.09                     | 1.07          | 0.94        | 0.94        | 0.92                          | 0.99                | 1.07           | 1.12                  | 1.17                 |                    | (24d)        |
| Effect                           | tive air c              | change                     | rate - er                  | nter (24a                | ) or (24b     | ) or (24    | c) or (24   | d) in bo                      | k (25)              |                |                       |                      |                    |              |
| (25)m=                           | 1.27                    | 1.24                       | 1.22                       | 1.09                     | 1.07          | 0.94        | 0.94        | 0.92                          | 0.99                | 1.07           | 1.12                  | 1.17                 |                    | (25)         |
|                                  | 4.100000                |                            |                            |                          |               |             |             |                               |                     |                |                       |                      |                    | _            |
| 3. Hea                           |                         |                            | eat loss (                 |                          | er:           | Not Ar      |             | Uyal                          |                     |                |                       | kyoluo               |                    |              |
| ELEW                             | ENI                     | area                       | (m²)                       | openin                   | gs<br>2       | A,r         | ea<br>n²    | W/m2                          | 2K                  | A X U<br>(W/I  | <)                    | kJ/m <sup>2</sup> ·ł | ;<br><             | kJ/K         |
| Doo <mark>rs</mark>              |                         |                            |                            |                          |               | 1.9         | x           | 1.4                           | =                   | 2.66           |                       |                      |                    | (26)         |
| Window                           | <mark>/s</mark> Type    | 1                          |                            |                          |               | 4.6         | x1          | /[1/( 1.6 )+                  | 0.04] =             | 6.92           | F                     |                      |                    | (27)         |
| Window                           | /s Type                 | 2                          |                            |                          |               | 1.87        | <b>x</b> 1  | /[1/( 4.8 )+                  | 0.04] =             | 7.53           | F                     |                      |                    | (27)         |
| Window                           | /s Type                 | 3                          |                            |                          |               | 0.65        |             | /[1/( 4.8 )+                  | 0.04] =             | 2.62           | Ę                     |                      |                    | (27)         |
| Window                           | /s Type                 | 4                          |                            |                          |               | 1.87        |             | /[1/( 1.6 )+                  | 0.04] =             | 2.81           |                       |                      |                    | (27)         |
| Floor                            |                         |                            |                            |                          |               | 55          | ×           | 0.93                          |                     | 51.15          | Ξ r                   |                      |                    | (28)         |
| Walls T                          | ype1                    | 28.                        | 9                          | 8.34                     |               | 20.56       | x           | 2.1                           | =                   | 43.18          | = i                   |                      | $\dashv$           | (29)         |
| Walls T                          | vpe2                    | 78                         | 1                          | 2.55                     |               | 5 26        |             | 21                            |                     | 11.05          |                       |                      | $\dashv$           | (29)         |
| Total ar                         | ea of el                | ements                     | . m <sup>2</sup>           |                          |               | 91 71       |             |                               |                     |                | L                     |                      |                    | (31)         |
| Partv w                          | all                     |                            |                            |                          |               | 27.9        |             | 0                             |                     | 0              |                       |                      |                    | (32)         |
| Party w                          | all                     |                            |                            |                          |               | 1.13        | x           | 0                             |                     | 0              |                       |                      | $\dashv$           | (32)         |
| * for wind                       | lows and r              | oof wind                   | ows, use e                 | effective wil            | ndow U-va     | lue calcul  | ated using  | formula 1                     | <br>/[(1/U-valu     | ue)+0.04] a    | us given in           | paragraph            | 3.2                | 、 /          |
| ** include                       | the areas               | s on both                  | sides of in                | nternal wall             | s and part    | itions      |             |                               |                     |                |                       |                      |                    |              |
| Fabric h                         | neat loss               | s, W/K :                   | = S (A x                   | U)                       |               |             |             | (26)(30                       | ) + (32) =          |                |                       |                      | 127.9 <sup>-</sup> | 1 (33)       |
| Heat ca                          | pacity C                | Cm = S                     | (A x k )                   |                          |               |             |             |                               | ((28).              | (30) + (32     | 2) + (32a).           | (32e) =              | 0                  | (34)         |
| Therma                           | l mass j                | barame                     | eter (TMF                  | P = Cm ÷                 | - TFA) in     | ı kJ/m²K    |             |                               | Indica              | tive Value     | : High                |                      | 450                | (35)         |
| For desig<br>can be us           | n assessr<br>sed instea | ments wh<br>d of a de      | ere the de<br>tailed calci | tails of the<br>ulation. | constructi    | ion are not | t known pr  | recisely the                  | e indicative        | e values of    | TMP in Ta             | able 1f              |                    |              |
| Therma                           | I bridge                | s : S (L                   | x Y) cal                   | culated u                | using Ap      | pendix ł    | <           |                               |                     |                |                       |                      | 14.4               | (36)         |
| <i>if details o</i><br>Total fal | of thermal<br>bric hea  | <i>bridging</i><br>It loss | are not kn                 | own (36) =               | : 0.15 x (3   | 1)          |             |                               | (33) +              | · (36) =       |                       | [                    | 142.3              | 1 (37)       |
|                                  |                         |                            |                            |                          |               |             |             |                               |                     |                |                       | I                    |                    | ` ` <i>`</i> |

| Ventila                | tion hea              | t loss ca                 | alculated              | monthl                   | y                          |             | -                 |                    | (38)m                 | = 0.33 × (  | 25)m x (5)             |          |         |      |
|------------------------|-----------------------|---------------------------|------------------------|--------------------------|----------------------------|-------------|-------------------|--------------------|-----------------------|-------------|------------------------|----------|---------|------|
|                        | Jan                   | Feb                       | Mar                    | Apr                      | May                        | Jun         | Jul               | Aug                | Sep                   | Oct         | Nov                    | Dec      |         |      |
| (38)m=                 | 49.84                 | 48.86                     | 47.88                  | 43                       | 42.02                      | 37.2        | 37.2              | 36.29              | 39.09                 | 42.02       | 43.97                  | 45.93    |         | (38) |
| Heat tr                | ansfer c              | oefficier                 | nt, W/K                |                          |                            |             |                   |                    | (39)m                 | = (37) + (3 | 38)m                   |          |         |      |
| (39)m=                 | 192.15                | 191.17                    | 190.19                 | 185.31                   | 184.33                     | 179.51      | 179.51            | 178.6              | 181.4                 | 184.33      | 186.28                 | 188.24   |         |      |
|                        | -                     |                           |                        |                          |                            | -           | -                 |                    |                       | Average =   | Sum(39)1               | 12 /12=  | 185.08  | (39) |
| Heat lo                | ss para               | meter (H                  | HLP), W                | /m²K                     | 0.05                       | 0.00        | 0.00              | 0.05               | (40)m                 | = (39)m ÷   | · (4)                  | 0.40     |         |      |
| (40)m=                 | 3.49                  | 3.48                      | 3.46                   | 3.37                     | 3.35                       | 3.26        | 3.26              | 3.25               | 3.3                   | 3.35        | 3.39                   | 3.42     | 2.07    |      |
| Numbe                  | r of day              | rs in mor                 | nth (Tab               | le 1a)                   |                            |             |                   |                    | ,                     | Average =   | Sum(40)1.              | 12 / 12= | 3.37    |      |
|                        | Jan                   | Feb                       | Mar                    | Apr                      | May                        | Jun         | Jul               | Aug                | Sep                   | Oct         | Nov                    | Dec      |         |      |
| (41)m=                 | 31                    | 28                        | 31                     | 30                       | 31                         | 30          | 31                | 31                 | 30                    | 31          | 30                     | 31       |         | (41) |
| I                      |                       |                           |                        |                          |                            |             |                   | 1                  |                       |             |                        |          |         |      |
| 4 Wa                   | ter heat              | ina ener                  | .av reau               | irement <sup>.</sup>     |                            |             |                   |                    |                       |             |                        | kWh/ve   | ar:     |      |
|                        | tor noat              | ing onor                  | 971044                 |                          |                            |             |                   |                    |                       |             |                        |          |         |      |
|                        | ed occu               | ipancy, l                 | N<br>+ 1 76 v          | / [1 - ovo               | (_0 0003                   |             | -13 Ω             | )2)] ± 0 (         | 1013 v ( <sup>-</sup> | FEA _13     | 1.                     | 84       |         | (42) |
| if TF.                 | A £ 13.9              | 9, N = 1<br>9, N = 1      | + 1.70 X               | r [i - exh               | (-0.0003                   | 949 X (11   | A -13.9           | <i>)</i> 2)] + 0.0 | JU13 X (              | IFA - 13.   | .9)                    |          |         |      |
| Annual                 | averag                | e hot wa                  | ater usag              | ge in litre              | es per da                  | ay Vd,av    | erage =           | (25 x N)           | + 36                  |             | 77                     | .84      |         | (43) |
| Reduce                 | the annua<br>that 125 | l average<br>litres per l | hot water<br>person pe | usage by<br>r dav (all w | 5% if the a<br>ater use. I | lwelling is | designed t<br>Id) | to achieve         | a water us            | se target o | f                      |          |         |      |
|                        | lan                   | Ech                       | Mar                    |                          | May                        | lun         | /                 | <u> </u>           | Can                   | Oct         | Nev                    | Dee      |         |      |
| Hot wate               | Jan<br>r usage in     | rep<br>n litres per       | dav for ea             | Apr<br>ach month         | Vd.m = fa                  | ctor from 1 | Table 1c x        | (43)               | Sep                   | Oct         | INOV                   | Dec      |         |      |
| (44)m-                 | 85.62                 | ,<br>82.51                | 70 30                  | 76.28                    | 73 17                      | 70.05       | 70.05             | 73 17              | 76.28                 | 70 30       | 82.51                  | 85.62    |         |      |
| (++)                   | 05.02                 | 02.01                     | 79.59                  | 70.20                    | 13.11                      | 70.03       | 10.00             | 75.17              | - 10.20               | $r_{0.00}$  | m(44)1 42 =            | 00.02    | 934.05  | (44) |
| Ener <mark>gy c</mark> | ontent of             | hot water                 | used - cal             | lculated mo              | onthly $= 4$ .             | 190 x Vd,r  | n x nm x E        | 0Tm / 3600         | kWh/mor               | oth (see Ta | bles 1b, 1             | c, 1d)   | 004.00  |      |
| (45)m=                 | 126.97                | 111.05                    | 114.6                  | 99. <mark>9</mark> 1     | 95.86                      | 82.72       | 76.65             | 87.96              | 89.01                 | 103.74      | 113.24                 | 122.97   |         |      |
|                        |                       |                           |                        |                          |                            |             |                   |                    | -                     | Fotal = Su  | m(45) <sub>112</sub> = | =        | 1224.68 | (45) |
| lf instant             | aneous w              | ater heatii               | ng at point            | t of use (no             | hot water                  | r storage), | enter 0 in        | boxes (46          | ) to (61)             |             |                        |          |         | _    |
| (46)m=                 | 19.05                 | 16.66                     | 17.19                  | 14.99                    | 14.38                      | 12.41       | 11.5              | 13.19              | 13.35                 | 15.56       | 16.99                  | 18.45    |         | (46) |
| storage                | storage               | IOSS:<br>o (litros)       | includir               |                          | alar or M                  |             | storado           | within or          | mayas                 | sol         |                        | 400      |         | (47) |
| If comr                | e volum               |                           | nd no ta               | ng any su                |                            | ntor 110    | litros in         | (A7)               |                       | 501         |                        | 160      |         | (47) |
| Otherw                 | ise if no             | stored                    | hot wate               | er (this in              | icludes i                  | nstantar    | eous co           | (47)<br>ombi boil  | ers) ente             | er '0' in ( | 47)                    |          |         |      |
| Water                  | storage               | loss:                     |                        | - ( · -                  |                            |             |                   |                    | /                     | (           | /                      |          |         |      |
| a) If m                | anufact               | urer's de                 | eclared I              | oss facto                | or is kno                  | wn (kWł     | n/day):           |                    |                       |             |                        | 0        |         | (48) |
| Tempe                  | rature fa             | actor fro                 | m Table                | 2b                       |                            |             |                   |                    |                       |             |                        | 0        |         | (49) |
| Energy                 | lost fro              | m water                   | storage                | e, kWh/ye                | ear                        |             |                   | (48) x (49)        | =                     |             | 1                      | 10       |         | (50) |
| b) If m                | anufact               | urer's de                 | eclared of footor fr   | cylinder l               | oss fact                   | or is not   | known:            |                    |                       |             |                        |          |         |      |
| If comr                | nunity h              | eating s                  | ee secti               | on $4.3$                 | e∠(kvv                     | n/iitie/ua  | iy)               |                    |                       |             | 0.                     | .02      |         | (51) |
| Volume                 | e factor              | from Tal                  | ble 2a                 | 011 1.0                  |                            |             |                   |                    |                       |             | 1.                     | .03      |         | (52) |
| Tempe                  | rature fa             | actor fro                 | m Table                | 2b                       |                            |             |                   |                    |                       |             | 0                      | .6       |         | (53) |
| Energy                 | lost fro              | m water                   | storage                | e, kWh/ye                | ear                        |             |                   | (47) x (51)        | x (52) x (            | 53) =       | 1.                     | .03      |         | (54) |
| Enter                  | (50) or (             | 54) in (5                 | 55)                    | ,                        |                            |             |                   |                    |                       |             | 1.                     | .03      |         | (55) |
| Water                  | storage               | loss cal                  | culated                | for each                 | month                      |             |                   | ((56)m = (         | 55) × (41)ı           | m           |                        |          |         |      |
| (56)m=                 | 32.01                 | 28.92                     | 32.01                  | 30.98                    | 32.01                      | 30.98       | 32.01             | 32.01              | 30.98                 | 32.01       | 30.98                  | 32.01    |         | (56) |

| If cylinde           | er contain | s dedicated | d solar sto | rage, (57)ı          | m = (56)m  | x [(50) – (           | H11)] ÷ (50              | 0), else (57  | 7)m = (56)  | m where (                 | H11) is fro | m Append    | ix H       |        |
|----------------------|------------|-------------|-------------|----------------------|------------|-----------------------|--------------------------|---------------|-------------|---------------------------|-------------|-------------|------------|--------|
| (57)m=               | 32.01      | 28.92       | 32.01       | 30.98                | 32.01      | 30.98                 | 32.01                    | 32.01         | 30.98       | 32.01                     | 30.98       | 32.01       |            | (57)   |
| Primar               | y circuit  | loss (an    | inual) fro  | om Table             | e 3        |                       |                          |               |             |                           |             | 0           |            | (58)   |
| Primar               | y circuit  | loss cal    | culated     | for each             | month (    | 59)m = (              | (58) ÷ 36                | 5 × (41)      | m           |                           |             |             |            |        |
| (mod                 | dified by  | factor fr   | rom Tab     | le H5 if t           | here is s  | olar wat              | er heatir                | ng and a      | cylinde     | r thermo                  | stat)       |             |            |        |
| (59)m=               | 23.26      | 21.01       | 23.26       | 22.51                | 23.26      | 22.51                 | 23.26                    | 23.26         | 22.51       | 23.26                     | 22.51       | 23.26       |            | (59)   |
| Combi                | loss ca    | lculated    | for each    | month (              | (61)m =    | (60) ÷ 36             | 65 × (41)                | )m            |             |                           |             |             |            |        |
| (61)m=               | 0          | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0           |            | (61)   |
| Total h              | eat req    | uired for   | water h     | eating ca            | alculated  | for eacl              | n month                  | (62)m =       | 0.85 × (    | (45)m +                   | (46)m +     | (57)m +     | (59)m + (6 | 61)m   |
| (62)m=               | 182.25     | 160.98      | 169.87      | 153.4                | 151.14     | 136.22                | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24      |            | (62)   |
| Solar DH             | HW input   | calculated  | using App   | endix G or           | Appendix   | H (negativ            | ve quantity              | /) (enter '0' | if no sola  | r contribut               | ion to wate | er heating) |            |        |
| (add a               | dditiona   | l lines if  | FGHRS       | and/or V             | WWHRS      | applies,              | , see Ap                 | pendix G      | 3)          |                           |             |             |            |        |
| (63)m=               | 0          | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0           |            | (63)   |
| Output               | from w     | ater hea    | ter         |                      |            |                       |                          |               |             |                           |             |             |            |        |
| (64)m=               | 182.25     | 160.98      | 169.87      | 153.4                | 151.14     | 136.22                | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24      |            |        |
|                      |            |             |             |                      |            |                       |                          | Outp          | out from wa | ater heate                | r (annual)₁ | 12          | 1875.5     | 2 (64) |
| Hea <mark>t g</mark> | ains fro   | m water     | heating,    | kWh/mo               | onth 0.2   | 5´[0.85               | × (45)m                  | + (61)m       | n] + 0.8 x  | (46)m                     | + (57)m     | + (59)m     | ]          |        |
| (65)m=               | 60.83      | 53.73       | 56.71       | 51. <mark>2</mark> 3 | 50.48      | 45.51                 | 44.1                     | 47.86         | 47.61       | 53.1                      | 55.66       | 59.5        |            | (65)   |
| inclu                | de (57)    | m in calc   | culation of | of (65)m             | only if c  | ylinder is            | s in th <mark>e</mark> c | dwelling      | or hot w    | ate <mark>r is f</mark> r | om com      | munity h    | eating     |        |
| 5. Int               | ernal ga   | ains (see   | Table 5     | and 5a               | ):         |                       |                          |               |             |                           |             |             |            |        |
| Metabo               | olic gain  | s (Table    | 5) Wat      | ts                   |            |                       |                          |               |             |                           |             |             |            |        |
| in o to to           | Jan        | Feb         | Mar         | Apr                  | May        | Jun                   | Jul                      | Aug           | Sep         | Oct                       | Nov         | Dec         |            |        |
| (66)m=               | 91.87      | 91.87       | 91.87       | 91. <mark>87</mark>  | 91.87      | 91.87                 | 91.87                    | 91.87         | 91.87       | 91.87                     | 91.87       | 91.87       |            | (66)   |
| Lightin              | g gains    | (calculat   | ted in Ap   | opendix              | L, equati  | on L9 oi              | r L9a), a                | lso see       | Table 5     |                           |             |             |            |        |
| (67)m=               | 25.06      | 22.26       | 18.1        | 13.7                 | 10.24      | 8.65                  | 9.35                     | 12.15         | 16.3        | 20.7                      | 24.16       | 25.76       |            | (67)   |
| Applia               | nces ga    | ins (calc   | ulated ir   | Append               | dix L, eq  | uation L <sup>2</sup> | 13 or L1                 | 3a), also     | see Tal     | ble 5                     |             |             |            |        |
| (68)m=               | 160.19     | 161.85      | 157.66      | 148.74               | 137.49     | 126.91                | 119.84                   | 118.18        | 122.36      | 131.28                    | 142.54      | 153.12      |            | (68)   |
| Cookin               | ig gains   | (calcula    | ted in A    | ppendix              | L, equat   | ion L15               | or L15a)                 | , also se     | e Table     | 5                         |             |             |            |        |
| (69)m=               | 32.19      | 32.19       | 32.19       | 32.19                | 32.19      | 32.19                 | 32.19                    | 32.19         | 32.19       | 32.19                     | 32.19       | 32.19       |            | (69)   |
| Pumps                | and fai    | ns gains    | (Table 5    | 5a)                  |            |                       |                          |               |             |                           |             |             |            |        |
| (70)m=               | 0          | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0           |            | (70)   |
| Losses               | s e.g. ev  | vaporatio   | n (nega     | tive valu            | es) (Tab   | le 5)                 |                          |               |             |                           |             |             |            |        |
| (71)m=               | -73.49     | -73.49      | -73.49      | -73.49               | -73.49     | -73.49                | -73.49                   | -73.49        | -73.49      | -73.49                    | -73.49      | -73.49      |            | (71)   |
| Water                | heating    | gains (T    | able 5)     |                      |            |                       |                          |               |             |                           |             |             |            |        |
| (72)m=               | 81.76      | 79.96       | 76.23       | 71.15                | 67.86      | 63.22                 | 59.27                    | 64.32         | 66.12       | 71.37                     | 77.31       | 79.97       |            | (72)   |
| Total i              | nternal    | gains =     |             |                      |            | (66)                  | m + (67)m                | ı + (68)m +   | - (69)m + ( | (70)m + (7                | 1)m + (72)  | m           |            |        |
| (73)m=               | 317.57     | 314.63      | 302.55      | 284.16               | 266.15     | 249.33                | 239.01                   | 245.21        | 255.35      | 273.92                    | 294.57      | 309.4       |            | (73)   |
| 6. Sol               | lar gains  | 5:          |             |                      |            |                       |                          |               |             |                           |             |             |            |        |
| Solar g              | ains are o | calculated  | using sola  | r flux from          | Table 6a a | and associ            | ated equa                | tions to co   | nvert to th | e applicat                | le orientat | ion.        |            |        |
| Orienta              | ation: A   | Access F    | actor       | Area                 |            | Flu                   | х                        |               | g_          |                           | FF          |             | Gains      |        |
|                      | ٦          | Table 6d    |             | m²                   |            | Tab                   | ole 6a                   | Т             | able 6b     | Ta                        | able 6c     |             | (W)        |        |

| North | 0.9x | 0.77               | x   | 1.87 | x | 10.63  | x        | 0.85 | x | 0.7 | =   | 8.2    | (74) |
|-------|------|--------------------|-----|------|---|--------|----------|------|---|-----|-----|--------|------|
| North | 0.9x | 0.77               | x   | 0.65 | x | 10.63  | x        | 0.85 | x | 0.7 | ] = | 2.85   | (74) |
| North | 0.9x | 0.77               | ×   | 1.87 | x | 20.32  | x        | 0.85 | x | 0.7 | ] = | 15.67  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 20.32  | x        | 0.85 | x | 0.7 | =   | 5.45   | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 34.53  | x        | 0.85 | x | 0.7 | ] = | 26.63  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 34.53  | x        | 0.85 | x | 0.7 | ] = | 9.25   | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 42.77  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 55.46  | x        | 0.85 | x | 0.7 | ] = | 14.87  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 74.72  | x        | 0.85 | x | 0.7 | =   | 57.61  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 74.72  | x        | 0.85 | x | 0.7 | =   | 20.03  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 61.67  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 21.44  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 74.68  | <b>x</b> | 0.85 | x | 0.7 | =   | 57.58  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 20.01  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 45.68  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 59.25  | x        | 0.85 | x | 0.7 | ] = | 15.88  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 41.52  | x        | 0.85 | x | 0.7 | =   | 32.01  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | X | 41.52  | x        | 0.85 | x | 0.7 | =   | 11.13  | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 24.19  | x        | 0.85 | x | 0.7 | ] = | 18.65  | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 24.19  | ] ×      | 0.85 | x | 0.7 | =   | 6.48   | (74) |
| North | 0.9x | 0.7 <mark>7</mark> | x   | 1.87 | x | 13.12  | x        | 0.85 | x | 0.7 | =   | 10.11  | (74) |
| North | 0.9x | 0.77               | ) × | 0.65 | x | 13.12  | x        | 0.85 | x | 0.7 | =   | 3.52   | (74) |
| North | 0.9x | 0.77               | x   | 1.87 | x | 8.86   | x        | 0.85 | x | 0.7 | =   | 6.84   | (74) |
| North | 0.9x | 0.77               | x   | 0.65 | x | 8.86   | x        | 0.85 | x | 0.7 | =   | 2.38   | (74) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 19.64  | x        | 0.76 | x | 0.7 | =   | 13.54  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 38.42  | x        | 0.76 | x | 0.7 | =   | 26.49  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 63.27  | x        | 0.76 | x | 0.7 | =   | 43.62  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 92.28  | x        | 0.76 | x | 0.7 | =   | 63.62  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 113.09 | x        | 0.76 | x | 0.7 | =   | 77.97  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 115.77 | x        | 0.76 | x | 0.7 | =   | 79.81  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 110.22 | x        | 0.76 | x | 0.7 | =   | 75.99  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 94.68  | x        | 0.76 | x | 0.7 | =   | 65.27  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 73.59  | x        | 0.76 | x | 0.7 | ] = | 50.73  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 45.59  | x        | 0.76 | x | 0.7 | =   | 31.43  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 24.49  | x        | 0.76 | x | 0.7 | =   | 16.88  | (76) |
| East  | 0.9x | 1                  | x   | 1.87 | x | 16.15  | x        | 0.76 | x | 0.7 | ] = | 11.14  | (76) |
| South | 0.9x | 0.77               | ×   | 4.6  | × | 46.75  | x        | 0.76 | x | 0.7 | ] = | 79.29  | (78) |
| South | 0.9x | 0.77               | ×   | 4.6  | × | 76.57  | x        | 0.76 | x | 0.7 | =   | 129.85 | (78) |
| South | 0.9x | 0.77               | x   | 4.6  | x | 97.53  | x        | 0.76 | x | 0.7 | =   | 165.41 | (78) |
| South | 0.9x | 0.77               | x   | 4.6  | x | 110.23 | x        | 0.76 | x | 0.7 | =   | 186.95 | (78) |
| South | 0.9x | 0.77               | x   | 4.6  | x | 114.87 | x        | 0.76 | x | 0.7 | =   | 194.81 | (78) |

| South           | 0.9x       | 0.77      | ,             | 4          | .6               | x        | 1       | 10.55                            | ] x [            |                  | 0.76       | x                    | Γ        | 0.7              |       | =    | 187.48 | (78) |
|-----------------|------------|-----------|---------------|------------|------------------|----------|---------|----------------------------------|------------------|------------------|------------|----------------------|----------|------------------|-------|------|--------|------|
| South           | 0.9x       | 0.77      | ,             | ( 4        | .6               | x        | 1       | 08.01                            | i <sub>×</sub> ī |                  | 0.76       | ۲<br>× آ             | Γ        | 0.7              |       | =    | 183.18 | (78) |
| South           | 0.9x       | 0.77      | ,             | ( 4        | .6               | x        | 1       | 04.89                            | ] × [            |                  | 0.76       | ×                    | Γ        | 0.7              |       | =    | 177.89 | (78) |
| South           | 0.9x       | 0.77      | ,             | ( 4        | .6               | x        | 1       | 01.89                            | ] × [            |                  | 0.76       | ۲<br>× آ             | F        | 0.7              |       | =    | 172.79 | (78) |
| South           | 0.9x       | 0.77      | ,             | ( 4        | .6               | x        | ε       | 32.59                            | i <sub>×</sub> [ |                  | 0.76       | ۲<br>× آ             | F        | 0.7              |       | =    | 140.06 | (78) |
| South           | 0.9x       | 0.77      | ,             | 4          | .6               | x        | 5       | 55.42                            | ] × [            |                  | 0.76       | ۲<br>× آ             | F        | 0.7              | =     | =    | 93.98  | (78) |
| South           | 0.9x       | 0.77      | ,             | ( 4        | .6               | x        |         | 40.4                             | ] × [            |                  | 0.76       | ۲<br>× آ             | F        | 0.7              |       | =    | 68.51  | (78) |
|                 | L          |           |               |            |                  |          |         |                                  | J L              |                  |            |                      | -        |                  |       |      |        |      |
| Solar g         | gains in   | watts, ca | alculate      | d for ead  | ch mont          | h        |         |                                  | (83)m            | = Su             | ım(74)m .  | (82)ı                | n        |                  |       |      |        |      |
| (83)m=          | 103.88     | 177.46    | 244.91        | 308.2      | 350.42           | 3        | 50.41   | 336.76                           | 304.             | 73               | 266.66     | 196.                 | 62       | 124.5            | 88.   | 86   |        | (83) |
| Total g         | jains – i  | nternal a | and sola      | ar (84)m   | -<br>= (73)m     | + (      | 83)m    | , watts                          |                  |                  |            |                      |          |                  |       |      |        |      |
| (84)m=          | 421.44     | 492.08    | 547.46        | 592.36     | 616.56           | 5        | 99.74   | 575.77                           | 549.9            | 93               | 522.01     | 470.                 | 54       | 419.06           | 398   | .26  |        | (84) |
| 7. Me           | an inter   | nal temp  | berature      | e (heating | g seaso          | n)       |         |                                  |                  |                  | -          |                      |          |                  |       |      |        |      |
| Temp            | erature    | during h  | neating       | periods i  | n the liv        | ring     | area    | from Tak                         | ole 9,           | Th1              | (°C)       |                      |          |                  |       |      | 21     | (85) |
| Utilisa         | ation fac  | tor for g | ains for      | living ar  | ea, h1,r         | n (s     | ee Ta   | ble 9a)                          |                  |                  | . ,        |                      |          |                  |       |      |        |      |
|                 | Jan        | Feb       | Mar           | Apr        | May              | Ì        | Jun     | Jul                              | Au               | ıg               | Sep        | 0                    | ct       | Nov              | D     | ес   |        |      |
| (86)m=          | 1          | 1         | 1             | 0.99       | 0.98             | ┢        | 0.95    | 0.88                             | 0.9              | 1                | 0.97       | 0.9                  | 9        | 1                | 1     |      |        | (86) |
| Moan            | interna    | temper    | i<br>atura ir | living a   | -<br>            | follo    | w sto   | $r = 3 \text{ to } \overline{7}$ | I<br>7 in Tr     |                  |            |                      |          |                  | L     |      |        |      |
| (87)m=          | 18.69      | 18.85     | 19.16         | 19.61      | 20.07            |          | 0.51    | 20.76                            | 20.7             |                  | 20.37      | 19.7                 | 78       | 19.18            | 18    | 69   |        | (87) |
| -               |            |           |               |            |                  |          |         |                                  |                  |                  | 20101      |                      | <u> </u> |                  |       |      |        |      |
| Temp            | erature    | during h  | neating       | periods i  | n rest o         | t dw     | elling  | from Ta                          | able 9           | , Th             | 2 (°C)     | 40.0                 | 20       | 40.04            | 40    | 00   |        | (00) |
| (88)m=          | 19.25      | 19.26     | 19.27         | 19.32      | 19.32            |          | 19.37   | 19.37                            | 19.3             | 8                | 19.35      | 19.3                 | 32       | 19.31            | 19.   | 29   |        | (00) |
| Utilisa         | ation fac  | tor for g | ains for      | rest of c  | lwelling         | h2       | ,m (se  | e Table                          | 9a)              |                  |            |                      |          |                  |       |      |        |      |
| (89)m=          | 1          | 1         | 1             | 0.99       | 0.97             |          | 0.89    | 0.72                             | 0.77             | 7                | 0.94       | 0.9                  | 9        | 1                | 1     |      |        | (89) |
| Mear            | interna    | l temper  | ature ir      | the rest   | of dwe           | ling     | T2 (f   | ollow ste                        | eps 3            | to 7             | in Tabl    | e 9 <mark>c</mark> ) |          |                  |       |      |        |      |
| (90)m=          | 17.22      | 17.39     | 17.7          | 18.19      | 18.65            |          | 19.1    | 19.3                             | 19.2             | 28               | 18.96      | 18.3                 | 37       | 17.75            | 17.   | 25   |        | (90) |
|                 |            |           |               |            |                  |          |         |                                  |                  |                  | f          | LA = l               | ivin     | g area ÷ (4      | 4) =  |      | 0.55   | (91) |
| Mear            | interna    | l temper  | ature (f      | or the wl  | nole dw          | ellin    | a) = f  | LA x T1                          | + (1 -           | – fLA            | 4) × T2    |                      |          |                  |       | -    |        |      |
| (92)m=          | 18.03      | 18.19     | 18.5          | 18.97      | 19.43            | 1        | 19.87   | 20.1                             | 20.0             | 8                | ,<br>19.74 | 19.1                 | 4        | 18.54            | 18.   | 04   |        | (92) |
| Apply           | v adjustr  | nent to t | he mea        | n interna  | l tempe          | ratu     | ure fro | m Table                          | • 4e, v          | wher             | re appro   | priat                | e        |                  |       |      |        |      |
| (93)m=          | 18.03      | 18.19     | 18.5          | 18.97      | 19.43            | 1        | 19.87   | 20.1                             | 20.0             | 8                | 19.74      | 19.1                 | 4        | 18.54            | 18.   | 04   |        | (93) |
| 8. Sp           | ace hea    | iting req | uiremer       | nt         |                  |          |         | •                                |                  |                  |            |                      |          |                  |       |      |        |      |
| Set T           | i to the   | mean int  | ernal te      | emperatu   | ire obta         | nec      | at st   | ep 11 of                         | Table            | e 9b             | , so tha   | t Ti,n               | n=(      | 76)m an          | d re- | calc | ulate  |      |
| the ut          | tilisation | factor fo | or gains      | using T    | able 9a          | -        |         |                                  |                  |                  | 1          |                      |          |                  |       |      | l      |      |
|                 | Jan        | Feb       | Mar           | Apr        | May              |          | Jun     | Jul                              | Au               | ıg               | Sep        | 0                    | ct       | Nov              | D     | ес   |        |      |
| Utilisa         | ation fac  | tor for g | ains, hr      | n:         | 0.07             | -        |         | 0.04                             |                  |                  | 0.05       | 0.0                  | 0        |                  |       |      | l      | (04) |
| (94)m=          | 1          |           | 0.99          | 0.99       | 0.97             |          | 0.92    | 0.81                             | 0.84             | 4                | 0.95       | 0.9                  | 9        | 1                | 1     |      |        | (94) |
| Useru           | II gains,  | nmGm      | VV = (S)      | 94)m x (8  | 54)m<br>T 507.00 |          |         | 400.00                           | 404              |                  | 400.05     | 405                  | <u></u>  | 447.05           | 0.07  | 70   | l      | (05) |
| (95)m=<br>Monti | 420.73     | 490.56    | 544.20        |            | o from ]         |          |         | 406.29                           | 404.,            | 34               | 490.95     | 400.                 | 63       | 417.60           | 397   | .73  |        | (33) |
| (96)m-          |            |           |               |            |                  |          | 14.6    | 16.6                             | 16/              | 4                | 14.1       | 10                   | 6        | 71               | 4     | 2    |        | (96) |
| Heat            | loss rate  | for me    | an inter      | nal temr   | erature          | <br>  m  | ۰       | -[(30)m                          | x [/03           | ()<br>           | - (96)m    | 1                    | 5        | ( <sup>/.1</sup> | 4.    | -    |        | (00) |
| (97)m=          | 2637.43    | 2541.11   | 2282.93       | 1866.14    | 1424.20          |          | 46.56   | 628.68                           | 656              | 45 I             | 1022.44    | ו<br>1574            | .85      | 2130.72          | 260   | 5,73 |        | (97) |
| Space           | e heatin   | a require | ement f       | or each    | nonth I          | َل<br>W۲ | /mon    | I = 0.02                         | 24 x [/          | <u>ر</u><br>(97) | m – (95    | )ml v                | (4       | 1)m              |       |      | l      | ~ /  |
| (98)m=          | 1649.22    | 1377.95   | 1293.57       | 922.56     | 615.31           |          | 0       | 0                                |                  |                  | 0          | ,, ×                 | 26       | 1233.26          | 1642  | 2.75 |        |      |
| 1.1             | L          |           | <u> </u>      | 1          | I                |          |         | L                                | L                |                  |            |                      |          |                  |       |      |        |      |

|                                                                                                                     | Total per year (kWh/y                                            | ear) = Sum(98) <sub>15,912</sub> :      | = 9559.89   | (98)       |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|-------------|------------|
| Space heating requirement in kWh/m²/year                                                                            |                                                                  |                                         | 173.82      | (99)       |
| 9b. Energy requirements – Community heating scheme                                                                  |                                                                  |                                         |             |            |
| This part is used for space heating, space cooling or wa<br>Fraction of space heat from secondary/supplementary b   | ater heating provided by a com<br>neating (Table 11) '0' if none | munity scheme.                          | 0           | (301)      |
| Fraction of space heat from community system $1 - (30)$                                                             | () =                                                             |                                         |             | (302)      |
| The community scheme may obtain heat from several sources. The                                                      | '<br>procedure allows for CHP and up to fo                       | ur other heat sources;                  | the latter  |            |
| includes boilers, heat pumps, geothermal and waste heat from power<br>Fraction of heat from Community boilers       | stations. See Appendix C.                                        |                                         | 1           | (303a)     |
| Fraction of total space heat from Community boilers                                                                 |                                                                  | (302) x (303a) =                        | 1           | (304a)     |
| Factor for control and charging method (Table 4c(3)) fo                                                             | r community heating system                                       |                                         | 1.05        | (305)      |
| Distribution loss factor (Table 12c) for community heating                                                          | ng system                                                        |                                         | 1.1         | (306)      |
| Space heating                                                                                                       |                                                                  |                                         | kWh/yea     | ur         |
| Annual space heating requirement                                                                                    |                                                                  |                                         | 9559.89     |            |
| Space heat from Community boilers                                                                                   | (98) x (304a) x (                                                | 305) x (306) =                          | 11041.67    | (307a)     |
| Efficiency of secondary/supplementary heating system                                                                | in % (from Table 4a or Append                                    | dix E)                                  | 0           | (308       |
| Space heating requirement from secondary/supplemen                                                                  | tary system (98) x (301) x 10                                    | 00 ÷ (308) =                            | 0           | (309)      |
| Water heating                                                                                                       |                                                                  |                                         |             |            |
| Annual water heating requirement                                                                                    |                                                                  |                                         | 1875.52     |            |
| If DHW from community scheme:<br>Water heat from Community boilers                                                  | (64) x (303a) x (                                                | 305) x (306) =                          | 2166 23     | (310a)     |
| Electricity used for heat distribution                                                                              | 0.01 × [(307a)(307€                                              | e) + (310a)(310e)] =                    | 132.08      | (313)      |
| Cooling System Energy Efficiency Ratio                                                                              |                                                                  |                                         | 0           | (314)      |
| Space cooling (if there is a fixed cooling system, if not e                                                         | enter 0) = (107) ÷ (314) =                                       | =                                       | 0           | (315)      |
| Electricity for pumps and fans within dwelling (Table 4f) mechanical ventilation - balanced, extract or positive in | put from outside                                                 |                                         |             | <br>(330a) |
| warm air heating system fans                                                                                        |                                                                  |                                         | 0           | (330b)     |
| nump for solar water beating                                                                                        |                                                                  |                                         | 0           | (330g)     |
| Total electricity for the above kWb/year                                                                            | =(330a) + (330b                                                  | ) + (330g) =                            | 0           | (331)      |
| Energy for lighting (calculated in Appendix I.)                                                                     | _(0000) * (0000                                                  | ) ((((((((((((((((((((((((((((((((((((( | 442.58      |            |
| 12b CO2 Emissions - Community heating scheme                                                                        |                                                                  |                                         | 442.50      |            |
| T20. 002 Emissions - Community heating scheme                                                                       | Energy                                                           | Emission factor                         | - Emissions |            |
|                                                                                                                     | kWh/year                                                         | kg CO2/kWh                              | kg CO2/year |            |
| CO2 from other sources of space and water heating (no<br>Efficiency of heat source 1 (%) If there is                | ot CHP)<br>CHP using two fuels repeat (363) to (                 | 366) for the second fu                  | el 65       | (367a)     |
| CO2 associated with heat source 1                                                                                   | [(307b)+(310b)] x 100 ÷ (367b) x                                 | 0                                       | = 4389.09   | (367)      |
| Electrical energy for heat distribution                                                                             | [(313) x                                                         | 0.52                                    | = 68.55     | (372)      |
| Total CO2 associated with community systems                                                                         | (363)(366) + (368)(372)                                          | )                                       | = 4457.64   | (373)      |
| CO2 associated with space heating (secondary)                                                                       | (309) x                                                          | 0                                       | = 0         | (374)      |

| CO2 associated with water from immer      | sion heater or insta | ntaneous heater (312) x | 0.22 | =     | 0       | (375) |
|-------------------------------------------|----------------------|-------------------------|------|-------|---------|-------|
| Total CO2 associated with space and v     | vater heating        | (373) + (374) + (375) = |      |       | 4457.64 | (376) |
| CO2 associated with electricity for pum   | dwelling (331)) x    | 0.52                    | =    | 0     | (378)   |       |
| CO2 associated with electricity for light | (332))) x            | 0.52                    | =    | 229.7 | (379)   |       |
| Total CO2, kg/year                        | sum of (376)(382) =  |                         |      |       | 4687.33 | (383) |
| Dwelling CO2 Emission Rate                | (383) ÷ (4) =        |                         |      |       | 85.22   | (384) |
| El rating (section 14)                    |                      |                         |      |       | 41.26   | (385) |
|                                           |                      |                         |      |       |         |       |



|                                                                                                                        |                                                                                                                    |                          | User D                   | etails:            |                             |                       |                      |              |                                       |                     |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------|-----------------------------|-----------------------|----------------------|--------------|---------------------------------------|---------------------|
| Assessor Name:<br>Software Name:                                                                                       | Stroma FSAP 201                                                                                                    | 12<br>Pi                 | roperty A                | Stroma<br>Softwa   | a Num<br>are Ver<br>Unit 13 | ber:<br>sion:         |                      | Versio       | n: 1.0.3.15                           |                     |
| Address :                                                                                                              | , london                                                                                                           |                          |                          |                    |                             |                       |                      |              |                                       |                     |
| 1. Overall dwelling dimer                                                                                              | isions:                                                                                                            |                          |                          |                    |                             |                       |                      |              |                                       |                     |
| Basement                                                                                                               |                                                                                                                    |                          | Area                     | <b>a(m²)</b><br>51 | (1a) x                      | <b>Av. He</b>         | <b>ight(m)</b><br>17 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>110.67 | <b>)</b><br>(3a)    |
| Total floor area TFA = (1a                                                                                             | )+(1b)+(1c)+(1d)+(1e                                                                                               | e)+(1n                   | )                        | 51                 | (4)                         |                       |                      |              |                                       |                     |
| Dwelling volume                                                                                                        |                                                                                                                    |                          |                          |                    | (3a)+(3b)                   | +(3c)+(3c             | d)+(3e)+             | .(3n) =      | 110.67                                | (5)                 |
| 2. Ventilation rate:                                                                                                   |                                                                                                                    |                          |                          | - 41               |                             |                       |                      |              |                                       |                     |
| Number of chimneys<br>Number of open flues                                                                             | $\begin{array}{c c} main & s \\ heating & h \\ \hline 0 & + \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$ | econdary<br>neating<br>0 | y<br>] + [_<br>] + [_    | 0<br>0             | ] = [<br>] = [              | 0<br>0                |                      | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b)   |
| Number of intermittent fan                                                                                             | s                                                                                                                  |                          |                          |                    |                             | 2                     | x /                  | 10 =         | 20                                    | (7a)                |
| Number of passive vents                                                                                                |                                                                                                                    |                          |                          |                    |                             | 0                     | x /                  | 10 =         | 0                                     | (7b)                |
| Number of flueless gas fire                                                                                            | es                                                                                                                 |                          |                          |                    | Γ                           | 0                     | X                    | 40 =         | 0                                     | (7c)                |
|                                                                                                                        | ange <mark>s per</mark> ho                                                                                         | bur                      |                          |                    |                             |                       |                      |              |                                       |                     |
| Infiltration due to chimney                                                                                            | s, flues and fans = (6                                                                                             | a)+(6b)+(7               | a)+(7b)+(7               | 7c) =              |                             | 20                    |                      | ÷ (5) =      | 0.18                                  | (8)                 |
| If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2 | en carried out or is intend<br>e dwelling (ns)<br>25 for steel or timber                                           | ed, proceed<br>frame or  | 1 to (17), c<br>0.35 for | masonr             | ontinue fro                 | om (9) to (<br>uction | (16)<br>[(9)·        | -1]x0.1 =    | 0                                     | (9)<br>(10)<br>(11) |
| if both types of wall are pre<br>deducting areas of opening                                                            | rsent, use the value corres<br>rs); if equal user 0.35                                                             | sponding to              | the greate               | er wall are        | a (after                    |                       |                      |              |                                       |                     |
| If suspended wooden flo                                                                                                | bor, enter 0.2 (unsea                                                                                              | led) or 0.               | 1 (seale                 | d), else           | enter 0                     |                       |                      |              | 0                                     | (12)                |
| If no draught lobby, ente                                                                                              | er 0.05, else enter 0                                                                                              | tripped                  |                          |                    |                             |                       |                      |              | 0                                     | (13)                |
| Window infiltration                                                                                                    | and doors draught s                                                                                                | inpped                   |                          | 0.25 - [0.2        | x (14) ÷ 1                  | 001 =                 |                      |              | 0                                     | (14)                |
| Infiltration rate                                                                                                      |                                                                                                                    |                          |                          | (8) + (10)         | + (11) + (1                 | 2) + (13) -           | + (15) =             |              | 0                                     |                     |
| Air permeability value, c                                                                                              | 50, expressed in cub                                                                                               | oic metre                | s per ho                 | our per se         | quare m                     | etre of e             | envelope             | area         | 20                                    | (17)                |
| If based on air permeabilit                                                                                            | y value, then (18) = [(1                                                                                           | (7) ÷ 20]+(8             | ), otherwi               | se (18) = (        | 16)                         |                       | ·                    |              | 1.18                                  | (18)                |
| Air permeability value applies                                                                                         | if a pressurisation test ha                                                                                        | s been don               | e or a deg               | ree air pei        | rmeability                  | is being u            | sed                  |              |                                       |                     |
| Number of sides sheltered                                                                                              | 1                                                                                                                  |                          |                          | (22)               |                             | - 17                  |                      |              | 3                                     | (19)                |
| Shelter factor                                                                                                         |                                                                                                                    |                          |                          | (20) = 1 -         | 0.075 x (1                  | 9)] =                 |                      |              | 0.78                                  | (20)                |
| Infiltration rate incorporation                                                                                        | ng shelter factor                                                                                                  |                          |                          | (21) = (18)        | x (20) =                    |                       |                      |              | 0.92                                  | (21)                |
| Infiltration rate modified to                                                                                          | r monthly wind speed                                                                                               | 1<br>T.T                 |                          |                    | -                           | <u> </u>              | <u> </u>             |              |                                       |                     |
| Jan Feb I                                                                                                              | Mar Apr May                                                                                                        | Jun                      | Jul                      | Aug                | Sep                         | Oct                   | Nov                  | Dec          |                                       |                     |
| Monthly average wind spe                                                                                               | ed from Table 7                                                                                                    |                          |                          | 0-                 |                             | 4.0                   | 4-                   | 4-           | l                                     |                     |
| (22)m= 5.1 5 4                                                                                                         | 4.9 4.4 4.3                                                                                                        | 3.8                      | 3.8                      | 3.7                | 4                           | 4.3                   | 4.5                  | 4.7          |                                       |                     |
| Wind Factor (22a)m = (22)                                                                                              | )m ÷ 4                                                                                                             |                          |                          |                    |                             |                       | <b>.</b>             |              | I                                     |                     |
| (zza)m= 1.27 1.25 1                                                                                                    | .23 1.1 1.08                                                                                                       | 0.95                     | 0.95                     | 0.92               | 1                           | 1.08                  | 1.12                 | 1.18         |                                       |                     |

| Adjust               | ed infiltr              | ation rat                  | e (allowi                 | ing for sh               | elter an    | d wind s       | peed) =     | (21a) x        | (22a)m           |                |                       |                    | _            |               |
|----------------------|-------------------------|----------------------------|---------------------------|--------------------------|-------------|----------------|-------------|----------------|------------------|----------------|-----------------------|--------------------|--------------|---------------|
| <u> </u>             | 1.17                    | 1.14                       | 1.12                      | 1.01                     | 0.98        | 0.87           | 0.87        | 0.85           | 0.92             | 0.98           | 1.03                  | 1.08               | ĺ            |               |
| Calcula<br>If me     | ate effe                | ctive air<br>al ventila    | change                    | rate for t               | he appli    | cable ca       | se          |                |                  |                |                       |                    | 0            | (232)         |
| lf exh               | aust air h              | eat pump                   | using App                 | endix N, (2              | 3b) = (23a  | a) × Fmv (e    | equation (I | N5)), othei    | rwise (23b       | ) = (23a)      |                       |                    |              | (23b)         |
| lf bala              | anced with              | n heat reco                | overy: effic              | iency in %               | allowing f  | or in-use fa   | actor (fron | n Table 4h     | ) =              | , , ,          |                       |                    |              | (23c)         |
| a) If                | balance                 | ed mecha                   | anical ve                 | entilation               | with he     | at recove      | erv (MVI    | HR) (24a       | ı)m = (22        | 2b)m + (       | 23b) x [ <sup>-</sup> | 1 – (23c)          | ÷ 1001       | (100)         |
| (24a)m=              | 0                       | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  |              | (24a)         |
| b) If                | balance                 | d mecha                    | anical ve                 | entilation               | without     | heat rec       | covery (N   | MV) (24b       | )m = (22         | 1<br>2b)m + (2 | 23b)                  |                    | 1            |               |
| ,<br>(24b)m=         | 0                       | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  |              | (24b)         |
| c) If                | whole h                 | iouse ex                   | tract ver                 | ntilation c              | or positiv  | /e input \     | ventilatio  | on from c      | outside          | 1              |                       |                    | 1            |               |
| í                    | if (22b)r               | n < 0.5 ×                  | (23b), t                  | then (24a                | c) = (23b   | o); otherv     | wise (24    | c) = (22b      | o) m + 0.        | .5 × (23b      | ))                    |                    |              |               |
| (24c)m=              | 0                       | 0                          | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  | ĺ            | (24c)         |
| d) If                | natural                 | ventilatio                 | on or wh                  | ole hous                 | e positiv   | ve input       | ventilatio  | on from I      | oft              |                |                       |                    |              |               |
| (0.4.1)              | if (22b)r               | n = 1, th                  | en (24d)                  | m = (22k)                | o)m othe    | erwise (2      | .4d)m =     | 0.5 + [(2      | 2b)m² x          | 0.5]           | 4.00                  | 4.00               | 1            | (244)         |
| (24d)m=              | 1.17                    | 1.14                       | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98           | 1.03                  | 1.08               | İ            | (240)         |
| Effe                 | ctive air               | change                     | rate - er                 | nter (24a                | ) or (24t   | o) or (240     | c) or (24   | d) in boy      | (25)             | 0.00           | 4.00                  | 4.00               | 1            | (25)          |
| (25)m=               | 1.17                    | 1.14                       | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98           | 1.03                  | 1.08               | J            | (25)          |
| 3. He                | at l <mark>osse</mark>  | s and he                   | eat loss                  | paramete                 | er:         |                |             |                |                  |                |                       |                    |              |               |
| ELEN                 |                         | Gros<br>are <mark>a</mark> | ss<br>(m²)                | Openin<br>m              | gs<br>²     | Net Ar<br>A ,r | rea<br>m²   | U-valı<br>W/m2 | le<br>K          | A X U<br>(W/I  | K)                    | k-value<br>kJ/m²·l | )<br>K       | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                         |                            |                           |                          |             | 1.9            | x           | 1.4            | = [              | 2.66           |                       |                    |              | (26)          |
| Win <mark>do</mark>  | ws Type                 | e 1                        |                           |                          |             | 4.59           | x1          | /[1/( 1.6 )+   | 0.04] =          | 6.9            | Fi i                  |                    |              | (27)          |
| Win <mark>do</mark>  | ws Type                 | e 2                        |                           |                          |             | 4.64           | x1          | /[1/( 4.8 )+   | 0.04] =          | 18.68          | F                     |                    |              | (27)          |
| Floor                |                         |                            |                           |                          |             | 51             | ×           | 0.99           |                  | 50.49          | F r                   |                    |              | (28)          |
| Walls <sup>-</sup>   | Type1                   | 16.1                       | 4                         | 4.59                     |             | 11.55          | 5 X         | 2.1            | = [              | 24.25          | i F                   |                    |              | (29)          |
| Walls <sup>-</sup>   | Туре2                   | 16.                        | 1                         | 6.54                     |             | 9.56           | ×           | 2.1            | = [              | 20.08          | i F                   |                    | $\dashv$     | (29)          |
| Total a              | rea of e                | elements                   | , m²                      |                          |             | 83.24          |             |                | เ                |                |                       |                    |              | (31)          |
| Party v              | vall                    |                            |                           |                          |             | 33.3           | ×           | 0              |                  | 0              |                       |                    |              | (32)          |
| * for win            | dows and                | l roof wind                | ows, use e                | effective wil            | ndow U-va   | alue calcula   | ated using  | g formula 1,   | L<br>/[(1/U-valu | ıe)+0.04] a    | as given in           | paragraph          | ⊥ ∟<br>≀ 3.2 | ````          |
| ** inclua            | le the area             | as on both                 | sides of ir               | nternal wall             | s and par   | titions        |             |                |                  |                |                       |                    |              |               |
| Fabric               | heat los                | ss, W/K :                  | = S (A x                  | U)                       |             |                |             | (26)(30)       | + (32) =         |                |                       |                    | 123.0        | 7 (33)        |
| Heat c               | apacity                 | Cm = S(                    | (A x k )                  |                          |             | ,              |             |                | ((28)            | (30) + (32     | 2) + (32a).           | (32e) =            | 0            | (34)          |
| Therm                | al mass                 | parame                     | ter (TMI                  | <sup>2</sup> = Cm ÷      | - TFA) ir   | ו kJ/m²K       |             |                | Indica           | tive Value     | : High                |                    | 450          | (35)          |
| For desi<br>can be ι | gn asses:<br>Ised inste | sments wh<br>ad of a de    | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are not    | t known pr  | recisely the   | e indicative     | e values of    | TMP in Ta             | able 1t            |              |               |
| Therm                | al bridg                | es : S (L                  | x Y) cal                  | culated u                | using Ap    | pendix ł       | <           |                |                  |                |                       |                    | 12.8         | (36)          |
| if details           | of therma               | al bridging                | are not kr                | nown (36) =              | = 0.15 x (3 | :1)            |             |                |                  |                |                       |                    |              |               |
| Total fa             | abric he                | at loss                    |                           |                          |             |                |             |                | (33) +           | (36) =         |                       |                    | 135.8        | 7 (37)        |
| Ventila              | tion hea                | at loss ca                 | alculated                 | d monthly                | /           |                |             | 1              | (38)m            | = 0.33 × (     | (25)m x (5)           | )                  | 1            |               |
|                      | Jan                     | Feb                        | Mar                       | Apr                      | May         | Jun            | Jul         | Aug            | Sep              | Oct            | Nov                   | Dec                |              |               |
| (38)m=               | 42.61                   | 41.77                      | 40.94                     | 36.76                    | 35.93       | 32.06          | 32.06       | 31.34          | 33.55            | 35.93          | 37.6                  | 39.27              | l            | (38)          |
| Heat tr              | ansfer o                | coefficier                 | nt, W/K                   |                          |             |                |             | -              | (39)m            | = (37) + (3    | 38)m                  | -                  | ,            |               |
| (39)m=               | 178.48                  | 177.64                     | 176.81                    | 172.63                   | 171.8       | 167.93         | 167.93      | 167.21         | 169.42           | 171.8          | 173.46                | 175.13             | ļ            |               |
|                      |                         |                            |                           |                          |             |                |             |                |                  | Average =      | Sum(39)1              | 12 /12=            | 172.5        | 2 (39)        |

| Heat los                       | ss para                         | meter (H                               | HLP), W/                             | ′m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 3.5                             | 3.48                                   | 3.47                                 | 3.38                                    | 3.37                                     | 3.29                                  | 3.29                         | 3.28                   | 3.32                  | 3.37                      | 3.4                                   | 3.43     |            |      |
| L                              | r of day                        | rs in mor                              | u<br>nth (Tab                        | le 12)                                  |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.38       | (40) |
|                                | .lan                            | Feb                                    | Mar                                  | Anr                                     | May                                      | Jun                                   | .Jul                         | Αυσ                    | Sen                   | Oct                       | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41) |
| `´L                            |                                 |                                        |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          |            |      |
| 4. Wat                         | ter heat                        | ting ener                              | rgy requi                            | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>\ > 13.9<br>\ £ 13.9 | ıpancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per p | ater usag<br>hot water<br>person per | ge in litre<br>usage by s<br>day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      |            | (43) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                     | Мау                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage ii                      | n litres per                           | day for ea                           | ach month                               | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           | 1                                     |          | 1          |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                   | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            |      |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | 0Tm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                   | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                              | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                |          | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                   | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46) |
| Storage                        | e volum                         | e (litres)                             | includir                             | na anv so                               | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |            | (47) |
| If comm                        | nunity h                        | eating a                               | ind no ta                            | ink in dw                               | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |                           |                                       | 100      |            | ()   |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                             | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |            |      |
| Water s                        | storage                         | loss:                                  |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          |            |      |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48) |
| Temper                         | rature fa                       | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | , kWh/y∉<br>wlindor l                   | ear<br>ann faot                          | or io not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50) |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                 | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       |            | (51) |
| Volume                         | factor                          | from Tal                               | ble 2a                               | 011 4.3                                 |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |            | (52) |
| Temper                         | rature fa                       | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53) |
| Enerav                         | lost fro                        | m water                                | storage                              | . kWh/ve                                | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 03       |            | (54) |
| Enter (                        | 50) or (                        | (54) in (5                             | 55)                                  | ,, <b>,</b> .                           |                                          |                                       |                              |                        |                       | ,                         | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                               | culated f                            | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |            |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56) |
| If cylinder                    | r contains                      | s dedicate                             | d solar sto                          | rage, (57)ı                             | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | i<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (57) |
| Primary                        | circuit                         | loss (an                               | nual) fro                            | om Table                                | 93                                       |                                       |                              |                        |                       |                           |                                       | 0        |            | (58) |
| Primary                        | circuit                         | loss cal                               | culated                              | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |      |
| (mod                           | ified by                        | factor fi                              | rom Tab                              | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | t cylinde             | r thermo                  | ostat)                                |          | I          | (50) |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59) |

| Combi    | loss ca   | alculated                | for eac   | h month      | (61)m =    | (60) ÷ 36  | 65 × (41)      | )m           |                  |                     |                           |             |               |      |
|----------|-----------|--------------------------|-----------|--------------|------------|------------|----------------|--------------|------------------|---------------------|---------------------------|-------------|---------------|------|
| (61)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0              | 0            | 0                | 0                   | 0                         | 0           |               | (61) |
| Total h  | eat req   | uired for                | water h   | neating c    | alculated  | for eac    | h month        | (62)m =      | 0.85 ×           | (45)m +             | (46)m +                   | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 177.69    | 156.99                   | 165.75    | 149.81       | 147.69     | 133.24     | 129.18         | 140.08       | 139.31           | 155.28              | 162.66                    | 173.82      |               | (62) |
| Solar Dł | HW input  | calculated               | using Ap  | pendix G o   | r Appendix | H (negati  | ve quantity    | v) (enter '0 | ' if no sola     | r contribut         | tion to wate              | er heating) |               |      |
| (add a   | dditiona  | al lines if              | FGHRS     | S and/or V   | WWHRS      | applies    | , see Ap       | pendix (     | G)               |                     |                           |             |               |      |
| (63)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0              | 0            | 0                | 0                   | 0                         | 0           |               | (63) |
| Output   | from w    | ater hea                 | ter       |              |            |            |                |              |                  |                     |                           |             |               |      |
| (64)m=   | 177.69    | 156.99                   | 165.75    | 149.81       | 147.69     | 133.24     | 129.18         | 140.08       | 139.31           | 155.28              | 162.66                    | 173.82      |               | _    |
|          |           |                          |           |              |            |            |                | Outp         | out from w       | ater heate          | <mark>r (annual)</mark> ₁ | 12          | 1831.51       | (64) |
| Heat g   | ains fro  | om water                 | heating   | ı, kWh/m     | onth 0.2   | 5 ´ [0.85  | <b>x</b> (45)m | + (61)m      | n] + 0.8 x       | x [(46)m            | + (57)m                   | + (59)m     | ]             |      |
| (65)m=   | 59.31     | 52.41                    | 55.34     | 50.03        | 49.34      | 44.53      | 43.18          | 46.81        | 46.54            | 51.86               | 54.31                     | 58.03       |               | (65) |
| inclu    | ide (57)  | )m in calo               | culation  | of (65)m     | only if c  | ylinder i  | s in the c     | dwelling     | or hot w         | ater is f           | rom com                   | munity h    | eating        |      |
| 5. Int   | ternal g  | ains (see                | Table     | 5 and 5a     | ):         |            |                |              |                  |                     |                           |             |               |      |
| Metab    | olic aaii | ns (Table                | e 5). Wa  | tts          |            |            |                |              |                  |                     |                           |             |               |      |
|          | Jan       | Feb                      | Mar       | Apr          | May        | Jun        | Jul            | Aug          | Sep              | Oct                 | Nov                       | Dec         |               |      |
| (66)m=   | 85.98     | 85.98                    | 85.98     | 85.98        | 85.98      | 85.98      | 85.98          | 85.98        | 85.98            | 8 <mark>5.98</mark> | 85.98                     | 85.98       |               | (66) |
| Lightin  | g gains   | (calcula                 | ted in A  | ppendix      | L, equat   | ion L9 o   | r L9a), a      | lso see      | Table 5          |                     |                           |             |               |      |
| (67)m=   | 22.97     | 20.4                     | 16.59     | 12.56        | 9.39       | 7.93       | 8.57           | 11.13        | 14.94            | 18.98               | 22.15                     | 23.61       |               | (67) |
| Applia   | nces ga   | ains (ca <mark>lc</mark> | ulated i  | n Appen      | dix L, eq  | uation L   | 13 or L1       | 3a), also    | see Ta           | ble 5               | 1                         |             |               |      |
| (68)m=   | 149.83    | 151.39                   | 147.47    | 139.13       | 128.6      | 118.7      | 112.09         | 110.54       | 114.45           | 122.8               | 133.32                    | 143.22      |               | (68) |
| Cookir   | ng gains  | s (calcula               | ited in A | ppendix      | L, equat   | ion L15    | or L15a)       | , also se    | ee Table         | 5                   |                           |             |               |      |
| (69)m=   | 31.6      | 31.6                     | 31.6      | 31.6         | 31.6       | 31.6       | 31.6           | ,<br>31.6    | 31.6             | 31.6                | 31.6                      | 31.6        |               | (69) |
| Pumps    | and fa    | ins gains                | (Table    | 5a)          |            |            |                |              |                  |                     |                           |             |               |      |
| (70)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0              | 0            | 0                | 0                   | 0                         | 0           |               | (70) |
| Losses   | s e.a. e  | vaporatio                | n (nega   | ative valu   | es) (Tab   | le 5)      | 1              |              | l                | Į                   | 1                         | 1           |               |      |
| (71)m=   | -68.78    | -68.78                   | -68.78    | -68.78       | -68.78     | -68.78     | -68.78         | -68.78       | -68.78           | -68.78              | -68.78                    | -68.78      |               | (71) |
| Water    | heating   | u dains (T               | able 5)   | 1            |            |            |                |              |                  | <u> </u>            | 1                         |             |               |      |
| (72)m=   | 79.72     | 77.99                    | 74.39     | 69.49        | 66.32      | 61.84      | 58.04          | 62.91        | 64.64            | 69.71               | 75.43                     | 77.99       |               | (72) |
| Total i  | nterna    | l gains =                |           | 1            |            | (66)       | m + (67)m      | ı + (68)m -  | I<br>+ (69)m + ( | (70)m + (7          | I<br>(1)m + (72)          | m           |               |      |
| (73)m=   | 301.32    | 298.57                   | 287.24    | 269.98       | 253.1      | 237.27     | 227.49         | 233.38       | 242.84           | 260.27              | 279.69                    | 293.62      |               | (73) |
| 6. So    | lar gain  | s:                       |           |              |            |            |                |              |                  |                     |                           |             |               |      |
| Solar g  | ains are  | calculated               | using sol | ar flux from | Table 6a   | and assoc  | iated equa     | tions to co  | onvert to th     | ne applicat         | ole orientat              | ion.        |               |      |
| Orienta  | ation:    | Access F                 | actor     | Area         | l          | Flu        | х              |              | g_               |                     | FF                        |             | Gains         |      |
|          |           | Table 6d                 |           | m²           |            | Tal        | ble 6a         | Т            | able 6b          | Т                   | able 6c                   |             | (W)           |      |
| North    | 0.9x      | 0.77                     | >         | 4.0          | 64         | x 1        | 0.63           | x            | 0.85             | x                   | 0.7                       | =           | 20.34         | (74) |
| North    | 0.9x      | 0.77                     | )         | 4.0          | 64         | x 2        | 20.32          | x            | 0.85             | ×                   | 0.7                       | =           | 38.88         | (74) |
| North    | 0.9x      | 0.77                     | )         | 4.0          | 64         | х <u>з</u> | 34.53          | x            | 0.85             | _ × [               | 0.7                       | =           | 66.06         | (74) |
| North    | 0.9x      | 0.77                     | ,         | 4.0          | 64         | × 5        | 5.46           | x            | 0.85             |                     | 0.7                       | =           | 106.12        | (74) |
| North    | 0.9x      | 0.77                     | )         | 4.0          | 64         | x 7        | 4.72           | x            | 0.85             | _ × [               | 0.7                       | =           | 142.95        | (74) |

| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     | 7          | 79.99        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 153.03 | (74) |
|---------|------------|------------|------------------|-------|-----------|---------|-------|------------|--------------|-------------|-------------------------|------------|------------------|----------------|-----------|----------|--------|------|
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     | 7          | 74.68        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 142.87 | (74) |
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     | Ę          | 59.25        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 113.35 | (74) |
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     | 4          | 11.52        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 79.43  | (74) |
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     | 2          | 24.19        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 46.28  | (74) |
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     |            | 13.12        | x           | 0.85                    |            | x                | 0.7            |           | = [      | 25.1   | (74) |
| North   | 0.9x       | 0.77       |                  | x     | 4.6       | 4       | x     |            | 8.86         | x           | 0.85                    |            | x                | 0.7            |           | = [      | 16.96  | (74) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 4          | 16.75        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 79.11  | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 7          | 76.57        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 129.57 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     |            | 97.53        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 165.05 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 10.23        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 186.54 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 14.87        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 194.39 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 10.55        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 187.07 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 08.01        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 182.78 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 04.89        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 177.5  | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 1          | 01.89        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 172.41 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | 8          | 32.59        | x           | 0.76                    |            | x                | 0.7            |           | = [      | 139.75 | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     | Ę          | 55.42        | х           | 0.76                    |            | х                | 0.7            |           | =        | 93.78  | (78) |
| South   | 0.9x       | 0.77       |                  | x     | 4.5       | 9       | x     |            | 40.4         | x           | 0.76                    |            | x                | 0.7            |           | = [      | 68.36  | (78) |
| Solar ( | gains in 1 | watts, ca  | alcula:<br>231.1 | ted   | for each  | n mont  | :h    | 340.1      | 325.65       | (83)m       | n = Sum(74)<br>86 251.8 | m(82       | 2)m              | 118.88         | 85.3      | 32       |        | (83) |
| Total g | gains – ii | nternal a  | nd so            | blar  | (84)m =   | : (73)m | ) + ( | 83)m       | , watts      |             |                         |            |                  |                |           |          |        |      |
| (84)m=  | 400.77     | 467.02     | 518.3            | 35    | 562.63    | 590.4   | 3 5   | ,<br>77.37 | 553.14       | 524         | .23 494.6               | 38 44      | 6.31             | 398.57         | 378.      | 94       |        | (84) |
| 7. Me   | an inter   | nal temp   | eratu            | ire ( | heating   | seaso   | on)   |            |              |             |                         |            |                  |                |           |          |        |      |
| Temp    | perature   | during h   | eating           | g pe  | eriods ir | the liv | ving  | area       | from Tab     | ole 9       | , Th1 (°C)              | )          |                  |                |           |          | 21     | (85) |
| Utilis  | ation fac  | tor for ga | ains f           | or li | ving are  | a, h1,  | m (s  | see Ta     | ble 9a)      |             |                         |            |                  |                | -         |          |        |      |
|         | Jan        | Feb        | Ma               | ar    | Apr       | May     | /     | Jun        | Jul          | A           | ug Se                   | р (        | Oct              | Nov            | D         | эc       |        |      |
| (86)m=  | 1          | 1          | 1                |       | 0.99      | 0.98    |       | 0.95       | 0.88         | 0.          | 9 0.97                  | <b>'</b> 0 | .99              | 1              | 1         |          |        | (86) |
| Mear    | interna    | l tempera  | ature            | in li | iving are | ea T1 ( | follo | ow ste     | ps 3 to 7    | 7 in T      | able 9c)                |            |                  |                |           |          |        |      |
| (87)m=  | 18.69      | 18.86      | 19.1             | 7     | 19.62     | 20.08   |       | 20.52      | 20.77        | 20.         | 73 20.37                | 7 19       | 9.79             | 19.18          | 18.       | 7        |        | (87) |
| Temp    | perature   | during h   | eating           | g pe  | eriods ir | rest o  | of dv | velling    | from Ta      | able 9      | 9, Th2 (°C              | C)         |                  |                |           |          |        |      |
| (88)m=  | 19.25      | 19.26      | 19.2             | 7     | 19.31     | 19.32   |       | 19.35      | 19.35        | 19.         | 36 19.34                | 4 19       | 9.32             | 19.3           | 19.2      | 28       |        | (88) |
| Utilis  | ation fac  | tor for a  | ains f           | or re | est of d  | velling | . h2  | .m (se     | ee Table     | 9a)         |                         | •          |                  |                |           |          |        |      |
| (89)m=  | 1          | 1          | 0.99             | )     | 0.99      | 0.96    | T     | 0.89       | 0.7          | 0.7         | 76 0.94                 | + O        | .99              | 1              | 1         |          |        | (89) |
| Mear    | interna    | l temper   | ature            | in t  | he rest ( | of dwe  |       | 1 T2 (f    | n<br>Now ste |             | to 7 in Ta              | ahle 9     | c)               |                | 1         |          |        |      |
| (90)m=  | 17.22      | 17.39      | 17.7             | 1     | 18.19     | 18.65   |       | 19.09      | 19.29        | 19.         | 27 18.9                 | 5 18       | <del>3</del> .36 | 17.75          | 17.2      | 25       |        | (90) |
|         | L          | I]         |                  |       |           |         |       |            | Į            | I           |                         | fLA =      | = Liv            | ring area ÷ (4 | 1<br>4) = | $\dashv$ | 0.55   | (91) |
| Moor    | intorno    | ltompor    | atura            | (for  | tho wh    | olo du  | ماللم | va) – f    | ΙΛ 🗸 Τ1      | т (1        | fL∧\ ∽ 7                | го         |                  |                |           | L        |        | ´    |
| (92)m=  | 18.04      | 18.21      | 18.5             | 2     | 18.98     | 19.44   |       | 19.88      | 20.11        | + (1<br>20. |                         | 4 19       | 9.15             | 18.55          | 18.0      | )5       |        | (92) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 18.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.21                 | 18.52                 | 18.98                  | 19.44                   | 19.88                  | 20.11         | 20.08      | 19.74                     | 19.15         | 18.55        | 18.05       |           | (93)        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|---------------|------------|---------------------------|---------------|--------------|-------------|-----------|-------------|
| 8. Sp                 | ace hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ting requ             | uirement              |                        |                         |                        |               |            |                           |               |              |             |           |             |
| Set T<br>the ut       | i to the r<br>ilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mean int<br>factor fo | ernal ter<br>or gains | nperatui<br>using Ta   | re obtain<br>Ible 9a    | ed at ste              | ep 11 of      | Table 9t   | o, so tha                 | t Ti,m=(      | 76)m an      | d re-calc   | ulate     |             |
|                       | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                   | Mar                   | Apr                    | May                     | Jun                    | Jul           | Aug        | Sep                       | Oct           | Nov          | Dec         |           |             |
| Utilisa               | ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tor for g             | ains, hm              | :                      |                         |                        |               | <u> </u>   |                           |               |              |             |           |             |
| (94)m=                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     | 0.99                  | 0.99                   | 0.97                    | 0.91                   | 0.8           | 0.84       | 0.95                      | 0.99          | 1            | 1           |           | (94)        |
| Usefu                 | I gains,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hmGm ,                | , W = (94             | 4)m x (84              | 4)m                     |                        |               |            |                           |               |              |             |           |             |
| (95)m=                | 400.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 465.49                | 515.13                | 554.95                 | 570.35                  | 525.77                 | 444.34        | 439.13     | 469.74                    | 441.33        | 397.32       | 378.39      |           | (95)        |
| Month                 | nly avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | age exte              | rnal tem              | perature               | e from Ta               | able 8                 |               |            |                           |               |              |             |           |             |
| (96)m=                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                   | 16.6          | 16.4       | 14.1                      | 10.6          | 7.1          | 4.2         |           | (96)        |
| Heat                  | loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e for mea             | an intern             | al tempe               | erature,                | Lm , W =               | =[(39)m x     | x [(93)m-  | – (96)m                   | ]             |              |             |           |             |
| (97)m=                | 2452.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2363.57               | 2124.4                | 1740.29                | 1329.98                 | 887.27                 | 589.33        | 615.38     | 955.98                    | 1469.13       | 1985.5       | 2425.87     |           | (97)        |
| Space                 | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g require             | ement fo              | r each n               | nonth, k\               | Nh/mon                 | th = 0.02     | 4 x [(97)  | m – (95                   | )m] x (4      | 1)m          |             |           |             |
| (98)m=                | 1526.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1275.51               | 1197.3                | 853.44                 | 565.17                  | 0                      | 0             | 0          | 0                         | 764.69        | 1143.49      | 1523.32     |           |             |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                        |                         |                        |               | Tota       | l per year                | (kWh/year     | ) = Sum(9    | 8)15,912 =  | 8849.69   | (98)        |
| Space                 | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a require             | ement in              | kWh/m <sup>2</sup>     | /vear                   |                        |               |            |                           |               |              | Ì           | 173.52    | (99)        |
|                       | oray roo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ata Car               | nmunity                | hooting                 | oobomo                 |               |            |                           |               |              | l           |           | ], ,        |
| 90. En                | ergy rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                       |                        |                         | scheme                 | tor boot      |            | ided by                   |               | unity on     |             |           |             |
| Fractic               | in of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ace heat              | from se               | ting, spa<br>condarv/  | supplen/                | ng or wa               | neating       | Table 11   | 10ed by a<br>1) '0' if no | a comm<br>one | unity scr    | ieme.       | 0         | (301)       |
| Fractio               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | (man 20               | oorraary,              |                         | (004                   | 1)<br>1)      |            | ., •                      | 0110          |              |             |           |             |
| Fractic               | n of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ace neat              | from co               | mmunity                | system                  | 1 - (30                | 1) =          |            |                           |               |              | [           | 1         | (302)       |
| The con               | nmunity so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cheme may             | y obtain he           | eat from se            | everal sour             | ces. The p             | procedure a   | allows for | CHP and u                 | up to four (  | other heat   | sources; th | ne latter |             |
| Fractic               | n of hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at from C             | commun                | ity boiler             | 'S                      | rom power              | stations.     | See Apper  | idix C.                   |               |              | [           | 1         | (303a)      |
| Fractic               | n of tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al space              | heat fro              | m Comn                 | nunity bo               | oilers                 |               |            |                           | (3            | 02) x (303   | a) =        | 1         | (304a)      |
| Factor                | for cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo              | r commu       | inity hea  | ting syst                 | tem           |              | [           | 1.05      | (305)       |
| Distrib               | ution los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatii             | ng systei     | m          |                           |               |              | [           | 1.1       | (306)       |
| Space                 | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a                     |                       |                        |                         |                        |               |            |                           |               |              | •           | kWh/year  | -           |
| Annua                 | l space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating               | requirem              | nent                   |                         |                        |               |            |                           |               |              | [           | 8849.69   | ]           |
| Space                 | heat fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | om Comr               | nunity b              | oilers                 |                         |                        |               |            | (98) x (30                | 04a) x (30    | 5) x (306) = | = [         | 10221.39  | (307a)      |
| Efficier              | ncy of se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | econdary              | y/supple              | mentary                | heating                 | system                 | in % (fro     | m Table    | 4a or A                   | ppendix       | E)           | [           | 0         | (308        |
| Space                 | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | requirer              | ment fro              | m secon                | dary/sup                | oplemen                | tary syst     | em         | (98) x (30                | 01) x 100 -   | ÷ (308) =    | [           | 0         | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>j</b><br>neating r | equirem               | ent                    |                         |                        |               |            |                           |               |              | ſ           | 1831.51   | 1           |
| lf DHW<br>Water       | / from contract from heat from the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the struc | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                        |               |            | (64) x (30                | )3a) x (30    | 5) x (306) = | ו<br>= [    | 2115.39   | )<br>(310a) |
| Electri               | city used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d for hea             | at distribu           | ution                  |                         |                        |               | 0.01       | × [(307a).                | (307e) +      | · (310a)(    | 310e)] =    | 123.37    | (313)       |
| Coolin                | g Syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m Energ               | y Efficie             | ncy Rati               | 0                       |                        |               |            |                           |               |              | [           | 0         | (314)       |
| Space                 | cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (if there             | is a fixe             | d cooling              | g system                | n, if not e            | enter 0)      |            | = (107) ÷                 | (314) =       |              | [           | 0         | (315)       |
| Electrie<br>mecha     | city for p<br>nical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra | velling (1<br>act or po | Table 4f)<br>sitive in | :<br>put from | outside    |                           |               |              | [           | 0         | (330a)      |

| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                               |                | 0                | (330b) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|----------------|------------------|--------|
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                               |                | 0                | (330g) |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =(330a) + (330b)            | ) + (330g) =                  |                | 0                | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                               | 4              | 05.69            | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                               |                |                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emiss<br>kg CO | sions<br>)2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of | two fuels repeat (363) to ( | 366) for the second fu        | el             | 65               | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10b)] x 100 ÷ (367b) x      | 0                             | =              | 4099.61          | (367)  |
| Electrical energy for heat distribution [(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 313) x                      | 0.52                          | =              | 64.03            | (372)  |
| Total CO2 associated with community systems (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63)(366) + (368)(372)       |                               | =              | 4163.63          | (373)  |
| CO2 associated with space heating (secondary) (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09) x                       | 0                             | =              | 0                | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ous heater (312) x          | 0.22                          | =              | 0                | (375)  |
| Total CO2 associated with space and water heating (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73) + (374) + (375) =       |                               | 4              | 4163.63          | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g (331)) x                  | 0.52                          | -              | 0                | (378)  |
| CO2 associated with electricity for lighting (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32))) x                     | 0.52                          | =              | 210.55           | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                               | 4              | 4374.19          | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                               |                | 85.77            | (384)  |
| El rating (section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                               |                | 42.43            | (385)  |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User D                     | etails:                |                             |                   |                       |              |                                       |                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------|-------------------|-----------------------|--------------|---------------------------------------|-------------------|--|--|--|--|--|
| Assessor Name:<br>Software Name: Stroma                                                                                                                                                      | FSAP 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roportu                    | Stroma<br>Softwa       | a Num<br>ire Ver            | ber:<br>sion:     |                       | Versic       | on: 1.0.3.15                          |                   |  |  |  |  |  |
|                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roperty <i>i</i>           | Address:               | Unit 14                     |                   |                       |              |                                       |                   |  |  |  |  |  |
| Address: , london                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                             |                   |                       |              |                                       |                   |  |  |  |  |  |
| Basement                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Area                       | <b>a(m²)</b><br>51     | (1a) x                      | <b>Av. He</b>     | <b>ight(m)</b><br>.18 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)  |  |  |  |  |  |
| Total floor area $TFA = (1a)+(1b)+(1)$                                                                                                                                                       | c)+(1d)+(1e)+(1n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I)                         | 51                     | (4)                         |                   |                       |              |                                       |                   |  |  |  |  |  |
| Dwelling volume                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        | (3a)+(3b)                   | +(3c)+(3c         | d)+(3e)+              | .(3n) =      | 111.18                                | (5)               |  |  |  |  |  |
| 2. Ventilation rate:                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                             |                   |                       |              | <u> </u>                              |                   |  |  |  |  |  |
| main       heati       Number of chimneys       Number of open flues                                                                                                                         | $\begin{array}{ccc} n & secondar \\ ng & heating \\ \hline 0 & + & 0 \\ \hline 0 & + & 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y<br>] + [_<br>] + [_      | 0<br>0                 | ] = [                       | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b) |  |  |  |  |  |
| Number of intermittent fans                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        | Γ                           | 2                 | <b>X</b> .            | 10 =         | 20                                    | (7a)              |  |  |  |  |  |
| Number of passive vents                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        | Ē                           | 0                 | <b>x</b> .            | 10 =         | 0                                     | (7b)              |  |  |  |  |  |
| Number of flueless gas fires                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        | Ē                           | 0                 | × 4                   | 40 =         | 0                                     | (7c)              |  |  |  |  |  |
| umber of passive vents $0$ $x 10 =$ $0$ $(7b)$ umber of flueless gas fires $0$ $x 40 =$ $0$ $(7c)$ Air changes per hourfiltration due to chimpour, flues and fans $=$ $(67) + (7c) + (7c) =$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                             |                   |                       |              |                                       |                   |  |  |  |  |  |
| Infiltration due to chimneys, flues an<br>If a pressurisation test has been carried o<br>Number of storeys in the dwelling                                                                   | nd fans = (6a)+(6b)+(7<br>put or is intended, proceed<br>g (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a)+(7b)+(7<br>d to (17), c | 7c) =<br>otherwise c   | ontinue fre                 | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.18                                  | (8)<br>(9)        |  |  |  |  |  |
| Additional infiltration                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                             |                   | [(9)                  | -1]x0.1 =    | 0                                     | (10)              |  |  |  |  |  |
| Structural infiltration: 0.25 for stee<br>if both types of wall are present, use th<br>deducting areas of openings); if equal                                                                | el or timber frame or<br>le value corresponding to<br>user 0.35<br>0.2 (upsealed) or 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35 for<br>the greate     | masonr<br>er wall area | y constr<br>a <i>(after</i> | uction            | -                     |              | 0                                     | (11)              |  |  |  |  |  |
| If no draught lobby enter 0.05 el                                                                                                                                                            | $1 \le 2 = (1 + 3 \le 2 \le 3 \le 3 \le 3 \le 3 \le 3 \le 3 \le 3 \le 3 \le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                        |                             |                   |                       |              | 0                                     | (12)              |  |  |  |  |  |
| Percentage of windows and door                                                                                                                                                               | s draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                        |                             |                   |                       |              | 0                                     | (14)              |  |  |  |  |  |
| Window infiltration                                                                                                                                                                          | 5 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 0.25 - [0.2            | x (14) ÷ 1                  | = [00             |                       |              | 0                                     | (15)              |  |  |  |  |  |
| Infiltration rate                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | (8) + (10) -           | + (11) + (1                 | 2) + (13) ·       | + (15) =              |              | 0                                     | (16)              |  |  |  |  |  |
| Air permeability value, q50, expre                                                                                                                                                           | essed in cubic metre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s per ho                   | our per so             | quare m                     | etre of e         | envelope              | area         | 20                                    | (17)              |  |  |  |  |  |
| If based on air permeability value, the                                                                                                                                                      | hen (18) = [(17) ÷ 20]+(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3), otherwi                | se (18) = (            | 16)                         |                   |                       |              | 1.18                                  | (18)              |  |  |  |  |  |
| Air permeability value applies if a pressur                                                                                                                                                  | isation test has been don                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e or a deg                 | ree air per            | meability                   | is being u        | sed                   |              | <b></b>                               | _                 |  |  |  |  |  |
| Number of sides sheltered                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | (20) = 1 - [           | 0.075 x (1                  | 9)] =             |                       |              | 2                                     | (19)              |  |  |  |  |  |
| Infiltration rate incorporating shelter                                                                                                                                                      | factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | (21) = (18)            | x (20) =                    | -/1               |                       |              | 0.85                                  | (20)              |  |  |  |  |  |
| Infiltration rate modified for monthly                                                                                                                                                       | wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | () (·-)                | ()                          |                   |                       |              | I                                     | (21)              |  |  |  |  |  |
|                                                                                                                                                                                              | pr May Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul                        | Αυσ                    | Sep                         | Oct               | Nov                   | Dec          | ]                                     |                   |  |  |  |  |  |
| Monthly average wind speed from 7                                                                                                                                                            | [2010] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2011] [2 | 041                        | , (49                  | 000                         | 000               |                       | 200          | 1                                     |                   |  |  |  |  |  |
| (22)m= 5.1 5 4.9 4.4                                                                                                                                                                         | 4 4.3 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.8                        | 3.7                    | 4                           | 4.3               | 4.5                   | 4.7          | ]                                     |                   |  |  |  |  |  |
| Wind Factor (22a)m = $(22)m = 4$                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |                             |                   | 1                     | 1            | l                                     |                   |  |  |  |  |  |
| (22a)m= 1.27 1.25 1.23 1.7                                                                                                                                                                   | 1 1.08 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95                       | 0.92                   | 1                           | 1.08              | 1.12                  | 1.18         | ]                                     |                   |  |  |  |  |  |

| Adjust         | ed infiltr             | ation rat                      | e (allow                   | ing for sh   | nelter an      | d wind s      | peed) =         | (21a) x        | (22a)m       |                | -           |                      |            |       |
|----------------|------------------------|--------------------------------|----------------------------|--------------|----------------|---------------|-----------------|----------------|--------------|----------------|-------------|----------------------|------------|-------|
| ~ / /          | 1.28                   | 1.25                           | 1.23                       | 1.1          | 1.08           | 0.95          | 0.95            | 0.93           | 1            | 1.08           | 1.13        | 1.18                 |            |       |
| Calcul<br>If m | ate ette               | <i>ctive air</i><br>al ventila | change                     | rate for t   | ne appli       | cable ca      | se              |                |              |                |             |                      | 0          | (23a) |
| lf exh         | aust air h             | eat pump                       | using App                  | endix N, (2  | 3b) = (23a     | a) × Fmv (e   | equation (I     | N5)) , othei   | rwise (23b   | ) = (23a)      |             |                      | 0          | (23b) |
| If bala        | anced with             | h heat reco                    | overv: effic               | iencv in %   | allowing f     | or in-use f   | actor (fron     | n Table 4h     | ) =          | , ( ,          |             |                      | 0          | (23c) |
| a) If          | halance                | ed mech                        | anical ve                  | ntilation    | with he        | at recove     | ∍rv (MVI        | HR) (24a       | n)m = (2)    | 2h)m + (       | 23h) x [1   | 1 – (23c)            | <br>∸ 1001 | (200) |
| (24a)m=        |                        |                                |                            | 0            | 0              | 0             |                 |                | 0            | 0              | 0           | 0                    | ]          | (24a) |
| b) If          | balance                | L<br>d mech                    | I<br>anical ve             | I            | without        | L<br>heat rec | L<br>coverv (N  | L<br>//V) (24b | l = (2)      | I<br>2b)m + () | L<br>23b)   |                      | l          |       |
| (24b)m=        | 0                      | 0                              |                            | 0            | 0              | 0             | 0               | 0              | 0            | 0              | 0           | 0                    |            | (24b) |
| c) If          | whole h                | i<br>ouse ex                   | ract ver                   | ntilation of | or positiv     | input v       | ı<br>ventilatio | n from c       | utside       |                |             |                      | I          |       |
| •)             | if (22b)r              | n < 0.5 ×                      | (23b), t                   | then (24     | c) = (23b      | o); otherv    | wise (24        | c) = (22b      | o) m + 0.    | 5 × (23b       | <b>)</b> )  |                      |            |       |
| (24c)m=        | 0                      | 0                              | 0                          | 0            | 0              | 0             | 0               | 0              | 0            | 0              | 0           | 0                    |            | (24c) |
| d) If          | natural                | ventilatio                     | on or wh                   | ole hous     | e positiv      | ve input      | ventilatio      | on from l      | oft          |                | •           |                      |            |       |
|                | if (22b)r              | n = 1, th                      | en (24d)                   | m = (22      | o)m othe       | erwise (2     | 4d)m =          | 0.5 + [(2      | 2b)m² x      | 0.5]           |             | 1                    | 1          |       |
| (24d)m=        | 1.28                   | 1.25                           | 1.23                       | 1.1          | 1.08           | 0.95          | 0.95            | 0.93           | 1            | 1.08           | 1.13        | 1.18                 |            | (24d) |
| Effe           | ctive air              | change                         | rate - er                  | nter (24a    | ) or (24t      | o) or (24     | c) or (24       | d) in boy      | (25)         | i              |             | i                    | 1          |       |
| (25)m=         | 1.28                   | 1.25                           | 1.23                       | 1.1          | 1.08           | 0.95          | 0.95            | 0.93           | 1            | 1.08           | 1.13        | 1.18                 |            | (25)  |
| 3. He          | at l <mark>osse</mark> | s and he                       | eat loss                   | paramete     | er:            |               |                 |                |              |                |             |                      |            |       |
|                | /IENT                  | Gros                           | s                          | Openin       | gs             | Net Ar        | ea              | U-valu         | Je           | AXU            |             | k-value              | e l        | AXk   |
| _              |                        | area                           | (m²)                       | m            | 1 <sup>2</sup> | A ,r          | n²              | W/m2           | K            | (VV/I          | K)          | kJ/m <sup>2</sup> ·l | K          | kJ/K  |
| Doors          | _                      |                                |                            |              |                | 1.9           | ×               | 1.4            | =            | 2.66           |             |                      |            | (26)  |
| Windo          | ws Type                | e 1                            |                            |              |                | 4.42          | x1              | /[1/( 1.6 )+   | 0.04] =      | 6.65           |             |                      |            | (27)  |
| Windo          | ws Type                | e 2                            |                            |              |                | 4.96          | x1              | /[1/( 4.8 )+   | 0.04] =      | 19.97          |             |                      |            | (27)  |
| Floor          |                        |                                |                            |              |                | 51            | x               | 0.97           | =            | 49.47          |             |                      |            | (28)  |
| Walls          | Type1                  | 39.                            | 2                          | 4.96         | ;              | 34.24         | k X             | 2.1            | =            | 71.9           |             |                      |            | (29)  |
| Walls          | Type2                  | 10.9                           | 99                         | 6.32         | 2              | 4.67          | x               | 2.1            | =            | 9.81           |             |                      |            | (29)  |
| Total a        | area of e              | elements                       | , m²                       |              |                | 101.1         | 9               |                |              |                |             |                      |            | (31)  |
| Party v        | wall                   |                                |                            |              |                | 16.1          | x               | 0              | =            | 0              |             |                      |            | (32)  |
| * for win      | idows and              | l roof wind                    | ows, use e                 | effective wi | ndow U-va      | alue calcul   | ated using      | g formula 1    | /[(1/U-valu  | ıe)+0.04] a    | as given in | paragraph            | 1 3.2      |       |
| ** incluc      | le the area            | as on both                     | sides of in                | nternal wal  | ls and par     | titions       |                 | (00) (00)      | (22)         |                |             |                      | r          |       |
| Fabric         | heat los               | SS, W/K :                      | = S (A x                   | U)           |                |               |                 | (26)(30)       | (32) =       | (00) (0)       |             | (00.)                | 160.46     | (33)  |
| Heat c         | apacity                | Cm = S(                        | (A X K )                   |              | TEAL           | 1 1/          |                 |                | ((28)        | (30) + (32     | 2) + (32a). | (32e) =              | 0          | (34)  |
| I nerm         | al mass                | parame                         |                            | - = Cm ÷     | - IFA) Ir      | n KJ/M²K      |                 |                | Indica       | tive Value     | : High      |                      | 450        | (35)  |
| can be u       | used inste             | ad of a de                     | ere trie de<br>tailed calc | ulation.     | construct      | ion are not   | t known pr      | ecisely the    | e indicative | e values of    | TMP IN T    | adie 11              |            |       |
| Therm          | al bridg               | es : S (L                      | x Y) cal                   | culated u    | using Ap       | pendix ł      | <               |                |              |                |             |                      | 15.2       | (36)  |
| if details     | of therma              | al bridging                    | are not kr                 | nown (36) =  | = 0.15 x (3    | 1)            |                 |                |              |                |             |                      |            |       |
| Total f        | abric he               | at loss                        |                            |              |                |               |                 |                | (33) +       | (36) =         |             |                      | 175.66     | (37)  |
| Ventila        | ation hea              | at loss ca                     | alculated                  | d monthly    | y              |               |                 | 1              | (38)m        | = 0.33 × (     | 25)m x (5)  |                      | 1          |       |
|                | Jan                    | Feb                            | Mar                        | Apr          | May            | Jun           | Jul             | Aug            | Sep          | Oct            | Nov         | Dec                  |            |       |
| (38)m=         | 46.91                  | 45.99                          | 45.08                      | 40.48        | 39.56          | 35            | 35              | 34.13          | 36.8         | 39.56          | 41.4        | 43.24                |            | (38)  |
| Heat ti        | ransfer o              | coefficie                      | nt, W/K                    |              |                |               |                 |                | (39)m        | = (37) + (     | 38)m        |                      |            |       |
| (39)m=         | 222.58                 | 221.66                         | 220.74                     | 216.14       | 215.22         | 210.66        | 210.66          | 209.79         | 212.46       | 215.22         | 217.06      | 218.9                |            |       |
|                |                        |                                |                            |              |                |               |                 |                |              | Average =      | Sum(39)1    | 12 /12=              | 215.92     | (39)  |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | /m²K                                      |                                          |                                       |                              |                          | (40)m                 | = (39)m ÷               | · (4)                                 |          |            |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|--------------------------|-----------------------|-------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 4.36                            | 4.35                                   | 4.33                                 | 4.24                                      | 4.22                                     | 4.13                                  | 4.13                         | 4.11                     | 4.17                  | 4.22                    | 4.26                                  | 4.29     |            |      |
| L                              | r of day                        |                                        | nth (Tab                             | le 12)                                    |                                          | 1                                     | 1                            |                          | ,                     | Average =               | Sum(40)1                              | 12 /12=  | 4.23       | (40) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Aug                      | Sep                   | Oct                     | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                        | 31                                       | 30                                    | 31                           | 31                       | 30                    | 31                      | 30                                    | 31       |            | (41) |
| , , L                          |                                 |                                        |                                      |                                           |                                          |                                       |                              |                          |                       |                         |                                       |          | l          |      |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                  |                                          |                                       |                              |                          |                       |                         |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | ıpancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(               | 0013 x ( <sup>-</sup> | TFA -13                 | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br>r day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve   | + 36<br>a water us    | se target o             | 75<br>f                               | .04      | ]          | (43) |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Aug                      | Sep                   | Oct                     | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea<br>I                    | ach month<br>I                            | Vd,m = fa                                | ctor from 1                           | Table 1c x<br>I              | (43)<br>T                |                       |                         |                                       |          | 1          |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                     | 70.54                                    | 67.54                                 | 67.54                        | 70.54                    | 73.54                 | 76.54                   | 79.54                                 | 82.54    | 000.40     |      |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                                | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600               | ) kWh/mor             | total = Su<br>h(see Ta) | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                     | 92.42                                    | 79.75                                 | 73.9                         | 84.8                     | 85.81                 | 100.01                  | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                                | hot water                                | r storage),                           | enter 0 in                   | boxes (46                | ) to (61)             | Total = Su              | m(45) <sub>112</sub> =                |          | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                     | 13.86                                    | 11.96                                 | 11.08                        | 12.72                    | 12.87                 | 15                      | 16.37                                 | 17.78    |            | (46) |
| Storage                        | storage                         | loss:<br>e (litres)                    | includir                             | ng anv so                                 | olar or W                                | /WHRS                                 | storage                      | within sa                | ame ves               | sel                     |                                       | 160      | 1          | (47) |
| If comm                        | nunitv h                        | eating a                               | and no ta                            | ink in dw                                 | vellina. e                               | nter 110                              | litres in                    | (47)                     |                       |                         |                                       | 100      |            | ()   |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                               | icludes i                                | nstantar                              | neous co                     | ombi boil                | ers) ente             | er '0' in (             | 47)                                   |          |            |      |
| Water s                        | storage                         | loss:                                  |                                      |                                           |                                          |                                       |                              |                          |                       |                         |                                       |          |            |      |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                                 | or is kno                                | wn (kWł                               | n/day):                      |                          |                       |                         |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                          |                       |                         |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/y€                                 | ear                                      |                                       | lun numu                     | (48) x (49)              | ) =                   |                         | 1                                     | 10       |            | (50) |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                   | e 2 (kW                                  | h/litre/da                            | whown.<br>ay)                |                          |                       |                         | 0.                                    | 02       | ]          | (51) |
| If comm                        | nunity h<br>factor              | from Ta                                | ee secti<br>bla 22                   | on 4.3                                    |                                          |                                       |                              |                          |                       |                         |                                       | 00       | 1          | (52) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                          |                       |                         | 1.                                    | 03<br>6  |            | (52) |
| Energy                         | lost fro                        | m water                                | storage                              |                                           | ar                                       |                                       |                              | (47) x (51)              | ) x (52) x (          | 53) =                   |                                       | .0       |            | (54) |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  | , itt vii/yt                              | 501                                      |                                       |                              | () / (0.)                | , x (o_) x (          | ,                       | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                  | month                                    |                                       |                              | ((56)m = (               | 55) × (41)ı           | m                       |                                       |          | 1          |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                    | 30.98                 | 32.01                   | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contains                      | s dedicate                             | l<br>d solar sto                     | rage, (57)ı                               | m = (56)m                                | x [(50) – (                           | <b>I</b><br>H11)] ÷ (5       | <b>1</b><br>60), else (5 | 7)m = (56)            | m where (               | H11) is fro                           | m Append | l<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                    | 30.98                 | 32.01                   | 30.98                                 | 32.01    |            | (57) |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                  | 93                                       |                                       |                              |                          |                       |                         |                                       | 0        |            | (58) |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                  | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)                | m                     |                         |                                       |          |            |      |
| mod)<br>ا                      | ified by                        | factor f                               | rom Tab                              | le H5 if t                                | here is s                                | solar wat                             | ter heati                    | ng and a                 | cylinde               | r thermo                | stat)                                 |          | 1          |      |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                     | 23.26                                    | 22.51                                 | 23.26                        | 23.26                    | 22.51                 | 23.26                   | 22.51                                 | 23.26    |            | (59) |

| Combi    | loss ca   | alculated       | for eacl     | h month         | (61)m =        | (60) ÷ 3  | 65 × (41      | )m               |              |                     |                  |             |               |                  |
|----------|-----------|-----------------|--------------|-----------------|----------------|-----------|---------------|------------------|--------------|---------------------|------------------|-------------|---------------|------------------|
| (61)m=   | 0         | 0               | 0            | 0               | 0              | 0         | 0             | 0                | 0            | 0                   | 0                | 0           |               | (61)             |
| Total h  | eat req   | uired for       | water h      | neating c       | alculated      | for eac   | ch month      | (62)m =          | • 0.85 ×     | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |                  |
| (62)m=   | 177.69    | 156.99          | 165.75       | 149.81          | 147.69         | 133.24    | 129.18        | 140.08           | 139.31       | 155.28              | 162.66           | 173.82      |               | (62)             |
| Solar DH | W input   | calculated      | using Ap     | pendix G o      | r Appendix     | H (negat  | tive quantity | /) (enter '0     | ' if no sola | r contribut         | tion to wate     | er heating) |               |                  |
| (add a   | dditiona  | al lines if     | FGHRS        | and/or          | WWHRS          | applies   | s, see Ap     | pendix (         | G)           |                     |                  | -           |               |                  |
| (63)m=   | 0         | 0               | 0            | 0               | 0              | 0         | 0             | 0                | 0            | 0                   | 0                | 0           |               | (63)             |
| Output   | from w    | vater hea       | ter          |                 |                |           |               |                  |              |                     |                  |             |               |                  |
| (64)m=   | 177.69    | 156.99          | 165.75       | 149.81          | 147.69         | 133.24    | 129.18        | 140.08           | 139.31       | 155.28              | 162.66           | 173.82      |               | _                |
|          |           |                 |              |                 |                |           |               | Out              | out from w   | ater heate          | r (annual)₁      | 12          | 1831.51       | (64)             |
| Heat g   | ains fro  | om water        | heating      | ı, kWh/m        | onth 0.2       | 5 ´ [0.85 | 5 × (45)m     | + (61)n          | n] + 0.8 x   | k [(46)m            | + (57)m          | + (59)m     | ]             |                  |
| (65)m=   | 59.31     | 52.41           | 55.34        | 50.03           | 49.34          | 44.53     | 43.18         | 46.81            | 46.54        | 51.86               | 54.31            | 58.03       |               | (65)             |
| inclu    | de (57)   | m in calo       | culation     | of (65)m        | only if c      | ylinder   | is in the o   | dwelling         | or hot w     | ater is f           | rom com          | munity h    | eating        |                  |
| 5. Int   | ernal g   | ains (see       | Table        | 5 and 5a        | ):             |           |               |                  |              |                     |                  |             |               |                  |
| Metabo   | olic dair | ns (Table       | e 5). Wa     | tts             |                |           |               |                  |              |                     |                  |             |               |                  |
|          | Jan       | Feb             | Mar          | Apr             | May            | Jun       | Jul           | Aug              | Sep          | Oct                 | Nov              | Dec         |               |                  |
| (66)m=   | 85.98     | 85.98           | 85.98        | 85.98           | 85.98          | 85.98     | 85.98         | 85.98            | 85.98        | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66)             |
| Lightin  | g gains   | ,<br>(calcula   | ted in A     | ppendix         | L, equat       | ion L9 c  | or L9a), a    | lso see          | Table 5      |                     |                  |             |               |                  |
| (67)m=   | 22.92     | 20.36           | 16.55        | 12.53           | 9.37           | 7.91      | 8.55          | 11.11            | 14.91        | 18.93               | 22.1             | 23.55       |               | (67)             |
| Appliar  | nces ga   | ains (calc      | ulated i     | n Appen         | dix L, eq      | uation L  | 13 or L1      | 3a), also        | see Ta       | ble 5               |                  |             |               |                  |
| (68)m=   | 149.83    | 151.39          | 147.47       | 139.13          | 128.6          | 118.7     | 112.09        | 110.54           | 114.45       | 122.8               | 133.32           | 143.22      |               | (68)             |
| Cookin   | a gains   | s (calcula      | ited in A    |                 | L. equat       | ion L15   | or L15a       | ), also se       | ee Table     | 5                   |                  |             |               |                  |
| (69)m=   | 31.6      | 31.6            | 31.6         | 31.6            | 31.6           | 31.6      | 31.6          | 31.6             | 31.6         | 31.6                | 31.6             | 31.6        |               | (69)             |
| Pumps    | and fa    | ins gains       | (Table       | 5a)             |                |           |               |                  |              |                     |                  |             |               |                  |
| (70)m=   | 0         | 0               | 0            | 0               | 0              | 0         | 0             | 0                | 0            | 0                   | 0                | 0           |               | (70)             |
| Losses   | se a e    | vaporatio       | n (nega      | i<br>ative valu | i<br>les) (Tab | le 5)     | <u> </u>      |                  |              |                     | I                |             |               |                  |
| (71)m=   | -68.78    | -68.78          | -68.78       | -68.78          | -68.78         | -68.78    | -68.78        | -68.78           | -68.78       | -68.78              | -68.78           | -68.78      |               | (71)             |
| Water    | heating   | L<br>1 dains (T | l<br>able 5) |                 |                |           |               |                  |              |                     |                  |             |               |                  |
| (72)m=   | 79.72     | 77.99           | 74.39        | 69.49           | 66.32          | 61.84     | 58.04         | 62.91            | 64.64        | 69.71               | 75.43            | 77.99       |               | (72)             |
| Total i  | nterna    | l<br>Laains –   |              |                 | 1              | (66       | )m + (67)m    | L<br>1 + (68)m · | L+ (69)m +   | L<br>(70)m + (7     | 1<br>(1)m + (72) |             |               | . ,              |
| (73)m=   | 301.26    | 298.52          | 287.2        | 269.95          | 253.08         | 237.25    | 227.47        | 233.35           | 242.8        | 260.23              | 279.64           | 293.56      | l             | (73)             |
| 6. Sol   | ar gain   | s:              |              | 1               | 1              |           | 1             |                  |              |                     |                  |             |               | · ,              |
| Solar g  | ains are  | calculated      | using sola   | ar flux from    | Table 6a       | and asso  | ciated equa   | tions to co      | onvert to th | ne applical         | ole orientat     | ion.        |               |                  |
| Orienta  | ation:    | Access F        | actor        | Area            | l              | Fl        | ux            |                  | g_           |                     | FF               |             | Gains         |                  |
|          |           | Table 6d        |              | m²              |                | Ta        | ble 6a        | Т                | able 6b      | Т                   | able 6c          |             | (W)           |                  |
| North    | 0.9x      | 0.77            | ×            | 4.9             | 96             | x         | 10.63         | x                | 0.85         | X                   | 0.7              | =           | 21.75         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.9             | 96             | x         | 20.32         | ×                | 0.85         | = × [               | 0.7              | =           | 41.56         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.9             | 96             | x         | 34.53         | ×                | 0.85         | ╡ x                 | 0.7              | =           | 70.62         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.9             | 96             | ×         | 55.46         | x 🗌              | 0.85         | ╡ <u> </u>          | 0.7              | =           | 113.43        | <b>–</b><br>(74) |
| North    | 0.9x      | 0.77            | ×            | 4.9             | 96             | x 📃       | 74.72         | ×                | 0.85         | ╡ × Г               | 0.7              | =           | 152.81        | (74)             |

| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | ×               | 7          | 9.99           | x                | 0.85            | 5            | <b>x</b>            | 0.7          |        | = [ | 163.58 | (74)  |
|----------|-----------|------------|---------|-----------------|-----------|---------|-----------------|------------|----------------|------------------|-----------------|--------------|---------------------|--------------|--------|-----|--------|-------|
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | ×               | 7          | 4.68           | x                | 0.85            | 5            | ) x [               | 0.7          |        | = [ | 152.73 | (74)  |
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | x               | 5          | 59.25          | x                | 0.85            | 5            | <b>x</b>            | 0.7          |        | = [ | 121.17 | (74)  |
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | x               | 4          | 1.52           | x                | 0.85            | 5            | ] × [               | 0.7          |        | = [ | 84.91  | (74)  |
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | ×               | 2          | 24.19          | x                | 0.85            | 5            | ) × [               | 0.7          |        | = [ | 49.47  | (74)  |
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | ×               | 1          | 3.12           | x                | 0.85            | 5            | ] × [               | 0.7          |        | = [ | 26.83  | (74)  |
| North    | 0.9x      | 0.77       |         | x               | 4.9       | 6       | x               | 6          | 8.86           | x                | 0.85            | 5            | ] × [               | 0.7          |        | = [ | 18.13  | (74)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 4          | 6.75           | x                | 0.76            | 6            | ] × [               | 0.7          |        | = [ | 76.18  | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               | 7          | 6.57           | x                | 0.76            | 6            | <b>x</b>            | 0.7          |        | = [ | 124.77 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               | g          | 97.53          | x                | 0.76            | 6            | ) × [               | 0.7          |        | = [ | 158.94 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               | 1          | 10.23          | x                | 0.76            | 6            | <b>x</b> [          | 0.7          |        | = [ | 179.63 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               | 1          | 14.87          | x                | 0.76            | 6            | ) × [               | 0.7          |        | = [ | 187.19 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               | 1          | 10.55          | <b>x</b>         | 0.76            | 6            | <b>x</b> [          | 0.7          |        | = [ | 180.14 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 1          | 08.01          | x                | 0.76            | 6            | <b>x</b> [          | 0.7          |        | =   | 176.01 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 1          | 04.89          | x                | 0.76            | 6            | ] x [               | 0.7          |        | = [ | 170.93 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 1          | 01.89          | x                | 0.76            | 6            | ] x [               | 0.7          |        | =   | 166.03 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 8          | 32.59          | x                | 0.76            | 6            | <b>x</b>            | 0.7          |        | = [ | 134.58 | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | ×               | 5          | 5.42           | x                | 0.76            | 6            | x                   | 0.7          |        | =[  | 90.3   | (78)  |
| South    | 0.9x      | 0.77       |         | x               | 4.4       | 2       | x               |            | 40.4           | ) x              | 0.76            | 6            | × [                 | 0.7          |        | = [ | 65.83  | (78)  |
|          |           |            |         |                 |           |         |                 |            |                |                  |                 |              |                     |              | _      |     |        |       |
| Solar (  | gains in  | watts, ca  | alculat | ed              | for eacl  | n mon   | th              |            |                | (83)m            | n = Sum(74      | 4)m          | <mark>(8</mark> 2)m |              |        |     |        | (00)  |
| (83)m=   | 97.93     | 166.33     | 229.5   | 6               | 293.07    | 340     | 3               | 43.73      | 328.74         | 292              | 2.1 250         | 0.94         | 184.05              | 117.13       | 83.9   | 96  |        | (83)  |
| l otal ( | jains – i | nternal a  | nd so   | lar             | (84)m =   | : (73)n |                 | 83)m       | , watts        | 1 505            | 45 400          |              | 11100               | 000.77       | 077    |     |        | (0.4) |
| (84)m=   | 399.19    | 464.85     | 516.7   | 6               | 563.01    | 593.0   | ( 5             | 80.97      | 556.21         | 525              | .45 493         | 5.74         | 444.28              | 396.77       | 377.   | 52  |        | (84)  |
| 7. Me    | ean inter | nal temp   | eratu   | re (            | heating   | seaso   | on)             |            |                |                  |                 |              |                     |              |        | _   |        |       |
| Temp     | perature  | during h   | eating  | g pe            | eriods ir | the li  | ving            | area       | from Tab       | ole 9            | , Th1 (°C       | C)           |                     |              |        |     | 21     | (85)  |
| Utilis   | ation fac | tor for ga | ains fo | or li           | ving are  | a, h1,  | <u>m (s</u>     | ee Ta      | ble 9a)        | -                |                 |              |                     |              | -      |     |        |       |
|          | Jan       | Feb        | Ma      | r               | Apr       | Ma      | y 📘             | Jun        | Jul            | A                | ug S            | ер           | Oct                 | Nov          | De     | ec  |        |       |
| (86)m=   | 1         | 1          | 1       |                 | 0.99      | 0.98    |                 | 0.95       | 0.9            | 0.9              | 0.9             | 97           | 0.99                | 1            | 1      |     |        | (86)  |
| Mear     | n interna | l tempera  | ature   | in li           | iving are | ea T1   | (follo          | ow ste     | ps 3 to 7      | 7 in T           | able 9c)        | )            |                     |              |        |     |        |       |
| (87)m=   | 18.24     | 18.42      | 18.76   | 3               | 19.27     | 19.81   | 2               | 20.33      | 20.64          | 20.              | 59 20.          | .17          | 19.49               | 18.8         | 18.2   | 24  |        | (87)  |
| Temp     | perature  | during h   | eating  | g pe            | eriods ir | rest o  | of dv           | velling    | from Ta        | able 9           | 9, Th2 (°       | °C)          |                     |              |        |     |        |       |
| (88)m=   | 18.82     | 18.83      | 18.84   | 1               | 18.88     | 18.89   | ·   ·           | 18.93      | 18.93          | 18.              | 94 18.          | .92          | 18.89               | 18.87        | 18.8   | 35  |        | (88)  |
| Utilis   | ation fac | tor for a  | ains fo | or re           | est of d  | vellinc | ı. h2           | .m (se     | e Table        | 9a)              |                 | •            |                     | -            | •      |     |        |       |
| (89)m=   | 1         | 1          | 0.99    |                 | 0.99      | 0.96    | ,,,. <u>_</u>   | 0.89       | 0.7            | 0.7              | 76 0.9          | 94           | 0.99                | 1            | 1      |     |        | (89)  |
| Moor     |           |            | atura   | in t            | ha rast   | of dwe  |                 | T2 (f      | l<br>ollow ste |                  | to 7 in 7       | <br>Tabla    | 9c)                 |              | Į      |     |        |       |
| (90)m=   | 16.47     | 16.65      | 17      |                 | 17.54     | 18.07   | ·               | 18.6       | 18.85          | 18.              | 83 18.          | 44           | 17.76               | 17.06        | 16.4   | 19  |        | (90)  |
|          |           |            |         |                 |           |         |                 |            |                | L                |                 | fL/          | A = Liv             | ing area ÷ ( | 4) =   | -   | 0.47   | (91)  |
| N 4      |           | 14         |         | /1 -            |           |         | I. <sup>1</sup> |            |                |                  | £1 A \          | To           |                     | ,            |        | L   |        | ``/   |
| Iviear   |           |            |         | $\frac{101}{2}$ |           |         | /eilin          | (g) = f(g) | $LA \times 11$ | + (1             | $- TLA) \times$ | : 12<br>26 T | 19 50               | 17.00        | 474    | 22  |        | (02)  |
| (92)111= | 17.31     | 17.40      | 17.63   | '               | 10.30     | 10.09   |                 | 13.42      | 19.7           | 1 <sup>19.</sup> | 19.             | .20          | 10.50               | 17.09        | L 17.3 | )Z  |        | (92)  |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                     | 17.31                          | 17.48                  | 17.83                   | 18.36                    | 18.89              | 19.42       | 19.7        | 19.66      | 19.26                   | 18.58                | 17.89        | 17.32         |           | (93)         |
|----------------------------|--------------------------------|------------------------|-------------------------|--------------------------|--------------------|-------------|-------------|------------|-------------------------|----------------------|--------------|---------------|-----------|--------------|
| 8. Sp                      | ace hea                        | ting requ              | uirement                |                          |                    |             |             |            |                         |                      |              |               |           |              |
| Set T<br>the ut            | i to the r<br>ilisation        | nean int<br>factor fo  | ernal ter<br>or gains ( | nperatur<br>using Ta     | e obtain<br>ble 9a | ed at ste   | ep 11 of    | Table 9t   | o, so tha               | t Ti,m=(             | 76)m an      | d re-calc     | ulate     |              |
|                            | Jan                            | Feb                    | Mar                     | Apr                      | May                | Jun         | Jul         | Aug        | Sep                     | Oct                  | Nov          | Dec           |           |              |
| Utilisa                    | ation fac                      | tor for g              | ains, hm                | :                        |                    |             |             |            |                         |                      |              |               |           |              |
| (94)m=                     | 1                              | 1                      | 0.99                    | 0.98                     | 0.96               | 0.91        | 0.81        | 0.84       | 0.95                    | 0.99                 | 1            | 1             |           | (94)         |
| Usefu                      | I gains,                       | hmGm                   | W = (94                 | 4)m x (84                | 4)m                |             |             |            |                         |                      | -            |               |           |              |
| (95)m=                     | 398.11                         | 462.77                 | 512.68                  | 554.06                   | 571.5              | 529.3       | 449.02      | 441.67     | 467.88                  | 438.34               | 395.04       | 376.68        |           | (95)         |
| Month                      | nly avera                      | age exte               | rnal tem                | perature                 | from Ta            | able 8      |             |            |                         |                      |              |               |           |              |
| (96)m=                     | 4.3                            | 4.9                    | 6.5                     | 8.9                      | 11.7               | 14.6        | 16.6        | 16.4       | 14.1                    | 10.6                 | 7.1          | 4.2           |           | (96)         |
| Heat                       | loss rate                      | e for mea              | an intern               | al tempe                 | erature,           | Lm , W =    | =[(39)m :   | x [(93)m   | – (96)m                 | ]                    |              |               |           |              |
| (97)m=                     | 2894.91                        | 2789.11                | 2501.17                 | 2044.2                   | 1547.59            | 1014.5      | 652.1       | 684.29     | 1096.11                 | 1716.87              | 2341.08      | 2871.55       |           | (97)         |
| Space                      | e heatin                       | g require              | ement fo                | r each m                 | nonth, k\          | Nh/mont     | th = 0.02   | 24 x [(97) | )m – (95                | )m] x (4             | 1)m          |               |           |              |
| (98)m=                     | 1857.62                        | 1563.3                 | 1479.44                 | 1072.9                   | 726.21             | 0           | 0           | 0          | 0                       | 951.23               | 1401.15      | 1856.18       |           | _            |
|                            |                                |                        |                         |                          |                    |             |             | Tota       | l per year              | (kWh/year            | ) = Sum(9    | 8)15,912 =    | 10908.02  | (98)         |
| Space                      | e heating                      | g require              | ement in                | kWh/m²                   | /year              |             |             |            |                         |                      |              | ]             | 213.88    | (99)         |
| 9b En                      | erav rea                       | wiremer                | nts – Cor               | nmunitv                  | heating            | scheme      |             |            |                         |                      |              | L             |           | 7            |
| This pa                    | art is use                     | ed for sp              | ace hea                 | ting, spa                | ace cooli          | ng or wa    | ater heat   | ing prov   | ided by                 | a c <mark>omm</mark> | unity sch    | neme.         |           | 1            |
| Fractio                    | n of spa                       | ace heat               | from see                | condary/                 | supplem            | nentary I   | neating (   | l able 1   | 1) '0' if n             | one                  |              |               | 0         | (301)        |
| Fractio                    | <mark>n o</mark> f spa         | ace heat               | from co                 | <mark>mmu</mark> nity    | system             | 1 - (301    | 1) =        |            |                         |                      |              |               | 1         | (302)        |
| The com                    | nmunity so                     | heme mag               | y obtain he             | eat from se              | everal sour        | ces. The p  | procedure   | allows for | CHP and u               | up to four (         | other heat   | sources; th   | ne latter | -            |
| <i>includes</i><br>Fractio | <i>bo</i> ilers, h<br>n of hea | eat pumps<br>at from C | s, geothern<br>Commun   | nal and wa<br>ity boiler | aste heat fi<br>S  | rom powei   | r stations. | See Apper  | ndix C.                 |                      |              | [             | 1         | (303a)       |
| Fractio                    | n of tota                      | al space               | heat fro                | m Comm                   | nunity bo          | oilers      |             |            |                         | (3                   | 02) x (303   | a) =          | 1         | (304a)       |
| Factor                     | for cont                       | rol and o              | charging                | method                   | (Table 4           | 4c(3)) fo   | r commu     | unity hea  | ting syst               | tem                  |              | [             | 1.05      | (305)        |
| Distrib                    | ution los                      | s factor               | (Table 1                | 2c) for c                | communi            | ity heatir  | ng syste    | m          |                         |                      |              |               | 1.1       | (306)        |
| Space                      | heating                        | 3                      |                         |                          |                    |             |             |            |                         |                      |              |               | kWh/year  | -            |
| Annua                      | space                          | heating                | requirem                | nent                     |                    |             |             |            |                         |                      |              | [             | 10908.02  | ]            |
| Space                      | heat fro                       | m Comr                 | nunity b                | oilers                   |                    |             |             |            | (98) x (30              | 04a) x (30           | 5) x (306) = | - [           | 12598.76  | (307a)       |
| Efficier                   | ncy of se                      | econdary               | //supplei               | mentary                  | heating            | system      | in % (fro   | om Table   | e 4a or A               | ppendix              | E)           |               | 0         | (308         |
| Space                      | heating                        | require                | ment fror               | m secon                  | dary/sup           | plemen      | tary syst   | tem        | (98) x (30              | 01) x 100 -          | ÷ (308) =    |               | 0         | (309)        |
| <b>Water</b><br>Annua      | <b>heating</b><br>I water h    | l<br>neating r         | equirem                 | ent                      |                    |             |             |            |                         |                      |              | [             | 1831.51   | 1            |
| If DHW                     | / from co                      | ommunii<br>m Comn      | ty schem                | ne:                      |                    |             |             |            | (64) x (3(              | )32) x (30)          | 5) x (306) - | ו<br>_ [      | 2115 20   | ]<br>](310a) |
| Flectri                    |                                |                        | nunny DC                | Ition                    |                    |             |             | 0.01       | (0+) X (30<br>x [(307=) | (307a) ±             | (310a) (     | -<br>310e)1 - | 147 14    | (313)        |
| Coolin                     | n Sveter                       | n Energ                | v Efficier              | ncv Ratio                | n                  |             |             | 0.01       |                         | (0076) T             | (0100)(      |               | 0         | ](314)       |
| Space                      | coolina                        | (if there              | is a fixe               | d coolin                 | o<br>svstem        | n. if not e | enter 0)    |            | = (107) -               | (314) =              |              | l<br>I        | 0         | ](315)       |
|                            | site of the second             |                        |                         |                          |                    |             |             |            | ().                     | () -                 |              |               | v         | ],,          |
| mecha                      | nical ve                       | ntilation              | - balanc                | ed, extra                | act or po          | sitive in   | put from    | outside    |                         |                      |              | [             | 0         | (330a)       |

| warm air heating system fans                                                                                           |                             |                               | 0                                    | (330b) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------------------|--------|
| pump for solar water heating                                                                                           |                             |                               | 0                                    | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)            | ) + (330g) =                  | 0                                    | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                         |                             |                               | 404.74                               | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                             |                               |                                      |        |
|                                                                                                                        | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | <sup>·</sup> Emissions<br>kg CO2/yea | r      |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | two fuels repeat (363) to ( | 366) for the second fu        | el 65                                | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x      | 0                             | = 4889.63                            | (367)  |
| Electrical energy for heat distribution [(                                                                             | 313) x                      | 0.52                          | = 76.37                              | (372)  |
| Total CO2 associated with community systems (3                                                                         | 63)(366) + (368)(372)       |                               | = 4965.99                            | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 09) x                       | 0                             | = 0                                  | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | ous heater (312) x          | 0.22                          | = 0                                  | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =       |                               | 4965.99                              | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | g (331)) x                  | 0.52                          | = 0                                  | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                     | 0.52                          | = 210.06                             | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                             |                               | 5176.05                              | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                             |                               | 101.49                               | (384)  |
| El rating (section 14)                                                                                                 |                             |                               | 35.49                                | (385)  |

|                                                                                                                                                                                                                                                                                            |                                                                                                                                                           |                                                        | User D                                               | etails:                                        |                                     |                   |                      |                      |                                       |                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------|-------------------|----------------------|----------------------|---------------------------------------|----------------------------|--|--|--|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                           | Stroma FSAP 20                                                                                                                                            | 12                                                     |                                                      | Stroma<br>Softwa                               | a Num<br>Ire Ver                    | ber:<br>sion:     |                      | Versio               | n: 1.0.3.15                           |                            |  |  |  |
| A daha a a                                                                                                                                                                                                                                                                                 | London                                                                                                                                                    | Pr                                                     | operty /                                             | Address:                                       | Unit 15                             |                   |                      |                      |                                       |                            |  |  |  |
| Address :                                                                                                                                                                                                                                                                                  | , London                                                                                                                                                  |                                                        |                                                      |                                                |                                     |                   |                      |                      |                                       |                            |  |  |  |
| Basement                                                                                                                                                                                                                                                                                   | 310113.                                                                                                                                                   |                                                        | Area                                                 | <b>a(m²)</b><br>55                             | (1a) x                              | <b>Av. He</b>     | <b>ight(m)</b><br>17 | (2a) =               | <b>Volume(m<sup>3</sup></b><br>119.35 | <b>)</b><br>(3a)           |  |  |  |
| Total floor area TFA = (1a)                                                                                                                                                                                                                                                                | )+(1b)+(1c)+(1d)+(1                                                                                                                                       | e)+(1n                                                 | )                                                    | 55                                             | (4)                                 |                   |                      |                      |                                       |                            |  |  |  |
| Dwelling volume                                                                                                                                                                                                                                                                            |                                                                                                                                                           |                                                        |                                                      |                                                | (3a)+(3b)                           | )+(3c)+(3c        | d)+(3e)+             | .(3n) =              | 119.35                                | (5)                        |  |  |  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                        |                                                      | _                                              |                                     |                   |                      |                      |                                       |                            |  |  |  |
| Number of chimneys<br>Number of open flues                                                                                                                                                                                                                                                 | $ \begin{array}{c} \text{main} \\ \text{heating} \\ \hline 0 \\ \hline 0 \\ \end{array} + \begin{bmatrix} 0 \\ \hline 0 \\ \end{array} $                  | econdary<br>heating<br>0                               | y<br>] + [_<br>] + [_                                | 0<br>0                                         | ] = [                               | <b>total</b> 0 0  | x 4                  | 40 =<br>20 =         | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b)          |  |  |  |
| Number of intermittent fan                                                                                                                                                                                                                                                                 | s                                                                                                                                                         |                                                        |                                                      |                                                |                                     | 2                 | × ′                  | 10 =                 | 20                                    | (7a)                       |  |  |  |
| Number of passive vents                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                        |                                                      |                                                |                                     | 0                 | x ′                  | 10 =                 | 0                                     | (7b)                       |  |  |  |
| Number of flueless gas fire                                                                                                                                                                                                                                                                | es                                                                                                                                                        |                                                        |                                                      |                                                | Ľ                                   | 0                 | X 4                  | 40 =                 | 0                                     | (7c)                       |  |  |  |
| Number of passive vents       0 $x \ 10 =$ Number of flueless gas fires       0 $x \ 40 =$ Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =       20 $\div (5) =$ Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =       20 $\div (5) =$ |                                                                                                                                                           |                                                        |                                                      |                                                |                                     |                   |                      |                      |                                       |                            |  |  |  |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening                                                                      | s, flues and fans = (<br>en carried out or is intend<br>e dwelling (ns)<br>25 for steel or timber<br>sent, use the value corre<br>is); if equal user 0.35 | 6a)+(6b)+(7<br>led, proceed<br>frame or<br>sponding to | a)+(7b)+(7<br>I to (17), c<br>0.35 for<br>the greate | 7c) =<br>otherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to a | (16)<br>[(9)         | ÷ (5) =<br>-1]x0.1 = | 0.17 0 0 0 0                          | (8)<br>(9)<br>(10)<br>(11) |  |  |  |
| If suspended wooden flo                                                                                                                                                                                                                                                                    | oor, enter 0.2 (unsea                                                                                                                                     | led) or 0.                                             | 1 (seale                                             | ed), else                                      | enter 0                             |                   |                      |                      | 0                                     | (12)                       |  |  |  |
| If no draught lobby, ente                                                                                                                                                                                                                                                                  | er 0.05, else enter 0                                                                                                                                     |                                                        |                                                      |                                                |                                     |                   |                      |                      | 0                                     | (13)                       |  |  |  |
| Percentage of windows                                                                                                                                                                                                                                                                      | and doors draught s                                                                                                                                       | tripped                                                |                                                      |                                                |                                     |                   |                      |                      | 0                                     | (14)                       |  |  |  |
| Window infiltration                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                        |                                                      | 0.25 - [0.2                                    | x (14) ÷ 1                          | = [00             |                      |                      | 0                                     | (15)                       |  |  |  |
| Infiltration rate                                                                                                                                                                                                                                                                          | 50 1.                                                                                                                                                     |                                                        |                                                      | (8) + (10) ·                                   | + (11) + (1                         | 2) + (13)         | + (15) =             |                      | 0                                     | (16)                       |  |  |  |
| Air permeability value, q                                                                                                                                                                                                                                                                  | 50, expressed in cu                                                                                                                                       |                                                        | s per ho                                             | our per so                                     | quare m                             | etre of e         | envelope             | area                 | 20                                    | (17)                       |  |  |  |
| Air permeability value applies                                                                                                                                                                                                                                                             | if a pressurisation test ha                                                                                                                               | as been done                                           | e or a deo                                           | aree air nei                                   | meability                           | is heina u        | sed                  |                      | 1.17                                  | (18)                       |  |  |  |
| Number of sides sheltered                                                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                        | o or a aog                                           | , ee an per                                    | mousing                             | io sonig a        |                      |                      | 2                                     | (19)                       |  |  |  |
| Shelter factor                                                                                                                                                                                                                                                                             |                                                                                                                                                           |                                                        |                                                      | (20) = 1 - [                                   | 0.075 x (1                          | 9)] =             |                      |                      | 0.85                                  | (20)                       |  |  |  |
| Infiltration rate incorporatir                                                                                                                                                                                                                                                             | ng shelter factor                                                                                                                                         |                                                        |                                                      | (21) = (18)                                    | x (20) =                            |                   |                      |                      | 0.99                                  | (21)                       |  |  |  |
| Infiltration rate modified for                                                                                                                                                                                                                                                             | r monthly wind spee                                                                                                                                       | d                                                      |                                                      |                                                |                                     |                   |                      |                      |                                       |                            |  |  |  |
| Jan Feb M                                                                                                                                                                                                                                                                                  | <i>I</i> lar Apr May                                                                                                                                      | Jun                                                    | Jul                                                  | Aug                                            | Sep                                 | Oct               | Nov                  | Dec                  |                                       |                            |  |  |  |
| Monthly average wind spe                                                                                                                                                                                                                                                                   | ed from Table 7                                                                                                                                           |                                                        |                                                      |                                                |                                     |                   |                      |                      |                                       |                            |  |  |  |
| (22)m= 5.1 5 4                                                                                                                                                                                                                                                                             | .9 4.4 4.3                                                                                                                                                | 3.8                                                    | 3.8                                                  | 3.7                                            | 4                                   | 4.3               | 4.5                  | 4.7                  |                                       |                            |  |  |  |
| Wind Factor (22a)m = (22)                                                                                                                                                                                                                                                                  | )m ÷ 4                                                                                                                                                    |                                                        |                                                      |                                                |                                     |                   | 1                    |                      | I                                     |                            |  |  |  |
| (22a)m= 1.27 1.25 1.                                                                                                                                                                                                                                                                       | 23 1.1 1.08                                                                                                                                               | 0.95                                                   | 0.95                                                 | 0.92                                           | 1                                   | 1.08              | 1.12                 | 1.18                 |                                       |                            |  |  |  |

| Adjuste                  | ed infiltra             | ation rat                         | e (allowi                 | ng for sh                   | elter an                 | d wind s                 | peed) =                | (21a) x                | (22a)m               | -              |             |           | _             |          |
|--------------------------|-------------------------|-----------------------------------|---------------------------|-----------------------------|--------------------------|--------------------------|------------------------|------------------------|----------------------|----------------|-------------|-----------|---------------|----------|
|                          | 1.27                    | 1.24                              | 1.22                      | 1.09                        | 1.07                     | 0.94                     | 0.94                   | 0.92                   | 0.99                 | 1.07           | 1.12        | 1.17      |               |          |
| Calcula                  | ate effec               | ctive air                         | change i                  | rate for t                  | he appli                 | cable ca                 | se                     |                        |                      |                |             |           | -             | (00-)    |
| II Me                    | echanica                |                                   | llion.                    | ondix NL (2                 | 2h) - (22a               |                          | austion (N             | (IE)) otho             | nuico (22h           | (220)          |             |           | 0             | (23a)    |
| If bolo                  |                         |                                   |                           | $\frac{1}{2}$               | (23d) = (23d)            | or in uno f              | otor (from             |                        | )                    | ) = (23a)      |             |           | 0             | (23b)    |
|                          |                         |                                   | very. enic                |                             | allowing r               |                          |                        |                        | ) =                  |                |             | 4 (00.)   |               | (23c)    |
| a) If I                  | balance                 |                                   | anical ve                 |                             | with nea                 | at recove                |                        | HR) (248               | a)m = (22)           | 2b)m + (2<br>1 | 23b) × [    | 1 – (23C) | ) ÷ 100j<br>1 | (240)    |
| (24a)m=                  | 0                       |                                   |                           | 0                           | 0                        | 0                        | 0                      |                        |                      |                | 0           | 0         | ]             | (24a)    |
| b) If I                  | balance                 | d mecha                           | anical ve                 | entilation                  | without                  | heat rec                 | overy (N               | /IV) (24b              | m = (22)             | 2b)m + (2      | 23b)        |           | 1             | (24b)    |
| (24b)m=                  | 0                       | 0                                 | 0                         | 0                           | 0                        | 0                        | 0                      | 0                      | 0                    | 0              | 0           | 0         | J             | (240)    |
| c) If v<br>i             | whole h<br>f (22b)m     | ouse ex<br>า < 0.5 <mark>×</mark> | tract ver<br>< (23b), t   | itilation c<br>hen (24d     | or positiv<br>c) = (23b  | ve input v<br>o); otherv | ventilatio<br>vise (24 | on from (<br>c) = (22t | outside<br>o) m + 0. | .5 × (23b      | )           |           |               |          |
| (24c)m=                  | 0                       | 0                                 | 0                         | 0                           | 0                        | 0                        | 0                      | 0                      | 0                    | 0              | 0           | 0         | ]             | (24c)    |
| d) If i                  | natural                 | ventilatio                        | on or wh                  | ole hous                    | e positiv                | /e input                 | ventilatio             | on from $ $            | oft<br>2b)m² v       | 0.51           |             |           | •             |          |
| (24d)m-                  | 1 (220)11               | 1 24                              | 1 22                      | 1 09                        | 1 07                     |                          | 40/11 – 1<br>0 94      |                        |                      | 1.07           | 1 12        | 1 17      | 1             | (24d)    |
| Effor                    |                         | change                            |                           | tor (24a                    | ) or $(24k$              | $1 - \frac{0.04}{24}$    | $rac{0.04}{0.04}$      |                        | (25)                 | 1.07           | 1.12        | 1.17      | ]             | ()       |
| (25)m-                   | 1 27                    | 1 24                              | 1 22                      | 1 09                        | ) 01 (24t                |                          |                        |                        |                      | 1.07           | 1 12        | 1 17      | 1             | (25)     |
|                          | 1.21                    | 1.24                              | 1.22                      | 1.00                        | 1.07                     | 0.04                     | 0.04                   | 0.52                   | 0.00                 |                | 1.12        | <u> </u>  | ]             | (20)     |
| 3. Hea                   | at losse                | s and he                          | eat loss                  | oaramete                    | er:                      |                          |                        |                        |                      |                |             |           |               |          |
| ELEN                     | IENT                    | Gros                              | ss (m <sup>2</sup> )      | Openin                      | gs                       | Net Ar                   | ea                     | U-val                  | ue                   | A X U          |             | k-value   | e l           | A X k    |
| Doors                    |                         | arca                              | (111)                     |                             |                          | 1.0                      |                        | 1.4                    |                      | 2.66           |             |           |               | (26)     |
| Window                   |                         | 1                                 |                           |                             |                          | 1.9                      |                        | /[1/( 1 6 )+           | 0.041                | 2.00           | H           |           |               | (20)     |
| Windo                    |                         |                                   |                           |                             |                          | 3                        |                        | /[1/(1.0))             | 0.041                | 4.51           | H           |           |               | (27)     |
| Window                   | ws Type                 | 2                                 |                           |                             |                          | 1.76                     |                        | /[1/(4.0)+             | 0.04] =              | 7.09           | L.          |           |               | (27)     |
|                          | ws туре<br>т            |                                   |                           |                             |                          | 0.64                     |                        | /[1/(4.0)+             | 0.04] =              | 2.58           |             |           |               | (27)     |
|                          | ws type                 | 94                                |                           |                             |                          | 3.84                     | x1,                    | /[1/( 1.6 )+           | 0.04] =              | 5.77           | ╡,          |           |               | (27)     |
| Floor                    |                         |                                   |                           |                             |                          | 55                       | x                      | 0.93                   | =                    | 51.15          |             |           |               | (28)     |
| Walls T                  | Type1                   | 28.                               | 9                         | 8.6                         |                          | 20.3                     | X                      | 2.1                    | =                    | 42.63          |             |           |               | (29)     |
| Walls T                  | ype2                    | 7.8                               | 1                         | 2.54                        |                          | 5.27                     | x                      | 2.1                    | =                    | 11.07          |             |           |               | (29)     |
| Total a                  | rea of e                | lements                           | , m²                      |                             |                          | 91.71                    |                        |                        |                      |                |             |           |               | (31)     |
| Party w                  | vall                    |                                   |                           |                             |                          | 27.9                     | x                      | 0                      | =                    | 0              |             |           |               | (32)     |
| Party w                  | vall                    |                                   |                           |                             |                          | 1.13                     | x                      | 0                      | =                    | 0              |             |           |               | (32)     |
| * for wind<br>** include | dows and<br>e the area  | roof winde<br>as on both          | ows, use e<br>sides of ir | effective wi<br>nternal wal | ndow U-va<br>Is and part | alue calcula<br>titions  | ated using             | ı formula 1            | /[(1/U-valu          | ıe)+0.04] a    | s given in  | paragrapl | h 3.2         |          |
| Fabric                   | heat los                | s, W/K :                          | = S (A x                  | U)                          |                          |                          |                        | (26)(30)               | ) + (32) =           |                |             |           | 127.          | .46 (33) |
| Heat ca                  | apacity                 | Cm = S(                           | (Axk)                     |                             |                          |                          |                        |                        | ((28).               | (30) + (32     | 2) + (32a). | (32e) =   | 0             | (34)     |
| Therma                   | al mass                 | parame                            | ter (TMF                  | <sup>-</sup> = Cm ÷         | - TFA) ir                | n kJ/m²K                 |                        |                        | Indica               | tive Value:    | High        |           | 45            | 0 (35)   |
| For desig                | gn assess<br>sed instea | ments wh<br>ad of a de            | ere the de<br>tailed calc | tails of the<br>ulation.    | construct                | ion are not              | t known pr             | ecisely the            | e indicative         | e values of    | TMP in Ta   | able 1f   |               |          |
| Therma                   | al bridge               | es : S (L                         | x Y) cal                  | culated u                   | using Ap                 | pendix k                 | <                      |                        |                      |                |             |           | 14.           | 4 (36)   |
| if details               | of therma               | al bridging                       | are not kn                | own (36) =                  | = 0.15 x (3              | 1)                       |                        |                        |                      |                |             |           | L             |          |
| Total fa                 | abric he                | at loss                           |                           |                             |                          |                          |                        |                        | (33) +               | (36) =         |             |           | 141.          | 86 (37)  |

| Ventila     | ation hea               | at loss ca           | alculated              | dmonthl               | у                |             |             |             | (38)m        | = 0.33 × (              | (25)m x (5)                           |                     |         |              |
|-------------|-------------------------|----------------------|------------------------|-----------------------|------------------|-------------|-------------|-------------|--------------|-------------------------|---------------------------------------|---------------------|---------|--------------|
|             | Jan                     | Feb                  | Mar                    | Apr                   | May              | Jun         | Jul         | Aug         | Sep          | Oct                     | Nov                                   | Dec                 |         |              |
| (38)m=      | 49.84                   | 48.86                | 47.88                  | 43                    | 42.02            | 37.2        | 37.2        | 36.29       | 39.09        | 42.02                   | 43.97                                 | 45.93               |         | (38)         |
| Heat t      | ransfer o               | coefficie            | nt, W/K                |                       |                  |             |             |             | (39)m        | = (37) + (3             | 38)m                                  |                     |         |              |
| (39)m=      | 191.69                  | 190.72               | 189.74                 | 184.85                | 183.88           | 179.05      | 179.05      | 178.15      | 180.95       | 183.88                  | 185.83                                | 187.79              |         | _            |
| Heat l      |                         | motor (l             | יאי ים ור              | /m21/                 |                  |             |             |             | (40)m        | Average = $-(20)m^{-1}$ | Sum(39) <sub>1</sub>                  | 12 /12=             | 184.63  | (39)         |
| (40)m=      | 3.49                    | 3.47                 | 3.45                   | 3.36                  | 3.34             | 3.26        | 3.26        | 3.24        | 3.29         | 3.34                    | 3.38                                  | 3.41                |         |              |
| (,          |                         |                      |                        |                       |                  |             |             |             |              | Average =               | Sum(40)1                              |                     | 3.36    | (40)         |
| Numb        | er of day               | vs in mo             | nth (Tab               | le 1a)                |                  |             |             |             |              |                         |                                       |                     |         |              |
|             | Jan                     | Feb                  | Mar                    | Apr                   | May              | Jun         | Jul         | Aug         | Sep          | Oct                     | Nov                                   | Dec                 |         |              |
| (41)m=      | 31                      | 28                   | 31                     | 30                    | 31               | 30          | 31          | 31          | 30           | 31                      | 30                                    | 31                  |         | (41)         |
|             |                         |                      |                        |                       |                  |             |             |             |              |                         |                                       |                     |         |              |
| 4. Wa       | ater heat               | ting ene             | rgy requ               | irement:              |                  |             |             |             |              |                         |                                       | kWh/ye              | ear:    |              |
| Assun       | ned occu                | ipancy,              | N                      |                       |                  |             |             |             |              |                         | 1.                                    | 84                  |         | (42)         |
| if TF       | A > 13.9                | 9, N = 1             | + 1.76 ×               | (1 - exp              | (-0.0003         | 849 x (TF   | FA -13.9    | )2)] + 0.0  | 0013 x (     | TFA -13.                | .9)                                   | -                   |         |              |
|             | A £ 13.9                | 9, N = 1<br>e hot wa | ater usa               | ae in litre           | es ner da        | av Vd av    | erage =     | (25 x N)    | + 36         |                         | 77                                    | <u>ν</u> ο <i>ι</i> |         | (43)         |
| Reduce      | the annua               | al average           | hot water              | usage by              | 5% if the a      | welling is  | designed    | to achieve  | a water us   | se target o             | f                                     | .04                 |         | (40)         |
| not mor     | e that 125              | litres per           | person pe              | r day (all w          | /ater use, l     | hot and co  | ld)         |             |              |                         |                                       |                     |         |              |
| List west   | Jan                     | Feb                  | Mar                    | Apr                   | May              | Jun         | Jul         | Aug         | Sep          | Oct                     | Nov                                   | Dec                 |         |              |
| Hot wat     | er usage li             | n litres per         | day for ea             | acn month             | va,m = ra        |             |             | (43)        |              |                         |                                       |                     |         |              |
| (44)m=      | 85.62                   | 82.51                | 79.39                  | 76.28                 | 73.17            | 70.05       | 70.05       | 73.17       | 76.28        | 79.39                   | 82.51                                 | 85.62               | 024.05  |              |
| Energy      | content of              | hot water            | used - ca              | lculated m            | onthly $= 4$ .   | 190 x Vd,r  | n x nm x D  | OTm / 3600  | ) kWh/mor    | nth (see Ta             | m(44) <sub>112</sub> =<br>ables 1b, 1 | =<br>c, 1d)         | 934.05  | (44)         |
| (45)m=      | 126.97                  | 111.05               | 114.6                  | 99.91                 | 95.86            | 82.72       | 76.65       | 87.96       | 89.01        | 103.74                  | 113.24                                | 122.97              |         |              |
|             |                         |                      | Į                      |                       |                  |             |             | ļ           |              | Total = Su              | r<br>m(45) <sub>112</sub> =           | =                   | 1224.68 | (45)         |
| lf instan   | taneous w               | ater heati           | ng at point            | t of use (no          | o hot water      | r storage), | enter 0 in  | boxes (46   | ) to (61)    |                         |                                       |                     |         |              |
| (46)m=      | 19.05                   | 16.66                | 17.19                  | 14.99                 | 14.38            | 12.41       | 11.5        | 13.19       | 13.35        | 15.56                   | 16.99                                 | 18.45               |         | (46)         |
| Storac      | siorage<br>ie volum     | e (litres)           | ) includir             | na anv si             | olar or W        | /WHRS       | storage     | within sa   | ame ves      | sel                     |                                       | 160                 |         | (47)         |
| If com      | munitv h                | eating a             | and no ta              | ank in dv             | vellina. e       | nter 110    | ) litres in | (47)        |              |                         |                                       | 100                 |         | ()           |
| Other       | vise if no              | stored               | hot wate               | er (this ir           | ncludes i        | nstantar    | neous co    | ombi boil   | ers) ente    | er '0' in (             | 47)                                   |                     |         |              |
| Water       | storage                 | loss:                |                        | · · ·                 |                  | <i></i>     | <i>.</i>    |             |              |                         |                                       |                     |         |              |
| a) If n<br> | nanufact                | urer's de            | eclared I              | loss facto            | or is kno        | wn (kWł     | n/day):     |             |              |                         |                                       | 0                   |         | (48)         |
| Tempe       | erature f               | actor fro            | m Table                | e 2b                  |                  |             |             | (40) (40)   |              |                         |                                       | 0                   |         | (49)         |
| b) If n     | y lost fro<br>nanufact  | m water<br>urer's de | r storage<br>eclared ( | e, KWh/ye<br>cvlinder | ear<br>loss fact | or is not   | known:      | (48) x (49) | ) =          |                         | 1                                     | 10                  |         | (50)         |
| Hot wa      | ater stora              | age loss             | factor f               | rom Tab               | le 2 (kW         | h/litre/da  | ay)         |             |              |                         | 0.                                    | 02                  |         | (51)         |
| If com      | munity h                | eating s             | ee secti               | on 4.3                |                  |             |             |             |              |                         |                                       |                     |         |              |
| Volum       | e factor                | from Ta              | ble 2a<br>m Tabla      | 2h                    |                  |             |             |             |              |                         | 1.                                    | .03                 |         | (52)         |
| Tempe       |                         |                      |                        | ; ZU                  |                  |             |             | (47) × (64) | V (EQ) V (   | 50)                     |                                       | .6                  |         | (53)         |
| Enter       | y iost iro<br>(50) or ( | 54) in <i>(</i> 5    | 55)                    | ; KVV[1/Y             | edi              |             |             | (41) X (51  | , x (32) X ( | 55) <b>=</b>            | 1.                                    | 03                  |         | (54)<br>(55) |
| Water       | storage                 | loss cal             | culated                | for each              | month            |             |             | ((56)m = (  | 55) × (41)   | m                       | L'.                                   |                     |         | ()           |
| (56)m=      | 32.01                   | 28.92                | 32.01                  | 30.98                 | 32.01            | 30.98       | 32.01       | 32.01       | 30.98        | 32.01                   | 30.98                                 | 32.01               |         | (56)         |
| · /         | -                       | -                    | -                      | 1                     |                  |             | -           | -           |              | -                       |                                       | -                   |         |              |

| If cylinde           | er contain   | s dedicated | d solar sto | rage, (57)ı          | m = (56)m  | x [(50) – ( | H11)] ÷ (5               | 0), else (57  | 7)m = (56)i | m where (                 | H11) is fro | m Append   | ix H       |        |
|----------------------|--------------|-------------|-------------|----------------------|------------|-------------|--------------------------|---------------|-------------|---------------------------|-------------|------------|------------|--------|
| (57)m=               | 32.01        | 28.92       | 32.01       | 30.98                | 32.01      | 30.98       | 32.01                    | 32.01         | 30.98       | 32.01                     | 30.98       | 32.01      |            | (57)   |
| Primar               | y circuit    | loss (an    | inual) fro  | om Table             | e 3        |             |                          |               |             |                           |             | 0          |            | (58)   |
| Primar               | y circuit    | loss cal    | culated     | for each             | month (    | 59)m = (    | (58) ÷ 36                | 5 × (41)      | m           |                           |             |            |            |        |
| (mod                 | dified by    | factor fr   | rom Tab     | le H5 if t           | here is s  | solar wat   | er heatir                | ng and a      | cylinder    | r thermo                  | stat)       |            |            |        |
| (59)m=               | 23.26        | 21.01       | 23.26       | 22.51                | 23.26      | 22.51       | 23.26                    | 23.26         | 22.51       | 23.26                     | 22.51       | 23.26      |            | (59)   |
| Combi                | loss ca      | lculated    | for each    | month (              | (61)m =    | (60) ÷ 36   | 65 × (41)                | )m            |             |                           |             |            |            |        |
| (61)m=               | 0            | 0           | 0           | 0                    | 0          | 0           | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (61)   |
| Total h              | eat req      | uired for   | water he    | eating ca            | alculated  | for eacl    | n month                  | (62)m =       | 0.85 × (    | 45)m +                    | (46)m +     | (57)m +    | (59)m + (6 | 51)m   |
| (62)m=               | 182.25       | 160.98      | 169.87      | 153.4                | 151.14     | 136.22      | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24     |            | (62)   |
| Solar DH             | -<br>W input | calculated  | using App   | endix G or           | Appendix   | H (negativ  | ve quantity              | /) (enter '0' | if no solai | r contribut               | on to wate  | r heating) |            |        |
| (add a               | dditiona     | l lines if  | FGHRS       | and/or V             | WWHRS      | applies.    | , see Ap                 | pendix G      | <b>3</b> )  |                           |             |            |            |        |
| (63)m=               | 0            | 0           | 0           | 0                    | 0          | 0           | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (63)   |
| Output               | from w       | ater hea    | ter         |                      |            |             |                          |               |             |                           |             |            |            |        |
| (64)m=               | 182.25       | 160.98      | 169.87      | 153.4                | 151.14     | 136.22      | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24     |            |        |
|                      |              |             |             |                      |            |             |                          | Outp          | out from wa | ater heate                | r (annual)₁ | 12         | 1875.52    | 2 (64) |
| Hea <mark>t g</mark> | ains fro     | m water     | heating,    | kWh/mo               | onth 0.2   | 5´[0.85     | × (45)m                  | + (61)m       | i] + 0.8 x  | c [(46)m                  | + (57)m     | + (59)m    | ]          |        |
| (65)m=               | 60.83        | 53.73       | 56.71       | 51. <mark>2</mark> 3 | 50.48      | 45.51       | 44.1                     | 47.86         | 47.61       | 53.1                      | 55.66       | 59.5       |            | (65)   |
| inclu                | de (57)      | m in calc   | culation of | of (65)m             | only if c  | ylinder is  | s in th <mark>e c</mark> | dwelling      | or hot w    | ate <mark>r is f</mark> r | om com      | munity h   | eating     |        |
| 5. Int               | ernal ga     | ains (see   | Table 5     | and 5a               | ):         |             |                          |               |             |                           |             |            |            |        |
| Metabo               | olic gair    | s (Table    | 5) Wat      | ts                   |            |             |                          |               |             |                           |             |            |            |        |
| in o to to           | Jan          | Feb         | Mar         | Apr                  | May        | Jun         | Jul                      | Aug           | Sep         | Oct                       | Nov         | Dec        |            |        |
| (66)m=               | 91.87        | 91.87       | 91.87       | 91. <mark>87</mark>  | 91.87      | 91.87       | 91.87                    | 91.87         | 91.87       | 91.87                     | 91.87       | 91.87      |            | (66)   |
| Lightin              | g gains      | (calculat   | ted in Ap   | opendix              | L, equati  | ion L9 oi   | r L9a), a                | lso see       | Table 5     |                           |             |            |            |        |
| (67)m=               | 24.95        | 22.16       | 18.02       | 13.64                | 10.2       | 8.61        | 9.3                      | 12.09         | 16.23       | 20.61                     | 24.05       | 25.64      |            | (67)   |
| Applia               | nces ga      | ins (calc   | ulated ir   | Append               | dix L, eq  | uation L    | 13 or L1                 | 3a), also     | see Tal     | ole 5                     |             |            |            |        |
| (68)m=               | 160.19       | 161.85      | 157.66      | 148.74               | 137.49     | 126.91      | 119.84                   | 118.18        | 122.36      | 131.28                    | 142.54      | 153.12     |            | (68)   |
| Cookin               | ig gains     | (calcula    | ted in A    | ppendix              | L, equat   | ion L15     | or L15a)                 | , also se     | e Table     | 5                         |             |            |            |        |
| (69)m=               | 32.19        | 32.19       | 32.19       | 32.19                | 32.19      | 32.19       | 32.19                    | 32.19         | 32.19       | 32.19                     | 32.19       | 32.19      |            | (69)   |
| Pumps                | and fa       | ns gains    | (Table 5    | 5a)                  |            |             |                          |               |             |                           |             |            |            |        |
| (70)m=               | 0            | 0           | 0           | 0                    | 0          | 0           | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (70)   |
| Losses               | s e.g. ev    | vaporatio   | n (nega     | tive valu            | es) (Tab   | le 5)       |                          |               |             |                           |             |            |            |        |
| (71)m=               | -73.49       | -73.49      | -73.49      | -73.49               | -73.49     | -73.49      | -73.49                   | -73.49        | -73.49      | -73.49                    | -73.49      | -73.49     |            | (71)   |
| Water                | heating      | gains (T    | able 5)     |                      |            |             |                          |               |             |                           |             |            |            |        |
| (72)m=               | 81.76        | 79.96       | 76.23       | 71.15                | 67.86      | 63.22       | 59.27                    | 64.32         | 66.12       | 71.37                     | 77.31       | 79.97      |            | (72)   |
| Total i              | nternal      | gains =     |             |                      |            | (66)        | m + (67)m                | ı + (68)m +   | - (69)m + ( | 70)m + (7                 | 1)m + (72)  | m          |            |        |
| (73)m=               | 317.45       | 314.53      | 302.47      | 284.1                | 266.1      | 249.29      | 238.97                   | 245.15        | 255.28      | 273.83                    | 294.46      | 309.29     |            | (73)   |
| 6. Sol               | ar gains     | 5:          |             |                      |            |             |                          |               |             |                           |             |            |            |        |
| Solar g              | ains are o   | calculated  | using sola  | r flux from          | Table 6a a | and associ  | ated equa                | tions to co   | nvert to th | e applicat                | le orientat | ion.       |            |        |
| Orienta              | ation: /     | Access F    | actor       | Area                 |            | Flu         | х                        |               | g_          |                           | FF          |            | Gains      |        |
|                      |              | Table 6d    |             | m²                   |            | Tab         | ole 6a                   | Т             | able 6b     | Ta                        | able 6c     |            | (W)        |        |

| North | 0.9x | 0.77 | x   | 1.76 | x | 10.63  | x        | 0.85 | x | 0.7 | =   | 7.72   | (74) |
|-------|------|------|-----|------|---|--------|----------|------|---|-----|-----|--------|------|
| North | 0.9x | 0.77 | x   | 0.64 | x | 10.63  | x        | 0.85 | x | 0.7 | ] = | 2.81   | (74) |
| North | 0.9x | 0.77 | ×   | 1.76 | x | 20.32  | x        | 0.85 | x | 0.7 | ] = | 14.75  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 20.32  | x        | 0.85 | x | 0.7 | =   | 5.36   | (74) |
| North | 0.9x | 0.77 | ×   | 1.76 | x | 34.53  | x        | 0.85 | x | 0.7 | ] = | 25.06  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 34.53  | x        | 0.85 | x | 0.7 | =   | 9.11   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 40.25  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 14.64  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 74.72  | x        | 0.85 | x | 0.7 | ] = | 54.22  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | × | 74.72  | x        | 0.85 | x | 0.7 | =   | 19.72  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 58.05  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 21.11  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 54.19  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 19.71  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 43     | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 15.63  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 41.52  | x        | 0.85 | x | 0.7 | =   | 30.13  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | X | 41.52  | x        | 0.85 | х | 0.7 | ] = | 10.96  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | х | 24.19  | x        | 0.85 | x | 0.7 | =   | 17.55  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 24.19  | <b>x</b> | 0.85 | x | 0.7 | =   | 6.38   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 13.12  | x        | 0.85 | x | 0.7 | ] = | 9.52   | (74) |
| North | 0.9x | 0.77 | ] × | 0.64 | × | 13.12  | х        | 0.85 | x | 0.7 | =   | 3.46   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 8.86   | x        | 0.85 | x | 0.7 | =   | 6.43   | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | × | 8.86   | x        | 0.85 | x | 0.7 | =   | 2.34   | (74) |
| East  | 0.9x | 1    | x   | 3.84 | x | 19.64  | x        | 0.76 | x | 0.7 | =   | 27.81  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 38.42  | x        | 0.76 | x | 0.7 | =   | 54.39  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 63.27  | x        | 0.76 | x | 0.7 | =   | 89.58  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 92.28  | x        | 0.76 | x | 0.7 | =   | 130.64 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 113.09 | x        | 0.76 | x | 0.7 | =   | 160.11 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 115.77 | x        | 0.76 | x | 0.7 | ] = | 163.9  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 110.22 | x        | 0.76 | x | 0.7 | =   | 156.04 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 94.68  | x        | 0.76 | x | 0.7 | =   | 134.03 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 73.59  | x        | 0.76 | x | 0.7 | ] = | 104.18 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 45.59  | x        | 0.76 | x | 0.7 | =   | 64.54  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 24.49  | x        | 0.76 | x | 0.7 | ] = | 34.67  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 16.15  | x        | 0.76 | x | 0.7 | =   | 22.87  | (76) |
| South | 0.9x | 0.77 | ×   | 3    | × | 46.75  | x        | 0.76 | x | 0.7 | =   | 51.71  | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 76.57  | x        | 0.76 | x | 0.7 | =   | 84.69  | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 97.53  | x        | 0.76 | x | 0.7 | ] = | 107.88 | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 110.23 | ×        | 0.76 | x | 0.7 | ] = | 121.92 | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 114.87 | x        | 0.76 | x | 0.7 | =   | 127.05 | (78) |

| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         | 1       | 10.55     | x       |              | 0.76      | x                    | Γ               | 0.7         |       | =    | 122.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (78) |
|--------------------|------------|------------|----------|-----------|---------------------|-------------------|-----------|---------|-----------|---------|--------------|-----------|----------------------|-----------------|-------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| South              | 0.9x       | 0.77       | _        | x         | 3                   |                   | x         | 1       | 08.01     | x       |              | 0.76      | ۲<br>× آ             | Γ               | 0.7         |       | =    | 119.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (78) |
| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         | 1       | 04.89     | x       |              | 0.76      | ×                    | Γ               | 0.7         |       | =    | 116.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (78) |
| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         | 1       | 01.89     | x       |              | 0.76      | ۲<br>× آ             | Γ               | 0.7         |       | =    | 112.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (78) |
| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         | 6       | 32.59     | x       |              | 0.76      | ۲<br>× آ             | Γ               | 0.7         |       | =    | 91.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (78) |
| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         | 5       | 5.42      | x       |              | 0.76      | - x                  | Γ               | 0.7         |       | =    | 61.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (78) |
| South              | 0.9x       | 0.77       |          | x         | 3                   |                   | x         |         | 40.4      | x       |              | 0.76      | ۲<br>× آ             | Γ               | 0.7         |       | =    | 44.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (78) |
|                    | •          |            |          |           |                     |                   |           |         |           |         |              |           |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Solar g            | gains in   | watts, ca  | alculate | ed '      | for each            | n mont            | h         |         |           | (83)m   | i = Si       | um(74)m . | (82)ı                | n               |             |       |      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| (83)m=             | 90.04      | 159.19     | 231.62   | 2         | 307.45              | 361.1             | 3         | 865.32  | 349.4     | 308     | .68          | 257.95    | 179.                 | 82              | 108.94      | 76.   | 32   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (83) |
| Total g            | jains – i  | nternal a  | and sola | ar        | (84)m =             | = (73)m           | ) + (     | 83)m    | , watts   |         |              |           |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (84)m=             | 407.49     | 473.72     | 534.09   | )         | 591.55              | 627.2             | 6         | 614.61  | 588.37    | 553     | .83          | 513.23    | 453.                 | 65              | 403.4       | 385   | 6.61 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (84) |
| 7. Me              | an inter   | nal temp   | peratur  | e (l      | heating             | seaso             | n)        |         |           |         |              |           |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Temp               | erature    | during h   | neating  | ре        | eriods ir           | n the liv         | /ing      | area    | from Tab  | ole 9,  | Th           | 1 (°C)    |                      |                 |             |       |      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (85) |
| Utilisa            | ation fac  | tor for g  | ains fo  | r liv     | ving are            | ea, h1,r          | m (s      | see Ta  | ble 9a)   |         |              |           |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                    | Jan        | Feb        | Mar      |           | Apr                 | Мау               | /         | Jun     | Jul       | A       | ug           | Sep       | 0                    | ct              | Nov         | D     | ec   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (86)m=             | 1          | 1          | 1        |           | 0.99                | 0.98              |           | 0.95    | 0.88      | 0.9     | Э            | 0.97      | 0.9                  | 9               | 1           | 1     | I    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (86) |
| Mean               | interna    | temper     | ature i  | n li      | ving are            | ea T1 (           | follo     | ow ste  | ps 3 to 7 | 7 in T  | able         | e 9c)     |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (87)m=             | 18.68      | 18.84      | 19.15    | T         | 19.62               | 20.08             | T         | 20.52   | 20.77     | 20.     | 73           | 20.37     | 19.7                 | 77              | 19.17       | 18.   | 69   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (87) |
| Tom                |            | during     |          |           | vriode in           | rosto             | uf du     | velling |           |         | <u>ד</u> ר מ | 2 (°C)    |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (88)m=             | 19.26      | 19.27      | 19.28    | T         | 19.32               | 19.33             |           | 19.37   | 19.37     | 19.3    | 38           | 19.36     | 19.3                 | 33              | 19.31       | 19.   | 29   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (88) |
| (                  |            |            |          |           |                     |                   |           |         |           |         |              |           |                      | ~               |             |       |      | l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la |      |
| Utilisa            | ation fac  | ctor for g | ains fo  | r re      | est of d            | welling           | , h2      | .,m (se |           | 9a)     | 16           | 0.04      |                      | 0               | 1           | 1     | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (89) |
| (09)11=            |            |            | -        | _         | 0.99                | 0.97              |           | 0.89    | 0.71      | 0.7     | 0            | 0.94      | 0.9                  | 9               |             |       |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (00) |
| Me <mark>ar</mark> | interna    | I temper   | ature ii | n tł      | ne rest             | of dwe            | lling     | ) T2 (f | ollow ste | eps 3   | to 7         | 7 in Tabl | e 9 <mark>c</mark> ) |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (00) |
| (90)m=             | 17.22      | 17.38      | 17.7     |           | 18.19               | 18.66             |           | 19.11   | 19.31     | 19.:    | 29           | 18.96     | 18.3                 | 36              | 17.75       | 17.   | 25   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (90) |
|                    |            |            |          |           |                     |                   |           |         |           |         |              | I         | LA = 1               | _17111          | g area ÷ (4 | +) =  |      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (91) |
| Mean               | interna    | l temper   | ature (  | for       | the wh              | ole dw            | ellir     | ng) = f | LA × T1   | + (1    | – fL         | A) × T2   |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (92)m=             | 18.02      | 18.18      | 18.5     |           | 18.97               | 19.44             |           | 19.89   | 20.11     | 20.     | 08           | 19.73     | 19. <i>*</i>         | 3               | 18.53       | 18.   | 04   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (92) |
| Apply              | v adjustr  | nent to t  | he mea   | an<br>T   | internal            | tempe             | erati     | ure fro | m Table   | e 4e, 1 | whe          | re appro  | opriat               | e               |             |       |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (00) |
| (93)m=             | 18.02      | 18.18      | 18.5     |           | 18.97               | 19.44             |           | 19.89   | 20.11     | 20.     | 80           | 19.73     | 19.1                 | 3               | 18.53       | 18.   | 04   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (93) |
| 8. Sp              | ace nea    | tting requ |          |           | norotur             | o obto            | ina       |         | on 11 of  | Tabl    |              | o o tho   | 4 Ti m               | o ('            | 76) m an    | dro   |      | vulata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| the ut             | tilisation | factor fo  | or gains | em<br>s u | iperatur<br>sing Ta | e obta<br>ible 9a | ineo      | at st   | ерттог    | Tabi    | e 9t         | o, so tha | t II,n               | 1=(             | 76)m and    | a re- | calc | ulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                    | Jan        | Feb        | Mar      |           | Apr                 | May               | ,         | Jun     | Jul       | A       | ug           | Sep       | 0                    | ct              | Nov         | D     | ec   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Utilisa            | ation fac  | tor for g  | ains, h  | m:        | ·                   |                   |           |         |           |         | <u> </u>     | ·         |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (94)m=             | 1          | 1          | 0.99     |           | 0.99                | 0.97              |           | 0.91    | 0.81      | 0.8     | 84           | 0.95      | 0.9                  | 9               | 1           | 1     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (94) |
| Usefu              | ul gains,  | hmGm       | , W = (  | 94)       | )m x (84            | 4)m               |           |         |           |         |              |           |                      |                 |             |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (95)m=             | 406.87     | 472.44     | 531.2    |           | 584.04              | 606.62            | 2 5       | 60.74   | 474.04    | 466     | .31          | 489.62    | 449                  | .4              | 402.37      | 385   | .15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (95) |
| Mont               | hly aver   | age exte   | ernal te | mp        | erature             | e from            | Tab       | le 8    |           |         |              |           |                      |                 |             |       |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| (96)m=             | 4.3        | 4.9        | 6.5      |           | 8.9                 | 11.7              |           | 14.6    | 16.6      | 16.     | .4           | 14.1      | 10.                  | 6               | 7.1         | 4.    | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (96) |
| Heat               | loss rate  | e for mea  | an inte  | rna       | al tempe            | erature           | , Ln      | n, W =  | =[(39)m   | x [(93  | 3)m-         | – (96)m   | ]                    |                 |             | _     |      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0-) |
| (97)m=             | 2630.15    | 2533.33    | 2276.4   | 7         | 1862.38             | 1423.02           | 2 9       | 46.44   | 628.47    | 655     | 6.6<br>(C=)  | 1019.39   | 1569                 | .27             | 2124.11     | 2598  | 8.62 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (97) |
| Spac               | e neatin   | g require  |          | or<br>or  | each m              |                   | KVVI<br>T | n/mon   | tn = 0.02 | 24 X [  | (97)         | )m – (95) | )m] x                | (4 <sup>*</sup> | 1)m         | 164   | 0.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (90)10=            | 1054.12    | 1304.92    | 1298.4   | ٥L        | 9∠U.4               | 007.41            |           | U       |           |         |              | U         | 033.                 | 10              | 1239.00     | 1046  | 0.03 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |

|                                                                                                                 | Total per year (kWh/y                                            | ear) = Sum(98) <sub>15,912</sub> | =              | 9584.99             | (98)        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|----------------|---------------------|-------------|
| Space heating requirement in kWh/m²/year                                                                        |                                                                  |                                  |                | 174.27              | (99)        |
| 9b. Energy requirements – Community heating scheme                                                              | )                                                                |                                  |                |                     |             |
| This part is used for space heating, space cooling or wa<br>Fraction of space heat from secondary/supplementary | ater heating provided by a com<br>heating (Table 11) '0' if none | munity scheme.                   |                | 0                   | (301)       |
| Fraction of space heat from community system $1 - (30)$                                                         | 1) =                                                             |                                  |                | 1                   | (302)       |
| The community scheme may obtain heat from several sources. The                                                  | procedure allows for CHP and up to fo                            | our other heat sources           | s; the la      | tter                | 4           |
| includes boilers, heat pumps, geothermal and waste heat from powe<br>Fraction of heat from Community boilers    | r stations. See Appendix C.                                      |                                  |                | 1                   | (303a)      |
| Fraction of total space heat from Community boilers                                                             |                                                                  | (302) x (303a) =                 |                | 1                   | (304a)      |
| Factor for control and charging method (Table 4c(3)) for                                                        | r community heating system                                       |                                  |                | 1.05                | (305)       |
| Distribution loss factor (Table 12c) for community heating                                                      | ng system                                                        |                                  |                | 1.1                 | (306)       |
| Space heating                                                                                                   |                                                                  |                                  |                | kWh/year            | _           |
| Annual space heating requirement                                                                                |                                                                  |                                  |                | 9584.99             |             |
| Space heat from Community boilers                                                                               | (98) x (304a) x (                                                | (305) x (306) =                  |                | 11070.66            | (307a)      |
| Efficiency of secondary/supplementary heating system                                                            | in % (from Table 4a or Append                                    | dix E)                           |                | 0                   | (308        |
| Space heating requirement from secondary/supplemen                                                              | tary system (98) x (301) x 10                                    | 00 ÷ (308) =                     |                | 0                   | (309)       |
| Water heating                                                                                                   |                                                                  |                                  |                |                     | _           |
| Annual water heating requirement                                                                                |                                                                  |                                  |                | 1875.52             | ]           |
| If DHW from community scheme:<br>Water heat from Community boilers                                              | (64) x (303a) x (                                                | (305) x (306) =                  |                | 2166 23             | ]<br>(310a) |
| Electricity used for heat distribution                                                                          | 0.01 × [(307a)(307e                                              | e) + (310a)(310e)] :             | =              | 132.37              | (313)       |
| Cooling System Energy Efficiency Ratio                                                                          |                                                                  |                                  |                | 0                   | _<br>(314)  |
| Space cooling (if there is a fixed cooling system, if not                                                       | enter 0) $= (107) \div (314) =$                                  | =                                |                | 0                   | (315)       |
| Electricity for pumps and fans within dwelling (Table 4f)                                                       | :                                                                |                                  |                |                     | J<br>7      |
| mechanical ventilation - balanced, extract or positive in                                                       | put from outside                                                 |                                  |                | 0                   | (330a)      |
| warm air heating system fans                                                                                    |                                                                  |                                  |                | 0                   | (330b)      |
| pump for solar water heating                                                                                    |                                                                  |                                  |                | 0                   | (330g)      |
| Total electricity for the above, kWh/year                                                                       | =(330a) + (330b                                                  | ) + (330g) =                     |                | 0                   | (331)       |
| Energy for lighting (calculated in Appendix L)                                                                  |                                                                  |                                  |                | 440.61              | (332)       |
| 12b. CO2 Emissions – Community heating scheme                                                                   |                                                                  |                                  |                |                     |             |
|                                                                                                                 | Energy<br>kWh/year                                               | Emission facto<br>kg CO2/kWh     | or Emi<br>kg ( | issions<br>CO2/year |             |
| CO2 from other sources of space and water heating (ne<br>Efficiency of heat source 1 (%)                        | ot CHP)<br>CHP using two fuels repeat (363) to (                 | 366) for the second f            | uel            | 65                  | (367a)      |
| CO2 associated with heat source 1                                                                               | [(307b)+(310b)] x 100 ÷ (367b) x                                 | 0                                | = [            | 4398.72             | (367)       |
| Electrical energy for heat distribution                                                                         | [(313) x                                                         | 0.52                             | = [            | 68.7                | (372)       |
| Total CO2 associated with community systems                                                                     | (363)(366) + (368)(372                                           | )                                | = [            | 4467.42             | (373)       |
| CO2 associated with space heating (secondary)                                                                   | (309) x                                                          | 0                                | = [            | 0                   | (374)       |

| CO2 associated with water from immer      | sion heater or insta | antaneous heater (312) x | 0.22 | = | 0       | (375) |
|-------------------------------------------|----------------------|--------------------------|------|---|---------|-------|
| Total CO2 associated with space and v     | vater heating        | (373) + (374) + (375) =  |      |   | 4467.42 | (376) |
| CO2 associated with electricity for pum   | ps and fans within   | dwelling (331)) x        | 0.52 | = | 0       | (378) |
| CO2 associated with electricity for light | ing                  | (332))) x                | 0.52 | = | 228.68  | (379) |
| Total CO2, kg/year                        | sum of (376)(382)    | =                        |      |   | 4696.1  | (383) |
| Dwelling CO2 Emission Rate                | (383) ÷ (4) =        |                          |      |   | 85.38   | (384) |
| El rating (section 14)                    |                      |                          |      |   | 41.18   | (385) |
|                                           |                      |                          |      |   |         |       |



|                                                             |                                                                                                                                                                       |                                       | User D                     | etails:            |                                   |                   |                       |              |                                       |                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|--------------------|-----------------------------------|-------------------|-----------------------|--------------|---------------------------------------|-------------------|
| Assessor Name:<br>Software Name:                            | Stroma FSAP 201                                                                                                                                                       | I2<br>Pr                              | roperty A                  | Stroma<br>Softwa   | a Num<br>are Ver<br>Unit 16       | ber:<br>sion:     |                       | Versio       | n: 1.0.3.15                           |                   |
| Address :                                                   | , london                                                                                                                                                              |                                       |                            |                    |                                   |                   |                       |              |                                       |                   |
| 1. Overall dwelling dimer                                   | isions:                                                                                                                                                               |                                       |                            |                    |                                   |                   |                       |              |                                       |                   |
| Basement                                                    |                                                                                                                                                                       |                                       | Area                       | <b>a(m²)</b><br>51 | (1a) x                            | <b>Av. He</b>     | <b>ight(m)</b><br>.17 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>110.67 | <b>)</b><br>(3a)  |
| Total floor area TFA = (1a                                  | )+(1b)+(1c)+(1d)+(1e                                                                                                                                                  | e)+(1n                                | )                          | 51                 | (4)                               |                   |                       |              |                                       |                   |
| Dwelling volume                                             |                                                                                                                                                                       |                                       |                            |                    | (3a)+(3b)                         | +(3c)+(3d         | l)+(3e)+              | .(3n) =      | 110.67                                | (5)               |
| 2. Ventilation rate:                                        |                                                                                                                                                                       |                                       | -                          | a the an           |                                   | total             |                       |              |                                       | -                 |
| Number of chimneys<br>Number of open flues                  | $\begin{array}{c} \text{main} \qquad \text{s} \\ \text{heating} \qquad \text{h} \\ \hline 0 \qquad + \\ \hline 0 \qquad + \\ \hline 0 \qquad + \\ \hline \end{array}$ | econdary<br>neating<br>0<br>0         | y + [] + []                | 0<br>0             | ] = [                             | 0<br>0            | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b) |
| Number of intermittent fan                                  | S                                                                                                                                                                     |                                       |                            |                    | Г                                 | 2                 | x ´                   | 10 =         | 20                                    | (7a)              |
| Number of passive vents                                     |                                                                                                                                                                       |                                       |                            |                    |                                   | 0                 | x ′                   | 10 =         | 0                                     | (7b)              |
| Number of flueless gas fire                                 | 38                                                                                                                                                                    |                                       |                            |                    | Ē                                 | 0                 | x 4                   | 40 =         | 0                                     | (7c)              |
|                                                             |                                                                                                                                                                       |                                       |                            |                    |                                   |                   |                       | Air ch       | ange <mark>s per</mark> ho            | our               |
| Infiltration due to chimney                                 | s, flues and fans = (6<br>en ca <mark>rried out or is intend</mark>                                                                                                   | a)+(6b)+(7a                           | a)+(7b)+(7<br>I to (17), c | (c) =              | ontinue fro                       | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.18                                  | (8)               |
| Number of storeys in the<br>Additional infiltration         | e dwelling (ns)                                                                                                                                                       | frome or                              | 0.25 for                   | -                  |                                   | uction            | [(9)                  | -1]x0.1 =    | 0                                     | (9)<br>(10)       |
| if both types of wall are pre<br>deducting areas of opening | sent, use the value corres<br>(s); if equal user 0.35                                                                                                                 | sponding to                           | the greate                 | er wall area       | y constr<br>a (after              | uction            |                       |              | 0                                     | (11)              |
| If suspended wooden flo                                     | oor, enter 0.2 (unsea                                                                                                                                                 | led) or 0.                            | 1 (seale                   | d), else           | enter 0                           |                   |                       |              | 0                                     | (12)              |
| If no draught lobby, ente                                   | er 0.05, else enter 0                                                                                                                                                 |                                       |                            |                    |                                   |                   |                       |              | 0                                     | (13)              |
| Percentage of windows                                       | and doors draught s                                                                                                                                                   | tripped                               |                            | 0.25 [0.2          | $\mathbf{v}(1\mathbf{A}) \cdot 1$ | 001 -             |                       |              | 0                                     | (14)              |
|                                                             |                                                                                                                                                                       |                                       |                            | (8) + (10) -       | × (14) ÷ 1<br>⊧ (11) + (1         | 2) + (13) -       | + (15) -              |              | 0                                     | (15)              |
| Air permeability value                                      | 150 expressed in cut                                                                                                                                                  | nic metre                             | s ner ho                   | ur ner so          | uare m                            | etre of e         | nvelone               | area         | 0                                     | (10)              |
| If based on air permeabilit                                 | v value. then $(18) = [(1)$                                                                                                                                           | 17) ÷ 20]+(8                          | ), otherwis                | se (18) = (        | 16)                               |                   | invelope              | area         | 1 18                                  | = (17) $=$ (18)   |
| Air permeability value applies                              | if a pressurisation test ha                                                                                                                                           | s been don                            | e or a deg                 | iree air pei       | meability                         | is being u        | sed                   |              | 1.10                                  |                   |
| Number of sides sheltered                                   | 1                                                                                                                                                                     |                                       |                            |                    |                                   |                   |                       |              | 3                                     | (19)              |
| Shelter factor                                              |                                                                                                                                                                       |                                       |                            | (20) = 1 - [       | 0.075 x (1                        | 9)] =             |                       |              | 0.78                                  | (20)              |
| Infiltration rate incorporation                             | ng shelter factor                                                                                                                                                     |                                       |                            | (21) = (18)        | x (20) =                          |                   |                       |              | 0.92                                  | (21)              |
| Infiltration rate modified fo                               | r monthly wind speed                                                                                                                                                  | t<br>T                                |                            |                    |                                   |                   | 1                     | i            | I                                     |                   |
| Jan Feb N                                                   | Mar Apr May                                                                                                                                                           | Jun                                   | Jul                        | Aug                | Sep                               | Oct               | Nov                   | Dec          |                                       |                   |
| Monthly average wind spe                                    | ed from Table 7                                                                                                                                                       | , , , , , , , , , , , , , , , , , , , |                            |                    |                                   |                   | 1                     | <b> </b>     | I                                     |                   |
| (22)m= 5.1 5 4                                              | .9 4.4 4.3                                                                                                                                                            | 3.8                                   | 3.8                        | 3.7                | 4                                 | 4.3               | 4.5                   | 4.7          |                                       |                   |
| Wind Factor (22a)m = (22                                    | )m ÷ 4                                                                                                                                                                |                                       |                            |                    |                                   | 4.00              |                       | 4.15         | I                                     |                   |
| (zza)m= 1.27 1.25 1                                         | .23 1.1 1.08                                                                                                                                                          | 0.95                                  | 0.95                       | 0.92               | 1                                 | 1.08              | 1.12                  | 1.18         |                                       |                   |

| Adjuste              | ed infiltr               | ation rat                      | e (allowi                 | ing for sh               | elter an    | d wind s       | peed) =     | (21a) x        | (22a)m           | -              | -                     |                    | _                |               |
|----------------------|--------------------------|--------------------------------|---------------------------|--------------------------|-------------|----------------|-------------|----------------|------------------|----------------|-----------------------|--------------------|------------------|---------------|
| <u> </u>             | 1.17                     | 1.14                           | 1.12                      | 1.01                     | 0.98        | 0.87           | 0.87        | 0.85           | 0.92             | 0.98           | 1.03                  | 1.08               | ĺ                |               |
| Calcula<br>If me     | ate ette<br>echanic:     | <i>ctive air</i><br>al ventila | cnange                    | rate for t               | ne appli    | cable ca       | se          |                |                  |                |                       |                    | 0                | (23a)         |
| lf exh               | aust air h               | eat pump                       | using App                 | endix N, (2              | 3b) = (23a  | a) × Fmv (e    | equation (I | N5)) , othei   | rwise (23b       | ) = (23a)      |                       |                    |                  | (23b)         |
| lf bala              | anced with               | n heat reco                    | overy: effic              | iency in %               | allowing f  | or in-use fa   | actor (fron | n Table 4h     | ) =              |                |                       |                    |                  | (23c)         |
| a) If                | balance                  | ed mecha                       | anical ve                 | entilation               | with he     | at recove      | erv (MVI    | HR) (24a       | a)m = (22        | 2b)m + (       | 23b) x [ <sup>,</sup> | 1 – (23c)          | ÷ 100]           | (200)         |
| (24a)m=              | 0                        | 0                              | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  |                  | (24a)         |
| b) If                | balance                  | d mecha                        | anical ve                 | entilation               | without     | heat rec       | covery (N   | и<br>VV) (24b  | )m = (22         | 1<br>2b)m + (2 | 23b)                  |                    | 1                |               |
| ,<br>(24b)m=         | 0                        | 0                              | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  |                  | (24b)         |
| c) If                | whole h                  | iouse ex                       | tract ver                 | ntilation c              | or positiv  | /e input \     | ventilatio  | on from c      | outside          |                |                       |                    | 1                |               |
| í                    | if (22b)r                | n < 0.5 ×                      | (23b), t                  | then (24o                | c) = (23b   | o); otherv     | wise (24    | c) = (22b      | o) m + 0.        | 5 × (23b       | )                     |                    | _                |               |
| (24c)m=              | 0                        | 0                              | 0                         | 0                        | 0           | 0              | 0           | 0              | 0                | 0              | 0                     | 0                  | ĺ                | (24c)         |
| d) If                | natural                  | ventilatio                     | on or wh                  | ole hous                 | e positiv   | ve input       | ventilatio  | on from I      | oft              |                |                       |                    |                  |               |
| i                    | if (22b)r                | n = 1, th                      | en (24d)                  | m = (22t                 | o)m othe    | erwise (2      | 24d)m =     | 0.5 + [(2      | 2b)m² x          | 0.5]           |                       |                    | 1                |               |
| (24d)m=              | 1.17                     | 1.14                           | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98           | 1.03                  | 1.08               | l                | (240)         |
| Effe                 | ctive air                | change                         | rate - er                 | nter (24a                | ) or (24t   | o) or (240     | c) or (24   | d) in boy      | (25)             | 0.00           | 4.00                  | 4.00               | 1                | (25)          |
| (25)m=               | 1.17                     | 1.14                           | 1.12                      | 1.01                     | 0.98        | 0.88           | 0.88        | 0.86           | 0.92             | 0.98           | 1.03                  | 1.08               |                  | (25)          |
| 3. He                | at l <mark>osse</mark>   | s and he                       | eat loss                  | paramete                 | er:         |                |             |                |                  |                |                       |                    |                  |               |
| ELEN                 |                          | Gros<br>are <mark>a</mark>     | ss<br>(m²)                | Openin<br>m              | gs<br>²     | Net Ar<br>A ,r | rea<br>m²   | U-valı<br>W/m2 | ue<br>K          | A X U<br>(W/I  | K)                    | k-value<br>kJ/m²·l | )<br>K           | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                          |                                |                           |                          |             | 1.9            | x           | 1.4            | = [              | 2.66           |                       |                    |                  | (26)          |
| Windo                | ws Type                  | 91                             |                           |                          |             | 4.8            | x1          | /[1/( 1.6 )+   | 0.04] =          | 7.22           | F                     |                    |                  | (27)          |
| Windo                | ws Type                  | e 2                            |                           |                          |             | 4.16           | <b>x</b> 1  | /[1/( 4.8 )+   | 0.04] =          | 16.75          | F                     |                    |                  | (27)          |
| Floor                |                          |                                |                           |                          |             | 51             | ×           | 0.99           |                  | 50.49          | F r                   |                    |                  | (28)          |
| Walls <sup>-</sup>   | Type1                    | 16.1                           | 4                         | 4.8                      |             | 11.34          |             | 2.1            | =  <br>          | 23.81          | 5                     |                    | $\exists \vdash$ | (29)          |
| Walls <sup>-</sup>   | Type2                    | 16.                            | 1                         | 6.06                     |             | 10.04          |             | 2.1            |                  | 21.08          | $\dashv$              |                    | $\dashv$         | (29)          |
| Total a              | area of e                | elements                       | . m²                      |                          |             | 83.24          |             |                | [                |                | J L                   |                    |                  | (31)          |
| Partv v              | vall                     |                                | ,                         |                          |             | 33.3           |             | 0              |                  | 0              |                       |                    |                  | (32)          |
| * for win            | dows and                 | l roof wind                    | ows, use e                | effective wil            | ndow U-va   | alue calcula   | ated using  | formula 1      | L<br>/[(1/U-valu | ie)+0.04] a    | L<br>as given in      | paragraph          |                  | (02)          |
| ** includ            | le the area              | as on both                     | sides of ir               | nternal wall             | ls and par  | titions        | J           |                |                  | , <u>-</u>     | 0                     | , ,                |                  |               |
| Fabric               | heat los                 | ss, W/K :                      | = S (A x                  | U)                       |             |                |             | (26)(30)       | + (32) =         |                |                       |                    | 122.0            | (33)          |
| Heat c               | apacity                  | Cm = S(                        | (A x k )                  |                          |             |                |             |                | ((28)            | .(30) + (32    | 2) + (32a).           | (32e) =            | 0                | (34)          |
| Therm                | al mass                  | parame                         | ter (TM                   | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K       |             |                | Indica           | tive Value     | : High                |                    | 450              | (35)          |
| For desi<br>can be u | ign asses:<br>Ised inste | sments wh<br>ad of a de        | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are not    | t known pr  | recisely the   | e indicative     | values of      | TMP in Ta             | able 1f            |                  |               |
| Therm                | al bridg                 | es : S (L                      | x Y) cal                  | culated u                | using Ap    | pendix ł       | <           |                |                  |                |                       |                    | 12.8             | (36)          |
| if details           | of therma                | al bridging                    | are not kr                | own (36) =               | = 0.15 x (3 | :1)            |             |                | ()               | <i>(</i> )     |                       |                    |                  |               |
| Total fa             | abric he                 | at loss                        |                           |                          |             |                |             |                | (33) +           | (36) =         |                       |                    | 134.8            | (37)          |
| Ventila              | tion hea                 | at loss ca                     | alculated                 | d monthly                | /           |                |             |                | (38)m            | = 0.33 × (     | 25)m x (5)            |                    | 1                |               |
| (00) -               | Jan                      | Feb                            | Mar                       | Apr                      | May         | Jun            | Jul         | Aug            | Sep              | Oct            | Nov                   | Dec                |                  | (20)          |
| (38)m=               | 42.61                    | 41.//                          | 40.94                     | 36.76                    | 35.93       | 32.06          | 32.06       | 31.34          | 33.55            | 35.93          | 37.6                  | 39.27              | I                | (30)          |
| Heat tr              | ansfer o                 |                                | nt, W/K                   |                          | <b></b>     |                |             |                | (39)m            | = (37) + (3    | 38)m                  |                    | 1                |               |
| (39)m=               | 1/7.43                   | 176.59                         | 1/5.76                    | 1/1.58                   | 170.75      | 166.88         | 166.88      | 166.16         | 168.37           | 1/0.75         | 1/2.41<br>Sum(20)     | 1/4.08             | 171 4            | 17 (30)       |
|                      |                          |                                |                           |                          |             |                |             |                | 1                | hverage =      | Juiii(39)1            | 12 / 14=           | 1 1/1.4          |               |

| Heat lo                        | ss para                         | meter (H                                  | HLP), W/                             | ′m²K                                               |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 3.48                            | 3.46                                      | 3.45                                 | 3.36                                               | 3.35                                     | 3.27                                  | 3.27                         | 3.26                   | 3.3                   | 3.35                      | 3.38                                  | 3.41     |            |      |
| L                              | r of day                        |                                           | u<br>nth (Tab                        | l <u>a</u> 12)                                     |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.36       | (40) |
| ]                              | .lan                            | Feb                                       | Mar                                  | Apr                                                | May                                      | Jun                                   | Jul                          | Αυσ                    | Sen                   | Oct                       | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                        | 31                                   | 30                                                 | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41) |
|                                |                                 |                                           |                                      |                                                    | -                                        |                                       | _                            |                        |                       |                           |                                       | _        |            |      |
| 4. Wa                          | ter heat                        | ting enei                                 | rgy requi                            | irement:                                           |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |      |
| Assum<br>if TF/<br>if TF/      | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, I<br>9, N = 1<br>9, N = 1         | N<br>+ 1.76 x                        | [1 - exp                                           | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>i litres per j | ater usag<br>hot water<br>person per | ge in litre<br>usage by<br><sup>r</sup> day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      |            | (43) |
| [                              | Jan                             | Feb                                       | Mar                                  | Apr                                                | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage i                       | n litres per                              | day for ea                           | ach month                                          | Vd,m = fa                                | ctor from                             | Table 1c x                   | (43)                   |                       | -                         | •                                     |          |            |      |
| (44)m=                         | 82.54                           | 79.54                                     | 76.54                                | 73.54                                              | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            | _    |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                                 | used - cal                           | culated mo                                         | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x E                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                    | 110.48                               | 96. <mark>3</mark> 2                               | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 10 <mark>0.01</mark>      | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | vater heatii                              | ng at point                          | of use (no                                         | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | •        | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                     | 16.57                                | 14. <mark>45</mark>                                | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46) |
| Water a                        | storage                         | loss:                                     |                                      |                                                    |                                          |                                       |                              |                        |                       |                           |                                       |          |            |      |
| Storage                        | e volum                         | ie (litres)                               | Includir                             | ig any so                                          | Diar or V                                | WHRS                                  | storage                      |                        | ame ves               | sei                       |                                       | 160      |            | (47) |
| Otherw                         | nunity r<br>rise if no          | eating a                                  | nd no ta<br>hot wate                 | ink in aw<br>er (this ir                           | elling, e<br>Icludes i                   | nter 110<br>nstantar                  | neous co                     | (47)<br>mbi boil       | ers) ente             | er '0' in (               | (47)                                  |          |            |      |
| Water s                        | storage                         | loss:                                     |                                      | . (                                                |                                          |                                       |                              |                        | ,                     |                           | ,                                     |          |            |      |
| a) If m                        | anufact                         | urer's de                                 | eclared I                            | oss facto                                          | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                                 | m Table                              | 2b                                                 |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                   | storage                              | , kWh/ye                                           | ear                                      |                                       |                              | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50) |
| b) If m                        | anufact                         | urer's de                                 | eclared of                           | cylinder l                                         | oss fact                                 | or is not                             | known:                       |                        |                       |                           |                                       |          | I          |      |
| If com                         | nunity h                        | age loss<br>heating s                     | ee secti                             | on $4.3$                                           | e z (kvv                                 | n/iitre/ua                            | iy)                          |                        |                       |                           | 0.                                    | 02       |            | (51) |
| Volume                         | factor                          | from Tal                                  | ble 2a                               | 011 1.0                                            |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |            | (52) |
| Tempe                          | rature f                        | actor fro                                 | m Table                              | 2b                                                 |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53) |
| Energy                         | lost fro                        | m water                                   | storage                              | , kWh/ye                                           | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |            | (54) |
| Enter (                        | (50) or (                       | (54) in (5                                | 55)                                  | ·                                                  |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                                  | culated f                            | for each                                           | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |            |      |
| (56)m=                         | 32.01                           | 28.92                                     | 32.01                                | 30.98                                              | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contains                      | s dedicate                                | d solar sto                          | rage, (57)                                         | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | l<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                     | 32.01                                | 30.98                                              | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (57) |
| Primary                        | / circuit                       | loss (an                                  | nual) fro                            | om Table                                           | 93                                       |                                       |                              |                        |                       |                           |                                       | 0        |            | (58) |
| Primary                        | / circuit                       | loss cal                                  | culated                              | for each                                           | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |      |
| mod)<br>ا                      | lified by                       | factor fi                                 | rom Tab                              | le H5 if t<br>I                                    | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | ostat)                                | -        | I          |      |
| (59)m=                         | 23.26                           | 21.01                                     | 23.26                                | 22.51                                              | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59) |

| Combi    | loss ca             | alculated   | for eac   | h month      | (61)m =    | (60) ÷ 3 | 365 × (41       | )m               |                |                     |                  |             |               |      |
|----------|---------------------|-------------|-----------|--------------|------------|----------|-----------------|------------------|----------------|---------------------|------------------|-------------|---------------|------|
| (61)m=   | 0                   | 0           | 0         | 0            | 0          | 0        | 0               | 0                | 0              | 0                   | 0                | 0           |               | (61) |
| Total h  | eat req             | uired for   | water h   | neating c    | alculated  | for ea   | ch month        | (62)m =          | • 0.85 ×       | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 177.69              | 156.99      | 165.75    | 149.81       | 147.69     | 133.24   | 129.18          | 140.08           | 139.31         | 155.28              | 162.66           | 173.82      |               | (62) |
| Solar DH | W input             | calculated  | using Ap  | pendix G o   | r Appendix | H (nega  | tive quantity   | /) (enter '0     | ' if no sola   | r contribut         | tion to wate     | er heating) | -             |      |
| (add a   | dditiona            | al lines if | FGHRS     | S and/or V   | WWHRS      | applie   | s, see Ap       | pendix (         | G)             |                     |                  |             | _             |      |
| (63)m=   | 0                   | 0           | 0         | 0            | 0          | 0        | 0               | 0                | 0              | 0                   | 0                | 0           |               | (63) |
| Output   | from w              | ater hea    | ter       |              |            |          |                 |                  |                |                     |                  |             |               |      |
| (64)m=   | 177.69              | 156.99      | 165.75    | 149.81       | 147.69     | 133.24   | 129.18          | 140.08           | 139.31         | 155.28              | 162.66           | 173.82      |               |      |
|          |                     |             |           |              | -          |          |                 | Out              | out from w     | ater heate          | r (annual)₁      | 12          | 1831.51       | (64) |
| Heat g   | ains fro            | m water     | heating   | , kWh/m      | onth 0.2   | 5 ´ [0.8 | 5 × (45)m       | ı + (61)n        | n] + 0.8 x     | k [(46)m            | + (57)m          | + (59)m     | ]             |      |
| (65)m=   | 59.31               | 52.41       | 55.34     | 50.03        | 49.34      | 44.53    | 43.18           | 46.81            | 46.54          | 51.86               | 54.31            | 58.03       |               | (65) |
| inclu    | de (57)             | m in calo   | culation  | of (65)m     | only if c  | ylinder  | is in the o     | dwelling         | or hot w       | ater is f           | rom com          | munity h    | -<br>neating  |      |
| 5. Int   | ernal g             | ains (see   | Table     | 5 and 5a     | ):         |          |                 |                  |                |                     |                  |             |               |      |
| Metabo   | olic dair           | ns (Table   | e 5). Wa  | tts          |            |          |                 |                  |                |                     |                  |             |               |      |
|          | Jan                 | Feb         | Mar       | Apr          | May        | Jun      | Jul             | Aug              | Sep            | Oct                 | Nov              | Dec         |               |      |
| (66)m=   | 85.98               | 85.98       | 85.98     | 85.98        | 85.98      | 85.98    | 85.98           | 85.98            | 85.98          | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66) |
| Lightin  | g gains             | (calcula    | ted in A  | ppendix      | L, equat   | ion L9   | or L9a), a      | lso see          | Table 5        |                     |                  |             |               |      |
| (67)m=   | 2 <mark>3.08</mark> | 20.5        | 16.67     | 12.62        | 9.43       | 7.96     | 8.61            | 11.19            | 15.01          | 19.06               | 22.25            | 23.72       |               | (67) |
| Applia   | nces ga             | ains (calc  | ulated i  | n Appen      | dix L, eq  | uation I | 13 or L1        | 3a), also        | see Ta         | ble 5               |                  |             | 1             |      |
| (68)m=   | 149.83              | 151.39      | 147.47    | 139.13       | 128.6      | 118.7    | 112.09          | 110.54           | 114.45         | 122.8               | 133.32           | 143.22      |               | (68) |
| Cookin   | g gains             | s (calcula  | ited in A |              | L, equat   | ion L15  | 5 or L15a       | ), also se       | ee Table       | 5                   |                  |             | 1             |      |
| (69)m=   | 31.6                | 31.6        | 31.6      | 31.6         | 31.6       | 31.6     | 31.6            | 31.6             | 31.6           | 31.6                | 31.6             | 31.6        |               | (69) |
| Pumps    | and fa              | ns gains    | (Table    | 5a)          |            |          |                 | 1                |                |                     |                  | 1           |               |      |
| (70)m=   | 0                   | 0           | 0         | 0            | 0          | 0        | 0               | 0                | 0              | 0                   | 0                | 0           | ]             | (70) |
| Losses   | s e.a. e            | vaporatio   | n (nega   | ative valu   | ies) (Tab  | le 5)    |                 | I                |                |                     | I                | I           | 1             |      |
| (71)m=   | -68.78              | -68.78      | -68.78    | -68.78       | -68.78     | -68.78   | -68.78          | -68.78           | -68.78         | -68.78              | -68.78           | -68.78      | ]             | (71) |
| Water    | heating             | u dains (T  | able 5)   | 1            |            |          |                 |                  |                |                     | <u> </u>         |             | 1             |      |
| (72)m=   | 79.72               | 77.99       | 74.39     | 69.49        | 66.32      | 61.84    | 58.04           | 62.91            | 64.64          | 69.71               | 75.43            | 77.99       | ]             | (72) |
| Total i  | nterna              | l gains =   | l         |              |            | (6)      | <br>6)m + (67)m | L<br>1 + (68)m · | L<br>+ (69)m + | L<br>(70)m + (7     | 1<br>(1)m + (72) | l           | 1             |      |
| (73)m=   | 301.42              | 298.66      | 287.32    | 270.03       | 253.14     | 237.3    | 227.53          | 233.43           | 242.91         | 260.36              | 279.8            | 293.73      | 1             | (73) |
| 6. So    | ar gain             | s:          |           | 1            |            |          |                 |                  |                |                     |                  |             | J             | · ,  |
| Solar g  | ains are            | calculated  | using sol | ar flux from | Table 6a   | and asso | ciated equa     | itions to co     | onvert to th   | ne applical         | ole orientat     | ion.        |               |      |
| Orienta  | ation:              | Access F    | actor     | Area         | l          | FI       | ux              |                  | g_             |                     | FF               |             | Gains         |      |
|          |                     | Table 6d    |           | m²           |            | Та       | able 6a         | Т                | able 6b        | Т                   | able 6c          |             | (VV)          |      |
| North    | 0.9x                | 0.77        | )         | 4.           | 16         | x        | 10.63           | x                | 0.85           | x                   | 0.7              | =           | 18.24         | (74) |
| North    | 0.9x                | 0.77        | ,         | 4.           | 16         | x 🗌      | 20.32           | x                | 0.85           |                     | 0.7              | =           | 34.86         | (74) |
| North    | 0.9x                | 0.77        | ,         | 4.           | 16         | x        | 34.53           | x 🗌              | 0.85           | = × [               | 0.7              | =           | 59.23         | (74) |
| North    | 0.9x                | 0.77        | ,         | 4.           | 16         | x        | 55.46           | x                | 0.85           | =                   | 0.7              | =           | 95.14         | (74) |
| North    | 0.9x                | 0.77        | >         | 4.           | 16         | x 📃      | 74.72           | x 🗌              | 0.85           | × [                 | 0.7              | =           | 128.16        | (74) |

| North                 | 0.9x                   | 0.77                   | ×        | (          | 4.16             | x        | 7                | 79.99        | x             | 0.85                        | x                   | 0.7           | =       | 137.2  | (74) |
|-----------------------|------------------------|------------------------|----------|------------|------------------|----------|------------------|--------------|---------------|-----------------------------|---------------------|---------------|---------|--------|------|
| North                 | 0.9x                   | 0.77                   | ×        | (          | 4.16             | ×        | 7                | 74.68        | ×             | 0.85                        | ×                   | 0.7           | =       | 128.09 | (74) |
| North                 | 0.9x                   | 0.77                   | ×        | (          | 4.16             | x        | 5                | 59.25        | x             | 0.85                        | ×                   | 0.7           | =       | 101.63 | (74) |
| North                 | 0.9x                   | 0.77                   | ×        | (          | 4.16             | ×        | 4                | 1.52         | x             | 0.85                        | x                   | 0.7           | =       | 71.21  | (74) |
| North                 | 0.9x                   | 0.77                   | ×        | (          | 4.16             | ×        | 2                | 24.19        | x             | 0.85                        | ×                   | 0.7           | =       | 41.49  | (74) |
| North                 | 0.9x                   | 0.77                   | ×        | · [        | 4.16             | ×        | 1                | 3.12         | x             | 0.85                        | ×                   | 0.7           | =       | 22.5   | (74) |
| North                 | 0.9x                   | 0.77                   | ×        | · [        | 4.16             | ×        |                  | 8.86         | x             | 0.85                        | ×                   | 0.7           | =       | 15.21  | (74) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | ×        | 4                | 46.75        | x             | 0.76                        | ×                   | 0.7           | =       | 82.73  | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | x        | 7                | 76.57        | x             | 0.76                        | x                   | 0.7           | =       | 135.5  | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | x        | 9                | 97.53        | x             | 0.76                        | x                   | 0.7           | =       | 172.6  | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | ×        | 1                | 10.23        | x             | 0.76                        | ×                   | 0.7           | =       | 195.08 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | x        | 1                | 14.87        | x             | 0.76                        | ×                   | 0.7           | =       | 203.28 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | < [        | 4.8              | x        | 1                | 10.55        | x             | 0.76                        | ×                   | 0.7           | =       | 195.63 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | ×        | 1                | 08.01        | x             | 0.76                        | ×                   | 0.7           | =       | 191.14 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | · [        | 4.8              | ×        | 1                | 04.89        | x             | 0.76                        | ×                   | 0.7           | =       | 185.63 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | ×        | 1                | 01.89        | x             | 0.76                        | ×                   | 0.7           | =       | 180.3  | (78) |
| South                 | 0.9x                   | 0.77                   | ×        | (          | 4.8              | ×        | 3                | 32.59        | x             | 0.76                        | x                   | 0.7           | =       | 146.15 | (78) |
| South                 | 0.9x                   | 0.77                   | ×        |            | 4.8              | ×        | 5                | 55.42        | x             | 0.76                        | x                   | 0.7           | =       | 98.07  | (78) |
| Sout <mark>h</mark>   | 0.9x                   | 0.77                   | ×        | (          | 4.8              | x        |                  | 40.4         | x             | 0.76                        | x                   | 0.7           |         | 71.49  | (78) |
|                       |                        |                        |          |            |                  |          |                  |              |               |                             |                     |               |         |        |      |
| Sola <mark>r</mark> ( | <mark>gain</mark> s in | watts, <mark>ca</mark> | lculate  | <u>d 1</u> | for each mon     | th       |                  |              | (83)m         | n = Sum(74)m .              | <mark>(8</mark> 2)m |               |         | ,      |      |
| (83)m=                | 100.97                 | 170.35                 | 231.83   | L          | 290.21 331.4     | 4 3      | 332.83           | 319.24       | 287           | .25 251.52                  | 187.6               | 4 120.57      | 86.7    |        | (83) |
| Total g               | gains – i              | nternal a              | nd sola  | ar (       | (84)m = (73)n    | n + (    | (83)m            | , watts      | 1             |                             |                     | _             |         |        |      |
| (84)m=                | 402.4                  | 469.02                 | 519.15   | L          | 560.25 584.5     | 8 5      | 570.13           | 546.77       | 520           | .68 494.42                  | 448                 | 400.37        | 380.42  |        | (84) |
| 7. Me                 | ean inter              | nal temp               | erature  | e (I       | heating seaso    | on)      |                  |              |               |                             |                     |               |         |        |      |
| Temp                  | perature               | during he              | eating   | pe         | eriods in the li | ving     | area             | from Tab     | ble 9         | , Th1 (°C)                  |                     |               |         | 21     | (85) |
| Utilis                | ation fac              | tor for ga             | ins for  | liv        | ving area, h1,   | m (s     | see Ta           | ble 9a)      | ·             |                             |                     |               |         | 7      |      |
|                       | Jan                    | Feb                    | Mar      |            | Apr Ma           | y 📘      | Jun              | Jul          | A             | ug Sep                      | Oct                 | Nov           | Dec     |        |      |
| (86)m=                | 1                      | 1                      | 1        |            | 0.99 0.98        |          | 0.95             | 0.88         | 0.            | 9 0.97                      | 0.99                | 1             | 1       |        | (86) |
| Mear                  | interna                | l tempera              | ature in | li         | ving area T1     | (foll    | ow ste           | ps 3 to 7    | 7 in T        | able 9c)                    |                     |               |         | _      |      |
| (87)m=                | 18.71                  | 18.87                  | 19.18    |            | 19.62 20.08      | 3        | 20.52            | 20.77        | 20.           | 73 20.38                    | 19.79               | 19.2          | 18.71   |        | (87) |
| Temp                  | perature               | during he              | eating   | ре         | riods in rest o  | of dv    | velling          | from Ta      | able 9        | 9, Th2 (°C)                 |                     |               |         |        |      |
| (88)m=                | 19.26                  | 19.27                  | 19.28    |            | 19.32 19.33      | 3        | 19.36            | 19.36        | 19.           | 37 19.35                    | 19.33               | 19.31         | 19.29   | ]      | (88) |
| Utilis                | ation fac              | tor for a              | ins for  | re         | est of dwelling  | 1. h2    | 2.m (se          | ee Table     | 9a)           | •                           |                     | •             | •       | -      |      |
| (89)m=                | 1                      | 1                      | 0.99     | T          | 0.99 0.97        | <u> </u> | 0.89             | 0.71         | 0.7           | 76 0.94                     | 0.99                | 1             | 1       | ]      | (89) |
| Mear                  | interna                | l tempera              | ature in |            | ne rest of dwe   |          | n T2 (f          | n<br>Now ste |               | to 7 in Tabl                | e 9c)               | <b>!</b>      |         | 4      |      |
| (90)m=                | 17.24                  | 17.41                  | 17.72    | T          | 18.2 18.66       | 5        | 19.1             | 19.3         | 19.           | 28 18.97                    | 18.38               | 17.77         | 17.27   | ]      | (90) |
| . /                   | L                      |                        |          | -          |                  |          |                  |              |               | f                           | LA = Liv            | /ing area ÷ ( | 4) =    | 0.55   | (91) |
| Mag                   | interne                | Itomnor                | turo /f  | ~-         | the whole de     | (OII)-   | ) (              | ۲۸ ۲۷        | . /4          | fl A) <b>T</b> O            |                     |               |         |        | ` ′  |
| (92)m =               |                        | 18 22                  | 18.53    | T          | 18.99 19.45      |          | (y) = T<br>19.89 | LA X 11      | + (1          | $\frac{-1LA}{09} \times 12$ | 19 16               | 18 56         | 18.07   | 1      | (92) |
| (SE/III-              | 1 10.00                | 1 10.44                | 10.00    | 1          | 10.00 10.40      |          |                  |              | 1 <u>2</u> 0. |                             | 1 10.10             | 1 10.00       | 1 10.07 | 1      | (0-) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 18.06                     | 18.22                 | 18.53                 | 18.99                  | 19.45                   | 19.89                   | 20.11         | 20.09      | 19.75       | 19.16       | 18.56        | 18.07       |          | (93)        |
|-----------------------|---------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|---------------|------------|-------------|-------------|--------------|-------------|----------|-------------|
| 8. Sp                 | ace hea                   | ting requ             | uirement              |                        |                         |                         |               |            |             |             |              |             |          |             |
| Set T<br>the ut       | i to the r<br>ilisation   | nean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta   | e obtain<br>Ible 9a     | ed at ste               | ep 11 of      | Table 9b   | o, so tha   | t Ti,m=(    | 76)m an      | d re-calc   | ulate    |             |
|                       | Jan                       | Feb                   | Mar                   | Apr                    | May                     | Jun                     | Jul           | Aug        | Sep         | Oct         | Nov          | Dec         |          |             |
| Utilisa               | ation fac                 | tor for g             | ains, hm              | :                      |                         |                         |               |            |             |             |              |             |          |             |
| (94)m=                | 1                         | 1                     | 0.99                  | 0.99                   | 0.97                    | 0.91                    | 0.81          | 0.84       | 0.95        | 0.99        | 1            | 1           |          | (94)        |
| Usefu                 | I gains,                  | hmGm ,                | W = (94               | 4)m x (84              | 4)m                     |                         |               |            |             |             |              |             |          |             |
| (95)m=                | 401.66                    | 467.47                | 515.92                | 552.71                 | 565.2                   | 520.44                  | 440.95        | 436.91     | 469.49      | 442.97      | 399.1        | 379.87      |          | (95)        |
| Month                 | nly avera                 | age exte              | rnal tem              | perature               | e from Ta               | able 8                  |               |            |             |             | -            |             |          |             |
| (96)m=                | 4.3                       | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                    | 16.6          | 16.4       | 14.1        | 10.6        | 7.1          | 4.2         |          | (96)        |
| Heat                  | loss rate                 | e for mea             | an intern             | al tempe               | erature,                | Lm , W =                | =[(39)m :     | x [(93)m·  | – (96)m     | ]           |              |             |          |             |
| (97)m=                | 2440.61                   | 2352.49               | 2114.31               | 1731.46                | 1322.83                 | 882.33                  | 586.33        | 612.39     | 951.5       | 1462.29     | 1976.03      | 2414.17     |          | (97)        |
| Space                 | e heatin                  | g require             | ement fo              | r each m               | nonth, k\               | Nh/mont                 | h = 0.02      | 24 x [(97) | )m – (95    | )m] x (4    | 1)m          |             |          |             |
| (98)m=                | 1516.98                   | 1266.73               | 1189.2                | 848.7                  | 563.68                  | 0                       | 0             | 0          | 0           | 758.38      | 1135.39      | 1513.52     |          |             |
|                       |                           |                       |                       |                        |                         |                         |               | Tota       | l per year  | (kWh/yeai   | .) = Sum(9   | 8)15,912 =  | 8792.58  | (98)        |
| Space                 | e heating                 | g require             | ement in              | kWh/m <sup>2</sup>     | /year                   |                         |               |            |             |             |              | ĺ           | 172.4    | (99)        |
| Qh En                 | erav rea                  | uiromon               | ote – Cor             | nmunity                | heating                 | schomo                  |               |            |             |             |              | l           |          | ]           |
| This na               | art is use                | ed for sp             | ace hea               | ting spa               | neating                 | ng or wa                | ater heat     | ting prov  | ided by     | a comm      | unity sch    | neme        |          |             |
| Fractio               | n of spa                  | ice heat              | from se               | condary/               | supplen/                | nentary l               | neating       | Table 1    | 1) '0' if n | one         |              |             | 0        | (301)       |
| Fractio               | n of spa                  | ce heat               | from co               | mmunity                | system                  | 1 - (301                | 1) =          |            |             |             |              |             | 1        | (302)       |
| The cor               | munity or                 | homo mou              | cobtain be            | at from so             | woral sour              | The The                 | ,             | allows for | CHR and     | up to four  | othor hoot   | sources: t  |          | ]`´´        |
| includes              | boilers, h                | eat pumps             | , geotherr            | nal and wa             | aste heat f             | rom power               | r stations.   | See Apper  | ndix C.     |             | Siner near   | 3001003, 11 |          |             |
| Fractio               | <mark>n o</mark> f hea    | at from C             | ommun                 | ity boiler             | s                       |                         |               |            |             |             |              |             | 1        | (303a)      |
| Fractio               | n of tota                 | al space              | heat fro              | m Comn                 | nunity bo               | oilers                  |               |            |             | (3          | 02) x (303   | a) =        | 1        | (304a)      |
| Factor                | for cont                  | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo               | r commu       | unity hea  | ting sys    | tem         |              | [           | 1.05     | (305)       |
| Distrib               | ution los                 | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatir              | ng syste      | m          |             |             |              |             | 1.1      | (306)       |
| Space                 | heating                   | 3                     |                       |                        |                         |                         |               |            |             |             |              | -           | kWh/year | -           |
| Annua                 | space                     | heating               | requirem              | nent                   |                         |                         |               |            |             |             |              |             | 8792.58  | ]           |
| Space                 | heat fro                  | m Comr                | nunity b              | oilers                 |                         |                         |               |            | (98) x (30  | 04a) x (30  | 5) x (306) = | - [         | 10155.43 | (307a)      |
| Efficier              | ncy of se                 | econdary              | //supple              | mentary                | heating                 | system                  | in % (fro     | om Table   | 4a or A     | ppendix     | E)           |             | 0        | (308        |
| Space                 | heating                   | requirer              | ment fro              | m secon                | dary/sup                | oplemen                 | tary syst     | tem        | (98) x (30  | 01) x 100 - | ÷ (308) =    |             | 0        | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>water h | l<br>neating r        | equirem               | ent                    |                         |                         |               |            |             |             |              | [           | 1831.51  | 1           |
| If DHW<br>Water       | / from co<br>heat from    | ommunit<br>m Comn     | y schem<br>nunity bo  | ne:<br>pilers          |                         |                         |               |            | (64) x (30  | 03a) x (30  | 5) x (306) : | = [         | 2115.39  | ]<br>(310a) |
| Electric              | city used                 | d for hea             | t distribu            | ution                  |                         |                         |               | 0.01       | × [(307a).  | (307e) +    | · (310a)(    | [310e)] =   | 122.71   | ]<br>(313)  |
| Cooling               | g Syster                  | n Energ               | y Efficie             | ncy Ratio              | C                       |                         |               |            | ,           | ·           |              |             | 0        | (314)       |
| Space                 | cooling                   | (if there             | is a fixe             | d cooling              | g system                | n, if not e             | enter 0)      |            | = (107) ÷   | (314) =     |              |             | 0        | (315)       |
| Electric<br>mecha     | city for p<br>nical ve    | oumps ar<br>ntilation | nd fans v<br>- balanc | within dw<br>ed, extra | velling (1<br>act or po | Table 4f)<br>sitive inj | :<br>out from | outside    |             |             |              |             | 0        | (330a)      |

| warm air heating system fans                                                                                           |                             |                              |              | 0                   | (330b) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------|---------------------|--------|
| pump for solar water heating                                                                                           |                             |                              |              | 0                   | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)            | ) + (330g) =                 |              | 0                   | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                         |                             |                              |              | 407.59              | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                             |                              |              |                     | -      |
|                                                                                                                        | Energy<br>kWh/year          | Emission facto<br>kg CO2/kWh | r Em<br>kg ( | issions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | wo fuels repeat (363) to (3 | 366) for the second fu       | iel          | 65                  | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x      | 0                            | =            | 4077.69             | (367)  |
| Electrical energy for heat distribution [(3                                                                            | 13) x                       | 0.52                         | =            | 63.69               | (372)  |
| Total CO2 associated with community systems (3)                                                                        | 63)(366) + (368)(372)       |                              | =            | 4141.37             | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 09) x                       | 0                            | =            | 0                   | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | us heater (312) x           | 0.22                         | =            | 0                   | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =       |                              | Γ            | 4141.37             | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | (331)) x                    | 0.52                         | =            | 0                   | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                     | 0.52                         | =            | 211.54              | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                             |                              |              | 4352.91             | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                             |                              |              | 85.35               | (384)  |
| El rating (section 14)                                                                                                 |                             |                              |              | 42.63               | (385)  |

|                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                 | User D                                               | etails:                                        |                                     |                             |                      |                      |                                       |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------|----------------------|----------------------|---------------------------------------|----------------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 2                                                                                                                                     | 2012                                                            |                                                      | Stroma<br>Softwa                               | a Num<br>ire Ver                    | ber:<br>sion:               |                      | Versio               | n: 1.0.3.15                           |                            |
|                                                                                                                                                                                                                       | london                                                                                                                                            | P                                                               | roperty /                                            | Address:                                       |                                     |                             |                      |                      |                                       |                            |
| Address :                                                                                                                                                                                                             |                                                                                                                                                   |                                                                 |                                                      |                                                |                                     |                             |                      |                      |                                       |                            |
| Basement                                                                                                                                                                                                              | 310113.                                                                                                                                           |                                                                 | Area                                                 | <b>a(m²)</b><br>51                             | (1a) x                              | <b>Av. He</b>               | <b>ight(m)</b><br>18 | (2a) =               | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)           |
| Total floor area TFA = (1a)                                                                                                                                                                                           | )+(1b)+(1c)+(1d)+                                                                                                                                 | (1e)+(1n                                                        | I)                                                   | 51                                             | (4)                                 |                             |                      |                      |                                       |                            |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                                   |                                                                 |                                                      |                                                | (3a)+(3b)                           | +(3c)+(3c                   | d)+(3e)+             | .(3n) =              | 111.18                                | (5)                        |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                                   |                                                                 |                                                      | _                                              |                                     |                             |                      |                      |                                       |                            |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | main<br>heating<br>0 +<br>0 +                                                                                                                     | secondar<br>heating                                             | y<br>] + [_<br>] + [_                                | 0<br>0                                         | ] = [                               | <b>total</b> 0 0            | x 4                  | 40 =<br>20 =         | <b>m<sup>3</sup> per hou</b> 0 0      | r<br>(6a)<br>(6b)          |
| Number of intermittent fan                                                                                                                                                                                            | s                                                                                                                                                 |                                                                 |                                                      |                                                |                                     | 2                           | × ′                  | 10 =                 | 20                                    | (7a)                       |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                                   |                                                                 |                                                      |                                                | Ē                                   | 0                           | x ′                  | 10 =                 | 0                                     | (7b)                       |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                                |                                                                 |                                                      |                                                | Ľ                                   | 0                           | X 4                  | 40 =                 | 0                                     | (7c)                       |
|                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                 |                                                      |                                                |                                     |                             |                      | Air ch               | anges per ho                          | our                        |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | s, flues and fans =<br>en carried out or is inte<br>e dwelling (ns)<br>25 for steel or timb<br>sent, use the value co.<br>(s): if equal user 0.35 | (6a)+(6b)+(7<br>ended, proceed<br>er frame or<br>rresponding to | a)+(7b)+(7<br>d to (17), c<br>0.35 for<br>the greate | 7c) =<br>otherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to (<br>uction | (16)<br>[(9)         | ÷ (5) =<br>-1]x0.1 = | 0.18 0 0 0 0 0                        | (8)<br>(9)<br>(10)<br>(11) |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (uns                                                                                                                               | ealed) or 0.                                                    | 1 (seale                                             | d), else                                       | enter 0                             |                             |                      |                      | 0                                     | (12)                       |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter                                                                                                                               | 0                                                               |                                                      |                                                |                                     |                             |                      |                      | 0                                     | (13)                       |
| Percentage of windows                                                                                                                                                                                                 | and doors draugh                                                                                                                                  | t stripped                                                      |                                                      |                                                |                                     |                             |                      |                      | 0                                     | (14)                       |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                                   |                                                                 |                                                      | 0.25 - [0.2                                    | x (14) ÷ 1                          | = [00                       |                      |                      | 0                                     | (15)                       |
| Infiltration rate                                                                                                                                                                                                     |                                                                                                                                                   |                                                                 |                                                      | (8) + (10) ·                                   | + (11) + (1                         | 2) + (13) ·                 | + (15) =             |                      | 0                                     | (16)                       |
| Air permeability value, q                                                                                                                                                                                             | 50, expressed in o                                                                                                                                | cubic metre                                                     | s per ho                                             | our per so                                     | quare m                             | etre of e                   | envelope             | area                 | 20                                    | (17)                       |
| If based on air permeabilit                                                                                                                                                                                           | y value, then (18) =                                                                                                                              | = [(17) ÷ 20]+(8                                                | 3), otherwi                                          | se (18) = (                                    | 16)                                 | :                           | I                    |                      | 1.18                                  | (18)                       |
| Air permeability value applies                                                                                                                                                                                        | If a pressurisation test                                                                                                                          | nas been don                                                    | e or a deg                                           | gree air pei                                   | meability                           | is being u                  | sea                  |                      | 2                                     | <b>(19)</b>                |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                                   |                                                                 |                                                      | (20) = 1 - [                                   | 0.075 x (1                          | 9)] =                       |                      |                      | 0.85                                  | (10)                       |
| Infiltration rate incorporatir                                                                                                                                                                                        | ng shelter factor                                                                                                                                 |                                                                 |                                                      | (21) = (18)                                    | x (20) =                            |                             |                      |                      | 1                                     | (21)                       |
| Infiltration rate modified fo                                                                                                                                                                                         | r monthly wind spe                                                                                                                                | eed                                                             |                                                      |                                                |                                     |                             |                      |                      |                                       |                            |
| Jan Feb M                                                                                                                                                                                                             | <i>l</i> lar Apr Ma                                                                                                                               | ay Jun                                                          | Jul                                                  | Aug                                            | Sep                                 | Oct                         | Nov                  | Dec                  |                                       |                            |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                                   |                                                                 |                                                      |                                                |                                     |                             | -                    |                      |                                       |                            |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | .9 4.4 4.3                                                                                                                                        | 3.8                                                             | 3.8                                                  | 3.7                                            | 4                                   | 4.3                         | 4.5                  | 4.7                  |                                       |                            |
| Wind Factor (22a)m = (22)                                                                                                                                                                                             | )m ÷ 4                                                                                                                                            |                                                                 |                                                      |                                                |                                     |                             |                      |                      |                                       |                            |
| (22a)m= 1.27 1.25 1.                                                                                                                                                                                                  | 23 1.1 1.08                                                                                                                                       | 8 0.95                                                          | 0.95                                                 | 0.92                                           | 1                                   | 1.08                        | 1.12                 | 1.18                 |                                       |                            |

| Adjust              | ed infiltr               | ation rat                      | e (allowi                 | ing for sh               | nelter an               | d wind s               | speed) =    | (21a) x        | (22a)m      | -              | -           |                    | _                 |               |
|---------------------|--------------------------|--------------------------------|---------------------------|--------------------------|-------------------------|------------------------|-------------|----------------|-------------|----------------|-------------|--------------------|-------------------|---------------|
| <b>.</b>            | 1.28                     | 1.25                           | 1.23                      | 1.1                      | 1.08                    | 0.95                   | 0.95        | 0.93           | 1           | 1.08           | 1.13        | 1.18               |                   |               |
| Calcul<br>If m      | ate effe<br>echanic:     | <i>ctive air</i><br>al ventila | change                    | rate for t               | he appli                | cable ca               | se          |                |             |                |             |                    | 0                 | (232)         |
| lf exh              | aust air h               | eat pump                       | using App                 | endix N, (2              | 3b) = (23a              | a) × Fmv (e            | equation (I | N5)), othei    | wise (23b   | ) = (23a)      |             |                    | 0                 | (23b)         |
| If bal              | anced with               | h heat reco                    | overy: effic              | iency in %               | allowing f              | or in-use f            | actor (fron | n Table 4h     | ) =         | , , ,          |             |                    | 0                 | (23c)         |
| a) If               | balance                  | ed mech                        | anical ve                 | entilation               | with he                 | at recove              | erv (MVI    | HR) (24a       | )m = (22    | 2b)m + (       | 23b) x [′   | 1 – (23c)          | ÷ 100]            | (200)         |
| (24a)m=             | 0                        | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  | ]                 | (24a)         |
| b) If               | balance                  | ed mecha                       | ı<br>anical ve            | entilation               | without                 | heat rec               | coverv (N   | MV) (24b       | )m = (22    | 1<br>2b)m + () | 23b)        |                    | 1                 |               |
| ,<br>(24b)m=        | 0                        | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  | ]                 | (24b)         |
| c) If               | whole h                  | iouse ex                       | tract ver                 | ntilation of             | or positiv              | ve input v             | ventilatio  | on from c      | outside     |                |             |                    | 1                 |               |
| ,                   | if (22b)n                | n < 0.5 ×                      | (23b), t                  | then (24o                | c) = (23b               | ); otherv              | wise (24    | c) = (22b      | o) m + 0.   | .5 × (23b      | ))          |                    |                   |               |
| (24c)m=             | 0                        | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  | ]                 | (24c)         |
| d) If               | natural                  | ventilatio                     | on or wh                  | ole hous                 | e positiv               | ve input               | ventilatio  | on from I      | oft         | _              |             |                    |                   |               |
| (0.1.1)             | if (22b)n                | n = 1, th                      | en (24d)                  | m = (22t                 | o)m othe                | erwise (2              | 24d)m =     | 0.5 + [(2      | 2b)m² x     | 0.5]           |             |                    | 1                 |               |
| (24d)m=             | 1.28                     | 1.25                           | 1.23                      | 1.1                      | 1.08                    | 0.95                   | 0.95        | 0.93           | 1           | 1.08           | 1.13        | 1.18               | J                 | (240)         |
| Effe                | ctive air                | change                         | rate - er                 | nter (24a                | ) or (24k               | o) or (24)             | c) or (24   | d) in boy      | (25)        | 4.00           | 4.40        | 4.40               | ı                 | (25)          |
| (25)m=              | 1.28                     | 1.25                           | 1.23                      | 1.1                      | 1.08                    | 0.95                   | 0.95        | 0.93           | 1           | 1.08           | 1.13        | 1.18               |                   | (25)          |
| 3. He               | at l <mark>osse</mark>   | s and he                       | eat loss                  | paramete                 | er:                     |                        |             |                |             |                |             |                    |                   |               |
| ELEN                |                          | Gros<br>area                   | ss<br>(m²)                | Openin<br>m              | gs<br>I <sup>2</sup>    | Net Ar<br>A ,r         | rea<br>m²   | U-valı<br>W/m2 | le<br>K     | A X U<br>(W/I  | K)          | k-value<br>kJ/m²·l | e<br>K            | A X k<br>kJ/K |
| Doo <mark>rs</mark> |                          |                                |                           |                          |                         | 1.9                    | x           | 1.4            | =           | 2.66           |             |                    |                   | (26)          |
| Windo               | <mark>ws</mark> Type     | e 1                            |                           |                          |                         | 4.8                    | x1          | /[1/( 1.6 )+   | 0.04] =     | 7.22           |             |                    |                   | (27)          |
| Win <mark>do</mark> | ws Type                  | e 2                            |                           |                          |                         | 4.32                   | x1          | /[1/( 4.8 )+   | 0.04] =     | 17.4           |             |                    |                   | (27)          |
| Floor               |                          |                                |                           |                          |                         | 51                     | x           | 0.97           | =           | 49.47          |             |                    |                   | (28)          |
| Walls <sup>·</sup>  | Type1                    | 39.                            | 2                         | 4.32                     | 2                       | 34.88                  | 3 X         | 2.1            |             | 73.25          |             |                    | $\exists \square$ | (29)          |
| Walls <sup>·</sup>  | Type2                    | 10.9                           | 9                         | 6.7                      |                         | 4.29                   | x           | 2.1            |             | 9.01           |             |                    | $\exists \square$ | (29)          |
| Total a             | area of e                | elements                       | , m²                      |                          |                         | 101.1                  | 9           |                |             |                |             |                    |                   | (31)          |
| Party v             | wall                     |                                |                           |                          |                         | 16.1                   | x           | 0              | =           | 0              |             |                    |                   | (32)          |
| * for win           | idows and<br>le the area | l roof wind<br>as on both      | ows, use e<br>sides of ir | effective wi             | ndow U-va<br>Is and par | alue calcul<br>titions | ated using  | g formula 1,   | /[(1/U-valu | ιe)+0.04] ε    | as given in | paragraph          | n 3.2             |               |
| Fabric              | heat los                 | ss, W/K :                      | = S (A x                  | U)                       |                         |                        |             | (26)(30)       | + (32) =    |                |             |                    | 159               | (33)          |
| Heat c              | apacity                  | Cm = S(                        | (Axk)                     | ,                        |                         |                        |             |                | ((28)       | (30) + (32     | 2) + (32a). | (32e) =            | 0                 | (34)          |
| Therm               | al mass                  | parame                         | ter (TMI                  | - = Cm ÷                 | - TFA) ir               | n kJ/m²K               |             |                | Indica      | itive Value    | : High      |                    | 450               | (35)          |
| For des<br>can be i | ign assess<br>used inste | sments wh<br>ad of a de        | ere the de<br>tailed calc | tails of the<br>ulation. | construct               | ion are not            | t known pi  | recisely the   | indicative  | e values of    | TMP in Ta   | able 1f            |                   |               |
| Therm               | al bridg                 | es : S (L                      | x Y) cal                  | culated u                | using Ap                | pendix ł               | <           |                |             |                |             |                    | 15.2              | (36)          |
| if details          | s of therma              | al bridging                    | are not kr                | nown (36) =              | = 0.15 x (3             | 1)                     |             |                |             |                |             |                    |                   |               |
| Total f             | abric he                 | at loss                        |                           |                          |                         |                        |             |                | (33) +      | (36) =         |             |                    | 174.2             | (37)          |
| Ventila             | ation hea                | at loss ca                     | alculated                 | d monthly                | y                       |                        |             | 1              | (38)m       | = 0.33 × (     | 25)m x (5)  |                    | 1                 |               |
|                     | Jan                      | Feb                            | Mar                       | Apr                      | May                     | Jun                    | Jul         | Aug            | Sep         | Oct            | Nov         | Dec                |                   |               |
| (38)m=              | 46.91                    | 45.99                          | 45.08                     | 40.48                    | 39.56                   | 35                     | 35          | 34.13          | 36.8        | 39.56          | 41.4        | 43.24              | J                 | (38)          |
| Heat t              | ransfer o                | coefficie                      | nt, W/K                   |                          |                         |                        |             | <b></b>        | (39)m       | = (37) + (     | 38)m        |                    | 1                 |               |
| (39)m=              | 221.12                   | 220.2                          | 219.28                    | 214.68                   | 213.76                  | 209.2                  | 209.2       | 208.33         | 211         | 213.76         | 215.6       | 217.44             |                   |               |
|                     |                          |                                |                           |                          |                         |                        |             |                |             | Average =      | Sum(39)1    | 12 /12=            | 214.46            | (39)          |

| Heat lo                        | ss para                         | meter (H                               | HLP), W/                             | ′m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |          |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|----------|
| (40)m=                         | 4.34                            | 4.32                                   | 4.3                                  | 4.21                                    | 4.19                                     | 4.1                                   | 4.1                          | 4.08                   | 4.14                  | 4.19                      | 4.23                                  | 4.26     |            |          |
| L                              | r of day                        |                                        | L                                    |                                         |                                          | <u> </u>                              |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 4.21       | (40)     |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Αυσ                    | Sep                   | Oct                       | Nov                                   | Dec      |            |          |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41)     |
| Ϋ́ L                           |                                 |                                        |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          | l          |          |
| 4. Wat                         | ter heat                        | ing enei                               | rgy requi                            | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |          |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | ipancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | [1 - exp                                | (-0.0003                                 | 849 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13                   | 1.<br>.9)                             | 72       |            | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per p | ater usag<br>hot water<br>person per | ge in litre<br>usage by s<br>day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]          | (43)     |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |          |
| Hot wate                       | r usage ii                      | n litres per                           | day for ea                           | ach month                               | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          | 1          |          |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                   | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            | <b>—</b> |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44)     |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96. <mark>3</mark> 2                    | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |            | _        |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                              | hot water                                | storage),                             | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67    | (45)     |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                   | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46)     |
| Storage                        | e volum                         | e (litres)                             | includir                             | na anv so                               | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      | 1          | (47)     |
| If comm                        | nunity h                        | eating a                               | ind no ta                            | ink in dw                               | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |                           |                                       | 100      |            | ()       |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                             | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | (47)                                  |          |            |          |
| Water s                        | storage                         | loss:                                  |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          | 1          |          |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48)     |
| Tempe                          | rature fa                       | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49)     |
| Energy                         | lost fro                        | m water                                | storage                              | , kWh/y∉<br>wlindor l                   | ear<br>ann faot                          | or io not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50)     |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                 | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       | ]          | (51)     |
| Volume                         | factor                          | from Tal                               | ble 2a                               | 011 4.3                                 |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |            | (52)     |
| Temper                         | rature fa                       | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53)     |
| Enerav                         | lost fro                        | m water                                | storage                              | . kWh/ve                                | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 03       | ]          | (54)     |
| Enter (                        | 50) or (                        | (54) in (5                             | 55)                                  | ,, <b>,</b> .                           |                                          |                                       |                              |                        |                       | ,                         | 1.                                    | 03       |            | (55)     |
| Water s                        | storage                         | loss cal                               | culated f                            | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1          |          |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56)     |
| If cylinde                     | r contains                      | dedicate                               | d solar sto                          | rage, (57)ı                             | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | I<br>lix H |          |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    | ]          | (57)     |
| Primary                        | circuit                         | loss (an                               | nual) fro                            | om Table                                | 93                                       |                                       |                              |                        |                       |                           |                                       | 0        |            | (58)     |
| Primary                        | circuit                         | loss cal                               | culated                              | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |          |
| mod)<br>٦                      | ified by                        | factor fi                              | rom Tab                              | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | ostat)                                |          | 1          |          |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59)     |

| Combi    | loss ca             | alculated       | for eacl   | n month      | (61)m =    | (60) ÷ 3  | 65 × (41)       | )m               |              |                     |                  |             |               |                  |
|----------|---------------------|-----------------|------------|--------------|------------|-----------|-----------------|------------------|--------------|---------------------|------------------|-------------|---------------|------------------|
| (61)m=   | 0                   | 0               | 0          | 0            | 0          | 0         | 0               | 0                | 0            | 0                   | 0                | 0           |               | (61)             |
| Total h  | eat req             | uired for       | water h    | eating ca    | alculated  | for eac   | h month         | (62)m =          | = 0.85 × (   | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |                  |
| (62)m=   | 177.69              | 156.99          | 165.75     | 149.81       | 147.69     | 133.24    | 129.18          | 140.08           | 139.31       | 155.28              | 162.66           | 173.82      |               | (62)             |
| Solar DH | W input             | calculated      | using Ap   | pendix G o   | r Appendix | H (negat  | ive quantity    | /) (enter '0     | ' if no sola | r contribu          | tion to wate     | er heating) |               |                  |
| (add a   | dditiona            | al lines if     | FGHRS      | and/or       | WWHRS      | applies   | , see Ap        | pendix (         | G)           |                     |                  | -           |               |                  |
| (63)m=   | 0                   | 0               | 0          | 0            | 0          | 0         | 0               | 0                | 0            | 0                   | 0                | 0           |               | (63)             |
| Output   | from w              | ater hea        | ter        |              |            |           |                 |                  |              |                     |                  |             |               |                  |
| (64)m=   | 177.69              | 156.99          | 165.75     | 149.81       | 147.69     | 133.24    | 129.18          | 140.08           | 139.31       | 155.28              | 162.66           | 173.82      |               |                  |
|          |                     |                 |            |              |            |           | -               | Out              | out from w   | ater heate          | r (annual)₁      | 12          | 1831.51       | (64)             |
| Heat g   | ains fro            | om water        | heating    | , kWh/m      | onth 0.2   | 5 ´ [0.85 | <b>x</b> (45)m  | + (61)n          | n] + 0.8 x   | k [(46)m            | + (57)m          | + (59)m     | ]             |                  |
| (65)m=   | 59.31               | 52.41           | 55.34      | 50.03        | 49.34      | 44.53     | 43.18           | 46.81            | 46.54        | 51.86               | 54.31            | 58.03       |               | (65)             |
| inclu    | de (57)             | m in calo       | culation   | of (65)m     | only if c  | ylinder   | s in the o      | dwelling         | or hot w     | ater is f           | rom com          | munity h    | eating        |                  |
| 5. Int   | ernal g             | ains (see       | e Table :  | 5 and 5a     | ):         |           |                 |                  |              |                     |                  |             |               |                  |
| Metabo   | olic dair           | ns (Table       | e 5). Wa   | tts          |            |           |                 |                  |              |                     |                  |             |               |                  |
|          | Jan                 | Feb             | Mar        | Apr          | May        | Jun       | Jul             | Aug              | Sep          | Oct                 | Nov              | Dec         |               |                  |
| (66)m=   | 85.98               | 85.98           | 85.98      | 85.98        | 85.98      | 85.98     | 85.98           | 85.98            | 85.98        | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66)             |
| Lightin  | g gains             | ,<br>(calcula   | ted in A   | ppendix      | L, equati  | ion L9 o  | r L9a), a       | lso see          | Table 5      |                     |                  |             |               |                  |
| (67)m=   | 2 <mark>3.02</mark> | 20.44           | 16.63      | 12.59        | 9.41       | 7.94      | 8.58            | 11.16            | 14.98        | 19.01               | 22.19            | 23.66       |               | (67)             |
| Appliar  | nces ga             | ains (calc      | ulated i   | n Appene     | dix L, eq  | uation L  | 13 or L1        | 3a), also        | see Ta       | ble 5               |                  |             |               |                  |
| (68)m=   | 149.83              | 151.39          | 147.47     | 139.13       | 128.6      | 118.7     | 112.09          | 110.54           | 114.45       | 122.8               | 133.32           | 143.22      |               | (68)             |
| Cookin   | a gains             | s (calcula      | ted in A   | ppendix      | L. equat   | ion L15   | or L15a         | ), also se       | ee Table     | 5                   |                  |             |               |                  |
| (69)m=   | 31.6                | 31.6            | 31.6       | 31.6         | 31.6       | 31.6      | 31.6            | 31.6             | 31.6         | 31.6                | 31.6             | 31.6        |               | (69)             |
| Pumps    | and fa              | ins gains       | (Table     | 5a)          |            |           |                 |                  |              |                     |                  |             |               |                  |
| (70)m=   | 0                   | 0               | 0          | 0            | 0          | 0         | 0               | 0                | 0            | 0                   | 0                | 0           |               | (70)             |
| Losses   | sea e               | vaporatio       | n (neas    | utive valu   | es) (Tab   | le 5)     | I               |                  |              |                     | I                |             |               |                  |
| (71)m=   | -68.78              | -68.78          | -68.78     | -68.78       | -68.78     | -68.78    | -68.78          | -68.78           | -68.78       | -68.78              | -68.78           | -68.78      |               | (71)             |
| Water    | heating             | L<br>1 dains (T | able 5)    |              |            |           |                 |                  |              |                     |                  |             |               |                  |
| (72)m=   | 79.72               | 77.99           | 74.39      | 69.49        | 66.32      | 61.84     | 58.04           | 62.91            | 64.64        | 69.71               | 75.43            | 77.99       |               | (72)             |
| Total i  | nterna              | l<br>Laains –   |            | 1            |            | (66       | ]<br>)m + (67)m | L<br>1 + (68)m · | L+ (69)m + ( | L(70)m + (7         | 1<br>(1)m + (72) |             |               | . ,              |
| (73)m=   | 301.36              | 298.61          | 287.27     | 270          | 253.12     | 237.28    | 227.51          | 233.4            | 242.87       | 260.31              | 279.74           | 293.66      | l             | (73)             |
| 6. Sol   | ar gain             | s:              |            | 1            |            |           | 1               |                  | [            | 1                   |                  |             |               | · ,              |
| Solar g  | ains are            | calculated      | using sola | ar flux from | Table 6a a | and assoc | iated equa      | tions to co      | onvert to th | ne applical         | ole orientat     | ion.        |               |                  |
| Orienta  | ation:              | Access F        | actor      | Area         |            | Flu       | х               |                  | g_           |                     | FF               |             | Gains         |                  |
|          |                     | Table 6d        |            | m²           |            | Та        | ble 6a          | Т                | able 6b      | Т                   | able 6c          |             | (W)           |                  |
| North    | 0.9x                | 0.77            | ×          | 4.:          | 32         | x         | 10.63           | x                | 0.85         | x                   | 0.7              | =           | 18.94         | (74)             |
| North    | 0.9x                | 0.77            | ×          | 4.3          | 32         | x         | 20.32           | ×                | 0.85         | = × [               | 0.7              | =           | 36.2          | (74)             |
| North    | 0.9x                | 0.77            | ×          | 4.:          | 32         | x :       | 34.53           | ×                | 0.85         | = × F               | 0.7              | =           | 61.51         | (74)             |
| North    | 0.9x                | 0.77            | ×          | 4.:          | 32         | x :       | 55.46           | x 🗌              | 0.85         | ╡ <u> </u>          | 0.7              | =           | 98.8          | <b>–</b><br>(74) |
| North    | 0.9x                | 0.77            | ×          | 4.3          | 32         | x         | 74.72           | ×                | 0.85         | ≓ × [               | 0.7              | =           | 133.09        | (74)             |

| North      |           | ~ 77                   | <u> </u> | , 1      | 4.00           | ٦.           | _                       | 70.00          | ٦ ۷        | 0.05         |              | Г       | 07            |             | _ Г        | 4 4 0 4 0 |                                                |
|------------|-----------|------------------------|----------|----------|----------------|--------------|-------------------------|----------------|------------|--------------|--------------|---------|---------------|-------------|------------|-----------|------------------------------------------------|
| North      |           | 0.77                   | <u> </u> |          | 4.32           | `_           |                         | 79.99          | 」 ×<br>」 、 | 0.85         | <b>╡</b>     | Ľ       | 0.7           |             | = L<br>_ r | 142.48    | $\begin{bmatrix} (74) \\ (74) \end{bmatrix}$   |
| North      | 0.9x      | 0.77                   | ╡ (      |          | 4.32           | ╡∁           |                         | 4.68           | 」 ×<br>ヿ 、 | 0.85         |              | Ľ       | 0.7           |             | = [        | 133.02    | (74)                                           |
| North      | 0.9       | 0.77                   | = (      |          | 4.32           | ╡∁           |                         | 14.50          | 」^<br>┐、   | 0.85         | = $$         | Ĺ       | 0.7           |             |            | 72.05     | $\begin{bmatrix} (74) \\ (74) \end{bmatrix}$   |
| North      | 0.9       | 0.77                   | = (      |          | 4.32           | ╡ Û          |                         | 1.52           | 」^<br>┐、   | 0.85         | =            | Ľ       | 0.7           |             |            | 73.95     | $\begin{bmatrix} (74) \\ (74) \end{bmatrix}$   |
| North      | 0.9x      | 0.77                   | = (      |          | 4.32           | ╡ Û          |                         | 24.19          | 」 ^<br>ヿ 、 | 0.85         |              | Ľ       | 0.7           |             | = L<br>_ T | 43.09     | $\begin{bmatrix} (74) \\ (74) \end{bmatrix}$   |
| North      | 0.9       | 0.77                   | = (      |          | 4.32           | ╡ Û          |                         | 0.00           | 」^<br>┐、   | 0.85         | ╡ Ĵ          | Ľ       | 0.7           |             |            | 23.37     |                                                |
| South      | 0.9       | 0.77                   | = (      |          | 4.32           | ╡ Û          |                         | 8.80           | 」 ^<br>ヿ _ | 0.85         | =            | Ľ       | 0.7           |             |            | 15.79     | $\begin{bmatrix} (74) \\ (79) \end{bmatrix}$   |
| South      | 0.9x      | 0.77                   | = (      |          | 4.8            | ╡ ゚          |                         | 10.75          | 」 ^<br>ヿ _ | 0.76         |              | Ľ       | 0.7           |             |            | 82.73     |                                                |
| South      | 0.9x      | 0.77                   | <u> </u> |          | 4.8            | -  ^<br>-  ` |                         | (6.57          | 」 ×<br>1 … | 0.76         |              | Ľ       | 0.7           |             | = [        | 135.5     | $ \begin{bmatrix} (70) \\ (70) \end{bmatrix} $ |
| South      | 0.9x      | 0.77                   |          |          | 4.8            | -  ×         |                         | 97.53          | 」 ×<br>1   | 0.76         |              | L       | 0.7           |             | = [        | 172.6     |                                                |
| South      | 0.9x      | 0.77                   | '        |          | 4.8            | _ ×          |                         | 10.23          | ] ×<br>1   | 0.76         | ×            |         | 0.7           |             | = [        | 195.08    | (78)                                           |
| South      | 0.9x      | 0.77                   |          |          | 4.8            | Ľ ×          | 1                       | 14.87          | 」 ×<br>1   | 0.76         | ×            |         | 0.7           |             | = [        | 203.28    | (78)                                           |
| South      | 0.9x      | 0.77                   | '        |          | 4.8            | _ ×          | 1                       | 10.55          | X          | 0.76         | ×            |         | 0.7           |             | = [        | 195.63    | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        | <        | 4.8            | _ ×          | 1                       | 08.01          | X          | 0.76         | ×            |         | 0.7           |             | =          | 191.14    | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        |          | 4.8            | _ ×          | 1                       | 04.89          | X          | 0.76         | ×            |         | 0.7           |             | =          | 185.63    | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        | <        | 4.8            | _ ×          | 1                       | 01.89          | ×          | 0.76         | ×            | ļ       | 0.7           |             | = [        | 180.3     | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        | \        | 4.8            | _ ×          | 8                       | 32.59          | ×          | 0.76         | ×            | Ľ       | 0.7           |             | =          | 146.15    | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        | < l      | 4.8            |              | <u> </u>                | 55.42          | x          | 0.76         | ×            | ļ       | 0.7           |             | = ļ        | 98.07     | (78)                                           |
| South      | 0.9x      | 0.77                   | ,        |          | 4.8            | ×            |                         | 40.4           | x          | 0.76         | x            |         | 0.7           |             | =          | 71.49     | (78)                                           |
|            |           |                        |          |          |                |              |                         |                |            |              |              |         |               |             |            |           |                                                |
| Solar (    | pains in  | watts, <mark>ca</mark> | Iculate  | d '      | for each moi   | nth          |                         |                | (83)m      | n = Sum(74)n | n(82)        | m       | 101 10        | 07          |            |           | (02)                                           |
| (83)m=     | 101.68    | 1/1./                  | 234.11   |          | (94)m = (73)   | 37           | $\frac{338.11}{(92)m}$  | 324.16         | 291        | .16 254.25   | 5   189.     | .24     | 121.43        | 87          | .28        |           | (03)                                           |
| (84)m-     |           | 470.21                 | 521.28   |          | (04) = (73)    |              | (03)III                 | , walls        | 524        | 56 407 1     | 2 440        | 55      | 401 17        | 200         | 0.05       |           | (84)                                           |
| (04)11=    | 403.04    | 470.31                 | 521.50   | L        | 505.87 569.    | +9           | 575.59                  | 551.07         | 524        | .50 497.12   | 2 449.       | .55     | 401.17        | 300         | 0.95       |           | (04)                                           |
| 7. Me      | ean inter | nal tempe              | erature  | e (I     | heating seas   | son)         |                         | _              |            |              |              |         |               |             | F          |           | _                                              |
| Temp       | perature  | during he              | eating   | pe       | eriods in the  | living       | g area                  | from Tal       | ble 9      | , Th1 (°C)   |              |         |               |             |            | 21        | (85)                                           |
| Utilis     | ation fac | tor for ga             | ins for  | · liv    | ving area, h1  | l,m (        | see Ta                  | able 9a)       | 1.         |              |              |         |               | <u> </u>    |            |           |                                                |
|            | Jan       | Feb                    | Mar      | +        | Apr Ma         | ay           | Jun                     | Jul            | A          | ug Sep       |              | ct      | Nov           |             | )ec        |           | (00)                                           |
| (86)m=     | 1         | 1                      | 1        |          | 0.99 0.98      | 3            | 0.95                    | 0.9            | 0.9        | 0.97         | 0.9          | 9       | 1             |             | 1          |           | (86)                                           |
| Mear       | interna   | l tempera              | ature ir | n li     | ving area T1   | (fol         | ow ste                  | ps 3 to 7      | 7 in T     | able 9c)     |              |         | -             |             |            |           |                                                |
| (87)m=     | 18.26     | 18.44                  | 18.78    |          | 19.29 19.8     | 1            | 20.33                   | 20.64          | 20         | .6 20.18     | 19.          | 5       | 18.82         | 18          | .26        |           | (87)                                           |
| Temp       | perature  | during he              | eating   | ре       | eriods in rest | of d         | welling                 | from Ta        | able       | 9, Th2 (°C)  | )            |         |               |             |            |           |                                                |
| (88)m=     | 18.83     | 18.84                  | 18.85    | Τ        | 18.9 18.9      | э            | 18.95                   | 18.95          | 18.        | 96 18.93     | 18.          | 9       | 18.89         | 18          | .87        |           | (88)                                           |
| Utilis     | ation fac | tor for a              | ins for  | · re     | est of dwellin | a. h         | 2.m (se                 | e Table        | 9a)        | 8            |              |         |               |             |            |           |                                                |
| (89)m=     | 1         | 1                      | 0.99     | Ť        | 0.99 0.9       | 3            | 0.89                    | 0.71           | 0.7        | 76 0.94      | 0.9          | 9       | 1             |             | 1          |           | (89)                                           |
| Moor       |           | l tempera              | nturo ir | <br>\ +k | ne rest of dw  |              | a T2 (f                 | I<br>ollow sta | -<br>ans 3 | to 7 in Ta   |              | \       | 1             | Į           |            |           |                                                |
| (90)m=     | 16.49     | 16.67                  | 17.02    | T        | 17.56 18.0     | 9            | <u>9 12 (1</u><br>18.61 | 18.86          | 18.        | 84 18.46     |              | ,<br>78 | 17.09         | 16          | .52        |           | (90)                                           |
| ·- ·/··· · |           |                        |          |          |                |              |                         |                | L          |              | fLA = I      | Livi    | ing area ÷ (4 | 1<br>4) =   |            | 0.47      | )<br>(91)                                      |
|            |           |                        |          |          | d              |              |                         |                |            | (1.4) -      |              |         | - · ·         |             | L          |           |                                                |
| Mear       | interna   | tempera                | ature (f | or       | the whole d    | welli        | ng) = f                 | $LA \times T1$ | + (1       | - tLA) × T   | 2            |         | 47.04         | 4-          | 24         |           | (00)                                           |
| (92)M=     | 17.33     | 17.51                  | 17.85    | 1        | 18.3/   18.9   | <b>ا</b> ۲   | 19.42                   | 19.7           | 1 19.      | o/   19.27   | <b> </b> 18. | 0       | 17.91         | <b> </b> 17 | .34        |           | (92)                                           |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=          | 17.33                       | 17.51                 | 17.85                     | 18.37                     | 18.9                       | 19.42          | 19.7      | 19.67                   | 19.27           | 18.6        | 17.91        | 17.34       |           | (93)                   |
|-----------------|-----------------------------|-----------------------|---------------------------|---------------------------|----------------------------|----------------|-----------|-------------------------|-----------------|-------------|--------------|-------------|-----------|------------------------|
| 8. Sp           | ace hea                     | ting requ             | uirement                  |                           |                            |                |           |                         |                 |             |              |             |           |                        |
| Set T<br>the ut | i to the r<br>ilisation     | mean int<br>factor fo | ernal ter<br>or gains     | nperatur<br>using Ta      | e obtain<br>Ible 9a        | ed at ste      | ep 11 of  | Table 9                 | o, so tha       | t Ti,m=(    | 76)m an      | d re-calc   | ulate     |                        |
|                 | Jan                         | Feb                   | Mar                       | Apr                       | May                        | Jun            | Jul       | Aug                     | Sep             | Oct         | Nov          | Dec         |           |                        |
| Utilisa         | ation fac                   | tor for g             | ains, hm                  | :                         |                            |                |           |                         |                 |             |              |             |           |                        |
| (94)m=          | 1                           | 1                     | 0.99                      | 0.98                      | 0.96                       | 0.91           | 0.81      | 0.84                    | 0.95            | 0.99        | 1            | 1           |           | (94)                   |
| Usefu           | I gains,                    | hmGm ,                | W = (94                   | 4)m x (84                 | 4)m                        |                |           |                         |                 |             |              |             |           |                        |
| (95)m=          | 401.93                      | 468.15                | 517.2                     | 554.91                    | 568.37                     | 525.13         | 446.54    | 441.04                  | 470.71          | 443.39      | 399.39       | 380.09      |           | (95)                   |
| Month           | nly avera                   | age exte              | rnal tem                  | perature                  | from Ta                    | able 8         |           |                         |                 |             |              |             |           |                        |
| (96)m=          | 4.3                         | 4.9                   | 6.5                       | 8.9                       | 11.7                       | 14.6           | 16.6      | 16.4                    | 14.1            | 10.6        | 7.1          | 4.2         |           | (96)                   |
| Heat            | loss rate                   | e for mea             | an intern                 | al tempe                  | erature,                   | Lm , W =       | =[(39)m   | x [(93)m                | – (96)m         | ]           | -            |             |           |                        |
| (97)m=          | 2880.84                     | 2775.86               | 2489.34                   | 2033.99                   | 1539.48                    | 1009.14        | 649.23    | 681.51                  | 1091.59         | 1709.24     | 2329.82      | 2857.21     |           | (97)                   |
| Space           | e heatin                    | g require             | ement fo                  | r each m                  | nonth, k\                  | Nh/mon         | th = 0.02 | 24 x [(97]              | )m – (95        | )m] x (4    | 1)m          |             |           |                        |
| (98)m=          | 1844.31                     | 1550.78               | 1467.27                   | 1064.94                   | 722.5                      | 0              | 0         | 0                       | 0               | 941.79      | 1389.91      | 1842.98     |           |                        |
|                 |                             |                       |                           |                           |                            |                |           | Tota                    | l per year      | (kWh/yeai   | r) = Sum(9   | 8)15,912 =  | 10824.48  | (98)                   |
| Space           | e heatin                    | g require             | ement in                  | kWh/m <sup>2</sup>        | /year                      |                |           |                         |                 |             |              | ĺ           | 212.24    | (99)                   |
| Qh En           | orav roc                    | uiromor               | ote – Cor                 | nmunity                   | heating                    | scheme         |           |                         |                 |             |              | l           |           | ]                      |
| This n          | art is use                  | ad for sp             |                           | ting spa                  |                            |                | ator hoat | ting prov               | ided by         | a comm      | unity sch    | ome         |           |                        |
| Fractic         | on of spa                   | ace heat              | from se                   | condary/                  | supplen/                   | nentary l      | neating   | Table 1                 | 1) '0' if n     | one         |              | leme.       | 0         | (301)                  |
| Fractic         | n of spa                    | ace heat              | from co                   | mmunity                   | system                     | $1 - (30)^{2}$ | 1) -      |                         | ,               |             |              |             | 1         | $\left[ (302) \right]$ |
|                 | in or spe                   |                       |                           | initiatinty               | system                     | - (50          | ') –      |                         |                 |             |              |             |           | (002)                  |
| The com         | nmunity so<br>boilers h     | cheme may             | y obtain he<br>s geotherr | eat from se<br>mal and wa | everal soul<br>aste heat f | ces. The p     | orocedure | allows for<br>See Appel | CHP and indix C | up to four  | other heat   | sources; tl | ne latter |                        |
| Fractic         | on of hea                   | at from C             | Commun                    | ity boiler                | 'S                         | ioni ponoi     | olaliono. | 000 11000               | idix 0.         |             |              |             | 1         | (303a)                 |
| Fractic         | on of tota                  | al space              | heat fro                  | m Comm                    | nunity bo                  | oilers         |           |                         |                 | (3          | 02) x (303   | a) =        | 1         | (304a)                 |
| Factor          | for cont                    | rol and o             | charging                  | method                    | (Table 4                   | 4c(3)) fo      | r commu   | unity hea               | ating sys       | tem         |              | ĺ           | 1.05      | (305)                  |
| Distrib         | ution los                   | s factor              | (Table 1                  | 2c) for c                 | commun                     | ity heatii     | ng syste  | m                       |                 |             |              |             | 1.1       | (306)                  |
| Space           | heating                     | a                     |                           |                           |                            |                |           |                         |                 |             |              | I           | kWh/vear  | J                      |
| Annua           | l space                     | heating               | requirem                  | nent                      |                            |                |           |                         |                 |             |              | [           | 10824.48  | ]                      |
| Space           | heat fro                    | om Comr               | nunity b                  | oilers                    |                            |                |           |                         | (98) x (30      | 04a) x (30  | 5) x (306) = | -           | 12502.28  | (307a)                 |
| Efficier        | ncy of se                   | econdary              | //supple                  | mentary                   | heating                    | system         | in % (fro | om Table                | e 4a or A       | ppendix     | E)           |             | 0         | (308                   |
| Space           | heating                     | requirer              | ment froi                 | m secon                   | dary/su                    | oplemen        | tary syst | tem                     | (98) x (30      | 01) x 100 - | ÷ (308) =    |             | 0         | (309)                  |
| Water<br>Annua  | <b>heating</b><br>I water h | <b>j</b><br>neating r | equirem                   | ent                       |                            |                |           |                         |                 |             |              |             | 1831.51   | 1                      |
| If DHW<br>Water | / from co<br>heat fro       | ommunit<br>m Comn     | ty schem                  | ne:<br>pilers             |                            |                |           |                         | (64) x (30      | 03a) x (30  | 5) x (306) : | ا<br>=      | 2115.39   | ]<br>(310a)            |
| Electri         | city used                   | d for hea             | t distribu                | ution                     |                            |                |           | 0.01                    | × [(307a).      | (307e) +    | · (310a)(    | [310e)] =   | 146.18    | 」`´´´´<br>](313)       |
| Coolin          | g Syster                    | n Energ               | y Efficier                | ncy Ratio                 | C                          |                |           |                         | /               |             |              | · · · · ·   | 0         | (314)                  |
| Space           | cooling                     | (if there             | is a fixe                 | d cooling                 | g systen                   | n, if not e    | enter 0)  |                         | = (107) ÷       | · (314) =   |              |             | 0         | (315)                  |
| Electri         | city for p                  | oumps ai              | nd fans v                 | within dw                 | velling (1                 | Table 4f)      | :         |                         |                 |             |              | ı<br>r      |           | J<br>1                 |

| warm air heating system fans                                                                                           |                             |                               |                  | 0             | (330b) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|------------------|---------------|--------|
| pump for solar water heating                                                                                           |                             |                               |                  | 0             | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)            | + (330g) =                    |                  | 0             | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                         |                             |                               | 40               | 6.51          | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                             |                               |                  |               |        |
|                                                                                                                        | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emissi<br>kg CO2 | ons<br>2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | wo fuels repeat (363) to (3 | 366) for the second fu        | el               | 65            | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x      | 0                             | = 48             | 357.56        | (367)  |
| Electrical energy for heat distribution [(3                                                                            | 13) x                       | 0.52                          | = 7              | ′5.87         | (372)  |
| Total CO2 associated with community systems (3)                                                                        | 63)(366) + (368)(372)       |                               | = 49             | 933.43        | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 09) x                       | 0                             | =                | 0             | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | us heater (312) x           | 0.22                          | =                | 0             | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =       |                               | 49               | 933.43        | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | g (331)) x                  | 0.52                          | -                | 0             | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                     | 0.52                          | = 2              | 10.98         | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                             |                               | 51               | 144.41        | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                             |                               | 1                | 00.87         | (384)  |
| El rating (section 14)                                                                                                 |                             |                               |                  | 5.74          | (385)  |

|                                                                                             |                                                                                                                                   |                             | User D                     | etails:                      |                             |                   |                       |              |                                   |                   |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|------------------------------|-----------------------------|-------------------|-----------------------|--------------|-----------------------------------|-------------------|
| Assessor Name:<br>Software Name:                                                            | Stroma FSAP 20                                                                                                                    | 12<br>Pi                    | roperty A                  | Stroma<br>Softwa<br>Address: | a Num<br>are Ver<br>Unit 18 | ber:<br>sion:     |                       | Versic       | n: 1.0.3.15                       |                   |
| Address :                                                                                   | , london                                                                                                                          |                             |                            |                              |                             |                   |                       |              |                                   |                   |
| 1. Overall dwelling dimer                                                                   | isions:                                                                                                                           |                             |                            |                              |                             |                   |                       |              |                                   |                   |
| Basement                                                                                    |                                                                                                                                   |                             | Area                       | <b>a(m²)</b><br>79           | (1a) x                      | <b>Av. He</b>     | <b>ight(m)</b><br>2.6 | (2a) =       | <b>Volume(m<sup>3</sup></b> 205.4 | <b>)</b><br>(3a)  |
| Total floor area TFA = (1a                                                                  | )+(1b)+(1c)+(1d)+(1                                                                                                               | e)+(1n                      | )                          | 79                           | (4)                         |                   |                       |              |                                   |                   |
| Dwelling volume                                                                             |                                                                                                                                   |                             |                            |                              | (3a)+(3b)                   | +(3c)+(3d         | l)+(3e)+              | .(3n) =      | 205.4                             | (5)               |
| 2. Ventilation rate:                                                                        | •                                                                                                                                 |                             |                            | - 41                         |                             |                   |                       |              |                                   |                   |
| Number of chimneys<br>Number of open flues                                                  | $ \begin{array}{c} \text{main} \\ \text{heating} \\ \hline 0 \\ \hline 0 \\ \end{array} + \begin{bmatrix} 0 \\ 0 \\ \end{array} $ | heating<br>0<br>0           | y + [<br>] + [<br>] + [    | 0<br>0                       | ] = [                       | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou            | r<br>(6a)<br>(6b) |
| Number of intermittent fan                                                                  | S                                                                                                                                 |                             |                            |                              | Γ                           | 2                 | <b>x</b> ′            | 10 =         | 20                                | (7a)              |
| Number of passive vents                                                                     |                                                                                                                                   |                             |                            |                              |                             | 0                 | x ′                   | 10 =         | 0                                 | (7b)              |
| Number of flueless gas fire                                                                 | es                                                                                                                                |                             |                            |                              | Ľ                           | 0                 | X 4                   | 40 =         | 0                                 | (7c)              |
|                                                                                             |                                                                                                                                   |                             |                            |                              |                             |                   |                       | Air ch       | ange <mark>s per</mark> ho        | ur                |
| Infiltration due to chimney<br>If a pressurisation test has be                              | s, flues and fans = (<br>en carried out or is intend                                                                              | 6a)+(6b)+(7<br>led, proceed | a)+(7b)+(7<br>d to (17), c | 7c) =<br>otherwise c         | ontinue fro                 | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.1                               | (8)               |
| Number of storeys in the<br>Additional infiltration                                         | e dwelling (ns)                                                                                                                   |                             |                            |                              |                             |                   | [(9)                  | -1]x0.1 =    | 0                                 | (9)<br>(10)       |
| Structural Inflitration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | 25 for steel or timber<br>esent, use the value corre<br>gs); if equal user 0.35                                                   | sponding to                 | 0.35 for the greate        | er wall area                 | y constr<br>a (after        | UCTION            |                       |              | 0                                 | (11)              |
| If suspended wooden flo                                                                     | oor, enter 0.2 (unsea                                                                                                             | aled) or 0.                 | 1 (seale                   | d), else                     | enter 0                     |                   |                       |              | 0                                 | (12)              |
| If no draught lobby, ente                                                                   | er 0.05, else enter 0                                                                                                             |                             |                            |                              |                             |                   |                       |              | 0                                 | (13)              |
| Percentage of windows                                                                       | and doors draught s                                                                                                               | stripped                    |                            | 0.05 [0.0                    | ~ (1 4) • 4                 | 001               |                       |              | 0                                 | (14)              |
| VVINDOW INflitration                                                                        |                                                                                                                                   |                             |                            | (8) ± (10) .                 | X (14) ÷ 1<br>⊾ (11) ⊥ (1   | (00] =            | ± (15) –              |              | 0                                 | (15)              |
|                                                                                             | 150 expressed in cu                                                                                                               | hic metre                   | s nor ho                   |                              |                             | etre of e         |                       | area         | 0                                 | (16)              |
| If based on air permeabilit                                                                 | y value then $(18) = [($                                                                                                          | 17) ÷ 20]+(8                | 3), otherwi                | se (18) = (                  | 16)                         |                   | invelope              | aica         | 20                                | (17)              |
| Air permeability value applies                                                              | if a pressurisation test ha                                                                                                       | as been don                 | e or a deg                 | ree air per                  | meability                   | is being u        | sed                   |              | 1.1                               |                   |
| Number of sides sheltered                                                                   | 1                                                                                                                                 |                             |                            |                              |                             |                   |                       |              | 1                                 | (19)              |
| Shelter factor                                                                              |                                                                                                                                   |                             |                            | (20) = 1 - [                 | 0.075 x (1                  | 9)] =             |                       |              | 0.92                              | (20)              |
| Infiltration rate incorporation                                                             | ng shelter factor                                                                                                                 |                             |                            | (21) = (18)                  | x (20) =                    |                   |                       |              | 1.02                              | (21)              |
| Infiltration rate modified fo                                                               | r monthly wind spee                                                                                                               | d                           |                            |                              |                             |                   |                       |              |                                   |                   |
| Jan Feb M                                                                                   | Mar Apr May                                                                                                                       | Jun                         | Jul                        | Aug                          | Sep                         | Oct               | Nov                   | Dec          |                                   |                   |
| Monthly average wind spe                                                                    | ed from Table 7                                                                                                                   | ·                           |                            |                              |                             |                   |                       |              | L                                 |                   |
| (22)m= 5.1 5 4                                                                              | 4.4 4.3                                                                                                                           | 3.8                         | 3.8                        | 3.7                          | 4                           | 4.3               | 4.5                   | 4.7          |                                   |                   |
| Wind Factor (22a)m = (22                                                                    | )m ÷ 4                                                                                                                            | · · · ·                     |                            |                              |                             |                   | 1                     | I            | I                                 |                   |
| (22a)m= 1.27 1.25 1                                                                         | .23 1.1 1.08                                                                                                                      | 0.95                        | 0.95                       | 0.92                         | 1                           | 1.08              | 1.12                  | 1.18         |                                   |                   |

| Adjust              | ed infiltr               | ation rat                  | e (allow                  | ing for sh                  | nelter an               | d wind s                           | speed) =               | (21a) x                | (22a)m               |               |             |                      | _           |       |                                                              |
|---------------------|--------------------------|----------------------------|---------------------------|-----------------------------|-------------------------|------------------------------------|------------------------|------------------------|----------------------|---------------|-------------|----------------------|-------------|-------|--------------------------------------------------------------|
|                     | 1.29                     | 1.27                       | 1.24                      | 1.12                        | 1.09                    | 0.96                               | 0.96                   | 0.94                   | 1.02                 | 1.09          | 1.14        | 1.19                 |             |       |                                                              |
| Calcul              | ate effe                 | ctive air                  | change                    | rate for t                  | he appli                | cable ca                           | se                     | -                      | -                    | -             |             |                      |             |       |                                                              |
| II III              |                          |                            | ucing App                 | ondix N (2                  | (26) = (22)             | $) \times Emv(c)$                  | ocuption (I            |                        | nuico (22h           | ) = (22a)     |             |                      | 0           |       | $\left[ \begin{array}{c} (23a) \\ (23a) \end{array} \right]$ |
| lf bol              | anood with               |                            |                           |                             | .50) – (258             |                                    | octor (from            | $\mathbf{v}_{0}$       | 1WI3C (200           | ) – (238)     |             |                      | 0           |       | (230)                                                        |
|                     |                          |                            |                           |                             |                         |                                    |                        |                        | $) = (\Omega)$       | 2 h )         | 00k) [      | 4 (00 a)             | 0           |       | (23c)                                                        |
| a) If               | balance                  |                            | anical ve                 |                             |                         |                                    |                        | HR) (24a<br>I          | m = (22)             | 20)m + (<br>  | 23D) × [    | 1 - (23c)            | ÷ 100]<br>I |       | (242)                                                        |
| (24a)m=             |                          |                            |                           |                             |                         | 0                                  | 0                      |                        |                      |               |             | 0                    |             |       | (24a)                                                        |
| D) IT               | balance                  | ed mecha                   | anical ve                 |                             |                         | neat rec                           | covery (r              | VIV) (24b              | m = (22)             | 20)m + (2<br> | 230)        |                      | 1           |       | (24b)                                                        |
| (240)m=             |                          | 0                          |                           |                             | 0                       |                                    |                        |                        | 0                    | 0             | 0           | 0                    |             |       | (240)                                                        |
| C) If               | if (22b)r                | iouse ex<br>n < 0.5 >      | tract ver<br>(23b), t     | tilation of then (240       | c) = (23b)              | ); otherv                          | ventilatio<br>wise (24 | c) = (22b)             | butside $p$ ) m + 0. | 5 × (23b      | <b>)</b> )  |                      |             |       |                                                              |
| (24c)m=             | 0                        | 0                          | 0                         | 0                           | 0                       | 0                                  | 0                      | 0                      | 0                    | 0             | 0           | 0                    |             |       | (24c)                                                        |
| d) If               | natural<br>if (22b)r     | ventilation<br>ventilation | on or wh<br>en (24d)      | ole hous<br>m = (22         | e positiv<br>c)m othe   | ve input <sup>,</sup><br>erwise (2 | ventilatio<br>24d)m =  | on from l<br>0.5 + [(2 | oft<br>2b)m² x       | 0.5]          |             |                      |             |       |                                                              |
| (24d)m=             | 1.29                     | 1.27                       | 1.24                      | 1.12                        | 1.09                    | 0.96                               | 0.96                   | 0.94                   | 1.02                 | 1.09          | 1.14        | 1.19                 |             |       | (24d)                                                        |
| Effe                | ctive air                | change                     | rate - er                 | nter (24a                   | ) or (24t               | o) or (24                          | c) or (24              | d) in boy              | (25)                 | -             | -           |                      |             |       |                                                              |
| (25)m=              | 1.29                     | 1.27                       | 1.24                      | 1.12                        | 1.09                    | 0.96                               | 0.96                   | 0.94                   | 1.02                 | 1.09          | 1.14        | 1.19                 |             |       | (25)                                                         |
| 3 He                | at losse                 | s and he                   | at loss                   | naramet                     | or:                     |                                    |                        |                        |                      |               |             |                      |             |       |                                                              |
|                     |                          | Gros                       | 35                        | Openin                      |                         | Net Ar                             | ea                     | U-valı                 | Ie                   | ΑΧΠ           |             | k-value              |             | ΑX    | (k                                                           |
|                     |                          | area                       | (m²)                      | m                           | 90<br>1 <sup>2</sup>    | A ,r                               | n²                     | W/m2                   | K                    | (W/I          | K)          | kJ/m <sup>2</sup> ·l | ĸ           | kJ/   | K                                                            |
| Doo <mark>rs</mark> |                          |                            |                           |                             |                         | 1.6                                | x                      | 1.4                    | =                    | 2.24          |             |                      |             |       | (26)                                                         |
| Win <mark>do</mark> | ws Type                  | e 1                        |                           |                             |                         | 11.64                              | 1 x1                   | /[1/( 4.8 )+           | 0.04] =              | 46.87         |             |                      |             |       | (27)                                                         |
| Win <mark>do</mark> | ws Type                  | e 2                        |                           |                             |                         | 4.55                               | x1                     | /[1/( 4.8 )+           | 0.04] =              | 18.32         | Fi i        |                      |             |       | (27)                                                         |
| Walls               | Type1                    | 89.                        | 2                         | 16.1                        | 9                       | 73.01                              | x                      | 1.27                   | ] = [                | 92.87         |             |                      |             |       | (29)                                                         |
| Walls <sup>·</sup>  | Type2                    | 26.6                       | 63                        | 1.6                         |                         | 25.03                              | 3 X                    | 2.1                    | <br>  = [            | 52.56         |             |                      | = F         |       | (29)                                                         |
| Total a             | area of e                | elements                   | , m²                      |                             |                         | 115.8                              | 3                      | L                      | `                    |               | '           |                      |             |       | (31)                                                         |
| Party v             | wall                     |                            |                           |                             |                         | 5.3                                | x                      | 0                      |                      | 0             |             |                      |             |       | (32)                                                         |
| * for win           | ndows and<br>le the area | l roof wind<br>as on both  | ows, use e<br>sides of ii | effective wi<br>nternal wal | ndow U-va<br>Is and par | alue calcul<br>titions             | ated using             | formula 1,             | <br>/[(1/U-valu      | ie)+0.04] a   | as given in | n paragraph          | <br>1 3.2   |       |                                                              |
| Fabric              | heat los                 | ss, W/K :                  | = S (A x                  | U)                          |                         |                                    |                        | (26)(30)               | + (32) =             |               |             |                      | 212         | .86   | (33)                                                         |
| Heat c              | apacity                  | Cm = S(                    | (Axk)                     |                             |                         |                                    |                        |                        | ((28)                | .(30) + (32   | 2) + (32a)  | (32e) =              | 0           |       | (34)                                                         |
| Therm               | al mass                  | parame                     | eter (TMI                 | ⊃ = Cm ÷                    | - TFA) ir               | n kJ/m²K                           |                        |                        | Indica               | tive Value    | : High      |                      | 45          | <br>0 | (35)                                                         |
| For des<br>can be t | ign asses<br>used inste  | sments wh<br>ad of a de    | ere the de<br>tailed calc | etails of the<br>ulation.   | construct               | ion are not                        | t known pr             | recisely the           | e indicative         | values of     | TMP in T    | able 1f              |             |       | _                                                            |
| Therm               | al bridg                 | es : S (L                  | x Y) cal                  | culated u                   | using Ap                | pendix ł                           | <                      |                        |                      |               |             |                      | 24.         | 8     | (36)                                                         |
| if details          | s of therma              | al bridging                | are not kr                | nown (36) =                 | = 0.15 x (3             | 1)                                 |                        |                        |                      |               |             |                      |             |       | _                                                            |
| Total f             | abric he                 | at loss                    |                           |                             |                         |                                    |                        |                        | (33) +               | (36) =        |             |                      | 237.        | 66    | (37)                                                         |
| Ventila             | ation hea                | at loss ca                 | alculated                 | d monthly                   | y<br>I                  | <b> </b>                           |                        | <b>I</b>               | (38)m                | = 0.33 × (    | 25)m x (5   | )                    | 1           |       |                                                              |
|                     | Jan                      | Feb                        | Mar                       | Apr                         | May                     | Jun                                | Jul                    | Aug                    | Sep                  | Oct           | Nov         | Dec                  |             |       |                                                              |
| (38)m=              | 87.72                    | 86                         | 84.28                     | 75.68                       | 73.96                   | 65.41                              | 65.41                  | 63.77                  | 68.8                 | 73.96         | 77.4        | 80.84                |             |       | (38)                                                         |
| Heat t              | ransfer o                | coefficie                  | nt, W/K                   |                             |                         |                                    |                        |                        | (39)m                | = (37) + (3   | 38)m        |                      |             |       |                                                              |
| (39)m=              | 325.39                   | 323.67                     | 321.95                    | 313.35                      | 311.63                  | 303.07                             | 303.07                 | 301.43                 | 306.47               | 311.63        | 315.07      | 318.51               |             |       | -                                                            |
|                     |                          |                            |                           |                             |                         |                                    |                        |                        |                      | Average =     | Sum(39)     | 12 <b>/12=</b>       | 312         | 93    | (39)                                                         |

| Heat lo                        | ss para                         | meter (H                                | HLP), W                             | /m²K                                    |                                          |                                       |                            |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |                        |          |
|--------------------------------|---------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|----------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------------------|----------|
| (40)m=                         | 4.12                            | 4.1                                     | 4.08                                | 3.97                                    | 3.94                                     | 3.84                                  | 3.84                       | 3.82                   | 3.88                  | 3.94                      | 3.99                                  | 4.03     |                        |          |
|                                |                                 |                                         |                                     |                                         |                                          | 1                                     | 1                          |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.96                   | (40)     |
| Numbe                          | r of day                        | /s in moi                               | nth (Tab                            |                                         | Mov                                      | lun                                   |                            | <u> </u>               | Son                   | Oct                       | Nov                                   | Dee      |                        |          |
| (41)m-                         | 31                              | 28                                      | 1VIAI<br>31                         | Арі<br>30                               | 1VIAY                                    | 30                                    | 31                         | Aug<br>31              | 30                    | 31                        | 30                                    | 21<br>21 |                        | (41)     |
| (41)11-                        | 51                              | 20                                      | 51                                  | 50                                      | 51                                       | 50                                    |                            | 51                     | 50                    | 51                        | 50                                    | 51       |                        | (41)     |
| 4. Wa                          | ter heat                        | ting ene                                | rgy requ                            | irement:                                |                                          |                                       |                            |                        |                       |                           |                                       | kWh/ye   | ear:                   |          |
| Assum<br>if TF/<br>if TF/      | ed occu<br>A > 13.9<br>A £ 13.9 | upancy,  <br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 ×                       | (1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                   | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 2.<br>.9)                             | 44       |                        | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pe | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the c<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 92<br>f                               | .24      |                        | (43)     |
| [                              | Jan                             | Feb                                     | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |                        |          |
| Hot wate                       | r usage i                       | n litres per                            | r day for ea                        | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                 | (43)                   |                       |                           |                                       |          | L                      |          |
| (44)m=                         | 101.46                          | 97.77                                   | 94.08                               | 90.39                                   | 86.7                                     | 83.01                                 | 83.01                      | 86.7                   | 90.39                 | 94.08                     | 97.77                                 | 101.46   |                        | <b>-</b> |
| Energy c                       | ontent of                       | hot water                               | used - ca                           | lculated m                              | onthly $= 4$ .                           | 190 x Vd,ı                            | m x nm x L                 | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1106.83                | (44)     |
| (45)m=                         | 150.46                          | 131.59                                  | 135.79                              | 118.39                                  | 113.6                                    | 9 <mark>8.02</mark>                   | 90.83                      | 104.23                 | 105.48                | 122.93                    | 134.18                                | 145.71   |                        | _        |
| lf instanta                    | aneous w                        | vater heati                             | ing at point                        | t of use (no                            | o hot water                              | r storage),                           | enter 0 in                 | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1 <mark>4</mark> 51.23 | (45)     |
| (46)m=                         | 22.57                           | 19.74                                   | 20.37                               | 17.76                                   | 17.04                                    | 14.7                                  | 13.63                      | 15.64                  | 15.82                 | 18.44                     | 20.13                                 | 21.86    |                        | (46)     |
| Storage                        | storage                         | loss:                                   | Vincludir                           | ng any se                               | olar or M                                | WHRS                                  | storage                    | within sa              | ame ves               | sel                       |                                       | 160      |                        | (47)     |
| lf comn                        | nunity h                        | neating a                               | and no ta                           | ank in dw                               | vellina. e                               | enter 110                             | ) litres in                | (47)                   |                       |                           | L                                     | 100      |                        | ()       |
| Otherw                         | ise if no                       | o stored                                | hot wate                            | er (this ir                             | ncludes i                                | nstantar                              | neous co                   | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |                        |          |
| Water s                        | storage                         | loss:                                   |                                     |                                         |                                          |                                       |                            |                        |                       |                           |                                       |          |                        |          |
| a) If m                        | anufact                         | urer's de                               | eclared I                           | oss facto                               | or is kno                                | wn (kWł                               | n/day):                    |                        |                       |                           |                                       | 0        |                        | (48)     |
| Tempe                          | rature f                        | actor fro                               | m Table                             | e 2b                                    |                                          |                                       |                            |                        |                       |                           |                                       | 0        |                        | (49)     |
| Energy                         | lost fro                        | m water                                 | r storage                           | e, kWh/ye                               | ear                                      |                                       |                            | (48) x (49)            | ) =                   |                           | 1                                     | 10       |                        | (50)     |
| b) If ma<br>Hot was            | anufact                         | urer's de                               | eclared (                           | cylinder l<br>rom Tabl                  | loss fact<br> = 2 (k\N                   | or is not<br>h/litre/da               | known:                     |                        |                       |                           | 0                                     | 00       | l                      | (51)     |
| If comn                        | nunity h                        | neating s                               | see secti                           | on 4.3                                  |                                          | n/ nti 0/ dc                          | ×y)                        |                        |                       |                           | 0.                                    | 02       |                        | (01)     |
| Volume                         | factor                          | from Ta                                 | ble 2a                              |                                         |                                          |                                       |                            |                        |                       |                           | 1.                                    | 03       |                        | (52)     |
| Tempe                          | rature f                        | actor fro                               | m Table                             | 2b                                      |                                          |                                       |                            |                        |                       |                           | 0                                     | .6       |                        | (53)     |
| Energy                         | lost fro                        | m water                                 | r storage                           | e, kWh/ye                               | ear                                      |                                       |                            | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |                        | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                              | 55)                                 |                                         |                                          |                                       |                            |                        |                       |                           | 1.                                    | 03       |                        | (55)     |
| Water s                        | storage                         | loss cal                                | culated                             | for each                                | month                                    |                                       |                            | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |                        |          |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                               | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                      | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                        | (56)     |
| If cylinde                     | r contains                      | s dedicate                              | d solar sto                         | orage, (57)                             | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                 | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | lix H                  |          |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                               | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                      | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                        | (57)     |
| Primary                        | / circuit                       | loss (ar                                | nnual) fro                          | om Table                                | e 3                                      |                                       |                            |                        |                       |                           |                                       | 0        |                        | (58)     |
| Primary                        | / circuit                       | loss cal                                | lculated                            | for each                                | month (                                  | 59)m =                                | (58) ÷ 36                  | 65 × (41)              | m                     |                           |                                       |          |                        |          |
| (mod                           | lified by                       | factor f                                | rom Tab                             | le H5 if t                              | here is s                                | solar wat                             | ter heati                  | ng and a               | t cylinde             | r thermo                  | stat)                                 |          | I                      |          |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                               | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                      | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |                        | (59)     |

| Combi                 | loss ca             | alculated                | for eac            | ch   | month (   | (61)m =    | (60  | ) ÷ 36  | 65 × (41)                | m            |               |            |               |             |               |      |
|-----------------------|---------------------|--------------------------|--------------------|------|-----------|------------|------|---------|--------------------------|--------------|---------------|------------|---------------|-------------|---------------|------|
| (61)m=                | 0                   | 0                        | 0                  |      | 0         | 0          |      | 0       | 0                        | 0            | 0             | 0          | 0             | 0           |               | (61) |
| Total h               | eat rec             | quired for               | water              | he   | ating ca  | alculated  | l fo | r eacl  | n month                  | (62)m =      | = 0.85 × (    | (45)m +    | - (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=                | 205.74              | 181.52                   | 191.0              | 7    | 171.88    | 168.87     | 15   | 51.52   | 146.11                   | 159.51       | 158.97        | 178.2      | 187.68        | 200.99      |               | (62) |
| Solar DI              | HW input            | calculated               | using A            | ppe  | ndix G or | · Appendix | н (  | negativ | ve quantity              | v) (enter '0 | )' if no sola | r contribu | ution to wate | er heating) |               |      |
| (add a                | dditiona            | al lines if              | FGHR               | Sa   | and/or \  | WWHRS      | ар   | plies   | see Ap                   | pendix (     | G)            |            | -             |             | -             |      |
| (63)m=                | 0                   | 0                        | 0                  |      | 0         | 0          |      | 0       | 0                        | 0            | 0             | 0          | 0             | 0           | ]             | (63) |
| Output                | from v              | vater hea                | ter                |      |           |            |      |         |                          |              |               | •          |               |             | -             |      |
| (64)m=                | 205.74              | 181.52                   | 191.0              | 7    | 171.88    | 168.87     | 15   | 51.52   | 146.11                   | 159.51       | 158.97        | 178.2      | 187.68        | 200.99      |               | -    |
|                       |                     |                          |                    |      |           |            |      |         |                          | Out          | put from w    | ater heat  | er (annual)₁  | 12          | 2102.07       | (64) |
| Heat g                | ains fro            | om water                 | heatin             | g,   | kWh/m     | onth 0.2   | 5 ´  | [0.85   | × (45)m                  | + (61)n      | n] + 0.8 >    | k [(46)n   | n + (57)m     | + (59)m     | <u>[</u> ]    |      |
| (65)m=                | 68.64               | 60.56                    | 63.76              | ;    | 57.37     | 56.38      | 5    | 50.6    | 48.81                    | 53.27        | 53.08         | 59.48      | 62.63         | 67.06       |               | (65) |
| inclu                 | ide (57             | )m in calo               | culation           | n o  | f (65)m   | only if c  | ylir | nder is | s in the c               | dwelling     | or hot w      | ater is    | from com      | munity ł    | neating       |      |
| 5. Int                | ernal g             | jains (see               | e Table            | 95   | and 5a    | ):         |      |         |                          |              |               |            |               |             |               |      |
| Metab                 | olic gai            | ns (Table                | e 5), W            | att  | S         | -          | _    |         |                          |              |               | -          |               | -           | _             |      |
|                       | Jan                 | Feb                      | Mai                | r    | Apr       | May        |      | Jun     | Jul                      | Aug          | Sep           | Oct        | Nov           | Dec         |               |      |
| (66)m=                | 122.18              | 122.18                   | 122.18             | в    | 122.18    | 122.18     | 12   | 22.18   | 122.18                   | 122.18       | 122.18        | 122.18     | 122.18        | 122.18      |               | (66) |
| Ligh <mark>tin</mark> | g gains             | s (calcula               | ted in <i>l</i>    | Ap   | pendix    | L, equat   | ion  | L9 oi   | <sup>-</sup> L9a), a     | lso see      | Table 5       |            |               |             |               |      |
| (67)m=                | <mark>3</mark> 2.94 | 29.26                    | 23.79              |      | 18.01     | 13.46      | 1    | 1.37    | 12.28                    | 15.97        | 21.43         | 27.21      | 31.76         | 33.85       |               | (67) |
| Applia                | nces ga             | ains (ca <mark>lc</mark> | ulated             | in   | Append    | dix L, eq  | uat  | ion L'  | 13 o <mark>r L1</mark> : | 3a), also    | o see Ta      | ble 5      |               |             | •             |      |
| (68)m=                | 217.34              | 219.59                   | 213.9 <sup>-</sup> | 1    | 201.81    | 186.54     | 17   | 72.18   | 162.59                   | 160.34       | 166.02        | 178.12     | 193.39        | 207.75      |               | (68) |
| Cookir                | ng gains            | s (calcula               | ated in            | Ap   | pendix    | L, equat   | ion  | 1 L15   | or L15a)                 | , also s     | ee Table      | 5          |               |             |               |      |
| (69)m=                | 35.22               | 35.22                    | 35.22              | : [  | 35.22     | 35.22      | 3    | 5.22    | 35.22                    | 35.22        | 35.22         | 35.22      | 35.22         | 35.22       | 1             | (69) |
| Pumps                 | and fa              | ans gains                | (Table             | e 5a | a)        |            |      |         |                          |              |               |            | •             |             |               |      |
| (70)m=                | 0                   | 0                        | 0                  | Τ    | 0         | 0          |      | 0       | 0                        | 0            | 0             | 0          | 0             | 0           | ]             | (70) |
| Losses                | s e.g. e            | vaporatic                | n (neg             | jati | ve valu   | es) (Tab   | le : | 5)      |                          |              | •             | -          |               | •           | •             |      |
| (71)m=                | -97.74              | -97.74                   | -97.74             | 4    | -97.74    | -97.74     | -9   | 97.74   | -97.74                   | -97.74       | -97.74        | -97.74     | -97.74        | -97.74      |               | (71) |
| Water                 | heating             | ,<br>g gains (T          | Table 5            | 5)   |           |            |      |         |                          |              |               |            | •             |             | •             |      |
| (72)m=                | 92.26               | 90.13                    | 85.7               | Τ    | 79.69     | 75.78      | 7    | 0.28    | 65.61                    | 71.6         | 73.72         | 79.95      | 86.98         | 90.13       |               | (72) |
| Total i               | nterna              | l gains =                |                    |      |           |            |      | (66)    | m + (67)m                | + (68)m      | + (69)m +     | (70)m + (  | 71)m + (72)   | m           |               |      |
| (73)m=                | 402.19              | 398.63                   | 383.00             | 6    | 359.16    | 335.44     | 31   | 13.49   | 300.14                   | 307.56       | 320.83        | 344.93     | 371.79        | 391.39      | 1             | (73) |
| 6. So                 | lar gain            | is:                      | <u>,</u>           |      |           |            |      |         |                          |              |               | <u>.</u>   | •             |             |               |      |
| Solar g               | jains are           | calculated               | using sc           | olar | flux from | Table 6a   | and  | associ  | ated equa                | tions to co  | onvert to th  | ne applica | able orientat | ion.        |               |      |
| Orienta               | ation:              | Access F                 | actor              |      | Area      |            |      | Flu     | x                        | _            | g             | _          | FF            |             | Gains         |      |
|                       |                     | Table 6d                 |                    |      | m²        |            |      | Tat     | ole 6a                   | 1            | able 6b       |            | Table 6c      |             | (VV)          |      |
| North                 | 0.9x                | 0.77                     |                    | x    | 4.5       | 55         | x    | 1       | 0.63                     | x            | 0.85          | x          | 0.7           | =           | 19.95         | (74) |
| North                 | 0.9x                | 0.77                     |                    | x    | 4.5       | 55         | x    | 2       | 0.32                     | x            | 0.85          | x          | 0.7           | =           | 38.12         | (74) |
| North                 | 0.9x                | 0.77                     |                    | x    | 4.5       | 55         | ×    | 3       | 4.53                     | x            | 0.85          | x          | 0.7           | =           | 64.78         | (74) |
| North                 | 0.9x                | 0.77                     |                    | x    | 4.5       | 55         | x    | 5       | 5.46                     | x            | 0.85          | x          | 0.7           | =           | 104.06        | (74) |
| North                 | 0.9x                | 0.77                     |                    | x    | 4.5       | 55         | x    | 7       | 4.72                     | x            | 0.85          | x          | 0.7           | =           | 140.18        | (74) |

| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 7                      | 9.99      | ×        | 0.85         | ×        | Γ        | 0.7          |      | = [ | 150.06 | (74) |
|---------|-----------|-------------|--------|-------|-----------|-----------------|-----------------|------------------------|-----------|----------|--------------|----------|----------|--------------|------|-----|--------|------|
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 7                      | 4.68      | ×        | 0.85         | ×        | Ē        | 0.7          |      | =   | 140.1  | (74) |
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 5                      | 9.25      | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 111.15 | (74) |
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 4                      | 1.52      | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 77.89  | (74) |
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 2                      | 4.19      | ×        | 0.85         | ×        | Ē        | 0.7          |      | =   | 45.38  | (74) |
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 1                      | 3.12      | x        | 0.85         | ×        | Ē        | 0.7          |      | = [ | 24.61  | (74) |
| North   | 0.9x      | 0.77        |        | x     | 4.5       | 5               | x               | 6                      | 8.86      | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 16.63  | (74) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 4                      | 6.75      | x        | 0.85         | ×        | Ē        | 0.7          |      | = [ | 224.39 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 7                      | 6.57      | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 367.49 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | g                      | 7.53      | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 468.12 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 1                      | 10.23     | x        | 0.85         | x        | Ē        | 0.7          |      | = [ | 529.08 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 1                      | 14.87     | x        | 0.85         | x        | Ľ        | 0.7          |      | =   | 551.33 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | ×               | 1                      | 10.55     | ×        | 0.85         | x        |          | 0.7          |      | = [ | 530.58 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 1                      | 08.01     | x        | 0.85         | x        |          | 0.7          |      | =   | 518.41 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 1                      | 04.89     | x        | 0.85         | x        |          | 0.7          |      | =   | 503.45 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 1                      | 01.89     | x        | 0.85         | x        |          | 0.7          |      | =   | 489.01 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | x               | 8                      | 2.59      | x        | 0.85         | x        |          | 0.7          |      | =   | 396.38 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.       | 64              | ×               | 5                      | 5.42      | x        | 0.85         | ×        |          | 0.7          |      | = [ | 265.98 | (78) |
| South   | 0.9x      | 0.77        |        | x     | 11.0      | 64              | x               |                        | 40.4      | <b>x</b> | 0.85         | ×        |          | 0.7          |      | =   | 193.89 | (78) |
|         |           |             |        |       |           |                 |                 |                        |           |          |              |          |          |              |      |     |        |      |
| Solar g | gains in  | watts, ca   | alcula | ted   | for eacl  | n mon           | th              |                        |           | (83)m    | n = Sum(74)r | m(82)    | m        |              |      | _   |        | (22) |
| (83)m=  | 244.34    | 405.62      | 532.   | 9     | 633.14    | $691.5^{\circ}$ | 1 6             | 80.65                  | 658.51    | 614      | 1.6 566.9    | 9 441.   | .76      | 290.59       | 210. | 52  |        | (83) |
|         |           |             |        |       | (84)m =   | = (73)          | $\frac{1+1}{2}$ | 83)m                   | , watts   | 000      | 40 007 7     | 0 700    | <u> </u> | 000.07       | 004  | 00  |        | (94) |
| (84)m=  | 646.53    | 804.25      | 915.9  | 96    | 992.3     | 1026.5          | 15 9            | 94.13                  | 958.65    | 922      | .16 887.7    | 3 786.   | .69      | 662.37       | 601. | 92  |        | (04) |
| 7. Me   | ean inter | nal temp    | eratu  | re (  | heating   | seaso           | on)             |                        |           | _        |              |          |          |              |      |     |        | _    |
| Temp    | perature  | during h    | eatin  | g pe  | eriods ir | n the li        | ving            | area                   | from Tab  | ole 9    | , Th1 (°C)   |          |          |              |      |     | 21     | (85) |
| Utilis  | ation fac | tor for ga  | ains f | or li | ving are  | ea, h1,         | m (s            | ee Ta                  | ble 9a)   | <u> </u> |              |          |          |              |      |     |        |      |
| (22)    | Jan       | Feb         | Ma     | ar    | Apr       | Ma              | y               | Jun                    | Jul       | A        | ug Sep       | p O      | ct       | Nov          | De   | ec  |        | (00) |
| (86)m=  | 1         | 1           | 0.99   | ,     | 0.99      | 0.97            |                 | 0.94                   | 0.87      | 0.8      | 39 0.96      | 0.9      | 9        | 1            | 1    |     |        | (00) |
| Mear    | n interna | l temper    | ature  | in li | iving are | ea T1           | (follo          | w ste                  | ps 3 to 7 | 7 in T   | able 9c)     |          |          | 1            |      | _   |        |      |
| (87)m=  | 18.38     | 18.58       | 18.9   | 4     | 19.44     | 19.95           | 2               | 20.44                  | 20.72     | 20.      | 68 20.3      | 19.0     | 63       | 18.94        | 18.3 | 88  |        | (87) |
| Temp    | perature  | during h    | eatin  | g pe  | eriods ir | n rest o        | of dw           | elling                 | from Ta   | able 9   | 9, Th2 (°C   | ;)       |          |              |      |     |        |      |
| (88)m=  | 18.94     | 18.95       | 18.9   | 6     | 19.02     | 19.03           | 1               | 9.08                   | 19.08     | 19.      | 09 19.06     | 6 19.0   | 03       | 19.01        | 18.9 | 98  |        | (88) |
| Utilis  | ation fac | ctor for ga | ains f | or re | est of d  | welling         | j, h2           | ,m (se                 | e Table   | 9a)      |              |          |          |              |      |     |        |      |
| (89)m=  | 1         | 1           | 0.99   | )     | 0.98      | 0.95            |                 | 0.86                   | 0.66      | 0.7      | 71 0.91      | 0.9      | 8        | 1            | 1    |     |        | (89) |
| Mear    | n interna | l temper    | ature  | in t  | he rest   | of dwe          | elling          | T2 (f                  | ollow ste | eps 3    | to 7 in Ta   | able 9c) | )        |              |      |     |        |      |
| (90)m=  | 16.69     | 16.9        | 17.2   | 6     | 17.8      | 18.3            | Τ               | 18.8                   | 19.02     | 1        | 9 18.66      | 6 18     | 3        | 17.3         | 16.7 | 2   |        | (90) |
|         | ·         |             |        |       |           |                 |                 |                        |           | -        | •            | fLA = I  | Livir    | ng area ÷ (4 | 4) = |     | 0.28   | (91) |
| Mear    | ) interna | l temper    | ature  | (for  | the wh    | ole dw          | ellin           | a) = f                 | LA x T1   | + (1     | – fLA) ¥ T   | [2       |          |              |      | L   |        |      |
| (92)m=  | 17.15     | 17.36       | 17.7   | 2     | 18.25     | 18.76           |                 | 9, <u>–</u> 1<br>19.25 | 19.49     | 19.      | 47 19.11     | 1 18.4   | 45       | 17.75        | 17.1 | 8   |        | (92) |
|         | L         | 1           |        |       |           |                 |                 |                        | I         | I        |              |          |          | 1            |      |     |        |      |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 17.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.36                 | 17.72                 | 18.25                  | 18.76                   | 19.25                   | 19.49                 | 19.47      | 19.11       | 18.45                 | 17.75        | 17.18       |           | (93)        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|-----------------------|------------|-------------|-----------------------|--------------|-------------|-----------|-------------|
| 8. Sp                 | ace hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ting requ             | uirement              |                        |                         |                         |                       |            |             |                       |              |             |           |             |
| Set T<br>the ut       | i to the r<br>tilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nean int<br>factor fo | ernal ter<br>or gains | nperatui<br>using Ta   | re obtain<br>Ible 9a    | ed at ste               | ep 11 of <sup>-</sup> | Table 9t   | o, so tha   | t Ti,m=(              | 76)m an      | d re-calc   | ulate     |             |
|                       | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                   | Mar                   | Apr                    | May                     | Jun                     | Jul                   | Aug        | Sep         | Oct                   | Nov          | Dec         |           |             |
| Utilisa               | ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tor for g             | ains, hm              | :                      |                         |                         |                       |            | ·           |                       |              |             |           |             |
| (94)m=                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.99                  | 0.99                  | 0.98                   | 0.95                    | 0.87                    | 0.72                  | 0.76       | 0.92        | 0.98                  | 0.99         | 1           |           | (94)        |
| Usefu                 | I gains,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hmGm                  | , W = (94             | 4)m x (84              | 4)m                     |                         |                       |            |             |                       |              |             |           |             |
| (95)m=                | 644.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 799.41                | 905.44                | 969.19                 | 973.44                  | 868.03                  | 694.41                | 702.66     | 813.49      | 770.92                | 658.83       | 600.52      |           | (95)        |
| Month                 | nly avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | age exte              | rnal tem              | perature               | e from Ta               | able 8                  | •                     |            |             |                       |              |             |           |             |
| (96)m=                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                    | 16.6                  | 16.4       | 14.1        | 10.6                  | 7.1          | 4.2         |           | (96)        |
| Heat                  | loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e for mea             | an intern             | al tempe               | erature,                | Lm , W =                | =[(39)m x             | (93)m-     | – (96)m     | ]                     |              |             |           |             |
| (97)m=                | 4182.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4033.88               | 3612.68               | 2930.74                | 2199                    | 1410.02                 | 874.6                 | 924.55     | 1536.9      | 2446.33               | 3355.66      | 4133.94     |           | (97)        |
| Space                 | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g require             | ement fo              | r each n               | nonth, k\               | Nh/mont                 | th = 0.02             | 4 x [(97)  | )m – (95    | )m] x (4 <sup>-</sup> | 1)m          |             |           |             |
| (98)m=                | 2632.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2173.56               | 2014.19               | 1412.31                | 911.82                  | 0                       | 0                     | 0          | 0           | 1246.5                | 1941.71      | 2628.87     |           |             |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                        |                         |                         |                       | Tota       | l per year  | (kWh/year             | ·) = Sum(9   | 8)15,912 =  | 14961.36  | (98)        |
| Space                 | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g require             | ement in              | kWh/m <sup>2</sup>     | /year                   |                         |                       |            |             |                       |              | [           | 189.38    | (99)        |
| 0h En                 | oray roc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uiromor               | ote – Cor             | nmunity                | heating                 | schomo                  |                       |            |             |                       |              | L           |           | ]. ,        |
| This pr               | ergy rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                       | ting one               |                         |                         | ator booti            |            | ided by     | 0.00000               |              |             |           |             |
| Fractic               | on of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ace heat              | from se               | condarv                | supplen/                | ng or wa                | heating (             | Table 1    | 1) '0' if n | a comm<br>one         | unity Scr    | ieme.       | 0         | (301)       |
| Freedie               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                        |                         | 4 (20)                  | 1)                    |            | ., •        |                       |              |             |           |             |
| Fractic               | on or spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ace neat              | from co               | mmunity                | system                  | 1 - (30                 | 1) =                  |            |             |                       |              | [           | 1         | (302)       |
| The con               | nmunity so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | heme may              | y obtain he           | eat from se            | everal sour             | ces. The p              | procedure a           | allows for | CHP and u   | up to four o          | other heat   | sources; th | ne latter |             |
| Fractic               | on of hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at from C             | commun                | ity boiler             | 'S                      | ioin power              | r stations. c         | see Apper  | iuix C.     |                       |              |             | 1         | (303a)      |
| Fractic               | on of tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al space              | heat fro              | m Comn                 | nunity bo               | oilers                  |                       |            |             | (3                    | 02) x (303   | a) =        | 1         | (304a)      |
| Factor                | for cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo               | r commu               | nity hea   | ting sys    | tem                   |              | ĺ           | 1.05      | (305)       |
| Distrib               | ution los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatir              | ng syster             | n          |             |                       |              | [           | 1.1       | (306)       |
| Space                 | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                     |                       |                        |                         |                         |                       |            |             |                       |              | -           | kWh/year  | -           |
| Annua                 | l space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating               | requirem              | nent                   |                         |                         |                       |            |             |                       |              | [           | 14961.36  | ]           |
| Space                 | heat fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m Comr                | munity b              | oilers                 |                         |                         |                       |            | (98) x (30  | 04a) x (30            | 5) x (306) = | = [         | 17280.37  | (307a)      |
| Efficier              | ncy of se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | econdary              | y/supple              | mentary                | heating                 | system                  | in % (fro             | m Table    | 4a or A     | ppendix               | E)           | [           | 0         | (308        |
| Space                 | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | require               | ment froi             | m secon                | dary/sup                | oplemen                 | tary syste            | em         | (98) x (30  | 01) x 100 -           | ÷ (308) =    | [           | 0         | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l<br>neating r        | equirem               | ent                    |                         |                         |                       |            |             |                       |              | [           | 2102.07   | 1           |
| lf DHW<br>Water       | / from contract from heat from the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the structure of the struc | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                         |                       |            | (64) x (30  | 03a) x (30            | 5) x (306) : | ו<br>= [    | 2427.89   | ]<br>(310a) |
| Electri               | city used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d for hea             | t distribu            | ution                  |                         |                         |                       | 0.01       | × [(307a).  | (307e) +              | · (310a)(    | 310e)] =    | 197.08    | (313)       |
| Coolin                | g Syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Energ               | y Efficiei            | ncy Rati               | 0                       |                         |                       |            |             |                       |              | [           | 0         | (314)       |
| Space                 | cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (if there             | is a fixe             | d cooling              | g system                | n, if not e             | enter 0)              |            | = (107) ÷   | (314) =               |              | [           | 0         | (315)       |
| Electrie<br>mecha     | city for p<br>inical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra | velling (1<br>act or po | Table 4f)<br>sitive inj | :<br>put from         | outside    |             |                       |              | [           | 0         | (330a)      |

| warm air heating system fans                                                                                         |                             |                               |            | 0                   | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|------------|---------------------|--------|
| pump for solar water heating                                                                                         |                             |                               |            | 0                   | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  |            | 0                   | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               |            | 581.71              | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |            |                     |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | · Em<br>kg | issions<br>CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | iel        | 65                  | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 310b)] x 100 ÷ (367b) x     | 0                             | = [        | 6549.21             | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | = [        | 102.29              | (372)  |
| Total CO2 associated with community systems (3                                                                       | 363)(366) + (368)(372)      |                               | = [        | 6651.49             | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 309) x                      | 0                             | =          | 0                   | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | = [        | 0                   | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 373) + (374) + (375) =      |                               | Γ          | 6651.49             | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | (331)) x                    | 0.52                          | - [        | 0                   | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 332))) x                    | 0.52                          | = [        | 301.91              | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               |            | 6953.4              | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               |            | 88.02               | (384)  |
| El rating (section 14)                                                                                               |                             |                               |            | 33.87               | (385)  |


#### Appendix B - SAP outputs for the 'Be Lean' stage

The DER outputs from the FSAP modelling of the proposed development with the upgraded fabric and building services systems were used to calculate the 'Be Lean' stage  $CO_2$  emissions of the development.



|                                  |                              |                         |                |                        | User D                    | etails:                        |                            |               |          |           |                         |                              |
|----------------------------------|------------------------------|-------------------------|----------------|------------------------|---------------------------|--------------------------------|----------------------------|---------------|----------|-----------|-------------------------|------------------------------|
| Assessor Name:<br>Software Name: | Str                          | oma FS                  | AP 201         | 2<br>P                 | ropertv                   | Strom<br>Softwa                | a Num<br>are Ver<br>Unit 1 | ber:<br>sion: |          | Versio    | on: 1.0.3.15            |                              |
| Address :                        | , lo                         | ndon, NV                | V3 4PB         |                        |                           |                                |                            |               |          |           |                         |                              |
| 1. Overall dwelling di           | mension                      | s:                      |                |                        |                           |                                |                            |               |          |           |                         |                              |
|                                  |                              |                         |                |                        | Area                      | a(m²)                          |                            | Av. He        | ight(m)  | -         | Volume(m <sup>3</sup> ) | _                            |
| Basement                         |                              |                         |                |                        |                           | 33                             | (1a) x                     | 2             | .25      | (2a) =    | 74.25                   | (3a)                         |
| Ground floor                     |                              |                         |                |                        |                           | 19                             | (1b) x                     | 1             | .65      | (2b) =    | 31.35                   | (3b)                         |
| Total floor area TFA =           | (1a)+(1l                     | b)+(1c)+(               | (1d)+(1e       | )+(1r                  | ı)                        | 52                             | (4)                        |               |          |           |                         |                              |
| Dwelling volume                  |                              |                         |                |                        |                           |                                | (3a)+(3b)                  | )+(3c)+(3d    | l)+(3e)+ | .(3n) =   | 105.6                   | (5)                          |
| 2 Ventilation rate:              |                              |                         |                |                        |                           |                                |                            |               |          |           |                         | 7                            |
| 2. Vontilation rate.             |                              | main                    | Se             | econdar                | у                         | other                          |                            | total         |          |           | m <sup>3</sup> per hour |                              |
| Number of chimneys               | Г                            |                         | ייי ה<br>ר ד ר |                        | ] + [                     | 0                              | ] = [                      | 0             | x 4      | 40 =      | 0                       | (6a)                         |
| Number of open flues             | L<br>L                       | 0                       |                | 0                      | ] + [                     | 0                              | ] = [                      | 0             | x 2      | 20 =      | 0                       | ]<br>(6b)                    |
| Number of intermitten            | L<br>t fans                  |                         |                |                        |                           |                                |                            | 2             | x 1      | 10 =      | 20                      | ]<br>](7a)                   |
| Number of passive ve             | nts                          |                         |                |                        |                           |                                |                            | 0             | x 1      | 10 =      |                         | $\left  \frac{1}{2} \right $ |
| Number of flueless ga            | e firoe                      |                         |                |                        |                           |                                |                            | 0             |          | 40 =      | 0                       |                              |
| Number of nucless ga             | 5 11 23                      |                         |                |                        |                           |                                |                            | 0             | ^        | Air ch    | anges per hou           | ](/c)<br>Jr                  |
| Infiltration due to chim         | neys, flu                    | es and fa               | ans = (6)      | a)+(6b)+(7             | ′a)+(7b)+(                | 7c) =                          |                            | 20            | -        | ÷ (5) =   | 0.19                    | (8)                          |
| Number of storeys i              | n the dw                     | elling (ns              | s)             | a, procee              | a to (17), (              | otherwise (                    | continue tr                | om (9) to (   | 16)      |           | 0                       | <b>]</b> (9)                 |
| Additional infiltration          | 1                            | <u> </u>                | .)             |                        |                           |                                |                            |               | [(9)-    | -1]x0.1 = | 0                       | (10)                         |
| Structural infiltration          | : 0.25 fo                    | r steel or              | timber f       | frame or               | 0.35 fo                   | r masoni                       | y constr                   | uction        |          |           | 0                       | (11)                         |
| if both types of wall an         | e present,                   | use the va              | lue corres     | ponding to             | the great                 | er wall are                    | a (after                   |               |          |           |                         | -                            |
| If suspended woode               | enings), ii<br>en floor, (   | equal user<br>enter 0.2 | (unseal        | ed) or 0.              | 1 (seale                  | ed), else                      | enter 0                    |               |          |           | 0                       | ](12)                        |
| If no draught lobby,             | enter 0.0                    | 05, else e              | enter 0        | ,                      | ,                         | ,,                             |                            |               |          |           | 0                       | (13)                         |
| Percentage of winde              | ows and                      | doors dr                | aught st       | ripped                 |                           |                                |                            |               |          |           | 0                       | (14)                         |
| Window infiltration              |                              |                         |                |                        |                           | 0.25 - [0.2                    | x (14) ÷ 1                 | = [00         |          |           | 0                       | (15)                         |
| Infiltration rate                |                              |                         |                |                        |                           | (8) + (10)                     | + (11) + (1                | 2) + (13) +   | + (15) = |           | 0                       | (16)                         |
| Air permeability valu            | ue, q50, (                   | expresse                | d in cub       | bic metre              | s per ho                  | bur per solution $(18) = (18)$ | quare m                    | etre of e     | nvelope  | area      | 10                      | (17)                         |
| If based on air permea           | adility val<br>Indies if a p | lue, then               | (10) = [(1)    | 7) <del>-</del> 20]+(0 | o), otherwise<br>or a dec | nse (10) = (<br>19 air ne      | rmeahility                 | is heina u    | sed      |           | 0.69                    | (18)                         |
| Number of sides shelt            | ered                         |                         |                |                        |                           | groo an po                     | inite ability i            | io sonig ut   | 500      |           | 1                       | (19)                         |
| Shelter factor                   |                              |                         |                |                        |                           | (20) = 1 -                     | [0.075 x (1                | 9)] =         |          |           | 0.92                    | (20)                         |
| Infiltration rate incorpo        | orating sh                   | nelter fac              | tor            |                        |                           | (21) = (18                     | ) x (20) =                 |               |          |           | 0.64                    | (21)                         |
| Infiltration rate modifie        | d for mo                     | nthly win               | d speed        | 1                      |                           | ı —                            | · · · · ·                  | · · · · ·     |          |           | 1                       |                              |
| Jan Feb                          | Mar                          | Apr                     | May            | Jun                    | Jul                       | Aug                            | Sep                        | Oct           | Nov      | Dec       |                         |                              |
| Monthly average wind             | speed f                      | rom Tabl                | e 7            |                        |                           | i                              | i                          | i             | i        | i         | 1                       |                              |
| (22)m= 5.1 5                     | 4.9                          | 4.4                     | 4.3            | 3.8                    | 3.8                       | 3.7                            | 4                          | 4.3           | 4.5      | 4.7       |                         |                              |

| Wind F                                                                                                                                                                                          | actor (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a)m =                                                                                                                               | (22)m ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | _           |               |                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                                                                                                                                 | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                     | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                     | 0.95                                                                                                                                                                                                  | 0.92                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08                                                                                                                                                             | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.18               |             |               |                                                                                                                                          |
| Adjuste                                                                                                                                                                                         | ed infiltra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation rat                                                                                                                            | e (allowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing for sł                                                                                                                              | nelter an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d wind s                                                                                                                 | speed) =                                                                                                                                                                                              | (21a) x                                                                                                                                                         | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
|                                                                                                                                                                                                 | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                                  | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                     | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.61                                                                                                                     | 0.61                                                                                                                                                                                                  | 0.59                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.69                                                                                                                                                             | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75               |             |               |                                                                                                                                          |
| Calcula                                                                                                                                                                                         | ate effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctive air                                                                                                                            | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rate for t                                                                                                                              | he appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cable ca                                                                                                                 | se                                                                                                                                                                                                    |                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  | -<br>       | _             |                                                                                                                                          |
| II IIIe                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | ucing App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ondix N (2                                                                                                                              | (25) = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) x Emy (c                                                                                                               | ocuption (N                                                                                                                                                                                           | NE)) otho                                                                                                                                                       | nuico (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (220)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             | 0             | (23a)                                                                                                                                    |
| If bold                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         | (200) = (200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a) X FIIIV (e                                                                                                            | equation (i                                                                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i) = (23a)                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             | 0             | (23b)                                                                                                                                    |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                 | () = (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0h)ma (/                                                                                                                                                         | 00h) [/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (00.0)             | . 4001      | 0             | (23c)                                                                                                                                    |
| a) If                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       | HR) (248                                                                                                                                                        | a m = (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20)m + (.<br>1                                                                                                                                                   | 23D) × [*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 - (23C)          | ÷ 100]<br>I |               | (24a)                                                                                                                                    |
| (24a)III=                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          | ( <b>)</b>                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                  |             |               | (24a)                                                                                                                                    |
| D) IT                                                                                                                                                                                           | balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a mech                                                                                                                               | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entilation                                                                                                                              | without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | neat rec                                                                                                                 | covery (N                                                                                                                                                                                             | VIV) (240<br>1                                                                                                                                                  | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b)m + (2<br>1                                                                                                                                                   | 23b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                  | 1           |               | (24b)                                                                                                                                    |
| (24b)m=                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                        | 0                                                                                                                                                                                                     | 0                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                  |             |               | (240)                                                                                                                                    |
| c) If                                                                                                                                                                                           | whole h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ouse ex                                                                                                                              | tract ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tilation (                                                                                                                              | or positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /e input v                                                                                                               | ventilatio                                                                                                                                                                                            | on from c<br>a) = (22k)                                                                                                                                         | outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 v (22h                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
| (24c)m-                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         | (231) = (231)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                                                                                                                                                       | C = (ZZL)                                                                                                                                                       | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5 × (230                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                  | 1           |               | (24c)                                                                                                                                    |
| (240)III-                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | un tilati                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                  |             |               | (210)                                                                                                                                    |
| a) n                                                                                                                                                                                            | if (22b)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r = 1, th                                                                                                                            | en (24d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m = (22)                                                                                                                                | b)m othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e input<br>erwise (2                                                                                                     | 4d)m =                                                                                                                                                                                                | 0.5 + [(2                                                                                                                                                       | 2b)m² x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5]                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
| (24d) <mark>m=</mark>                                                                                                                                                                           | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.82                                                                                                                                 | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.75                                                                                                                                    | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                     | 0.68                                                                                                                                                                                                  | 0.67                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 <mark>.73</mark>                                                                                                                                               | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.78               |             |               | (24d)                                                                                                                                    |
| Effe                                                                                                                                                                                            | ctive air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | change                                                                                                                               | rate - er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nter (24a                                                                                                                               | ) or (24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o) or (24                                                                                                                | c) or (24                                                                                                                                                                                             | d) in boy                                                                                                                                                       | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
| (25)m=                                                                                                                                                                                          | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.82                                                                                                                                 | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.75                                                                                                                                    | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                     | 0.68                                                                                                                                                                                                  | 0.67                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.73                                                                                                                                                             | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.78               |             |               | (25)                                                                                                                                     |
| 0.116                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | naramen                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |               |                                                                                                                                          |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | 5at 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oponin                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Ar                                                                                                                   | 200                                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k volu             | 、<br>、      |               | k                                                                                                                                        |
| ELEN                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gros                                                                                                                                 | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m                                                                                                                             | gs<br>1 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r                                                                                                           | ea<br>n²                                                                                                                                                                                              | U-valu<br>W/m2                                                                                                                                                  | ue<br>2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A X U<br>(W/ł                                                                                                                                                    | <b>K</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k-value<br>kJ/m²·l | e<br>K      | A X I<br>kJ/K | k                                                                                                                                        |
| ELEN<br>Doors                                                                                                                                                                                   | <b>IENT</b><br>Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros<br>area                                                                                                                         | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m                                                                                                                             | gs<br>J <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3                                                                                                    | rea<br>m²<br>x                                                                                                                                                                                        | U-valu<br>W/m2                                                                                                                                                  | ue<br>2K<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A X U<br>(W/I<br>10.22                                                                                                                                           | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²₊l | e<br>K      | A X I<br>kJ/K | k<br>(26)                                                                                                                                |
| ELEN<br>Doors                                                                                                                                                                                   | <b>IENT</b><br>Type 1<br>Type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gros                                                                                                                                 | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>r                                                                                                                             | gs<br>J <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3                                                                                                    | ea<br>n <sup>2</sup> x                                                                                                                                                                                | U-valu<br>W/m2<br>1.4                                                                                                                                           | ue<br>2K<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A X U<br>(W/ł<br>10.22<br>6.02                                                                                                                                   | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²·I | e<br>K      | A X I<br>kJ/K | k<br>(26)<br>(26)                                                                                                                        |
| Doors Window                                                                                                                                                                                    | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gros<br>area                                                                                                                         | 35<br>(m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>m                                                                                                                             | gs<br><sub>j²</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Ar<br>A ,r<br>7.3<br>4.3                                                                                             | ea<br>n <sup>2</sup> x<br>x<br>x                                                                                                                                                                      | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+                                                                                                                    | ue<br>2K<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/ł<br>10.22<br>6.02<br>3.1                                                                                                                            | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²·I | e<br>K      | A X I<br>kJ/K | k<br>(26)<br>(26)<br>(27)                                                                                                                |
| Doors<br>Doors<br>Windov                                                                                                                                                                        | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros<br>area                                                                                                                         | ss<br>(m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>m                                                                                                                             | gs<br><sub>2</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6                                                                                      | ea<br>n <sup>2</sup> x<br>x<br>x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                       | U-valu<br>W/m2<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+                                                                                                            | ue<br>2K<br>□ =<br>○ 0.04] =<br>○ 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82                                                                                                                    | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²-I | e<br>K      | A X I<br>kJ/K | k<br>(26)<br>(26)<br>(27)<br>(27)                                                                                                        |
| ELEN<br>Doors<br>Doors<br>Windov<br>Floor                                                                                                                                                       | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros<br>area                                                                                                                         | (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Openin<br>m                                                                                                                             | gs<br><sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97                                                                              | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                  | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+                                                                                                    | ue<br>2K<br>= =<br>0.04] =<br>○ 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²+l | ×<br>K      | A X I<br>kJ/K | k<br>(26)<br>(26)<br>(27)<br>(27)<br>(28)                                                                                                |
| Doors<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls                                                                                                                                             | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros<br>area                                                                                                                         | 4 (m2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m                                                                                                                             | gs<br>,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3                                                                      | ea<br>n <sup>2</sup> x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x                                                                                                                | U-valu<br>W/m2<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+                                                                                            | ue<br>2K<br>= = =<br>○ 0.04] = =<br>○ 0.04] = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²·I |             | A X I<br>kJ/K | (26)<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)                                                                                             |
| Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls                                                                                                                                            | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grosarea                                                                                                                             | 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m                                                                                                                             | gs<br><sub>1</sub> 2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23                                                             | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup>                                                                                              | U-valu<br>W/m2<br>1.4<br>[1/( 2.1 )+<br>/[1/( 2.1 )+<br>[0.22<br>0.28                                                                                           | ue<br>2K<br>= = =<br>0.04] = =<br>0.04] = =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²+l |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)                                                                                        |
| Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof                                                                                                                       | A Providence of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | Gros<br>area<br>29.<br>29.<br>44.                                                                                                    | 4<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m<br>15.1<br>0                                                                                                                | gs<br>,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1                                                     | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x                                                                     | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28                                                                            | ue<br>2K<br>= =<br>0.04] =<br>○ 0.04] =<br>=<br>=<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²+l |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)                                                                                |
| Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof                                                                                                                       | A Provide America Antipage 1<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gros<br>area<br>1<br>29.<br>29.<br>44.                                                                                               | 4<br>1<br>m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Openin         m           15.1'         0           0         0                                                                        | gs<br>,2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19                                               | ea<br>n <sup>2</sup> x x x x x x x x x x x x x x x x x x x                                                                                                                                            | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.16                                            | ue<br>2K<br>= = =<br>0.04] = =<br>0.04] = =<br>= =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²·I |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(29)<br>(30)                                                                        |
| Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a                                                                                                            | A Providence of e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grosarea<br>area<br>1<br>29.<br>44.<br>19.<br>Iements                                                                                | 4<br>1<br>, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m<br>15.1<br>0<br>0                                                                                                           | gs<br><sup>2</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8                                      | ea<br>n <sup>2</sup> x<br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                                                 | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28                                                                    | ue<br>2K<br>= = =<br>0.04] = =<br>0.04] = =<br>= =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²+l |             |               | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)                                                                        |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v                                                                                         | <b>IENT</b><br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grosarea<br>area<br>1<br>29.<br>44.<br>19<br>Iements                                                                                 | 4<br>1<br>, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m<br>15.1<br>0<br>0                                                                                                           | gs<br>,2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9                               | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | U-valu<br>W/m2<br>1.4<br>1.4<br>(1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.16                                                             | ue<br>2K<br>= =<br>0.04] = =<br>0.04] = =<br>= =<br>= =<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k-value<br>kJ/m²·l |             |               | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ul> |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ                                                     | A Providence of endows and le the area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gros<br>area<br>4<br>29.<br>44.<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                        | 4<br>1<br>, m <sup>2</sup><br>ows, use e<br>sides of in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Openin<br>m<br>15.1<br>0<br>0<br>effective with ternal wal                                                                              | gs<br><sup>7</sup><br>ndow U-va<br><sup>1</sup> / <sub>2</sub><br><sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calcul<br>titions    | ea<br>n <sup>2</sup> x x x x x x x x x x x x x x x x x x x                                                                                                                                            | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16                                    | ue         :       =         :       0.04]         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =         :       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] a                                                              | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²+l |             |               | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)                                                                |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windov<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric                                                     | A Providence of environmental of the area of environmental of the area of environmental of the area of environmental of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the ar | Gros<br>area<br>4<br>2<br>2<br>29.<br>44.<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19              | 4<br>1<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Openin<br>m<br>15.1<br>0<br>0<br>effective wi<br>internal wal<br>U)                                                                     | gs<br><sup>7</sup><br>mdow U-va<br>ls and par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>14.9<br>alue calculations | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | U-valu<br>W/m2<br>1.4<br>1.4<br>[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16<br>0.16                                             | $\begin{array}{c} ue \\ 2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ = \\ = \\ = \\ = \\ \\ = \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>12.35<br>3.04                                                                 | <)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k-value<br>kJ/m²+l | ×<br>K      | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)                                                        |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windou<br>Windou<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric<br>Heat c                                 | A Providence of environmental losses of environmental losses of environmental losses of environmental loss and le the area heat loss apacity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gros<br>area<br>Grosarea129. $44.19191919191919191919191919$                                                                         | 4<br>1<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x<br>(A x k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Openin<br>m<br>15.1<br>0<br>0<br>effective winternal wal                                                                                | gs<br>j2<br>7<br><br>Indow U-va<br>Is and par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calculations         | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x x<br>x x<br>x x<br>x x<br>x x<br>x x<br>x x<br>x x<br>x x x<br>x x x x                                      | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16                            | $\begin{array}{c} ue \\ 2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ 0.04] = \\ = \\ = \\ = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\ 0 = \\$ | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>12.35<br>3.04                                                            | K)       Image: spin sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the secto | k-value<br>kJ/m²-I |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)<br>(33)<br>(34)                                                |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windou<br>Floor<br>Walls <sup>-</sup><br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therm            | ALENT<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall<br>dows and<br>le the area<br>heat los<br>apacity (<br>al mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gros<br>area<br>4 1<br>2 2<br>29.<br>44.<br>19<br>lements<br>roof wind<br>as on both<br>as on both<br>as, W/K =<br>Cm = Sc<br>parame | $\frac{4}{1}$ $\frac{4}{2}$ $\frac{1}{2}$ penin<br>m $ \begin{array}{c} 15.1\\ \hline 0\\ \hline 0\\ \hline 0\\ \hline 0\\ \hline 0\\ \hline 0\\ \hline 0\\ \hline $             | gs<br><sup>7</sup><br><sup>7</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>4</sup><br><sup>4</sup><br><sup>4</sup><br><sup>4</sup><br><sup>5</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calculations         | ea<br>n <sup>2</sup><br>x<br>x<br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>1</sup><br>x <sup>2</sup><br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                | U-valu<br>W/m2<br>1.4<br>1.4<br>/[1/( 2.1 )+<br>/[1/( 2.1 )+<br>(1/( 2.1 )+<br>0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16                     | $\begin{bmatrix} ue\\2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ = \\ = \\ = \\ (1) = \\ (1/U-value) \\ (1/U-value) \\ (28). \\ Indices$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W//<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>0<br>ue)+0.04] a<br>(30) + (32<br>(30) + (32                                  | <pre>K)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k-value<br>kJ/m²-l |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)<br>(33)<br>(34)<br>(35)                                |
| S. ree<br>ELEN<br>Doors<br>Doors<br>Windou<br>Windou<br>Floor<br>Walls <sup>-</sup><br>Roof<br>Total a<br>Party v<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therm.<br>For desi<br>can be | ALENT<br>Type 1<br>Type 2<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of e<br>wall<br>dows and<br>le the area<br>heat los<br>apacity (<br>al mass<br>ign assess<br>used instea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gros<br>area<br>Grosarea129. $(44.)(19)lementsroof windas on bothas, W/K =Cm = S(parameand of a de$                                  | $\frac{4}{1}$ $\frac{4}{1}$ $\frac{1}{2}$ $\frac{4}{3}$ $\frac{1}{3}$ penin<br>m $ \begin{array}{c} 15.1\\ 0\\ 0\\ \end{array} $ effective winternal wall $U)$ $P = Cm + \frac{1}{2}$ etails of the ulation. | gs<br>2<br>7<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Ar<br>A ,r<br>7.3<br>4.3<br>1.6<br>1.97<br>34.3<br>14.23<br>44.1<br>19<br>126.8<br>14.9<br>alue calcul<br>titions    | ea<br>n <sup>2</sup> x x x x x x x x x x x x x x x x x x x                                                                                                                                            | U-valu<br>W/m2<br>1.4<br>1.4<br>[1/( 2.1 )+<br>/[1/( 2.1 )+<br>[1/( 2.1 )+<br>[0.22<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.16<br>(26)(30)<br>recisely the | $\begin{array}{c} ue \\ 2K \\ = \\ 0.04] = \\ 0.04] = \\ = \\ 0.04] = \\ = \\ = \\ = \\ = \\ 0 \\ = \\ 0 \\ 0.04] = \\ = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\$                                                                                                                                  | A X U<br>(W/I<br>10.22<br>6.02<br>3.1<br>3.82<br>7.546<br>3.98<br>12.35<br>3.04<br>12.35<br>3.04<br>0<br>ue)+0.04] a<br>(30) + (32<br>(30) + (32<br>c) values of | <pre>K)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k-value<br>kJ/m²-l |             | A X I<br>kJ/K | k<br>(26)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31)<br>(32)<br>(33)<br>(33)<br>(34)<br>(35)                                        |

| if detail           | s of therm     | al bridging        | are not kr  | nown (36) =                | = 0.15 x (3            | 1)          |            |                          |                       |                           |                                       |         |                      | _        |
|---------------------|----------------|--------------------|-------------|----------------------------|------------------------|-------------|------------|--------------------------|-----------------------|---------------------------|---------------------------------------|---------|----------------------|----------|
| Total               | fabric he      | eat loss           |             |                            |                        |             |            |                          | (33) +                | (36) =                    |                                       |         | 70.07                | (37)     |
| Ventil              | ation hea      | at loss ca         | alculated   | d monthly                  | у                      |             |            |                          | (38)m                 | = 0.33 × (                | 25)m x (5)                            | -       | 1                    |          |
|                     | Jan            | Feb                | Mar         | Apr                        | May                    | Jun         | Jul        | Aug                      | Sep                   | Oct                       | Nov                                   | Dec     |                      |          |
| (38)m=              | 28.94          | 28.49              | 28.06       | 26                         | 25.61                  | 23.82       | 23.82      | 23.49                    | 24.51                 | 25.61                     | 26.39                                 | 27.21   |                      | (38)     |
| Heat t              | ransfer        | coefficie          | nt, W/K     |                            |                        |             |            |                          | (39)m                 | = (37) + (                | 38)m                                  |         |                      |          |
| (39)m=              | 99.02          | 98.57              | 98.13       | 96.07                      | 95.69                  | 93.89       | 93.89      | 93.56                    | 94.58                 | 95.69                     | 96.47                                 | 97.28   |                      |          |
|                     |                |                    |             |                            |                        |             | •          |                          |                       | Average =                 | Sum(39)1                              | 12 /12= | 96.07                | (39)     |
| Heat I              | oss para       | ameter (H          | HLP), W     | /m²K                       | · · · · ·              | · · · · ·   |            | ,                        | (40)m                 | = (39)m ÷                 | · (4)                                 |         | 1                    |          |
| (40)m=              | 1.9            | 1.9                | 1.89        | 1.85                       | 1.84                   | 1.81        | 1.81       | 1.8                      | 1.82                  | 1.84                      | 1.86                                  | 1.87    |                      | <b>-</b> |
| Numb                | er of da       | ys in mo           | nth (Tab    | le 1a)                     |                        |             |            |                          |                       | Average =                 | Sum(40)1                              | 12 /12= | 1.85                 | (40)     |
|                     | Jan            | Feb                | Mar         | Apr                        | May                    | Jun         | Jul        | Aug                      | Sep                   | Oct                       | Nov                                   | Dec     |                      |          |
| (41)m=              | 31             | 28                 | 31          | 30                         | 31                     | 30          | 31         | 31                       | 30                    | 31                        | 30                                    | 31      |                      | (41)     |
|                     |                |                    |             |                            | -                      | -           | -          |                          |                       | -                         | -                                     | -       | -                    |          |
| 4. W                | ater hea       | ting ene           | rgy requ    | irement:                   |                        |             |            |                          |                       |                           |                                       | kWh/y   | ear:                 |          |
|                     |                |                    |             |                            |                        |             |            |                          |                       |                           | _                                     |         | 1                    |          |
| Assun               | ned occ≀<br>=∆ | upancy,<br>o N – 1 | N<br>⊥176 v | / [1 <u>- evn</u>          |                        |             | -130       | (12)1 + 0(               | 1013 v ( <sup>-</sup> | TFA -13                   | 1.                                    | 75      |                      | (42)     |
| if TF               | FA £ 13.       | 9, N = 1           | 1 1.707     | τι σχρ                     | ( 0.0000               | ,45 X (11   | A 10.0     | <i>[]2)</i> ] 10.0       | 5015 X (              | 11 A 10                   |                                       |         |                      |          |
| Ann <mark>ua</mark> | al averag      | ge hot wa          | ater usag   | ge in litre                | es per da              | ay Vd,av    | erage =    | (25 x N)                 | + 36                  |                           | 75                                    | .74     |                      | (43)     |
| Reduce              | e the annua    | al average         | hot water   | usage by                   | 5% if the c            | lwelling is | designed : | to achieve               | a water us            | se target o               | f                                     |         |                      |          |
|                     |                |                    |             |                            | aler use, i            |             |            |                          |                       |                           |                                       |         | 1                    |          |
| Hotwo               | Jan            | Feb                | Mar         | Apr                        | May                    | Jun         | Jul        | Aug                      | Sep                   | Oct                       | Nov                                   | Dec     |                      |          |
| HOL WA              | ler usage i    | n illies pei<br>T  |             | ach month<br>1             | va,m = ra              |             |            | (43)                     |                       |                           |                                       |         | ,                    |          |
| (44)m=              | 83.31          | 80.28              | 77.26       | 74.23                      | 71.2                   | 68.17       | 68.17      | 71.2                     | 74.23                 | 77.26                     | 80.28                                 | 83.31   |                      | <b>-</b> |
| Energy              | content o      | f hot water        | used - ca   | lculated m                 | onthly $= 4$ .         | 190 x Vd,r  | m x nm x D | OTm / 3600               | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)  | 9 <mark>08.89</mark> | (44)     |
| (45)m=              | 123.55         | 108.06             | 111.51      | 97.22                      | 93.28                  | 80.49       | 74.59      | 85.59                    | 86.62                 | 100.94                    | 110.19                                | 119.65  |                      |          |
|                     |                |                    |             |                            |                        |             |            |                          |                       | Total = Su                | m(45) <sub>112</sub> =                | =       | 1191.69              | (45)     |
| lf instar           | ntaneous v     | vater heati        | ng at point | t of use (no               | o hot water            | r storage), | enter 0 in | boxes (46)               | ) to (61)             |                           |                                       |         | •                    |          |
| (46)m=              | 18.53          | 16.21              | 16.73       | 14.58                      | 13.99                  | 12.07       | 11.19      | 12.84                    | 12.99                 | 15.14                     | 16.53                                 | 17.95   |                      | (46)     |
| vvater              | storage        | loss:              | ) includir  |                            | alar ar M              |             | ctorago    | within or                |                       | col                       |                                       | 4.0.0   | 1                    | (47)     |
|                     |                |                    |             | iy ariy so                 |                        | ntor 110    | Sillaye    | (47)                     | anie ves              | 301                       |                                       | 160     | J                    | (47)     |
| Other               | wise if n      | n stored           | hot wate    | arik iri uw<br>er (this ir | vennig, e<br>ncludes i | nstantar    |            | mhi hoil                 | ers) ente             | ≥r '0' in <i>(</i>        | 47)                                   |         |                      |          |
| Water               | storage        | loss:              | not wat     |                            |                        | nstantai    |            |                          |                       |                           |                                       |         |                      |          |
| a) If r             | nanufac        | turer's de         | eclared I   | oss facto                  | or is kno              | wn (kWł     | n/day):    |                          |                       |                           |                                       | 0       | ]                    | (48)     |
| Temp                | erature f      | actor fro          | m Table     | 2b                         |                        |             |            |                          |                       |                           |                                       | 0       |                      | (49)     |
| Enera               | v lost fro     | om watei           | r storage   | . kWh/ve                   | ear                    |             |            | (48) x (49)              | ) =                   |                           | 1                                     | 10      | ]                    | (50)     |
| b) If r             | nanufac        | turer's d          | eclared     | cylinder                   | loss fact              | or is not   | known:     |                          |                       |                           | · ·                                   | 10      | J                    | ()       |
| Hot w               | ater stor      | age loss           | factor f    | rom Tab                    | le 2 (kW               | h/litre/da  | ay)        |                          |                       |                           | 0.                                    | .02     | ]                    | (51)     |
| If com              | munity h       | neating s          | see secti   | on 4.3                     |                        |             |            |                          |                       |                           |                                       |         | 1                    |          |
| Volum               | ne tactor      | Trom Ta            | ble 2a      | 2h                         |                        |             |            |                          |                       |                           | 1.                                    | 03      | 4                    | (52)     |
| remp<br>E           |                |                    |             | ; ZU                       |                        |             |            | ( <b>1 1 1 1 1 1 1 1</b> |                       | 50)                       |                                       | .6      | ]                    | (53)     |
| Energ               | y lost fro     | om water           | r storage   | e, KVVh/ye                 | ear                    |             |            | (47) x (51)              | ) x (52) x (          | 53) =                     | 1.                                    | .03     |                      | (54)     |
| Enter               | (00) Or        | (34) IN (3         | 55)         |                            |                        |             |            |                          |                       |                           | 1.                                    | .03     |                      | (55)     |

| Water                                                                                                  | storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | loss cal                                                                                                                    | culated                                                                                              | for each                                                                           | month                                                                       |                                                                                            |                                                                                        | ((56)m = (                                                                                  | 55) × (41)ı                                                                                       | m                                                                                     |                                                                |                                                       |               |                                                                                                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------|
| (56)m=                                                                                                 | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.92                                                                                                                       | 32.01                                                                                                | 30.98                                                                              | 32.01                                                                       | 30.98                                                                                      | 32.01                                                                                  | 32.01                                                                                       | 30.98                                                                                             | 32.01                                                                                 | 30.98                                                          | 32.01                                                 |               | (56)                                                                                           |
| If cylind                                                                                              | er contain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s dedicate                                                                                                                  | d solar sto                                                                                          | rage, (57)                                                                         | m = (56)m                                                                   | x [(50) – (                                                                                | H11)] ÷ (5                                                                             | 0), else (5                                                                                 | 7)m = (56)                                                                                        | m where (                                                                             | H11) is fro                                                    | m Append                                              | ix H          |                                                                                                |
| (57)m=                                                                                                 | 32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.92                                                                                                                       | 32.01                                                                                                | 30.98                                                                              | 32.01                                                                       | 30.98                                                                                      | 32.01                                                                                  | 32.01                                                                                       | 30.98                                                                                             | 32.01                                                                                 | 30.98                                                          | 32.01                                                 |               | (57)                                                                                           |
| Prima                                                                                                  | y circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | loss (ar                                                                                                                    | nual) fro                                                                                            | om Table                                                                           | e 3                                                                         |                                                                                            |                                                                                        |                                                                                             |                                                                                                   |                                                                                       |                                                                | 0                                                     |               | (58)                                                                                           |
| Primar                                                                                                 | y circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | loss cal                                                                                                                    | culated                                                                                              | for each                                                                           | month (                                                                     | 59)m = (                                                                                   | (58) ÷ 36                                                                              | 65 × (41)                                                                                   | m                                                                                                 |                                                                                       |                                                                |                                                       |               |                                                                                                |
| (mo                                                                                                    | dified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | factor f                                                                                                                    | rom Tab                                                                                              | le H5 if t                                                                         | here is s                                                                   | solar wat                                                                                  | er heatii                                                                              | ng and a                                                                                    | cylinde                                                                                           | r thermo                                                                              | stat)                                                          |                                                       |               |                                                                                                |
| (59)m=                                                                                                 | 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.01                                                                                                                       | 23.26                                                                                                | 22.51                                                                              | 23.26                                                                       | 22.51                                                                                      | 23.26                                                                                  | 23.26                                                                                       | 22.51                                                                                             | 23.26                                                                                 | 22.51                                                          | 23.26                                                 |               | (59)                                                                                           |
| Combi                                                                                                  | loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lculated                                                                                                                    | for each                                                                                             | month                                                                              | (61)m =                                                                     | (60) ÷ 36                                                                                  | 65 × (41)                                                                              | )m                                                                                          |                                                                                                   |                                                                                       |                                                                |                                                       |               |                                                                                                |
| (61)m=                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                           | 0                                                                                                    | 0                                                                                  | 0                                                                           | 0                                                                                          | 0                                                                                      | 0                                                                                           | 0                                                                                                 | 0                                                                                     | 0                                                              | 0                                                     |               | (61)                                                                                           |
| Total h                                                                                                | neat req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uired for                                                                                                                   | water h                                                                                              | eating ca                                                                          | alculated                                                                   | l for eac                                                                                  | h month                                                                                | (62)m =                                                                                     | 0.85 × (                                                                                          | (45)m +                                                                               | (46)m +                                                        | (57)m +                                               | (59)m + (61)m |                                                                                                |
| (62)m=                                                                                                 | 178.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157.99                                                                                                                      | 166.79                                                                                               | 150.71                                                                             | 148.56                                                                      | 133.99                                                                                     | 129.87                                                                                 | 140.87                                                                                      | 140.11                                                                                            | 156.22                                                                                | 163.68                                                         | 174.93                                                |               | (62)                                                                                           |
| Solar DI                                                                                               | HW input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated                                                                                                                  | using App                                                                                            | endix G o                                                                          | Appendix                                                                    | H (negati                                                                                  | ve quantity                                                                            | /) (enter '0                                                                                | if no sola                                                                                        | r contribut                                                                           | ion to wate                                                    | er heating)                                           |               |                                                                                                |
| (add a                                                                                                 | dditiona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l lines if                                                                                                                  | FGHRS                                                                                                | and/or \                                                                           | NWHRS                                                                       | applies                                                                                    | , see Ap                                                                               | pendix C                                                                                    | G)                                                                                                |                                                                                       |                                                                |                                                       |               |                                                                                                |
| (63)m=                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                           | 0                                                                                                    | 0                                                                                  | 0                                                                           | 0                                                                                          | 0                                                                                      | 0                                                                                           | 0                                                                                                 | 0                                                                                     | 0                                                              | 0                                                     |               | (63)                                                                                           |
| Output                                                                                                 | t from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ater hea                                                                                                                    | ter                                                                                                  |                                                                                    |                                                                             |                                                                                            |                                                                                        |                                                                                             |                                                                                                   |                                                                                       |                                                                |                                                       |               |                                                                                                |
| (64)m=                                                                                                 | 178.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157.99                                                                                                                      | 166.79                                                                                               | 150.71                                                                             | 148.56                                                                      | 133.99                                                                                     | 129.87                                                                                 | 140.87                                                                                      | 140.11                                                                                            | 156.22                                                                                | 163.68                                                         | 174.93                                                |               | -                                                                                              |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                      |                                                                                    |                                                                             |                                                                                            |                                                                                        | Outp                                                                                        | out from wa                                                                                       | ater heate                                                                            | r (annual)₁                                                    | 12                                                    | 1842.53       | (64)                                                                                           |
| Heat g                                                                                                 | ains fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m water                                                                                                                     | heating                                                                                              | kWh/m                                                                              | onth 0.2                                                                    | 5 ´[0.85                                                                                   | × (45)m                                                                                | ı + (61)n                                                                                   | ı] + 0.8 x                                                                                        | ( <mark>46)m</mark>                                                                   | + (57)m                                                        | + (59)m                                               | ]             |                                                                                                |
| (65)m=                                                                                                 | 59.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52.74                                                                                                                       | <mark>5</mark> 5.69                                                                                  | 50.33                                                                              | 49.63                                                                       | 44.77                                                                                      | 43.41                                                                                  | 47.07                                                                                       | 46.81                                                                                             | 52.17                                                                                 | 54.65                                                          | 58.4                                                  |               | (65)                                                                                           |
| inclu                                                                                                  | ude (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m in calo                                                                                                                   | culation                                                                                             | of (65)m                                                                           | only if c                                                                   | ylinder i                                                                                  | s in the o                                                                             | dwelling                                                                                    | or hot w                                                                                          | ate <mark>r is f</mark> r                                                             | om com                                                         | <mark>mu</mark> nity h                                | leating       |                                                                                                |
| 5. In                                                                                                  | ternal ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ains (see                                                                                                                   | e Table {                                                                                            | 5 and 5a                                                                           | ):                                                                          |                                                                                            |                                                                                        |                                                                                             |                                                                                                   |                                                                                       |                                                                |                                                       |               |                                                                                                |
| Metab                                                                                                  | olic gair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s (Table                                                                                                                    | 5), Wat                                                                                              | ts                                                                                 |                                                                             |                                                                                            |                                                                                        | -                                                                                           |                                                                                                   |                                                                                       |                                                                |                                                       |               |                                                                                                |
|                                                                                                        | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feb                                                                                                                         | Mar                                                                                                  | Apr                                                                                | May                                                                         | Jun                                                                                        | Jul                                                                                    | Aug                                                                                         | Sep                                                                                               | Oct                                                                                   | Nov                                                            | Dec                                                   |               |                                                                                                |
| (66)m=                                                                                                 | 87.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.45                                                                                                                       | 87.45                                                                                                | 87.45                                                                              | 87.45                                                                       | 87.45                                                                                      | 87.45                                                                                  | 87.45                                                                                       | 87.45                                                                                             | 87.45                                                                                 | 87.45                                                          | 87.45                                                 |               | (66)                                                                                           |
| Lightin                                                                                                | ig gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (calcula                                                                                                                    | ted in Ap                                                                                            | opendix                                                                            | L, equat                                                                    | ion L9 o                                                                                   | r L9a), a                                                                              | lso see                                                                                     | Table 5                                                                                           |                                                                                       |                                                                |                                                       | L             |                                                                                                |
| (67)m=                                                                                                 | 16.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.8                                                                                                                        | 12.03                                                                                                | 9.11                                                                               | 6.81                                                                        | 5.75                                                                                       | 6.21                                                                                   | 8.08                                                                                        | 10.84                                                                                             | 13 76                                                                                 | 16.06                                                          | 1710                                                  |               | (67)                                                                                           |
| Applia                                                                                                 | 0000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                      |                                                                                    |                                                                             |                                                                                            |                                                                                        |                                                                                             | 10.04                                                                                             | 15.70                                                                                 | 10.00                                                          | 17.12                                                 |               |                                                                                                |
| (68)m=                                                                                                 | nces ya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ins (calc                                                                                                                   | ulated ir                                                                                            | Append                                                                             | dix L, eq                                                                   | uation L                                                                                   | 13 or L1                                                                               | 3a), alsc                                                                                   | see Ta                                                                                            | ble 5                                                                                 | 10.00                                                          | 17.12                                                 |               |                                                                                                |
|                                                                                                        | 152.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ins (calc<br>154.01                                                                                                         | ulated ir<br>150.02                                                                                  | 141.54                                                                             | dix L, eq<br>130.83                                                         | uation L<br>120.76                                                                         | 13 or L1<br>114.03                                                                     | 3a), alsc<br>112.45                                                                         | see Tal<br>116.44                                                                                 | ble 5<br>124.92                                                                       | 135.63                                                         | 145.7                                                 |               | (68)                                                                                           |
| Cookir                                                                                                 | 152.43<br>ng gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ins (calc<br>154.01<br>(calcula                                                                                             | ulated ir<br>150.02<br>ited in A                                                                     | Append<br>141.54<br>ppendix                                                        | dix L, eq<br>130.83<br>L, equat                                             | uation L<br>120.76<br>tion L15                                                             | 13 or L1<br>114.03<br>or L15a)                                                         | 3a), alsc<br>112.45<br>), also se                                                           | see Tal<br>116.44<br>ee Table                                                                     | ble 5<br>124.92<br>5                                                                  | 135.63                                                         | 145.7                                                 |               | (68)                                                                                           |
| Cookir<br>(69)m=                                                                                       | 152.43<br>ng gains<br>31.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ins (calc<br>154.01<br>(calcula<br>31.75                                                                                    | ulated ir<br>150.02<br>ited in A<br>31.75                                                            | Append<br>141.54<br>ppendix<br>31.75                                               | dix L, eq<br>130.83<br>L, equat<br>31.75                                    | uation L<br>120.76<br>tion L15<br>31.75                                                    | 13 or L1<br>114.03<br>or L15a)<br>31.75                                                | 3a), also<br>112.45<br>), also se<br>31.75                                                  | o see Tal<br>116.44<br>ee Table<br>31.75                                                          | 5<br>31.75                                                                            | 135.63<br>31.75                                                | 145.7<br>31.75                                        |               | (68)<br>(69)                                                                                   |
| Cookir<br>(69)m=<br>Pumps                                                                              | 152.43<br>ng gains<br>31.75<br>s and fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ins (calc<br>154.01<br>(calcula<br>31.75<br>ns gains                                                                        | ulated ir<br>150.02<br>ted in A<br>31.75<br>(Table \$                                                | Append<br>141.54<br>ppendix<br>31.75<br>5a)                                        | dix L, eq<br>130.83<br>L, equa<br>31.75                                     | uation L<br>120.76<br>tion L15<br>31.75                                                    | 13 or L1<br>114.03<br>or L15a)<br>31.75                                                | 3a), alsc<br>112.45<br>), also se<br>31.75                                                  | 9 see Tal<br>116.44<br>29 Table<br>31.75                                                          | 13.70<br>ble 5<br>124.92<br>5<br>31.75                                                | 135.63<br>31.75                                                | 145.7<br>31.75                                        |               | (68)<br>(69)                                                                                   |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=                                                                    | $\begin{bmatrix} 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\ 152.43 \\$ | ins (calc<br>154.01<br>(calcula<br>31.75<br>ns gains<br>0                                                                   | ulated ir<br>150.02<br>ted in A<br>31.75<br>(Table \$<br>0                                           | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0                                   | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0                               | uation L<br>120.76<br>tion L15<br>31.75                                                    | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0                                           | 3a), also<br>112.45<br>), also se<br>31.75<br>0                                             | 0 see Tal<br>116.44<br>2ee Table<br>31.75                                                         | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0                                           | 135.63<br>31.75<br>0                                           | 145.7<br>31.75                                        |               | (68)<br>(69)<br>(70)                                                                           |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses                                                          | $\begin{bmatrix} 152.43 \\ 152.43 \\ 31.75 \\ s and far \\ 0 \\ s e.g. events$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ins (calc<br>154.01<br>(calcula<br>31.75<br>ns gains<br>0<br>raporatic                                                      | ulated ir<br>150.02<br>Ited in A<br>31.75<br>(Table §<br>0<br>n (nega                                | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu                      | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab                   | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>ule 5)                                     | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0                                           | 3a), also<br>112.45<br>), also se<br>31.75                                                  | 0 see Tal<br>116.44<br>ee Table<br>31.75                                                          | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0                                           | 135.63<br>31.75<br>0                                           | 145.7<br>31.75<br>0                                   |               | (68)<br>(69)<br>(70)                                                                           |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                                                | 152.43<br>152.43<br>ng gains<br>31.75<br>s and fai<br>0<br>s e.g. ev<br>-69.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INS (CAIC<br>154.01<br>(calcula<br>31.75<br>INS gains<br>0<br>raporatic<br>-69.96                                           | ulated ir<br>150.02<br>ited in A<br>31.75<br>(Table 9<br>0<br>n (nega<br>-69.96                      | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu<br>-69.96            | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab<br>-69.96         | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>le 5)<br>-69.96                            | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0<br>-69.96                                 | 3a), also<br>112.45<br>), also se<br>31.75<br>0                                             | 0 see Tal<br>116.44<br>2e Table<br>31.75<br>0                                                     | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0                                           | 135.63<br>31.75<br>0<br>-69.96                                 | 145.7<br>31.75<br>0<br>-69.96                         |               | (68)<br>(69)<br>(70)<br>(71)                                                                   |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water                                       | 152.43<br>ng gains<br>31.75<br>s and fa<br>0<br>s e.g. ev<br>-69.96<br>heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INS (CAIC<br>154.01<br>(Calcula<br>31.75<br>INS gains<br>0<br>raporatic<br>-69.96<br>gains (T                               | ulated ir<br>150.02<br>ted in A<br>31.75<br>(Table 9<br>0<br>n (nega<br>-69.96<br>Fable 5)           | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu<br>-69.96            | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab                   | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>le 5)<br>-69.96                            | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0<br>-69.96                                 | 3a), also<br>112.45<br>), also se<br>31.75<br>0<br>-69.96                                   | 0 see Tal<br>116.44<br>2e Table<br>31.75<br>0<br>-69.96                                           | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0<br>-69.96                                 | 135.63<br>31.75<br>0<br>-69.96                                 | 145.7<br>31.75<br>0<br>-69.96                         |               | (68)<br>(69)<br>(70)<br>(71)                                                                   |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=                             | 152.43         152.43         ng gains         31.75         s and fail         0         s e.g. ev         -69.96         heating         80.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INS (CAIC<br>154.01<br>(calcula<br>31.75<br>INS gains<br>0<br>raporatic<br>-69.96<br>gains (T<br>78.48                      | ulated ir<br>150.02<br>ited in A<br>31.75<br>(Table 9<br>0<br>n (nega<br>-69.96<br>Table 5)<br>74.85 | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu<br>-69.96            | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab<br>-69.96         | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>le 5)<br>-69.96<br>62.19                   | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0<br>-69.96<br>58.35                        | 3a), also<br>112.45<br>), also se<br>31.75<br>0<br>-69.96                                   | 0.034<br>0 see Tal<br>116.44<br>2e Table<br>31.75<br>0<br>-69.96<br>65.01                         | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0<br>-69.96<br>70.12                        | 135.63<br>31.75<br>0<br>-69.96<br>75.9                         | 145.7<br>31.75<br>0<br>-69.96<br>78.49                |               | (68)<br>(69)<br>(70)<br>(71)<br>(72)                                                           |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i           | 152.43<br>ng gains<br>31.75<br>s and fa<br>0<br>s e.g. ev<br>-69.96<br>heating<br>80.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INS (CAIC<br>154.01<br>(calcula<br>31.75<br>INS gains<br>0<br>vaporatic<br>-69.96<br>gains (T<br>78.48<br>gains =           | ulated ir<br>150.02<br>ited in A<br>31.75<br>(Table 8<br>0<br>n (nega<br>-69.96<br>Table 5)<br>74.85 | Append<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu<br>-69.96            | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab<br>-69.96<br>66.7 | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>le 5)<br>-69.96<br>62.19<br>(66)           | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0<br>-69.96<br>58.35<br>m + (67)m           | 3a), also<br>112.45<br>), also se<br>31.75<br>0<br>-69.96<br>63.27<br>n + (68)m +           | 0.04<br>0 see Tal<br>116.44<br>2e Table<br>31.75<br>0<br>-69.96<br>65.01<br>- (69)m + (           | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0<br>-69.96<br>70.12<br>70)m + (7           | 135.63<br>31.75<br>0<br>-69.96<br>75.9<br>1)m + (72)           | 145.7<br>31.75<br>0<br>-69.96<br>78.49                |               | (68)<br>(69)<br>(70)<br>(71)<br>(72)                                                           |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i<br>(73)m= | 152.43<br>ng gains<br>31.75<br>s and fa<br>0<br>s e.g. ev<br>-69.96<br>heating<br>80.23<br>internal<br>298.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INS (CAIC<br>154.01<br>(calcula<br>31.75<br>INS gains<br>0<br>raporatic<br>-69.96<br>gains (T<br>78.48<br>gains =<br>296.52 | ulated ir<br>150.02<br>ited in A<br>31.75<br>(Table 9<br>0<br>n (nega<br>-69.96<br>Table 5)<br>74.85 | Appendix<br>141.54<br>ppendix<br>31.75<br>5a)<br>0<br>tive valu<br>-69.96<br>69.91 | dix L, eq<br>130.83<br>L, equat<br>31.75<br>0<br>es) (Tab<br>-69.96<br>66.7 | uation L<br>120.76<br>tion L15<br>31.75<br>0<br>le 5)<br>-69.96<br>62.19<br>(66)<br>237.93 | 13 or L1<br>114.03<br>or L15a)<br>31.75<br>0<br>-69.96<br>58.35<br>m + (67)m<br>227.83 | 3a), also<br>112.45<br>), also se<br>31.75<br>0<br>-69.96<br>63.27<br>n + (68)m =<br>233.03 | 0.04<br>0 see Tal<br>116.44<br>2e Table<br>31.75<br>0<br>-69.96<br>65.01<br>- (69)m + (<br>241.52 | 13.70<br>ble 5<br>124.92<br>5<br>31.75<br>0<br>-69.96<br>70.12<br>70)m + (7<br>258.05 | 135.63<br>31.75<br>0<br>-69.96<br>75.9<br>1)m + (72)<br>276.83 | 145.7<br>31.75<br>0<br>-69.96<br>78.49<br>m<br>290.55 |               | <ul> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> <li>(73)</li> </ul> |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta             | ation:   | Access F<br>Table 6d | actor  |                  | Area<br>m² |          |                     | Flu<br>Tal | x<br>ble 6a |           | Та    | g_<br>able 6b      |                    | FF<br>Table 60 | 5        |      | Gains<br>(W)                            |      |
|---------------------|----------|----------------------|--------|------------------|------------|----------|---------------------|------------|-------------|-----------|-------|--------------------|--------------------|----------------|----------|------|-----------------------------------------|------|
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 1          | 0.63        | ×         |       | 0.76               | x                  | 0.7            |          | ] =  | 7.72                                    | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 2          | 0.32        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 14.76                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 3          | 4.53        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 25.08                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 5          | 5.46        | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 40.28                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 7          | 4.72        | x         |       | 0.76               | ×                  | 0.7            |          | =    | 54.27                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 7          | 9.99        | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 58.09                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 7          | 4.68        | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 54.24                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | 97       | x                   | 5          | 9.25        | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 43.03                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 4          | 1.52        | ×         |       | 0.76               | x                  | 0.7            |          | ] =  | 30.15                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 2          | 4.19        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 17.57                                   | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 1          | 3.12        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 9.53                                    | (74) |
| North               | 0.9x     | 0.77                 |        | x                | 1.9        | )7       | x                   | 3          | 3.86        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 6.44                                    | (74) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 4          | 6.75        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 27.58                                   | (78) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 7          | 6.57        | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 45.17                                   | (78) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 9          | 7.53        | x         |       | 0.76               | ×                  | 0.7            |          | ] =  | 57.53                                   | (78) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 1          | 10.23       | x         |       | 0.76               | x                  | 0.7            |          | =    | 65.03                                   | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | х                   | 1.         | 14.87       | x         |       | 0.76               | x                  | 0.7            |          | ] =  | 67.76                                   | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | х                   | 1          | 10.55       | ×         |       | 0.76               | ×                  | 0.7            |          | ] =  | 65.21                                   | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 10         | 08.01       | x         |       | 0.76               | x                  | 0.7            |          | ] =  | 63.71                                   | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 10         | 04.89       | x         |       | 0.76               | x                  | 0.7            |          | =    | 61.88                                   | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 10         | 01.89       | ×         |       | 0.76               | x                  | 0.7            |          | ] =  | 60.1                                    | (78) |
| Sout <mark>h</mark> | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | х                   | 8          | 2.59        | x         |       | 0.76               | x                  | 0.7            |          | =    | 48.72                                   | (78) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 5          | 5.42        | x         |       | 0.76               | ×                  | 0.7            |          | =    | 32.69                                   | (78) |
| South               | 0.9x     | 0.77                 |        | x                | 1.0        | 6        | x                   | 2          | 10.4        | x         |       | 0.76               | x                  | 0.7            |          | =    | 23.83                                   | (78) |
|                     |          |                      |        |                  |            |          |                     |            |             |           |       |                    |                    |                |          |      |                                         |      |
| Solar g             | ains ir  | n watts, ca          |        | ted              | for eac    | h mont   | h<br>I              | 123.3      | 117.05      | (83)n     |       | um(74)m .<br>00.25 | <mark>(82)m</mark> | 12 22          | 30       | 1 27 |                                         | (83) |
| Total o             | ains –   | internal a           | and so | <u>)</u><br>Slar | (84)m =    | = (73)m  | <u>'  </u><br>) + ( | 83)m       | watts       |           |       | 50.25              | 00.20              | , 42.22        |          | 5.21 |                                         | (00) |
| (84)m=              | 333.85   | 356.45               | 368.   | 75               | 375.1      | 375.6    | 3                   | 61.23      | 345.78      | 337       | .93   | 331.78             | 324.3              | 3 319.0        | 5 32     | 0.82 |                                         | (84) |
| 7 Mo                | on inte  | arnal tomr           |        | uro (            | (hooting   |          | n)                  |            |             | I         | I     |                    |                    |                | <u>I</u> |      |                                         |      |
| Temp                | eratur   | e durina h           | neatin |                  | eriods ir  | the liv  | in)<br>vina         | area f     | rom Tak     | nle 9     | Th    | 1 (°C)             |                    |                |          |      | 21                                      | (85) |
| Litilisa            | ation fa | e during r           | ains f | or li            | iving are  | ha h1    | '''''y<br>m (s      | ee Ta      | hle 9a)     |           | ,     | r ( 0)             |                    |                |          |      | 21                                      | (00) |
| Otimot              | Jan      | Feb                  | Ma     | ar               | Apr        | May      | /                   | Jun        | Jul         | A         | ua    | Sep                | Oct                | : Nov          | / [      | Dec  |                                         |      |
| (86)m=              | 1        | 1                    | 1      |                  | 1          | 1        | ╈                   | 0.98       | 0.91        | 0.9       | 93    | 0.99               | 1                  | 1              |          | 1    |                                         | (86) |
| Mean                | intern   | al temper            | ature  | in l             | iving are  | ea T1 (  | follo               | ow ste     | os 3 to 7   | r<br>in 1 | Table | 9c)                |                    |                |          |      |                                         |      |
| (87)m=              | 19.65    | 19.74                | 19.9   | 92               | 20.19      | 20.47    |                     | 20.74      | 20.9        | 20.       | .88   | 20.67              | 20.31              | 19.95          | 19       | 9.65 |                                         | (87) |
| Temp                | eratur   | e durina h           | neatin |                  | eriods ir  | n rest c | f dv                | vellina    | from Ta     | ble       | 9. Th | n2 (°C)            |                    |                |          |      |                                         |      |
| (88)m=              | 19.4     | 19.4                 | 19.4   | 11               | 19.44      | 19.44    | T                   | 19.47      | 19.47       | 19.       | .47   | 19.46              | 19.44              | 19.43          | 19       | 9.42 |                                         | (88) |
| Utilise             | ation fa | ctor for a           | ains f | or r             | est of d   | welling  | . h2                | .m (se     | e Table     | 9a)       |       |                    |                    |                | _!       |      | I                                       |      |
| (89)m=              | 1        | 1                    | 1      |                  | 1          | 0.99     | , <u></u>           | 0.93       | 0.73        | 0.7       | 77    | 0.97               | 1                  | 1              |          | 1    |                                         | (89) |
|                     |          |                      |        |                  |            |          |                     |            |             |           |       |                    |                    |                |          |      | l i i i i i i i i i i i i i i i i i i i |      |

| Mean    | interna    | l temper            | ature in            | the rest              | of dwelli             | ng T2 (f      | ollow ste  | eps 3 to 7 | 7 in Tabl          | e 9c)           |            |             |           |                |
|---------|------------|---------------------|---------------------|-----------------------|-----------------------|---------------|------------|------------|--------------------|-----------------|------------|-------------|-----------|----------------|
| (90)m=  | 17.66      | 17.8                | 18.06               | 18.48                 | 18.89                 | 19.28         | 19.44      | 19.43      | 19.18              | 18.66           | 18.12      | 17.68       |           | (90)           |
|         |            |                     | •                   |                       |                       |               |            |            | f                  | LA = Livin      | g area ÷ ( | 4) =        | 0.66      | (91)           |
| Mean    | interna    | l temper            | ature (fo           | or the wh             | ole dwe               | lling) = fl   | LA × T1    | + (1 – fL  | A) × T2            |                 |            |             |           |                |
| (92)m=  | 18.98      | 19.08               | 19.29               | 19.61                 | 19.93                 | 20.25         | 20.4       | 20.39      | 20.16              | 19.75           | 19.33      | 18.98       |           | (92)           |
| Apply   | adjustn    | nent to t           | he mear             | internal              | temper                | ature fro     | m Table    | 4e, whe    | ere appro          | opriate         |            |             |           |                |
| (93)m=  | 18.98      | 19.08               | 19.29               | 19.61                 | 19.93                 | 20.25         | 20.4       | 20.39      | 20.16              | 19.75           | 19.33      | 18.98       |           | (93)           |
| 8. Spa  | ace hea    | ting requ           | uirement            |                       |                       |               |            |            |                    |                 |            |             |           |                |
| Set T   | i to the i | mean int            | ernal ter           | mperatur              | e obtain              | ed at ste     | ep 11 of   | Table 9    | o, so tha          | t Ti,m=(        | 76)m an    | d re-calc   | ulate     |                |
| the ut  | liisalion  | Feb                 | Mar                 |                       | Mav                   | lun           | lul        | Διια       | Sen                | Oct             | Nov        | Dec         |           |                |
| Utilisa | ation fac  | tor for a           | ains. hm            | <u>יקר ן</u><br>ו:    | iviay                 | Jun           | 001        | Aug        |                    | 001             | 1107       | Dee         |           |                |
| (94)m=  | 1          | 1                   | 1                   | 1                     | 0.99                  | 0.96          | 0.86       | 0.89       | 0.98               | 1               | 1          | 1           |           | (94)           |
| Usefu   | l gains,   | hmGm                | , W = (94           | 4)m x (84             | 4)m                   | I             | 1          | 1          |                    |                 | 1          |             |           |                |
| (95)m=  | 333.76     | 356.28              | 368.41              | 374.18                | 372.3                 | 346.74        | 298.09     | 300.02     | 324.98             | 323.49          | 318.87     | 320.75      |           | (95)           |
| Month   | nly aver   | age exte            | rnal tem            | perature              | e from Ta             | able 8        |            | -          |                    |                 |            |             |           |                |
| (96)m=  | 4.3        | 4.9                 | 6.5                 | 8.9                   | 11.7                  | 14.6          | 16.6       | 16.4       | 14.1               | 10.6            | 7.1        | 4.2         |           | (96)           |
| Heat    | loss rate  | e for me            | an interr           | al tempe              | erature,              | Lm , W =      | =[(39)m :  | x [(93)m   | – (96)m            | ]               |            |             |           |                |
| (97)m=  | 1453.12    | 1397.82             | 1255.08             | 1028.73               | 787.57                | 530.19        | 357.02     | 373.04     | 573.05             | 875.26          | 1179.74    | 1438.11     |           | (97)           |
| Space   | e heatin   | g require           | ement fo            | or each m             | nonth, k              | Nh/mont       | th = 0.02  | 24 x [(97) | )m – (95           | )m] x (4        | 1)m        | 004.00      |           |                |
| (98)m=  | 832.81     | 699.91              | 659.68              | 471.27                | 308.96                | 0             | 0          |            | 0                  | 410.52          | 619.82     | 831.32      | 4004.00   |                |
|         |            |                     |                     |                       |                       |               |            | lota       | i per year         | (kvvn/year      | ) = Sum(9  | 8)15,912 =  | 4834.29   | (90)           |
| Space   | e heatin   | g require           | ement in            | kWh/m <sup>2</sup>    | /year                 |               |            |            |                    |                 |            |             | 92.97     | (99)           |
| 9b. En  | ergy rec   | quiremer            | nts – Cor           | mmu <mark>nity</mark> | heating               | scheme        |            |            |                    |                 |            |             |           |                |
| This pa | art is us  | ed for sp           | ace hea             | iting, spa            | ace cooli<br>(supplen | ing or wa     | ater heat  | ting prov  | ided by a          | a comm          | unity scł  | neme.       | 0         | (301)          |
|         | in or spa  | ice near            | nom se              | conuary/              | supplen               | lentary       | nealing (  |            | 1) 0 11 10         | one             |            |             | 0         | (301)          |
| Fractio | n of spa   | ace heat            | from co             | mmunity               | system                | 1 – (30′      | 1) =       |            |                    |                 |            |             | 1         | (302)          |
| The con | nmunity so | cheme ma            | y obtain he         | eat from se           | everal sour           | rces. The p   | procedure  | allows for | CHP and under C    | up to four      | other heat | sources; ti | he latter |                |
| Fractio | on of hea  | at from C           | s, geowen<br>Commun | ity boiler            | 'S                    | iom power     | า รเลแบกร. | See Appel  | iuix C.            |                 |            |             | 1         | (303a)         |
| Fractio | n of tot   | al snace            | heat fro            | m Comn                | hunity be             | hilers        |            |            |                    | (3              | 02) x (303 | a) –        | 1         | `´´´<br>(304a) |
| Factor  | for cont   |                     | horaina             | mothod                |                       | 4o(2)) fo     |            | unity has  | ting over          | tom (C          | 02) x (000 | ω) –        | 1         |                |
|         |            |                     |                     |                       | (Table                | 40(3)) 10<br> | r commu    | unity nea  | ung sys            | lem             |            |             | 1         | (305)          |
| Distrib | ution los  | s factor            | (Table 1            | (2c) for c            | commun                | ity heatii    | ng syste   | m          |                    |                 |            |             | 1.05      | (306)          |
|         | heating    | <b>g</b><br>heating | requirem            | hent                  |                       |               |            |            |                    |                 |            |             | kWh/yea   | ar             |
| Space   | hoot fro   |                     | munity h            | oilore                |                       |               |            |            | $(08) \times (20)$ | (20)            | 5) x (206) |             | 4034.29   | (2072)         |
| Space   |            |                     |                     | monton                | haating               | avetam        | in 0/ (fro | m Toble    | (90) X (30         | 54a) X (50      | 5) X (300) | -           | 5076.01   |                |
| Enicier |            | econdar             | y/supple            | mentary               | neating               | system        | III % (IIC |            | 4a 01 A            | ppendix         | <b>□</b> ) |             | 0         | (308           |
| Space   | neating    | require             | ment tro            | m secon               | uary/sup              | piemen        | tary syst  | iem        | (98) x (30         | דע (דכ) x 100 - | ÷ (308) =  |             | 0         | (309)          |
| Water   | heating    | <b>j</b>            | oquiror             | ont                   |                       |               |            |            |                    |                 |            | I           | 4040 50   | _              |
| Annua   |            |                     | equirem             |                       |                       |               |            |            |                    |                 |            |             | 1842.53   |                |
|         | i from c   | ommuni              | iy schen            | ie:                   |                       |               |            |            |                    |                 |            |             |           |                |

| Water heat from Community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (64) x (303a) x (3                                                                                                                                                                                    | 305) x (306) =                                                                                                                                                                                                    | 1934.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (310a)                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01 × [(307a)(307e                                                                                                                                                                                   | ) + (310a)(310e)] =                                                                                                                                                                                               | 70.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (313)                                                                                            |
| Cooling System Energy Efficiency Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (314)                                                                                            |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = (107) ÷ (314) =                                                                                                                                                                                     |                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (315)                                                                                            |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | outside                                                                                                                                                                                               |                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (330a)                                                                                           |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (330b)                                                                                           |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (330g)                                                                                           |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =(330a) + (330b)                                                                                                                                                                                      | ) + (330g) =                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (331)                                                                                            |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                   | 294.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (332)                                                                                            |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy<br>kWh/year                                                                                                                                                                                    | Emission factor kg CO2/kWh                                                                                                                                                                                        | Emissions<br>kg CO2/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                     | •                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g two fuels repeat (363) to (3                                                                                                                                                                        | 366) for the second fue                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (367a)                                                                                           |
| CO2 from other sources of space and water heating (not CHP)Efficiency of heat source 1 (%)If there is CHP usingCO2 associated with heat source 1[(307b)+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x                                                                                                                                            | (366) for the second fue                                                                                                                                                                                          | 90<br>= 1682.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (367a)<br>(367)                                                                                  |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                          | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x                                                                                                                                 | 366) for the second fue<br>0 =<br>0.52 =                                                                                                                                                                          | 90<br>= 1682.56<br>= 36.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (367a)<br>(367)<br>(372)                                                                         |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems                                                                                                                                                                                                                                                                                                                                                                                           | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)                                                                                                      | 366) for the second fue<br>0 =<br>0.52 =                                                                                                                                                                          | 90<br>90<br>1682.56<br>36.39<br>1718.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (367a)<br>(367)<br>(372)<br>(373)                                                                |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)                                                                                                                                                                                                                                                                                                                                          | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x                                                                                           | 366) for the second fue<br>0 =<br>0.52 =<br>0 =                                                                                                                                                                   | 9 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (367a)<br>(367)<br>(372)<br>(373)<br>(374)                                                       |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary) CO2 associated with water from immersion heater or instantane                                                                                                                                                                                                                                                                            | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>ous heater (312) x                                                                     | 366) for the second fue         0         0.52         =         0         0         =         0         0         =         0         0         =         0         =         0         =         0         0.22 | el <u>90</u><br>= <u>1682.56</u><br>= <u>36.39</u><br>= <u>1718.95</u><br>= <u>0</u><br>= <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)                                              |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)<br>CO2 associated with water from immersion heater or instantane<br>Total CO2 associated with space and water heating                                                                                                                                                                                                                    | g two fuels repeat (363) to (3<br>(310b)] x 100 ÷ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>ous heater (312) x<br>(373) + (374) + (375) =                                          | 366) for the second fue         0         0.52         =         0         0         =         0         0         =         0         0         =         0         0         0         0         0         0.22 | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0<br>= 0<br>1718.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)                                     |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)<br>CO2 associated with water from immersion heater or instantane<br>Total CO2 associated with space and water heating<br>CO2 associated with electricity for pumps and fans within dwelling                                                                                                                                              | g two fuels repeat (363) to (3<br>(310b)] x 100 $\div$ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br><b>ous heater</b> (312) x<br>(373) + (374) + (375) =<br>ng (331)) x               | 366) for the second fue         0         0.52         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0.52           | el 90<br>= 1682.56<br>= 36.39<br>= 1718.95<br>= 0<br>1718.95<br>= 0<br>1718.95<br>= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)                            |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)<br>CO2 associated with water from immersion heater or instantane<br>Total CO2 associated with space and water heating<br>CO2 associated with electricity for pumps and fans within dwellin<br>CO2 associated with electricity for lighting                                                                                               | g two fuels repeat (363) to (3<br>(310b)] x 100 $\div$ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br><b>cous heater</b> (312) x<br>(373) + (374) + (375) =<br>ng (331)) x<br>(332))) x | 3666) for the second fue         0         0.52         =         0         0.52         =         0.52         =         0.52         =         0.52         =         0.52         =         0.52               | el 90<br>1682.56<br>36.39<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379)                   |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)<br>CO2 associated with water from immersion heater or instantane<br>Total CO2 associated with space and water heating<br>CO2 associated with electricity for pumps and fans within dwellin<br>CO2 associated with electricity for lighting<br><b>Total CO2, kg/year</b> sum of (376)(382) =                                              | g two fuels repeat (363) to (3<br>(310b)] x 100 $\div$ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>cous heater (312) x<br>(373) + (374) + (375) =<br>ng (331)) x<br>(332))) x        | 366) for the second fue         0         0.52         =         0         0.52         =         0.52         =         0.52         =         0.52         =         0.52         =         0.52                | el 90<br>1682.56<br>36.39<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1 | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(379)<br>(383)          |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using<br>CO2 associated with heat source 1 [(307b)+(<br>Electrical energy for heat distribution<br>Total CO2 associated with community systems<br>CO2 associated with space heating (secondary)<br>CO2 associated with water from immersion heater or instantane<br>Total CO2 associated with space and water heating<br>CO2 associated with electricity for pumps and fans within dwelling<br>CO2 associated with electricity for lighting<br>Total CO2, kg/year sum of $(376)(382) =$<br>Dwelling CO2 Emission Rate $(383) \div (4) =$ | g two fuels repeat (363) to (3<br>(310b)] x 100 $\div$ (367b) x<br>(313) x<br>(363)(366) + (368)(372)<br>(309) x<br>cous heater (312) x<br>(373) + (374) + (375) =<br>ng (331)) x<br>(332))) x        | 366) for the second fue         0         0.52         =         0         0.52         =         0.52         =         0.52         =         0.52         =         0.52         =         0.52                | el 90<br>1682.56<br>36.39<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>0<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1718.95<br>1 | (367a)<br>(367)<br>(372)<br>(373)<br>(374)<br>(375)<br>(376)<br>(378)<br>(378)<br>(383)<br>(384) |

| Assessor Name:       Stroma FSAP 2012       Stroma Number:         Software Varsion:       Version:       1.0.3.15         Hortery Address:       London         Image: Software Varsion:       Image: Software Varsion:       Version:       1.0.3.15         Image: Software Varsion:       Image: Software Varsion:       Version:       1.0.3.15         Image: Software Varsion:       Image: Software Varsion:       Version:       1.0.3.15         Image: Software Varsion:       Image: Software Varsion:       Version:       Image: Software Varsion:       Image: Software Varsion:<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                               |                                | User D                     | etails:                |                             |                   |                      |              |                                               |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|----------------------------|------------------------|-----------------------------|-------------------|----------------------|--------------|-----------------------------------------------|-------------------|
| Address :       , London         Address :       , London         Address :       , London         Basement $65$ (1a) × $2.17$ (2a) =       (1a) × $2.17$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.277$ (2a) =       (1a) × $3.2777$ (2a) =       (1a) × $3.2777$ (2a) =       (1a) × $3.2777$ (2a) =       (1a) × $3.2777$ (2a) =       (1a) × $3.27777$ (2a) =       (1a) × $3.27777$ (2a) =       (1a) × $3.2777777777777777777777777777777777777$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Assessor Name:<br>Software Name:                                                            | Stroma FSAP 20                                                                | )12                            |                            | Stroma<br>Softwa       | a Num<br>ire Ver            | ber:<br>sion:     |                      | Versio       | on: 1.0.3.15                                  |                   |
| Address :       , London         Coverall divelling dimensions:       Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         Basement       55       (1a) x       2.17       (2a) =       (1b) x       (3a)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       55       (1a) x       2.17       (2a) =       (2a) =       (3a)         Develing volume       main mating heating heating       secondary       other       total       x40 =       0       (6b)         Number of chinneys       0       +       0       =       0       x40 =       0       (6b)         Number of passive vents       0       +       0       =       0       x40 =       0       (7a)         Number of passive vents       0       ×       0       =       0       x10 =       0       (7a)         Number of passive vents       0       ×       0       =       0       x10 =       0       0       (7a)         Number of states gas fires       0       x10 =       0       0       (7a)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | London                                                                        | Pí                             | operty /                   | Address:               | Unit 2                      |                   |                      |              |                                               |                   |
| Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         Basement       55       (1a) x       2.17       (2a) =       (1b) 3.5       (3a)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       55       (1a) x       2.17       (2a) =       (1b) 3.5       (3a)         Dwelling volume       (aa)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Address :<br>1 Overall dwelling dimer                                                       | , LUNUUN                                                                      |                                |                            |                        |                             |                   |                      |              |                                               |                   |
| Total floor area TFA = (1a)+(1b)+(1c)+(1c)+(1a)+(1e)+(1n)       55       (4)         Dwelling volume       (3a)+(3b)+(3c)+(3d)+(3a)+(3n) =       119.35       (5)         2. Ventilation rate:       main heating       +       0       =       0       ×40 =       0       (6a)         Number of chimneys       0       +       0       =       0       ×40 =       0       (6a)         Number of open flues       0       +       0       =       0       ×40 =       0       (6a)         Number of intermittent fans       2       ×10 =       20       (7a)       0       ×40 =       0       (7a)         Number of stores gas fires       0       ×40 =       0       (7a)       0       ×40 =       0       (7a)         Number of stores gas fires       0       ×40 =       0       (7a)       0       ×40 =       0       (7a)         Number of stores gas fires       0       ×40 =       0       (7a)       0       ×40 =       0       (7a)         Number of stores gas fires       0       ×40 =       0       (7a)       0       (7b)       0       (7b)         Number of stores gas fires       0       ×40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Basement                                                                                    | 1010113.                                                                      |                                | Area                       | a(m²)<br>55            | (1a) x                      | <b>Av. He</b>     | <b>ight(m)</b><br>17 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>119.35         | <b>)</b><br>(3a)  |
| Detelling volume       (3a)+(3b)+(3c)+(3d)+(3c)+(3d)+(3c)+(3n) = 119.35 (5)         2. Ventiliation rate:       main       heating       o       fold       m <sup>3</sup> per hour         Number of chimneys       0       +       0       =       0       x 40 = 0       0 (6a)         Number of open flues       0       +       0       =       0       x 20 = 0       (6b)         Number of intermittent fans       2       x 10 = 0       7(2a)       0       x 40 = 0       7(2a)         Number of flueiess gas fires       0       x 10 = 0       7(2a)       0       x 40 = 0       7(2a)         Number of storeys in the dwelling (ns)       0       x 10 = 0       0       (7a)         Number of storeys in the dwelling (ns)       0       x 0       0       (17)       0       (10)       0       (11)         If but specific do value are present, use the value corresponding to the grater walue area (after deducting areas of openings); if equal user 0.35       (11)       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       (12)       0       (14)         Percentage of windows and doors draught stripped       0       (14)       (100) =       (16)         Infitration rate incorporating shelf factor       (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total floor area TFA = (1a                                                                  | )+(1b)+(1c)+(1d)+(                                                            | 1e)+(1n                        | )                          | 55                     | (4)                         |                   |                      |              |                                               |                   |
| 2. Ventilation rate:       main heating       other       total       m³ per hour         Number of chimneys       0       +       0       =       0       x40 =       0       (6a)         Number of open flues       0       +       0       =       0       x40 =       0       (6b)         Number of passive vents       0       x10 =       0       (7a)       0       (7a)         Number of flueless gas fires       0       x40 =       0       (7b)       0       (7a)         Number of storeys in the dwelling (ns)       x40 =       0       (7b)       (7b)       0       (7b)       (7b)         Number of storeys in the dwelling (ns)       x40 =       0       (7c)       (7b)       (7b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwelling volume                                                                             |                                                                               |                                |                            |                        | (3a)+(3b)                   | +(3c)+(3c         | d)+(3e)+             | .(3n) =      | 119.35                                        | (5)               |
| main<br>heating<br>heatingsecondary<br>heatingothertotalm² per hourNumber of chimneys0+0=0x40 =0(6a)Number of poen flues0+0+0=0x20 =0(6b)Number of passive vents2x10 =20(7a)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)(7b)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Ventilation rate:                                                                        |                                                                               |                                |                            |                        |                             |                   |                      |              | <u>, , , , , , , , , , , , , , , , , , , </u> |                   |
| Number of intermittent fans       2       x 10 =       20       (7a)         Number of passive vents       0       x 10 =       0       (7b)         Number of flueless gas fires       0       x 40 =       0       (7c)         Air changes per hour         Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)=       20 $x$ (5) =       0.17       (8)         If a pressurisation test has been carried out or is interbled, proceed to (17), otherwise continue from (9) to (16)       0       (9)         Additional infiltration       0       10       0       (9)         Structural infiltration       0       0       10       0       (10)         Structural infiltration       0       0       0       (10)         Structural infiltration       0       0       0       (10)         If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       0       (14)         Window infiltration rate       (2) + (1) + (1) + (12) + (13) + (15) =       0       (16)         Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areal       10       (17)         If based on air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number of chimneys<br>Number of open flues                                                  | main<br>heating<br>0 +<br>0 +                                                 | secondary<br>heating           | y<br>] + [_<br>] + [_      | 0<br>0<br>0            | ] = [                       | <b>total</b> 0 0  | x 4                  | 40 =<br>20 = | m <sup>3</sup> per hou                        | r<br>(6a)<br>(6b) |
| Number of passive vents0x 10 =0(7b)Number of flueless gas fires0×40 =0(7c)Air changes per hourInfiltration due to chimneys, flues and fans = $ 60 +(6b)+(7a)+(7b)=$ 20+(5) =0.17(6) <i>Air changes per hour</i> Number of storeys, flues and fans = $ 60 +(6b)+(7a)+(7b)+(7b) =$ 20+(5) =0.17(6) <i>Number of storeys, flues and fans = <math> 60 +(6b)+(7a)+(7b)+(7b) =</math>20+(5) =0.17(6)<i>Number of storeys, flues and fans = <math> 60 +(6b)+(7a)+(7b)+(7b) =</math>20+(5) =0.17(6)<i>Number of storeys, flues and fans = <math> 60 +(6b)+(7a)+(7b)+(7b) =</math>0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction0(11)<i>if both types of wall are present, use the value corresponding to the greater wall area (after deucting areas of openings); if equal user 0.350(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration rate0(15)<i>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used</i></i></i></i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of intermittent far                                                                  | IS                                                                            |                                |                            |                        |                             | 2                 | x ′                  | 0 =          | 20                                            | (7a)              |
| Number of flueless gas fires $0$ × 40 = 0 (7c)<br>Air changes per hour<br>Infiltration due to chimneys, flues and fans = (66)+(6b)+(7a)+(7b)+(7c) = 20 + (5) = 0.17 (8)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration U (9)-1p(0.1 = 0 (10)<br>Structural infiltration 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 (12)<br>If no draught lobby, enter 0.05, else enter 0 0 (12)<br>If no draught lobby, enter 0.05, else enter 0 0 (14)<br>Window infiltration ate (8) + (10) + (11) + (12) + (13) + (15) = 0 (15)<br>Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (18) = ((17) + 20)+(8), otherwise (18) = (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (18) = (1(7) + 20)+(8), otherwise (18) = (16)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>2 (19)<br>Shelter factor (20) = 1 - (0.075 x (19)) = 0.57 (21)<br>Infiltration rate incorporating shelter factor (21) = (18) × (20) = 0.57 (21)<br>Infiltration rate modified for monthly wind speed<br>(21) = (18) × (20) = 0.57 (21)<br>Infiltration rate modified for monthly wind speed<br>(22) = 5 1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7<br>Wind Factor (22a)m = (22)m + 4<br>(22a)m 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                           | Number of passive vents                                                                     |                                                                               |                                |                            |                        |                             | 0                 | x ^                  | 10 =         | 0                                             | (7b)              |
| Air changes per hour         Infiltration due to chimneys, flues and fans = $(0e)^{+}(0b)^{+}(7a)^{+}(7b)^{+}(7c)^{+}$ 20 $+(5)^{+} =$ 0.17       (6)         If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76)       0       (9)         Additional infiltration       (19) + 1(b) + 1       0       (10)       0       (10)         Structural infiltration: 0.25 for steel or timber frame or 0.35 for masony construction       1       0       (11)       1       0       (12)         If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0       0       (12)       0       (14)         Window infiltration       0.25 · [0.2 x (14) + 100] =       0       (14)         Infiltration rate       (8) + (10) + (11) + (12) + (13) + (15) =       0       (15)         Infiltration rate       (8) + (10) + (11) + (12) + (13) + (15) =       0       (16)         Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area       10       (17)         Ibased on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)       0.67       (18)         Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used       0.67       (18)         Infiltration rate incorporating s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of flueless gas fir                                                                  | es                                                                            |                                |                            |                        |                             | 0                 | X 4                  | 40 =         | 0                                             | (7c)              |
| Infiltration due to chimneys, flues and fans = $(68)+(6b)+(7a)+(7b)+(7c) = 20 + (5) = 0.17$ (6)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (9) The transmission of the greater wall area (after deducting areas of openings); if equal user 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 $0$ (14)<br>Window infiltration $0.25 - [0.2 \times (14) \pm 100] = 0$ (15)<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ (17)<br>the based on air permeability value, then $(18) = [(17) \pm 20]+(8)$ . otherwise (18) = (16)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85$ (20)<br>Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.57$ (21)<br>Infiltration rate modified for monthly wind speed<br>Uan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m= $5.1 \ 5 \ 4.9 \ 4.4 \ 4.3 \ 3.8 \ 3.8 \ 3.7 \ 4 \ 4.3 \ 4.5 \ 4.7$<br>Wind Factor (22a)m = $(22)m \div 4$<br>(22)m= $1.27 \ 1.25 \ 1.23 \ 1.1 \ 1.08 \ 0.95 \ 0.92 \ 1 \ 1.08 \ 1.12 \ 1.18$                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                               |                                |                            |                        |                             |                   |                      | Air ch       | anges <mark>per</mark> ho                     | our               |
| Number of solesy in the dwelling (its)0Additional infiltration(9)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction0if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =If permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area0Number of sides sheltered(20) = 1 - [0.075 x (19)] =0.85Number of sides sheltered(21) = (18) x (20) =0.57Shelter factor(21) = (18) x (20) =0.57(21)Infiltration rate modified for monthly wind speed2(19)UanFebMarAprMayJunJanFebMarAprMayJunJunAugSepOctNovDecMonthly average wind speed from Table 75.154.94.44.33.83.744.34.54.7Wind Factor (22a)m = (22)m ÷ 4(22) = 1.231.11.080.950.9211.081.121.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Infiltration due to chimney<br>If a pressurisation test has be                              | s, flues and fans =<br>en carried out or is inter                             | (6a)+(6b)+(7a<br>nded, proceed | a)+(7b)+(7<br>d to (17), c | 7c) =<br>otherwise c   | ontinue fro                 | 20<br>om (9) to ( | (16)                 | ÷ (5) =      | 0.17                                          | (8)               |
| Structural inflittation: 0.25 for steel of timber frame of 0.35 for masonry construction0(11)if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 x (14) ÷ 100] =0Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area0Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used0Number of sides sheltered2(19)Shelter factor(21) = (18) x (20) =0.57Infiltration rate modified for monthly wind speed2(19)Infiltration rate modified for monthly wind speed01.1JanFebMarAprMayJunJulAugSepOctMonthly average wind speed from Table 7(22)m =1.081.12(22)m =5.154.94.4(22)m =1.271.251.231.11.080.950.9211.081.12Infiltration rate1.211.18 <td>Additional infiltration</td> <td></td> <td></td> <td>0.05 (</td> <td></td> <td></td> <td></td> <td>[(9)</td> <td>-1]x0.1 =</td> <td>0</td> <td>(10)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Additional infiltration                                                                     |                                                                               |                                | 0.05 (                     |                        |                             |                   | [(9)                 | -1]x0.1 =    | 0                                             | (10)              |
| If suspended wooden noor, enter 0.2 (driseated) of 0.1 (seated), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $0.25 \cdot [0.2 \times (14) + 100] =$<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate modified for monthly wind speed<br>Infiltration rate modified for monthly wind speed<br>Monthly average wind speed from Table 7<br>(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7<br>Wind Factor $(22a)m = (22)m \div 4$<br>(22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1  1.08  1.12  1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Structural Inflitration: U.:<br>if both types of wall are pre<br>deducting areas of opening | 25 for steel or timbe<br>esent, use the value corr<br>gs); if equal user 0.35 | er frame or<br>esponding to    | 0.35 for<br>the greate     | masonr<br>er wall area | y constr<br>a <i>(after</i> | uction            |                      |              | 0                                             | (11)              |
| In the dradgin body, enter 0.05, ease enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10If based on air permeability value, then (18) = [(17) $\div 20]$ +(8), otherwise (18) = (16)0.67Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used2Number of sides sheltered(20) = 1 - [0.075 $\times$ (19)] =Shelter factor(20) = 1 - [0.075 $\times$ (19)] =Infiltration rate modified for monthly wind speed0.57JanFebMarAprMayJunJunJulAugSepOctNovDecMonthly average wind speed from Table 7(22)m=5.154.94.44.33.83.744.34.34.54.7Wind Factor (22a)m = (22)m $\div 4$ (22a)m=1.271.271.231.11.080.950.9211.081.121.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | If no draught lobby, ent                                                                    | out, efficience $0.2$ (unse                                                   |                                | i (Seale                   | u), eise               |                             |                   |                      |              | 0                                             | (12)              |
| Under the data accels attraging on the production of the production of the production of the production of the production of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of th | Percentage of windows                                                                       | and doors draught                                                             | ,<br>stripped                  |                            |                        |                             |                   |                      |              | 0                                             | -(13)             |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $(16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(17)$ If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ $0.67$ $(18)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used $0.67$ $(18)$ Number of sides sheltered $2$ $(19)$ $0.85$ $(20)$ Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ $(20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.57$ $(21)$ Infiltration rate modified for monthly wind speed $0.57$ $(21)$ $0.57$ $(21)$ Monthly average wind speed from Table 7 $(22)m =$ $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = $(22)m \div 4$ $(22a)m =$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Window infiltration                                                                         | and dooro draught                                                             | omppou                         |                            | 0.25 - [0.2            | x (14) ÷ 1                  | 00] =             |                      |              | 0                                             |                   |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 0.67(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.67(18)Number of sides sheltered2(19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85(20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.57(21)Infiltration rate modified for monthly wind speed0.57(21)Monthly average wind speed from Table 7(22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m= $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Infiltration rate                                                                           |                                                                               |                                |                            | (8) + (10) -           | + (11) + (1                 | 2) + (13) ·       | + (15) =             |              | 0                                             | (16)              |
| If based on air permeability value, then $(18) = [(17) + 20]+(8)$ , otherwise $(18) = (16)$ 0.67       (18)         Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used       2       (19)         Number of sides sheltered       2       (19)         Shelter factor       (20) = 1 - [0.075 x (19)] =       0.85       (20)         Infiltration rate incorporating shelter factor       (21) = (18) x (20) =       0.57       (21)         Infiltration rate modified for monthly wind speed       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m=       5.1       5       4.9       4.4       4.3       3.8       3.7       4       4.3       4.5       4.7         Wind Factor (22a)m = (22)m ÷ 4       (22a)m = 1.27       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Air permeability value, o                                                                   | q50, expressed in c                                                           | ubic metres                    | s per ho                   | ur per so              | uare m                      | etre of e         | envelope             | area         | 10                                            | (17)              |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered $2$ (19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85(20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.57(21)Infiltration rate modified for monthly wind speedJanFebMarAprMayJunJunAugSepOctNovDecMonthly average wind speed from Table 7(22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4(22a)m= $1.27$ $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If based on air permeabilit                                                                 | ty value, then (18) =                                                         | [(17) ÷ 20]+(8                 | ), otherwi                 | se (18) = (            | 16)                         |                   |                      |              | 0.67                                          | (18)              |
| Number of sides sheltered       2       (19)         Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ (20)         Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.57$ (21)         Infiltration rate modified for monthly wind speed $1.8 \times (20) =$ $0.57$ (21)         Infiltration rate modified for monthly wind speed $0.57$ (21)         Monthly average wind speed from Table 7 $(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7$ $4.3  4.5  4.7$ Wind Factor (22a)m = (22)m ÷ 4 $(22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1  1.08  1.12  1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Air permeability value applies                                                              | if a pressurisation test I                                                    | nas been don                   | e or a deg                 | ree air per            | meability                   | is being u        | sed                  |              |                                               | _                 |
| Sheller factor $(20) = 1 + [0.010 \times (10)] = 1$ $0.85$ $(20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 1$ $0.57$ $(21)$ Infiltration rate modified for monthly wind speed       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of sides sheltered                                                                   | t                                                                             |                                |                            | (20) – 1 - [           | 0 075 v (1                  | Q)] —             |                      |              | 2                                             | (19)              |
| Initiation rate incorporating sheller factor $(21)^{-1}(10)^{-1}(20)^{-1}$ $0.57$ $(21)^{-1}$ Infiltration rate modified for monthly wind speed         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7         (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m= $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Infiltration rate incorporati                                                               | na chaltar factor                                                             |                                |                            | (20) = (18)            | x (20) -                    | 5)] –             |                      |              | 0.85                                          |                   |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Infiltration rate modified for                                                              | r monthly wind one                                                            | od                             |                            | (21) = (10)            | x (20) -                    |                   |                      |              | 0.57                                          | (21)              |
| Sain       Feb       Ivial       Apr       Ivial       Apr       Ivial       Sain       Sain       Sep       Oct       Iviol       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4       (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                                                               |                                | lul                        | Δυα                    | Son                         | Oct               | Nov                  | Dec          |                                               |                   |
| (22)m=       5.1       5       4.9       4.4       4.3       3.8       3.8       3.7       4       4.3       4.5       4.7         Wind Factor (22a)m = (22)m $\div$ 4         (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monthly overeas wind and                                                                    | and from Table 7                                                              |                                | Jui                        | Aug                    | Jeh                         |                   |                      | Dec          | l                                             |                   |
| Wind Factor (22a)m = (22)m $\div 4$ 1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(22)m = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$       |                                                                               | 38                             | 3.8                        | 37                     | 4                           | 4.3               | 4.5                  | 47           |                                               |                   |
| viino Factor ( $\angle 2a$ )m = ( $\angle 2a$ )m = ( $\angle 2a$ )m + 4         (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | )                                                                             |                                | 5.0                        | 5                      |                             |                   |                      | L            | I                                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22a)m= 1.27 1.25 1                                                                         | .23 1.1 1.08                                                                  | 0.95                           | 0.95                       | 0.92                   | 1                           | 1.08              | 1.12                 | 1.18         |                                               |                   |

| Adjuste              | ed infiltr             | ation rat                      | e (allow                  | ing for sh                 | nelter an   | d wind s    | peed) =     | (21a) x             | (22a)m       |                     |             |             |          |               |
|----------------------|------------------------|--------------------------------|---------------------------|----------------------------|-------------|-------------|-------------|---------------------|--------------|---------------------|-------------|-------------|----------|---------------|
| <i>.</i>             | 0.72                   | 0.71                           | 0.7                       | 0.62                       | 0.61        | 0.54        | 0.54        | 0.52                | 0.57         | 0.61                | 0.64        | 0.67        |          |               |
| Calcula              | ate effe               | <i>ctive air</i><br>al ventila | change                    | rate for t                 | he appli    | cable ca    | se          |                     |              |                     |             |             | 0        | (220)         |
| lf exh               | aust air h             | eat pump                       | usina App                 | endix N. (2                | 3b) = (23a  | i) × Fmv (e | equation (1 | N5)) . othe         | rwise (23b   | o) = (23a)          |             |             | 0        | (23b)         |
| lf bala              | anced wit              | h heat reco                    | overy: effic              | ciency in %                | allowing f  | or in-use f | actor (fron | n Table 4h          | ) =          | , , ,               |             |             | 0        | (23c)         |
| a) If                | balance                | ed mech                        | anical v                  | entilation                 | with hea    | at recove   | erv (MVI    | HR) (24a            | a)m = (2)    | 2b)m + (            | (23b) × [   | l – (23c)   | ÷ 1001   | (200)         |
| (24a)m=              | 0                      | 0                              | 0                         | 0                          | 0           | 0           | 0           | 0                   | 0            | 0                   |             | 0           | ]        | (24a)         |
| b) If                | balance                | ed mech                        | anical v                  | entilation                 | without     | heat rec    | covery (N   | и<br>ЛV) (24t       | m = (22)     | 1<br>2b)m + (       | 23b)        |             |          |               |
| ,<br>(24b)m=         | 0                      | 0                              | 0                         | 0                          | 0           | 0           | 0           | 0                   | 0            | 0                   | 0           | 0           |          | (24b)         |
| c) If                | whole h                | nouse ex                       | tract ve                  | ntilation of               | or positiv  | re input v  | ventilatio  | n from o            | outside      |                     | I           |             |          |               |
| í                    | if (22b)r              | n < 0.5 >                      | <b>‹</b> (23b),           | then (24d                  | c) = (23b   | ); other\   | wise (24    | c) = (22t           | o) m + 0     | .5 × (23b           | c)          |             |          |               |
| (24c)m=              | 0                      | 0                              | 0                         | 0                          | 0           | 0           | 0           | 0                   | 0            | 0                   | 0           | 0           |          | (24c)         |
| d) If                | natural                | ventilatio                     | on or wh                  | nole hous                  | e positiv   | e input     | ventilatio  | on from             | oft          |                     |             |             |          |               |
| i                    | if (22b)r              | n = 1, th                      | en (24d                   | )m = (22t                  | o)m othe    | erwise (2   | 4d)m =      | 0.5 + [(2           | 2b)m² x      | 0.5]                |             |             |          |               |
| (24d)m=              | 0.76                   | 0.75                           | 0.74                      | 0.69                       | 0.69        | 0.65        | 0.65        | 0.64                | 0.66         | 0.69                | 0.7         | 0.72        |          | (240)         |
| Effe                 | ctive air              |                                | rate - e                  | nter (24a                  | ) or (24b   | o) or (24)  | c) or (24   | d) in box           | x (25)       | 0.00                | 0.7         | 0.70        |          | (25)          |
| (25)m=               | 0.76                   | 0.75                           | 0.74                      | 0.69                       | 0.69        | 0.65        | 0.65        | 0.64                | 0.66         | 0.69                | 0.7         | 0.72        |          | (25)          |
| 3. He                | at l <mark>osse</mark> | s and he                       | eat loss                  | paramete                   | er:         |             |             |                     |              |                     |             |             |          |               |
| ELEN                 |                        | Gros<br>area                   | ss<br>(m²)                | Openin<br>m                | gs<br>2     | Net Ar      | rea<br>m²   | U-val<br>W/m2       | ue<br>K      | A X U               | K)          | k-value     | )<br><   | A X k<br>kJ/K |
| Doors                |                        |                                | ()                        |                            |             | 1.9         | x           | 1.4                 |              | 2.66                |             |             |          | (26)          |
| Windo                |                        | e 1                            |                           |                            |             | 9.03        |             | /[1/( 1.6 )+        | 0.04] =      | 13.58               | F           |             |          | (27)          |
| Windov               | ws Type                | e 2                            |                           |                            |             | 1.82        |             | /[1/( 4.8 )+        | 0.04] =      | 7 33                | Ħ           |             |          | (27)          |
| Windo                | ws Type                | - 3                            |                           |                            |             | 0.87        |             | . (<br>/[1/( 4.8 )+ | 0.041 -      | 3.5                 | 5           |             |          | (27)          |
| Floor                |                        |                                |                           |                            |             | 55          |             | 0.02                |              | 51 15               |             |             |          | (28)          |
| Walls <sup>-</sup>   | Tvne1                  | 20                             | •                         | 10.9                       |             | 19.05       |             | 0.33                | $\exists ]$  | 27.0                |             |             | $\dashv$ | (20)          |
| Walls <sup>-</sup>   | Tvne2                  | 20.                            | 4                         | 10.8                       | <u></u>     | F 04        |             | 2.1                 |              | 10.59               |             |             | $\dashv$ | (20)          |
| Total a              | rea of e               |                                | - m <sup>2</sup>          | 2.11                       |             | 01.74       |             | 2.1                 |              | 10.56               |             |             |          | (21)          |
| Dorty                |                        |                                | ,                         |                            |             | 91.71       |             |                     |              |                     |             |             |          | (31)          |
|                      | vall                   |                                |                           |                            |             | 27.9        |             | 0                   |              | 0                   |             |             | $\dashv$ | (32)          |
| * for win            | vali<br>dowe one       | l roof wind                    | 0.000                     | offoctivo wi               | ndowlly     | 1.13        | X           |                     | =            |                     |             | naragraph   |          | (32)          |
| ** includ            | le the are             | as on both                     | sides of i                | nternal wal                | ls and part | titions     | aleu using  | nonnula i           | /[(1/0-vait  | <i>le)</i> +0.04j č | as given in | i paragraph | 5.2      |               |
| Fabric               | heat lo                | ss, W/K                        | = S (A x                  | : U)                       |             |             |             | (26)(30)            | ) + (32) =   |                     |             |             | 126.7    | 1 (33)        |
| Heat c               | apacity                | Cm = S                         | (A x k )                  |                            |             |             |             |                     | ((28).       | (30) + (3           | 2) + (32a)  | (32e) =     | 0        | (34)          |
| Therm                | al mass                | parame                         | eter (TM                  | P = Cm ÷                   | - TFA) in   | n kJ/m²K    |             |                     | Indica       | ative Value         | : High      |             | 450      | (35)          |
| For desi<br>can be u | gn asses<br>Ised inste | sments wh<br>ad of a de        | ere the de<br>tailed cald | etails of the<br>culation. | constructi  | ion are noi | t known pr  | ecisely the         | e indicative | e values of         | f TMP in T  | able 1f     |          |               |
| Therm                | al bridg               | es : S (L                      | x Y) ca                   | Iculated u                 | using Ap    | pendix I    | <           |                     |              |                     |             |             | 14.4     | (36)          |
| if details           | of therm               | al bridging                    | are not ki                | nown (36) =                | = 0.15 x (3 | 1)          |             |                     |              |                     |             |             |          | i``´          |
| Total fa             | abric he               | at loss                        |                           |                            |             |             |             |                     | (33) +       | - (36) =            |             |             | 141.1    | 1 (37)        |
| Ventila              | tion he                | at loss ca                     | alculate                  | d monthly                  | /           |             |             |                     | (38)m        | = 0.33 × (          | (25)m x (5  | )           | I        |               |
|                      | Jan                    | Feb                            | Mar                       | Apr                        | May         | Jun         | Jul         | Aug                 | Sep          | Oct                 | Nov         | Dec         |          |               |

| (38)m=         | 30                 | 29.6                     | 29.21                | 27.37                   | 27.02              | 25.42                | 25.42               | 25.12                                                                                       | 26.03               | 27.02                | 27.72                  | 28.45   |         | (38)        |
|----------------|--------------------|--------------------------|----------------------|-------------------------|--------------------|----------------------|---------------------|---------------------------------------------------------------------------------------------|---------------------|----------------------|------------------------|---------|---------|-------------|
| Heat tr        | ansfer o           | coefficie                | nt, W/K              |                         |                    |                      |                     |                                                                                             | (39)m               | = (37) + (3          | 38)m                   |         |         |             |
| (39)m=         | 171.11             | 170.71                   | 170.32               | 168.48                  | 168.13             | 166.53               | 166.53              | 166.23                                                                                      | 167.14              | 168.13               | 168.83                 | 169.56  |         |             |
|                |                    | motor (L                 | אי ים ור             | /m2k                    |                    |                      |                     |                                                                                             | (40)m               | Average = $(30)$ m : | Sum(39)                | 12 /12= | 168.47  | (39)        |
| (40)m=         | 3.11               |                          | 3.1                  | 3.06                    | 3.06               | 3.03                 | 3.03                | 3.02                                                                                        | 3.04                | = (39)m ÷            | 3.07                   | 3.08    |         |             |
| (10)           | 0                  | 0.11                     |                      | 0.00                    | 0.00               | 0.00                 | 0.00                | 0.02                                                                                        |                     | Average =            | Sum(40)1               |         | 3.06    | (40)        |
| Numbe          | er of day          | /s in mo                 | nth (Tab             | le 1a)                  |                    |                      |                     |                                                                                             |                     |                      |                        |         |         |             |
|                | Jan                | Feb                      | Mar                  | Apr                     | May                | Jun                  | Jul                 | Aug                                                                                         | Sep                 | Oct                  | Nov                    | Dec     |         |             |
| (41)m=         | 31                 | 28                       | 31                   | 30                      | 31                 | 30                   | 31                  | 31                                                                                          | 30                  | 31                   | 30                     | 31      | l       | (41)        |
|                |                    |                          |                      |                         |                    |                      |                     |                                                                                             |                     |                      |                        |         |         |             |
| 4. Wa          | iter hea           | ting ene                 | rgy requ             | irement:                |                    |                      |                     |                                                                                             |                     |                      |                        | kWh/ye  | ear:    |             |
| Assum          | ed occu            | upancy, I                | N                    |                         |                    |                      |                     |                                                                                             |                     |                      | 1.                     | .84     |         | (42)        |
| if TF<br>if TF | A > 13.<br>A f 13. | 9, N = 1<br>9 N = 1      | + 1.76 x             | [1 - exp                | (-0.0003           | 49 x (TF             | A -13.9             | )2)] + 0.0                                                                                  | 0013 x (            | TFA -13.             | 9)                     |         |         |             |
| Annua          | l averag           | je hot wa                | ater usag            | ge in litre             | es per da          | iy Vd,av             | erage =             | (25 x N)                                                                                    | + 36                |                      | 77                     | '.84    |         | (43)        |
| Reduce         | the annua          | al average<br>litros por | hot water            | usage by                | 5% if the a        | welling is           | designed t          | to achieve                                                                                  | a water us          | se target o          | ۲                      |         |         |             |
| notmore        | , inat 125         |                          |                      | day (all w              | aler use, r        |                      |                     |                                                                                             |                     |                      |                        |         |         |             |
| Hot wate       | Jan<br>Jan         | Feb                      | Mar<br>day for ea    | Apr<br>Apr              | May                | Jun                  | Jul                 | Aug                                                                                         | Sep                 | Oct                  | Nov                    | Dec     |         |             |
|                |                    |                          |                      |                         | 70.47              | 70.05                |                     |                                                                                             | 70.00               | 70.00                | 00.54                  | 05.00   |         |             |
| (44)m=         | 85.62              | 82.51                    | 79.39                | 76.28                   | 73.17              | 70.05                | 70.05               | /3.1/                                                                                       | 76.28               | 79.39                | 82.51                  | 85.62   | 024.05  |             |
| Energy o       | content of         | hot water                | used - cal           | culated mo              | onthly $= 4$ .     | 190 x Vd,n           | n x nm x C          | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | kWh/mor             | nth (see Ta          | bles 1b, 1             | c, 1d)  | 934.05  | (44)        |
| (45)m=         | 126.97             | 111.05                   | 114.6                | 99. <mark>9</mark> 1    | 95.86              | 82.72                | 76.65               | 87.96                                                                                       | 89.01               | 103.74               | 113.24                 | 122.97  |         |             |
|                |                    |                          |                      |                         |                    |                      |                     |                                                                                             |                     | Total = Su           | m(45) <sub>112</sub> = | =       | 1224.68 | (45)        |
| lf instant     | taneous w          | ater heati               | ng at point          | of use (no              | hot water          | storage),            | enter 0 in          | boxes (46                                                                                   | ) to (61)           |                      |                        |         |         |             |
| (46)m=         | 19.05              | 16.66                    | 17.19                | 14.99                   | 14.38              | 12.41                | 11.5                | 13.19                                                                                       | 13.35               | 15.56                | 16.99                  | 18.45   |         | (46)        |
| Storag         | e volum            | ioss.<br>ie (litres)     | ) includir           | na anv so               | olar or W          | WHRS                 | storage             | within sa                                                                                   | ame ves             | sel                  |                        | 160     |         | (47)        |
| If comr        | nunitv h           | neating a                | and no ta            | ink in dw               | vellina. e         | nter 110             | litres in           | (47)                                                                                        |                     |                      |                        | 100     |         | ()          |
| Otherw         | vise if no         | o stored                 | hot wate             | er (this ir             | ncludes i          | nstantar             | eous co             | mbi boil                                                                                    | ers) ente           | er '0' in (          | 47)                    |         |         |             |
| Water          | storage            | loss:                    |                      |                         |                    |                      |                     |                                                                                             |                     |                      |                        |         | L       |             |
| a) If m        | anufact            | urer's de                | eclared I            | oss facto               | or is kno          | wn (kWł              | n/day):             |                                                                                             |                     |                      |                        | 0       |         | (48)        |
| Tempe          | erature f          | actor fro                | m Table              | 2b                      |                    |                      |                     |                                                                                             |                     |                      |                        | 0       |         | (49)        |
| Energy         | / lost fro         | om water                 | storage              | e, kWh/ye<br>sylinder l | ear                | or is not            | known:              | (48) x (49)                                                                                 | ) =                 |                      | 1                      | 10      | I       | (50)        |
| Hot wa         | iter stor          | age loss                 | factor fr            | om Tabl                 | e 2 (kW            | h/litre/da           | iy)                 |                                                                                             |                     |                      | 0.                     | .02     |         | (51)        |
| If comr        | munity h           | neating s                | ee secti             | on 4.3                  | ·                  |                      |                     |                                                                                             |                     |                      |                        |         |         |             |
| Volume         | e factor           | from Ta                  | ble 2a               |                         |                    |                      |                     |                                                                                             |                     |                      | 1.                     | .03     |         | (52)        |
| Tempe          | erature f          | actor fro                | m Table              | 2b                      |                    |                      |                     |                                                                                             |                     |                      | 0                      | .6      |         | (53)        |
| Energy         | lost fro           | m water                  | storage              | e, kWh/ye               | ear                |                      |                     | (47) x (51)                                                                                 | ) x (52) x (        | 53) =                | 1.                     | .03     |         | (54)        |
|                | (OU) Or (          | (54) IN (5               | oulotod <sup>(</sup> | for acab                | month              |                      |                     | ((56)~ '                                                                                    | 55) w (AA)          | ~                    | 1.                     | .03     | ,       | (55)        |
| vvaler         | Siorage            |                          |                      |                         |                    |                      | a                   | ((30)11 = (                                                                                 | ວວ) × (41)          |                      |                        |         |         |             |
| (56)m=         | 32.01              | 28.92                    | d solar sto          | 30.98                   | 32.01<br>m = (56)m | 30.98<br>x [(50) - ( | 32.01<br>H11)1 ∸ (5 | 32.01                                                                                       | 30.98               | 32.01                | 30.98<br>H11) is fro   | 32.01   | ix H    | (56)        |
|                |                    |                          |                      | aye, (57)               | n = (30)m          | × [(00) – (          | []] ÷ (5            |                                                                                             | (30) <u>- (</u> 30) |                      |                        |         |         | ( <b></b> ) |
| (57)m=         | 32.01              | 28.92                    | 32.01                | 30.98                   | 32.01              | 30.98                | 32.01               | 32.01                                                                                       | 30.98               | 32.01                | 30.98                  | 32.01   |         | (57)        |

| Primar              | y circuit         | loss (ar          | nual) fro  | om Table    | 93          |           |                |                  |              |                          |                 | 0                                     |               | (58) |
|---------------------|-------------------|-------------------|------------|-------------|-------------|-----------|----------------|------------------|--------------|--------------------------|-----------------|---------------------------------------|---------------|------|
| Primar              | y circuit         | loss cal          | culated    | for each    | month (     | 59)m = (  | (58) ÷ 36      | 65 × (41)        | m            |                          |                 |                                       |               |      |
| (moo                | dified by         | factor f          | rom Tab    | le H5 if t  | here is s   | olar wat  | ter heati      | ng and a         | cylinde      | r thermo                 | stat)           |                                       | L             |      |
| (59)m=              | 23.26             | 21.01             | 23.26      | 22.51       | 23.26       | 22.51     | 23.26          | 23.26            | 22.51        | 23.26                    | 22.51           | 23.26                                 |               | (59) |
| Combi               | loss ca           | culated           | for each   | month (     | (61)m =     | (60) ÷ 36 | 65 × (41       | )m               |              |                          |                 |                                       |               |      |
| (61)m=              | 0                 | 0                 | 0          | 0           | 0           | 0         | 0              | 0                | 0            | 0                        | 0               | 0                                     |               | (61) |
| Total h             | eat requ          | uired for         | water he   | eating ca   | alculated   | for eac   | h month        | (62)m =          | 0.85 × (     | (45)m +                  | (46)m +         | (57)m +                               | (59)m + (61)m |      |
| (62)m=              | 182.25            | 160.98            | 169.87     | 153.4       | 151.14      | 136.22    | 131.93         | 143.24           | 142.51       | 159.01                   | 166.73          | 178.24                                |               | (62) |
| Solar DH            | IW input o        | alculated         | using App  | endix G oı  | Appendix    | H (negati | ve quantity    | /) (enter '0     | ' if no sola | r contribut              | ion to wate     | er heating)                           |               |      |
| (add a              | dditiona          | l lines if        | FGHRS      | and/or \    | VWHRS       | applies   | , see Ap       | pendix (         | G)           |                          |                 |                                       |               |      |
| (63)m=              | 0                 | 0                 | 0          | 0           | 0           | 0         | 0              | 0                | 0            | 0                        | 0               | 0                                     |               | (63) |
| Output              | from w            | ater hea          | ter        |             |             |           |                |                  |              | •                        | •               | -                                     |               |      |
| (64)m=              | 182.25            | 160.98            | 169.87     | 153.4       | 151.14      | 136.22    | 131.93         | 143.24           | 142.51       | 159.01                   | 166.73          | 178.24                                |               |      |
|                     |                   |                   |            |             |             |           |                | Outp             | out from wa  | ater heate               | r (annual)₁     | 12                                    | 1875.52       | (64) |
| Heat g              | ains froi         | n water           | heating,   | kWh/m       | onth 0.2    | 5 ´ [0.85 | × (45)m        | ı + (61)m        | n] + 0.8 x   | (46)m                    | + (57)m         | + (59)m                               | ]             | _    |
| (65)m=              | 60.83             | 53.73             | 56.71      | 51.23       | 50.48       | 45.51     | 44.1           | 47.86            | 47.61        | 53.1                     | 55.66           | 59.5                                  | -<br>         | (65) |
| in <mark>clu</mark> | ıde (57)ı         | n in calo         | culation   | of (65)m    | only if c   | vlinder i | s in the o     | dwelling         | or hot w     | ate <mark>r is fr</mark> | om com          | munity h                              | leating       |      |
| 5 Int               | ernai ga          | ins (see          | Table 5    | and 5a      |             |           |                | 9                |              |                          | _               | , , , , , , , , , , , , , , , , , , , | 3             | -    |
| Motab               |                   | s (Table          | 5) Wat     | te          |             |           |                |                  |              |                          |                 |                                       |               |      |
| Metab               | Jan               | Feb               | Mar        | Apr         | May         | Jun       | Jul            | Aug              | Sep          | Oct                      | Nov             | Dec                                   |               |      |
| (66)m=              | 9 <sup>1.87</sup> | 91.87             | 91.87      | 91.87       | 91.87       | 91.87     | 91.87          | 91.87            | 91,87        | 91.87                    | 91.87           | 91.87                                 |               | (66) |
| Lightin             | a dains           | (calcula          | ted in Ar  | ppendix     | . equati    | ion L9 o  | r 1,9a), a     | lso see '        | Table 5      |                          |                 |                                       |               |      |
| (67)m=              | 14.29             | 12.69             | 10.32      | 7.81        | 5.84        | 4.93      | 5.33           | 6.93             | 9.29         | 11.8                     | 13.77           | 14.68                                 |               | (67) |
| Annlia              |                   | ins (calc         | ulated in  |             |             | uation I  | 13 or I 1      | I<br>3a) also    |              | L                        |                 |                                       |               |      |
| (68)m=              | 160.19            | 161.85            | 157.66     | 148.74      | 137.49      | 126.91    | 119.84         | 118.18           | 122.36       | 131.28                   | 142.54          | 153.12                                | l             | (68) |
| Cookir              |                   |                   | tod in A   | nondiv      |             | ion   15  | or   152       |                  |              | 5                        |                 |                                       |               |      |
| (60)m-              | 19 yan 15         | (Calcula<br>32.10 | 32 10      | 32 10       | 22 10       | 32 10     | 32 10          | 32 10            | 32 10        | 32.10                    | 32.10           | 32.10                                 | l             | (69) |
| (00)III=            |                   | 02.10             | (Table (   | - 02.10     | 02.10       | 02.10     | 02.10          | 52.15            | 02.10        | 02.10                    | 02.10           | 52.15                                 |               | (00) |
| Pumps               |                   |                   |            | ο<br>0      | 0           | 0         | 0              | 0                | 0            | 0                        | 0               | 0                                     |               | (70) |
| (70)11=             | 0                 | 0                 | 0          |             |             |           | 0              | 0                | 0            | 0                        | 0               | 0                                     |               | (70) |
| Losses              | s e.g. ev         | aporatio          | n (nega    | tive valu   | es) (Tab    | le 5)     | 70.40          | 70.40            | 70.40        | 70.40                    | 70.40           | 70.40                                 | I             | (71) |
| (71)m=              | -73.49            | -73.49            | -73.49     | -73.49      | -73.49      | -73.49    | -73.49         | -73.49           | -73.49       | -73.49                   | -73.49          | -73.49                                |               | (71) |
| Water               | heating           | gains (1          | able 5)    | · · · · ·   |             |           | 1              | 1                |              |                          |                 | 1                                     | I             | (70) |
| (72)m=              | 81.76             | 79.96             | 76.23      | 71.15       | 67.86       | 63.22     | 59.27          | 64.32            | 66.12        | 71.37                    | 77.31           | 79.97                                 |               | (72) |
| Total i             | nternal           | gains =           | :<br>r     | r           |             | (66)      | m + (67)m<br>1 | n + (68)m +<br>r | + (69)m + (  | (70)m + (7<br>I          | 1)m + (72)<br>I | )m                                    | I             |      |
| (73)m=              | 306.79            | 305.06            | 294.77     | 278.27      | 261.74      | 245.61    | 235            | 239.99           | 248.34       | 265.02                   | 284.18          | 298.33                                |               | (73) |
| 6. So               | lar gains         | 8:                |            |             |             |           |                |                  |              |                          | •               |                                       |               |      |
| Solar g             | ains are c        | alculated         | using sola | r flux from | I able 6a a | and assoc | lated equa     | itions to co     | onvert to th | e applicab               | ole orientat    | tion.                                 |               |      |

| Orienta | tion: | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|---------|-------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| North   | 0.9x  | 0.77                      | x | 1.82       | × | 10.63            | x | 0.85           | x | 0.7            | = | 7.98         | (74) |
| North   | 0.9x  | 0.77                      | x | 0.87       | × | 10.63            | x | 0.85           | x | 0.7            | = | 3.81         | (74) |

| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 2      | 0.32     | x      | 0.85       | x      | 0.7      | =      | 15.25                | (74) |
|---------|-----------|-------------|---------|-------|-----------|-----------------|------|--------|----------|--------|------------|--------|----------|--------|----------------------|------|
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 2      | 0.32     | ] x    | 0.85       | ×      | 0.7      | =      | 7.29                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 3      | 4.53     | X      | 0.85       | ×      | 0.7      | =      | 25.91                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 3      | 4.53     | ] x    | 0.85       | x      | 0.7      | =      | 12.39                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 5      | 5.46     | ] x [  | 0.85       | ×      | 0.7      | =      | 41.62                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 5      | 5.46     | x      | 0.85       | ×      | 0.7      | =      | 19.9                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 7      | 4.72     | x      | 0.85       | ×      | 0.7      | =      | 56.07                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 7      | 4.72     | x      | 0.85       | x      | 0.7      | =      | 26.8                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 7      | 9.99     | x      | 0.85       | x      | 0.7      | =      | 60.02                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 7      | 9.99     | x      | 0.85       | ×      | 0.7      | =      | 28.69                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 7      | 4.68     | x      | 0.85       | ×      | 0.7      | =      | 56.04                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 7      | 4.68     | x      | 0.85       | ×      | 0.7      | =      | 26.79                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 5      | 9.25     | x      | 0.85       | ×      | 0.7      | =      | 44.46                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 5      | 9.25     | x      | 0.85       | ×      | 0.7      | =      | 21.25                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 4      | 1.52     | x      | 0.85       | ×      | 0.7      | =      | 31.16                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 4      | 1.52     | x      | 0.85       | ×      | 0.7      | =      | 14.89                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 2      | 4.19     | x      | 0.85       | ×      | 0.7      | =      | 18.15                | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | X    | 2      | 4.19     | x      | 0.85       | ×      | 0.7      | =      | 8.68                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | х    | 1      | 3.12     | ] x    | 0.85       | ×      | 0.7      | -      | 9.84                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | х    | 1      | 3.12     | ] ×    | 0.85       | x      | 0.7      | =      | 4.71                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 1.8       | 2               | x    | 8      | 8.86     | ] x    | 0.85       | x      | 0.7      | =      | 6.65                 | (74) |
| North   | 0.9x      | 0.77        |         | x     | 0.8       | 7               | x    | 8      | 8.86     | х      | 0.85       | x      | 0.7      | =      | 3.18                 | (74) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 4      | 6.75     | x      | 0.76       | x      | 0.7      | =      | 155.64               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 7      | 6.57     | x      | 0.76       | x      | 0.7      | =      | 2 <mark>54.91</mark> | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 9      | 7.53     | x      | 0.76       | x      | 0.7      | =      | 324.7                | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 1      | 10.23    | x      | 0.76       | ×      | 0.7      | =      | 366.99               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 1      | 14.87    | x      | 0.76       | ×      | 0.7      | =      | 382.42               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 1      | 10.55    | x      | 0.76       | ×      | 0.7      | =      | 368.03               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 10     | 08.01    | x      | 0.76       | ×      | 0.7      | =      | 359.59               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 10     | 04.89    | x      | 0.76       | x      | 0.7      | =      | 349.21               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 10     | 01.89    | x      | 0.76       | ×      | 0.7      | =      | 339.19               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 8      | 2.59     | x      | 0.76       | ×      | 0.7      | =      | 274.94               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 5      | 5.42     | x      | 0.76       | ×      | 0.7      | =      | 184.49               | (78) |
| South   | 0.9x      | 0.77        |         | x     | 9.0       | 3               | x    | 4      | 40.4     | ×      | 0.76       | x      | 0.7      | =      | 134.49               | (78) |
| Solar   | naine in  | watte ca    | deulat  | hat   | for each  | mont            | h    |        |          | (83)m  | -Sum(74)m  | (82)m  |          |        |                      |      |
| (83)m=  | 167.44    | 277.44      | 363     |       | 428.51    | 465.3           | 4    | 456.75 | 442.42   | 414    | .92 385.24 | 301.7  | 7 199.04 | 144.32 | ]                    | (83) |
| Total g | gains – i | nternal a   | nd so   | lar   | (84)m =   | (73)m           | + (  | (83)m  | , watts  | 1      |            |        |          |        | J                    |      |
| (84)m=  | 474.23    | 582.5       | 657.7   | 7     | 706.77    | 727.04          | 7    | 702.36 | 677.41   | 654    | .91 633.58 | 566.79 | 9 483.22 | 442.65 | ]                    | (84) |
| 7. Me   | an inter  | nal temp    | eratu   | re (  | heating   | seaso           | n)   |        |          |        |            |        |          |        |                      |      |
| Temp    | perature  | during h    | eating  | g pe  | eriods in | the liv         | ring | area   | from Tal | ble 9, | Th1 (°C)   |        |          |        | 21                   | (85) |
| Utilis  | ation fac | ctor for ga | ains fo | or li | ving are  | <u>a, h1,</u> r | n (s | see Ta | ble 9a)  |        |            |        |          |        |                      |      |

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

| (86)m=                                                                                                                                                         | 1               | 1                      | 0.99                  | 0.99                     | 0.97             | 0.92        | 0.82        | 0.85       | 0.95          | 0.99         | 1           | 1           |           | (86)     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-----------------------|--------------------------|------------------|-------------|-------------|------------|---------------|--------------|-------------|-------------|-----------|----------|
| Mean                                                                                                                                                           | interna         | l temper               | ature in              | living are               | ea T1 (fo        | ollow ste   | ps 3 to 7   | 7 in Tabl  | e 9c)         |              |             |             |           |          |
| (87)m=                                                                                                                                                         | 18.95           | 19.14                  | 19.44                 | 19.84                    | 20.26            | 20.64       | 20.85       | 20.82      | 20.52         | 19.98        | 19.39       | 18.93       |           | (87)     |
| Temp                                                                                                                                                           | erature         | durina h               | eating p              | eriods ir                | n rest of        | dwelling    | from Ta     | able 9. T  | h2 (°C)       |              |             |             |           |          |
| (88)m=                                                                                                                                                         | 18.7            | 18.7                   | 18.7                  | 18.72                    | 18.72            | 18.74       | 18.74       | 18.74      | 18.73         | 18.72        | 18.72       | 18.71       |           | (88)     |
| Utilisa                                                                                                                                                        | ation fac       | tor for g              | ains for              | rest of d                | welling,         | h2,m (se    | e Table     | 9a)        |               |              |             |             |           |          |
| (89)m=                                                                                                                                                         | 1               | 1                      | 0.99                  | 0.98                     | 0.93             | 0.78        | 0.5         | 0.56       | 0.86          | 0.98         | 1           | 1           |           | (89)     |
| Mean                                                                                                                                                           | interna         | l temper               | ature in              | the rest                 | of dwelli        | ng T2 (f    | ollow ste   | eps 3 to 3 | 7 in Tabl     | e 9c)        |             |             |           |          |
| (90)m=                                                                                                                                                         | 16.19           | 16.47                  | 16.91                 | 17.5                     | 18.08            | 18.56       | 18.72       | 18.71      | 18.44         | ,<br>17.7    | 16.85       | 16.17       |           | (90)     |
|                                                                                                                                                                |                 |                        |                       |                          |                  |             |             |            | f             | LA = Livin   | g area ÷ (4 | 4) =        | 0.55      | (91)     |
| Mean                                                                                                                                                           | internal        | l temper               | ature (fo             | or the wh                | ole dwe          | llina) = f  | LA x T1     | + (1 – fl  | A) x T2       |              |             | L           |           |          |
| (92)m=                                                                                                                                                         | 17.71           | 17.93                  | 18.3                  | 18.79                    | 19.28            | 19.7        | 19.89       | 19.87      | 19.58         | 18.95        | 18.25       | 17.68       |           | (92)     |
| Apply                                                                                                                                                          | adjustn         | nent to t              | he mear               | internal                 | temper           | ature fro   | m Table     | 4e, whe    | ere appro     | opriate      |             |             |           |          |
| (93)m=                                                                                                                                                         | 17.71           | 17.93                  | 18.3                  | 18.79                    | 19.28            | 19.7        | 19.89       | 19.87      | 19.58         | 18.95        | 18.25       | 17.68       |           | (93)     |
| 8. Spa                                                                                                                                                         | ace hea         | ting requ              | uirement              |                          |                  |             |             |            |               |              |             |             |           |          |
| Set Ti                                                                                                                                                         | i to the r      | nean int               | ernal ter             | mperatu                  | re obtain        | ed at st    | ep 11 of    | Table 9    | b, so tha     | t Ti,m=(     | 76)m an     | d re-calc   | ulate     |          |
| the ut                                                                                                                                                         | llisation       | Tactor IC              | or gains              | using Ta                 | ible 9a          | lun         |             | A          | Can           | Oct          | Novi        | Dee         |           |          |
| Litilies                                                                                                                                                       | Jan<br>tion fac | tor for a              | ains hm               | Apr                      | iviay            | Jun         | Jui         | Aug        | Sep           | Oct          | INOV        | Dec         |           |          |
| (94)m=                                                                                                                                                         | 1               | 0.99                   | 0.99                  | 0.98                     | 0.94             | 0.86        | 0.7         | 0.74       | 0.91          | 0.98         | 1           | 1           |           | (94)     |
| Usefu                                                                                                                                                          | l gains,        | hmGm .                 | , W = (94             | 1)m x (84                | 4)m              |             |             |            |               |              |             |             |           |          |
| $(95)m = \begin{array}{c} 473.09 \\ 579.42 \\ 650.56 \\ 689.72 \\ 685.51 \\ 602.12 \\ 473.11 \\ 482.39 \\ 574.15 \\ 555.11 \\ 480.92 \\ 441.84 \\ \end{array}$ |                 |                        |                       |                          |                  |             |             |            |               |              |             |             |           | (95)     |
| Mo <mark>nt</mark>                                                                                                                                             | nly avera       | age exte               | rnal terr             | perature                 | e from Ta        | able 8      |             |            |               |              |             |             |           |          |
| (96)m=                                                                                                                                                         | 4.3             | 4.9                    | 6.5                   | 8.9                      | 11.7             | 14.6        | 16.6        | 16.4       | 14.1          | 10.6         | 7.1         | 4.2         |           | (96)     |
| Heat                                                                                                                                                           | loss rate       | e for mea              | an intern             | al tempe                 | erature,         | Lm,W:       | =[(39)m :   | x [(93)m   | – (96)m       | ]            |             |             |           |          |
| (97)m=                                                                                                                                                         | 2294.53         | 2224.91                | 2009.32               | 1665.79                  | 1274.13          | 849.16      | 547.18      | 576.24     | 916.65        | 1403.57      | 1881.75     | 2286.19     |           | (97)     |
| Space                                                                                                                                                          | e heatin        | g require              | ement fo              | r each n                 | honth, k\        | Nh/mon      | th = 0.02   | 24 x [(97] | )m – (95<br>I | )m] x (4′    | 1)m         |             |           |          |
| (98)m=                                                                                                                                                         | 1355.15         | 1105.77                | 1010.92               | 702.77                   | 437.93           | 0           | 0           | 0          | 0             | 631.26       | 1008.6      | 1372.2      |           | <b>-</b> |
|                                                                                                                                                                |                 |                        |                       |                          |                  |             |             | Tota       | l per year    | (kWh/year    | ) = Sum(9   | 8)15,912 =  | 7624.6    | (98)     |
| Space                                                                                                                                                          | e heatin        | g require              | ement in              | kWh/m <sup>2</sup>       | /year            |             |             |            |               |              |             |             | 138.63    | (99)     |
| 9b. En                                                                                                                                                         | ergy rec        | luiremer               | nts – Cor             | nmunity                  | heating          | scheme      | ;           |            |               |              |             |             |           |          |
| This pa                                                                                                                                                        | art is use      | ed for sp              | ace hea               | iting, spa               | ace cooli        | ing or wa   | ater heat   | ting prov  | rided by      | a comm       | unity sch   | neme.       |           |          |
| Fractio                                                                                                                                                        | n of spa        | ace heat               | from se               | condary/                 | supplen          | nentary     | heating (   | (Table 1   | 1) '0' if n   | one          |             |             | 0         | (301)    |
| Fractio                                                                                                                                                        | n of spa        | ace heat               | from co               | mmunity                  | system           | 1 – (30     | 1) =        |            |               |              |             |             | 1         | (302)    |
| The com                                                                                                                                                        | nmunity so      | heme mag               | y obtain he           | eat from se              | everal sour      | rces. The j | procedure   | allows for | CHP and u     | up to four o | other heat  | sources; th | ne latter |          |
| Fractio                                                                                                                                                        | n of hea        | eat pumps<br>at from C | s, geotneri<br>Commun | nai and wa<br>ity boiler | iste neat f<br>S | rom powe    | r stations. | See Appel  | naix C.       |              |             | [           | 1         | (303a)   |
| Fractio                                                                                                                                                        | n of tota       | al space               | heat fro              | m Comn                   | nunity bo        | oilers      |             |            |               | (3           | 02) x (303  | a) =        | 1         | (304a)   |
| Factor                                                                                                                                                         | for cont        | rol and o              | charging              | method                   | (Table 4         | 4c(3)) fo   | r commu     | unity hea  | ating syst    | tem          |             | ו<br>[      | 1         | (305)    |
| Distrib                                                                                                                                                        | ution los       | s factor               | (Table 1              | 2c) for c                | commun           | ity heati   | ng syste    | m          | - •           |              |             | ו<br>[      | 1.05      | (306)    |
| Space                                                                                                                                                          | heating         | 3                      |                       |                          |                  |             | -           |            |               |              |             | l           | kWh/yea   | <br>r    |
| Annua                                                                                                                                                          | space           | heating                | requirem              | nent                     |                  |             |             |            |               |              |             | [           | 7624.6    |          |
|                                                                                                                                                                |                 |                        |                       |                          |                  |             |             |            |               |              |             | L           |           |          |

| Space heat from Community boilers                                                                                              | (98) x (304a) x         | (305) x (306) =                                            | 8005.83                  | (307a) |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|--------------------------|--------|
| Efficiency of secondary/supplementary heating system in % (fror                                                                | n Table 4a or Appen     | dix E)                                                     | 0                        | (308   |
| Space heating requirement from secondary/supplementary syste                                                                   | em (98) x (301) x 1     | 00 ÷ (308) =                                               | 0                        | (309)  |
| Water heating<br>Annual water heating requirement                                                                              |                         |                                                            | 1875.52                  | 7      |
| If DHW from community scheme:<br>Water heat from Community boilers                                                             | (64) x (303a) x         | (305) x (306) =                                            | 1969.3                   | (310a) |
| Electricity used for heat distribution                                                                                         | 0.01 × [(307a)(307      | e) + (310a)(310e)] =                                       | 99.75                    | (313)  |
| Cooling System Energy Efficiency Ratio                                                                                         |                         |                                                            | 0                        | (314)  |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                             | = (107) ÷ (314)         | =                                                          | 0                        | (315)  |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from o | outside                 |                                                            | 0                        | (330a) |
| warm air heating system fans                                                                                                   |                         |                                                            | 0                        | (330b) |
| pump for solar water heating                                                                                                   |                         |                                                            | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                                      | =(330a) + (330          | b) + (330g) =                                              | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                 |                         |                                                            | 252.32                   | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                  |                         |                                                            |                          |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%)                                 | Energy<br>kWh/year      | Emission factor<br>kg CO2/kWh<br>(366) for the second fuel | Emissions<br>kg CO2/year | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                                   | 310b)] x 100 ÷ (367b) x | 0 =                                                        | 2394.03                  | (367)  |
| Electrical energy for heat distribution                                                                                        | 313) x                  | 0.52 =                                                     | 51.77                    | (372)  |
| Total CO2 associated with community systems (3                                                                                 | 863)(366) + (368)(372   | 2) =                                                       | 2445.8                   | (373)  |
| CO2 associated with space heating (secondary) (3                                                                               | 309) x                  | 0 =                                                        | 0                        | (374)  |
| CO2 associated with water from immersion heater or instantaneous                                                               | ous heater (312) x      | 0.22 =                                                     | 0                        | (375)  |
| Total CO2 associated with space and water heating (3                                                                           | 373) + (374) + (375) =  |                                                            | 2445.8                   | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                              | ig (331)) x             | 0.52 =                                                     | 0                        | (378)  |
| CO2 associated with electricity for lighting (3                                                                                | 332))) x                | 0.52 =                                                     | 130.95                   | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                         |                         |                                                            | 2576.75                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                       |                         |                                                            | 46.85                    | (384)  |
| El rating (section 14)                                                                                                         |                         |                                                            | 65.47                    | (385)  |

| Assessor Name:<br>Stroma FXAP 2012Stroma Number:<br>Software Version:Version: 1.0.3.15Strome FXAP 2012Software Version:Version: 1.0.3.15Address:<br>IAddress:Address:Address:BasementStall floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)Outling volume(3a)+(3b)+(3c)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address :, londonAddress :, londonA. Overall dwelling dimensions:Area(m?)Av. Height(m)Volume(m³)Basement51(1a) x2.17(2a) =110.67Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)51(4)Volume(m³)Dwelling volume(3a)+(3b)+(3c)+(3d)+(3a)+(3n) =110.67(5)C. Ventilation rate:main<br>meating<br>heating<br>heating<br>heating<br>heatingothertotal<br>m³ per hourNumber of chimneys0+0=0x 40 =Number of pan flues0+0=0x 40 =Number of apen flues0+0=0x 40 =Number of flueless gas fires0x 40 =0(6a)Number of flueless gas fires0x 40 =0(7a)Number of storeys in the dwelling (ns)<br>Additional infiltration(1b)+(7a)+(7b)+(7c) =20(a)Additional infiltration0.25 for steel or timber frame or 0.35 for masonry construction(1b)-(1a)(1b)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)(13)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If is suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If or draught lobby, enter 0.05, else enter 00(12)0(14)Percentage of windows and doors draught stripped0.25 - (02 x (14) + 100) =0(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| A.Overall dwelling dimensions:Area(m <sup>3</sup> )Av. Height(m)Volume(m <sup>3</sup> )Basement $51$ (1a) x $2.17$ (2a) = $110.67$ (3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) $51$ (4) $(a)+(3c)+(3d)+(3c)+(3d)+(3e)+(3n)$ = $110.67$ (5)Dwelling volume $(a)+(3b)+(3c)+(3d)+(3c)+(3d)+(3e)+(3n)$ = $110.67$ (5) $110.67$ (5)2. Ventilation rate:main heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Area(m2)<br>51Av. Height(m)<br>(m2)Volume(m3)<br>(m3)Basement $51$ $(1a) \times 2.17$ $(2a) = 110.67$ $(3a)$ Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) $51$ $(4)$ $(a)$ $(a)$ $(a)$ Dwelling volume $(a)$ +(1b)+(1c)+(1d)+(1e)+(1n) $51$ $(4)$ $(a)$ +(3c)+(3d)+(3e)+(3n) = 110.67 $(5)$ <b>2. Ventilation rate:</b> $(a)$ +(3c)+(3d)+(3e)+(3d)+(3e)+(3n) = 10.67 $(5)$ $(5)$ $(5)$ Number of chimneys $0$ $+$ $0$ $=$ $0$ $x40 =$ $0$ $(6a)$ Number of open flues $0$ $+$ $0$ $=$ $0$ $x20 =$ $0$ $(6b)$ Number of passive vents $0$ $x10 =$ $0$ $7cb$ Number of flueless gas fires $0$ $x40 =$ $0$ $7cb$ Number of storeys in the dwelling (ns) $Adtional infiltration(9)(4b)(9)Additional infiltration0.25 \cdot [0.2 \times (14) \pm 100] =(6)(12)If no draught lobby, enter 0.05, else enter 00(12)0(12)If no draught lobby, enter 0.05, else enter 00(12)0(12)If no draught lobby, enter 0.05, else enter 00(14)0(14)Window infiltration0.25 - [0.2 \times (14) \pm 100] =0(15)If no draught lobby, enter 0.05, else enter 00(15)0(16)Percentage of windows and doors draught stripped0.25 - [0.2 \times (14) \pm 100] =0($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) $51$ (4)<br>Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 110.67 (5)<br><b>2. Ventilation rate:</b><br>Mumber of chimneys       0       +       0       =       0       ×       0       =       0       (6a)         Number of open flues       0       +       0       =       0       ×       0       (6a)         Number of intermittent fans       2       ×       10       =       0       (7a)         Number of flueless gas fires       0       ×       0       ×       0       =       0       (7a)         Number of flueless gas fires       0       ×       0       ×       0        0       (7c)         Air changes per hour       0       ×       0       ×       0       (7c)         Number of flueless gas fires       0       ×       0       ×       0       (9)         Number of storeys in the dwelling (ns)       (17) otherwise continue from (9) to (16)       0       (9)       (10)         Structural infiltration       0.25 for steel or timber frame or 0.35 for masonry construction       (11)       0       (12)         If our draught lobby, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0       0       (12)       0       (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 110.67 (6)(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 110.67 (6)Number of chimneysothertotalnumber of chimneys0+0(6)Number of open flues0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0*0+0*0+0+0*0****0* <th <<="" colspan="2" td=""></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 2. Ventilation rate:       main heating       secondary heating       other       total       m³ per hour         Number of chimneys       0       +       0       =       0       ×40 =       0       (6a)         Number of open flues       0       +       0       =       0       ×40 =       0       (6b)         Number of intermittent fans       2       ×10 =       20       (7a)         Number of passive vents       0       ×10 =       0       (7c)         Number of flueless gas fires       0       ×40 =       0       (7c)         Number of storeys in the dwelling (ns)       Air changes per hour       (7c)         Additional infiltration       (9) to (76)       0       (9)       (10)         Structural infiltration:       0.25 for steel or timber frame or 0.35 for masonry construction       (9) to (16)       0       (9)         If supended wooden floor, enter 0.2       0       0.1       (seled), else enter 0       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       0       (13)       0       (14)         Window infiltration       0.25 - [0.2 x (14) + 100] =       0       (15)       (14)       0       (15)       (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| main<br>heating<br>heatingsecondary<br>heatingother<br>ttotalm <sup>o</sup> per nourNumber of chimneys $0$ $+$ $0$ $=$ $0$ $x40 =$ $0$ $(6a)$ Number of open flues $0$ $+$ $0$ $=$ $0$ $x20 =$ $0$ $(6b)$ Number of intermittent fans $2$ $x10 =$ $20$ $(7a)$ Number of passive vents $0$ $x10 =$ $0$ $(7b)$ Number of flueless gas fires $0$ $x40 =$ $0$ $(7c)$ Number of flueless gas fires $0$ $x40 =$ $0$ $(7c)$ Number of storeys in the dwelling (ns) $0$ $x40 =$ $0$ $(9)$ Additional infiltration $(9)$ $(10)$ $0$ $(9)$ Structural infiltration: $0.25$ for steel or timber frame or $0.35$ for masonry construction $0$ $(11)$ <i>if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user <math>0.35</math><math>0</math><math>(12)</math>If no draught lobby, enter <math>0.05</math>, else enter <math>0</math><math>0</math><math>(12)</math><math>0</math><math>(13)</math>Percentage of windows and doors draught stripped<math>0</math><math>(14)</math><math>0</math><math>(14)</math>Window infiltration<math>0.25 \cdot [0.2 \times (14) \div 10] =</math><math>0</math><math>(15)</math>Infiltration rate<math>(8) + (10) + (11) + (12) + (13) + (15) =</math><math>0</math><math>(16)</math>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<math>10</math><math>(17)</math></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Number of intermittent fans $2$ $x 10 =$ $20$ $(7a)$ Number of passive vents $0$ $x 10 =$ $0$ $(7b)$ Number of flueless gas fires $0$ $x 40 =$ $0$ $(7c)$ Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b) =$ $20$ $+(5) =$ $0.18$ $(8)$ If a pressurisation test has been carried out or is intended, proceed to $(17)$ , otherwise continue from $(9)$ to $(16)$ $0$ $(9)$ Additional infiltration $(9) to (16)$ $0$ $(9)$ Additional infiltration $(9) to (16)$ $0$ $(9)$ Structural infiltration: $0.25$ for steel or timber frame or $0.35$ for masonry construction $0$ $(11)$ if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user $0.35$ $0$ $(12)$ If no draught lobby, enter $0.2$ (unsealed) or $0.1$ (sealed), else enter $0$ $0$ $(12)$ If no draught lobby, enter $0.05$ , else enter $0$ $0$ $(13)$ Percentage of windows and doors draught stripped $0$ $(14)$ Window infiltration $0.25 - [0.2 \times (14) + 100] =$ $0$ $(15)$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ $(16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Number of passive vents $0$ $x 10 =$ $0$ $(7b)$ Number of flueless gas fires $0$ $x 40 =$ $0$ $(7c)$ Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ $20$ $+(5) =$ $0.18$ $(8)$ If a pressurisation test has been carried out or is intended, proceed to $(17)$ , otherwise continue from $(9)$ to $(16)$ $0$ $(9)$ Additional infiltration $(9)$ $0$ $(9)$ Additional infiltration: $0.25$ for steel or timber frame or $0.35$ for masonry construction $0$ $(11)$ if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user $0.35$ $0$ $(12)$ If no draught lobby, enter $0.05$ , else enter $0$ $0$ $(13)$ Percentage of windows and doors draught stripped $0$ $(14)$ Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ $0$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Number of flueless gas fires<br>$ \begin{array}{c} 0 \\ 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ x 40 = \\ 0 \\ (re) \\ \begin{array}{c} 0 \\ (re) \\ \begin{array}{c} 0 \\ (re) \\ \hline 0 \\ (re) \\ \begin{array}{c} 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ (re) \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0$ |  |  |
| Number of inderessing of interviewAir changes per hourAir changes per hourInfiltration due to chirnneys, flues and fans = (6e)+(6b)+(7a)+(7b) = $20 \div (5) =$ $0.18$ (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) $0$ (9)Number of storeys in the dwelling (ns) $0$ (9) $0$ (9)Additional infiltration $(9)-1]x0.1 =$ $0$ (10)Structural infiltration: $0.25$ for steel or timber frame or $0.35$ for masonry construction $0$ (11)if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user $0.35$ $0$ $(12)$ If no draught lobby, enter $0.2$ (unsealed) or $0.1$ (sealed), else enter $0$ $0$ $(12)$ $0$ $(14)$ $0$ $(15)$ $0$ $0$ $(14)$ $0$ $(15)$ $0$ $0$ $(14)$ $0$ $(15)$ $0$ $1$ filtration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ $(16)$ $10$ $(17)$ $0$ $(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c) =$ 20 $\div$ (5) =0.18(8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)0(9)Number of storeys in the dwelling (ns)0(9)(10)Additional infiltration[(9)-1]x0.1 =0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction0(11)if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350(12)If no draught lobby, enter 0.05, else enter 00(13)0(14)Window infiltration0.25 - [0.2 x (14) ÷ 100] =0(15)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)0Additional infiltration[(9)-1]x0.1 =Structural infiltration:00.25 for steel or timber frame or 0.35 for masonry construction0if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Structural inititation: 0.25 for steel of timber frame of 0.35 for masonry construction $0$ if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35 $0$ If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 $0$ If no draught lobby, enter 0.05, else enter 0 $0$ Percentage of windows and doors draught stripped $0$ Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| If suspended wooder filter 0.2 (difference) of 0.1 (sealed), erse enter 0 $0$ $(12)$ If no draught lobby, enter 0.05, else enter 0 $0$ $(13)$ Percentage of windows and doors draught stripped $0$ $(14)$ Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ $0$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| In the draught lobby, enter 0.00, encer 0.00, encer 0.00 $0$ $0$ $0$ $0$ Percentage of windows and doors draught stripped $0$ $0$ $(14)$ Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ $0$ $(15)$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ $(16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0(15)Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.68 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Number of sides sheltered $3 (19)$ Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.72 (20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| Adjust                 | ed infiltr              | ation rat                  | e (allow                  | ng for sh                     | nelter an                | d wind s               | peed) =     | (21a) x      | (22a)m      |                | -                |                    | _        |               |
|------------------------|-------------------------|----------------------------|---------------------------|-------------------------------|--------------------------|------------------------|-------------|--------------|-------------|----------------|------------------|--------------------|----------|---------------|
| <u> </u>               | 0.67                    | 0.66                       | 0.65                      | 0.58                          | 0.57                     | 0.5                    | 0.5         | 0.49         | 0.53        | 0.57           | 0.59             | 0.62               |          |               |
| Calcula<br>If ma       | ate etter               | ctive air<br>al ventila    | change                    | rate for t                    | he appli                 | cable ca               | se          |              |             |                |                  |                    |          | (220)         |
| lf exh                 | aust air h              | eat pump i                 | usina App                 | endix N. (2                   | 3b) = (23a               | i) x Fmv (e            | equation (I | N5)) . othei | wise (23b   | ) = (23a)      |                  |                    | 0        | (23a)         |
| lf bala                | anced with              | n heat reco                | overy: effic              | iency in %                    | allowing f               | or in-use f            | actor (fron | n Table 4h   | ) =         | , ( ,          |                  |                    | 0        | (23c)         |
| a) If                  | balance                 | ed mech:                   | ,<br>anical ve            | ntilation                     | with he                  | at recove              | erv (MVI    | HR) (24a     | n)m = (22)  | 2b)m + (       | 23b) <b>x</b> [′ | 1 – (23c)          | 1001     | (200)         |
| (24a)m=                | 0                       | 0                          | 0                         | 0                             | 0                        | 0                      | 0           | 0            | 0           | 0              | 0                | 0                  |          | (24a)         |
| b) If                  | balance                 | ed mecha                   | ı<br>anical ve            | ntilation                     | without                  | heat rec               | coverv (N   | MV) (24b     | )m = (22    | 1<br>2b)m + () | 1<br>23b)        |                    | 1        |               |
| (24b)m=                | 0                       | 0                          | 0                         | 0                             | 0                        | 0                      | 0           | 0            | 0           | 0              | 0                | 0                  | ]        | (24b)         |
| c) If                  | whole h                 | iouse ex                   | tract ver                 | ntilation of                  | or positiv               | ve input v             | ventilatio  | on from c    | outside     | !              |                  |                    | 1        |               |
| ,<br>i                 | if (22b)n               | n < 0.5 ×                  | (23b), t                  | hen (24a                      | c) = (23b                | ); otherv              | wise (24    | c) = (22b    | o) m + 0.   | 5 × (23b       | ))               |                    |          |               |
| (24c)m=                | 0                       | 0                          | 0                         | 0                             | 0                        | 0                      | 0           | 0            | 0           | 0              | 0                | 0                  |          | (24c)         |
| d) If                  | natural                 | ventilatio                 | on or wh                  | ole hous                      | e positiv                | /e input               | ventilatio  | on from l    | oft         |                |                  |                    |          |               |
| i                      | if (22b)n               | n = 1, th                  | en (24d)                  | m = (22t                      | o)m othe                 | erwise (2              | 4d)m =      | 0.5 + [(2    | 2b)m² x     | 0.5]           |                  |                    | 1        |               |
| (24d)m=                | 0.73                    | 0.72                       | 0.71                      | 0.67                          | 0.66                     | 0.63                   | 0.63        | 0.62         | 0.64        | 0.66           | 0.68             | 0.69               | J        | (240)         |
| Effe                   | ctive air               | change                     | rate - er                 | nter (24a                     | ) or (24b                | o) or (240             | c) or (24   | d) in boy    | (25)        | 0.00           | 0.00             | 0.00               | 1        | (25)          |
| (25)m=                 | 0.73                    | 0.72                       | 0.71                      | 0.67                          | 0.66                     | 0.63                   | 0.63        | 0.62         | 0.64        | 0.66           | 0.68             | 0.69               |          | (25)          |
| 3. He                  | at l <mark>osse</mark>  | s and he                   | at loss                   | oaramete                      | er:                      |                        |             |              |             |                |                  |                    |          |               |
| ELEN                   | /IENT                   | Gros                       | SS<br>(m <sup>2</sup> )   | Openin                        | gs                       | Net Ar                 | ea          | U-valu       | Je          | AXU            |                  | k-value            | 3        | A X k         |
| Doors                  |                         | area                       | (111-)                    | 11                            |                          | A ,I                   |             |              |             | 2.66           |                  | NJ/111-1           | x -      | NJ/ N<br>(26) |
| Windo                  |                         | <u>1</u>                   |                           |                               |                          | 1.9                    |             | /[1/( 1 6 )+ | 0.041       | 2.00           | H                |                    |          | (20)          |
| Windo                  |                         |                            |                           |                               |                          | 9.03                   |             | /[1/( 1.0 )] | 0.041       | 13.58          | 8                |                    |          | (27)          |
| Floor                  | ws type                 | 32                         |                           |                               |                          | 2.89                   |             | /[1/( 4.0 )+ | 0.04] =     | 11.64          | ╘┤┍              |                    |          | (27)          |
|                        | T                       |                            |                           |                               |                          | 51                     | ×           | 0.99         |             | 50.49          | ╡╞               |                    | $\dashv$ | (28)          |
| vvalis                 | Type1                   | 16.1                       | 4                         | 9.03                          |                          | 7.11                   | ×           | 2.1          |             | 14.93          |                  |                    | $\dashv$ | (29)          |
| vvalis                 | Type2                   | 16.                        | 1                         | 4.79                          |                          | 11.31                  | ×           | 2.1          | = [         | 23.75          |                  |                    |          | (29)          |
| l otal a               | area of e               | elements                   | , m²                      |                               |                          | 83.24                  |             |              |             |                |                  |                    |          | (31)          |
| Party v                | wall                    |                            |                           |                               |                          | 33.3                   | X           | 0            | =           | 0              |                  |                    |          | (32)          |
| * for win<br>** inclua | dows and<br>le the area | l roof winde<br>as on both | ows, use e<br>sides of ii | effective wi<br>Internal wall | ndow U-va<br>Is and part | alue calcul<br>titions | ated using  | g formula 1, | /[(1/U-valu | ie)+0.04] a    | as given in      | paragraph          | 1 3.2    |               |
| Fabric                 | heat los                | ss, W/K :                  | = S (A x                  | U)                            |                          |                        |             | (26)(30)     | + (32) =    |                |                  |                    | 117.05   | 5 (33)        |
| Heat c                 | apacity                 | Cm = S(                    | (Axk)                     |                               |                          |                        |             |              | ((28)       | (30) + (32     | 2) + (32a).      | (32e) =            | 0        | (34)          |
| Therm                  | al mass                 | parame                     | ter (TMI                  | <sup>-</sup> = Cm ÷           | - TFA) ir                | n kJ/m²K               |             |              | Indica      | tive Value     | : High           |                    | 450      | (35)          |
| For desi               | ign assess              | sments wh                  | ere the de                | tails of the                  | construct                | ion are not            | t known pi  | recisely the | indicative  | values of      | TMP in Ta        | able 1f            |          |               |
| can be ι<br>—.         | used inste              | ad of a de                 | tailed calc               | ulation.                      |                          |                        |             |              |             |                |                  |                    |          |               |
| Therm                  | al bridge               | es : S (L                  | x Y) cal                  | culated u                     | using Ap                 | pendix ł               | <           |              |             |                |                  |                    | 12.8     | (36)          |
| it details<br>Total fa | abric he                | al bridging<br>at loss     | are not kr                | iown (36) =                   | = 0.15 x (3              | 1)                     |             |              | (33) +      | (36) =         |                  |                    | 120.84   | 5 (37)        |
| Ventila                | ation hea               | at loss ca                 | alculated                 | monthly                       | /                        |                        |             |              | (38)m       | = 0.33 × (     | 25)m x (5)       |                    | 129.00   | <u> </u>      |
|                        | Jan                     | Feb                        | Mar                       | Apr                           | Mav                      | Jun                    | Jul         | Aua          | Sep         | Oct            | Nov              | Dec                |          |               |
| (38)m=                 | 26.52                   | 26.2                       | 25.89                     | 24.41                         | 24.13                    | 22.85                  | 22.85       | 22.61        | 23.34       | 24.13          | 24.69            | 25.28              |          | (38)          |
| Heat tr                | ransfer o               | coefficier                 | nt. W/K                   |                               |                          |                        | 1           |              | (39)m       | = (37) + (3    | 38)m             |                    | I        |               |
| (39)m=                 | 156.37                  | 156.05                     | 155.74                    | 154.26                        | 153.98                   | 152.7                  | 152.7       | 152.46       | 153.19      | 153.98         | ,<br>154.54      | 155.13             | l        |               |
|                        | L                       |                            |                           |                               |                          |                        |             | 1            | ·,          | Average =      | Sum(39)₁         | <sub>12</sub> /12= | 154.26   | 3 (39)        |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | /m²K                                    |                                          |                                       |                            |                        | (40)m                 | = (39)m ÷                                             | - (4)                  |          |         |          |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|----------------------------|------------------------|-----------------------|-------------------------------------------------------|------------------------|----------|---------|----------|
| (40)m=                         | 3.07                            | 3.06                                   | 3.05                                 | 3.02                                    | 3.02                                     | 2.99                                  | 2.99                       | 2.99                   | 3                     | 3.02                                                  | 3.03                   | 3.04     | ]       |          |
|                                | ( . ] .                         |                                        | L                                    |                                         | <u> </u>                                 | <u> </u>                              |                            |                        | ,                     | Average =                                             | Sum(40)1.              | 12 /12=  | 3.02    | (40)     |
| edmuri                         | r of day                        | /s in moi<br>Feb                       | ntn (Tab<br>Mar                      | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                    | Sen                   | Oct                                                   | Nov                    | Dec      |         |          |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                         | 31                     | 30                    | 31                                                    | 30                     | 31       |         | (41)     |
| (41)11-                        | 01                              | 20                                     |                                      |                                         | 01                                       |                                       | 01                         | 01                     | 00                    | 01                                                    | 00                     | 01       |         | ()       |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                |                                          |                                       |                            |                        |                       |                                                       |                        | kWh/ye   | ear:    |          |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | ıpancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | :[1 - exp                               | (-0.0003                                 | 849 x (TF                             | FA -13.9                   | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13                                               | 1.<br>.9)              | 72       | ]       | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o                                           | 75<br>f                | .04      |         | (43)     |
| ]                              | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                    | Sep                   | Oct                                                   | Nov                    | Dec      | ]       |          |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea<br>I                    | ach month<br>I                          | Vd,m = fa<br>I                           | ctor from                             | Table 1c x<br>I            | (43)<br>I              |                       |                                                       | 1                      |          | 1       |          |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                   | 70.54                                    | 67.54                                 | 67.54                      | 70.54                  | 73.54                 | 76.54                                                 | 79.54                  | 82.54    | 000.48  |          |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x D                 | OTm / 3600             | ) kWh/mor             | $\frac{10 \text{ cm}}{10 \text{ cm}} = \frac{30}{10}$ | ables 1b, 1            | c, 1d)   | 900.48  | (++)     |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                   | 92.42                                    | 79.75                                 | 73.9                       | 84.8                   | 85.81                 | 100.01                                                | 109.17                 | 118.55   |         | <b>-</b> |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                              | o hot water                              | storage),                             | enter 0 in                 | boxes (46              | ) to (61)             | Fotal = Su                                            | m(45) <sub>112</sub> = | •        | 1180.67 | (45)     |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                   | 13.86                                    | 11.96                                 | 11.08                      | 12.72                  | 12.87                 | 15                                                    | 16.37                  | 17.78    |         | (46)     |
| Storage                        | e volum                         | e (litres)                             | includir                             | ng any so                               | olar or M                                | /WHRS                                 | storage                    | within sa              | ame ves               | sel                                                   |                        | 160      | 1       | (47)     |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                               | velling, e                               | nter 110                              | litres in                  | (47)                   |                       |                                                       |                        |          |         |          |
| Otherw                         | ise if no                       | stored                                 | hot wate                             | er (this ir                             | ncludes i                                | nstantar                              | neous co                   | ombi boil              | ers) ente             | er '0' in (                                           | (47)                   |          |         |          |
| Water s                        | storage                         | loss:<br>urer's de                     | aclarad I                            | oss facti                               | or is kno                                | wn (k\//                              | n/dav).                    |                        |                       |                                                       |                        | 0        | 1       | (49)     |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2h                                      |                                          |                                       | vuay).                     |                        |                       |                                                       |                        | 0        |         | (40)     |
| Energy                         | lost fro                        | m water                                | storage                              | kWh/ve                                  | ar                                       |                                       |                            | (48) x (49)            | ) =                   |                                                       |                        | 10       |         | (43)     |
| b) If ma                       | anufact                         | urer's de                              | eclared of                           | cylinder l                              | oss fact                                 | or is not                             | known:                     | (10) x (10)            | , –                   |                                                       |                        | 10       |         | (30)     |
| Hot wat                        | ter stora                       | age loss<br>leating s                  | factor fr                            | om Tabl<br>on 4 3                       | e 2 (kW                                  | h/litre/da                            | ay)                        |                        |                       |                                                       | 0.                     | 02       |         | (51)     |
| Volume                         | factor                          | from Ta                                | ble 2a                               |                                         |                                          |                                       |                            |                        |                       |                                                       | 1.                     | 03       |         | (52)     |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                            |                        |                       |                                                       | 0                      | .6       |         | (53)     |
| Energy                         | lost fro                        | m water                                | <sup>.</sup> storage                 | , kWh/ye                                | ear                                      |                                       |                            | (47) x (51)            | ) x (52) x (          | 53) =                                                 | 1.                     | 03       |         | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  |                                         |                                          |                                       |                            |                        |                       |                                                       | 1.                     | 03       |         | (55)     |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                | month                                    | -                                     | -                          | ((56)m = (             | 55) × (41)ı           | m                                                     |                        |          |         |          |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                      | 32.01                  | 30.98                 | 32.01                                                 | 30.98                  | 32.01    |         | (56)     |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)i                             | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                 | 0), else (5            | 7)m = (56)            | m where (                                             | H11) is fro            | m Append | lix H   |          |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                      | 32.01                  | 30.98                 | 32.01                                                 | 30.98                  | 32.01    |         | (57)     |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                | 93                                       | >                                     | ()                         |                        |                       |                                                       |                        | 0        |         | (58)     |
| Primary                        | / CIRCUIT                       | loss cal                               | culated                              | tor each                                | month (                                  | 59)m = (                              | (58) ÷ 36                  | 55 x (41)              | m<br>cylinder         | r tharma                                              | stat)                  |          |         |          |
| (1100<br>(59)m=                | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                      | 23.26                  | 22.51                 | 23.26                                                 | 22.51                  | 23.26    |         | (59)     |
| ( <i>)</i>                     |                                 |                                        |                                      |                                         |                                          | ,                                     |                            |                        |                       |                                                       |                        |          | l       | . /      |

| Combi los   | ss cale  | culated     | for each   | n month      | (61)m =    | (60) ÷ 30 | 65 × (41)   | )m           |              |                     |              |             |               |                                       |
|-------------|----------|-------------|------------|--------------|------------|-----------|-------------|--------------|--------------|---------------------|--------------|-------------|---------------|---------------------------------------|
| (61)m=      | 0        | 0           | 0          | 0            | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (61)                                  |
| Total heat  | t requ   | ired for    | water h    | eating ca    | alculated  | l for eac | h month     | (62)m =      | 0.85 × (     | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |                                       |
| (62)m= 17   | 77.69    | 156.99      | 165.75     | 149.81       | 147.69     | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)                                  |
| Solar DHW i | input c  | alculated   | using App  | pendix G o   | r Appendix | H (negati | ve quantity | /) (enter '0 | ' if no sola | r contribut         | ion to wate  | er heating) |               |                                       |
| (add addit  | tional   | lines if I  | FGHRS      | and/or \     | NWHRS      | applies   | , see Ap    | pendix (     | G)           |                     |              | -           |               |                                       |
| (63)m=      | 0        | 0           | 0          | 0            | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (63)                                  |
| Output fro  | om wa    | iter heat   | ter        |              |            |           |             |              |              |                     |              |             |               |                                       |
| (64)m= 17   | 77.69    | 156.99      | 165.75     | 149.81       | 147.69     | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               |                                       |
|             |          |             |            | -            |            |           |             | Outp         | out from wa  | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)                                  |
| Heat gain   | s fron   | n water     | heating    | , kWh/m      | onth 0.2   | 5 ´ [0.85 | × (45)m     | + (61)m      | n] + 0.8 >   | ‹ [(46)m            | + (57)m      | + (59)m     | ]             |                                       |
| (65)m= 59   | 9.31     | 52.41       | 55.34      | 50.03        | 49.34      | 44.53     | 43.18       | 46.81        | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)                                  |
| include     | (57)n    | n in calc   | ulation    | of (65)m     | only if c  | ylinder i | s in the c  | dwelling     | or hot w     | ater is fi          | rom com      | munity h    | eating        |                                       |
| 5. Intern   | nal ga   | ins (see    | Table :    | 5 and 5a     | ):         |           |             |              |              |                     |              |             |               |                                       |
| Metabolic   | : gains  | s (Table    | 5). Wa     | tts          | /          |           |             |              |              |                     |              |             |               |                                       |
|             | Jan      | Feb         | Mar        | Apr          | May        | Jun       | Jul         | Aug          | Sep          | Oct                 | Nov          | Dec         |               |                                       |
| (66)m= 85   | 5.98     | 85.98       | 85.98      | 85.98        | 85.98      | 85.98     | 85.98       | 85.98        | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)                                  |
| Lighting g  | ains (   | calculat    | ed in A    | ppendix      | L, equat   | ion L9 o  | r L9a), a   | lso see      | Table 5      |                     |              |             |               |                                       |
| (67)m= 1    | 3.36     | 11.86       | 9.65       | 7.3          | 5.46       | 4.61      | 4.98        | 6.47         | 8.69         | 11.03               | 12.88        | 13.73       |               | (67)                                  |
|             | es daii  | ns (calci   | ulated i   | n Appene     | dix L. ea  | uation L  | 13 or L1    | 3a), also    | see Ta       | ble 5               | 1            |             |               |                                       |
| (68)m= 14   | 19.83    | 151.39      | 147.47     | 139.13       | 128.6      | 118.7     | 112.09      | 110.54       | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)                                  |
|             | nains    | (calcula    | ted in A   | ppendix      | L equat    | ion I 15  | or L 15a)   | also se      | e Table      | 5                   |              |             |               |                                       |
| (69)m= 3    | 31.6     | 31.6        | 31.6       | 31.6         | 31.6       | 31.6      | 31.6        | 31.6         | 31.6         | 31.6                | 31.6         | 31.6        |               | (69)                                  |
| Pumps an    | nd fan   | s dains     | (Table     | 5a)          |            |           |             |              |              |                     |              |             |               |                                       |
| (70)m=      | 0        | 0           | 0          |              | 0          | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (70)                                  |
|             |          | anoratio    | n (nega    | tive valu    | es) (Tab   | l         | _           |              |              |                     |              |             |               |                                       |
| (71)m= -6   | 38.78    | -68.78      | -68.78     | -68.78       | -68.78     | -68.78    | -68.78      | -68.78       | -68.78       | -68.78              | -68.78       | -68.78      |               | (71)                                  |
| Water bea   | ating    | T) aniar    | able 5)    |              |            |           |             |              |              |                     |              |             |               |                                       |
| (72)m= 79   | 9.72     | 77.99       | 74.39      | 69 49        | 66.32      | 61 84     | 58.04       | 62 91        | 64 64        | 69 71               | 75 43        | 77 99       |               | (72)                                  |
|             |          | naine –     |            |              | 00.02      | (66)      | m + (67)m   | + (68)m -    | - (69)m + (  | (70)m + (7)         | (1)m + (72)  | m           |               | ( )                                   |
| (73)m = 20  | 91 7     | 290.03      | 280.3      | 264 72       | 249 17     | 233.95    | 223.91      | 228 72       | 236 58       | 252 33              | 270.42       | 283 74      |               | (73)                                  |
| 6 Solar     | gains    | 230.00      | 200.0      | 204.72       | 245.17     | 200.00    | 220.01      | 220.12       | 230.30       | 202.00              | 210.42       | 200.14      |               | ()                                    |
| Solar gains | s are ca | alculated u | using sola | ar flux from | Table 6a   | and assoc | iated equa  | tions to co  | onvert to th | e applicat          | ole orientat | ion.        |               |                                       |
| Orientatio  | on: A    | ccess F     | actor      | Area         |            | Flu       | x           |              | q            |                     | FF           |             | Gains         |                                       |
|             | T        | able 6d     |            | m²           |            | Tal       | ble 6a      | Т            | able 6b      | Т                   | able 6c      |             | (W)           |                                       |
| North (     | 0.9x     | 0.77        | x          | 2.8          | 39         | x 1       | 0.63        | x            | 0.85         | ☐ x [               | 0.7          | =           | 12.67         | (74)                                  |
| North (     | 0.9x     | 0.77        | ×          | 2.8          | 39         | x 2       | 20.32       | x            | 0.85         | ╡ <u> </u>          | 0.7          |             | 24.22         | (74)                                  |
| North (     | 0.9x     | 0.77        | ×          | 2.8          | 39         | x 3       | 34.53       | x            | 0.85         | ╡╷┝                 | 0.7          |             | 41.15         | (74)                                  |
| North       | 0.9x     | 0.77        | ×          | 2.8          | 39         | x .       | 5.46        | ×            | 0.85         | ╡╷╞                 | 0.7          | =           | 66.09         | ]<br>(74)                             |
|             |          |             |            |              |            |           |             |              |              |                     |              |             |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 7              | 9.99      | x      | 0.85       | ;               | ×                  | 0.7              |       | = [ | 95.31  | (74)  |
|----------|------------------------|------------------------|---------|-------|-----------|----------|----------------|----------------|-----------|--------|------------|-----------------|--------------------|------------------|-------|-----|--------|-------|
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 7              | 4.68      | x      | 0.85       | ;               | x                  | 0.7              |       | = [ | 88.99  | (74)  |
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 5              | 9.25      | x      | 0.85       | ;               | x                  | 0.7              |       | = [ | 70.6   | (74)  |
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 4              | 1.52      | x      | 0.85       | ;               | x                  | 0.7              |       | = [ | 49.47  | (74)  |
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 2              | 4.19      | x      | 0.85       | ;               | x                  | 0.7              |       | = [ | 28.83  | (74)  |
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              | 1              | 3.12      | x      | 0.85       | ;               | x                  | 0.7              |       | = [ | 15.63  | (74)  |
| North    | 0.9x                   | 0.77                   |         | x     | 2.8       | 9        | x              |                | 8.86      | ×      | 0.85       | ;               | x                  | 0.7              |       | = [ | 10.56  | (74)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 4              | 6.75      | x      | 0.76       | ;               | x                  | 0.7              |       | =   | 155.64 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 7              | 6.57      | x      | 0.76       | ;               | x                  | 0.7              |       | = [ | 254.91 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | g              | 7.53      | x      | 0.76       | ;               | x                  | 0.7              |       | =   | 324.7  | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 10.23     | x      | 0.76       | ;               | x                  | 0.7              |       | = [ | 366.99 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 14.87     | x      | 0.76       | ;               | x                  | 0.7              |       | = [ | 382.42 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 10.55     | x      | 0.76       | ;               | x                  | 0.7              |       | =   | 368.03 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 08.01     | x      | 0.76       | ;               | x                  | 0.7              |       | = [ | 359.59 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 04.89     | x      | 0.76       | ;               | x                  | 0.7              |       | =   | 349.21 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 1              | 01.89     | x      | 0.76       | i               | x                  | 0.7              |       | = [ | 339.19 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 8              | 2.59      | x      | 0.76       | i               | x                  | 0.7              |       | =   | 274.94 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | ×              | 5              | 5.42      | х      | 0.76       | i               | х                  | 0.7              |       | =   | 184.49 | (78)  |
| South    | 0.9x                   | 0.77                   |         | x     | 9.0       | 3        | x              | 4              | 40.4      | x      | 0.76       | i               | x                  | 0.7              |       | =   | 134.49 | (78)  |
|          |                        |                        |         |       |           |          |                |                |           |        |            |                 |                    |                  |       |     |        |       |
| Solar (  | <mark>gain</mark> s in | watts, <mark>ca</mark> | alculat | ed    | for eacl  | n mon    | th             |                |           | (83)m  | n = Sum(74 | )m(8            | <mark>8</mark> 2)m |                  |       |     |        |       |
| (83)m=   | 168.32                 | 279.12                 | 365.8   | 5     | 433.08    | 471.4    | <sup>3</sup> 4 | 63.34          | 448.58    | 419    | .81 388.   | .67 3           | 303.76             | 200.12           | 145.0 | 05  |        | (83)  |
| l otal g | jains – i              | nternal a              | nd so   | lar   | (84)m =   | = (73)n  | 1 + (          | 83)m           | , watts   | i      |            |                 |                    | _                | i     |     |        | (5.1) |
| (84)m=   | 460.02                 | 569.15                 | 646.1   | 5     | 697.8     | 720.6    | 2 6            | 97.29          | 672.48    | 648    | .53 625.   | .25             | 556.1              | 470.55           | 428.  | 79  |        | (84)  |
| 7. Me    | ean inter              | nal temp               | eratu   | e (   | heating   | seaso    | on)            |                |           |        |            |                 |                    |                  |       | _   |        |       |
| Temp     | perature               | during h               | eating  | g pe  | eriods ir | n the li | ving           | area           | from Tab  | ole 9  | , Th1 (°C  | ;)              |                    |                  |       |     | 21     | (85)  |
| Utilis   | ation fac              | tor for g              | ains fo | or li | ving are  | ea, h1,  | m (s           | ee Ta          | ble 9a)   |        |            |                 |                    |                  |       |     |        |       |
|          | Jan                    | Feb                    | Ма      | r     | Apr       | Ma       | y 📃            | Jun            | Jul       | A      | ug Se      | эр              | Oct                | Nov              | De    | ec  |        |       |
| (86)m=   | 1                      | 1                      | 0.99    |       | 0.98      | 0.96     |                | 0.9            | 0.79      | 0.8    | 32 0.9     | 4               | 0.99               | 1                | 1     |     |        | (86)  |
| Mear     | n interna              | l temper               | ature i | in li | iving are | ea T1    | (follo         | w ste          | ps 3 to 7 | 7 in T | able 9c)   |                 |                    |                  |       |     |        |       |
| (87)m=   | 19                     | 19.19                  | 19.5    |       | 19.9      | 20.31    | 2              | 20.67          | 20.87     | 20.    | 84 20.5    | 56 2            | 20.02              | 19.43            | 18.9  | 97  |        | (87)  |
| Temp     | perature               | during h               | eating  | j pe  | eriods ir | n rest o | of dw          | elling         | from Ta   | able 9 | 9, Th2 (°( | C)              |                    |                  |       |     |        |       |
| (88)m=   | 18.72                  | 18.72                  | 18.72   | 2     | 18.74     | 18.74    | . 1            | 18.75          | 18.75     | 18.    | 76 18.7    | 75 '            | 18.74              | 18.73            | 18.7  | '3  |        | (88)  |
| Utilis   | ation fac              | tor for a              | ains fo | or re | est of d  | velling  | ı. h2          | .m (se         | e Table   | 9a)    |            |                 |                    | •                |       |     |        |       |
| (89)m=   | 1                      | 0.99                   | 0.99    | T     | 0.97      | 0.92     |                | 0.75           | 0.47      | 0.5    | 53 0.8     | 4               | 0.97               | 1                | 1     |     |        | (89)  |
| Moor     |                        |                        | atura i |       | ho roct   | of dwo   |                | T2 (f          |           |        | to 7 in T  |                 | 00)                | 1                |       |     |        |       |
| (90)m=   | 16.27                  | 16.55                  | 17      |       | 17.59     | 18.16    |                | 12 (II<br>18.6 | 18.74     | 18.    | 73 18.4    | 49              | 90)<br>17.77       | 16.92            | 16.2  | 94  |        | (90)  |
| (00)11-  |                        | 10.00                  |         |       |           | 10.10    |                |                |           | L '0.  |            | ···<br>fLA      | = Liv              | ing area ÷ (4    | 1) =  |     | 0.55   | (91)  |
|          |                        |                        |         |       |           |          |                |                |           |        |            | -               |                    | <b>U 1 1 1 1</b> | ·     | L   | 0.00   |       |
| Mear     | interna                | I tempera              | ature   | (tor  | the wh    | ole dw   | ellin          | g) = f         | LA × T1   | + (1   | – †LA) ×   | 12              | 40.05              | 10.51            |       |     |        | (00)  |
| (92)m=   | 17.79                  | 18.02                  | 18.38   | 5     | 18.87     | 19.35    |                | 19.75          | 19.92     | 19     | .9 19.6    | <sup>54</sup> 1 | 19.02              | 18.31            | 17.7  | 6   |        | (92)  |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 17.79                       | 18.02                 | 18.38                 | 18.87                  | 19.35                   | 19.75                   | 19.92         | 19.9       | 19.64       | 19.02       | 18.31        | 17.76       |           | (93)        |
|-----------------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|---------------|------------|-------------|-------------|--------------|-------------|-----------|-------------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                        |                         |                         |               |            |             |             |              |             |           |             |
| Set T<br>the ut       | i to the r<br>ilisation     | mean int<br>factor fo | ernal ter<br>or gains | nperatui<br>using Ta   | re obtain<br>Ible 9a    | ed at ste               | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(    | 76)m an      | d re-calc   | ulate     |             |
|                       | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                     | Jul           | Aug        | Sep         | Oct         | Nov          | Dec         |           |             |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | :                      |                         |                         | • • • •       |            |             |             |              |             |           |             |
| (94)m=                | 1                           | 0.99                  | 0.99                  | 0.97                   | 0.93                    | 0.84                    | 0.67          | 0.71       | 0.89        | 0.98        | 0.99         | 1           |           | (94)        |
| Usefu                 | ıl gains,                   | hmGm                  | , W = (94             | 4)m x (84              | 4)m                     |                         |               |            |             |             |              |             |           |             |
| (95)m=                | 458.76                      | 565.64                | 637.78                | 677.73                 | 671.88                  | 582.75                  | 449.14        | 459.36     | 557.53      | 542.67      | 467.96       | 427.9       |           | (95)        |
| Month                 | nly avera                   | age exte              | rnal tem              | perature               | e from Ta               | able 8                  |               |            |             |             |              |             |           |             |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                    | 16.6          | 16.4       | 14.1        | 10.6        | 7.1          | 4.2         |           | (96)        |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe               | erature,                | Lm , W =                | =[(39)m >     | k [(93)m-  | – (96)m     | ]           |              |             |           |             |
| (97)m=                | 2108.88                     | 2046.99               | 1850.88               | 1538.12                | 1178.44                 | 786.6                   | 506.95        | 533.92     | 848.6       | 1295.9      | 1733.15      | 2102.73     |           | (97)        |
| Space                 | e heatin                    | g require             | ement fo              | r each n               | nonth, k\               | Nh/mon                  | th = 0.02     | 4 x [(97)  | )m – (95    | )m] x (4    | 1)m          |             |           |             |
| (98)m=                | 1227.68                     | 995.47                | 902.55                | 619.48                 | 376.88                  | 0                       | 0             | 0          | 0           | 560.4       | 910.94       | 1246.08     |           | -           |
|                       |                             |                       |                       |                        |                         |                         |               | Tota       | l per year  | (kWh/yeai   | ) = Sum(9    | 8)15,912 =  | 6839.48   | (98)        |
| Space                 | e heatin                    | g require             | ement in              | kWh/m²                 | /year                   |                         |               |            |             |             |              | ]           | 134.11    | (99)        |
| 9b. En                | erav rea                    | uiremer               | nts – Cor             | nmunitv                | heating                 | scheme                  | 2             |            |             |             |              | L           |           | -           |
| This pa               | art is use                  | ed for sp             | ace hea               | ting, spa              | ace cool                | ng or wa                | ater heat     | ina prov   | ided by a   | a comm      | unitv sch    | neme.       |           |             |
| Fractio               | n of spa                    | ace heat              | from se               | condary/               | /supplen                | nentary l               | heating (     | Table 1    | 1) '0' if n | one         |              |             | 0         | (301)       |
| Fractio               | n of spa                    | ace heat              | from co               | mmunity                | y system                | 1 - (30                 | 1) =          |            |             |             |              | [           | 1         | (302)       |
| The com               | nmunity so                  | cheme mag             | y obtain he           | eat from se            | everal sour             | ces. The p              | procedure a   | allows for | CHP and u   | up to four  | other heat   | sources; th | ne latter | 4           |
| includes              | boilers, h                  | eat pumps             | s, geothern           | nal and wa             | aste heat f             | rom powel               | r stations. S | See Apper  | ndix C.     |             |              |             |           | -           |
| Fractio               | n of hea                    | at from C             | Commun                | ity boiler             | s                       |                         |               |            |             |             |              |             | 1         | (303a)      |
| Fractio               | on of tota                  | al space              | heat fro              | m Comn                 | nunity bo               | oilers                  |               |            |             | (3          | 02) x (303   | a) =        | 1         | (304a)      |
| Factor                | for cont                    | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo               | r commu       | inity hea  | ting syst   | tem         |              | [           | 1         | (305)       |
| Distrib               | ution los                   | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatii              | ng syster     | m          |             |             |              | [           | 1.05      | (306)       |
| Space                 | heating                     | 9                     |                       |                        |                         |                         |               |            |             |             |              | ,           | kWh/year  | -           |
| Annua                 | space                       | heating               | requirem              | nent                   |                         |                         |               |            |             |             |              |             | 6839.48   |             |
| Space                 | heat fro                    | om Comr               | nunity b              | oilers                 |                         |                         |               |            | (98) x (30  | 04a) x (30  | 5) x (306) = | - [         | 7181.45   | (307a)      |
| Efficier              | ncy of se                   | econdary              | /supple               | mentary                | heating                 | system                  | in % (fro     | m Table    | 4a or A     | ppendix     | E)           | [           | 0         | (308        |
| Space                 | heating                     | require               | ment froi             | m secon                | dary/sup                | oplemen                 | tary syst     | em         | (98) x (30  | 01) x 100 - | ÷ (308) =    | [           | 0         | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | <b>j</b><br>neating r | equirem               | ent                    |                         |                         |               |            |             |             |              | [           | 1831.51   | 1           |
| If DHW<br>Water       | / from co<br>heat fro       | ommunit<br>m Comn     | ty schem              | ne:<br>pilers          |                         |                         |               |            | (64) x (30  | 03a) x (30  | 5) x (306) = | ا<br>= [    | 1923.08   | ]<br>(310a) |
| Electric              | city used                   | d for hea             | t distribu            | ution                  |                         |                         |               | 0.01       | × [(307a).  | (307e) +    | · (310a)(    | 310e)] =    | 91.05     | ]<br>(313)  |
| Cooling               | g Syster                    | m Energ               | y Efficiei            | ncy Rati               | 0                       |                         |               |            |             |             |              | ו<br>[      | 0         | (314)       |
| Space                 | cooling                     | (if there             | is a fixe             | d cooling              | g system                | n, if not e             | enter 0)      |            | = (107) ÷   | (314) =     |              | L<br>[      | 0         | (315)       |
| Electric<br>mecha     | city for p<br>nical ve      | oumps aintilation     | nd fans v<br>- balanc | within dv<br>æd, extra | velling (1<br>act or po | Fable 4f)<br>sitive in∣ | :<br>put from | outside    |             |             |              |             | 0         | (330a)      |

| warm air heating system fans                                                                                         |                             |                               | 0                                     | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|--------|
| pump for solar water heating                                                                                         |                             |                               | 0                                     | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  | 0                                     | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               | 235.9                                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |                                       |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | <sup>r</sup> Emissions<br>kg CO2/year | ,      |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | iel 90                                | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 310b)] x 100 ÷ (367b) x     | 0                             | = 2185.09                             | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | = 47.25                               | (372)  |
| Total CO2 associated with community systems (3                                                                       | 363)(366) + (368)(372)      |                               | = 2232.34                             | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 309) x                      | 0                             | = 0                                   | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | = 0                                   | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 373) + (374) + (375) =      |                               | 2232.34                               | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | g (331)) x                  | 0.52                          | = 0                                   | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 332))) x                    | 0.52                          | = 122.43                              | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               | 2354.77                               | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               | 46.17                                 | (384)  |
| El rating (section 14)                                                                                               |                             |                               | 67.13                                 | (385)  |

|                                                                                                                                                                                                                       |                                                                                                                                   |                                | User D     | etails:                  |                  |                  |                       |              |                                       |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|--------------------------|------------------|------------------|-----------------------|--------------|---------------------------------------|----------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 201                                                                                                                   | 2                              |            | Stroma<br>Softwa         | a Num<br>Ire Ver | ber:<br>sion:    |                       | Versio       | n: 1.0.3.15                           |                      |
| Addross :                                                                                                                                                                                                             | london                                                                                                                            | Pr                             | operty A   | Address:                 | Unit 4           |                  |                       |              |                                       |                      |
| 1. Overall dwelling dimer                                                                                                                                                                                             | sions:                                                                                                                            |                                |            |                          |                  |                  |                       |              |                                       |                      |
| Basement                                                                                                                                                                                                              |                                                                                                                                   |                                | Area       | <b>a(m²)</b><br>51       | (1a) x           | <b>Av. He</b>    | <b>ight(m)</b><br>.18 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)     |
| Total floor area TFA = (1a                                                                                                                                                                                            | )+(1b)+(1c)+(1d)+(1e                                                                                                              | e)+(1n)                        | )          | 51                       | (4)              |                  |                       |              |                                       |                      |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                   |                                |            |                          | (3a)+(3b)        | +(3c)+(3d        | l)+(3e)+              | .(3n) =      | 111.18                                | (5)                  |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                   | _                              |            |                          |                  |                  |                       |              | <u> </u>                              |                      |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | $ \begin{array}{ccc} \text{main} & \text{se} \\ \text{heating} & \text{h} \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array} $ | econdary<br>eating<br>0<br>0   | / +<br>] + | 0<br>0<br>0              | ] = [            | <b>total</b> 0 0 | x 2                   | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b)    |
| Number of intermittent fan                                                                                                                                                                                            | IS                                                                                                                                |                                |            |                          |                  | 2                | <b>x</b> 1            | 10 =         | 20                                    | (7a)                 |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                   |                                |            |                          | Ē                | 0                | x 1                   | 10 =         | 0                                     | (7b)                 |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                |                                |            |                          | Ē                | 0                | x 4                   | 40 =         | 0                                     | (7c)                 |
|                                                                                                                                                                                                                       |                                                                                                                                   |                                |            |                          |                  |                  |                       | Air ch       | anges per ho                          | ur                   |
| Infiltration due to chimney<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre-<br>deducting areas of opening | 0.18 0 0 0 0 0                                                                                                                    | (8)<br>(9)<br>(10)<br>(11)     |            |                          |                  |                  |                       |              |                                       |                      |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (unseal                                                                                                            | ed) or 0. <sup>-</sup>         | 1 (seale   | d), else                 | enter 0          |                  |                       |              | 0                                     | (12)                 |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter 0                                                                                                             |                                |            |                          |                  |                  |                       |              | 0                                     | (13)                 |
| Percentage of windows                                                                                                                                                                                                 | and doors draught st                                                                                                              | ripped                         |            |                          |                  |                  |                       |              | 0                                     | (14)                 |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                   |                                |            | 0.25 - [0.2              | x (14) ÷ 1       | = [00            | ( )                   |              | 0                                     | (15)                 |
| Infiltration rate                                                                                                                                                                                                     | 50                                                                                                                                | • • • • • • • •                |            | (8) + (10) ·             | + (11) + (1      | 2) + (13) -      | + (15) =              |              | 0                                     | (16)                 |
| Air permeability value, o                                                                                                                                                                                             | 150, expressed in cub                                                                                                             | NC metres<br>7) $\div$ 201+(8) | s per no   | ur per so<br>se (18) = ( | quare m<br>16)   | etre of e        | envelope              | area         | 10                                    | $-\frac{(17)}{(10)}$ |
| Air permeability value applies                                                                                                                                                                                        | if a pressurisation test has                                                                                                      | s been done                    | e or a deg | iree air pei             | meability        | is being u       | sed                   |              | 0.68                                  |                      |
| Number of sides sheltered                                                                                                                                                                                             | k                                                                                                                                 |                                | 0          |                          |                  | Ū                |                       |              | 2                                     | (19)                 |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                   |                                |            | (20) = 1 - [             | 0.075 x (1       | 9)] =            |                       |              | 0.85                                  | (20)                 |
| Infiltration rate incorporation                                                                                                                                                                                       | ng shelter factor                                                                                                                 |                                |            | (21) = (18)              | x (20) =         |                  |                       |              | 0.58                                  | (21)                 |
| Infiltration rate modified fo                                                                                                                                                                                         | r monthly wind speed                                                                                                              | 1                              |            |                          |                  |                  |                       |              | I                                     |                      |
| Jan Feb I                                                                                                                                                                                                             | vlar Apr May                                                                                                                      | Jun                            | Jul        | Aug                      | Sep              | Oct              | Nov                   | Dec          |                                       |                      |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                   |                                |            |                          |                  |                  |                       |              | I                                     |                      |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | 4.9 4.4 4.3                                                                                                                       | 3.8                            | 3.8        | 3.7                      | 4                | 4.3              | 4.5                   | 4.7          |                                       |                      |
| Wind Factor (22a)m = (22                                                                                                                                                                                              | )m ÷ 4                                                                                                                            | ,         ,                    |            |                          |                  |                  | 1                     |              | I                                     |                      |
| (22a)m= 1.27 1.25 1                                                                                                                                                                                                   | .23 1.1 1.08                                                                                                                      | 0.95                           | 0.95       | 0.92                     | 1                | 1.08             | 1.12                  | 1.18         |                                       |                      |

| Adjust                 | ed infiltr               | ation rat                      | e (allow                  | ing for sh                | nelter an               | d wind s               | peed) =     | (21a) x        | (22a)m       |                | -           | -                  | _                 |               |
|------------------------|--------------------------|--------------------------------|---------------------------|---------------------------|-------------------------|------------------------|-------------|----------------|--------------|----------------|-------------|--------------------|-------------------|---------------|
|                        | 0.74                     | 0.72                           | 0.71                      | 0.64                      | 0.62                    | 0.55                   | 0.55        | 0.53           | 0.58         | 0.62           | 0.65        | 0.68               |                   |               |
| If m                   | ate effe                 | <i>ctive air</i><br>al ventila | change                    | rate for t                | he appli                | cable ca               | se          |                |              |                |             |                    | 0                 | (23a)         |
| lf exh                 | aust air h               | eat pump                       | using App                 | endix N, (2               | 3b) = (23a              | a) × Fmv (e            | equation (I | N5)), othei    | rwise (23b   | ) = (23a)      |             |                    |                   | (23b)         |
| If bala                | anced with               | h heat reco                    | overy: effic              | iency in %                | allowing f              | or in-use f            | actor (fron | n Table 4h     | ) =          | , , ,          |             |                    |                   | (23c)         |
| a) If                  | balance                  | ed mech                        | anical ve                 | entilation                | with he                 | at recove              | erv (MV     | HR) (24a       | a)m = (22    | 2b)m + (       | 23b) x [′   | 1 – (23c)          | ÷ 100]            | (200)         |
| (24a)m=                | 0                        | 0                              | 0                         | 0                         | 0                       | 0                      | 0           | 0              | 0            | 0              | 0           | 0                  |                   | (24a)         |
| b) If                  | balance                  | ed mecha                       | ı<br>anical ve            | entilation                | without                 | heat rec               | overv (ľ    | MV) (24b       | m = (22)     | 1<br>2b)m + (; | 23b)        |                    | 1                 |               |
| ,<br>(24b)m=           | 0                        | 0                              | 0                         | 0                         | 0                       | 0                      | 0           | 0              | 0            | 0              | 0           | 0                  | 1                 | (24b)         |
| c) If                  | whole h                  | iouse ex                       | tract ver                 | ntilation of              | or positiv              | ve input v             | ventilatio  | on from c      | outside      | !              |             |                    | 1                 |               |
| ,                      | if (22b)r                | n < 0.5 ×                      | <b>(23b)</b> , t          | then (24o                 | c) = (23b               | ); otherv              | wise (24    | c) = (22b      | o) m + 0.    | 5 × (23b       | ))          |                    |                   |               |
| (24c)m=                | 0                        | 0                              | 0                         | 0                         | 0                       | 0                      | 0           | 0              | 0            | 0              | 0           | 0                  |                   | (24c)         |
| d) If                  | natural                  | ventilatio                     | on or wh                  | ole hous                  | e positiv               | e input                | ventilati   | on from I      | oft          | _              |             |                    |                   |               |
| (2.1.1)                | if (22b)r                | n = 1, th                      | en (24d)                  | m = (22k                  | o)m othe                | erwise (2              | 4d)m =      | 0.5 + [(2      | 2b)m² x      | 0.5]           |             |                    | 1                 |               |
| (24d)m=                | 0.77                     | 0.76                           | 0.75                      | 0.7                       | 0.69                    | 0.65                   | 0.65        | 0.64           | 0.67         | 0.69           | 0.71        | 0.73               | J                 | (240)         |
| Effe                   | ctive air                | change                         | rate - er                 | nter (24a                 | ) or (24t               | o) or (24)             | c) or (24   | d) in boy      | (25)         | 0.00           | 0.74        | 0.70               | 1                 | (25)          |
| (25)m=                 | 0.77                     | 0.76                           | 0.75                      | 0.7                       | 0.69                    | 0.65                   | 0.65        | 0.64           | 0.67         | 0.69           | 0.71        | 0.73               |                   | (25)          |
| 3. He                  | at l <mark>osse</mark>   | s and he                       | eat loss                  | paramete                  | er:                     |                        |             |                |              |                |             |                    |                   |               |
| ELEN                   |                          | Gros<br>area                   | ss<br>(m²)                | Openin<br>m               | gs<br>2                 | Net Ar<br>A ,r         | ea<br>n²    | U-valı<br>W/m2 | ue<br>K      | A X U<br>(W/I  | K)          | k-value<br>kJ/m²·l | )<br>K            | A X k<br>kJ/K |
| Doo <mark>rs</mark>    |                          |                                |                           |                           |                         | 1.9                    | x           | 1.4            | =            | 2.66           |             |                    |                   | (26)          |
| Windo                  | <mark>ws</mark> Type     | e 1                            |                           |                           |                         | 9.03                   | x1          | /[1/( 1.6 )+   | 0.04] =      | 13.58          |             |                    |                   | (27)          |
| Win <mark>do</mark>    | ws Type                  | e 2                            |                           |                           |                         | 0.39                   | x1          | /[1/( 4.8 )+   | 0.04] =      | 1.57           |             |                    |                   | (27)          |
| Floor                  |                          |                                |                           |                           |                         | 51                     | ×           | 0.97           | =            | 49.47          |             |                    |                   | (28)          |
| Walls <sup>-</sup>     | Type1                    | 39.                            | 2                         | 0.39                      |                         | 38.81                  | x           | 2.1            |              | 81.5           |             |                    |                   | (29)          |
| Walls <sup>-</sup>     | Type2                    | 10.9                           | 9                         | 10.93                     | 3                       | 0.06                   | ×           | 2.1            |              | 0.13           |             |                    | $\exists \square$ | (29)          |
| Total a                | area of e                | elements                       | , m²                      |                           |                         | 101.1                  | 9           |                |              |                |             |                    |                   | (31)          |
| Party v                | wall                     |                                |                           |                           |                         | 16.1                   | ×           | 0              | =            | 0              |             |                    |                   | (32)          |
| * for win<br>** includ | idows and<br>le the area | l roof wind<br>as on both      | ows, use e<br>sides of ii | effective wi              | ndow U-va<br>Is and par | alue calcul<br>titions | ated using  | g formula 1,   | /[(1/U-valı  | ie)+0.04] a    | as given in | paragraph          | 1 3.2             |               |
| Fabric                 | heat los                 | ss, W/K :                      | = S (A x                  | U)                        |                         |                        |             | (26)(30)       | + (32) =     |                |             |                    | 148.91            | (33)          |
| Heat c                 | apacity                  | Cm = S(                        | (Axk)                     |                           |                         |                        |             |                | ((28)        | (30) + (32     | 2) + (32a). | (32e) =            | 0                 | (34)          |
| Therm                  | al mass                  | parame                         | ter (TM                   | ⊃ = Cm ÷                  | - TFA) ir               | n kJ/m²K               |             |                | Indica       | tive Value     | : High      |                    | 450               | (35)          |
| For desi<br>can be ι   | ign asses:<br>used inste | sments wh<br>ad of a de        | ere the de<br>tailed calc | etails of the<br>ulation. | construct               | ion are not            | t known pi  | recisely the   | e indicative | e values of    | TMP in Ta   | able 1f            |                   |               |
| Therm                  | al bridg                 | es : S (L                      | x Y) cal                  | culated u                 | using Ap                | pendix ł               | <           |                |              |                |             |                    | 15.2              | (36)          |
| if details             | s of therma              | al bridging                    | are not kr                | nown (36) =               | = 0.15 x (3             | 1)                     |             |                |              |                |             |                    |                   |               |
| Total f                | abric he                 | at loss                        |                           |                           |                         |                        |             |                | (33) +       | (36) =         |             |                    | 164.11            | (37)          |
| Ventila                | ation hea                | at loss ca                     | alculateo                 | d monthly                 | /                       |                        |             | <b>I</b> 1     | (38)m        | = 0.33 × (     | 25)m x (5)  | )                  | 1                 |               |
|                        | Jan                      | Feb                            | Mar                       | Apr                       | May                     | Jun                    | Jul         | Aug            | Sep          | Oct            | Nov         | Dec                | 4                 |               |
| (38)m=                 | 28.3                     | 27.92                          | 27.54                     | 25.76                     | 25.42                   | 23.87                  | 23.87       | 23.59          | 24.47        | 25.42          | 26.1        | 26.8               | l                 | (38)          |
| Heat ti                | ransfer o                | coefficie                      | nt, W/K                   | 1 1                       |                         | r                      | r           | r              | (39)m        | = (37) + (3    | 38)m        |                    | 1                 |               |
| (39)m=                 | 192.41                   | 192.02                         | 191.64                    | 189.86                    | 189.53                  | 187.98                 | 187.98      | 187.69         | 188.58       | 189.53         | 190.21      | 190.91             |                   |               |
|                        |                          |                                |                           |                           |                         |                        |             |                |              | average =      | Sum(39)1    | 12 /12=            | 189.86            | o (39)        |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | ′m²K                                                 |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | · (4)                                 |          |         |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|---------|------|
| (40)m=                         | 3.77                            | 3.77                                   | 3.76                                 | 3.72                                                 | 3.72                                     | 3.69                                  | 3.69                         | 3.68                   | 3.7                   | 3.72                      | 3.73                                  | 3.74     |         |      |
| L                              | r of day                        |                                        | uth (Tab                             |                                                      |                                          |                                       |                              | 1                      | ,                     | Average =                 | Sum(40)1                              | 12 /12=  | 3.72    | (40) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                                  | Mav                                      | Jun                                   | Jul                          | Aua                    | Sep                   | Oct                       | Nov                                   | Dec      |         |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                                   | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |         | (41) |
| ΎΓ                             |                                 |                                        |                                      |                                                      |                                          |                                       |                              |                        |                       |                           |                                       |          |         |      |
| 4. Wa                          | ter heat                        | ing enei                               | rgy requ                             | irement:                                             |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:    |      |
| Assum<br>if TF/<br>if TF/      | ed occu<br>A > 13.9<br>A £ 13.9 | ipancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | [1 - exp                                             | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13.                  | 1.<br>.9)                             | 72       |         | (42) |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br><sup>r</sup> day (all w | es per da<br>5% if the a<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      |         | (43) |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                                  | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |         |      |
| Hot wate                       | r usage ii                      | n litres per                           | day for ea                           | ach month                                            | Vd,m = fa                                | ctor from                             | Table 1c x                   | (43)                   |                       |                           |                                       |          |         |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                                | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |         | _    |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                              | used - cal                           | culated mo                                           | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | 0Tm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48  | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96. <mark>3</mark> 2                                 | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 10 <mark>0.01</mark>      | 109.17                                | 118.55   |         | _    |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                                           | o hot water                              | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                |          | 1180.67 | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                                | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |         | (46) |
| Water a                        | storage                         | loss:                                  | in al valia                          |                                                      |                                          |                                       |                              |                        |                       |                           |                                       |          |         |      |
| Storage                        | e volum                         | e (litres)                             |                                      | ig any so                                            |                                          | ntor 110                              | storage                      |                        | ame ves               | sei                       |                                       | 160      |         | (47) |
| Otherw                         | ise if no                       | eating a stored                        | hot wate                             | er (this in                                          | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |         |      |
| Water s                        | storage                         | loss:                                  |                                      | ,                                                    |                                          |                                       |                              |                        | ,                     | ,                         |                                       |          |         |      |
| a) If m                        | anufact                         | urer's de                              | eclared I                            | oss facto                                            | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |         | (48) |
| Tempe                          | rature fa                       | actor fro                              | m Table                              | 2b                                                   |                                          |                                       |                              |                        |                       |                           |                                       | 0        |         | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | , kWh/ye                                             | ear                                      |                                       |                              | (48) x (49)            | ) =                   |                           | 1                                     | 10       |         | (50) |
| b) If ma                       | anufact                         | urer's de                              | eclared (                            | cylinder l                                           | oss fact                                 | or is not<br>b/litro/da               | known:                       |                        |                       |                           |                                       | 00       |         | (51) |
| If comn                        | nunitv h                        | eating s                               | ee secti                             | on 4.3                                               |                                          | 1/1110/02                             | iy)                          |                        |                       |                           | 0.                                    | 02       |         | (51) |
| Volume                         | factor                          | from Ta                                | ble 2a                               |                                                      |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |         | (52) |
| Tempe                          | rature fa                       | actor fro                              | m Table                              | 2b                                                   |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |         | (53) |
| Energy                         | lost fro                        | m water                                | storage                              | , kWh/ye                                             | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |         | (54) |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  |                                                      |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |         | (55) |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                             | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |         |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (56) |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)ı                                          | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | ix H    |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (57) |
| Primary                        | / circuit                       | loss (ar                               | nual) fro                            | om Table                                             | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |         | (58) |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                             | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     | _                         |                                       |          |         |      |
| (mod                           | lified by                       | factor f                               | rom Tab                              | le H5 if t                                           | here is s                                | solar wat                             | ter heati                    | ng and a               | t cylinde             | r thermo                  | stat)                                 |          | I       | (==) |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                                | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |         | (59) |

| Combi    | loss ca             | alculated   | for eacl   | h month         | (61)m =       | (60) ÷ 3 | 365 × (41     | )m           |              |                     |              |             |               |       |
|----------|---------------------|-------------|------------|-----------------|---------------|----------|---------------|--------------|--------------|---------------------|--------------|-------------|---------------|-------|
| (61)m=   | 0                   | 0           | 0          | 0               | 0             | 0        | 0             | 0            | 0            | 0                   | 0            | 0           |               | (61)  |
| Total h  | eat req             | uired for   | water h    | neating c       | alculated     | for ea   | ch month      | (62)m =      | • 0.85 ×     | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |       |
| (62)m=   | 177.69              | 156.99      | 165.75     | 149.81          | 147.69        | 133.24   | 129.18        | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)  |
| Solar DH | IW input            | calculated  | using Ap   | pendix G o      | r Appendix    | H (nega  | tive quantity | /) (enter '0 | ' if no sola | r contribut         | tion to wate | er heating) |               |       |
| (add a   | dditiona            | al lines if | FGHRS      | and/or          | WWHRS         | applie   | s, see Ap     | pendix (     | G)           |                     |              |             | _             |       |
| (63)m=   | 0                   | 0           | 0          | 0               | 0             | 0        | 0             | 0            | 0            | 0                   | 0            | 0           |               | (63)  |
| Output   | from w              | ater hea    | ter        |                 |               |          |               |              |              |                     |              |             |               |       |
| (64)m=   | 177.69              | 156.99      | 165.75     | 149.81          | 147.69        | 133.24   | 129.18        | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               |       |
|          |                     |             |            |                 |               |          | -             | Out          | out from w   | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)  |
| Heat g   | ains fro            | m water     | heating    | j, kWh/m        | onth 0.2      | 5 ´ [0.8 | 5 × (45)m     | ı + (61)n    | n] + 0.8 x   | k [(46)m            | + (57)m      | + (59)m     | ]             |       |
| (65)m=   | 59.31               | 52.41       | 55.34      | 50.03           | 49.34         | 44.53    | 43.18         | 46.81        | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)  |
| inclu    | de (57)             | m in calo   | ulation    | of (65)m        | only if c     | ylinder  | is in the     | dwelling     | or hot w     | ater is f           | rom com      | munity h    | neating       |       |
| 5. Int   | ernal g             | ains (see   | Table      | 5 and 5a        | ):            |          |               |              |              |                     |              |             |               |       |
| Metabo   | olic daii           | ns (Table   | 5). Wa     | tts             | ,             |          |               |              |              |                     |              |             |               |       |
| motab    | Jan                 | Feb         | Mar        | Apr             | May           | Jun      | Jul           | Aug          | Sep          | Oct                 | Nov          | Dec         |               |       |
| (66)m=   | 85.98               | 85.98       | 85.98      | 85.98           | 85.98         | 85.98    | 85.98         | 85.98        | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)  |
| Lightin  | g gains             | (calcula    | ted in A   | ppendix         | L, equat      | ion L9   | or L9a), a    | lso see      | Table 5      |                     |              |             |               |       |
| (67)m=   | 1 <mark>3.58</mark> | 12.06       | 9.81       | 7.43            | 5.55          | 4.69     | 5.06          | 6.58         | 8.83         | 11.22               | 13.09        | 13.96       |               | (67)  |
| Appliar  | nces aa             | ains (calc  | ulated i   | n Appen         | dix L. ea     | uation   |               | 3a), also    | see Ta       | ble 5               |              |             |               |       |
| (68)m=   | 149.83              | 151.39      | 147.47     | 139.13          | 128.6         | 118.7    | 112.09        | 110.54       | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)  |
| Cookin   | a dains             | s (calcula  | ited in A  | ppendix         | L equat       | ion I 1  | 5 or   15a    | also se      | ee Table     | 5                   |              |             | 1             |       |
| (69)m=   | 31.6                | 31.6        | 31.6       | 31.6            | 31.6          | 31.6     | 31.6          | 31.6         | 31.6         | 31.6                | 31.6         | 31.6        | 1             | (69)  |
| Pumps    | and fa              | ns gains    | (Table     | 5a)             |               |          |               |              |              |                     |              |             |               |       |
| (70)m=   |                     |             |            |                 | 0             | 0        | 0             | 0            | 0            | 0                   | 0            | 0           | ]             | (70)  |
|          |                     | Vanoratio   | n (neas    | l<br>ative valu | L<br>es) (Tab | le 5)    |               |              |              |                     | _            |             | I             |       |
| (71)m=   | -68.78              | -68.78      | -68.78     | -68.78          | -68.78        | -68.78   | -68.78        | -68.78       | -68.78       | -68.78              | -68.78       | -68.78      | ]             | (71)  |
| Water    | heating             |             | able 5)    |                 |               |          |               |              |              |                     |              |             | I             | . ,   |
| (72)m=   | 79.72               | 77.99       | 74.39      | 69.49           | 66.32         | 61.84    | 58.04         | 62,91        | 64.64        | 69.71               | 75.43        | 77.99       | ]             | (72)  |
| Total i  | ntorna              | Lasine –    |            |                 |               | (6)      | 6)m + (67)m   | 1 + (68)m    | + (69)m +    | (70)m + (7          | (1)m + (72)  | m           | I             | . ,   |
| (73)m-   | 291 92              | 290.23      | 280.46     | 264 84          | 249.26        | 234.02   | 223.99        | 228.82       | 236.72       | 252 51              | 270.64       | 283.96      | ]             | (73)  |
| 6 Sol    | ar gain             | S.          | 200.10     | 201101          | 210.20        | 201.02   | 220.00        | LEGIGE       | 200.12       | 202.01              | 210.01       | 200.00      |               | ( - / |
| Solar g  | ains are            | calculated  | using sola | ar flux from    | Table 6a      | and asso | ciated equa   | itions to co | onvert to th | ne applical         | ole orientat | ion.        |               |       |
| Orienta  | ation:              | Access F    | actor      | Area            | l             | FI       | ux            |              | q            |                     | FF           |             | Gains         |       |
|          |                     | Table 6d    |            | m²              |               | Та       | able 6a       | Т            | able 6b      | Т                   | able 6c      |             | (VV)          |       |
| North    | 0.9x                | 0.77        | ×          | 0.3             | 39            | x        | 10.63         | x            | 0.85         | ☐ x [               | 0.7          | =           | 1.71          | (74)  |
| North    | 0.9x                | 0.77        | ×          | . 0.:           | 39            | x        | 20.32         | j x 🗖        | 0.85         | ╡ <u> </u>          | 0.7          |             | 3.27          | (74)  |
| North    | 0.9x                | 0.77        | ×          | 0.;             | 39            | x        | 34.53         | ;            | 0.85         | =                   | 0.7          |             | 5.55          | (74)  |
| North    | 0.9x                | 0.77        | ×          | 0.:             | 39            | x        | 55.46         | ;            | 0.85         | ╡╷╞                 | 0.7          |             | 8.92          | (74)  |
| North    | 0.9x                | 0.77        | ×          | . 0.:           | 39            | x        | 74.72         | j × [        | 0.85         | ╡ <u> </u>          | 0.7          | =           | 12.02         | (74)  |

| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 7       | 9.99          | x      | 0.85         | x       |         | 0.7      |       | = [ | 12.86  | (74) |
|-----------------------|------------------------|------------------------|---------|-------------------|-----------|---------|----------|---------|---------------|--------|--------------|---------|---------|----------|-------|-----|--------|------|
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 7       | 4.68          | x      | 0.85         | ×       |         | 0.7      |       | =   | 12.01  | (74) |
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 5       | 9.25          | x      | 0.85         | ×       |         | 0.7      |       | = [ | 9.53   | (74) |
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 4       | 1.52          | x      | 0.85         | ×       |         | 0.7      |       | = [ | 6.68   | (74) |
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 2       | 4.19          | x      | 0.85         | ×       |         | 0.7      |       | =   | 3.89   | (74) |
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        | 1       | 3.12          | x      | 0.85         | ×       |         | 0.7      |       | = [ | 2.11   | (74) |
| North                 | 0.9x                   | 0.77                   |         | x                 | 0.3       | 9       | x        |         | 8.86          | x      | 0.85         | ×       |         | 0.7      |       | = [ | 1.43   | (74) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 4       | 6.75          | x      | 0.76         | ×       |         | 0.7      |       | = [ | 155.64 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 7       | 6.57          | x      | 0.76         | x       |         | 0.7      |       | = [ | 254.91 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | g       | 7.53          | x      | 0.76         | x       |         | 0.7      |       | =   | 324.7  | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 1       | 10.23         | x      | 0.76         | ×       |         | 0.7      |       | = [ | 366.99 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 1       | 14.87         | x      | 0.76         | ×       |         | 0.7      |       | = [ | 382.42 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 1       | 10.55         | x      | 0.76         | x       |         | 0.7      |       | = [ | 368.03 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 1       | 08.01         | x      | 0.76         | ×       |         | 0.7      |       | = [ | 359.59 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 1       | 04.89         | x      | 0.76         | ×       |         | 0.7      |       | = [ | 349.21 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | ×        | 1       | 01.89         | x      | 0.76         | ×       |         | 0.7      |       | =   | 339.19 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 8       | 2.59          | x      | 0.76         | x       |         | 0.7      |       | =   | 274.94 | (78) |
| South                 | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        | 5       | 5.42          | х      | 0.76         | x       |         | 0.7      |       | =   | 184.49 | (78) |
| Sout <mark>h</mark>   | 0.9x                   | 0.77                   |         | x                 | 9.0       | 3       | x        |         | 40.4          | x      | 0.76         | x       |         | 0.7      |       | =   | 134.49 | (78) |
|                       |                        |                        |         |                   |           |         |          |         |               |        |              |         |         |          |       | _   |        |      |
| Sola <mark>r</mark> ( | <mark>gain</mark> s in | watts, <mark>ca</mark> | alculat | ted               | for each  | n mon   | th       |         |               | (83)m  | n = Sum(74)n | m(82)r  | n       |          |       |     |        |      |
| (83)m=                | 157.35                 | 258.17                 | 330.2   | 26                | 375.91    | 394.44  | 4 3      | 80.89   | 371.6         | 358    | .74 345.87   | 7 278.  | 83 1    | 86.6     | 135.  | 92  |        | (83) |
| Total g               | gains – i              | nternal a              | nd so   | lar               | (84)m =   | : (73)n | 1 + (    | 83)m    | , watts       | i      |              |         |         |          |       |     |        |      |
| (84)m=                | 449.28                 | 548.4                  | 610.7   | '1                | 640.74    | 643.7   | 6        | 14.92   | 595.58        | 587    | .56 582.59   | 9 531.  | 34 4    | 57.24    | 419.  | 88  |        | (84) |
| 7. Me                 | ean inter              | nal temp               | eratu   | re (              | heating   | seaso   | on)      |         |               |        |              |         |         |          |       |     |        |      |
| Temp                  | perature               | during h               | eating  | g pe              | eriods ir | the li  | ving     | area    | from Tab      | ole 9  | , Th1 (°C)   |         |         |          |       |     | 21     | (85) |
| Utilis                | ation fac              | tor for g              | ains fo | or li             | ving are  | a, h1,  | m (s     | ee Ta   | ble 9a)       |        |              |         |         |          |       |     |        |      |
|                       | Jan                    | Feb                    | Ma      | r                 | Apr       | Ma      | y        | Jun     | Jul           | A      | ug Sep       | 00      | t       | Nov      | De    | ec  |        |      |
| (86)m=                | 1                      | 1                      | 0.99    |                   | 0.99      | 0.98    |          | 0.94    | 0.87          | 0.8    | 39 0.96      | 0.9     | Э       | 1        | 1     |     |        | (86) |
| Mear                  | n interna              | l tempera              | ature   | in li             | iving are | a T1    | (follo   | w ste   | ps 3 to 7     | 7 in T | able 9c)     |         |         |          |       |     |        |      |
| (87)m=                | 18.59                  | 18.78                  | 19.1    |                   | 19.54     | 20      | 2        | 20.45   | 20.73         | 20     | .7 20.35     | 19.7    | 3 1     | 9.08     | 18.5  | 6   |        | (87) |
| Tem                   | berature               | durina h               | eating  |                   | eriods ir | resto   | of dw    | /ellina | from Ta       | able 9 | 9. Th2 (°C   | )       |         |          |       |     |        |      |
| (88)m=                | 18.41                  | 18.42                  | 18.42   | 2                 | 18.43     | 18.43   |          | 18.45   | 18.45         | 18.    | 45 18.44     | , 18.4  | 3 1     | 8.43     | 18.4  | 2   |        | (88) |
| l Itilie              | L                      | tor for a              | aine fa |                   | est of du | velling | <br>1 h2 | m (se   | L<br>Do Tablo | (0a)   |              | _!      |         |          |       |     |        |      |
| (89)m=                |                        | 0.99                   | 0.99    |                   | 0.98      | 0.94    | , nz     | 0.82    | 0.54          | 0.5    | 59 0.88      | 0.9     | 3       | 0.99     | 1     |     |        | (89) |
| NA                    |                        | 1.4.5.5.5.5.5.5        | - 4     |                   |           |         |          | TO (6   |               |        |              |         |         |          |       |     |        |      |
|                       |                        | 1  temperative         | ature   | $\frac{\ln t}{7}$ |           | 17 57   |          | 12 (T   |               | eps 3  |              |         |         | 6.25     | 15 /  | 0   |        | (90) |
| (30)11=               | 10.02                  | 10.79                  | 10.2    | <u>'</u>          | 10.91     | 17.57   |          | 10.17   | 10.41         | 10     | 10.04        | fLA = 1 | iving a | rea - (4 | (1) = |     | 0 47   |      |
|                       |                        |                        |         |                   |           |         |          |         |               |        |              |         | y a     | (-       | ., –  | L   | 0.47   | (91) |
| Mear                  | interna                | l temper               | ature   | (for              | the wh    | ole dw  | ellin    | g) = fl | LA × T1       | + (1   | - fLA) × T   | 2       |         |          |       |     |        |      |
| (92)m=                | 16.97                  | 17.2                   | 17.6′   | 1                 | 18.15     | 18.72   |          | 9.25    | 19.51         | 19.    | 48   19.13   | 18.3    | 9 1     | 7.59     | 16.9  | 94  |        | (92) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 16.97                       | 17.2                  | 17.61                 | 18.15                    | 18.72              | 19.25                  | 19.51            | 19.48      | 19.13                | 18.39                | 17.59                  | 16.94         |           | (93)               |
|-----------------------|-----------------------------|-----------------------|-----------------------|--------------------------|--------------------|------------------------|------------------|------------|----------------------|----------------------|------------------------|---------------|-----------|--------------------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                          |                    |                        |                  |            |                      |                      |                        |               |           |                    |
| Set T<br>the ut       | i to the r<br>ilisation     | nean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta     | e obtain<br>ble 9a | ed at ste              | ep 11 of         | Table 9t   | o, so tha            | t Ti,m=(             | 76)m an                | d re-calc     | ulate     |                    |
|                       | Jan                         | Feb                   | Mar                   | Apr                      | May                | Jun                    | Jul              | Aug        | Sep                  | Oct                  | Nov                    | Dec           |           |                    |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | :                        |                    |                        |                  |            |                      |                      |                        |               |           |                    |
| (94)m=                | 1                           | 0.99                  | 0.99                  | 0.98                     | 0.95               | 0.88                   | 0.73             | 0.76       | 0.91                 | 0.98                 | 0.99                   | 1             |           | (94)               |
| Usefu                 | ıl gains,                   | hmGm ,                | , W = (94             | 4)m x (84                | 4)m                |                        |                  |            |                      |                      | -                      |               |           |                    |
| (95)m=                | 447.66                      | 544.53                | 602.84                | 625.01                   | 610.66             | 540.22                 | 435.55           | 446.46     | 530.02               | 518.82               | 454.23                 | 418.68        |           | (95)               |
| Month                 | nly avera                   | age exte              | rnal tem              | perature                 | from Ta            | able 8                 |                  |            |                      |                      |                        |               |           |                    |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                      | 11.7               | 14.6                   | 16.6             | 16.4       | 14.1                 | 10.6                 | 7.1                    | 4.2           |           | (96)               |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe                 | erature,           | _m , W =               | =[(39)m >        | x [(93)m-  | – (96)m              | ]                    |                        |               |           |                    |
| (97)m=                | 2437.25                     | 2362.67               | 2128.76               | 1757.19                  | 1331.1             | 873.45                 | 546.37           | 579.02     | 949.06               | 1477.12              | 1994.9                 | 2431.55       |           | (97)               |
| Space                 | e heating                   | g require             | ement fo              | r each m                 | nonth, k\          | Wh/mont                | th = 0.02        | 24 x [(97) | m – (95              | )m] x (4             | 1)m                    |               |           |                    |
| (98)m=                | 1480.25                     | 1221.79               | 1135.28               | 815.17                   | 536.01             | 0                      | 0                | 0          | 0                    | 712.98               | 1109.28                | 1497.58       |           | -                  |
|                       |                             |                       |                       |                          |                    |                        |                  | Tota       | l per year           | (kWh/year            | <sup>•</sup> ) = Sum(9 | 8)15,912 =    | 8508.34   | (98)               |
| Space                 | e heating                   | g require             | ement in              | kWh/m²                   | /year              |                        |                  |            |                      |                      |                        | [             | 166.83    | (99)               |
| 9b. En                | erav rea                    | uiremer               | nts – Cor             | nmunitv                  | heating            | scheme                 | 1                |            |                      |                      |                        | L             |           | 7                  |
| This pa               | art is use                  | ed for sp             | ace hea               | ting, spa                | ice cooli          | ng or wa               | ater heat        | ing prov   | ided by a            | a c <mark>omm</mark> | unity sch              | neme.         |           |                    |
| Fractio               | on of spa                   | ice heat              | from se               | condary/                 | supplen            | nentary I              | neating (        | Table 1    | 1) '0' if n          | one                  |                        |               | 0         | (301)              |
| Fractio               | on of spa                   | ce heat               | from co               | mmunity                  | system             | 1 - (301               | 1) =             |            |                      |                      |                        |               | 1         | (302)              |
| The con               | munitv.sc                   | heme may              | v obtain he           | eat from se              | veral sour         | ces The r              | ,<br>procedure ; | allows for | CHP and i            | in to four i         | other heat             | sources: th   | ne latter | J                  |
| includes              | boilers, h                  | eat pumps             | s, geothern           | nal and wa               | aste heat f        | rom powei              | r stations. S    | See Apper  | ndix C.              |                      |                        | 0001000, 0    |           |                    |
| Fractio               | on of hea                   | at from C             | Commun                | <mark>ity b</mark> oiler | s                  |                        |                  |            |                      |                      |                        |               | 1         | (303a)             |
| Fractio               | on of tota                  | al space              | heat fro              | m Comm                   | nunity bo          | oilers                 |                  |            |                      | (3                   | 02) x (303             | a) =          | 1         | (304a)             |
| Factor                | for cont                    | rol and o             | charging              | method                   | (Table 4           | 4c(3)) fo              | r commu          | unity hea  | ting syst            | tem                  |                        | [             | 1         | (305)              |
| Distrib               | ution los                   | s factor              | (Table 1              | 2c) for c                | commun             | ity heatir             | ng systei        | m          |                      |                      |                        | [             | 1.05      | (306)              |
| Space                 | heating                     | 9                     |                       |                          |                    |                        |                  |            |                      |                      |                        |               | kWh/year  | -                  |
| Annua                 | I space                     | heating               | requirem              | nent                     |                    |                        |                  |            |                      |                      |                        |               | 8508.34   |                    |
| Space                 | heat fro                    | m Comr                | nunity b              | oilers                   |                    |                        |                  |            | (98) x (30           | 04a) x (309          | 5) x (306) =           | =             | 8933.76   | (307a)             |
| Efficier              | ncy of se                   | econdary              | /supple               | mentary                  | heating            | system                 | in % (fro        | m Table    | 4a or A              | ppendix              | E)                     |               | 0         | (308               |
| Space                 | heating                     | requirer              | ment froi             | m secon                  | dary/sup           | plemen                 | tary syst        | em         | (98) x (30           | 01) x 100 -          | ÷ (308) =              | [             | 0         | (309)              |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | l<br>heating r        | equirem               | ent                      |                    |                        |                  |            |                      |                      |                        | ſ             | 1831.51   | 1                  |
| If DHW<br>Water       | / from co                   | ommunit<br>m Comn     | ty schem              | ne:<br>Dilers            |                    |                        |                  |            | (64) x (3(           | )3a) x (30)          | 5) x (306) :           | ו<br>         | 1923 08   | ]<br>(310a)        |
| Electric              |                             | l for boa             | nanity be             | ution                    |                    |                        |                  | 0.01       | × [(307a)            | (307e) +             | (3102) (               | -<br>310e)] - | 100.57    |                    |
| Coolin                | a Sveter                    |                       | v Efficier            | ncy Rati                 | h                  |                        |                  | 0.01       |                      |                      | ιστοα)(                | [             | 0.01      | ](314)             |
| Space                 | cooling                     |                       |                       | d cooling                | -<br>n evetor      | , if not a             | onter (1)        |            | - (107) ·            | (314) -              |                        | l             | 0         | ] <sup>(315)</sup> |
|                       | cooling<br>attacks          |                       |                       |                          | y system           |                        |                  |            | - (107) <del>-</del> | (314) =              |                        | l             | U         | ](313)             |
| mecha                 | nical ve                    | ntilation             | - balanc              | within dw<br>ed, extra   | act or po          | able 4f)<br>sitive inj | :<br>put from    | outside    |                      |                      |                        | [             | 0         | (330a)             |

| warm air heating system fans                                                                                         |                             |                               | 0                        | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|--------|
| pump for solar water heating                                                                                         |                             |                               | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b             | ) + (330g) =                  | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               | 239.8                    | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |                          | _      |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fue       | el 90                    | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 810b)] x 100 ÷ (367b) x     | 0                             | 2605.64                  | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | 56.35                    | (372)  |
| Total CO2 associated with community systems (3                                                                       | 363)(366) + (368)(372)      | :                             | 2661.99                  | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 809) x                      | 0                             | = 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | = 0                      | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 373) + (374) + (375) =      |                               | 2661.99                  | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | g (331)) x                  | 0.52                          | = 0                      | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 332))) x                    | 0.52                          | = 124.46                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               | 2786.44                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               | 54.64                    | (384)  |
| El rating (section 14)                                                                                               |                             |                               | 61.04                    | ](385) |

| Assessor Name: Stom FSAP 2012 Stom Average Stom Stom Stom Stom Stom Stom Stom Stom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                                          |                                   | User D                     | etails:                |                             |                   |                       |              |                                       |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|----------------------------|------------------------|-----------------------------|-------------------|-----------------------|--------------|---------------------------------------|-----------------------|
| Address :         , london           Address :         , london           Address :         , london           Basement         Iz8         (ii) X         Volume(m?)           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+((1n)         Iz8         (ii)         Volume(m?)           Owelling volume         G22.24         (is)           Vumber of chinneys         0         +         0         =         0         (iii)           Number of chinneys         0         +         0         =         0         x40 =         0         (iii)           Number of pansive vents         0         +         0         =         0         x40 =         0         (iii)           Number of fueless gas fires         0         x10 =         0         70         0         x40 =         0         (iii)           Number of fueless gas fires         0         x10 =         0         70         0         70         0         70         0         70         0         70         0         70         0         70         0         70         0         70         0         70         0         70         70         70         70         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assessor Name:<br>Software Name:                                                           | Stroma FSAP                                                              | 2012                              | roportic                   | Stroma<br>Softwa       | a Num<br>ire Ver            | ber:<br>sion:     |                       | Versio       | n: 1.0.3.15                           |                       |
| Autress - 1,00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | london                                                                   | F                                 | roperty /                  | Audress.               | Unit 5                      |                   |                       |              |                                       |                       |
| Area(m <sup>2</sup> )       Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         Basement       128       (a)       522.24       (a)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       128       (a)       522.24       (a)         Dwelling volume       (ba)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 Overall dwelling dimer                                                                   | sions:                                                                   |                                   |                            |                        |                             |                   |                       |              |                                       |                       |
| Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       128       (4)         Dwelling volume       (3a)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(9n) =       522.24       (5)         2. Ventilation rate:       main meating       +       0       +       0       +       0       (a)         Number of chimneys       0       +       0       =       0       × 40 =       0       (ca)         Number of open flues       0       +       0       =       0       × 40 =       0       (ca)         Number of intermittent fans       3       × 10 =       30       (7a)       0       × 40 =       0       (7a)         Number of flueless gas fires       0       × 40 =       0       (7a)       0       × 40 =       0       (7a)         Number of storeys in the dwelling (ns)       × 10 =       0       × 60 =       (6b)       (7b)       0       × 40 =       0       (7a)         Additional infiltration       (a)       (b)+(b)+(b)+(b) =       0       -(5b) =       0.06       (6b)       (7b)       0       × 40 =       0       (7a)       0       × 40 =       0       (7b)       0       × 40 =       0       (7b)       0       × 40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basement                                                                                   |                                                                          |                                   | Area                       | <b>a(m²)</b><br>128    | (1a) x                      | <b>Av. He</b>     | <b>ight(m)</b><br>.08 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>522.24 | <b>)</b><br>(3a)      |
| Detelling volume       (3a)+(3a)+(3a)+(3a)+(3a)+(3a)+(3a) = (5a) = (5a)         2. Ventilation rate:       main heating between the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the secondary of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total floor area TFA = (1a                                                                 | a)+(1b)+(1c)+(1d)                                                        | +(1e)+(1n                         | ı) <i>·</i>                | 128                    | (4)                         |                   |                       |              |                                       |                       |
| 2. Ventilation rate:       main<br>heating<br>0       secondary<br>heating<br>0       other       total       m³ per hour         Number of ohmeys       0       +       0       =       0       x40 =       0       (6a)         Number of open flues       0       +       0       =       0       x40 =       0       (6b)         Number of open flues       0       +       0       =       0       x40 =       0       (7a)         Number of passive vents       0       x40 =       0       (7b)       0       x40 =       0       (7c)         Number of flueless gas fires       0       x40 =       0       (7c)       (7c)       (7c)         If a presurfusion test has been carried out or is intentied, proceed to (17), otherwise contrue form (01 to (16)       (0)       (0)       (10)         Number of storeys in the dwelling (ns)       (9c) (2f)       0       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (10)       (11)       (11)       (11)       (12)       (13)       (14)       (10)       (11)       (11)       (11)       (12)       (13)       (13) <td>Dwelling volume</td> <td></td> <td></td> <td></td> <td></td> <td>(3a)+(3b)</td> <td>+(3c)+(3c</td> <td>d)+(3e)+</td> <td>.(3n) =</td> <td>522.24</td> <td>(5)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dwelling volume                                                                            |                                                                          |                                   |                            |                        | (3a)+(3b)                   | +(3c)+(3c         | d)+(3e)+              | .(3n) =      | 522.24                                | (5)                   |
| main<br>heating<br>heatingsecondary<br>heatingothertotalm² per hourNumber of chimneys $0$ $+$ $0$ $=$ $0$ $x40$ $=$ $0$ $(6a)$ Number of pon flues $0$ $+$ $0$ $=$ $0$ $x20$ $0$ $(6b)$ Number of intermittent fans $3$ $x10$ $=$ $0$ $x20$ $0$ $(6b)$ Number of passive vents $0$ $x10$ $0$ $x10$ $0$ $770$ Number of flueless gas fires $0$ $x40$ $0$ $770$ Number of storeys in the dwelling (ns) $4$ $0$ $-60$ $0.06$ $(8)$ Additional infiltration $0.25$ for steel or timber frame or 0.35 for masonry construction $0$ $(11)$ $ib$ of the gresurisation test has been camed dut or is intended, proceed to $(17)$ , otherwise contrave from $(2)$ to $(16)$ $0$ $(19)$ Additional infiltration $0.25$ for steel or timber frame or 0.35 for masonry construction $0$ $(12)$ $ib$ of the gas of waining $2i$ equal was $1.35$ $if$ suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 $0$ $(12)$ $Percentage of windows and doors draught stripped0(14)0(14)if based on air permeability value, q60, expressed in cubic metres per hour esquare metre of envelope area10(17)if based on air permeability value, q60, expressed in cubic metres per hour esquare metre of envelope area10(12)if based on air permeability value, q60, expressed in cubic metres per hour e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. Ventilation rate:                                                                       |                                                                          |                                   |                            |                        |                             |                   |                       |              |                                       |                       |
| Number of intermittent fans3x 10 =30(7a)Number of passive vents0x 10 =0(7b)Number of flueless gas fires0x 40 =0(7c)Number of flueless gas fires0x 40 =0(7c)Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =30 $x$ (5) =0.06(8)I' a pressurisation test has been carried out or is interlided, proceed to (17), otherwise continue from (9) to (16)0(9)Number of storeys in the dwelling (ns)0(10)0(10)Additional infiltration0.25 for steel or timber frame or 0.35 for masonry construction(9)-1]a0.1 =0(10)Structural infiltration0.25 for steel or timber frame or 0.35 for masonry construction0(12)(11)If both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.350(12)If no draught lobby, enter 0.05, else enter 00(12)(14)Percentage of windows and doors draught stripped0(14)Window infiltration rate(20) = 1 (0.075 x (19) =0(15)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.56(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.56(19)Air permeability value appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of chimneys<br>Number of open flues                                                 | main<br>heating                                                          | secondar<br>heating               | y<br>] + [_<br>] + [_      | 0<br>0                 | ] = [                       | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b)     |
| Number of passive vents0 $x10 =$ 0(7c)Number of flueless gas fires0 $x40 =$ 0(7c)Air changes per hourInfiltration due to chimneys, flues and fans = (%e)+(%b)+(7e)+(7c) =0+(6) =0.06(%)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)0(9)0(10)Number of storeys in the dwelling (ns)00(9)0(10)0(11)Additional infiltration:0.25 for steel or timber frame or 0.35 for masonry construction0(11)0(11)if both ypes of wall are present, use the value corresponding to the greater wall area (after deucting); if equal user 0.350(12)0(12)If no draught lobby, enter 0.05, else enter 00(12)0(14)Window infiltration0.25 - [0.2 x (14) + 100] =0(15)Infiltration rate(6) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)Aber of sides sheltered(20) = 1 - [0.075 x (19)] =0.85(20)Number of sides sheltered(21) = (16) x (20) =0.47(21)Number of sides sheltered(21) = (15) x (20) =0.47(21)Infiltration rate incorporating shelter factor(21) = (15) x (20) =0.47(21)Infiltration rate incorporating shelter factor(21) = (15) x (20) =0.47(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of intermittent far                                                                 | าร                                                                       |                                   |                            |                        | Γ                           | 3                 | <b>x</b> ′            | 10 =         | 30                                    | (7a)                  |
| Number of flueless gas fires0x40 =0Air changes per hourInfiltration due to chimneys, flues and fans = $(66)+(6b)+(7a)+(7a)+(7c) =$ 30 $\pm$ (5) =0.06(8)If a pressurisation test has been carred out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)Additional infiltration((9)-1):0.1 =00O (10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0000.11find flueless gas fires00000000000000000000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of passive vents                                                                    |                                                                          |                                   |                            |                        | Ē                           | 0                 | x ′                   | 10 =         | 0                                     | <br>(7b)              |
| Air changes per hourInfiltration due to chimneys, flues and fans = $(60)+(7a)+(7b)+(7c) = 30 + (5b) = 0.06$ (6)It a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (7b)Number of storeys in the dwelling (ns)Additional infiltrationStructural infiltration: 0.25 for steel or timber frame or 0.35 for masony constructionif both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 0Percentage of windows and doors draught strippedWindow infiltration0.25 - [0.2 x (14) + 100] =Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10Induction rate incorporating shelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate modified for monthly wind speedJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonthy average wind speed from Table 7(22) m 5 1 5 4.3 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7Wind Factor (22a)m = (22)m ÷ 4(22a)m - 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of flueless gas fir                                                                 | es                                                                       |                                   |                            |                        | Ľ                           | 0                 | X 4                   | 40 =         | 0                                     | (7c)                  |
| Infiltration due to chimneys, flues and fans = $(60)+(70)+(70) = 30 + (5) = 0.06$ (6)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (9)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masony construction<br>if both types of well are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>for of araught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration ate (8) + (10) + (11) + (12) + (13) + (15) =<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (18) = [(17) $\pm 20+(8)$ , otherwise (18) = (16)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor (20) = 1 - [0.075 $\times$ (19)] =<br>Infiltration rate incorporating shelter factor (21) = (18) $\times$ (20) = 0.47 (21)<br>Infiltration rate modified for monthly wind speed<br>Uan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7<br>Wind Factor (22a)m = (22)m $\div 4$<br>(22)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                                                          |                                   |                            |                        |                             |                   |                       | Air ch       | anges <mark>per</mark> ho             | ur                    |
| Number of storeys in the dwelling (ns)<br>Additional infiltration<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br><i>i'</i> both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); <i>if</i> equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $0.25 \cdot [0.2 \times (14) \pm 100] =$<br>Infiltration rate $(8) \pm (10) + (11) + (12) \pm (13) \pm (15) =$<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>10 (17)<br>If based on air permeability value, then $(18) = [(17) \pm 20] + (8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$<br>$1 - [0.47] (21) = (18) \times (20) =$<br>1 - [0.47] (22) =<br>2 - (19)<br>0.43 (20) =<br>2 - (19)<br>Nonthly average wind speed from Table 7<br>(22)m = 5.1 - 5 - 4.9 - 4.4 - 4.3 - 3.8 - 3.7 - 4 - 4.3 - 4.5 - 4.7<br>Wind Factor $(22a)m = (22)m \div 4$<br>(22a)m = 1.27 - 1.25 - 1.23 - 1.1 - 1.08 - 0.95 - 0.92 - 1 - 1.08 - 1.12 - 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Infiltration due to chimney                                                                | rs, flues and fans<br>een carried out or is in                           | = (6a)+(6b)+(7<br>tended, proceed | a)+(7b)+(7<br>d to (17), c | 7c) =<br>otherwise c   | ontinue fro                 | 30<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.06                                  | (8)                   |
| Structural infiltration: 0.25 for steel of timber frame of 0.35 for masonry construction0(11)if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 x (14) ÷ 100] =0If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 x (14) ÷ 100] =0(15)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)If based on air permeability value, then (18) = [(17) ÷ 20] + (8), otherwise (18) = (16)0.56(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used2(19)Number of sides sheltered2(19)0.85(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.47(21)Infiltration rate modified for monthly wind speed00.47(21)Infiltration rate modified for monthly wind speed01.083.744.34.54.7Wind Factor (22a)m = (22)m ÷ 4(22)m ÷ 41.081.121.181.121.18<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Additional infiltration                                                                    |                                                                          |                                   |                            |                        |                             |                   | [(9)                  | -1]x0.1 =    | 0                                     | (9)<br>(10)           |
| If suspended wooden hoor, enter 0.2 (difference) of 0.1 (sealed), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $0.25 \cdot [0.2 \times (14) + 100] =$<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate modified for monthly wind speed<br>$\boxed{ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}$<br>Monthly average wind speed from Table 7<br>(22)m = 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7<br>Wind Factor $(22a)m = (22)m \div 4$<br>(22a)m = 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Structural infiltration: 0<br>if both types of wall are pro-<br>deducting areas of openin, | 25 for steel or tim<br>esent, use the value c<br>gs); if equal user 0.35 | ber frame or                      | 0.35 for                   | masonr<br>er wall area | y constr<br>a <i>(after</i> | uction            |                       |              | 0                                     | (11)                  |
| In the draught housy, enter or out, ease enter of0Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaIf based on air permeability value, then (18) = [(17) $\div 20]$ +(8), otherwise (18) = (16)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredNumber of sides shelteredShelter factor(20) = 1 - [0.075 $\times$ (19)] =Infiltration rate modified for monthly wind speedJanFebMarAprMayJunJunState of (22a)m = (22)m $\div 4$ (22a)m =1.271.251.231.11.080.950.9511.081.121.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | If no draught lobby, ent                                                                   | ool, enter $0.2$ (un                                                     | sealeu) 01 0.<br>r 0              | i (Seale                   | iu), eise              |                             |                   |                       |              | 0                                     | $= \frac{(12)}{(12)}$ |
| Under the collect and give on the give of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distribution of the distributication of the distribution of the distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Percentage of windows                                                                      | and doors draud                                                          | nt stripped                       |                            |                        |                             |                   |                       |              | 0                                     | $-1^{(13)}_{(14)}$    |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $(16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $10$ $(17)$ If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ $0.56$ $(18)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used $0.56$ $(18)$ Number of sides sheltered $2$ $(19)$ $0.85$ $(20)$ Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ $(20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.47$ $(21)$ Infiltration rate modified for monthly wind speed $10$ $0.47$ $(21)$ Monthly average wind speed from Table 7 $(22)m = 5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = $(22)m \div 4$ $(22a)m = 1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Window infiltration                                                                        |                                                                          | n on ppou                         |                            | 0.25 - [0.2            | x (14) ÷ 1                  | 00] =             |                       |              | 0                                     | $-1^{(11)}_{(15)}$    |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10 (17)If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 0.56 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredNumber of sides sheltered2Shelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate incorporating shelter factor(21) = (18) x (20) =Infiltration rate modified for monthly wind speed0.47Mar Apr May Jun Jul Aug Sep Oct Nov DecMonthly average wind speed from Table 7(22)m=5.154.94.44.33.83.74.4.34.34.34.34.31.11.00(22)m ÷ 4(22)m ÷ 11.01.11.0010(22) m ÷ 4(22) m ÷ 11.001.11.00(22)m ÷ 4(22)m ÷ 11.081.11.080.950.950.950.441.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Infiltration rate                                                                          |                                                                          |                                   |                            | (8) + (10) -           | + (11) + (1                 | 2) + (13) -       | + (15) =              |              | 0                                     | (16)                  |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$<br>Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>$(22)m = 5.1 \ 5 \ 4.9 \ 4.4 \ 4.3 \ 3.8 \ 3.8 \ 3.7 \ 4 \ 4.3 \ 4.5 \ 4.7$<br>Wind Factor $(22a)m = (22)m \div 4$<br>$(22a)m = 1.27 \ 1.25 \ 1.23 \ 1.1 \ 1.08 \ 0.95 \ 0.95 \ 0.92 \ 1 \ 1.08 \ 1.12 \ 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Air permeability value, o                                                                  | q50, expressed in                                                        | cubic metre                       | s per ho                   | our per so             | quare m                     | etre of e         | envelope              | area         | 10                                    | (17)                  |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered $2$ (19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed $0.47$ (21)Infiltration rate modified for monthly wind speed $0.47$ (21)Infiltration rate modified for monthly wind speed $0.47$ (21)Monthly average wind speed from Table 7 $0.2 \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1} \times 10^{-1$ | If based on air permeabili                                                                 | ty value, then <sup>(18)</sup>                                           | = [(17) ÷ 20]+(8                  | 3), otherwi                | se (18) = (            | 16)                         |                   |                       |              | 0.56                                  | (18)                  |
| Number of sides sheltered       2       (19)         Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ (20)         Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.47$ (21)         Infiltration rate modified for monthly wind speed $18 \times (20) =$ $0.47$ (21)         Infiltration rate modified for monthly wind speed $0.47$ (21)         Monthly average wind speed from Table 7 $(22)m = 5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ $(22a)m = 1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Air permeability value applies                                                             | s if a pressurisation tes                                                | st has been don                   | e or a deg                 | gree air pei           | meability                   | is being u        | sed                   |              |                                       | _                     |
| Sheller factor       (20) = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 + [0.010 \times (10)] = 1 +                                                 | Number of sides sheltered                                                                  | d                                                                        |                                   |                            | (20) – 1 - 1           | 0 075 v (1                  | Q)] —             |                       |              | 2                                     | (19)                  |
| Initiation rate incorporating sheller factor $(21)^{-1}(10)^{-1}(20)^{-1}$ $0.47$ $(21)^{-1}$ Infiltration rate modified for monthly wind speed         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7         (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m=       1.27 $1.23$ $1.1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Infiltration rate incorporati                                                              | ng chaltar factor                                                        |                                   |                            | (20) = (18)            | x (20) -                    | 5)] –             |                       |              | 0.85                                  |                       |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4       (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Infiltration rate modified for                                                             | r monthly wind or                                                        | hood                              |                            | (21) = (10)            | x (20) -                    |                   |                       |              | 0.47                                  | (21)                  |
| Sain       Feb       Main       Apr       May       Sain       Adg       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4       (22a)m= $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            | Mar Apr M                                                                |                                   | hul                        | Διια                   | Sen                         | Oct               | Nov                   | Dec          |                                       |                       |
| Working average wind speed from Table 7         (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4         (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monthly over go wind on                                                                    | ad from Table 7                                                          |                                   | 501                        | Aug                    | Oep                         | 001               |                       | Dec          |                                       |                       |
| Wind Factor (22a)m = (22)m $\div 4$ (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(22)m = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$      |                                                                          | 3 38                              | 38                         | 37                     | 4                           | 4.3               | 4.5                   | 47           |                                       |                       |
| VVING Factor (22a)m = (22)m ÷ 4         (22a)m=       1.27       1.25       1.23       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            | ···· / ··· / ···                                                         | - 0.0                             | 5.0                        |                        |                             |                   |                       | I            | l                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vvind Factor (22a)m = (22           (22a)m = 1.27           1.25                           | .)m ÷ 4<br>1.23 1.1 1.0                                                  | 0.95                              | 0.95                       | 0.92                   | 1                           | 1.08              | 1.12                  | 1.18         |                                       |                       |

| Adjuste                                                                                                                                                                                  | d infiltra                                                                                                                                                                  | ation rat                                                                                                                                                   | e (allowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing for sh                                                                                                                                   | nelter an                                                                                        | d wind s                                                                                                                          | peed) =                                              | (21a) x                                                                                                                                                                 | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |           |                      |               |                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                          | 0.6                                                                                                                                                                         | 0.59                                                                                                                                                        | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.52                                                                                                                                         | 0.51                                                                                             | 0.45                                                                                                                              | 0.45                                                 | 0.44                                                                                                                                                                    | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                  | 0.53      | 0.56                 |               |                                                                                                                                                                                                                |
| Calculā                                                                                                                                                                                  | ite effec                                                                                                                                                                   | tive air                                                                                                                                                    | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate for t                                                                                                                                   | he appli                                                                                         | cable ca                                                                                                                          | se                                                   | -                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                     |           | -                    | -<br>         |                                                                                                                                                                                                                |
| li me                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andix NL (2                                                                                                                                  | 26) (00                                                                                          | а) <b>Г</b> ран (с                                                                                                                | austica (                                            |                                                                                                                                                                         | muiaa (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·) (22a)                                                                                                                              |           |                      | 0             | (23a)                                                                                                                                                                                                          |
|                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2}$                                                                                                                                | (23a) = (23a)                                                                                    | a) × FIIIV (e                                                                                                                     | equation (i                                          | n Toblo 4b                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )) = (23a)                                                                                                                            |           |                      | 0             | (23b)                                                                                                                                                                                                          |
|                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                             | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                  | ,                                                                                                                                 |                                                      |                                                                                                                                                                         | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | 001.) [   | 4 (00)               | 0             | (23c)                                                                                                                                                                                                          |
| a) if t                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                             | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                  | at recove                                                                                                                         |                                                      | HR) (24a<br>T                                                                                                                                                           | a)m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2b)m + (<br>T                                                                                                                         | 23b) × [* | 1 - (23c)            | ) ÷ 100]<br>] | (245)                                                                                                                                                                                                          |
| (24a)m=                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | 0                                                                                                |                                                                                                                                   | 0                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |           | 0                    | J             | (24d)                                                                                                                                                                                                          |
|                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                             | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | without                                                                                          | neat rec                                                                                                                          | covery (i                                            | VIV) (240<br>T                                                                                                                                                          | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2b)m + (i<br>T                                                                                                                        | 230)      |                      | 1             | (24b)                                                                                                                                                                                                          |
| (240)m=                                                                                                                                                                                  |                                                                                                                                                                             | 0                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | 0                                                                                                |                                                                                                                                   |                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                     | 0         | 0                    | J             | (240)                                                                                                                                                                                                          |
| C) If V<br>if                                                                                                                                                                            | vhole ho<br>(22b)m                                                                                                                                                          | ouse ex                                                                                                                                                     | tract ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tilation o                                                                                                                                   | or positiv                                                                                       | /e input \                                                                                                                        | ventilatio                                           | c) = (22)                                                                                                                                                               | outside $n + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 v (23h                                                                                                                              | N)        |                      |               |                                                                                                                                                                                                                |
| (24c)m=                                                                                                                                                                                  | 0                                                                                                                                                                           | 0.0                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | (200) = (200)                                                                                    |                                                                                                                                   | 0                                                    | $\frac{0}{0} = \frac{221}{0}$                                                                                                                                           | ) iii + 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |           | 0                    | 1             | (24c)                                                                                                                                                                                                          |
|                                                                                                                                                                                          |                                                                                                                                                                             | vontilativ                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                  |                                                                                                                                   | vontilati                                            | on from l                                                                                                                                                               | oft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L °                                                                                                                                   | Ů         | L ů                  | J             |                                                                                                                                                                                                                |
| u) if                                                                                                                                                                                    | <sup>i</sup> (22b)m                                                                                                                                                         | n = 1, the                                                                                                                                                  | en (24d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m = (22k)                                                                                                                                    | o)m othe                                                                                         | erwise (2                                                                                                                         | 4d)m =                                               | 0.5 + [(2                                                                                                                                                               | 2b)m <sup>2</sup> x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5]                                                                                                                                  |           |                      |               |                                                                                                                                                                                                                |
| (24d)m=                                                                                                                                                                                  | 0.68                                                                                                                                                                        | 0.68                                                                                                                                                        | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.64                                                                                                                                         | 0.63                                                                                             | 0.6                                                                                                                               | 0.6                                                  | 0.6                                                                                                                                                                     | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                                                                                                                  | 0.64      | 0.65                 | ]             | (24d)                                                                                                                                                                                                          |
| Effec                                                                                                                                                                                    | tive air                                                                                                                                                                    | change                                                                                                                                                      | rate - er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nter (24a                                                                                                                                    | ) or (24                                                                                         | ) or (24                                                                                                                          | c) or (24                                            | d) in bo                                                                                                                                                                | k (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       | <u>.</u>  |                      |               |                                                                                                                                                                                                                |
| (25)m=                                                                                                                                                                                   | 0.68                                                                                                                                                                        | 0.68                                                                                                                                                        | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.64                                                                                                                                         | 0.63                                                                                             | 0.6                                                                                                                               | 0.6                                                  | 0.6                                                                                                                                                                     | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                                                                                                                  | 0.64      | 0.65                 |               | (25)                                                                                                                                                                                                           |
| 2 1 1 2 2                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                  |                                                                                                                                   |                                                      |                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |           |                      | ,             |                                                                                                                                                                                                                |
| 3. Hea                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | ər.                                                                                              | Not Ar                                                                                                                            | ~~                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |           | kyolu                |               |                                                                                                                                                                                                                |
| ELEIVI                                                                                                                                                                                   |                                                                                                                                                                             | area                                                                                                                                                        | $(m^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Openin                                                                                                                                       | gs                                                                                               | Net Ar                                                                                                                            | ea                                                   | U-van                                                                                                                                                                   | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AXU                                                                                                                                   |           | K-value              | -             | АЛК                                                                                                                                                                                                            |
|                                                                                                                                                                                          |                                                                                                                                                                             | aica                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | III                                                                                                                                          | 14                                                                                               | A,r                                                                                                                               | n²                                                   | W/m2                                                                                                                                                                    | 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (VV/I                                                                                                                                 | K)        | kJ/m²-               | K             | KJ/K                                                                                                                                                                                                           |
| Doo <mark>rs</mark> 7                                                                                                                                                                    | Гуре 1                                                                                                                                                                      | arca                                                                                                                                                        | (111-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                  | A ,r                                                                                                                              | n²                                                   | W/m2                                                                                                                                                                    | 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (VV/I<br>3.92                                                                                                                         | K)        | kJ/m²•               | ĸ             | KJ/K<br>(26)                                                                                                                                                                                                   |
| Doors T<br>Doors T                                                                                                                                                                       | Гуре 1<br>Гуре 2                                                                                                                                                            | arca                                                                                                                                                        | (11-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | 12                                                                                               | A ,r<br>2.8                                                                                                                       | n²<br>X                                              | W/m2                                                                                                                                                                    | 2K<br>= = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (VV/<br>3.92<br>2.1                                                                                                                   | K)        | kJ/m²-               | ĸ             | KJ/K<br>(26)<br>(26)                                                                                                                                                                                           |
| Doors 1<br>Doors 1<br>Window                                                                                                                                                             | Гуре 1<br>Гуре 2<br>vs Type                                                                                                                                                 | 1                                                                                                                                                           | (11-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | 14                                                                                               | A ,r<br>2.8<br>1.5                                                                                                                | m <sup>2</sup> x                                     | W/m2<br>1.4<br>1.4<br>/[1/( 4.8 )+                                                                                                                                      | 2K<br>=  <br>=  <br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (W/I<br>3.92<br>2.1<br>69.87                                                                                                          | K)        | kJ/m²·               | ĸ             | KJ/K<br>(26)<br>(26)<br>(27)                                                                                                                                                                                   |
| Doors 1<br>Doors 1<br>Window<br>Windov                                                                                                                                                   | Гуре 1<br>Гуре 2<br>vs Type<br>vs Type                                                                                                                                      | 1                                                                                                                                                           | (111-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                  | A ,r<br>2.8<br>1.5<br>17.35                                                                                                       | m <sup>2</sup> x<br>x<br>x<br>x<br>x1                | W/m2<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 1.6 )+                                                                                                                             | 2K<br>= [<br>- 0.04] = [<br>- 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W//<br>3.92<br>2.1<br>69.87                                                                                                          | K)        | kJ/m²-               | ĸ             | kJ/K<br>(26)<br>(26)<br>(27)                                                                                                                                                                                   |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Window                                                                                                                                         | Гуре 1<br>Гуре 2<br>vs Type<br>vs Type<br>vs Type                                                                                                                           | 1                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | 14                                                                                               | A ,r<br>2.8<br>1.5<br>17.35<br>2.48                                                                                               | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 1.6 )+<br>/[1/( 4.8 )+                                                                                                             | :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       : <td::< td=""> <td::< td=""> <td::< td=""></td::<></td::<></td::<> | (W/I<br>3.92<br>2.1<br>69.87<br>3.73                                                                                                  | K)        | kJ/m²+               | K             | kJ/K<br>(26)<br>(26)<br>(27)<br>(27)                                                                                                                                                                           |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Window                                                                                                                                         | Гуре 1<br>Гуре 2<br>vs Type<br>vs Type<br>vs Type                                                                                                                           | 1<br>2<br>3                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | 12                                                                                               | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5                                                                                        | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+                                                                                                            | !!       =         0.04]       =         0.04]       =         0.04]       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04                                                                                          | K)        | kJ/m²+               |               | kJ/K<br>(26)<br>(26)<br>(27)<br>(27)<br>(27)                                                                                                                                                                   |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Window<br>Floor                                                                                                                                | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type                                                                                                                           | 1<br>2<br>3                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                  | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128                                                                                 | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>/[1/( 4.8 )+<br>0.79                                                                                     | !!       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12                                                                                |           | kJ/m².               |               | kJ/K<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)                                                                                                                                                           |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Floor<br>Walls T                                                                                                                               | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>Type1                                                                                                                  | 1<br>2<br>3<br>74.2                                                                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.85                                                                                                                                        | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41                                                                        | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1                                                                                             | !:       =         0.04]       =         0.04]       =         0.04]       =         0.04]       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =         1       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36                                                                      |           | kJ/m².               |               | kJ/K<br>(26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)                                                                                                                                                   |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T                                                                                                          | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>Type1<br>Type2                                                                                                         | 1<br>2<br>3<br>74.2<br>46.                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.84                                                                                                                                        | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12                                                               | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28                                                                                     | :K         =         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]         :0.04]                                                                                                                                                                                                                                                                | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51                                                             |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29)                                                                                                                                                                   |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T                                                                                                         | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>ype2<br>ype3                                                                                                   | 1<br>2<br>3<br>74.2<br>46.<br>71.1                                                                                                                          | 26<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.84<br>5.28<br>1.5                                                                                                                         | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66                                                      | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1                                                                              | !!       =         0.04]       =         0.04]       =         0.04]       =         0.04]       =         =       =         =       =         =       =         =       =         =       =         =       =         =       =         =       =         =       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29                                                   |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29)                                                                                                                                                              |
| Doors T<br>Doors T<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T                                                                                              | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>type2<br>type3<br>type4                                                                                        | 1       2       3       74.2       46.       71.1       5.3                                                                                                 | 26<br>4<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.8<br>5.28<br>1.5<br>0                                                                                                                     | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34                                              | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3                                                                       | !K         =         0.04]         0.04]         =         0.04]         =         0.04]         =         0.04]         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =          =         =         =         =         =         =         =         =         =         =         =         =         =         = <td>(W//<br/>3.92<br/>2.1<br/>69.87<br/>3.73<br/>6.04<br/>101.12<br/>116.36<br/>11.51<br/>146.29<br/>1.6</td> <td></td> <td>kJ/m².</td> <td></td> <td>kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29)</td>                                                                                                                                                                                                                  | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6                                            |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (28) (29) (29) (29) (29)                                                                                                                                                              |
| Doors T<br>Doors T<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Roof                                                                                      | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>type2<br>type3<br>type4                                                                                        | 1<br>2<br>3<br>74.2<br>46.<br>71.1<br>5.3<br>17                                                                                                             | 26<br>4<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.84       5.28       1.5       0       0                                                                                                   | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17                                        | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3                                                                | !K         =         0.04]         =         0.04]         =         0.04]         =         0.04]         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1                                    |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (29) (30)                                                                                                                                          |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Roof<br>Total ar                                                                                     | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>type2<br>type3<br>type4<br>rea of el                                                                           | 1<br>2<br>3<br>74.2<br>46.<br>71.1<br>5.3<br>17<br>lements                                                                                                  | 26<br>4<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.84<br>5.28<br>1.5<br>0<br>0                                                                                                               | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17<br>342.10                              | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3                                                  | !!       =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1                                    |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (30) (31)                                                                                                                                          |
| Doors T<br>Doors T<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Roof<br>Total an<br>Party w                                                               | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>type1<br>type2<br>type3<br>type3<br>type4<br>rea of el                                                                 | 1<br>2<br>3<br>74.2<br>46.<br>71.1<br>5.3<br>17<br>lements                                                                                                  | 26<br>4<br>6<br>4<br>, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.8<br>5.28<br>1.5<br>0                                                                                                                     | 5                                                                                                | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17<br>342.11<br>22.1                      | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3                                                                | !K         =         0.04]         =         0.04]         =         0.04]         =         0.04]         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1                                    |           | kJ/m².               |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (30) (31) (32)                                                                                                                                     |
| Doors 1<br>Doors 1<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Roof<br>Total ar<br>Party w                                                               | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>ype3<br>ype3<br>ype4<br>rea of el<br>vall<br>dows and<br>e the area                                 | $\begin{bmatrix} 1 \\ 2 \\ 3 \\ \hline 74.2 \\ \hline 46. \\ \hline 71.1 \\ \hline 5.3 \\ \hline 17 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | 26<br>4<br>6<br>4<br>, m <sup>2</sup><br>ows, use e<br>sides of ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.84         5.28         1.5         0         0         0         0         0         0         0         0         0         0         0 | 5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17<br>342.11<br>22.1<br>alue calculations | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3<br>0<br>0<br>formula 1            | $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1<br>0<br><i>u</i> e)+0.04] <i>e</i> | K)        | paragraph            |               | kJ/K (26) (27) (27) (27) (27) (28) (29) (29) (29) (29) (29) (30) (31) (32)                                                                                                                                     |
| Doors T<br>Doors T<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Roof<br>Total an<br>Party w<br>* for wind<br>** include<br>Fabric I                       | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>type1<br>type2<br>type3<br>type3<br>type4<br>rea of el<br>vall<br>dows and<br>the area<br>neat los                     | 1<br>2<br>3<br>74.2<br>46.<br>71.1<br>5.3<br>17<br>lements<br>roof wind<br>s on both<br>s, W/K                                                              | 26<br>4<br>6<br>4<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.83<br>5.28<br>1.5<br>0<br>0<br>effective with<br>thermal walk<br>U)                                                                       | 5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17<br>342.11<br>22.1<br>alue calculations | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>(1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3<br>0<br>0<br>formula 1<br>(26)(30) | $\begin{array}{c} 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1<br>0<br><i>ue)+0.04] e</i>         | K)        | paragraph            | K             | <ul> <li>kJ/K</li> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ul> |
| Doors T<br>Doors T<br>Window<br>Window<br>Floor<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Walls T<br>Roof<br>Total an<br>Party w<br>* for wind<br>** include<br>Fabric F<br>Heat ca | Type 1<br>Type 2<br>vs Type<br>vs Type<br>vs Type<br>vs Type<br>ype1<br>ype2<br>ype3<br>ype3<br>ype4<br>rea of el<br>all<br>dows and<br>e the area<br>neat los<br>apacity ( | 1 $2$ $3$ $74.2$ $46.$ $71.1$ $5.3$ $17$ lements roof windens on both s, W/K = Cm = S(                                                                      | $\frac{26}{4}$<br>$\frac{6}{4}$<br>$\frac{4}{5}$<br>$\frac{6}{5}$<br>$\frac{4}{5}$<br>$\frac{6}{5}$<br>$\frac{4}{5}$<br>$\frac{6}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$<br>$\frac{1}{5}$ | 18.84<br>5.28<br>1.5<br>0<br>0<br>effective winternal walk                                                                                   | 5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | A ,r<br>2.8<br>1.5<br>17.35<br>2.48<br>1.5<br>128<br>55.41<br>41.12<br>69.66<br>5.34<br>17<br>342.11<br>22.1<br>alue calculations | m <sup>2</sup> x x x x x x x x x x x x x x x x x x x | W/m2<br>1.4<br>1.4<br>(1/(4.8)+<br>/[1/(4.8)+<br>/[1/(4.8)+<br>0.79<br>2.1<br>0.28<br>2.1<br>0.3<br>2.3<br>0<br>0<br>formula 1<br>(26)(30)                              | $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (W//<br>3.92<br>2.1<br>69.87<br>3.73<br>6.04<br>101.12<br>116.36<br>11.51<br>146.29<br>1.6<br>39.1<br>0<br><i>u</i> e)+0.04] <i>e</i> | K)        | paragraph<br>(32e) = | K             | <ul> <li>kJ/K</li> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(29)</li> <li>(30)</li> <li>(31)</li> <li>(32)</li> </ul> |

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

| 52 |
|----|
|----|

| if detail        | s of therma                | al bridging         | are not kr       | nown (36) =            | = 0.15 x (3                | 1)                      |                   |               | (22)                  | (20)         |                        |         |                        |      |
|------------------|----------------------------|---------------------|------------------|------------------------|----------------------------|-------------------------|-------------------|---------------|-----------------------|--------------|------------------------|---------|------------------------|------|
|                  | abric ne                   | atioss              |                  |                        |                            |                         |                   |               | (33) +                | (36) =       |                        |         | 553.64                 | (37) |
| Ventila          | ation hea                  |                     | alculated        | monthl                 | y<br>L Ma                  |                         |                   |               | (38)m                 | = 0.33 × (   | 25)m x (5)             | Du      | 1                      |      |
| (38)m=           | Jan<br>117.62              | 116.4               | 115.2            | Apr<br>109.58          | 108.53                     | 103.63                  | 103.63            | Aug<br>102 72 | Sep                   | 108.53       | 110.65                 | 112 88  |                        | (38) |
|                  |                            |                     |                  | 100.00                 | 100.00                     | 100.00                  | 100.00            | 102.72        | (20)m                 | - (27) + (   | 28)m                   | 112.00  | J                      | ()   |
|                  |                            |                     | 11, W/K          | 662.22                 | 662.16                     | 657.27                  | 657.27            | 656.26        | (39)m                 | = (37) + (.) | 664 20                 | 666 52  | 1                      |      |
| (39)11=          | 071.20                     | 070.04              | 000.04           | 003.22                 | 002.10                     | 057.27                  | 037.27            | 030.30        | 039.13                | Average -    | Sum(30)                |         | 663.21                 | (39) |
| Heat I           | oss para                   | meter (H            | HLP), W          | /m²K                   |                            |                         |                   |               | ,<br>(40)m            | = (39)m ÷    | · (4)                  | 12712-  | 000.21                 |      |
| (40)m=           | 5.24                       | 5.23                | 5.23             | 5.18                   | 5.17                       | 5.13                    | 5.13              | 5.13          | 5.15                  | 5.17         | 5.19                   | 5.21    |                        |      |
| Numb             | er of day                  | /s in mo            | nth (Tab         | le 1a)                 | -                          |                         | •                 | •             | /                     | Average =    | Sum(40)1               | 12 /12= | 5.18                   | (40) |
|                  | Jan                        | Feb                 | Mar              | Apr                    | May                        | Jun                     | Jul               | Aug           | Sep                   | Oct          | Nov                    | Dec     |                        |      |
| (41)m=           | 31                         | 28                  | 31               | 30                     | 31                         | 30                      | 31                | 31            | 30                    | 31           | 30                     | 31      |                        | (41) |
|                  |                            |                     |                  |                        |                            |                         |                   |               |                       |              |                        | •       | •                      |      |
| 4. W             | ater hea                   | ting ene            | rgy requ         | irement:               |                            |                         |                   |               |                       |              |                        | kWh/y   | ear:                   |      |
| A                |                            |                     | N 1              |                        |                            |                         |                   |               |                       |              |                        |         | 1                      |      |
| Assun<br>if TF   | ned occi<br>FA > 13.9      | ipancy,<br>9. N = 1 | N<br>+ 1.76 x    | : [1 - exp             | (-0.0003                   | 849 x (TF               | FA -13.9          | )2)] + 0.(    | )013 x ( <sup>-</sup> | TFA -13.     | 2.                     | 89      | J                      | (42) |
| if TF            | -A £ 13.                   | 9, N = 1            |                  |                        | (                          |                         |                   | ,_,]          |                       |              | -)                     |         |                        |      |
| Annua            | al averag                  | e hot wa            | ater usa         | ge in litre            | es per da                  | y Vd,av                 | erage =           | (25 x N)      | + 36                  |              | 10                     | 2.83    |                        | (43) |
| not mor          | e the annua<br>re that 125 | litres per          | person pe        | r day (all w           | o% ir the d<br>ater use, l | hot and co              | aesignea (<br>ld) | to achieve    | a water us            | se target o  | T                      |         |                        |      |
|                  | lan                        | Eeb                 | Mar              | Apr                    | May                        | lup                     |                   | Αυσ           | Sen                   | Oct          | Nov                    | Dec     | 1                      |      |
| Hot wat          | ter usage i                | n litres per        | r day for ea     | ach month              | Vd,m = fa                  | ctor from 1             | Table 1c x        | (43)          | Dep                   | 001          |                        | Dec     | J                      |      |
| (44)m=           | 113.11                     | 109                 | 104.88           | 100.77                 | 96.66                      | 92.55                   | 92.55             | 96.66         | 100.77                | 104.88       | 109                    | 113.11  |                        |      |
|                  |                            |                     | <u> </u>         |                        |                            |                         |                   |               | -                     | Total = Su   | m(44) <sub>112</sub> = | =       | 1 <mark>2</mark> 33.94 | (44) |
| Energy           | content of                 | hot water           | used - cal       | lculated mo            | onthly = 4.                | 190 x Vd,r              | m x nm x C        | 0Tm / 3600    | ) kWh/mor             | nth (see Ta  | ables 1b, 1            | c, 1d)  |                        |      |
| (45)m=           | 167.74                     | 146.71              | 151.39           | 131.98                 | 126.64                     | 109.28                  | 101.27            | 116.2         | 117.59                | 137.04       | 149.59                 | 162.45  |                        |      |
| 16 1             |                            |                     |                  | - <b>f</b>             |                            |                         |                   | h             | -                     | Total = Su   | m(45) <sub>112</sub> = | =       | 1617.89                | (45) |
| If Instar        | ntaneous w                 | ater neati.<br>I    | ng at point<br>T | t of use (no           | not water                  | r storage),<br>I        | enter 0 in<br>I   | boxes (46)    | ) to (61)             | 1            |                        |         | 1                      |      |
| (46)m=<br>Water  | 25.16<br>storage           | 22.01               | 22.71            | 19.8                   | 19                         | 16.39                   | 15.19             | 17.43         | 17.64                 | 20.56        | 22.44                  | 24.37   |                        | (46) |
| Storad           | be volum                   | e (litres)          | ) includir       | na anv so              | olar or W                  | /WHRS                   | storage           | within sa     | ame ves               | sel          |                        | 160     | ]                      | (47) |
| If com           | munitv h                   | eating a            | and no ta        | ank in dw              | vellina. e                 | nter 110                | ) litres in       | (47)          |                       |              |                        | 100     | J                      |      |
| Other            | wise if no                 | o stored            | hot wate         | er (this in            | ncludes i                  | nstantar                | neous co          | mbi boil      | ers) ente             | er '0' in (  | 47)                    |         |                        |      |
| Water            | storage                    | loss:               |                  |                        |                            |                         |                   |               |                       |              |                        |         | _                      |      |
| a) If n          | nanufact                   | urer's de           | eclared I        | oss facto              | or is kno                  | wn (kWł                 | n/day):           |               |                       |              |                        | 0       |                        | (48) |
| Temp             | erature f                  | actor fro           | m Table          | 2b                     |                            |                         |                   |               |                       |              |                        | 0       |                        | (49) |
| Energ            | y lost fro                 | m watei             | r storage        | e, kWh/ye              | ear                        |                         |                   | (48) x (49)   | =                     |              | 1                      | 10      | ]                      | (50) |
| b) If n<br>Hot w | nanufact                   | urer's de           | eclared (        | cylinder l<br>rom Tabl | loss fact<br>le 2 (kW      | or is not<br>h/litre/da | known:            |               |                       |              |                        | 02      | 1                      | (51) |
| If com           | munity h                   | eating s            | see secti        | on 4.3                 |                            | , in 0/ 00              | ^J /              |               |                       |              | 0.                     | 02      | J                      | (31) |
| Volum            | ne factor                  | from Ta             | ble 2a           | -                      |                            |                         |                   |               |                       |              | 1.                     | .03     | ]                      | (52) |
| Temp             | erature f                  | actor fro           | m Table          | 2b                     |                            |                         |                   |               |                       |              | 0                      | .6      | ]                      | (53) |
| Energ            | y lost fro                 | m watei             | r storage        | e, kWh/ye              | ear                        |                         |                   | (47) x (51)   | x (52) x (            | 53) =        | 1.                     | 03      | ]                      | (54) |
| Enter            | (50) or                    | (54) in (5          | 55)              |                        |                            |                         |                   |               |                       |              | 1.                     | 03      |                        | (55) |

| Water                                                                                        | storage                                                                                                         | loss cal                                                                                                      | culated                                                                                       | for each                                                               | month                                                                      |                                                                                  |                                                                             | ((56)m = (                                                                      | 55) × (41)                                                                    | m                                                                     |                                                                 |                                                         |                |                                                                                                |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------|
| (56)m=                                                                                       | 32.01                                                                                                           | 28.92                                                                                                         | 32.01                                                                                         | 30.98                                                                  | 32.01                                                                      | 30.98                                                                            | 32.01                                                                       | 32.01                                                                           | 30.98                                                                         | 32.01                                                                 | 30.98                                                           | 32.01                                                   |                | (56)                                                                                           |
| If cylind                                                                                    | er contain                                                                                                      | s dedicate                                                                                                    | d solar sto                                                                                   | rage, (57)                                                             | m = (56)m                                                                  | x [(50) – (                                                                      | H11)] ÷ (5                                                                  | 0), else (5                                                                     | 7)m = (56)                                                                    | m where (                                                             | H11) is fro                                                     | m Append                                                | lix H          |                                                                                                |
| (57)m=                                                                                       | 32.01                                                                                                           | 28.92                                                                                                         | 32.01                                                                                         | 30.98                                                                  | 32.01                                                                      | 30.98                                                                            | 32.01                                                                       | 32.01                                                                           | 30.98                                                                         | 32.01                                                                 | 30.98                                                           | 32.01                                                   |                | (57)                                                                                           |
| Prima                                                                                        | ry circuit                                                                                                      | loss (ar                                                                                                      | nnual) fro                                                                                    | om Table                                                               | 93                                                                         | -                                                                                | -                                                                           |                                                                                 | -                                                                             |                                                                       | -                                                               | 0                                                       |                | (58)                                                                                           |
| Primar                                                                                       | y circuit                                                                                                       | loss cal                                                                                                      | culated                                                                                       | for each                                                               | month (                                                                    | 59)m = (                                                                         | (58) ÷ 36                                                                   | 65 × (41)                                                                       | m                                                                             |                                                                       |                                                                 |                                                         |                |                                                                                                |
| (mo                                                                                          | dified by                                                                                                       | factor f                                                                                                      | rom Tab                                                                                       | le H5 if t                                                             | here is s                                                                  | solar wat                                                                        | ter heati                                                                   | ng and a                                                                        | cylinde                                                                       | r thermo                                                              | stat)                                                           | -                                                       | _              |                                                                                                |
| (59)m=                                                                                       | 23.26                                                                                                           | 21.01                                                                                                         | 23.26                                                                                         | 22.51                                                                  | 23.26                                                                      | 22.51                                                                            | 23.26                                                                       | 23.26                                                                           | 22.51                                                                         | 23.26                                                                 | 22.51                                                           | 23.26                                                   |                | (59)                                                                                           |
| Combi                                                                                        | i loss ca                                                                                                       | lculated                                                                                                      | for each                                                                                      | month                                                                  | (61)m =                                                                    | (60) ÷ 36                                                                        | 65 × (41                                                                    | )m                                                                              |                                                                               |                                                                       |                                                                 |                                                         |                |                                                                                                |
| (61)m=                                                                                       | 0                                                                                                               | 0                                                                                                             | 0                                                                                             | 0                                                                      | 0                                                                          | 0                                                                                | 0                                                                           | 0                                                                               | 0                                                                             | 0                                                                     | 0                                                               | 0                                                       |                | (61)                                                                                           |
| Total h                                                                                      | neat req                                                                                                        | uired for                                                                                                     | water h                                                                                       | eating ca                                                              | alculated                                                                  | l for eac                                                                        | h month                                                                     | (62)m =                                                                         | 0.85 × (                                                                      | (45)m +                                                               | (46)m +                                                         | (57)m +                                                 | (59)m + (61)m  |                                                                                                |
| (62)m=                                                                                       | 223.02                                                                                                          | 196.63                                                                                                        | 206.67                                                                                        | 185.48                                                                 | 181.92                                                                     | 162.78                                                                           | 156.54                                                                      | 171.48                                                                          | 171.09                                                                        | 192.32                                                                | 203.09                                                          | 217.72                                                  |                | (62)                                                                                           |
| Solar DI                                                                                     | HW input                                                                                                        | calculated                                                                                                    | using App                                                                                     | endix G o                                                              | Appendix                                                                   | H (negati                                                                        | ve quantity                                                                 | y) (enter '0                                                                    | ' if no sola                                                                  | r contribut                                                           | ion to wate                                                     | er heating)                                             |                |                                                                                                |
| (add a                                                                                       | dditiona                                                                                                        | l lines if                                                                                                    | FGHRS                                                                                         | and/or \                                                               | WWHRS                                                                      | applies                                                                          | , see Ap                                                                    | pendix (                                                                        | G)                                                                            |                                                                       |                                                                 |                                                         |                |                                                                                                |
| (63)m=                                                                                       | 0                                                                                                               | 0                                                                                                             | 0                                                                                             | 0                                                                      | 0                                                                          | 0                                                                                | 0                                                                           | 0                                                                               | 0                                                                             | 0                                                                     | 0                                                               | 0                                                       |                | (63)                                                                                           |
| Output                                                                                       | t from w                                                                                                        | ater hea                                                                                                      | ter                                                                                           | -                                                                      | -                                                                          | -                                                                                | -                                                                           | _                                                                               | -                                                                             | -                                                                     | -                                                               | -                                                       |                |                                                                                                |
| (64)m=                                                                                       | 223.02                                                                                                          | 196.63                                                                                                        | 206.67                                                                                        | 185.48                                                                 | 181.92                                                                     | 162.78                                                                           | 156.54                                                                      | 171.48                                                                          | 171.09                                                                        | 192.32                                                                | 203.09                                                          | 217.72                                                  |                | -                                                                                              |
|                                                                                              |                                                                                                                 |                                                                                                               |                                                                                               |                                                                        |                                                                            |                                                                                  |                                                                             | Outp                                                                            | out from wa                                                                   | ater heate                                                            | r (annual)₁                                                     | 12                                                      | 2268.73        | (64)                                                                                           |
| Hea <mark>t g</mark>                                                                         | jains fro                                                                                                       | m water                                                                                                       | heating                                                                                       | kWh/m                                                                  | onth 0.2                                                                   | <mark>5 ´</mark> [0.85                                                           | × (45)m                                                                     | ı + (61)n                                                                       | n] + 0.8 x                                                                    | ( <mark>46)m</mark>                                                   | + (57)m                                                         | + (59)m                                                 | 1              |                                                                                                |
| (65)m=                                                                                       | 74.38                                                                                                           | 65.59                                                                                                         | 68.95                                                                                         | <mark>61.</mark> 89                                                    | 60.72                                                                      | 54.35                                                                            | 52.28                                                                       | 57.25                                                                           | 57.11                                                                         | 6 <mark>4.18</mark>                                                   | 67.75                                                           | 72.62                                                   |                | (65)                                                                                           |
| inclu                                                                                        | ude (57)                                                                                                        | m in calo                                                                                                     | culation                                                                                      | of (65)m                                                               | only if c                                                                  | ylinder i                                                                        | s in the o                                                                  | dwelling                                                                        | or hot w                                                                      | ate <mark>r is f</mark> r                                             | om com                                                          | <mark>mu</mark> nity h                                  | neating        |                                                                                                |
| 5. In                                                                                        | ternal ga                                                                                                       | ains (see                                                                                                     | e Table {                                                                                     | 5 and 5a                                                               | ):                                                                         |                                                                                  |                                                                             |                                                                                 |                                                                               |                                                                       |                                                                 |                                                         |                |                                                                                                |
| Metab                                                                                        | olic gair                                                                                                       | ns (Table                                                                                                     | <u>5), Wat</u>                                                                                | ts                                                                     |                                                                            |                                                                                  |                                                                             |                                                                                 |                                                                               |                                                                       |                                                                 |                                                         |                |                                                                                                |
|                                                                                              | Jan                                                                                                             | Feb                                                                                                           | Mar                                                                                           | Apr                                                                    | May                                                                        | Jun                                                                              | Jul                                                                         | Aug                                                                             | Sep                                                                           | Oct                                                                   | Nov                                                             | Dec                                                     |                |                                                                                                |
| (66)m=                                                                                       | 144.48                                                                                                          | 144.48                                                                                                        | 144.48                                                                                        | 144.48                                                                 | 144.48                                                                     | 144.48                                                                           | 144.48                                                                      | 144.48                                                                          | 144.48                                                                        | 144.48                                                                | 144.48                                                          | 144.48                                                  |                | (66)                                                                                           |
| Lightin                                                                                      | ng gains                                                                                                        | (calcula                                                                                                      | ted in Ap                                                                                     | opendix                                                                | L, equat                                                                   | ion L9 o                                                                         | r L9a), a                                                                   | lso see                                                                         | Table 5                                                                       |                                                                       |                                                                 |                                                         |                |                                                                                                |
| (67)m=                                                                                       | 26.77                                                                                                           | 23.78                                                                                                         | 19.34                                                                                         | 14.64                                                                  | 10.94                                                                      | 9.24                                                                             | 9.98                                                                        | 12.98                                                                           | 17.42                                                                         | 22.12                                                                 | 25.81                                                           | 27.52                                                   |                | (67)                                                                                           |
| Applia                                                                                       | nces ga                                                                                                         | ins (calc                                                                                                     | ulated ir                                                                                     | Append                                                                 | dix L, eq                                                                  | uation L                                                                         | 13 or L1                                                                    | 3a), also                                                                       | see Ta                                                                        | ble 5                                                                 |                                                                 | -                                                       |                |                                                                                                |
| (68)m=                                                                                       | 205 20                                                                                                          | 000.00                                                                                                        |                                                                                               |                                                                        |                                                                            |                                                                                  |                                                                             |                                                                                 |                                                                               |                                                                       |                                                                 |                                                         |                |                                                                                                |
| Cookir                                                                                       | 235.23                                                                                                          | 298.36                                                                                                        | 290.64                                                                                        | 274.2                                                                  | 253.45                                                                     | 233.94                                                                           | 220.91                                                                      | 217.85                                                                          | 225.57                                                                        | 242.01                                                                | 262.76                                                          | 282.26                                                  |                | (68)                                                                                           |
| COOKI                                                                                        | ng gains                                                                                                        | calcula                                                                                                       | <sup>290.64</sup><br>ated in A                                                                | 274.2<br>ppendix                                                       | 253.45<br>L, equat                                                         | 233.94<br>tion L15                                                               | 220.91<br>or L15a)                                                          | 217.85<br>), also se                                                            | 225.57<br>ee Table                                                            | 242.01<br>5                                                           | 262.76                                                          | 282.26                                                  |                | (68)                                                                                           |
| (69)m=                                                                                       | 1g gains<br>37.45                                                                                               | 298.36<br>(calcula<br>37.45                                                                                   | 290.64<br>ated in A<br>37.45                                                                  | 274.2<br>ppendix<br>37.45                                              | 253.45<br>L, equat<br>37.45                                                | 233.94<br>tion L15<br>37.45                                                      | 220.91<br>or L15a)<br>37.45                                                 | 217.85<br>), also se<br>37.45                                                   | 225.57<br>ee Table<br>37.45                                                   | 242.01<br>5<br>37.45                                                  | 262.76<br>37.45                                                 | 282.26<br>37.45                                         | ]              | (68)                                                                                           |
| (69)m=<br>Pumps                                                                              | ng gains<br>37.45<br>s and fai                                                                                  | (calcula<br>37.45<br>ns gains                                                                                 | 290.64<br>ated in A<br>37.45<br>(Table \$                                                     | 274.2<br>ppendix<br>37.45<br>5a)                                       | 253.45<br>L, equat<br>37.45                                                | 233.94<br>tion L15<br>37.45                                                      | 220.91<br>or L15a)<br>37.45                                                 | 217.85<br>), also se<br>37.45                                                   | 225.57<br>ee Table<br>37.45                                                   | 242.01<br>5<br>37.45                                                  | 262.76<br>37.45                                                 | 282.26<br>37.45                                         | ]              | (68)                                                                                           |
| (69)m=<br>Pumps<br>(70)m=                                                                    | g gains<br>37.45<br>and fai                                                                                     | 298.36<br>(calcula<br>37.45<br>ns gains<br>0                                                                  | 290.64<br>ated in A<br>37.45<br>(Table \$                                                     | 274.2<br>ppendix<br>37.45<br>5a)<br>0                                  | 253.45<br>L, equat<br>37.45<br>0                                           | 233.94<br>tion L15<br>37.45<br>0                                                 | 220.91<br>or L15a)<br>37.45<br>0                                            | 217.85<br>), also se<br>37.45<br>0                                              | 225.57<br>ee Table<br>37.45<br>0                                              | 242.01<br>5<br>37.45<br>0                                             | 262.76<br>37.45<br>0                                            | 282.26<br>37.45<br>0                                    | <br> <br>      | (68)<br>(69)<br>(70)                                                                           |
| (69)m=<br>Pumps<br>(70)m=<br>Losses                                                          | 235.23<br>ng gains<br>37.45<br>s and fa<br>0<br>s e.g. ev                                                       | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic                                                     | 290.64<br>ated in A<br>37.45<br>(Table \$<br>0<br>on (nega                                    | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu                     | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab                               | 233.94<br>tion L15<br>37.45<br>0<br>ole 5)                                       | 220.91<br>or L15a)<br>37.45<br>0                                            | 217.85<br>), also se<br>37.45<br>0                                              | 225.57<br>ee Table<br>37.45<br>0                                              | 242.01<br>5<br>37.45<br>0                                             | 262.76<br>37.45<br>0                                            | 282.26<br>37.45<br>0                                    | ]<br>]         | (68)<br>(69)<br>(70)                                                                           |
| (69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                                                | 233.23<br>ng gains<br>37.45<br>s and fai<br>0<br>s e.g. ev<br>-115.58                                           | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic<br>-115.58                                          | 290.64<br>ated in A<br>37.45<br>(Table 9<br>0<br>on (nega<br>-115.58                          | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu<br>-115.58          | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab<br>-115.58                    | 233.94<br>tion L15<br>37.45<br>0<br>le 5)<br>-115.58                             | 220.91<br>or L15a)<br>37.45<br>0<br>-115.58                                 | 217.85<br>), also se<br>37.45<br>0<br>-115.58                                   | 225.57<br>ee Table<br>37.45<br>0<br>-115.58                                   | 242.01<br>5<br>37.45<br>0<br>-115.58                                  | 262.76<br>37.45<br>0<br>-115.58                                 | 282.26<br>37.45<br>0<br>-115.58                         | <br> <br>      | (68)<br>(69)<br>(70)<br>(71)                                                                   |
| (69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water                                       | 233.23<br>ng gains<br>37.45<br>s and fai<br>0<br>s e.g. ev<br>-115.58<br>heating                                | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic<br>-115.58<br>gains (1                              | 290.64<br>ated in A<br>37.45<br>(Table 9<br>0<br>on (nega<br>-115.58<br>Table 5)              | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu<br>-115.58          | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab<br>-115.58                    | 233.94<br>tion L15<br>37.45<br>0<br>le 5)<br>-115.58                             | 220.91<br>or L15a)<br>37.45<br>0<br>-115.58                                 | 217.85<br>), also se<br>37.45<br>0<br>-115.58                                   | 225.57<br>ee Table<br>37.45<br>0<br>-115.58                                   | 242.01<br>5<br>37.45<br>0<br>-115.58                                  | 262.76<br>37.45<br>0<br>-115.58                                 | 282.26<br>37.45<br>0<br>-115.58                         | <br> <br>      | (68)<br>(69)<br>(70)<br>(71)                                                                   |
| (69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=                             | 233.23<br>ng gains<br>37.45<br>s and fa<br>0<br>s e.g. ev<br>-115.58<br>heating<br>99.98                        | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic<br>-115.58<br>gains (T<br>97.6                      | 290.64<br>ated in A<br>37.45<br>(Table 8<br>0<br>on (nega<br>-115.58<br>Table 5)<br>92.67     | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu<br>-115.58<br>85.96 | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab<br>-115.58<br>81.61           | 233.94<br>tion L15<br>37.45<br>0<br>ole 5)<br>-115.58<br>75.48                   | 220.91<br>or L15a)<br>37.45<br>0<br>-115.58<br>70.27                        | 217.85<br>), also se<br>37.45<br>0<br>-115.58<br>76.95                          | 225.57<br>ee Table<br>37.45<br>0<br>-115.58<br>79.32                          | 242.01<br>5<br>37.45<br>0<br>-115.58<br>86.26                         | 262.76<br>37.45<br>0<br>-115.58<br>94.1                         | 282.26<br>37.45<br>0<br>-115.58<br>97.61                | <br> <br> <br> | <ul> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> </ul>               |
| (69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i           | ang gains<br>37.45<br>s and fa<br>0<br>s e.g. ev<br>-115.58<br>heating<br>99.98<br>internal                     | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic<br>-115.58<br>gains (1<br>97.6<br><b>gains =</b>    | 290.64<br>ated in A<br>37.45<br>(Table 9<br>0<br>on (nega<br>-115.58<br>Table 5)<br>92.67     | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu<br>-115.58<br>85.96 | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab<br>-115.58<br>81.61           | 233.94<br>tion L15<br>37.45<br>0<br>le 5)<br>-115.58<br>75.48<br>(66)            | 220.91<br>or L15a)<br>37.45<br>0<br>-115.58<br>70.27<br>m + (67)m           | 217.85<br>), also se<br>37.45<br>0<br>-115.58<br>76.95<br>n + (68)m -           | 225.57<br>ee Table<br>37.45<br>0<br>-115.58<br>79.32<br>+ (69)m + (           | 242.01<br>5<br>37.45<br>0<br>-115.58<br>86.26<br>(70)m + (7           | 262.76<br>37.45<br>0<br>-115.58<br>94.1<br>1)m + (72)           | 282.26<br>37.45<br>0<br>-115.58<br>97.61<br>m           | <br> <br> <br> | (68)<br>(69)<br>(70)<br>(71)<br>(72)                                                           |
| (69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i<br>(73)m= | 233.23<br>ng gains<br>37.45<br>s and fai<br>0<br>s e.g. ev<br>-115.58<br>heating<br>99.98<br>internal<br>488.39 | 298.36<br>(calcula<br>37.45<br>ns gains<br>0<br>vaporatic<br>-115.58<br>gains (1<br>97.6<br>gains =<br>486.08 | 290.64<br>ated in A<br>37.45<br>(Table 9<br>0<br>on (nega<br>-115.58<br>Table 5)<br>92.67<br> | 274.2<br>ppendix<br>37.45<br>5a)<br>0<br>tive valu<br>-115.58<br>85.96 | 253.45<br>L, equat<br>37.45<br>0<br>es) (Tab<br>-115.58<br>81.61<br>412.35 | 233.94<br>tion L15<br>37.45<br>0<br>ole 5)<br>-115.58<br>75.48<br>(66)<br>385.01 | 220.91<br>or L15a)<br>37.45<br>0<br>-115.58<br>70.27<br>m + (67)m<br>367.51 | 217.85<br>), also se<br>37.45<br>0<br>-115.58<br>76.95<br>n + (68)m -<br>374.12 | 225.57<br>ee Table<br>37.45<br>0<br>-115.58<br>79.32<br>+ (69)m + (<br>388.65 | 242.01<br>5<br>37.45<br>0<br>-115.58<br>86.26<br>(70)m + (7<br>416.73 | 262.76<br>37.45<br>0<br>-115.58<br>94.1<br>1)m + (72)<br>449.01 | 282.26<br>37.45<br>0<br>-115.58<br>97.61<br>m<br>473.74 | <br> <br> <br> | <ul> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> <li>(73)</li> </ul> |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta             | ition: | Access Factor<br>Table 6d | - | Area<br>m² |   | Flux<br>Table 6a |     | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |               |
|---------------------|--------|---------------------------|---|------------|---|------------------|-----|----------------|---|----------------|------------|--------------|---------------|
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 10.63            | ) × | 0.76           | × | 0.7            | ] =        | 9.72         | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 20.32            | x   | 0.76           | × | 0.7            | ] =        | 18.58        | (74)          |
| North               | 0.9×   | 0.77                      | x | 2.48       | × | 34.53            | x   | 0.76           | × | 0.7            | ] =        | 31.57        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 55.46            | x   | 0.76           | × | 0.7            | ] =        | 50.71        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 74.72            | x   | 0.76           | × | 0.7            | ] =        | 68.31        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 79.99            | x   | 0.76           | × | 0.7            | ] =        | 73.13        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 74.68            | x   | 0.76           | × | 0.7            | ] =        | 68.28        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 59.25            | x   | 0.76           | × | 0.7            | ] =        | 54.17        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 41.52            | x   | 0.76           | × | 0.7            | <b>j</b> = | 37.96        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | × | 24.19            | x   | 0.76           | × | 0.7            | ] =        | 22.12        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | x | 13.12            | x   | 0.76           | x | 0.7            | ] =        | 11.99        | (74)          |
| North               | 0.9x   | 0.77                      | x | 2.48       | x | 8.86             | x   | 0.76           | x | 0.7            | <b>j</b> = | 8.1          | <b>–</b> (74) |
| South               | 0.9x   | 0.77                      | x | 17.35      | x | 46.75            | x   | 0.85           | × | 0.7            | 1 =        | 334.46       | (78)          |
| South               | 0.9x   | 0.77                      | x | 17.35      | x | 76.57            | x   | 0.85           | x | 0.7            | 1 =        | 547.77       | (78)          |
| South               | 0.9x   | 0.77                      | x | 17.35      | x | 97.53            | x   | 0.85           | × | 0.7            | 1 =        | 697.76       | <b>–</b> (78) |
| South               | 0.9x   | 0.77                      | x | 17.35      | × | 110.23           | x   | 0.85           | х | 0.7            | 1 =        | 788.62       | (78)          |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 114.87           | x   | 0.85           | x | 0.7            | i -        | 821.79       | (78)          |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 110.55           | i 🖌 | 0.85           | x | 0.7            | <b>j</b> = | 790.86       | <b>–</b> (78) |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 108.01           | x   | 0.85           | x | 0.7            | 1 =        | 772.72       | (78)          |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | × | 104.89           | x   | 0.85           | x | 0.7            | 1 =        | 750.42       | (78)          |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 101.89           | ×   | 0.85           | x | 0.7            | 1 =        | 728.89       | <b>–</b> (78) |
| Sout <mark>h</mark> | 0.9x   | 0.77                      | x | 17.35      | x | 82.59            | x   | 0.85           | x | 0.7            | ] =        | 590.82       | (78)          |
| South               | 0.9×   | 0.77                      | x | 17.35      | × | 55.42            | x   | 0.85           | × | 0.7            | ] =        | 396.45       | (78)          |
| South               | 0.9x   | 0.77                      | x | 17.35      | x | 40.4             | x   | 0.85           | x | 0.7            | <b>i</b> = | 289.01       | <b>–</b> (78) |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 19.64            | x   | 0.85           | × | 0.7            | ] =        | 12.15        | (80)          |
| West                | 0.9×   | 0.77                      | x | 1.5        | × | 38.42            | x   | 0.85           | × | 0.7            | ] =        | 23.76        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 63.27            | x   | 0.85           | × | 0.7            | =          | 39.13        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 92.28            | x   | 0.85           | × | 0.7            | ] =        | 57.08        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 113.09           | x   | 0.85           | × | 0.7            | ] =        | 69.95        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | x | 115.77           | x   | 0.85           | × | 0.7            | 1 =        | 71.6         | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 110.22           | x   | 0.85           | × | 0.7            | 1 =        | 68.17        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | x | 94.68            | x   | 0.85           | × | 0.7            | ] =        | 58.56        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 73.59            | ×   | 0.85           | × | 0.7            | ] =        | 45.52        | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | × | 45.59            | ×   | 0.85           | × | 0.7            | ] =        | 28.2         | (80)          |
| West                | 0.9x   | 0.77                      | x | 1.5        | x | 24.49            | x   | 0.85           | × | 0.7            | <b>j</b> = | 15.15        | -<br>(80)     |
| West                | 0.9x   | 0.77                      | x | 1.5        | x | 16.15            | x   | 0.85           | × | 0.7            | i =        | 9.99         | <b>–</b> (80) |

| Solar gains in watts, calculated for each month(83)m = Sum(74)m (82)m |           |           |           |                      |           |         |         |         |         |         |        |        |      |
|-----------------------------------------------------------------------|-----------|-----------|-----------|----------------------|-----------|---------|---------|---------|---------|---------|--------|--------|------|
| (83)m=                                                                | 356.33    | 590.11    | 768.46    | 896.41               | 960.05    | 935.6   | 909.17  | 863.14  | 812.37  | 641.13  | 423.6  | 307.1  | (83) |
| Total g                                                               | ains – ir | nternal a | ind solar | <sup>-</sup> (84)m = | = (73)m - | + (83)m | , watts |         |         |         |        |        |      |
| (84)m=                                                                | 844.72    | 1076.2    | 1237.45   | 1337.55              | 1372.4    | 1320.6  | 1276.68 | 1237.26 | 1201.02 | 1057.86 | 872.61 | 780.84 | (84) |

| 7. Me                                                                                                                                 | an inter  | nal temp  | berature  | (heating  | season    | )         |           |                                               |           |                          |             |         |       |          |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------------------------------|-----------|--------------------------|-------------|---------|-------|----------|
| Temperature during heating periods in the living area from Table 9, Th1 (°C)                                                          |           |           |           |           |           |           |           |                                               |           |                          | 21          | (85)    |       |          |
| Utilisation factor for gains for living area, h1,m (see Table 9a)                                                                     |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
|                                                                                                                                       | Jan       | Feb       | Mar       | Apr       | May       | Jun       | Jul       | Aug                                           | Sep       | Oct                      | Nov         | Dec     |       |          |
| (86)m=                                                                                                                                | 1         | 1         | 1         | 0.99      | 0.98      | 0.97      | 0.93      | 0.94                                          | 0.98      | 0.99                     | 1           | 1       |       | (86)     |
| Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)                                                         |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
| (87)m=                                                                                                                                | 17.8      | 18        | 18.38     | 18.92     | 19.51     | 20.09     | 20.47     | 20.42                                         | 19.95     | 19.19                    | 18.41       | 17.78   |       | (87)     |
| Temp                                                                                                                                  | erature   | durina h  | neating p | eriods ir | n rest of | dwellina  | from Ta   | ble 9 T                                       | h2 (°C)   |                          |             |         |       |          |
| (88)m=                                                                                                                                | 18.05     | 18.05     | 18.05     | 18.06     | 18.06     | 18.06     | 18.06     | 18.06                                         | 18.06     | 18.06                    | 18.05       | 18.05   |       | (88)     |
| Utilisation factor for gains for rest of dwelling, h2.m (see Table 9a)                                                                |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
| (89)m=                                                                                                                                | 1         | 1         | 0.99      | 0.98      | 0.96      | 0.88      | 0.62      | 0.68                                          | 0.92      | 0.99                     | 1           | 1       |       | (89)     |
| Mean                                                                                                                                  | interna   | l temper  | ature in  | the rest  | of dwelli | na T2 (f  | nllow ste | $\frac{1}{2}$ s $\frac{1}{2}$ s $\frac{1}{2}$ | 7 in Tahl | e 9c)                    |             |         |       |          |
| (90)m=                                                                                                                                | 14.26     | 14.55     | 15.11     | 15.9      | 16.75     | 17.56     | 17.98     | 17.95                                         | 17.38     | 16.29                    | 15.15       | 14.22   |       | (90)     |
|                                                                                                                                       |           |           |           |           |           |           |           |                                               | f         | LA = Livin               | g area ÷ (4 | 4) =    | 0.36  | (91)     |
| Mean internal temperature (for the whole dwelling) = $f(A \times T_1 + (1 - f(A) \times T_2)$                                         |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
| (92)m-                                                                                                                                | 15 54     | 15.8      | 16 29     | 16 99     | 17 74     | 18 47     | 18.88     | + (1 – 1L<br>                                 | A) X 12   | 17 33                    | 16 32       | 15.5    |       | (92)     |
|                                                                                                                                       |           | nent to t |           | internal  | temper    | ature fro | m Table   | A whe                                         |           |                          | 10.02       | 10.0    |       | (0-)     |
| (93)m-                                                                                                                                | 15 54     | 15.8      | 16 29     | 16 99     | 17 74     | 18 47     | 18.88     | 18 84                                         | 18 31     | 17 33                    | 16 32       | 15.5    |       | (93)     |
|                                                                                                                                       | aca haa   | ting requ | uirement  | 10.00     | 17.74     | 10.41     | 10.00     | 10.04                                         | 10.01     | 17.00                    | 10.02       | 10.0    |       | (        |
| Set Ti to the mean interrol temperature obtained at step 11 of Table 0b, so that Time (76)m and re calculate                          |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
| the ut                                                                                                                                | ilisation | factor fo | or gains  | using Ta  | ble 9a    |           |           |                                               | 5, 30 tha | <b>u i i , i i i – (</b> | / 0)111 a11 |         | ulate |          |
|                                                                                                                                       | Jan       | Feb       | Mar       | Apr       | May       | Jun       | Jul       | Aug                                           | Sep       | Oct                      | Nov         | Dec     |       |          |
| Util <mark>isa</mark>                                                                                                                 | ation fac | tor for g | ains, hm  | 1:        |           |           |           |                                               |           |                          |             |         |       |          |
| (94)m=                                                                                                                                | 1         | 0.99      | 0.99      | 0.98      | 0.96      | 0.91      | 0.78      | 0.81                                          | 0.93      | 0.98                     | 0.99        | 1       |       | (94)     |
| Usefu                                                                                                                                 | I gains,  | hmGm      | , W = (94 | 4)m x (84 | 4)m       |           |           |                                               |           |                          |             |         |       |          |
| (95)m=                                                                                                                                | 842.13    | 1069.77   | 1224.12   | 1310.56   | 1316.04   | 1195.18   | 994.79    | 1002.17                                       | 1120.99   | 1038.9                   | 867.95      | 778.91  |       | (95)     |
| Month                                                                                                                                 | nly aver  | age exte  | rnal tem  | perature  | from Ta   | able 8    |           | ·                                             |           |                          |             |         |       |          |
| (96)m=                                                                                                                                | 4.3       | 4.9       | 6.5       | 8.9       | 11.7      | 14.6      | 16.6      | 16.4                                          | 14.1      | 10.6                     | 7.1         | 4.2     |       | (96)     |
| Heat                                                                                                                                  | loss rate | e for mea | an intern | al tempe  | erature,  | Lm , W =  | =[(39)m : | x [(93)m                                      | – (96)m   | ]                        |             |         |       |          |
| (97)m=                                                                                                                                | 7543.21   | 7300.23   | 6549.17   | 5364.93   | 4001.2    | 2543.96   | 1498.73   | 1602.18                                       | 2772.76   | 4459.64                  | 6127.76     | 7534.9  |       | (97)     |
| Space                                                                                                                                 | e heatin  | g require | ement fo  | r each n  | honth, k\ | Nh/mont   | h = 0.02  | 24 x [(97                                     | )m – (95  | )m] x (4′                | 1)m         |         |       |          |
| (98)m=                                                                                                                                | 4985.6    | 4186.87   | 3961.84   | 2919.14   | 1997.76   | 0         | 0         | 0                                             | 0         | 2545.03                  | 3787.07     | 5026.45 |       | <b>-</b> |
| Total per year (kWh/year) = Sum(98) <sub>15,912</sub> =                                                                               |           |           |           |           |           |           |           |                                               | 29409.76  | (98)                     |             |         |       |          |
| Space heating requirement in kWh/m²/year                                                                                              |           |           |           |           |           |           |           |                                               | 229.76    | (99)                     |             |         |       |          |
| 9b. Energy requirements – Community heating scheme                                                                                    |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |
| This part is used for space heating, space cooling or water heating provided by a community scheme.                                   |           |           |           |           |           |           |           |                                               | <b>-</b>  |                          |             |         |       |          |
| Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none                                                    |           |           |           |           |           |           |           | ļ                                             | 0         | (301)                    |             |         |       |          |
| Fraction of space heat from community system $1 - (301) =$                                                                            |           |           |           |           |           |           |           |                                               | 1         | (302)                    |             |         |       |          |
| The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter |           |           |           |           |           |           |           |                                               |           |                          |             |         |       |          |

includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.

Fraction of heat from Community boilers

| 1 (3 | 03a) |
|------|------|
|------|------|

| Fraction of total space heat from Community boilers                                                                                | (3                              | 02) x (303a) =                          | 1                          | (304a) |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|----------------------------|--------|--|
| Factor for control and charging method (Table 4c(3)) for communi                                                                   | 1                               | (305)                                   |                            |        |  |
| Distribution loss factor (Table 12c) for community heating system                                                                  | 1.05                            | (306)                                   |                            |        |  |
| Space heating                                                                                                                      |                                 |                                         | kWh/year                   | ]<br>, |  |
| Annual space heating requirement                                                                                                   |                                 |                                         | 29409.76                   |        |  |
| Space heat from Community boilers                                                                                                  | (98) x (304a) x (30             | 5) x (306) =                            | 30880.24                   | (307a) |  |
| Efficiency of secondary/supplementary heating system in % (from                                                                    | Table 4a or Appendix            | E)                                      | 0                          | (308   |  |
| Space heating requirement from secondary/supplementary system                                                                      | n (98) x (301) x 100 -          | + (308) =                               | 0                          | (309)  |  |
| Water heating<br>Annual water heating requirement                                                                                  |                                 |                                         | 2268.73                    | 7      |  |
| If DHW from community scheme:<br>Water heat from Community boilers                                                                 | (64) x (303a) x (305) x (306) = |                                         |                            |        |  |
| Electricity used for heat distribution                                                                                             | 0.01 × [(307a)(307e) +          | (310a)(310e)] =                         | 332.62                     | (313)  |  |
| Cooling System Energy Efficiency Ratio                                                                                             |                                 | 0                                       | (314)                      |        |  |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                 | = (107) ÷ (314) =               |                                         | 0                          | (315)  |  |
| Electricity for pumps and fans within dwelling (Table 4f):<br>mechanical ventilation - balanced, extract or positive input from ou | itside                          |                                         | 0                          | (330a) |  |
| warm air heating system fans                                                                                                       |                                 |                                         | 0                          | (330b) |  |
| pump for solar water heating                                                                                                       |                                 |                                         | 0                          | (330g) |  |
| Total electricity for the above, kWh/year                                                                                          | =(330a) + (330b) +              | (330g) =                                | 0                          | (331)  |  |
| Energy for lighting (calculated in Appendix L)                                                                                     |                                 |                                         | 472.83                     | (332)  |  |
| 12b. CO2 Emissions – Community heating scheme                                                                                      |                                 |                                         |                            |        |  |
|                                                                                                                                    | Energy E<br>kWh/year k          | mission factor<br>g CO2/kWh             | r Emissions<br>kg CO2/year |        |  |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using tw            | vo fuels repeat (363) to (366   | <ol> <li>for the second full</li> </ol> | uel 90                     | (367a) |  |
| CO2 associated with heat source 1 [(307b)+(31                                                                                      | 0b)] x 100 ÷ (367b) x           | 0                                       | = 7982.98                  | (367)  |  |
| Electrical energy for heat distribution [(3                                                                                        | 13) x                           | 0.52                                    | = 172.63                   | (372)  |  |
| Total CO2 associated with community systems (36                                                                                    | 3)(366) + (368)(372)            |                                         | = 8155.61                  | (373)  |  |
| CO2 associated with space heating (secondary) (30                                                                                  | 9) x                            | 0                                       | = 0                        | (374)  |  |
| CO2 associated with water from immersion heater or instantaneou                                                                    | us heater (312) x               | 0.22                                    | = 0                        | (375)  |  |
| Total CO2 associated with space and water heating (37                                                                              | 8155.61                         | (376)                                   |                            |        |  |
| CO2 associated with electricity for pumps and fans within dwelling                                                                 | (331)) x                        | 0.52                                    | = 0                        | (378)  |  |
| CO2 associated with electricity for lighting (33                                                                                   | 2))) x                          | 0.52                                    | = 245.4                    | (379)  |  |
| Total CO2, kg/year sum of (376)(382) =                                                                                             |                                 |                                         | 8401.01                    | (383)  |  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                           |                                 |                                         | 65.63                      | (384)  |  |
| El rating (section 14)                                                                                                             |                                 |                                         | 39.8                       | (385)  |  |
| User Details:                    |                                                    |                             |              |                  |                  |               |            |              |                        |                       |  |  |
|----------------------------------|----------------------------------------------------|-----------------------------|--------------|------------------|------------------|---------------|------------|--------------|------------------------|-----------------------|--|--|
| Assessor Name:<br>Software Name: | Stroma FSAP 201                                    | 2                           |              | Stroma<br>Softwa | a Num<br>Ire Ver | ber:<br>sion: |            | Versio       | on: 1.0.3.15           |                       |  |  |
|                                  |                                                    | Pi                          | roperty A    | Address:         | Unit 6           |               |            |              |                        |                       |  |  |
| Address :                        |                                                    |                             |              |                  |                  |               |            |              |                        |                       |  |  |
| 1. Overall dwelling dime         | nsions:                                            |                             |              |                  |                  |               |            |              |                        |                       |  |  |
|                                  |                                                    |                             | Area         | a(m²)            |                  | Av. He        | ight(m)    | 1            | Volume(m <sup>3</sup>  | )                     |  |  |
| Basement                         |                                                    |                             | 2            | 247              | (1a) x           | 4             | .09        | (2a) =       | 1010.23                | (3a)                  |  |  |
| Total floor area TFA = (1a       | a)+(1b)+(1c)+(1d)+(1e                              | e)+(1n                      | ) 2          | 247              | (4)              |               |            |              |                        |                       |  |  |
| Dwelling volume                  |                                                    |                             |              |                  | (3a)+(3b)        | +(3c)+(3d     | l)+(3e)+   | .(3n) =      | 1010.23                | (5)                   |  |  |
| 2. Ventilation rate:             |                                                    |                             |              |                  |                  |               |            |              |                        |                       |  |  |
|                                  | main so<br>heating h                               | econdar <u>y</u><br>leating | у            | other            |                  | total         |            |              | m <sup>3</sup> per hou | r                     |  |  |
| Number of chimneys               |                                                    | 0                           | ] + [        | 0                | ] = [            | 0             | x 4        | 40 =         | 0                      | (6a)                  |  |  |
| Number of open flues             | 0 +                                                | 0                           | ] + [        | 0                | ] = [            | 0             | x          | 20 =         | 0                      | (6b)                  |  |  |
| Number of intermittent far       | ns                                                 |                             |              |                  | Ē                | 4             | <b>x</b> ′ | 10 =         | 40                     | (7a)                  |  |  |
| Number of passive vents          |                                                    |                             |              |                  | Ē                | 0             | <b>x</b> ′ | 10 =         | 0                      | (7b)                  |  |  |
| Number of flueless gas fir       | res                                                |                             |              |                  | Γ                | 0             | X 4        | 40 =         | 0                      | (7c)                  |  |  |
| Air changes per hour             |                                                    |                             |              |                  |                  |               |            |              |                        |                       |  |  |
| Infiltration due to chimney      | /s, flues and fans = (6                            | a)+(6b)+(7                  | a)+(7b)+(7   | 7c) =            | Ę                | 40            |            | ÷ (5) =      | 0.04                   | (8)                   |  |  |
| If a pressurisation test has be  | een carried out or is intende                      | ed, proceed                 | d to (17), c | otherwise c      | ontinue fre      | om (9) to (   | (16)       |              |                        |                       |  |  |
| Additional infiltration          | ie dweining (iis)                                  |                             |              |                  |                  |               | [(9)       | -11x0.1 =    | 0                      | -(10)                 |  |  |
| Structural infiltration: 0.      | 25 for steel or timber                             | frame or                    | 0.35 for     | masonr           | y constr         | uction        |            |              | 0                      |                       |  |  |
| if both types of wall are pr     | esent, use the value corres                        | ponding to                  | the greate   | er wall area     | a (after         |               |            |              |                        |                       |  |  |
| deducting areas of openin        | igs); if equal user 0.35<br>loor_enter 0.2 (unseal | ed) or 0                    | 1 (seale     | d) alsa          | enter ()         |               |            |              | 0                      |                       |  |  |
| If no draught lobby ent          | rer 0.05 else enter 0                              |                             | 1 (00010     | u), 0100         |                  |               |            |              | 0                      | $-1^{(12)}_{(13)}$    |  |  |
| Percentage of windows            | and doors draught st                               | ripped                      |              |                  |                  |               |            |              | 0                      | $= \frac{(10)}{(14)}$ |  |  |
| Window infiltration              | 0                                                  | ••                          |              | 0.25 - [0.2      | x (14) ÷ 1       | = [00         |            |              | 0                      | (15)                  |  |  |
| Infiltration rate                |                                                    |                             |              | (8) + (10) -     | + (11) + (1      | 2) + (13) -   | + (15) =   |              | 0                      | (16)                  |  |  |
| Air permeability value,          | q50, expressed in cub                              | oic metres                  | s per ho     | ur per so        | quare m          | etre of e     | envelope   | area         | 10                     | (17)                  |  |  |
| If based on air permeabili       | ty value, then (18) = [(1                          | 7) ÷ 20]+(8                 | 8), otherwis | se (18) = (      | 16)              |               |            |              | 0.54                   | (18)                  |  |  |
| Air permeability value applies   | s if a pressurisation test has                     | s been don                  | e or a deg   | ıree air per     | meability        | is being u    | sed        |              |                        | _                     |  |  |
| Number of sides sheltered        | d                                                  |                             |              | (20) – 1 - [     | 0 075 v (1       | Q)] —         |            |              | 1                      | (19)                  |  |  |
| Infiltration rate incorporati    | ing chalter factor                                 |                             |              | (20) - 1 [       | x (20) -         | 0)] –         |            |              | 0.92                   |                       |  |  |
| Infiltration rate modified for   | ar monthly wind apoor                              | J                           |              | (21) = (10)      | x (20) -         |               |            |              | 0.5                    | _(21)                 |  |  |
|                                  | Mar Apr May                                        |                             | hul          | Διια             | Sen              | Oct           | Nov        | Dec          |                        |                       |  |  |
|                                  | and from Table 7                                   | Jun                         | Jui          | Aug              | Seb              | 001           |            | Dec          |                        |                       |  |  |
| $(22)_{m=}$                      |                                                    | 3.8                         | 2.8          | 37               | Δ                | 43            | 15         | A 7          |                        |                       |  |  |
| ( <u>)</u>                       | 7.0 7.7 7.7 4.0                                    | 5.0                         | 5.0          | 5.7              | 7                | т.5           | 4.5        | <b>-+</b> ./ | l                      |                       |  |  |
| Wind Factor $(22a)m = (22a)m$    | 2)m ÷ 4                                            |                             |              |                  |                  |               |            |              |                        |                       |  |  |
| (22a)m= 1.27 1.25                | 1.23 1.1 1.08                                      | 0.95                        | 0.95         | 0.92             | 1                | 1.08          | 1.12       | 1.18         |                        |                       |  |  |

| Adjusted infilt             | tration rat                                                                    | e (allowi    | ing for sh   | nelter an  | d wind s     | peed) =             | (21a) x         | (22a)m                          |                      |             |                       |            |       |
|-----------------------------|--------------------------------------------------------------------------------|--------------|--------------|------------|--------------|---------------------|-----------------|---------------------------------|----------------------|-------------|-----------------------|------------|-------|
| 0.64                        | 0.62                                                                           | 0.61         | 0.55         | 0.54       | 0.47         | 0.47                | 0.46            | 0.5                             | 0.54                 | 0.56        | 0.59                  |            |       |
| Calculate effe              | ective air                                                                     | change       | rate for t   | he appli   | cable ca     | se                  |                 |                                 |                      |             | -                     | -          |       |
| If exhaust air              | beat numn i                                                                    | using App    | andix N (2   | 3h) - (23a | a) v Emv (e  | austion (1          | N5)) othe       | rwise (23h                      | ) - (23a)            |             |                       | 0          | (238) |
| If balanced wi              | ith heat reco                                                                  | overv: effic | iency in %   | allowing f | or in-use f  | actor (fron         | n Table 4h      | ) –                             | ) – (20a)            |             |                       | 0          | (23D) |
| a) If balance               |                                                                                |              | ntilation    | with hor   | of in doo in |                     |                 | $y^{-} = (2)^{+}$               | 2b)m i (             | 22h) v [    | 1 (22a)               | · 1001     | (230) |
| (24a)m = 0                  |                                                                                |              |              |            |              |                     |                 | a = (2)                         |                      |             | $\frac{1-(230)}{1-0}$ | <br>       | (24a) |
| b) If balance               |                                                                                | anical ve    |              | without    | heat rec     |                     | 1<br>(1)/) (2/F | $\int_{-\infty}^{-\infty} (2')$ | $1 \sim \frac{1}{2}$ | 23h)        | Ů                     | J          |       |
| (24b)m = 0                  |                                                                                |              |              | 0          |              |                     |                 |                                 |                      | 200)        | 0                     | ]          | (24b) |
| c) If whole                 |                                                                                | tract ver    |              |            |              | ventilatio          | n from (        |                                 | Ů                    | Ů           | Ů                     | J          |       |
| if (22b)                    | $m < 0.5 \times$                                                               | (23b), t     | then (24     | c) = (23b) | ); other     | vermand<br>vise (24 | c) = (22)       | m + 0.                          | .5 × (23b            | ))          |                       |            |       |
| (24c)m= 0                   | 0                                                                              | 0            | 0            | 0          | 0            | 0                   | 0               | 0                               | 0                    | 0           | 0                     | ]          | (24c) |
| d) If natura                | l ventilatio                                                                   | n or wh      | ole hous     | e positiv  | /e input '   | ventilatio          | n from l        | oft                             | Į                    | !           | Į                     | 1          |       |
| ,<br>if (22b)               | m = 1, th                                                                      | en (24d)     | m = (22      | o)m othe   | erwise (2    | 4d)m =              | 0.5 + [(2       | 2b)m² x                         | 0.5]                 |             |                       | _          |       |
| (24d)m= 0.7                 | 0.69                                                                           | 0.69         | 0.65         | 0.64       | 0.61         | 0.61                | 0.61            | 0.62                            | 0.64                 | 0.66        | 0.67                  |            | (24d) |
| Effective ai                | Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) |              |              |            |              |                     |                 |                                 |                      |             |                       |            |       |
| (25)m= 0.7                  | 0.69                                                                           | 0.69         | 0.65         | 0.64       | 0.61         | 0.61                | 0.61            | 0.62                            | 0.64                 | 0.66        | 0.67                  |            | (25)  |
| 3. Heat loss                | es and he                                                                      | eat loss i   | oaramete     | er:        |              |                     |                 |                                 |                      |             | _                     |            |       |
|                             | Gros                                                                           | ss           | Openin       | gs         | Net Ar       | ea                  | U-val           | ue                              | AXU                  |             | k-value               | e          | A X k |
|                             | area                                                                           | (m²)         | m            | 12         | A ,r         | n²                  | W/m2            | 2K                              | (W/I                 | K)          | kJ/m²·l               | K          | kJ/K  |
| Doo <mark>rs Type 1</mark>  |                                                                                |              |              |            | 13.1         | x                   | 3               | =                               | 39.3                 |             |                       |            | (26)  |
| Doo <mark>rs Ty</mark> pe 2 | 2                                                                              |              |              |            | 13.1         | x                   | 3               | _ =                             | 39.3                 |             |                       |            | (26)  |
| Doors Type 3                | 3                                                                              |              |              |            | 13.1         | x                   | 3               |                                 | 39.3                 |             |                       |            | (26)  |
| Doors Type 4                | ł                                                                              | '            |              |            | 2.5          | x                   | 1.4             | =                               | 3.5                  |             |                       |            | (26)  |
| Windows Typ                 | be 1                                                                           |              |              |            | 17.22        | <u>x</u> 1          | /[1/( 4.8 )+    | 0.04] =                         | 69.34                |             |                       |            | (27)  |
| Windows Typ                 | be 2                                                                           |              |              |            | 0.6          | x1                  | /[1/( 4.8 )+    | 0.04] =                         | 2.42                 |             |                       |            | (27)  |
| Windows Typ                 | be 3                                                                           |              |              |            | 6            | x1                  | /[1/( 4.8 )+    | 0.04] =                         | 24.16                | =           |                       |            | (27)  |
| Walls Type1                 | 102                                                                            | .6           | 63.1         | 2          | 39.48        | 3 X                 | 2.1             | =                               | 82.91                |             |                       |            | (29)  |
| Walls Type2                 | 54.8                                                                           | 8            | 0            |            | 54.8         | x                   | 0.28            | <b>-</b>                        | 15.34                | i F         |                       | <b>-</b> - | (29)  |
| Walls Type3                 | 43.5                                                                           | 56           | 2.5          |            | 41.06        | x                   | 2.1             |                                 | 86.23                |             |                       | ╡╞         | (29)  |
| Walls Type4                 | 15.0                                                                           | )5           |              |            | 15.05        |                     |                 | <br>                            | 4 52                 |             |                       |            | (29)  |
| Roof                        | 95.0                                                                           | <u>~</u>     |              |            | 85.24        |                     | 0.0             |                                 | 105 00               |             |                       |            | (20)  |
| Total area of               |                                                                                | <br>         |              |            | 204.0        |                     | L2.3            |                                 | 190.90               |             |                       |            | (31)  |
| * for windows an            | ad roof wind                                                                   | 0WS 1150 6   | offective wi | ndow H-ve  |              | ated using          | n formula 1     | /[(1/   _\_)]                   | µe)+0 041 e          | as aiven in | naraarank             | 132        | (31)  |
|                             |                                                                                | sides of i   |              |            |              | aica usiriy         | , ionnuia 1     | /I( 1/0-vail                    | ,o)+0.0 <b>+</b> ] c | o given III | ραιαγιαρι             | , 0.2      |       |

(26)...(30) + (32) =

((28)...(30) + (32) + (32a)...(32e) =

Indicative Value: High

| ** include the areas on both sides of internal | walls and partitions |
|------------------------------------------------|----------------------|
| Fabric heat loss, $W/K = S (A \times U)$       |                      |

| Heat capacity $Cm = S(A \times k)$ |
|------------------------------------|
|------------------------------------|

| Thermal mass parameter | (TMP = Cm) | ÷ TFA) | in kJ/m²k |
|------------------------|------------|--------|-----------|
|------------------------|------------|--------|-----------|

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

| 0   | (34) |
|-----|------|
| 450 | (35) |
|     |      |

(33)

602.3

| if details | of therma                          | al bridging           | are not kr       | 10wn (36) =                  | = 0.15 x (3      | 1)               |                 |                                                                                             |               |             |                        |         |         | _     |
|------------|------------------------------------|-----------------------|------------------|------------------------------|------------------|------------------|-----------------|---------------------------------------------------------------------------------------------|---------------|-------------|------------------------|---------|---------|-------|
| Total f    | abric he                           | at loss               |                  |                              |                  |                  |                 |                                                                                             | (33) +        | (36) =      |                        |         | 648.7   | (37)  |
| Ventila    | ation hea                          | at loss ca            | alculated        | d monthly                    | у                | -                |                 |                                                                                             | (38)m         | = 0.33 × (  | 25)m x (5)             |         | 1       |       |
|            | Jan                                | Feb                   | Mar              | Apr                          | May              | Jun              | Jul             | Aug                                                                                         | Sep           | Oct         | Nov                    | Dec     |         |       |
| (38)m=     | 234.19                             | 231.57                | 229              | 216.93                       | 214.68           | 204.17           | 204.17          | 202.22                                                                                      | 208.21        | 214.68      | 219.24                 | 224.02  |         | (38)  |
| Heat t     | ransfer o                          | coefficier            | nt, W/K          |                              |                  |                  |                 |                                                                                             | (39)m         | = (37) + (3 | 38)m                   |         |         |       |
| (39)m=     | 882.89                             | 880.27                | 877.7            | 865.63                       | 863.37           | 852.86           | 852.86          | 850.91                                                                                      | 856.91        | 863.37      | 867.94                 | 872.72  |         |       |
|            |                                    |                       |                  |                              |                  |                  |                 |                                                                                             | (10)          | Average =   | Sum(39)1               | 12 /12= | 865.62  | (39)  |
| Heat l     | oss para                           | Imeter (H             | HLP), W/         | /m²K                         |                  | 0.15             | 0.45            |                                                                                             | (40)m         | = (39)m ÷   | (4)                    | 0.50    |         |       |
| (40)m=     | 3.57                               | 3.56                  | 3.55             | 3.5                          | 3.5              | 3.45             | 3.45            | 3.44                                                                                        | 3.47          | 3.5         | 3.51                   | 3.53    | 0.5     |       |
| Numb       | Number of days in month (Table 1a) |                       |                  |                              |                  |                  |                 |                                                                                             |               |             |                        |         | 3.5     | (40)  |
|            | Jan                                | Feb                   | Mar              | Apr                          | May              | Jun              | Jul             | Aug                                                                                         | Sep           | Oct         | Nov                    | Dec     |         |       |
| (41)m=     | 31                                 | 28                    | 31               | 30                           | 31               | 30               | 31              | 31                                                                                          | 30            | 31          | 30                     | 31      |         | (41)  |
|            |                                    |                       |                  |                              |                  |                  |                 |                                                                                             |               |             |                        |         |         |       |
| 4. Wa      | ater hea                           | ting enei             | rgy requ         | irement:                     |                  |                  |                 |                                                                                             |               |             |                        | kWh/ye  | ear:    |       |
| A          |                                    | un on ou d            | NI               |                              |                  |                  |                 |                                                                                             |               |             |                        |         | I       | (10)  |
| if TF      | A > 13.                            | 1pancy, 1<br>9, N = 1 | n<br>+ 1.76 x    | (1 - exp                     | (-0.0003         | 849 x (TF        |                 | )2)] + 0.(                                                                                  | )<br>2013 x ( | TFA -13.    | <u>3.</u><br>9)        | 06      |         | (42)  |
| if TF      | A £ 13.                            | 9, N = 1              |                  |                              |                  | ,                |                 |                                                                                             | ,             |             | ,                      |         |         |       |
| Annua      | l averag                           | e hot wa              | ater usag        | ge in litre                  | es per da        | ay Vd,av         | erage =         | (25 x N)                                                                                    | + 36          | a target o  | 100                    | 6.95    |         | (43)  |
| not mor    | e that 125                         | litres per j          | person pe        | r day (all w                 | ater use, l      | hot and co       | ld)             | lo acriieve                                                                                 | a water us    | se largel o | 1                      |         |         |       |
|            | lan                                | Eab                   | Mar              | Apr                          | May              | lup              |                 | Αυσ                                                                                         | Sen           | Oct         | Nov                    | Dec     |         |       |
| Hot wat    | er usage i                         | n litres per          | day for ea       | ach month                    | Vd,m = fa        | ctor from        | Table 1c x      | (43)                                                                                        | U Dep         |             | INOV                   | Dec     |         |       |
| (44)m=     | 117.64                             | 113.36                | 109.09           | 104.81                       | 100.53           | 96.25            | 96.25           | 100.53                                                                                      | 104.81        | 109.09      | 113.36                 | 117.64  |         |       |
|            |                                    |                       |                  |                              |                  |                  |                 |                                                                                             |               | Total = Su  | m(44) <sub>112</sub> = |         | 1283.36 | (44)  |
| Energy     | content of                         | hot water             | used - cal       | culated m                    | onthly $= 4$ .   | 190 x Vd,r       | m x nm x D      | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | ) kWh/mor     | nth (see Ta | ables 1b, 1            | c, 1d)  |         |       |
| (45)m=     | 174.46                             | 152.58                | 157.45           | 137.27                       | 131.71           | 113.66           | 105.32          | 120.86                                                                                      | 122.3         | 142.53      | 155.58                 | 168.95  |         |       |
| 16 1       |                                    |                       |                  | • • <b>f</b> · · · • · / • · |                  | (                |                 | h                                                                                           |               | Total = Su  | m(45) <sub>112</sub> = | =       | 1682.69 | (45)  |
| ii instan  | taneous v                          | ater neatil<br>I      | ng at point<br>I | r or use (no<br>T            | ) not water<br>I | r storage),<br>I | enter 0 in<br>1 | Doxes (40                                                                                   | ) to (61)     | 1           | 1                      | 1       | I       |       |
| (46)m=     | 26.17                              | 22.89                 | 23.62            | 20.59                        | 19.76            | 17.05            | 15.8            | 18.13                                                                                       | 18.35         | 21.38       | 23.34                  | 25.34   |         | (46)  |
| Storac     | ie volum                           | e (litres)            | includir         | na anv se                    | olar or W        | /WHRS            | storage         | within sa                                                                                   | ame ves       | sel         |                        | 160     |         | (47)  |
| If com     | ,<br>munitv h                      | neating a             | ind no ta        | ank in dw                    | vellina. e       | nter 110         | ) litres in     | (47)                                                                                        |               |             |                        | 100     |         | ~ /   |
| Other      | vise if no                         | o stored              | hot wate         | er (this ir                  | ncludes i        | nstantar         | neous co        | ombi boil                                                                                   | ers) ente     | er '0' in ( | 47)                    |         |         |       |
| Water      | storage                            | loss:                 |                  |                              |                  |                  |                 |                                                                                             |               |             |                        |         |         |       |
| a) If n    | nanufact                           | urer's de             | eclared I        | oss facto                    | or is kno        | wn (kWł          | n/day):         |                                                                                             |               |             |                        | 0       |         | (48)  |
| Tempe      | erature f                          | actor fro             | m Table          | 2b                           |                  |                  |                 |                                                                                             |               |             |                        | 0       |         | (49)  |
| Energ      | y lost fro                         | om water              | · storage        | e, kWh/ye                    | ear              |                  |                 | (48) x (49)                                                                                 | ) =           |             | 1                      | 10      |         | (50)  |
| b) If n    | hanufact                           | urer's de             | eclared (        | cylinder                     | loss fact        | or is not        | known:          |                                                                                             |               |             |                        |         |         | (5.4) |
| If com     | ater Stor<br>munity k              | aye 1088<br>Neating s | ee secti         | on 4 3                       | ie ∠ (KVV        | 1/11119/02       | ay)             |                                                                                             |               |             | 0.                     | 02      |         | (51)  |
| Volum      | e factor                           | from Ta               | ble 2a           | UI 7.U                       |                  |                  |                 | 1.03                                                                                        |               |             |                        |         |         | (52)  |
| Tempe      | erature f                          | actor fro             | m Table          | 2b                           |                  |                  |                 |                                                                                             |               |             | 0                      | .6      |         | (53)  |
| Energ      | y lost fro                         | m water               | storage          | , kWh/ye                     | ear              |                  |                 | (47) x (51)                                                                                 | ) x (52) x (  | 53) =       | 1.                     | 03      |         | (54)  |
| Enter      | (50) or                            | (54) in (5            | 55)              | •                            |                  |                  |                 |                                                                                             |               |             | 1.                     | 03      |         | (55)  |

| Water                                                                                                                                                     | storage                                                                                                                                                    | loss cal                                                                                                                                                                                                                                       | culated                                                                                                                                                 | for each                                                                                                                         | month                                                                                                               |                                                                                                                                  |                                                                                                                                | ((56)m = (                                                                                                                        | 55) × (41)                                                                                                                     | m                                                                                                        |                                                                                            |                                                                                    |               |                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| (56)m=                                                                                                                                                    | 32.01                                                                                                                                                      | 28.92                                                                                                                                                                                                                                          | 32.01                                                                                                                                                   | 30.98                                                                                                                            | 32.01                                                                                                               | 30.98                                                                                                                            | 32.01                                                                                                                          | 32.01                                                                                                                             | 30.98                                                                                                                          | 32.01                                                                                                    | 30.98                                                                                      | 32.01                                                                              |               | (56)                                                                                                                       |
| If cylinde                                                                                                                                                | er contain                                                                                                                                                 | s dedicate                                                                                                                                                                                                                                     | d solar sto                                                                                                                                             | rage, (57)                                                                                                                       | m = (56)m                                                                                                           | x [(50) – (                                                                                                                      | H11)] ÷ (5                                                                                                                     | 0), else (5                                                                                                                       | 7)m = (56)                                                                                                                     | m where (                                                                                                | H11) is fro                                                                                | m Append                                                                           | lix H         |                                                                                                                            |
| (57)m=                                                                                                                                                    | 32.01                                                                                                                                                      | 28.92                                                                                                                                                                                                                                          | 32.01                                                                                                                                                   | 30.98                                                                                                                            | 32.01                                                                                                               | 30.98                                                                                                                            | 32.01                                                                                                                          | 32.01                                                                                                                             | 30.98                                                                                                                          | 32.01                                                                                                    | 30.98                                                                                      | 32.01                                                                              |               | (57)                                                                                                                       |
| Primar                                                                                                                                                    | ry circuit                                                                                                                                                 | loss (an                                                                                                                                                                                                                                       | nual) fro                                                                                                                                               | om Table                                                                                                                         | 93                                                                                                                  | -                                                                                                                                |                                                                                                                                | -                                                                                                                                 |                                                                                                                                |                                                                                                          | -                                                                                          | 0                                                                                  |               | (58)                                                                                                                       |
| Primar                                                                                                                                                    | ry circuit                                                                                                                                                 | loss cal                                                                                                                                                                                                                                       | culated                                                                                                                                                 | for each                                                                                                                         | month (                                                                                                             | 59)m = (                                                                                                                         | (58) ÷ 36                                                                                                                      | 65 × (41)                                                                                                                         | m                                                                                                                              |                                                                                                          |                                                                                            |                                                                                    |               |                                                                                                                            |
| (mo                                                                                                                                                       | dified by                                                                                                                                                  | factor fi                                                                                                                                                                                                                                      | rom Tab                                                                                                                                                 | le H5 if t                                                                                                                       | here is s                                                                                                           | solar wat                                                                                                                        | er heati                                                                                                                       | ng and a                                                                                                                          | cylinde                                                                                                                        | r thermo                                                                                                 | stat)                                                                                      |                                                                                    |               |                                                                                                                            |
| (59)m=                                                                                                                                                    | 23.26                                                                                                                                                      | 21.01                                                                                                                                                                                                                                          | 23.26                                                                                                                                                   | 22.51                                                                                                                            | 23.26                                                                                                               | 22.51                                                                                                                            | 23.26                                                                                                                          | 23.26                                                                                                                             | 22.51                                                                                                                          | 23.26                                                                                                    | 22.51                                                                                      | 23.26                                                                              |               | (59)                                                                                                                       |
| Combi                                                                                                                                                     | i loss ca                                                                                                                                                  | lculated                                                                                                                                                                                                                                       | for each                                                                                                                                                | month                                                                                                                            | (61)m =                                                                                                             | (60) ÷ 36                                                                                                                        | 65 × (41                                                                                                                       | )m                                                                                                                                |                                                                                                                                |                                                                                                          |                                                                                            |                                                                                    |               |                                                                                                                            |
| (61)m=                                                                                                                                                    | 0                                                                                                                                                          | 0                                                                                                                                                                                                                                              | 0                                                                                                                                                       | 0                                                                                                                                | 0                                                                                                                   | 0                                                                                                                                | 0                                                                                                                              | 0                                                                                                                                 | 0                                                                                                                              | 0                                                                                                        | 0                                                                                          | 0                                                                                  |               | (61)                                                                                                                       |
| Total h                                                                                                                                                   | neat req                                                                                                                                                   | uired for                                                                                                                                                                                                                                      | water h                                                                                                                                                 | eating ca                                                                                                                        | alculated                                                                                                           | for eac                                                                                                                          | h month                                                                                                                        | (62)m =                                                                                                                           | 0.85 × (                                                                                                                       | (45)m +                                                                                                  | (46)m +                                                                                    | (57)m +                                                                            | (59)m + (61)m |                                                                                                                            |
| (62)m=                                                                                                                                                    | 229.74                                                                                                                                                     | 202.51                                                                                                                                                                                                                                         | 212.73                                                                                                                                                  | 190.76                                                                                                                           | 186.99                                                                                                              | 167.15                                                                                                                           | 160.6                                                                                                                          | 176.14                                                                                                                            | 175.8                                                                                                                          | 197.81                                                                                                   | 209.08                                                                                     | 224.23                                                                             |               | (62)                                                                                                                       |
| Solar DI                                                                                                                                                  | HW input                                                                                                                                                   | calculated                                                                                                                                                                                                                                     | using App                                                                                                                                               | endix G o                                                                                                                        | · Appendix                                                                                                          | H (negati                                                                                                                        | ve quantity                                                                                                                    | /) (enter '0                                                                                                                      | ' if no sola                                                                                                                   | r contribut                                                                                              | ion to wate                                                                                | er heating)                                                                        |               |                                                                                                                            |
| (add a                                                                                                                                                    | dditiona                                                                                                                                                   | l lines if                                                                                                                                                                                                                                     | FGHRS                                                                                                                                                   | and/or \                                                                                                                         | WWHRS                                                                                                               | applies                                                                                                                          | , see Ap                                                                                                                       | pendix (                                                                                                                          | G)                                                                                                                             | -                                                                                                        | -                                                                                          | -                                                                                  |               |                                                                                                                            |
| (63)m=                                                                                                                                                    | 0                                                                                                                                                          | 0                                                                                                                                                                                                                                              | 0                                                                                                                                                       | 0                                                                                                                                | 0                                                                                                                   | 0                                                                                                                                | 0                                                                                                                              | 0                                                                                                                                 | 0                                                                                                                              | 0                                                                                                        | 0                                                                                          | 0                                                                                  |               | (63)                                                                                                                       |
| Output                                                                                                                                                    | t from w                                                                                                                                                   | ater hea                                                                                                                                                                                                                                       | ter                                                                                                                                                     |                                                                                                                                  |                                                                                                                     |                                                                                                                                  |                                                                                                                                |                                                                                                                                   |                                                                                                                                |                                                                                                          |                                                                                            |                                                                                    | _             |                                                                                                                            |
| (64)m=                                                                                                                                                    | 229.74                                                                                                                                                     | 202.51                                                                                                                                                                                                                                         | 212.73                                                                                                                                                  | 190.76                                                                                                                           | 186.99                                                                                                              | 167.15                                                                                                                           | 160.6                                                                                                                          | 176.14                                                                                                                            | 175.8                                                                                                                          | 197.81                                                                                                   | 209.08                                                                                     | 224.23                                                                             |               | _                                                                                                                          |
|                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                                  |                                                                                                                     |                                                                                                                                  |                                                                                                                                | Outp                                                                                                                              | out from wa                                                                                                                    | ater heate                                                                                               | r (annual)₁                                                                                | 12                                                                                 | 2333.53       | (64)                                                                                                                       |
| Hea <mark>t g</mark>                                                                                                                                      | jains fro                                                                                                                                                  | m water                                                                                                                                                                                                                                        | heating                                                                                                                                                 | , kWh/m                                                                                                                          | onth 0.2                                                                                                            | <mark>5 ´</mark> [0.85                                                                                                           | × (45)m                                                                                                                        | + (61)n                                                                                                                           | n] + 0.8 >                                                                                                                     | ( <mark>46)m</mark>                                                                                      | + (57)m                                                                                    | + (59)m                                                                            | 1             |                                                                                                                            |
| (65)m=                                                                                                                                                    | 76.62                                                                                                                                                      | 67.5 <mark>4</mark>                                                                                                                                                                                                                            | 70.96                                                                                                                                                   | 63.65                                                                                                                            | 62.4                                                                                                                | 55.8                                                                                                                             | 53.6 <mark>3</mark>                                                                                                            | 58.8                                                                                                                              | 58.68                                                                                                                          | 66                                                                                                       | 69.74                                                                                      | 74.79                                                                              |               | (65)                                                                                                                       |
| inclu                                                                                                                                                     | ude (57)                                                                                                                                                   | m in calc                                                                                                                                                                                                                                      | culation                                                                                                                                                | of (65)m                                                                                                                         | only if c                                                                                                           | ylinder i                                                                                                                        | s in t <mark>he</mark> o                                                                                                       | dwelling                                                                                                                          | or hot w                                                                                                                       | ate <mark>r is f</mark> r                                                                                | om com                                                                                     | <mark>mu</mark> nity h                                                             | neating       |                                                                                                                            |
| 5. Int                                                                                                                                                    | ternal ga                                                                                                                                                  | ains (see                                                                                                                                                                                                                                      | Table 5                                                                                                                                                 | 5 and 5a                                                                                                                         | ):                                                                                                                  |                                                                                                                                  |                                                                                                                                |                                                                                                                                   |                                                                                                                                |                                                                                                          |                                                                                            |                                                                                    |               |                                                                                                                            |
| Metab                                                                                                                                                     | olic gair                                                                                                                                                  | s (Table                                                                                                                                                                                                                                       | 5), Wat                                                                                                                                                 | ts                                                                                                                               |                                                                                                                     |                                                                                                                                  |                                                                                                                                |                                                                                                                                   |                                                                                                                                |                                                                                                          |                                                                                            |                                                                                    |               |                                                                                                                            |
|                                                                                                                                                           | Jan                                                                                                                                                        | E . L                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                  |                                                                                                                     |                                                                                                                                  |                                                                                                                                | _                                                                                                                                 |                                                                                                                                |                                                                                                          |                                                                                            |                                                                                    |               |                                                                                                                            |
|                                                                                                                                                           |                                                                                                                                                            | Feb                                                                                                                                                                                                                                            | Mar                                                                                                                                                     | Apr                                                                                                                              | May                                                                                                                 | Jun                                                                                                                              | Jul                                                                                                                            | Aug                                                                                                                               | Sep                                                                                                                            | Oct                                                                                                      | Nov                                                                                        | Dec                                                                                |               |                                                                                                                            |
| (66)m=                                                                                                                                                    | 153.15                                                                                                                                                     | Feb<br>153.15                                                                                                                                                                                                                                  | Mar<br>153.15                                                                                                                                           | Apr<br>153.15                                                                                                                    | May<br>153.15                                                                                                       | Jun<br>153.15                                                                                                                    | Jul<br>153.15                                                                                                                  | Aug<br>153.15                                                                                                                     | <b>Sep</b><br>153.15                                                                                                           | Oct<br>153.15                                                                                            | Nov<br>153.15                                                                              | Dec<br>153.15                                                                      |               | (66)                                                                                                                       |
| (66)m=<br>Lightin                                                                                                                                         | 153.15<br>Ig gains                                                                                                                                         | 153.15<br>(calcula                                                                                                                                                                                                                             | Mar<br>153.15<br>ted in Ap                                                                                                                              | Apr<br>153.15<br>opendix                                                                                                         | May<br>153.15<br>L, equat                                                                                           | Jun<br>153.15<br>ion L9 o                                                                                                        | Jul<br>153.15<br>r L9a), a                                                                                                     | Aug<br>153.15<br>Iso see                                                                                                          | Sep<br>153.15<br>Table 5                                                                                                       | Oct<br>153.15                                                                                            | Nov<br>153.15                                                                              | Dec<br>153.15                                                                      |               | (66)                                                                                                                       |
| (66)m=<br>Lightin<br>(67)m=                                                                                                                               | 153.15<br>ng gains<br>41.86                                                                                                                                | Feb<br>153.15<br>(calculat<br>37.18                                                                                                                                                                                                            | Mar<br>153.15<br>ted in Aj<br>30.24                                                                                                                     | Apr<br>153.15<br>opendix<br>22.89                                                                                                | May<br>153.15<br>L, equat<br>17.11                                                                                  | Jun<br>153.15<br>ion L9 of<br>14.45                                                                                              | Jul<br>153.15<br>r L9a), a<br>15.61                                                                                            | Aug<br>153.15<br>Iso see<br>20.29                                                                                                 | Sep<br>153.15<br>Table 5<br>27.23                                                                                              | Oct<br>153.15<br>34.58                                                                                   | Nov<br>153.15<br>40.36                                                                     | Dec<br>153.15<br>43.02                                                             |               | (66)                                                                                                                       |
| (66)m=<br>Lightin<br>(67)m=<br>Applia                                                                                                                     | 153.15<br>ng gains<br>41.86<br>nces ga                                                                                                                     | 153.15<br>(calcula<br>37.18<br>ins (calc                                                                                                                                                                                                       | Mar<br>153.15<br>ted in Ar<br>30.24<br>ulated ir                                                                                                        | Apr<br>153.15<br>opendix<br>22.89                                                                                                | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq                                                                     | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L                                                                                  | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1                                                                                | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also                                                                                    | Sep<br>153.15<br>Table 5<br>27.23<br>see Ta                                                                                    | Oct<br>153.15<br>34.58<br>ble 5                                                                          | Nov<br>153.15<br>40.36                                                                     | Dec<br>153.15<br>43.02                                                             |               | (66)<br>(67)                                                                                                               |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=                                                                                                           | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78                                                                                                           | 153.15<br>(calcula<br>37.18<br>ins (calc<br>418.07                                                                                                                                                                                             | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25                                                                                              | Apr<br>153.15<br>22.89<br>Appendix<br>384.21                                                                                     | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14                                                           | Jun<br>153.15<br>ion L9 o<br>14.45<br>uation L<br>327.81                                                                         | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55                                                                      | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26                                                                          | Sep<br>153.15<br>Table 5<br>27.23<br>see Ta<br>316.08                                                                          | Oct<br>153.15<br>34.58<br>ble 5<br>339.11                                                                | Nov<br>153.15<br>40.36<br>368.19                                                           | Dec<br>153.15<br>43.02<br>395.52                                                   |               | (66)<br>(67)<br>(68)                                                                                                       |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir                                                                                                 | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains                                                                                               | Feb           153.15           (calcula:           37.18           ins (calc           418.07           (calcula:                                                                                                                              | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ted in A                                                                                  | Apr<br>153.15<br>opendix<br>22.89<br>Append<br>384.21<br>ppendix                                                                 | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat                                               | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15                                                            | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a                                                           | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se                                                            | Sep<br>153.15<br>Table 5<br>27.23<br>see Ta<br>316.08<br>ee Table                                                              | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5                                                           | Nov<br>153.15<br>40.36<br>368.19                                                           | Dec<br>153.15<br>43.02<br>395.52                                                   |               | (66)<br>(67)<br>(68)                                                                                                       |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=                                                                                       | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32                                                                                      | Feb<br>153.15<br>(calcula<br>37.18<br>ins (calc<br>418.07<br>(calcula<br>38.32                                                                                                                                                                 | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ted in A<br>38.32                                                                         | Apr<br>153.15<br>opendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32                                                        | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32                                      | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32                                                   | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a)<br>38.32                                                 | Aug<br>153.15<br>lso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | Sep<br>153.15<br>Table 5<br>27.23<br>See Ta<br>316.08<br>ee Table<br>38.32                                                     | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32                                                  | Nov<br>153.15<br>40.36<br>368.19<br>38.32                                                  | Dec<br>153.15<br>43.02<br>395.52<br>38.32                                          |               | (66)<br>(67)<br>(68)<br>(69)                                                                                               |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps                                                                              | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa                                                                          | rep<br>153.15<br>(calcula<br>37.18<br>ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains                                                                                                                                                     | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>tted in A<br>38.32<br>(Table \$                                                           | Apr<br>153.15<br>opendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)                                                 | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32                                      | Jun<br>153.15<br>ion L9 o<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32                                                    | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a<br>38.32                                                  | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>5 e Table<br>38.32                                                  | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32                                                  | Nov<br>153.15<br>40.36<br>368.19<br>38.32                                                  | Dec<br>153.15<br>43.02<br>395.52<br>38.32                                          |               | (66)<br>(67)<br>(68)<br>(69)                                                                                               |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                                                    | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fat                                                                         | Feb           153.15           (calcula:           37.18           ins (calc           418.07           (calcula:           38.32           ns gains           0                                                                               | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ted in A<br>38.32<br>(Table 8<br>0                                                        | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0                                            | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32                                      | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32                                                   | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0                                            | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>5 Table<br>38.32<br>0                                               | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0                                             | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0                                             | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0                                     |               | (66)<br>(67)<br>(68)<br>(69)<br>(70)                                                                                       |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses                                                          | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev                                                        | rep<br>153.15<br>(calcula<br>37.18<br>ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>vaporatio                                                                                                                                   | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated in<br>407.25<br>ted in A<br>38.32<br>(Table \$<br>0<br>on (nega                                           | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu                               | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab                     | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)                                     | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a<br>38.32                                                  | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32                                                   | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>38.32<br>0                                                          | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0                                             | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0                                             | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0                                     |               | <ul><li>(66)</li><li>(67)</li><li>(68)</li><li>(69)</li><li>(70)</li></ul>                                                 |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                                                | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fai<br>0<br>s e.g. ev<br>-122.52                                            | Feb           153.15           (calcular           37.18           ins (calc           418.07           (calcular           38.32           ns gains           0           raporation           -122.52                                        | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated in<br>407.25<br>ted in A<br>38.32<br>(Table 9<br>0<br>n (nega<br>-122.52                                  | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52                    | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52          | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52                          | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a<br>38.32<br>0                                             | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32<br>0                                              | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>26 Table<br>38.32<br>0<br>-122.52                                   | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52                                  | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0                                             | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0<br>-122.52                          |               | <ul> <li>(66)</li> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> </ul>                             |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water                                       | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating                                  | rep<br>153.15<br>(calcula<br>37.18<br>ins (calc<br>418.07<br>(calcula<br>38.32<br>ns gains<br>0<br>raporatio<br>-122.52<br>gains (T                                                                                                            | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 5<br>0<br>on (nega<br>-122.52<br>Table 5)                    | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52                    | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52          | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>ole 5)<br>-122.52                         | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0                                            | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52                                   | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>20 Table<br>38.32<br>0<br>-122.52                                   | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52                                  | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0<br>-122.52                                  | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0<br>-122.52                          |               | <ul> <li>(66)</li> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> </ul>                             |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=                             | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fa<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98                        | Feb           153.15           (calcular           37.18           ins (calc           418.07           (calcular           38.32           ns gains           0           -122.52           gains (T           100.51                         | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ted in A<br>38.32<br>(Table 9<br>0<br>on (nega<br>-122.52<br>Table 5)<br>95.38            | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41           | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>77.5                  | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a<br>38.32<br>0<br>-122.52<br>72.08                         | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03                          | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>26 Table<br>38.32<br>0<br>-122.52<br>81.49                          | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71                         | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0<br>-122.52<br>96.86                         | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0<br>-122.52<br>100.52                |               | <ul> <li>(66)</li> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> </ul>               |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br>Total i                  | 153.15<br>ng gains<br>41.86<br>nces ga<br>413.78<br>ng gains<br>38.32<br>s and fai<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98                       | Feb         153.15         (calcular         37.18         ins (calc         418.07         (calcular         38.32         ns gains         0         raporation         -122.52         gains (T         100.51                              | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated in<br>407.25<br>ted in A<br>38.32<br>(Table 9<br>0<br>n (nega<br>-122.52<br>Table 5)<br>95.38             | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41           | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>77.5<br>(66)          | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a<br>38.32<br>0<br>-122.52<br>72.08<br>m + (67)m            | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03<br>n + (68)m -           | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>38.32<br>0<br>-122.52<br>81.49<br>+ (69)m + (                       | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71<br>(70)m + (7           | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0<br>-122.52<br>96.86<br>1)m + (72)           | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0<br>-122.52<br>100.52<br>m           |               | <ul> <li>(66)</li> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> </ul>               |
| (66)m=<br>Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total i</b><br>(73)m= | 153.15<br>ag gains<br>41.86<br>nces ga<br>413.78<br>ag gains<br>38.32<br>a and fai<br>0<br>s e.g. ev<br>-122.52<br>heating<br>102.98<br>internal<br>627.56 | Feb         153.15         (calcula:         37.18         ins (calc         418.07         (calcula:         38.32         ns gains         0         raporatio         -122.52         gains (T         100.51         gains =         624.7 | Mar<br>153.15<br>ted in Ap<br>30.24<br>ulated ir<br>407.25<br>ited in A<br>38.32<br>(Table 8<br>0<br>on (nega<br>-122.52<br>Table 5)<br>95.38<br>601.81 | Apr<br>153.15<br>ppendix<br>22.89<br>Append<br>384.21<br>ppendix<br>38.32<br>5a)<br>0<br>tive valu<br>-122.52<br>88.41<br>564.46 | May<br>153.15<br>L, equat<br>17.11<br>dix L, eq<br>355.14<br>L, equat<br>38.32<br>0<br>es) (Tab<br>-122.52<br>83.88 | Jun<br>153.15<br>ion L9 of<br>14.45<br>uation L<br>327.81<br>tion L15<br>38.32<br>0<br>le 5)<br>-122.52<br>77.5<br>(66)<br>488.7 | Jul<br>153.15<br>r L9a), a<br>15.61<br>13 or L1<br>309.55<br>or L15a)<br>38.32<br>0<br>-122.52<br>72.08<br>m + (67)m<br>466.19 | Aug<br>153.15<br>Iso see<br>20.29<br>3a), also<br>305.26<br>), also se<br>38.32<br>0<br>-122.52<br>79.03<br>n + (68)m -<br>473.52 | Sep<br>153.15<br>Table 5<br>27.23<br>5 see Ta<br>316.08<br>2e Table<br>38.32<br>0<br>-122.52<br>81.49<br>+ (69)m + 0<br>493.75 | Oct<br>153.15<br>34.58<br>ble 5<br>339.11<br>5<br>38.32<br>0<br>-122.52<br>88.71<br>(70)m + (7<br>531.35 | Nov<br>153.15<br>40.36<br>368.19<br>38.32<br>0<br>-122.52<br>96.86<br>1)m + (72)<br>574.36 | Dec<br>153.15<br>43.02<br>395.52<br>38.32<br>0<br>-122.52<br>100.52<br>m<br>608.01 |               | <ul> <li>(66)</li> <li>(67)</li> <li>(68)</li> <li>(69)</li> <li>(70)</li> <li>(71)</li> <li>(72)</li> <li>(73)</li> </ul> |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orienta | ation: | Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |            | Gains<br>(W) |               |
|---------|--------|--------------------------|---|------------|---|------------------|---|----------------|---|----------------|------------|--------------|---------------|
| North   | 0.9x   | 0.77                     | x | 0.6        | × | 10.63            | × | 0.85           | x | 0.7            | ] =        | 2.63         | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 20.32            | x | 0.85           | x | 0.7            | ] =        | 5.03         | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 34.53            | × | 0.85           | x | 0.7            | ] =        | 8.54         | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 55.46            | × | 0.85           | x | 0.7            | =          | 13.72        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 74.72            | x | 0.85           | x | 0.7            | ] =        | 18.48        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 79.99            | × | 0.85           | x | 0.7            | ] =        | 19.79        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 74.68            | × | 0.85           | x | 0.7            | =          | 18.48        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 59.25            | x | 0.85           | x | 0.7            | =          | 14.66        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 41.52            | × | 0.85           | x | 0.7            | ] =        | 10.27        | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 24.19            | x | 0.85           | x | 0.7            | ] =        | 5.98         | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 13.12            | x | 0.85           | x | 0.7            | ] =        | 3.25         | (74)          |
| North   | 0.9x   | 0.77                     | x | 0.6        | x | 8.86             | x | 0.85           | x | 0.7            | <b>j</b> = | 2.19         | (74)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 19.64            | x | 0.85           | x | 0.7            | 1 =        | 139.45       | <b>–</b> (76) |
| East    | 0.9x   | 1                        | x | 17.22      | x | 38.42            | x | 0.85           | x | 0.7            | 1 =        | 272.8        | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 63.27            | x | 0.85           | x | 0.7            | <b>j</b> = | 449.27       | <b>–</b> (76) |
| East    | 0.9x   | 1                        | x | 17.22      | × | 92.28            | x | 0.85           | x | 0.7            |            | 655.23       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 113.09           | x | 0.85           | x | 0.7            | i -        | 803          | <b>–</b> (76) |
| East    | 0.9x   | 1                        | x | 17.22      | x | 115.77           | × | 0.85           | x | 0.7            | <b>i</b> = | 822.02       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 110.22           | x | 0.85           | x | 0.7            | i =        | 782.59       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 94.68            | x | 0.85           | x | 0.7            | 1 =        | 672.24       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 73.59            | × | 0.85           | x | 0.7            | 1 =        | 522.51       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 45.59            | x | 0.85           | x | 0.7            | ] =        | 323.7        | (76)          |
| East    | 0.9x   | 1                        | х | 17.22      | × | 24.49            | x | 0.85           | x | 0.7            | ] =        | 173.88       | (76)          |
| East    | 0.9x   | 1                        | x | 17.22      | x | 16.15            | x | 0.85           | x | 0.7            | ] =        | 114.68       | (76)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 19.64            | x | 0.85           | x | 0.7            | ] =        | 48.59        | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 38.42            | × | 0.85           | x | 0.7            | ] =        | 95.05        | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 63.27            | x | 0.85           | x | 0.7            | ] =        | 156.54       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 92.28            | x | 0.85           | x | 0.7            | ] =        | 228.3        | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 113.09           | x | 0.85           | x | 0.7            | ] =        | 279.79       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 115.77           | x | 0.85           | x | 0.7            | ] =        | 286.42       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 110.22           | x | 0.85           | x | 0.7            | ] =        | 272.68       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 94.68            | x | 0.85           | x | 0.7            | ] =        | 234.23       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 73.59            | x | 0.85           | x | 0.7            | ] =        | 182.06       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 45.59            | × | 0.85           | x | 0.7            | ] =        | 112.79       | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 24.49            | × | 0.85           | × | 0.7            | ] =        | 60.59        | (80)          |
| West    | 0.9x   | 0.77                     | x | 6          | x | 16.15            | x | 0.85           | x | 0.7            | <b>j</b> = | 39.96        | (80)          |

| Solar g                                                        | Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$ |        |         |         |         |         |         |         |        |        |        |        |      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|--------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|------|
| (83)m=                                                         | 190.67                                                                         | 372.88 | 614.35  | 897.25  | 1101.28 | 1128.22 | 1073.75 | 921.12  | 714.85 | 442.47 | 237.71 | 156.83 | (83) |
| Total gains – internal and solar (84)m = (73)m + (83)m , watts |                                                                                |        |         |         |         |         |         |         |        |        |        |        |      |
| (84)m=                                                         | 818.24                                                                         | 997.59 | 1216.16 | 1461.71 | 1626.35 | 1616.93 | 1539.94 | 1394.64 | 1208.6 | 973.82 | 812.07 | 764.84 | (84) |

| 7. Me                                                                                                        | an inter                                                                                                                                                                                                                           | nal temp  | perature       | (heating              | season      | )                   |           |               |             |                     |             |            |          |       |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------------|-------------|---------------------|-----------|---------------|-------------|---------------------|-------------|------------|----------|-------|
| Temp                                                                                                         | erature                                                                                                                                                                                                                            | during h  | eating p       | eriods ir             | n the livir | ng area f           | rom Tab   | ole 9, Th     | 1 (°C)      |                     |             |            | 21       | (85)  |
| Utilisa                                                                                                      | ation fac                                                                                                                                                                                                                          | tor for g | ains for       | living are            | ea, h1,m    | (see Ta             | ble 9a)   |               |             |                     |             | I          |          |       |
|                                                                                                              | Jan                                                                                                                                                                                                                                | Feb       | Mar            | Apr                   | May         | Jun                 | Jul       | Aug           | Sep         | Oct                 | Nov         | Dec        | 1        |       |
| (86)m=                                                                                                       | 1                                                                                                                                                                                                                                  | 1         | 1              | 1                     | 1           | 0.99                | 0.97      | 0.98          | 1           | 1                   | 1           | 1          |          | (86)  |
| Mean                                                                                                         | interna                                                                                                                                                                                                                            | l temper  | ature in       | living are            | ea T1 (fo   | ollow ste           | ps 3 to 7 | in Tabl       | e 9c)       |                     |             |            |          |       |
| (87)m=                                                                                                       | 18.45                                                                                                                                                                                                                              | 18.58     | 18.89          | 19.34                 | 19.82       | 20.28               | 20.58     | 20.53         | ,<br>20.13  | 19.52               | 18.93       | 18.44      | 1        | (87)  |
| Temp                                                                                                         | erature                                                                                                                                                                                                                            | durina h  | eating p       | eriods ir             | n rest of   | dwellina            | from Ta   | uble 9. Ti    | h2 (°C)     |                     |             |            |          |       |
| (88)m=                                                                                                       | 18.49                                                                                                                                                                                                                              | 18.49     | 18.5           | 18.52                 | 18.52       | 18.54               | 18.54     | 18.54         | 18.53       | 18.52               | 18.52       | 18.51      |          | (88)  |
| Utilisa                                                                                                      | ation fac                                                                                                                                                                                                                          | tor for g | ains for       | rest of d             | welling, I  | h2,m (se            | e Table   | 9a)           |             |                     |             |            |          |       |
| (89)m=                                                                                                       | 1                                                                                                                                                                                                                                  | 1         | 1              | 1                     | 0.99        | 0.96                | 0.8       | ,<br>0.86     | 0.99        | 1                   | 1           | 1          |          | (89)  |
| Mean                                                                                                         | interna                                                                                                                                                                                                                            | l temper  | ature in       | the rest              | of dwelli   | na T2 (fo           | ollow ste | ps 3 to 7     | 7 in Tabl   | e 9c)               |             |            |          |       |
| (90)m=                                                                                                       | 15.35                                                                                                                                                                                                                              | 15.55     | 15.99          | 16.66                 | 17.37       | 18.05               | 18.43     | 18.38         | 17.83       | ,<br>16.94          | 16.06       | 15.35      | 1        | (90)  |
|                                                                                                              |                                                                                                                                                                                                                                    |           |                |                       |             |                     |           |               | f           | LA = Livin          | g area ÷ (4 | 4) =       | 0.55     | (91)  |
| Mean                                                                                                         | interna                                                                                                                                                                                                                            | l temper  | ature (fo      | or the wh             | ole dwel    | llina) = fl         | A x T1    | + (1 – fL     | A) x T2     |                     |             | I          |          |       |
| (92)m=                                                                                                       | 17.04                                                                                                                                                                                                                              | 17.21     | 17.57          | 18.12                 | 18.71       | 19.27               | 19.6      | 19.55         | 19.09       | 1 <mark>8.35</mark> | 17.63       | 17.04      |          | (92)  |
| Apply                                                                                                        | adjustn                                                                                                                                                                                                                            | nent to t | he mear        | internal              | tempera     | ature fro           | m Table   | 4e, whe       | ere appro   | opriate             |             |            |          |       |
| (93)m=                                                                                                       | 17.04                                                                                                                                                                                                                              | 17.21     | 17.57          | 18.12                 | 18.71       | 1 <mark>9.27</mark> | 19.6      | 19.55         | 19.09       | 18.35               | 17.63       | 17.04      |          | (93)  |
| 8. Space heating requirement                                                                                 |                                                                                                                                                                                                                                    |           |                |                       |             |                     |           |               |             |                     |             |            |          |       |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate |                                                                                                                                                                                                                                    |           |                |                       |             |                     |           |               |             |                     |             |            |          |       |
| the ut                                                                                                       | ilisation                                                                                                                                                                                                                          | factor fo | or gains       | <mark>using</mark> Ta | ble 9a      |                     |           |               |             |                     |             |            |          |       |
|                                                                                                              | Jan                                                                                                                                                                                                                                | Feb       | Mar            | Apr                   | May         | Jun                 | Jul       | Aug           | Sep         | Oct                 | Nov         | Dec        |          |       |
| Utilisa                                                                                                      | ation fac                                                                                                                                                                                                                          | tor for g | ains, hm       | 1:                    |             |                     |           |               |             |                     |             |            |          |       |
| (94)m=                                                                                                       | 1                                                                                                                                                                                                                                  | 1         | 1              | 1                     | 0.99        | 0.97                | 0.92      | 0.95          | 0.99        | 1                   | 1           | 1          | ı.       | (94)  |
| Usefu                                                                                                        | I gains,                                                                                                                                                                                                                           | hmGm .    | , W = (94      | 4)m x (84             | 4)m         |                     |           |               |             |                     |             |            | 1        |       |
| (95)m=                                                                                                       | 818.11                                                                                                                                                                                                                             | 997.27    | 1215.14        | 1457.85               | 1612.35     | 1571.83             | 1419.1    | 1318.87       | 1196.74     | 972.6               | 811.86      | 764.75     | ı.       | (95)  |
| Month                                                                                                        | nly aver                                                                                                                                                                                                                           | age exte  | rnal tem       | perature              | e from Ta   | able 8              |           |               |             |                     |             |            | 1        | ()    |
| (96)m=                                                                                                       | 4.3                                                                                                                                                                                                                                | 4.9       | 6.5            | 8.9                   | 11.7        | 14.6                | 16.6      | 16.4          | 14.1        | 10.6                | 7.1         | 4.2        |          | (96)  |
| Heat                                                                                                         | loss rate                                                                                                                                                                                                                          | e for mea | an intern<br>I | al tempe              | erature,    | Lm , W =            | =[(39)m : | x [(93)m<br>I | – (96)m     | ]                   |             |            | 1        |       |
| (97)m=                                                                                                       | 11248.74                                                                                                                                                                                                                           | 10832.37  | 9719.62        | 7985.28               | 6048.25     | 3983.27             | 2562.21   | 2682.19       | 4271.75     | 6690.73             | 9136.25     | 11205.5    |          | (97)  |
| Space                                                                                                        | e heatin                                                                                                                                                                                                                           | g require | ement fo       | r each m              | honth, k\   | Nh/mont             | :h = 0.02 | 24 x [(97]    | )m – (95    | )m] x (41           | I)m         |            | 1        |       |
| (98)m=                                                                                                       | 7760.39                                                                                                                                                                                                                            | 6609.19   | 6327.33        | 4699.75               | 3300.31     | 0                   | 0         | 0             | 0           | 4254.29             | 5993.56     | 7767.91    |          |       |
|                                                                                                              |                                                                                                                                                                                                                                    |           |                |                       |             |                     |           | Tota          | l per year  | (kWh/year           | ) = Sum(98  | 8)15,912 = | 46712.73 | (98)  |
| Space                                                                                                        | e heatin                                                                                                                                                                                                                           | g require | ement in       | kWh/m <sup>2</sup>    | /year       |                     |           |               |             |                     |             |            | 189.12   | (99)  |
| 9b. En                                                                                                       | ergy rec                                                                                                                                                                                                                           | quiremer  | nts – Cor      | mmunity               | heating     | scheme              |           |               |             |                     |             |            |          |       |
| This part is used for space heating, space cooling or water heating provided by a community scheme.          |                                                                                                                                                                                                                                    |           |                |                       |             |                     |           |               |             |                     |             |            |          |       |
| Fractio                                                                                                      | n of spa                                                                                                                                                                                                                           | ace heat  | from se        | condary/              | supplen/    | nentary h           | neating ( | Table 1       | 1) '0' if n | one                 |             |            | 0        | (301) |
| Fractio                                                                                                      | n of spa                                                                                                                                                                                                                           | ace heat  | from co        | mmunity               | system      | 1 – (301            | ) =       |               |             |                     |             |            | 1        | (302) |
| The com<br>includes                                                                                          | The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. |           |                |                       |             |                     |           |               |             |                     |             |            |          |       |

Fraction of heat from Community boilers

| 1 ( | 303a) |
|-----|-------|
|-----|-------|

| Fraction of total space heat from Community boilers                                                                                | (302) x (303a) =                             |                  | 1                 | (304a)     |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-------------------|------------|
| Factor for control and charging method (Table 4c(3)) for commun                                                                    | ity heating system                           |                  | 1                 | ]<br>(305) |
| Distribution loss factor (Table 12c) for community heating system                                                                  | , , , , , , , , , , , , , , , , , , , ,      |                  | 1.05              | (306)      |
| Space heating                                                                                                                      |                                              |                  | kWh/year          | J          |
| Annual space heating requirement                                                                                                   |                                              | 2                | 16712.73          | ]          |
| Space heat from Community boilers                                                                                                  | (98) x (304a) x (305) x (306) =              | 4                | 19048.37          | (307a)     |
| Efficiency of secondary/supplementary heating system in % (from                                                                    | Table 4a or Appendix E)                      |                  | 0                 | (308       |
| Space heating requirement from secondary/supplementary system                                                                      | n (98) x (301) x 100 ÷ (308) =               |                  | 0                 | (309)      |
| Water heating<br>Annual water heating requirement                                                                                  |                                              |                  | 2333.53           | ]          |
| If DHW from community scheme:<br>Water heat from Community boilers                                                                 | (64) x (303a) x (305) x (306) =              |                  | 2450.21           | (310a)     |
| Electricity used for heat distribution                                                                                             | 0.01 × [(307a)(307e) + (310a)(310e           | e)] =            | 514.99            | (313)      |
| Cooling System Energy Efficiency Ratio                                                                                             |                                              |                  | 0                 | (314)      |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                                 | = (107) ÷ (314) =                            |                  | 0                 | (315)      |
| Electricity for pumps and fans within dwelling (Table 4f):<br>mechanical ventilation - balanced, extract or positive input from or | utside                                       |                  | 0                 | (330a)     |
| warm air heating system fans                                                                                                       |                                              |                  | 0                 | (330b)     |
| pump for solar water heating                                                                                                       |                                              |                  | 0                 | (330g)     |
| Total electricity for the above, kWh/year                                                                                          | =(330a) + (330b) + (330g) =                  |                  | 0                 | (331)      |
| Energy for lighting (calculated in Appendix L)                                                                                     |                                              |                  | 739.27            | (332)      |
| 12b. CO2 Emissions – Community heating scheme                                                                                      |                                              |                  |                   |            |
|                                                                                                                                    | Energy Emission fac<br>kWh/year kg CO2/kWh   | tor Emis<br>kg C | ssions<br>02/year |            |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t             | wo fuels repeat (363) to (366) for the secon | d fuel           | 90                | (367a)     |
| CO2 associated with heat source 1 [(307b)+(3                                                                                       | 10b)] x 100 ÷ (367b) x 0                     | =                | 12359.66          | (367)      |
| Electrical energy for heat distribution [(3                                                                                        | 13) x 0.52                                   | =                | 267.28            | (372)      |
| Total CO2 associated with community systems (3)                                                                                    | 63)(366) + (368)(372)                        | =                | 12626.94          | (373)      |
| CO2 associated with space heating (secondary) (3                                                                                   | 09) x 0                                      | =                | 0                 | (374)      |
| CO2 associated with water from immersion heater or instantaneo                                                                     | us heater (312) x 0.22                       | =                | 0                 | (375)      |
| Total CO2 associated with space and water heating (3                                                                               | 73) + (374) + (375) =                        |                  | 12626.94          | (376)      |
| CO2 associated with electricity for pumps and fans within dwelling                                                                 | <b>J</b> (331)) x 0.52                       | =                | 0                 | (378)      |
| CO2 associated with electricity for lighting (3                                                                                    | 32))) x 0.52                                 | =                | 383.68            | (379)      |
| Total CO2, kg/year sum of (376)(382) =                                                                                             |                                              |                  | 13010.62          | (383)      |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                           |                                              |                  | 52.67             | (384)      |
| El rating (section 14)                                                                                                             |                                              |                  | 43.35             | (385)      |

|                                                             |                                                                                                                                                                                                                            | l                        | User D     | etails:                |                      |                  |                       |              |                                      |                   |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------------------|----------------------|------------------|-----------------------|--------------|--------------------------------------|-------------------|--|--|
| Assessor Name:<br>Software Name:                            | Ssessor Name:     Stroma Number:       oftware Name:     Stroma FSAP 2012     Software Version:     Version       Property Address:     Unit 7                                                                             |                          |            |                        |                      |                  |                       |              |                                      |                   |  |  |
|                                                             | london                                                                                                                                                                                                                     | PIC                      | репу ғ     | Address:               | Unit 7               |                  |                       |              |                                      |                   |  |  |
| 1 Overall dwelling dimen                                    | sions:                                                                                                                                                                                                                     |                          |            |                        |                      |                  |                       |              |                                      |                   |  |  |
| Basement                                                    |                                                                                                                                                                                                                            |                          | Area       | 1 <b>(m²)</b><br>82    | (1a) x               | <b>Av. He</b>    | <b>ight(m)</b><br>.05 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>250.1 | <b>)</b><br>(3a)  |  |  |
| Total floor area TFA = (1a)                                 | )+(1b)+(1c)+(1d)+(1e                                                                                                                                                                                                       | e)+(1n)                  |            | 82                     | (4)                  |                  |                       |              |                                      |                   |  |  |
| Dwelling volume                                             |                                                                                                                                                                                                                            |                          |            |                        | (3a)+(3b)            | +(3c)+(3c        | l)+(3e)+              | .(3n) =      | 250.1                                | (5)               |  |  |
| 2. Ventilation rate:                                        |                                                                                                                                                                                                                            |                          |            |                        |                      |                  |                       |              |                                      |                   |  |  |
| Number of chimneys<br>Number of open flues                  | $\begin{array}{c c} main & s \\ heating & l \\ \hline 0 & + \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$                                                                                                         | econdary<br>neating<br>0 | +          | 0<br>0<br>0            | ] = [                | <b>total</b> 0 0 | x 2                   | 40 =<br>20 = | m <sup>3</sup> per hou               | r<br>(6a)<br>(6b) |  |  |
| Number of intermittent fan                                  | S                                                                                                                                                                                                                          |                          |            |                        |                      | 2                | X ´                   | 0 =          | 20                                   | (7a)              |  |  |
| Number of passive vents                                     |                                                                                                                                                                                                                            |                          |            |                        |                      | 0                | x ′                   | 10 =         | 0                                    | (7b)              |  |  |
| Number of flueless gas fire                                 | es                                                                                                                                                                                                                         |                          |            |                        |                      | 0                | X 4                   | 40 =         | 0                                    | (7c)              |  |  |
|                                                             |                                                                                                                                                                                                                            |                          |            |                        |                      |                  |                       | Air ch       | anges per ho                         | our               |  |  |
| Infiltration due to chimneys                                | Air channel filtration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 20 \div (5) = $<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) |                          |            |                        |                      |                  |                       |              |                                      |                   |  |  |
| Number of storeys in the<br>Additional infiltration         | e dw <mark>elling</mark> (ns)                                                                                                                                                                                              | frame or 0               | 25 for     | maconr                 | v constr             | uction           | [(9)                  | -1]x0.1 =    | 0                                    | (9)<br>(10)       |  |  |
| if both types of wall are pre<br>deducting areas of opening | sent, use the value corres<br>sent, if equal user 0.35                                                                                                                                                                     | sponding to the          | he greate  | masoni<br>er wall area | y constr<br>a (after | ucuon            |                       |              | 0                                    | (11)              |  |  |
| If suspended wooden flo                                     | oor, enter 0.2 (unsea                                                                                                                                                                                                      | led) or 0.1              | (seale     | d), else               | enter 0              |                  |                       |              | 0                                    | (12)              |  |  |
| If no draught lobby, ente                                   | er 0.05, else enter 0                                                                                                                                                                                                      |                          |            |                        |                      |                  |                       |              | 0                                    | (13)              |  |  |
| Percentage of windows                                       | and doors draught s                                                                                                                                                                                                        | tripped                  |            | 0 25 - [0 2            | v(14) - 1            | 001 -            |                       |              | 0                                    | (14)              |  |  |
|                                                             |                                                                                                                                                                                                                            |                          |            | (8) + (10) -           | ~ (14) ÷ 1           | 2) + (13) -      | + (15) -              |              | 0                                    | (15)              |  |  |
|                                                             | 50 expressed in cut                                                                                                                                                                                                        | nic metres               | ner ho     |                        |                      | etre of e        | nvelone               | area         | 0                                    |                   |  |  |
| If based on air permeabilit                                 | v value, then $(18) = [(1)$                                                                                                                                                                                                | 7) ÷ 20]+(8),            | , otherwis | se(18) = (18)          | 16)                  |                  | invelope              | arca         | 0.58                                 |                   |  |  |
| Air permeability value applies                              | if a pressurisation test ha                                                                                                                                                                                                | s been done              | or a deg   | ree air per            | meability i          | is being u       | sed                   |              | 0.00                                 |                   |  |  |
| Number of sides sheltered                                   |                                                                                                                                                                                                                            |                          |            |                        |                      |                  |                       |              | 2                                    | (19)              |  |  |
| Shelter factor                                              |                                                                                                                                                                                                                            |                          | (          | (20) = 1 - [           | 0.075 x (1           | 9)] =            |                       |              | 0.85                                 | (20)              |  |  |
| Infiltration rate incorporatir                              | ng shelter factor                                                                                                                                                                                                          |                          | (          | (21) = (18)            | x (20) =             |                  |                       |              | 0.49                                 | (21)              |  |  |
| Infiltration rate modified for                              | r monthly wind spee                                                                                                                                                                                                        | d                        |            |                        |                      |                  |                       |              |                                      |                   |  |  |
| Jan Feb M                                                   | /lar Apr May                                                                                                                                                                                                               | Jun                      | Jul        | Aug                    | Sep                  | Oct              | Nov                   | Dec          |                                      |                   |  |  |
| Monthly average wind spe                                    | ed from Table 7                                                                                                                                                                                                            |                          |            |                        |                      |                  |                       |              |                                      |                   |  |  |
| (22)m= 5.1 5 4                                              | .9 4.4 4.3                                                                                                                                                                                                                 | 3.8                      | 3.8        | 3.7                    | 4                    | 4.3              | 4.5                   | 4.7          |                                      |                   |  |  |
| Wind Factor (22a)m = (22)                                   | )m ÷ 4                                                                                                                                                                                                                     |                          |            |                        |                      |                  |                       | <b>I</b>     |                                      |                   |  |  |
| (22a)m= 1.27 1.25 1.                                        | 23 1.1 1.08                                                                                                                                                                                                                | 0.95                     | 0.95       | 0.92                   | 1                    | 1.08             | 1.12                  | 1.18         |                                      |                   |  |  |

| Adjusted           | d infiltrat | tion rate      | e (allowir          | ng for sh   | elter an   | nd wind s      | speed) =       | = (21a) x     | (22a)m                    |                |                       |                           |               |               |
|--------------------|-------------|----------------|---------------------|-------------|------------|----------------|----------------|---------------|---------------------------|----------------|-----------------------|---------------------------|---------------|---------------|
|                    | 0.63        | 0.62           | 0.6                 | 0.54        | 0.53       | 0.47           | 0.47           | 0.46          | 0.49                      | 0.53           | 0.55                  | 0.58                      | ]             |               |
| Calculat           | e effect    | ive air c      | change r            | ate for t   | he appli   | cable ca       | ise            |               |                           |                |                       |                           |               | (220)         |
| lf exhau           | ist air hea | t pump u       | lion.<br>Ising Anne | ndix N (2   | 3b) = (23; | a) x Emv (e    | equation (     | N5)) othe     | erwise (23h               | (23a) = (23a)  |                       |                           | 0             | (234)         |
| lf balan           | ced with h  | neat reco      | verv: effici        | encv in %   | allowing f | for in-use f   | factor (fro    | m Table 4h    | n) =                      | ) = (200)      |                       |                           | 0             | (230)         |
| a) If b            |             | moobo          |                     |             | with ho    | ot room        |                |               | n)m - (2                  | 2h)m i (       | 226) v [              | 1 (220)                   |               | (230)         |
| (24a)m-            |             |                |                     |             |            |                |                |               | a = (2                    | $\frac{20}{1}$ |                       | $\frac{1 - (230)}{1 - 0}$ | ] - 100j<br>] | (24a)         |
| (2-10)<br>b) If b: |             | mocha          |                     | ntilation   | without    |                |                |               | $\int_{-\infty}^{\infty}$ | 2b)m (         | 22h)                  | Ů                         | ]             | ()            |
| (24b)m-            |             |                |                     |             | without    |                |                | 101 V) (241   | $\frac{1}{1}$             | $\frac{20}{1}$ | 230)                  | 0                         | 1             | (24b)         |
|                    |             |                |                     | tilation    |            |                | Vontilati      | on from       |                           | Ů              | Ů                     | <u> </u>                  | ]             | (=)           |
| c) n w             | (22b)m      | $< 0.5 \times$ | (23b), th           | nen (240    | r = (23t)  | b): other      | wise (24       | lc) = (22)    | b) m + 0                  | .5 x (23h      | ))                    |                           |               |               |
| (24c)m=            | 0           | 0              | 0                   | 0           | 0          | 0              | 0              | 0             | 0                         | 0              | 0                     | 0                         | ]             | (24c)         |
| d) If n            | atural ve   | entilatio      | n or who            | ole hous    | e positi   | ve input       | ı<br>ventilati | on from       | loft                      | <u>I</u>       |                       |                           | 1             |               |
| if                 | (22b)m      | = 1, the       | en (24d)r           | n = (22k)   | o)m othe   | erwise (2      | 24d)m =        | 0.5 + [(2     | 22b)m² x                  | 0.5]           |                       |                           |               |               |
| (24d)m=            | 0.7         | 0.69           | 0.68                | 0.65        | 0.64       | 0.61           | 0.61           | 0.6           | 0.62                      | 0.64           | 0.65                  | 0.67                      | ]             | (24d)         |
| Effecti            | ive air c   | hange          | rate - en           | ter (24a    | ) or (24l  | o) or (24      | c) or (24      | 4d) in bo     | x (25)                    |                |                       |                           |               |               |
| (25)m=             | 0.7         | 0.69           | 0.68                | 0.65        | 0.64       | 0.61           | 0.61           | 0.6           | 0.62                      | 0.64           | 0.65                  | 0.67                      |               | (25)          |
| 3 Heat             | OSSAS       | and he         | at loss n           | aramete     | ٥r.        |                |                |               |                           |                |                       |                           |               | _             |
| ELEME              | NT          | Gros<br>area   | s<br>(m²)           | Openin<br>m | gs<br>2    | Net Ar<br>A .r | rea<br>m²      | U-val<br>W/m2 | ue<br>2K                  | A X U<br>(W/   | K)                    | k-value<br>kJ/m²·         | ə<br>K        | A X k<br>kJ/K |
| Doors T            | ype 1       |                | Ì                   |             |            | 1.8            | ×              | 3             | =                         | 5.4            | ,                     |                           |               | (26)          |
| Doors T            | vpe 2       |                |                     |             |            | 16             |                | 14            | =                         | 2 24           | Ħ                     |                           |               | (26)          |
| Window             | s Type      | 1              |                     |             |            | 5.56           |                | 1/[1/( 4.8 )+ | + 0.04] =                 | 22.39          | Ħ                     |                           |               | (27)          |
| Windows            | s Type 2    | 2              |                     |             |            | 4              |                | 1/[1/( 4.8 )+ | + 0.04] =                 | 16 11          | H                     |                           |               | (27)          |
| Windows            | s Type (    | 3              |                     |             |            | 1 21           | ×              | 1/[1/( 4.8 )+ | + 0.04] =                 | 4 87           | =                     |                           |               | (27)          |
| Floor              | - 71 -      | _              |                     |             |            | 82             |                | 1 25          |                           | 102.5          | ı ۲                   |                           |               | (28)          |
| Walls Ty           | ne1         | 70.9           | 5                   | 12.5        | 7          | 67.20          |                | 2.1           |                           | 1/1 20         |                       |                           | ᅴ             | (29)          |
| Walls Ty           | /ne2        | 20.2           | 2                   | 12.0        |            | 19.63          |                | 2.1           | $\exists$                 | 20.42          |                       |                           | ᅴ             | (20)          |
| Roof               | ,poz        | 20.2           | 3                   | 1.0         |            | 10.03          | <u> </u>       |               |                           | 59.12          | ╡╏                    |                           | ╡ ┝           | (20)          |
| Total are          | a of ele    | ments          | /<br>m²             | 0           |            | 201.9          | <u>^</u> ^     | 0.20          |                           | 5.54           | L                     |                           |               | (31)          |
| Dorty wa           |             | incino,        |                     |             |            | 201.0          |                |               |                           |                | —                     |                           | —             | (31)          |
| Party wa           | 211<br>211  |                |                     |             |            | 16.8           |                | 0             | =                         | 0              | ╡╏                    |                           | $\dashv$      | (32)          |
| * for windo        | ows and ro  | oof windo      | ows, use el         | fective wi  | ndow U-va  | alue calcul    | lated usin     | g formula     | =<br>1/[(1/U-valu         | ue)+0.04] a    | as given in           | paragraph                 | ∟<br>h 3.2    | (32)          |
| Fabric b           | eat loss    | \\//K -        |                     |             | s anu par  | uuons          |                | (26)(30       | )) + (32) =               |                |                       |                           | 220           | 46 (33)       |
| Heat car           | pacity C    | m = S0         | Axk)                | -,          |            |                |                |               | ((28)                     | (30) + (3)     | (32a)                 | (32e) =                   |               | (34)          |
| Thermal            | mass        | arame          | ter (TMP            | ' = Cm -    | - TFA) ir  | ר k.l/m²k      |                |               | Indica                    | ative Value    | -, . (020).<br>: High | (020) -                   |               | (34)          |
| For desiar         | assessm     | nents whe      | ere the det         | ails of the | construct  | tion are not   | t known n      | reciselv th   | e indicative              | e values of    | TMP in T              | able 1f                   | 450           | J(33)         |
| can be use         | ed instead  | l of a det     | ailed calcu         | lation.     |            |                | P              |               |                           |                |                       |                           |               |               |
| Thermal            | bridges     | s : S (L       | x Y) calo           | culated u   | using Ap   | opendix I      | K              |               |                           |                |                       |                           | 18.           | 4 (36)        |

if details of thermal bridging are not known  $(36) = 0.15 \times (31)$ 

| Total fa         | abric hea             | at loss                    |                      |                           |                         |                         |                     |                                                                                             | (33) +                | (36) =                    |                                       |             | 357.86  | (37) |
|------------------|-----------------------|----------------------------|----------------------|---------------------------|-------------------------|-------------------------|---------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------|---------------------------------------|-------------|---------|------|
| Ventila          | tion hea              | t loss ca                  | alculated            | monthly                   | /                       |                         |                     |                                                                                             | (38)m                 | = 0.33 × (                | 25)m x (5)                            |             |         |      |
|                  | Jan                   | Feb                        | Mar                  | Apr                       | May                     | Jun                     | Jul                 | Aug                                                                                         | Sep                   | Oct                       | Nov                                   | Dec         |         |      |
| (38)m=           | 57.57                 | 56.94                      | 56.32                | 53.4                      | 52.86                   | 50.32                   | 50.32               | 49.85                                                                                       | 51.3                  | 52.86                     | 53.96                                 | 55.11       |         | (38) |
| Heat tr          | ansfer c              | oefficier                  | nt, W/K              |                           |                         |                         |                     |                                                                                             | (39)m                 | = (37) + (3               | 38)m                                  |             | _       |      |
| (39)m=           | 415.43                | 414.79                     | 414.17               | 411.26                    | 410.71                  | 408.17                  | 408.17              | 407.7                                                                                       | 409.15                | 410.71                    | 411.81                                | 412.97      |         |      |
| Heat lo          | ss para               | meter (H                   | ILP), W/             | ′m²K                      |                         |                         |                     |                                                                                             | (40)m                 | Average =<br>= (39)m ÷    | Sum(39) <sub>1.</sub>                 | 12 /12=     | 411.25  | (39) |
| (40)m=           | 5.07                  | 5.06                       | 5.05                 | 5.02                      | 5.01                    | 4.98                    | 4.98                | 4.97                                                                                        | 4.99                  | 5.01                      | 5.02                                  | 5.04        | ]       |      |
| Numbe            | un of dov             | in mor                     | oth (Toh             |                           |                         |                         |                     |                                                                                             | ,                     | Average =                 | Sum(40) <sub>1</sub> .                | 12 /12=     | 5.02    | (40) |
| NUMDE            | Jan                   | Feb                        | Mar                  | Apr                       | May                     | Jun                     | Jul                 | Aug                                                                                         | Sep                   | Oct                       | Nov                                   | Dec         | ]       |      |
| (41)m=           | 31                    | 28                         | 31                   | 30                        | 31                      | 30                      | 31                  | 31                                                                                          | 30                    | 31                        | 30                                    | 31          |         | (41) |
| ļ                |                       |                            |                      |                           |                         |                         |                     |                                                                                             |                       |                           |                                       |             | 1       |      |
| 4. Wa            | ter heat              | ing ener                   | gy requi             | rement:                   |                         |                         |                     |                                                                                             |                       |                           |                                       | kWh/ye      | ear:    |      |
| Assum            |                       | nancy I                    | N.                   |                           |                         |                         |                     |                                                                                             |                       |                           |                                       | _           | 1       | (40) |
| if TF            | A > 13.9              | 9, N = 1                   | <b>ҹ</b><br>+ 1.76 х | [1 - exp                  | (-0.0003                | 849 x (TF               | A -13.9             | )2)] + 0.0                                                                                  | )013 x ( <sup>-</sup> | TFA -13.                  | 9) <u>2</u>                           | .5          | J       | (42) |
| if TF            | A £ 13.9              | 9, N = 1                   |                      |                           |                         |                         |                     |                                                                                             |                       |                           |                                       |             |         |      |
| Annual<br>Reduce | averag                | e hot wa<br>l average      | ater usac            | ge in litre<br>usage by : | s per da<br>5% if the a | iy Vd,av<br>welling is  | erage =<br>designed | (25 x N)<br>to achieve                                                                      | + 36<br>a water us    | se target o               | 93 g                                  | .57         |         | (43) |
| not more         | e that 125            | litres per p               | person per           | day (all w                | ater use, l             | not and co              | ld)                 |                                                                                             |                       | <u> </u>                  |                                       |             |         |      |
|                  | Jan                   | Feb                        | Mar                  | Apr                       | May                     | Jun                     | Jul                 | Aug                                                                                         | Sep                   | Oct                       | Nov                                   | Dec         |         |      |
| Hot wate         | er usage ir           | n litres p <mark>er</mark> | day for ea           | ach month                 | Vd,m = fa               | ctor from T             | Table 1c x          | (43)                                                                                        |                       |                           |                                       |             | ,       |      |
| (44)m=           | 1 <mark>0</mark> 2.93 | 99.18                      | <mark>9</mark> 5.44  | 91.7                      | 87.95                   | 84.21                   | 84.21               | 87.95                                                                                       | 91.7                  | 95.44                     | 99.18                                 | 102.93      |         |      |
| Energy o         | content of            | hot water                  | used - cal           | culated mo                | onthly $= 4$ .          | 190 x Vd,r              | n x nm x D          | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | -<br>kWh/mor          | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | =<br>c, 1d) | 1122.82 | (44) |
| (45)m=           | 152.63                | 133.5                      | 137.76               | 120.1                     | 115.24                  | 99.44                   | 92.15               | 105.74                                                                                      | 107                   | 124.7                     | 136.12                                | 147.82      |         |      |
|                  |                       |                            |                      |                           |                         |                         |                     | 1 1                                                                                         |                       | I<br>Total = Su           | m(45) <sub>112</sub> =                |             | 1472.19 | (45) |
| lf instant       | aneous w              | ater heatii                | ng at point          | of use (no                | hot water               | storage),               | enter 0 in          | boxes (46)                                                                                  | ) to (61)             | -                         | -                                     |             |         |      |
| (46)m=           | 22.9                  | 20.02                      | 20.66                | 18.01                     | 17.29                   | 14.92                   | 13.82               | 15.86                                                                                       | 16.05                 | 18.71                     | 20.42                                 | 22.17       |         | (46) |
| Storag           | storage<br>e volum    | ioss.<br>e (litres)        | includin             | na anv so                 | olar or M               | /WHRS                   | storage             | within sa                                                                                   | ame ves               | sel                       |                                       | 160         | 1       | (47) |
| If comr          | nunity h              | eating a                   | nd no ta             | nk in dw                  | ellina e                | nter 110                | litres in           | (47)                                                                                        |                       | 001                       |                                       | 100         | ]       | (-1) |
| Otherw           | ise if no             | stored                     | hot wate             | er (this in               | cludes i                | nstantar                | neous co            | ombi boile                                                                                  | ers) ente             | er '0' in (               | 47)                                   |             |         |      |
| Water            | storage               | loss:                      |                      |                           |                         |                         |                     |                                                                                             |                       |                           |                                       |             | _       |      |
| a) If m          | anufact               | urer's de                  | eclared l            | oss facto                 | or is kno               | wn (kWł                 | n/day):             |                                                                                             |                       |                           |                                       | 0           |         | (48) |
| Tempe            | rature fa             | actor fro                  | m Table              | 2b                        |                         |                         |                     |                                                                                             |                       |                           |                                       | 0           |         | (49) |
| Energy           | lost fro              | m water                    | storage              | , kWh/ye                  | ear                     |                         | 1                   | (48) x (49)                                                                                 | =                     |                           | 1                                     | 10          |         | (50) |
| Hot wa           | anufacti<br>ter stora | urer's de<br>age loss      | factor fr            | om Tabl                   | oss facto<br>e 2 (kW    | or is not<br>h/litre/da | known:<br>v)        |                                                                                             |                       |                           | 0                                     | 02          | 1       | (51) |
| If comr          | nunity h              | eating s                   | ee secti             | on 4.3                    | (                       |                         | <i>.</i> ,          |                                                                                             |                       |                           | 0.                                    | 02          | 1       | (0.) |
| Volum            | e factor              | from Tal                   | ble 2a               |                           |                         |                         |                     |                                                                                             |                       |                           | 1.                                    | 03          | ]       | (52) |
| Tempe            | rature fa             | actor fro                  | m Table              | 2b                        |                         |                         |                     |                                                                                             |                       |                           | 0                                     | .6          |         | (53) |
| Energy           | lost fro              | m water                    | storage              | , kWh/ye                  | ear                     |                         |                     | (47) x (51)                                                                                 | x (52) x (            | 53) =                     | 1.                                    | 03          |         | (54) |
| Enter            | (50) or (             | 54) in (5                  | 5)                   |                           |                         |                         |                     |                                                                                             |                       |                           | 1.                                    | 03          | J       | (55) |

| Water                                                           | storage                                                            | loss cal                                                           | culated                                              | for each                                    | month                                      |                                                  |                                             | ((56)m = (                                  | (55) × (41)                                   | m                                            |                                              |                                  |               |                                                               |
|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|---------------|---------------------------------------------------------------|
| (56)m=                                                          | 32.01                                                              | 28.92                                                              | 32.01                                                | 30.98                                       | 32.01                                      | 30.98                                            | 32.01                                       | 32.01                                       | 30.98                                         | 32.01                                        | 30.98                                        | 32.01                            |               | (56)                                                          |
| If cylind                                                       | er contain                                                         | s dedicate                                                         | d solar sto                                          | rage, (57)                                  | m = (56)m                                  | x [(50) – (                                      | H11)] ÷ (5                                  | 0), else (5                                 | 7)m = (56)                                    | m where (                                    | H11) is fro                                  | m Append                         | ix H          |                                                               |
| (57)m=                                                          | 32.01                                                              | 28.92                                                              | 32.01                                                | 30.98                                       | 32.01                                      | 30.98                                            | 32.01                                       | 32.01                                       | 30.98                                         | 32.01                                        | 30.98                                        | 32.01                            |               | (57)                                                          |
| Prima                                                           | ry circuit                                                         | loss (ar                                                           | nual) fro                                            | om Table                                    | 93                                         |                                                  |                                             |                                             |                                               |                                              |                                              | 0                                |               | (58)                                                          |
| Prima                                                           | ry circuit                                                         | loss cal                                                           | culated                                              | for each                                    | month (                                    | 59)m = (                                         | (58) ÷ 36                                   | 65 × (41)                                   | m                                             |                                              |                                              |                                  |               |                                                               |
| (mo                                                             | dified by                                                          | factor f                                                           | rom Tab                                              | le H5 if t                                  | here is s                                  | solar wat                                        | er heatii                                   | ng and a                                    | a cylinde                                     | r thermo                                     | stat)                                        | -                                |               |                                                               |
| (59)m=                                                          | 23.26                                                              | 21.01                                                              | 23.26                                                | 22.51                                       | 23.26                                      | 22.51                                            | 23.26                                       | 23.26                                       | 22.51                                         | 23.26                                        | 22.51                                        | 23.26                            |               | (59)                                                          |
| Combi                                                           | i loss ca                                                          | lculated                                                           | for each                                             | month                                       | (61)m =                                    | (60) ÷ 30                                        | 65 × (41)                                   | )m                                          |                                               |                                              |                                              |                                  |               |                                                               |
| (61)m=                                                          | 0                                                                  | 0                                                                  | 0                                                    | 0                                           | 0                                          | 0                                                | 0                                           | 0                                           | 0                                             | 0                                            | 0                                            | 0                                |               | (61)                                                          |
| Total h                                                         | neat req                                                           | uired for                                                          | water h                                              | eating ca                                   | alculated                                  | for eac                                          | h month                                     | (62)m =                                     | 0.85 × (                                      | (45)m +                                      | (46)m +                                      | (57)m +                          | (59)m + (61)m |                                                               |
| (62)m=                                                          | 207.91                                                             | 183.42                                                             | 193.03                                               | 173.59                                      | 170.51                                     | 152.93                                           | 147.42                                      | 161.02                                      | 160.5                                         | 179.98                                       | 189.61                                       | 203.1                            |               | (62)                                                          |
| Solar D                                                         | HW input                                                           | calculated                                                         | using App                                            | endix G o                                   | Appendix                                   | H (negati                                        | ve quantity                                 | /) (enter '0                                | ' if no sola                                  | r contribut                                  | ion to wate                                  | er heating)                      |               |                                                               |
| (add a                                                          | dditiona                                                           | l lines if                                                         | FGHRS                                                | and/or \                                    | WWHRS                                      | applies                                          | , see Ap                                    | pendix (                                    | G)                                            |                                              |                                              |                                  |               |                                                               |
| (63)m=                                                          | 0                                                                  | 0                                                                  | 0                                                    | 0                                           | 0                                          | 0                                                | 0                                           | 0                                           | 0                                             | 0                                            | 0                                            | 0                                |               | (63)                                                          |
| Outpu                                                           | t from w                                                           | ater hea                                                           | ter                                                  |                                             |                                            |                                                  |                                             |                                             |                                               |                                              |                                              |                                  |               |                                                               |
| (64)m=                                                          | 207.91                                                             | 183.42                                                             | 193.03                                               | 173.59                                      | 170.51                                     | 152.93                                           | 147.42                                      | 161.02                                      | 160.5                                         | 179.98                                       | 189.61                                       | 203.1                            |               | -                                                             |
|                                                                 |                                                                    |                                                                    |                                                      |                                             |                                            |                                                  |                                             | Outp                                        | out from wa                                   | ater heate                                   | r (annual)₁                                  | 12                               | 2123.03       | (64)                                                          |
| Heat g                                                          | jains fro                                                          | m water                                                            | heating                                              | , kWh/m                                     | onth 0.2                                   | 5 ´ [0.85                                        | × (45)m                                     | ı + (61)n                                   | n] + 0.8 >                                    | ( <mark>46)m</mark>                          | + (57)m                                      | + (59)m                          | ]             |                                                               |
| (65)m=                                                          | 69.36                                                              | 61.2                                                               | 64.41                                                | 57.94                                       | 56.93                                      | 51.07                                            | 49.25                                       | 53.77                                       | 53.59                                         | 60.07                                        | 63.27                                        | 67.76                            |               | (65)                                                          |
| inclu                                                           | ude (57)                                                           | m in calo                                                          | culation                                             | of (65)m                                    | only if c                                  | ylinder i                                        | s in the o                                  | dwelling                                    | or hot w                                      | ate <mark>r is fr</mark>                     | om com                                       | <mark>mu</mark> nity h           | eating        |                                                               |
| 5. In                                                           | ternal ga                                                          | ains (see                                                          | Table {                                              | 5 and 5a                                    | ):                                         |                                                  |                                             |                                             |                                               |                                              |                                              |                                  |               |                                                               |
| Metab                                                           | olic gair                                                          | ns (Table                                                          | 5), Wat                                              | ts                                          |                                            |                                                  |                                             |                                             |                                               |                                              |                                              |                                  |               |                                                               |
|                                                                 | Jan                                                                | Feb                                                                | Mar                                                  | Apr                                         | May                                        | Jun                                              | Jul                                         | Aug                                         | Sep                                           | Oct                                          | Nov                                          | Dec                              |               |                                                               |
| (66)m=                                                          | 124.99                                                             | 124.99                                                             | 124.99                                               | 124.99                                      | 124.99                                     | 124.99                                           | 124.99                                      | 124.99                                      | 124.99                                        | 124.99                                       | 124.99                                       | 124.99                           |               | (66)                                                          |
| Lightir                                                         | ig gains                                                           | (calcula                                                           | ted in Ap                                            | opendix                                     | L, equat                                   | ion L9 o                                         | r L9a), a                                   | lso see                                     | Table 5                                       |                                              |                                              |                                  |               |                                                               |
| (67)m=                                                          | 21.14                                                              | 18.77                                                              | 15.27                                                | 11.56                                       | 8.64                                       | 7.29                                             | 7.88                                        | 10.24                                       | 13.75                                         | 17.46                                        | 20.38                                        | 21.72                            |               | (67)                                                          |
| Applia                                                          | nces ga                                                            | ins (calc                                                          | ulated ir                                            | n Append                                    | dix L, eq                                  | uation L                                         | 13 or L1                                    | 3a), also                                   | see Ta                                        | ble 5                                        | i                                            | i                                |               |                                                               |
| (68)m=                                                          | 223.57                                                             | 225.89                                                             | 220.04                                               | 207.6                                       | 191.89                                     | 177.12                                           | 167.26                                      | 164.94                                      | 170.78                                        | 183.23                                       | 198.94                                       | 213.71                           |               | (68)                                                          |
| Cookir                                                          | ng gains                                                           | (calcula                                                           | ted in A                                             | ppendix                                     | L, equat                                   | tion L15                                         | or L15a)                                    | ), also se                                  | ee Table                                      | 5                                            | -                                            |                                  |               |                                                               |
| (69)m=                                                          | 35.5                                                               | 35.5                                                               | 35.5                                                 | 35.5                                        | 35.5                                       | 35.5                                             | 35.5                                        | 35.5                                        | 35.5                                          | 35.5                                         | 35.5                                         | 35.5                             |               | (69)                                                          |
| Pumps                                                           | s and fa                                                           | ns gains                                                           | (Table \$                                            | 5a)                                         |                                            |                                                  |                                             |                                             |                                               |                                              |                                              |                                  |               |                                                               |
| (70)m=                                                          |                                                                    |                                                                    |                                                      |                                             |                                            |                                                  |                                             | -                                           | -                                             | -                                            |                                              |                                  |               | (70)                                                          |
|                                                                 | 0                                                                  | 0                                                                  | 0                                                    | 0                                           | 0                                          | 0                                                | 0                                           | 0                                           | 0                                             | 0                                            | 0                                            | 0                                |               | (70)                                                          |
| Losse                                                           | 0<br>s e.g. ev                                                     | 0<br>vaporatic                                                     | 0<br>n (nega                                         | 0<br>tive valu                              | 0<br>es) (Tab                              | 0<br>ole 5)                                      | 0                                           | 0                                           | 0                                             | 0                                            | 0                                            | 0                                |               | (70)                                                          |
| Losse:<br>(71)m=                                                | 0<br>s e.g. ev<br>-99.99                                           | 0<br>vaporatic<br>-99.99                                           | 0<br>n (nega<br>-99.99                               | 0<br>tive valu<br>-99.99                    | 0<br>es) (Tab<br>-99.99                    | 0<br>ole 5)<br>-99.99                            | 0<br>-99.99                                 | 0<br>-99.99                                 | 0<br>-99.99                                   | 0<br>-99.99                                  | 0<br>-99.99                                  | 0<br>-99.99                      |               | (70)                                                          |
| Losses<br>(71)m=<br>Water                                       | 0<br>s e.g. ev<br>-99.99<br>heating                                | 0<br>vaporatic<br>-99.99<br>gains (T                               | 0<br>n (nega<br>-99.99<br>able 5)                    | 0<br>tive valu<br>-99.99                    | 0<br>es) (Tab<br>-99.99                    | 0<br>ole 5)<br>-99.99                            | 0<br>-99.99                                 | 0<br>-99.99                                 | 0<br>-99.99                                   | 0<br>-99.99                                  | 0<br>-99.99                                  | 0<br>-99.99                      |               | (70)                                                          |
| Losse:<br>(71)m=<br>Water<br>(72)m=                             | 0<br>s e.g. ev<br>-99.99<br>heating<br>93.23                       | 0<br>/aporatic<br>-99.99<br>gains (T<br>91.07                      | 0<br>n (nega<br>-99.99<br>āble 5)<br>86.58           | 0<br>tive valu<br>-99.99<br>80.48           | 0<br>es) (Tab<br>-99.99<br>76.51           | 0<br>ole 5)<br>-99.99<br>70.94                   | 0<br>-99.99<br>66.19                        | 0<br>-99.99<br>72.27                        | 0<br>-99.99<br>74.43                          | 0<br>-99.99<br>80.74                         | 0<br>-99.99<br>87.87                         | 0<br>-99.99<br>91.07             |               | (70)<br>(71)<br>(72)                                          |
| Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i           | 0<br>s e.g. ev<br>-99.99<br>heating<br>93.23<br>internal           | 0<br>/aporatic<br>-99.99<br>gains (T<br>91.07<br>gains =           | 0<br>n (nega<br>-99.99<br>āble 5)<br>86.58           | 0<br>tive valu<br>-99.99<br>80.48           | 0<br>es) (Tab<br>-99.99<br>76.51           | 0<br>ble 5)<br>-99.99<br>70.94<br>(66)           | 0<br>-99.99<br>66.19<br>m + (67)m           | 0<br>-99.99<br>72.27<br>n + (68)m -         | 0<br>-99.99<br>74.43<br>+ (69)m + (           | 0<br>-99.99<br>80.74<br>(70)m + (7           | 0<br>-99.99<br>87.87<br>1)m + (72)           | 0<br>-99.99<br>91.07<br>m        |               | (70)<br>(71)<br>(72)                                          |
| Losses<br>(71)m=<br>Water<br>(72)m=<br><b>Total</b> i<br>(73)m= | 0<br>s e.g. ev<br>-99.99<br>heating<br>93.23<br>internal<br>398.43 | 0<br>/aporatic<br>-99.99<br>gains (T<br>91.07<br>gains =<br>396.22 | 0<br>n (nega<br>-99.99<br>āble 5)<br>86.58<br>382.38 | 0<br>tive valu<br>-99.99<br>80.48<br>360.13 | 0<br>es) (Tab<br>-99.99<br>76.51<br>337.54 | 0<br>ole 5)<br>-99.99<br>70.94<br>(66)<br>315.85 | 0<br>-99.99<br>66.19<br>m + (67)m<br>301.83 | 0<br>-99.99<br>72.27<br>+ (68)m -<br>307.95 | 0<br>-99.99<br>74.43<br>+ (69)m + (<br>319.46 | 0<br>-99.99<br>80.74<br>(70)m + (7<br>341.93 | 0<br>-99.99<br>87.87<br>1)m + (72)<br>367.69 | 0<br>-99.99<br>91.07<br>m<br>387 |               | <ul><li>(70)</li><li>(71)</li><li>(72)</li><li>(73)</li></ul> |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fa<br>Table 6d |      | Access Factor<br>Table 6d | r | Area<br>m² | Flux<br>Table 6a |        |   | g_<br>Table 6b | FF<br>b Table 6c |     | Gains<br>(W) |        |      |
|------------------------------------|------|---------------------------|---|------------|------------------|--------|---|----------------|------------------|-----|--------------|--------|------|
| North                              | 0.9x | 0.77                      | x | 4          | x                | 10.63  | x | 0.85           | x                | 0.7 | ] =          | 17.54  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 20.32  | x | 0.85           | x                | 0.7 | ] =          | 33.52  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 34.53  | × | 0.85           | x                | 0.7 | ] =          | 56.95  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 55.46  | x | 0.85           | x                | 0.7 | ] =          | 91.48  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 74.72  | x | 0.85           | x                | 0.7 | =            | 123.23 | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 79.99  | x | 0.85           | x                | 0.7 | ] =          | 131.92 | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 74.68  | x | 0.85           | x                | 0.7 | ] =          | 123.17 | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 59.25  | x | 0.85           | x                | 0.7 | =            | 97.72  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 41.52  | x | 0.85           | x                | 0.7 | =            | 68.47  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 24.19  | × | 0.85           | x                | 0.7 | ] =          | 39.9   | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 13.12  | × | 0.85           | x                | 0.7 | ] =          | 21.64  | (74) |
| North                              | 0.9x | 0.77                      | x | 4          | x                | 8.86   | × | 0.85           | x                | 0.7 | ] =          | 14.62  | (74) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 19.64  | × | 0.85           | x                | 0.7 | ] =          | 45.03  | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 38.42  | x | 0.85           | x                | 0.7 | ] =          | 88.08  | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 63.27  | × | 0.85           | x                | 0.7 | =            | 145.06 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | ×                | 92.28  | x | 0.85           | х                | 0.7 |              | 211.56 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 113.09 | x | 0.85           | x                | 0.7 | ] =          | 259.27 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 115.77 | × | 0.85           | x                | 0.7 | ] =          | 265.41 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 110.22 | x | 0.85           | x                | 0.7 | =            | 252.68 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 94.68  | x | 0.85           | x                | 0.7 | =            | 217.05 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 73.59  | × | 0.85           | x                | 0.7 | ] =          | 168.71 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 45.59  | x | 0.85           | x                | 0.7 | =            | 104.52 | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 24.49  | x | 0.85           | x                | 0.7 | ] =          | 56.14  | (76) |
| East                               | 0.9x | 1                         | x | 5.56       | x                | 16.15  | × | 0.85           | x                | 0.7 | ] =          | 37.03  | (76) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 19.64  | x | 0.85           | x                | 0.7 | ] =          | 9.8    | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 38.42  | x | 0.85           | x                | 0.7 | =            | 19.17  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 63.27  | x | 0.85           | x                | 0.7 | ] =          | 31.57  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 92.28  | x | 0.85           | x                | 0.7 | =            | 46.04  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 113.09 | x | 0.85           | x                | 0.7 | =            | 56.42  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 115.77 | x | 0.85           | x                | 0.7 | ] =          | 57.76  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 110.22 | x | 0.85           | x                | 0.7 | ] =          | 54.99  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 94.68  | x | 0.85           | x                | 0.7 | =            | 47.24  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 73.59  | × | 0.85           | ×                | 0.7 | ] =          | 36.72  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | ×                | 45.59  | × | 0.85           | x                | 0.7 | =            | 22.75  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | ×                | 24.49  | x | 0.85           | x                | 0.7 | =            | 12.22  | (80) |
| West                               | 0.9x | 0.77                      | x | 1.21       | x                | 16.15  | x | 0.85           | x                | 0.7 | ] =          | 8.06   | (80) |

| Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m |           |           |          |         |           |         |         |        |        |        |        |        |      |
|-----------------------------------------------------------------------|-----------|-----------|----------|---------|-----------|---------|---------|--------|--------|--------|--------|--------|------|
| (83)m=                                                                | 72.36     | 140.77    | 233.58   | 349.08  | 438.93    | 455.1   | 430.84  | 362.01 | 273.9  | 167.16 | 90     | 59.71  | (83) |
| Total g                                                               | ains – ir | nternal a | nd solar | (84)m = | = (73)m - | + (83)m | , watts |        |        |        |        |        |      |
| (84)m=                                                                | 470.79    | 536.99    | 615.96   | 709.21  | 776.47    | 770.94  | 732.67  | 669.95 | 593.36 | 509.09 | 457.68 | 446.71 | (84) |

| 7. Me               | an inter                 | nal temp                | perature                   | (heating                  | season                      | )                        |                        |                         |                      |                       |             |                    |           |       |
|---------------------|--------------------------|-------------------------|----------------------------|---------------------------|-----------------------------|--------------------------|------------------------|-------------------------|----------------------|-----------------------|-------------|--------------------|-----------|-------|
| Temp                | erature                  | during h                | eating p                   | eriods ir                 | n the livir                 | ng area f                | rom Tab                | ole 9, Th               | 1 (°C)               |                       |             |                    | 21        | (85)  |
| Utilisa             | ation fac                | tor for g               | ains for                   | living are                | a, h1,m                     | (see Ta                  | ble 9a)                |                         |                      |                       |             | I                  | <u>.</u>  |       |
|                     | Jan                      | Feb                     | Mar                        | Apr                       | May                         | Jun                      | Jul                    | Aug                     | Sep                  | Oct                   | Nov         | Dec                |           |       |
| (86)m=              | 1                        | 1                       | 1                          | 1                         | 0.99                        | 0.97                     | 0.94                   | 0.96                    | 0.99                 | 1                     | 1           | 1                  |           | (86)  |
| Mean                | interna                  | l temper                | ature in                   | living are                | ea T1 (fo                   | ollow ste                | ps 3 to 7              | r<br>in Tabl            | e 9c)                |                       |             |                    |           |       |
| (87)m=              | 17.84                    | 18                      | 18.36                      | 18.91                     | 19.5                        | 20.08                    | 20.46                  | 20.39                   | ,<br>19.9            | 19.15                 | 18.42       | 17.82              |           | (87)  |
| Temp                | erature                  | durina h                | eating p                   | eriods ir                 | rest of                     | dwellina                 | from Ta                | able 9. T               | h2 (°C)              |                       |             |                    |           |       |
| (88)m=              | 18.07                    | 18.07                   | 18.08                      | 18.08                     | 18.08                       | 18.09                    | 18.09                  | 18.09                   | 18.09                | 18.08                 | 18.08       | 18.08              |           | (88)  |
| Utilisa             | ation fac                | tor for g               | ains for                   | rest of d                 | welling, l                  | h2,m (se                 | e Table                | 9a)                     |                      |                       |             |                    |           |       |
| (89)m=              | 1                        | 1                       | 1                          | 0.99                      | 0.97                        | 0.9                      | 0.66                   | 0.74                    | 0.96                 | 0.99                  | 1           | 1                  |           | (89)  |
| Mean                | interna                  | l temper                | ature in                   | the rest                  | of dwelli                   | ng T2 (fo                | ollow ste              | eps 3 to 3              | 7 in Tabl            | e 9c)                 |             |                    |           |       |
| (90)m=              | 14.32                    | 14.55                   | 15.08                      | 15.87                     | 16.74                       | 17.56                    | 18                     | 17.95                   | 17.32                | ,<br>16.24            | 15.16       | 14.29              |           | (90)  |
|                     |                          |                         |                            |                           |                             |                          |                        |                         | f                    | LA = Livin            | g area ÷ (4 | ł) =               | 0.53      | (91)  |
| Mean                | interna                  | l temper                | ature (fo                  | or the wh                 | ole dwel                    | llina) = fl              | _A x T1                | + (1 – fL               | A) x T2              |                       |             | ľ                  |           |       |
| (92)m=              | 16.19                    | 16.38                   | 16.83                      | 17.49                     | 18.21                       | 18.9                     | 19.3                   | 19.25                   | 18.69                | 17.79                 | 16.89       | 16.17              |           | (92)  |
| ا<br>Apply          | adjustn                  | nent to tl              | he mear                    | internal                  | tempera                     | ature fro                | m Table                | 4e, whe                 | ere appro            | opri <mark>ate</mark> |             |                    |           |       |
| (93)m=              | 16.19                    | 16.38                   | 16.83                      | 17. <mark>4</mark> 9      | 18.21                       | 18.9                     | 19.3                   | 19.25                   | 18.69                | 17.79                 | 16.89       | 16.17              |           | (93)  |
| 8. Spa              | ace hea                  | ting requ               | uirement                   |                           |                             |                          |                        |                         |                      |                       |             |                    |           |       |
| Set Ti              | i to the i               | mean i <mark>nt</mark>  | ernal ter                  | nperatur                  | e obtain                    | ed at ste                | ep 11 of               | Table 9                 | o, so tha            | t Ti,m=(7             | 76)m an     | d re-calc          | ulate     |       |
| the ut              | ilisation                | factor fo               | or gains                   | using Ta                  | ble 9a                      |                          |                        |                         |                      |                       |             |                    |           |       |
|                     | Jan                      | Feb                     | Mar                        | Apr                       | May                         | Jun                      | Jul                    | Aug                     | Sep                  | Oct                   | Nov         | Dec                |           |       |
| Utilisa             | ation fac                | tor for g               | ains, hm                   | :                         |                             |                          |                        |                         |                      |                       |             |                    |           | (0.4) |
| (94)m=              | 1                        | 1                       | 0.99                       | 0.99                      | 0.97                        | 0.93                     | 0.86                   | 0.89                    | 0.97                 | 0.99                  | 1           | 1                  | l         | (94)  |
| Usetu               | Il gains,                | hmGm .                  | , W = (94)                 | 4)m x (84                 | 1)m                         |                          |                        |                         |                      |                       | 1.50.11     |                    |           | (05)  |
| (95)m=              | 469.94                   | 535.52                  | 612.86                     | 701.28                    | 755.79                      | 720.67                   | 626.89                 | 594.99                  | 574.38               | 505.18                | 456.44      | 446.02             | l         | (95)  |
| Montr               | nly avera                | age exte                | ernal tem                  | perature                  | e from Ta                   |                          | 40.0                   | 46.4                    | 444                  | 10.0                  | 74          | 4.0                | l         | (06)  |
| (90)m=              | 4.3                      | 4.9                     |                            | 0.9                       | 11.7                        | 14.0                     | 10.0                   | 10.4                    | (00)                 | 10.6                  | 7.1         | 4.2                | l         | (30)  |
|                     | 1055 rate                |                         |                            | ai tempe                  |                             | Lm, vv =                 | =[(39)m2               | x [(93)m                | - (96)m              | 2052.22               | 4022.40     | 4042 52            |           | (97)  |
| Space               | 4940.07                  | 4702.90                 | $\frac{4277.34}{2}$        | r oach m                  | 2075.04                     | 1/50.47<br>Mb/mont       | h = 0.02               | 1101.27                 | m = (95)             | 2952.55               | 4055.49     | 4942.32            | 1         | (01)  |
| (98)m-              | 3325 78                  | 2840 86                 | 2726 37                    | 2037 63                   | 1426 88                     |                          | 11 = 0.02              |                         | 0                    | 1820 68               | 2575.48     | 3345.4             |           |       |
| (00)11-             | 0020.10                  | 2010.00                 | 2720.07                    | 2001.00                   | 1120.00                     | Ŭ                        |                        | Tota                    |                      | (k)\/b/year           | ) = Sum(9)  | 8)                 | 20099.07  | (98)  |
| •                   |                          |                         |                            |                           |                             |                          |                        | TOLA                    | i pei yeai           | (KWII/year            | ) – Sum(30  | <b>J)</b> 15,912 - | 20099.07  |       |
| Space               | e heatin                 | g require               | ement in                   | kWh/m <sup>2</sup>        | /year                       |                          |                        |                         |                      |                       |             |                    | 245.11    | (99)  |
| 9b. En              | ergy rec                 | quiremer                | nts – Cor                  | mmunity                   | heating                     | scheme                   |                        |                         |                      |                       |             |                    |           |       |
| This pa             | art is us                | ed for sp               | ace hea                    | iting, spa                | ace cooli                   | ng or wa                 | ater heat              | ting prov               | ided by              | a commi               | unity sch   | ieme.              |           | (201) |
|                     | n or spa                 |                         | nom se                     |                           | supplet                     |                          | ieauiiy (              | Table I                 | 1) U II N            | Ulle                  |             | l                  | 0         |       |
| Fractio             | n of spa                 | ace heat                | trom co                    | mmunity                   | system                      | 1 – (301                 | ) =                    |                         |                      |                       |             |                    | 1         | (302) |
| The com<br>includes | nmunity so<br>boilers, h | cheme mag<br>leat pumps | y obtain he<br>s, geotheri | eat from se<br>mal and wa | everal sour<br>aste heat fi | rces. The p<br>rom power | orocedure<br>stations. | allows for<br>See Appel | CHP and เ<br>ndix C. | up to four o          | other heat  | sources; tl        | he latter |       |

Fraction of heat from Community boilers

| 1 (303a) |
|----------|
|----------|

| Fraction of total space heat from Community boilers                                                                             | (302) x (303a) =                                     | 1                        | (304a)     |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|------------|
| Factor for control and charging method (Table 4c(3)) for commu                                                                  | unity heating system                                 | 1                        | ]<br>(305) |
| Distribution loss factor (Table 12c) for community heating system                                                               | m                                                    | 1.05                     | (306)      |
| Space heating                                                                                                                   |                                                      | kWh/year                 | J          |
| Annual space heating requirement                                                                                                |                                                      | 20099.07                 | ]          |
| Space heat from Community boilers                                                                                               | (98) x (304a) x (305) x (306) =                      | 21104.02                 | (307a)     |
| Efficiency of secondary/supplementary heating system in % (fro                                                                  | om Table 4a or Appendix E)                           | 0                        | (308       |
| Space heating requirement from secondary/supplementary syst                                                                     | em (98) x (301) x 100 ÷ (308) =                      | 0                        | (309)      |
| Water heating<br>Annual water heating requirement                                                                               |                                                      | 2123.03                  | ]          |
| If DHW from community scheme:<br>Water heat from Community boilers                                                              | (64) x (303a) x (305) x (306) =                      | 2229.18                  | (310a)     |
| Electricity used for heat distribution                                                                                          | 0.01 × [(307a)(307e) + (310a)(310e)] =               | 233.33                   | (313)      |
| Cooling System Energy Efficiency Ratio                                                                                          |                                                      | 0                        | (314)      |
| Space cooling (if there is a fixed cooling system, if not enter 0)                                                              | = (107) ÷ (314) =                                    | 0                        | (315)      |
| Electricity for pumps and fans within dwelling (Table 4f):<br>mechanical ventilation - balanced, extract or positive input from | outside                                              | 0                        | (330a)     |
| warm air heating system fans                                                                                                    |                                                      | 0                        | (330b)     |
| pump for solar water heating                                                                                                    |                                                      | 0                        | (330g)     |
| Total electricity for the above, kWh/year                                                                                       | =(330a) + (330b) + (330g) =                          | 0                        | (331)      |
| Energy for lighting (calculated in Appendix L)                                                                                  |                                                      | 373.27                   | (332)      |
| 12b. CO2 Emissions – Community heating scheme                                                                                   |                                                      |                          | -          |
|                                                                                                                                 | Energy Emission factor<br>kWh/year kg CO2/kWh        | Emissions<br>kg CO2/year |            |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using            | g two fuels repeat (363) to (366) for the second fue | el 90                    | (367a)     |
| CO2 associated with heat source 1 [(307b)+                                                                                      | (310b)] x 100 ÷ (367b) x 0                           | 5599.97                  | (367)      |
| Electrical energy for heat distribution                                                                                         | [(313) x 0.52                                        | = 121.1                  | (372)      |
| Total CO2 associated with community systems                                                                                     | (363)(366) + (368)(372)                              | 5721.07                  | (373)      |
| CO2 associated with space heating (secondary)                                                                                   | (309) x 0                                            | = 0                      | (374)      |
| CO2 associated with water from immersion heater or instantane                                                                   | eous heater (312) x 0.22                             | = 0                      | (375)      |
| Total CO2 associated with space and water heating                                                                               | (373) + (374) + (375) =                              | 5721.07                  | (376)      |
| CO2 associated with electricity for pumps and fans within dwelli                                                                | ing (331)) x 0.52                                    | = 0                      | (378)      |
| CO2 associated with electricity for lighting                                                                                    | (332))) x 0.52                                       | = 193.73                 | (379)      |
| Total CO2, kg/year sum of (376)(382) =                                                                                          |                                                      | 5914.8                   | (383)      |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                        |                                                      | 72.13                    | (384)      |
| El rating (section 14)                                                                                                          |                                                      | 41.53                    | (385)      |

|                                                                                              |                                                                                                                                                                                                                                                                       |                                         | User D                | etails:                |                      |                  |                       |              |                              |                   |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|------------------------|----------------------|------------------|-----------------------|--------------|------------------------------|-------------------|--|--|
| Assessor Name:<br>Software Name:                                                             | Stroma FSAP 20                                                                                                                                                                                                                                                        | )12                                     | concrete              | Stroma<br>Softwa       | a Num<br>are Ver     | ber:<br>sion:    |                       | Versio       | on: 1.0.3.15                 |                   |  |  |
| Addross :                                                                                    | london                                                                                                                                                                                                                                                                | FI                                      | openy /               | Audress.               | Unito                |                  |                       |              |                              |                   |  |  |
| 1 Overall dwelling dimer                                                                     | sions:                                                                                                                                                                                                                                                                |                                         |                       |                        |                      |                  |                       |              |                              |                   |  |  |
| Basement                                                                                     |                                                                                                                                                                                                                                                                       |                                         | Area                  | <b>a(m²)</b><br>70     | (1a) x               | Av. He           | <b>ight(m)</b><br>3.5 | (2a) =       | Volume(m <sup>3</sup><br>245 | <b>)</b><br>(3a)  |  |  |
| Total floor area TFA = (1a                                                                   | )+(1b)+(1c)+(1d)+(1                                                                                                                                                                                                                                                   | 1e)+(1n                                 | )                     | 70                     | (4)                  |                  |                       |              |                              |                   |  |  |
| Dwelling volume                                                                              |                                                                                                                                                                                                                                                                       |                                         |                       |                        | (3a)+(3b)            | +(3c)+(3c        | d)+(3e)+              | .(3n) =      | 245                          | (5)               |  |  |
| 2. Ventilation rate:                                                                         | -                                                                                                                                                                                                                                                                     |                                         |                       |                        |                      |                  |                       |              |                              |                   |  |  |
| Number of chimneys<br>Number of open flues                                                   | main<br>heating<br>0 +<br>0 +                                                                                                                                                                                                                                         | secondary<br>heating                    | y<br>] + [_<br>] + [_ | 0<br>0                 | ] = [                | <b>total</b> 0 0 | x 2                   | 40 =<br>20 = | m <sup>3</sup> per hou       | r<br>(6a)<br>(6b) |  |  |
| Number of intermittent fan                                                                   | s                                                                                                                                                                                                                                                                     |                                         |                       |                        |                      | 2                | x ´                   | 10 =         | 20                           | (7a)              |  |  |
| Number of passive vents                                                                      |                                                                                                                                                                                                                                                                       |                                         |                       |                        | Г                    | 0                | x ′                   | 10 =         | 0                            | (7b)              |  |  |
| Number of flueless gas fire                                                                  | es                                                                                                                                                                                                                                                                    |                                         |                       |                        | Ē                    | 0                | X 4                   | 40 =         | 0                            | (7c)              |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                       |                                         |                       |                        |                      |                  |                       | Air ch       | anges <mark>per</mark> ho    | our               |  |  |
| Infiltration due to chimney<br>If a pressurisation test has be<br>Number of storeys in the   | Air cha<br>Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 20 \div (5) = $<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns) |                                         |                       |                        |                      |                  |                       |              |                              |                   |  |  |
| Additional infiltration                                                                      | 3.                                                                                                                                                                                                                                                                    |                                         |                       |                        |                      |                  | [(9)                  | -1]x0.1 =    | 0                            | (10)              |  |  |
| Structural infiltration: 0.2<br>if both types of wall are pre-<br>deducting areas of opening | 25 for steel or timbe<br>sent, use the value corru<br>(s); if equal user 0.35                                                                                                                                                                                         | er frame or<br>esponding to             | 0.35 for              | masonr<br>er wall area | y constr<br>a (after | uction           |                       |              | 0                            | (11)              |  |  |
| If no draught lobby, enter                                                                   | or 0.05 else enter 0                                                                                                                                                                                                                                                  |                                         | i (seale              | u), eise               |                      |                  |                       |              | 0                            | (12)              |  |  |
| Percentage of windows                                                                        | and doors draught                                                                                                                                                                                                                                                     | ,<br>stripped                           |                       |                        |                      |                  |                       |              | 0                            | (13)              |  |  |
| Window infiltration                                                                          | and deere aradyin                                                                                                                                                                                                                                                     | omppou                                  |                       | 0.25 - [0.2            | x (14) ÷ 1           | 00] =            |                       |              | 0                            | (15)              |  |  |
| Infiltration rate                                                                            |                                                                                                                                                                                                                                                                       |                                         |                       | (8) + (10) -           | + (11) + (1          | 2) + (13) -      | + (15) =              |              | 0                            | (16)              |  |  |
| Air permeability value, c                                                                    | 50, expressed in cu                                                                                                                                                                                                                                                   | ubic metres                             | s per ho              | ur per so              | quare m              | etre of e        | envelope              | area         | 10                           | (17)              |  |  |
| If based on air permeabilit                                                                  | y value, then (18) = [                                                                                                                                                                                                                                                | [(17) ÷ 20]+(8                          | ), otherwi            | se (18) = (            | 16)                  |                  |                       |              | 0.58                         | (18)              |  |  |
| Air permeability value applies                                                               | if a pressurisation test h                                                                                                                                                                                                                                            | nas been done                           | e or a deg            | ree air per            | meability            | is being u       | sed                   |              |                              | _                 |  |  |
| Number of sides sheltered                                                                    |                                                                                                                                                                                                                                                                       |                                         |                       | (20) = 1 - [           | 0 075 x (1           | 9)] =            |                       |              | 1                            | (19)              |  |  |
| Infiltration rate incorporation                                                              | a shelter factor                                                                                                                                                                                                                                                      |                                         |                       | (20) = (18)            | x(20) =              | 0)] –            |                       |              | 0.92                         | (20)              |  |  |
| Infiltration rate modified fo                                                                | r monthly wind spec                                                                                                                                                                                                                                                   | ed                                      |                       | () ()                  |                      |                  |                       |              | 0.54                         | (21)              |  |  |
| Jan Feb                                                                                      | Mar Apr May                                                                                                                                                                                                                                                           | v Jun                                   | Jul                   | Aua                    | Sep                  | Oct              | Nov                   | Dec          |                              |                   |  |  |
| Monthly average wind spe                                                                     | ed from Table 7                                                                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , , , |                       | ,9                     | 000                  | •••              |                       | 200          |                              |                   |  |  |
| (22)m= 5.1 5 4                                                                               | .9 4.4 4.3                                                                                                                                                                                                                                                            | 3.8                                     | 3.8                   | 3.7                    | 4                    | 4.3              | 4.5                   | 4.7          |                              |                   |  |  |
| Wind Factor (22a)m = (22                                                                     | )m ÷ 4                                                                                                                                                                                                                                                                | _1 _1                                   |                       |                        |                      | L                | 1                     | 1            | I                            |                   |  |  |
| (22a)m= 1.27 1.25 1                                                                          | 23 1.1 1.08                                                                                                                                                                                                                                                           | 0.95                                    | 0.95                  | 0.92                   | 1                    | 1.08             | 1.12                  | 1.18         |                              |                   |  |  |

| Adjuste                | ed infilti             | ation rat                      | e (allow                  | ing for sh                   | elter an                 | d wind s              | peed) =     | (21a) x       | (22a)m       |               |                        |                      |                                          |         |
|------------------------|------------------------|--------------------------------|---------------------------|------------------------------|--------------------------|-----------------------|-------------|---------------|--------------|---------------|------------------------|----------------------|------------------------------------------|---------|
| <u> </u>               | 0.69                   | 0.67                           | 0.66                      | 0.59                         | 0.58                     | 0.51                  | 0.51        | 0.5           | 0.54         | 0.58          | 0.61                   | 0.63                 | ]                                        |         |
| Calcula<br>If me       | ate ette<br>echanic    | <i>ctive air</i><br>al ventila | <i>change</i><br>ition:   | rate for t                   | he applic                | cable ca              | se          |               |              |               |                        |                      | 0                                        | (23a)   |
| lf exh                 | aust air h             | eat pump                       | using App                 | endix N, (2                  | 3b) = (23a               | ) × Fmv (e            | equation (N | N5)) , othe   | rwise (23b   | ) = (23a)     |                        |                      | 0                                        | (23b)   |
| lf bala                | anced wit              | h heat reco                    | overy: effic              | ciency in %                  | allowing for             | or in-use f           | actor (from | n Table 4h    | ) =          | , , ,         |                        |                      | 0                                        | (23c)   |
| a) If                  | balance                | ed mech                        | anical v                  | entilation                   | with hea                 | at recove             | erv (MVI    | HR) (24a      | a)m = (2)    | 2b)m + (      | (23b) x [ <sup>•</sup> | 1 – (23c)            | ÷ 1001                                   | (100)   |
| (24a)m=                | 0                      | 0                              | 0                         | 0                            | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0                    | ]                                        | (24a)   |
| b) If                  | balance                | ed mech                        | anical v                  | entilation                   | without                  | heat rec              | overv (N    | и<br>ЛV) (24b | m = (22)     | 1<br>2b)m + ( | 23b)                   |                      | 1                                        |         |
| ,<br>(24b)m=           | 0                      | 0                              | 0                         | 0                            | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0                    | ]                                        | (24b)   |
| c) If                  | whole h                | nouse ex                       | tract ve                  | ntilation c                  | or positiv               | e input v             | ventilatic  | n from o      | outside      |               | !                      |                      | 1                                        |         |
| í                      | f (22b)r               | n < 0.5 >                      | (23b),                    | then (24c                    | c) = (23b                | ); otherv             | vise (24    | c) = (22k     | o) m + 0.    | .5 × (23k     | c)                     |                      |                                          |         |
| (24c)m=                | 0                      | 0                              | 0                         | 0                            | 0                        | 0                     | 0           | 0             | 0            | 0             | 0                      | 0                    | ]                                        | (24c)   |
| d) If                  | natural                | ventilatio                     | on or wh                  | ole hous                     | e positiv                | e input               | ventilatio  | on from I     | oft          |               |                        |                      |                                          |         |
| i                      | f (22b)r               | n = 1, th                      | en (24d                   | )m = (22t                    | o)m othe                 | rwise (2              | 4d)m = (    | 0.5 + [(2     | 2b)m² x      | 0.5]          | 1                      | 1                    | 1                                        |         |
| (24d)m=                | 0.74                   | 0.73                           | 0.72                      | 0.68                         | 0.67                     | 0.63                  | 0.63        | 0.62          | 0.64         | 0.67          | 0.68                   | 0.7                  | J                                        | (240)   |
| Effec                  | ctive air              | change                         | rate - e                  | nter (24a                    | ) or (24b                | o) or (240            | c) or (24   | d) in box     | (25)         | 0.07          | 0.00                   | 0.7                  | 1                                        | (25)    |
| (25)m=                 | 0.74                   | 0.73                           | 0.72                      | 0.68                         | 0.67                     | 0.63                  | 0.63        | 0.62          | 0.64         | 0.67          | 0.68                   | 0.7                  |                                          | (25)    |
| 3. He                  | at l <mark>osse</mark> | s and he                       | eat loss                  | paramete                     | er:                      |                       |             |               |              |               |                        |                      |                                          |         |
| ELEN                   | 1ENT                   | Gros                           | SS (m 2)                  | Openin                       | gs                       | Net Ar                | ea          | U-valu        | ue           | AXU           |                        | k-value              | e la la la la la la la la la la la la la | A X k   |
| Doore                  |                        | area                           | (m²)                      | m                            | 2                        | A,r                   | n²          | vv/m2         | .ĸ           | ( / / /       | K)                     | KJ/M <sup>2</sup> ·I | ĸ                                        | KJ/K    |
| Minde                  |                        | . 1                            |                           |                              |                          | 1.9                   |             | 3             | =            | 5.7           | H                      |                      |                                          | (20)    |
| VVIndov                | ws Type                |                                |                           |                              |                          | 8.7                   |             | /[1/( 4.8 )+  | 0.04] =      | 35.03         |                        |                      |                                          | (27)    |
| vvindov                | ws Type                | e 2                            |                           |                              |                          | 6.5                   | x1/         | /[1/( 4.8 )+  | 0.04] =      | 26.17         | Ц.                     |                      |                                          | (27)    |
| Window                 | ws Type                | e 3                            |                           |                              |                          | 2.2                   | x1,         | /[1/( 4.8 )+  | 0.04] =      | 8.86          |                        |                      |                                          | (27)    |
| Floor                  |                        |                                |                           |                              |                          | 70                    | x           | 1.25          | =            | 87.5          |                        |                      |                                          | (28)    |
| Walls                  |                        | 116                            | .5                        | 19.3                         |                          | 97.2                  | X           | 2.1           | =            | 204.12        | 2                      |                      |                                          | (29)    |
| Roof                   |                        | 26.                            | 7                         | 0                            |                          | 26.7                  | x           | 0.28          | =            | 7.48          |                        |                      |                                          | (30)    |
| Total a                | rea of e               | elements                       | , m²                      |                              |                          | 213.2                 | 2           |               |              |               |                        |                      |                                          | (31)    |
| Party v                | vall                   |                                |                           |                              |                          | 24.2                  | x           | 0             | =            | 0             |                        |                      |                                          | (32)    |
| Party v                | vall                   |                                |                           |                              |                          | 8.6                   | x           | 0             | =            | 0             |                        |                      |                                          | (32)    |
| * for win<br>** includ | dows and<br>le the are | l roof wind<br>as on both      | ows, use<br>sides of i    | effective wi<br>nternal wall | ndow U-va<br>'s and part | alue calcul<br>itions | ated using  | formula 1     | /[(1/U-valı  | ıe)+0.04] a   | as given in            | paragraph            | n 3.2                                    |         |
| Fabric                 | heat lo                | ss, W/K                        | = S (A x                  | U)                           |                          |                       |             | (26)(30)      | ) + (32) =   |               |                        |                      | 374.8                                    | 36 (33) |
| Heat c                 | apacity                | Cm = S                         | (Axk)                     |                              |                          |                       |             |               | ((28).       | (30) + (3     | 2) + (32a).            | (32e) =              | 0                                        | (34)    |
| Therm                  | al mass                | parame                         | ter (TM                   | P = Cm ÷                     | - TFA) in                | ı kJ/m²K              |             |               | Indica       | tive Value    | e: High                |                      | 450                                      | (35)    |
| For desig<br>can be u  | gn asses<br>ised inste | sments wh<br>ad of a de        | ere the de<br>tailed cald | etails of the<br>culation.   | constructi               | on are not            | t known pr  | ecisely the   | e indicative | e values of   | f TMP in Ta            | able 1f              |                                          |         |
| Therma                 | al bridg               | es : S (L                      | x Y) ca                   | lculated u                   | using Ap                 | pendix ł              | <           |               |              |               |                        |                      | 31.9                                     | 8 (36)  |
| if details             | of therm               | al bridging                    | are not ki                | nown (36) =                  | = 0.15 x (3              | 1)                    |             |               |              |               |                        |                      |                                          |         |
| Total fa               | abric he               | at loss                        |                           |                              |                          |                       |             |               | (33) +       | (36) =        |                        |                      | 406.8                                    | 34 (37) |
| Ventila                | tion he                | at loss ca                     | alculate                  | d monthly                    | /                        |                       |             |               | (38)m        | = 0.33 ×      | (25)m x (5)            | )                    | 1                                        |         |
|                        | Jan                    | Feb                            | Mar                       | Apr                          | May                      | Jun                   | Jul         | Aug           | Sep          | Oct           | Nov                    | Dec                  | J                                        |         |

| (38)m=            | 59.45                   | 58.71                      | 57.98                  | 54.58                    | 53.95                      | 50.99                                 | 50.99               | 50.44       | 52.13               | 53.95              | 55.23                       | 56.58              |         | (38)     |
|-------------------|-------------------------|----------------------------|------------------------|--------------------------|----------------------------|---------------------------------------|---------------------|-------------|---------------------|--------------------|-----------------------------|--------------------|---------|----------|
| Heat tr           | ansfer o                | coefficie                  | nt, W/K                |                          |                            |                                       |                     |             | (39)m               | = (37) + (3        | -<br>38)m                   |                    |         |          |
| (39)m=            | 466.29                  | 465.55                     | 464.83                 | 461.43                   | 460.79                     | 457.83                                | 457.83              | 457.28      | 458.97              | 460.79             | 462.08                      | 463.42             |         |          |
| Heatle            | ee nara                 | motor (F                   |                        | /m2k                     |                            |                                       |                     |             | (40)m               | Average =          | Sum(39)1                    | 12 /12=            | 461.42  | (39)     |
| (40)m=            | 6.66                    | 6.65                       | 6.64                   | 6.59                     | 6.58                       | 6.54                                  | 6.54                | 6.53        | 6.56                | 6.58               | 6.6                         | 6.62               |         |          |
| ( - )             |                         |                            |                        |                          |                            |                                       |                     |             |                     | Average =          | Sum(40)1                    | 12 /12=            | 6.59    | (40)     |
| Numbe             | er of day               | /s in mo                   | nth (Tab               | le 1a)                   |                            |                                       |                     | 1           |                     |                    |                             |                    |         |          |
|                   | Jan                     | Feb                        | Mar                    | Apr                      | May                        | Jun                                   | Jul                 | Aug         | Sep                 | Oct                | Nov                         | Dec                |         | (        |
| (41)m=            | 31                      | 28                         | 31                     | 30                       | 31                         | 30                                    | 31                  | 31          | 30                  | 31                 | 30                          | 31                 | I       | (41)     |
|                   |                         |                            |                        |                          |                            |                                       |                     |             |                     |                    |                             |                    |         |          |
| 4. Wa             | iter heat               | ting ene                   | rgy requ               | irement:                 |                            |                                       |                     |             |                     |                    |                             | kWh/ye             | ear:    |          |
| Assum             | ed occu                 | ipancy,                    | N                      | •.                       |                            | · · · · · · · · · · · · · · · · · · · |                     |             |                     |                    | 2.                          | .25                |         | (42)     |
| if TF<br>if TF    | A > 13.9<br>A £ 13.9    | 9, N = 1<br>9. N = 1       | + 1.76 x               | : [1 - exp               | (-0.0003                   | 849 x (TF                             | -A -13.9            | )2)] + 0.0  | 0013 x (            | IFA -13.           | 9)                          |                    |         |          |
| Annua             | averag                  | je hot wa                  | ater usa               | ge in litre              | es per da                  | ay Vd,av                              | erage =             | (25 x N)    | + 36                |                    | 87                          | .55                |         | (43)     |
| Reduce            | the annua<br>e that 125 | al average<br>litres per l | hot water<br>person pe | usage by<br>r dav (all w | 5% if the a<br>ater use. I | lwelling is<br>hot and co             | designed i<br>Id)   | to achieve  | a water us          | se target o        | f                           |                    |         |          |
|                   | lan                     | Eeb                        | Mar                    | Apr                      | May                        | lun                                   |                     | Aug         | Sen                 | Oct                | Nov                         | Dec                |         |          |
| Hot wate          | er usage i              | n litres per               | r day for ea           | ach month                | Vd,m = fa                  | ctor from T                           | Table 1c x          | (43)        | Sep                 |                    | NUV                         | Dec                |         |          |
| (44)m=            | <mark>9</mark> 6.3      | 92.8                       | 8 <mark>9.3</mark>     | 85.79                    | 82.29                      | 78.79                                 | 78.79               | 82.29       | 85.79               | 8 <mark>9.3</mark> | 92.8                        | <mark>9</mark> 6.3 |         |          |
|                   |                         | L                          |                        |                          |                            |                                       |                     |             |                     | L<br>Total = Su    | l<br>m(44) <sub>112</sub> = | -                  | 1050.55 | (44)     |
| Energy o          | content of              | hot water                  | used - cal             | lculated mo              | onthly $= 4$ .             | 190 x Vd,r                            | n x nm x D          | 0Tm / 3600  | ) kWh/mor           | nth (see Ta        | bles 1b, 1                  | c, 1d)             |         |          |
| (45)m=            | 142.81                  | 124.9                      | 128.89                 | 112.37                   | 107.82                     | 93.04                                 | 86.22               | 98.93       | 100.12              | 116.67             | 127.36                      | 138.3              |         | <b>—</b> |
| lf instant        | aneous w                | vater heati                | ng at point            | t of use (no             | o hot water                | <sup>r</sup> storage),                | enter 0 in          | boxes (46   | ) to (61)           | Total = Su         | m(45) <sub>112</sub> =      | =                  | 1377.43 | (45)     |
| (46)m=            | 21.42                   | 18.74                      | 19.33                  | 16.86                    | 16.17                      | 13.96                                 | 12.93               | 14.84       | 15.02               | 17.5               | 19.1                        | 20.75              |         | (46)     |
| Water             | storage                 | loss:                      |                        |                          |                            |                                       |                     |             |                     |                    |                             |                    |         |          |
| Storag            | e volum                 | e (litres)                 | ) includir             | ng any so                | olar or W                  | /WHRS                                 | storage             | within sa   | ame ves             | sel                |                             | 160                |         | (47)     |
| If comr           | nunity h                | neating a                  | and no ta              | ank in dw                | velling, e                 | nter 110                              | litres in           | (47)        | ara) ant            | or (0) in (        | 47)                         |                    |         |          |
| Water             | storage                 | loss:                      | not wate               | er (unis ir              | iciudes i                  | nstantar                              | leous co            | ווסם ומחז   | ers) ente           | er U In (          | 47)                         |                    |         |          |
| a) If m           | anufact                 | urer's de                  | eclared I              | oss facto                | or is kno                  | wn (kWł                               | n/day):             |             |                     |                    |                             | 0                  |         | (48)     |
| Tempe             | rature f                | actor fro                  | m Table                | 2b                       |                            |                                       |                     |             |                     |                    |                             | 0                  |         | (49)     |
| Energy            | lost fro                | m water                    | storage                | e, kWh/ye                | ear                        |                                       | _                   | (48) x (49) | ) =                 |                    | 1                           | 10                 |         | (50)     |
| b) If m<br>Hot wa | anufact                 | urer's de<br>age loss      | eclared (              | cylinder l<br>rom Tabl   | oss fact                   | or is not<br>h/litre/da               | known:              |             |                     |                    |                             | 02                 |         | (51)     |
| If comr           | nunity h                | neating s                  | ee secti               | on 4.3                   | 0 2 (100                   | n, na o, ac                           | ·y/                 |             |                     |                    | 0.                          | .02                |         | (01)     |
| Volume            | e factor                | from Ta                    | ble 2a                 |                          |                            |                                       |                     |             |                     |                    | 1.                          | .03                |         | (52)     |
| Tempe             | rature f                | actor fro                  | m Table                | 2b                       |                            |                                       |                     |             |                     |                    | 0                           | .6                 |         | (53)     |
| Energy            | lost fro                | m water                    | storage                | e, kWh/ye                | ear                        |                                       |                     | (47) x (51) | ) x (52) x (        | 53) =              | 1.                          | .03                |         | (54)     |
| Enter             | (OU) OF (               | (54) IN (5                 | oulotod <sup>(</sup>   | for anot                 | month                      |                                       |                     | ((56)m - 4) | 55) - (44)          | m                  | 1.                          | .03                |         | (55)     |
| vvaler            | suraye                  |                            |                        |                          |                            | 00.00                                 | 00.01               |             | 00) × (41)          |                    | 00.00                       | 00.01              |         |          |
| (56)m=            | 32.01<br>er containe    | 28.92<br>s dedicate        | d solar sto            | 30.98<br>prage. (57)     | 32.01<br>m = (56)m         | 30.98<br>x [(50) – (                  | 32.01<br>H11)] ÷ (5 | 0), else (5 | 30.98<br>7)m = (56) | 32.01<br>m where ( | 30.98<br>H11) is fro        | 32.01<br>m Append  | ix H    | (96)     |
| (57)-             | 32.01                   | 28.02                      | 32.01                  | 30.09                    | 32.01                      | 30.09                                 | 32.01               | 32.01       | 30.09               | 32.01              | 30.09                       | 32.04              |         | (57)     |
| (57)11=           | 52.01                   | 20.92                      | J                      | 50.90                    | 52.01                      | 50.90                                 | 52.01               | J JZ.01     | 50.90               | 52.01              | 50.90                       | 52.01              | I       | (01)     |

| Primar              | y circuit  | loss (ar   | nnual) fro   | om Table        | e 3            |            |                |                  |                  |                          |                 | 0           | ]             | (58) |
|---------------------|------------|------------|--------------|-----------------|----------------|------------|----------------|------------------|------------------|--------------------------|-----------------|-------------|---------------|------|
| Primar              | y circuit  | loss cal   | culated      | for each        | month (        | 59)m = (   | (58) ÷ 36      | 65 × (41)        | m                |                          |                 |             |               |      |
| (moo                | dified by  | factor fi  | rom Tab<br>I | le H5 if t<br>r | here is s<br>r | solar wat  | er heatii      | ng and a         | t cylinde        | r thermo                 | stat)           |             | 1             |      |
| (59)m=              | 23.26      | 21.01      | 23.26        | 22.51           | 23.26          | 22.51      | 23.26          | 23.26            | 22.51            | 23.26                    | 22.51           | 23.26       |               | (59) |
| Combi               | loss ca    | culated    | for each     | month (         | (61)m =        | (60) ÷ 36  | 65 × (41       | )m               |                  |                          |                 |             |               |      |
| (61)m=              | 0          | 0          | 0            | 0               | 0              | 0          | 0              | 0                | 0                | 0                        | 0               | 0           |               | (61) |
| Total h             | eat requ   | uired for  | water h      | eating ca       | alculated      | for eacl   | h month        | (62)m =          | 0.85 × (         | (45)m +                  | (46)m +         | (57)m +     | (59)m + (61)m |      |
| (62)m=              | 198.09     | 174.83     | 184.17       | 165.86          | 163.1          | 146.53     | 141.49         | 154.21           | 153.61           | 171.95                   | 180.85          | 193.58      |               | (62) |
| Solar DH            | IW input o | alculated  | using App    | endix G or      | Appendix       | H (negati  | ve quantity    | y) (enter '0     | ' if no sola     | r contribut              | ion to wate     | er heating) |               |      |
| (add a              | dditiona   | l lines if | FGHRS        | and/or \        | WWHRS          | applies    | , see Ap       | pendix C         | G)               |                          |                 |             |               |      |
| (63)m=              | 0          | 0          | 0            | 0               | 0              | 0          | 0              | 0                | 0                | 0                        | 0               | 0           |               | (63) |
| Output              | from w     | ater hea   | ter          |                 |                |            |                | -                |                  | -                        | -               |             |               |      |
| (64)m=              | 198.09     | 174.83     | 184.17       | 165.86          | 163.1          | 146.53     | 141.49         | 154.21           | 153.61           | 171.95                   | 180.85          | 193.58      |               |      |
|                     |            |            |              |                 |                |            |                | Outp             | out from wa      | ater heate               | r (annual)      | 12          | 2028.27       | (64) |
| Heat g              | ains froi  | n water    | heating      | kWh/m           | onth 0.2       | 5 ´ [0.85  | × (45)m        | ı + (61)m        | n] + 0.8 x       | (46)m                    | + (57)m         | + (59)m     | ]             |      |
| (65)m=              | 66.09      | 58.34      | 61.47        | 55.37           | 54.46          | 48.95      | 47.28          | 51.51            | 51.3             | 57.4                     | 60.36           | 64.6        |               | (65) |
| in <mark>clu</mark> | ıde (57)ı  | n in calo  | culation     | of (65)m        | only if c      | vlinder is | s in the o     | dwelling         | or hot w         | ate <mark>r is fr</mark> | om com          | munity h    | eating        |      |
| 5. Int              | ernai da   | ains (see  | Table {      | 5 and 5a        | ):             |            |                |                  |                  |                          |                 |             |               |      |
| Motab               | olic gain  | e (Table   | 5) Wat       | te              |                |            |                |                  |                  |                          |                 |             |               |      |
| Metab               | Jan        | Feb        | Mar          | Apr             | Mav            | Jun        | Jul            | Aug              | Sep              | Oct                      | Nov             | Dec         |               |      |
| (66)m=              | 112.31     | 112.31     | 112.31       | 112.31          | 112.31         | 112.31     | 112.31         | 112.31           | 112.31           | 112.31                   | 112.31          | 112.31      |               | (66) |
| Lightin             | a dains    | (calcula   | ted in Ar    | pendix          | L equat        | ion 1.9 or | r (9a) a       | l<br>Iso see '   | Table 5          |                          |                 |             |               |      |
| (67)m=              | 17.59      | 15.62      | 12.71        | 9.62            | 7.19           | 6.07       | 6.56           | 8.53             | 11.44            | 14.53                    | 16.96           | 18.08       | 1             | (67) |
| Annlia              |            | ins (calc  | L            | Annen           | l iv l ea      | uation L   | 13 or I 1      | I<br>3a) also    | see Ta           | L<br>ble 5               |                 |             |               |      |
| (68)m=              | 197.3      | 199.34     | 194.19       | 183.2           | 169.34         | 156.31     | 147.6          | 145.55           | 150.71           | 161.7                    | 175.56          | 188.59      | 1             | (68) |
| Cookir              |            | (calcula   | I ded in A   | nnendiv         |                | ion   15   | or   15a       |                  | A Table          | 5                        |                 |             | I             |      |
| (69)m-              | 34.23      | 34 23      | 34.23        | 34.23           | 24 23          | 34.23      | 34.23          | 34 23            | 34.23            | 34.23                    | 34.23           | 34.23       | ]             | (69) |
| Dump                | ond for    |            | (Toble /     | <u> </u>        | 04.20          | 04.20      | 04.20          | 04.20            | 04.20            | 04.20                    | 04.20           | 04.20       | l             | ()   |
| (70)m-              |            |            |              |                 | 0              | 0          | 0              | 0                | 0                | 0                        | 0               | 0           | 1             | (70) |
|                     |            |            |              |                 |                |            | 0              | 0                | 0                | 0                        | 0               | 0           | l             | (10) |
| Losses              | s e.g. ev  |            | n (nega      |                 |                |            | 00.04          | 00.04            | 00.04            | 00.04                    | 00.04           | 00.04       | 1             | (71) |
| (71)m=              | -09.04     | -09.04     | -09.04       | -09.04          | -09.04         | -09.04     | -09.04         | -09.04           | -09.04           | -09.04                   | -09.04          | -09.04      |               | (71) |
| Water               | heating    | gains ( I  | able 5)      |                 |                | 07.00      | 00.54          |                  |                  |                          |                 |             | 1             | (70) |
| (72)m=              | 88.84      | 86.81      | 82.61        | 76.91           | 73.2           | 67.98      | 63.54          | 69.23            | 71.25            | 77.16                    | 83.83           | 86.82       | ]             | (72) |
| Total i             | nternal    | gains =    | :<br>        |                 |                | (66)       | m + (67)m<br>I | n + (68)m +<br>T | + (69)m + (<br>T | (70)m + (7<br>I          | 1)m + (72)<br>I | m           | 1             |      |
| (73)m=              | 360.41     | 358.47     | 346.2        | 326.42          | 306.42         | 287.05     | 274.4          | 280              | 290.1            | 310.07                   | 333.04          | 350.18      |               | (73) |
| 6. So               | lar gains  | S.         |              | n fl f          | Table O        |            |                | 4                |                  | a and the st             | المعاملة الم    | •           |               |      |
| Solar g             | ains are d |            | using sola   |                 | I adie 6a a    | and associ | iateo equa     | itions to co     | onvert to th     | ie applicat              | ne orientat     | ion.        | Coinc         |      |
| orienta             | ation: A   | Access F   | actor        | Area            |                | Flu        | х              |                  | g_               |                          | FF              |             | Gains         |      |

| North  | 0.9x               | 0.77       | ×                   | [         | 8.7                            | ] ×        | к <u>з</u>                            | 34.53    | x        | 0.85          | x       | 0.7      |          | = | 123.87              | (74)      |
|--------|--------------------|------------|---------------------|-----------|--------------------------------|------------|---------------------------------------|----------|----------|---------------|---------|----------|----------|---|---------------------|-----------|
| North  | 0.9x               | 0.77       | ×                   | ĺ         | 8.7                            | j ×        | ـــــــــــــــــــــــــــــــــــــ | 5.46     | ] x      | 0.85          | ×       | 0.7      | <b>-</b> | = | 198.97              | ]<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | ĺ         | 8.7                            | j ×        | : 7                                   | 4.72     | x        | 0.85          | ×       | 0.7      | <b>-</b> | = | 268.03              | ]<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | Ē         | 8.7                            | j ×        | × 7                                   | 9.99     | x        | 0.85          | ×       | 0.7      | -        | = | 286.93              | ]<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | ן י       | 8.7                            | j ×        | : 7                                   | 4.68     | ] x      | 0.85          | ×       | 0.7      | =        | = | 267.89              | ]<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | ĺ         | 8.7                            | j ×        | 5                                     | 59.25    | x        | 0.85          | ×       | 0.7      | <b>-</b> | = | 212.54              | -<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | [         | 8.7                            | j ×        | 4                                     | 1.52     | ×        | 0.85          | ×       | 0.7      | -        | = | 148.93              | ]<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | ן י       | 8.7                            | j ×        | 2                                     | 24.19    | x        | 0.85          | ×       | 0.7      | -        | = | 86.78               | -<br>(74) |
| North  | 0.9x               | 0.77       | ×                   | Ī         | 8.7                            | j ×        | · 1                                   | 3.12     | x        | 0.85          | x       | 0.7      | -        | = | 47.06               | (74)      |
| North  | 0.9x               | 0.77       | ×                   | ן י       | 8.7                            | j ×        | : ;                                   | 8.86     | x        | 0.85          | ×       | 0.7      | -        | = | 31.8                | _<br>(74) |
| South  | 0.9x               | 0.77       | ×                   | Ī         | 2.2                            | j ×        | 4                                     | 6.75     | x        | 0.85          | ×       | 0.7      | -        | = | 42.41               | (78)      |
| South  | 0.9x               | 0.77       | x                   | Ī         | 2.2                            | j ×        | . 7                                   | 6.57     | x        | 0.85          | ×       | 0.7      | -        | = | 69.46               | (78)      |
| South  | 0.9x               | 0.77       | ×                   | Ī         | 2.2                            | j ×        | ( g                                   | 97.53    | x        | 0.85          | ×       | 0.7      | -        | = | 88.48               | _<br>(78) |
| South  | 0.9x               | 0.77       | ×                   | Ī         | 2.2                            | ] ×        | : 1                                   | 10.23    | x        | 0.85          | x       | 0.7      | <u> </u> | = | 100                 | (78)      |
| South  | 0.9x               | 0.77       | ×                   | Ī         | 2.2                            | Ī×         | : 1                                   | 14.87    | x        | 0.85          | x       | 0.7      | <u> </u> | = | 104.2               | (78)      |
| South  | 0.9x               | 0.77       | ×                   | [         | 2.2                            | ] ×        | 1                                     | 10.55    | x        | 0.85          | x       | 0.7      | -        | = | 100.28              | (78)      |
| South  | 0.9x               | 0.77       | x                   | [         | 2.2                            | ] ×        | 1                                     | 08.01    | x        | 0.85          | x       | 0.7      |          | = | 97.98               | (78)      |
| South  | 0.9x               | 0.77       | x                   |           | 2.2                            | ] ×        | 1                                     | 04.89    | х        | 0.85          | x       | 0.7      |          | = | 95.15               | (78)      |
| South  | 0.9x               | 0.77       | ×                   | [         | 2.2                            | ] ×        | 1                                     | 01.89    | ) x      | 0.85          | x       | 0.7      |          | - | 92.42               | (78)      |
| South  | 0.9x               | 0.77       | ×                   | [         | 2.2                            | ×          | 8                                     | 32.59    | ] ×      | 0.85          | x       | 0.7      |          | = | 74.92               | (78)      |
| South  | 0.9x               | 0.77       | x                   | [         | 2.2                            | ] ×        | 5                                     | 5.42     | <b>x</b> | 0.85          | x       | 0.7      | -        | = | 5 <mark>0.27</mark> | (78)      |
| South  | 0.9x               | 0.77       | ×                   | [         | 2.2                            | ] ×        |                                       | 40.4     | x        | 0.85          | x       | 0.7      |          | = | 36.65               | (78)      |
| West   | 0.9x               | 0.77       | ×                   | [         | 6.5                            | ] ×        | 1                                     | 9.64     | ] x      | 0.85          | x       | 0.7      | -        | = | 52.64               | (80)      |
| West   | 0.9x               | 0.77       | x                   |           | 6.5                            | ×          | 3                                     | 88.42    | x        | 0.85          | x       | 0.7      | -        | = | 102.97              | (80)      |
| West   | 0.9x               | 0.77       | x                   | [         | 6.5                            | ] ×        | 6                                     | 3.27     | x        | 0.85          | x       | 0.7      | -        | = | 169.58              | (80)      |
| West   | 0.9x               | 0.77       | ×                   | [         | 6.5                            | ) ×        | 4 <u>9</u>                            | 2.28     | x        | 0.85          | x       | 0.7      |          | = | 247.33              | (80)      |
| West   | 0.9x               | 0.77       | ×                   |           | 6.5                            | ] ×        | 1                                     | 13.09    | x        | 0.85          | x       | 0.7      |          | = | 303.11              | (80)      |
| West   | 0.9x               | 0.77       | x                   | [         | 6.5                            | ] ×        | 1                                     | 15.77    | x        | 0.85          | x       | 0.7      |          | = | 310.29              | (80)      |
| West   | 0.9x               | 0.77       | ×                   |           | 6.5                            | <b>x</b>   | 1                                     | 10.22    | x        | 0.85          | x       | 0.7      |          | = | 295.4               | (80)      |
| West   | 0.9x               | 0.77       | ×                   |           | 6.5                            | ] ×        | <u>د</u> و                            | 94.68    | x        | 0.85          | x       | 0.7      |          | = | 253.75              | (80)      |
| West   | 0.9x               | 0.77       | ×                   |           | 6.5                            | ] ×        | ۲ <sup>-</sup>                        | '3.59    | x        | 0.85          | x       | 0.7      |          | = | 197.23              | (80)      |
| West   | 0.9x               | 0.77       | x                   | [         | 6.5                            | ] ×        | 4                                     | 5.59     | x        | 0.85          | x       | 0.7      |          | = | 122.19              | (80)      |
| West   | 0.9x               | 0.77       | ×                   | [         | 6.5                            | ] ×        | 2                                     | 24.49    | x        | 0.85          | x       | 0.7      |          | = | 65.64               | (80)      |
| West   | 0.9x               | 0.77       | x                   |           | 6.5                            | ] ×        | 1                                     | 6.15     | x        | 0.85          | x       | 0.7      | =        | = | 43.29               | (80)      |
|        |                    |            |                     |           |                                |            |                                       |          |          |               |         |          |          |   |                     |           |
| Solar  | gains in           | watts, ca  | lculate             |           | for each mon                   | th         | 007.5                                 | 004.07   | (83)m    | i = Sum(74)m. | (82)m   |          | 444 7    |   |                     | (02)      |
| (83)m= | 133.2<br>nains — i | nternal a  | 381.93              |           | $\frac{546.29}{(84)m} = (73)n$ | 4  <br>n + | (83)m                                 | 061.27   | 561      | .44 438.59    | 283.8   | 8 162.96 | 111.7    | 3 | I                   | (63)      |
| (84)m- | 493.61             |            | 728 13              | Т         | 872 71 981 7                   | 6 T        | 984 55                                | 935.67   | 841      | 44 728 68     | 593.9   | 5 496    | 461.9    | 2 |                     | (84)      |
|        |                    |            | 0. 10               |           |                                | ~          | 557.00                                | 1 000.07 |          |               | 1 000.9 | ~        | L 101.9  |   |                     | ()        |
| 7. Me  | ean inter          | nal temp   | erature             |           | neating seaso                  | on)<br>vic | a orea i                              | from Tol |          |               |         |          |          |   | 01                  |           |
|        |                    | tor for a  | eaung  <br>vinc for | he<br>I:: |                                | ving       | y area i<br>(ooo T-                   |          | Jie 9    | (°C)          |         |          |          |   | 21                  | _(85)     |
| Utilis |                    | LOI IOF BE | Mor                 | T         |                                | T v        |                                       |          |          |               |         | Nov      |          | ٦ |                     |           |
|        | Juli               |            | ivial               | 1         | The line                       | y          | Juli                                  |          | I 4      | ug l och      |         |          |          | - |                     |           |

| (86)m=                | 1                        | 1                      | 0.99                  | 0.99                            | 0.97                 | 0.94        | 0.9         | 0.92       | 0.97        | 0.99                  | 1            | 1           |           | (86)   |
|-----------------------|--------------------------|------------------------|-----------------------|---------------------------------|----------------------|-------------|-------------|------------|-------------|-----------------------|--------------|-------------|-----------|--------|
| Mean                  | interna                  | l temper               | ature in              | living are                      | ea T1 (fo            | ollow ste   | ps 3 to 7   | 7 in Tabl  | e 9c)       |                       |              |             |           |        |
| (87)m=                | 17.29                    | 17.49                  | 17.93                 | 18.59                           | 19.3                 | 19.97       | 20.4        | 20.32      | 19.74       | 18.85                 | 17.97        | 17.26       |           | (87)   |
| Temp                  | erature                  | during h               | eating p              | eriods ir                       | n rest of            | dwelling    | from Ta     | able 9, T  | h2 (°C)     |                       |              |             |           |        |
| =m(88)                | 18                       | 18                     | 18                    | 18                              | 18                   | 18          | 18          | 18         | 18          | 18                    | 18           | 18          |           | (88)   |
| Utilisa               | ation fac                | tor for g              | ains for              | rest of d                       | welling,             | h2,m (se    | e Table     | 9a)        |             |                       |              |             |           |        |
| (89)m=                | 1                        | 1                      | 0.99                  | 0.98                            | 0.94                 | 0.83        | 0.56        | 0.64       | 0.92        | 0.98                  | 1            | 1           |           | (89)   |
| Mean                  | interna                  | l temper               | ature in              | the rest                        | of dwelli            | ng T2 (f    | ollow ste   | eps 3 to   | 7 in Tabl   | e 9c)                 |              |             |           |        |
| (90)m=                | 13.61                    | 13.9                   | 14.55                 | 15.49                           | 16.52                | 17.45       | 17.91       | 17.86      | 17.16       | 15.88                 | 14.6         | 13.57       |           | (90)   |
|                       |                          |                        |                       |                                 |                      |             |             |            | f           | LA = Livin            | g area ÷ (4  | 4) =        | 0.81      | (91)   |
| Mean                  | interna                  | l temper               | ature (fo             | or the wh                       | ole dwe              | lling) = f  | LA x T1     | + (1 – fL  | A) × T2     |                       |              |             |           |        |
| (92)m=                | 16.58                    | 16.8                   | 17.29                 | 17.99                           | 18.76                | 19.49       | 19.92       | 19.85      | 19.25       | 18.28                 | 17.33        | 16.55       |           | (92)   |
| Apply                 | adjustn                  | nent to t              | he mear               | n interna                       | temper               | ature fro   | m Table     | e 4e, whe  | ere appro   | opriate               |              |             |           |        |
| (93)m=                | 16.58                    | 16.8                   | 17.29                 | 17.99                           | 18.76                | 19.49       | 19.92       | 19.85      | 19.25       | 18.28                 | 17.33        | 16.55       |           | (93)   |
| 8. Sp                 | ace hea                  | ting requ              | uirement              |                                 |                      |             |             | Table O    |             | · <b>T</b> ' · · · /· | 70)          |             | 1         |        |
| the ut                | i to the r               | factor fo              | ernal ter<br>or gains | mperatur<br>using Ta            | re obtain<br>Ible 9a | ied at st   | ер 11 от    | Table 9    | o, so tha   | t II,m=(              | 76)m an      | d re-caic   | ulate     |        |
|                       | Jan                      | Feb                    | Mar                   | Apr                             | May                  | Jun         | Jul         | Aug        | Sep         | Oct                   | Nov          | Dec         |           |        |
| Util <mark>isa</mark> | ation fac                | tor for g              | ains, hm              | 1:                              |                      |             |             |            |             |                       |              |             |           |        |
| (94)m=                | 1                        | 0.99                   | 0.99                  | 0.98                            | 0.95                 | 0.91        | 0.84        | 0.87       | 0.95        | 0.99                  | 0.99         | 1           |           | (94)   |
| Us <mark>ef</mark> u  | I <mark>l g</mark> ains, | hmGm ,                 | , W = (94             | 4)m x (84                       | 4)m                  |             |             |            |             |                       |              |             |           |        |
| (95)m=                | 491.8                    | 600.15                 | 720.09                | 852.85                          | 935.49               | 893.15      | 785.81      | 733.63     | 693.05      | 585.27                | 493.29       | 460.48      |           | (95)   |
| Month                 | nly avera                | age exte               | rnal tem              | perature                        | e from Ta            | able 8      | 40.0        | 40.4       | 444         | 10.0                  | 74           | 4.0         |           | (06)   |
| (96)m=                | 4.3                      | 4.9                    | 0.5                   | 8.9                             |                      | 14.0        | -[(20)m     | y [(02)m   | (06)m       | 10.6                  | 7.1          | 4.2         |           | (90)   |
| (97)m=                | 5727.59                  | 5541.17                | 5013.65               | 4196.15                         | 3254.99              | 2238.36     | 1520.54     | 1576.29    | 2361.74     | 3539.62               | 4724.93      | 5725.34     |           | (97)   |
| Space                 | e heatin                 | a reauire              | ement fo              | r each n                        | nonth. k             | Nh/mon      | 1 = 0.02    | 24 x [(97  | )m – (95    | )ml x (4'             | 1)m          | 0.20101     |           |        |
| (98)m=                | 3895.43                  | 3320.36                | 3194.41               | 2407.18                         | 1725.71              | 0           | 0           | 0          | 0           | 2198.04               | ,<br>3046.78 | 3917.06     |           |        |
|                       |                          |                        |                       |                                 |                      |             | I           | Tota       | l per year  | (kWh/year             | ) = Sum(9    | 8)15,912 =  | 23704.96  | (98)   |
| Space                 | e heatin                 | g require              | ement in              | kWh/m <sup>2</sup>              | /year                |             |             |            |             |                       |              | [           | 338.64    | (99)   |
| 9b. En                | erav rec                 | uiremer                | nts – Cor             | mmunitv                         | heating              | scheme      | 9           |            |             |                       |              | L           |           |        |
| This pa               | art is use               | ed for sp              | ace hea               | ting, spa                       | ace cooli            | ing or wa   | ater heat   | ting prov  | vided by a  | a comm                | unity sch    | neme.       |           |        |
| Fractio               | n of spa                 | ace heat               | from se               | condary,                        | /supplen             | nentary     | heating     | (Table 1   | 1) '0' if n | one                   | ,            |             | 0         | (301)  |
| Fractio               | n of spa                 | ace heat               | from co               | mmunity                         | system               | 1 – (30     | 1) =        |            |             |                       |              | [           | 1         | (302)  |
| The con               | nmunity so               | cheme mag              | y obtain he           | eat from se                     | everal sour          | rces. The j | orocedure   | allows for | CHP and u   | up to four o          | other heat   | sources; th | ne latter |        |
| includes<br>Fractio   | boilers, h<br>n of hea   | eat pumps<br>at from C | s, geotherr<br>Commun | <i>nal and wa</i><br>ity boiler | aste heat f<br>'S    | rom powe    | r stations. | See Appel  | ndix C.     |                       |              | [           | 1         | (303a) |
| Fractio               | n of tota                | al space               | heat fro              | m Comn                          | nunitv bo            | oilers      |             |            |             | (3                    | 02) x (303   | a) =        | 1         | (304a) |
| Factor                | for cont                 | rol and o              | charging              | method                          | (Table               | 4c(3)) fo   | or commu    | unity hea  | ating svs   | tem                   |              |             | 1         | (305)  |
| Distrib               | ution los                | s factor               | (Table 1              | 2c) for c                       | commun               | ity heati   | ng syste    | m          | 5-9-        |                       |              | l<br>[      | 1.05      | (306)  |
| Space                 | heating                  | a                      |                       | ,                               |                      | -           |             |            |             |                       |              | L           | kWh/ve    | ear    |
| Annua                 | l space                  | heating                | requiren              | nent                            |                      |             |             |            |             |                       |              | [           | 23704.96  |        |
|                       |                          |                        |                       |                                 |                      |             |             |            |             |                       |              | -           |           |        |

| Space heat from Community boilers                                                                                           | (98) x (304a) x                                            | (305) x (306) =                                           | 24890.21                 | (307a) |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------|--------|
| Efficiency of secondary/supplementary heating system in % (                                                                 | from Table 4a or Appen                                     | dix E)                                                    | 0                        | (308   |
| Space heating requirement from secondary/supplementary sy                                                                   | /stem (98) x (301) x 1                                     | 00 ÷ (308) =                                              | 0                        | (309)  |
| Water heating<br>Annual water heating requirement                                                                           |                                                            |                                                           | 2028.27                  | 7      |
| If DHW from community scheme:<br>Water heat from Community boilers                                                          | (64) x (303a) x                                            | (305) x (306) =                                           | 2129.68                  | (310a) |
| Electricity used for heat distribution                                                                                      | 0.01 × [(307a)(307                                         | e) + (310a)(310e)] =                                      | 270.2                    | (313)  |
| Cooling System Energy Efficiency Ratio                                                                                      |                                                            |                                                           | 0                        | (314)  |
| Space cooling (if there is a fixed cooling system, if not enter 0                                                           | <b>)</b> = (107) ÷ (314)                                   | =                                                         | 0                        | (315)  |
| Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input fro | m outside                                                  |                                                           | 0                        | (330a) |
| warm air heating system fans                                                                                                |                                                            |                                                           | 0                        | (330b) |
| pump for solar water heating                                                                                                |                                                            |                                                           | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                                   | =(330a) + (330b                                            | o) + (330g) =                                             | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                              |                                                            |                                                           | 310.63                   | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                               |                                                            |                                                           |                          | -      |
| CO2 from other sources of space and water heating (not CHF<br>Efficiency of heat source 1 (%)                               | Energy<br>kWh/year<br>2)<br>sing two fuels repeat (363) to | Emission factor<br>kg CO2/kWh<br>(366) for the second fue | Emissions<br>kg CO2/year | (367a) |
| CO2 associated with heat source 1 [(307t                                                                                    | b)+(310b)] x 100 ÷ (367b) x                                | 0 =                                                       | 6484.77                  | (367)  |
| Electrical energy for heat distribution                                                                                     | [(313) x                                                   | 0.52 =                                                    | 140.23                   | (372)  |
| Total CO2 associated with community systems                                                                                 | (363)(366) + (368)(372                                     | ) =                                                       | 6625.01                  | (373)  |
| CO2 associated with space heating (secondary)                                                                               | (309) x                                                    | 0 =                                                       | 0                        | (374)  |
| CO2 associated with water from immersion heater or instanta                                                                 | neous heater (312) x                                       | 0.22 =                                                    | 0                        | (375)  |
| Total CO2 associated with space and water heating                                                                           | (373) + (374) + (375) =                                    |                                                           | 6625.01                  | (376)  |
| CO2 associated with electricity for pumps and fans within dwe                                                               | elling (331)) x                                            | 0.52 =                                                    | 0                        | (378)  |
| CO2 associated with electricity for lighting                                                                                | (332))) x                                                  | 0.52 =                                                    | 161.22                   | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                      |                                                            |                                                           | 6786.22                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                    |                                                            |                                                           | 96.95                    | (384)  |
| El rating (section 14)                                                                                                      |                                                            |                                                           | 31.76                    | (385)  |

|                                                                                                                                                                                            |                                                                           |                     | User D              | etails:               |                      |                  |                       |              |                                 |                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|---------------------|-----------------------|----------------------|------------------|-----------------------|--------------|---------------------------------|-------------------|--|--|--|
| Assessor Name:<br>Software Name:                                                                                                                                                           | Stroma FSAP 2                                                             | 2012                | roperty             | Stroma<br>Softwa      | a Num<br>are Ver     | ber:<br>sion:    |                       | Versic       | on: 1.0.3.15                    |                   |  |  |  |
| Address :                                                                                                                                                                                  | london                                                                    |                     | roperty /           | 1001033.              | Onit 5               |                  |                       |              |                                 |                   |  |  |  |
| 1. Overall dwelling dimer                                                                                                                                                                  | isions:                                                                   |                     |                     |                       |                      |                  |                       |              |                                 |                   |  |  |  |
| Basement                                                                                                                                                                                   |                                                                           |                     | Area                | <b>a(m²)</b><br>124   | (1a) x               | <b>Av. He</b>    | <b>ight(m)</b><br>.37 | (2a) =       | Volume(m <sup>3</sup><br>293.88 | <b>)</b><br>(3a)  |  |  |  |
| Total floor area TFA = (1a                                                                                                                                                                 | )+(1b)+(1c)+(1d)+                                                         | (1e)+(1r            | n)                  | 124                   | (4)                  |                  |                       | _            |                                 |                   |  |  |  |
| Dwelling volume                                                                                                                                                                            |                                                                           |                     |                     |                       | (3a)+(3b)            | )+(3c)+(3c       | l)+(3e)+              | .(3n) =      | 293.88                          | (5)               |  |  |  |
| 2. Ventilation rate:                                                                                                                                                                       |                                                                           |                     |                     |                       |                      |                  |                       |              | <u> </u>                        |                   |  |  |  |
| Number of chimneys<br>Number of open flues                                                                                                                                                 | main<br>heating<br>0 +                                                    | secondar<br>heating | y<br>] + [<br>] + [ | 0<br>0                | ] = [<br>] = [       | <b>total</b> 0 0 |                       | 40 =<br>20 = | 0<br>0                          | r<br>(6a)<br>(6b) |  |  |  |
| Number of intermittent fan                                                                                                                                                                 | s                                                                         |                     |                     |                       | -<br>-               | 2                | x ′                   | 10 =         | 20                              | (7a)              |  |  |  |
| Number of passive vents                                                                                                                                                                    |                                                                           |                     |                     |                       |                      | 0                | x ^                   | 10 =         | 0                               | <br>(7b)          |  |  |  |
| Number of flueless gas fire                                                                                                                                                                | es                                                                        |                     |                     |                       |                      | 0                | X 4                   | 40 =         | 0                               | (7c)              |  |  |  |
| Number of passive vents       0 $x \ 10 =$ Number of flueless gas fires       0 $x \ 40 =$ Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =       20 $\div (5) =$ |                                                                           |                     |                     |                       |                      |                  |                       |              |                                 |                   |  |  |  |
| Infiltration due to chimney<br>If a pressurisation test has be                                                                                                                             | 0.07                                                                      | (8)                 |                     |                       |                      |                  |                       |              |                                 |                   |  |  |  |
| Number of storeys in the Additional infiltration                                                                                                                                           | e dwelling (ns)                                                           |                     |                     |                       |                      |                  | [(9)                  | -1]x0.1 =    | 0                               | (9)<br>(10)       |  |  |  |
| Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening                                                                                                | 25 for steel or timb<br>sent, use the value co<br>gs); if equal user 0.35 | er frame or         | 0.35 for            | masonr<br>er wall are | y constr<br>a (after | uction           |                       |              | 0                               | (11)              |  |  |  |
| If suspended wooden flo                                                                                                                                                                    | oor, enter 0.2 (uns                                                       | ealed) or 0.        | .1 (seale           | d), else              | enter 0              |                  |                       |              | 0                               | (12)              |  |  |  |
| If no draught lobby, ente                                                                                                                                                                  | er 0.05, else enter                                                       | 0                   |                     |                       |                      |                  |                       |              | 0                               | (13)              |  |  |  |
| Window infiltration                                                                                                                                                                        | and doors draugh                                                          | tstripped           |                     | 0 25 - [0 2           | $x(14) \div 1$       | 001 -            |                       |              | 0                               |                   |  |  |  |
| Infiltration rate                                                                                                                                                                          |                                                                           |                     |                     | (8) + (10)            | + (11) + (1          | 2) + (13) ·      | + (15) =              |              | 0                               | (15)              |  |  |  |
| Air permeability value, o                                                                                                                                                                  | 50, expressed in                                                          | cubic metre         | s per ho            | our per so            | ouare m              | etre of e        | envelope              | area         | 10                              | = (17)            |  |  |  |
| If based on air permeabilit                                                                                                                                                                | y value, then (18) =                                                      | = [(17) ÷ 20]+(8    | 3), otherwi         | se (18) = (           | 16)                  |                  |                       |              | 0.57                            | (18)              |  |  |  |
| Air permeability value applies                                                                                                                                                             | if a pressurisation test                                                  | has been dor        | ne or a deg         | gree air pei          | meability            | is being u       | sed                   |              |                                 |                   |  |  |  |
| Number of sides sheltered                                                                                                                                                                  | I                                                                         |                     |                     |                       |                      |                  |                       |              | 1                               | (19)              |  |  |  |
| Shelter factor                                                                                                                                                                             |                                                                           |                     |                     | (20) = 1 -            | 0.075 x (1           | 9)] =            |                       |              | 0.92                            | (20)              |  |  |  |
| Infiltration rate incorporation                                                                                                                                                            | ng shelter factor                                                         |                     |                     | (21) = (18)           | x (20) =             |                  |                       |              | 0.53                            | (21)              |  |  |  |
| Infiltration rate modified fo                                                                                                                                                              | r monthly wind sp                                                         | eed                 |                     |                       | -                    |                  | <u> </u>              | _            | I                               |                   |  |  |  |
| Jan Feb I                                                                                                                                                                                  | Mar Apr Ma                                                                | ay Jun              | Jul                 | Aug                   | Sep                  | Oct              | Nov                   | Dec          |                                 |                   |  |  |  |
| Monthly average wind spe                                                                                                                                                                   | ed from Table 7                                                           |                     |                     |                       |                      | 1.6              |                       |              | I                               |                   |  |  |  |
| (22)m= 5.1 5 2                                                                                                                                                                             | 4.4 4.3                                                                   | 3.8                 | 3.8                 | 3.7                   | 4                    | 4.3              | 4.5                   | 4.7          |                                 |                   |  |  |  |
| Wind Factor (22a)m = (22                                                                                                                                                                   | )m ÷ 4                                                                    |                     | 0.05                | 0.00                  |                      | 4.00             | 4.40                  | 4.40         | I                               |                   |  |  |  |
| (22a)m= 1.27 1.25 1                                                                                                                                                                        | .23 1.1 1.0                                                               | 0.95                | 0.95                | 0.92                  | 1                    | 1.08             | 1.12                  | 1.18         |                                 |                   |  |  |  |

| Adjust               | ed infiltr               | ation rat                | e (allowi                 | ng for sh                | nelter an   | d wind s    | peed) =         | (21a) x       | (22a)m       |                | -           |                      |             |       |
|----------------------|--------------------------|--------------------------|---------------------------|--------------------------|-------------|-------------|-----------------|---------------|--------------|----------------|-------------|----------------------|-------------|-------|
|                      | 0.67                     | 0.66                     | 0.64                      | 0.58                     | 0.56        | 0.5         | 0.5             | 0.49          | 0.53         | 0.56           | 0.59        | 0.62                 |             |       |
| Calcul<br>If ma      | ate etter                | ctive air<br>al ventila  | change                    | rate for t               | he appli    | cable ca    | se              |               |              |                |             |                      |             | (220) |
| lf exh               | aust air h               | eat pump i               | usina App                 | endix N. (2              | 3b) = (23a  | i) x Fmv (e | equation (I     | N5)) . othei  | rwise (23b   | ) = (23a)      |             |                      | 0           | (23a) |
| If bala              | anced with               | heat reco                | overv: effic              | iencv in %               | allowing f  | or in-use f | actor (fron     | n Table 4h    | ) =          | , ( ,          |             |                      | 0           | (230) |
| a) If                | halance                  | d mech                   | anical ve                 | ntilation                | with he     | at recove   | ⊃rv (M\/I       | HR) (24a      | )<br>m = (22 | 2h)m + (       | 23h) x [′   | l – (23c)            | 0<br>∸ 100] | (200) |
| (24a)m=              |                          |                          |                           | 0                        | 0           | 0           |                 |               | 0            |                |             | 0                    | ]           | (24a) |
| b) If                | balance                  | l<br>d mech:             | I<br>anical ve            | Intilation               | without     | heat rec    | L<br>coverv (N  | L<br>MV) (24b | l = (22)     | I<br>2b)m + () | L<br>23b)   |                      | l           |       |
| (24b)m=              | 0                        | 0                        |                           | 0                        | 0           | 0           | 0               | 0             | 0            | 0              | 0           | 0                    |             | (24b) |
| c) If                | whole h                  | use ex                   | ract ver                  | tilation o               | or positiv  | re input v  | ı<br>ventilatio | on from c     | utside       |                |             |                      | I           |       |
| •)                   | if (22b)n                | n < 0.5 ×                | (23b), 1                  | hen (240                 | c) = (23b   | ); otherv   | wise (24        | c) = (22b     | o) m + 0.    | 5 × (23b       | <b>)</b> )  |                      |             |       |
| (24c)m=              | 0                        | 0                        | 0                         | 0                        | 0           | 0           | 0               | 0             | 0            | 0              | 0           | 0                    |             | (24c) |
| d) If                | natural                  | ventilatio               | on or wh                  | ole hous                 | e positiv   | /e input    | ventilatio      | on from l     | oft          |                | •           |                      |             |       |
|                      | if (22b)n                | n = 1, th                | en (24d)                  | m = (22k                 | o)m othe    | erwise (2   | 4d)m =          | 0.5 + [(2     | 2b)m² x      | 0.5]           |             | r                    | 1           |       |
| (24d)m=              | 0.72                     | 0.72                     | 0.71                      | 0.67                     | 0.66        | 0.62        | 0.62            | 0.62          | 0.64         | 0.66           | 0.67        | 0.69                 |             | (24d) |
| Effe                 | ctive air                | change                   | rate - er                 | nter (24a                | ) or (24t   | o) or (24   | c) or (24       | d) in boy     | (25)         | i              |             | i                    | 1           |       |
| (25)m=               | 0.72                     | 0.72                     | 0.71                      | 0.67                     | 0.66        | 0.62        | 0.62            | 0.62          | 0.64         | 0.66           | 0.67        | 0.69                 |             | (25)  |
| 3. He                | at l <mark>osse</mark>   | s and he                 | eat loss                  | oaramete                 | er:         |             |                 |               |              |                |             |                      |             |       |
| ELEN                 | /IENT                    | Gros                     | s                         | Openin                   | gs          | Net Ar      | ea              | U-valu        | Je           | AXU            |             | k-value              | e l         | AXk   |
| _                    |                          | area                     | (m²)                      | m                        | 2           | A ,r        | n²              | W/m2          | K            | (VV/I          | K)          | kJ/m <sup>2</sup> ·l | K           | kJ/K  |
| Doors                |                          |                          |                           |                          |             | 1.6         | ×               | 1.4           | = [          | 2.24           |             |                      |             | (26)  |
| Windo                | ws Type                  | e 1                      |                           |                          |             | 5.49        | x1              | /[1/( 4.8 )+  | 0.04] =      | 22.11          |             |                      |             | (27)  |
| Windo                | ws Type                  | e 2                      |                           |                          |             | 4.7         | x1              | /[1/( 4.8 )+  | 0.04] =      | 18.93          |             |                      |             | (27)  |
| Walls                | Type1                    | 11.8                     | 85                        | 1.6                      |             | 10.25       | 5 X             | 2.1           | =            | 21.52          |             |                      |             | (29)  |
| Walls                | Type2                    | 122                      | 2                         | 10.19                    | Э           | 111.8       | 1 X             | 1.27          | =            | 142.22         |             |                      |             | (29)  |
| Roof                 |                          | 68.                      | 1                         | 0                        |             | 68.1        | x               | 0.28          | =            | 19.07          |             |                      |             | (30)  |
| Total a              | area of e                | elements                 | , m²                      |                          |             | 201.9       | 5               |               |              |                |             |                      |             | (31)  |
| Party v              | wall                     |                          |                           |                          |             | 4.8         | x               | 0             | =            | 0              |             |                      |             | (32)  |
| * for win            | idows and                | roof wind                | ows, use e                | effective wi             | ndow U-va   | alue calcul | ated using      | g formula 1   | /[(1/U-valu  | ıe)+0.04] a    | as given in | paragraph            | 1 3.2       |       |
| ** incluc            | le the area              | as on both               | sides of in               | nternal wal              | ls and par  | titions     |                 | (00) (00)     | (22)         |                |             |                      | r           |       |
| Fabric               | heat los                 | SS, W/K =                | = S (A x                  | U)                       |             |             |                 | (26)(30)      | (32) =       | (00) (0)       |             |                      | 226.08      | (33)  |
| Heat c               | apacity                  | Cm = S(                  | (A X K )                  |                          |             | 1 1/ 21/    |                 |               | ((28)        | (30) + (32     | 2) + (32a). | (32e) =              | 0           | (34)  |
| I nerm               | al mass                  | parame                   |                           | ) = Cm ÷                 | - IFA) Ir   | i KJ/M²K    |                 |               | Indica       | tive Value     | : High      | - h l = 15           | 450         | (35)  |
| ror desi<br>can be ι | ign assess<br>used inste | sments wn<br>ad of a dei | ere the de<br>tailed calc | talis of the<br>ulation. | CONSTRUCT   | on are not  | t known pr      | recisely the  | e indicative | e values of    | TMPINT      | adie 11              |             |       |
| Therm                | al bridge                | es : S (L                | x Y) cal                  | culated u                | using Ap    | pendix ł    | <               |               |              |                |             |                      | 30.4        | (36)  |
| if details           | of therma                | al bridging              | are not kr                | own (36) =               | = 0.15 x (3 | 1)          |                 |               |              |                |             |                      |             |       |
| Total f              | abric he                 | at loss                  |                           |                          |             |             |                 |               | (33) +       | (36) =         |             |                      | 256.48      | (37)  |
| Ventila              | ation hea                | at loss ca               | alculated                 | monthly                  | /           |             |                 |               | (38)m        | = 0.33 × (     | 25)m x (5)  |                      | 1           |       |
|                      | Jan                      | Feb                      | Mar                       | Apr                      | May         | Jun         | Jul             | Aug           | Sep          | Oct            | Nov         | Dec                  |             |       |
| (38)m=               | 70.25                    | 69.41                    | 68.58                     | 64.69                    | 63.96       | 60.57       | 60.57           | 59.95         | 61.88        | 63.96          | 65.43       | 66.97                |             | (38)  |
| Heat ti              | ransfer o                | coefficier               | nt, W/K                   |                          |             |             |                 |               | (39)m        | = (37) + (     | 38)m        |                      |             |       |
| (39)m=               | 326.74                   | 325.89                   | 325.06                    | 321.17                   | 320.45      | 317.06      | 317.06          | 316.43        | 318.36       | 320.45         | 321.92      | 323.46               |             |       |
|                      |                          |                          |                           |                          |             |             |                 |               |              | Average =      | Sum(39)1    | 12 /12=              | 321.17      | (39)  |

| Heat lo                        | ss para                         | meter (H                                | HLP), W                              | ′m²K                                                 |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | · (4)                                 |          |            |              |
|--------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|--------------|
| (40)m=                         | 2.63                            | 2.63                                    | 2.62                                 | 2.59                                                 | 2.58                                     | 2.56                                  | 2.56                         | 2.55                   | 2.57                  | 2.58                      | 2.6                                   | 2.61     |            |              |
| L                              | r of day                        | re in mor                               | u<br>oth (Tab                        | le 12)                                               |                                          |                                       | 1                            | 1                      | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 2.59       | (40)         |
|                                | Jan                             | Feb                                     | Mar                                  | Anr                                                  | May                                      | Jun                                   | Jul                          | Aug                    | Sen                   | Oct                       | Nov                                   | Dec      |            |              |
| (41)m=                         | 31                              | 28                                      | 31                                   | 30                                                   | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41)         |
| (, L                           | 0.                              |                                         | 0.                                   |                                                      |                                          |                                       |                              |                        |                       | 0.                        |                                       | 0.       |            |              |
| 4. Wat                         | ter hea                         | ting enei                               | rgy requ                             | irement:                                             |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |              |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 x                        | [1 - exp                                             | (-0.0003                                 | 849 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | ΓFA -13.                  | 2.<br>.9)                             | 88       |            | (42)         |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person per | ge in litre<br>usage by s<br><sup>r</sup> day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 102<br>f                              | 2.54     |            | (43)         |
| [                              | Jan                             | Feb                                     | Mar                                  | Apr                                                  | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |              |
| Hot wate                       | r usage i                       | n litres per                            | day for ea                           | ach month                                            | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          |            |              |
| (44)m=                         | 112.8                           | 108.69                                  | 104.59                               | 100.49                                               | 96.39                                    | 92.29                                 | 92.29                        | 96.39                  | 100.49                | 104.59                    | 108.69                                | 112.8    |            | _            |
| Energy c                       | ontent of                       | hot water                               | used - cal                           | culated mo                                           | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x D                   | 0Tm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1230.5     | (44)         |
| (45)m=                         | 1 <mark>6</mark> 7.27           | 146.3                                   | 150.97                               | 131.62                                               | 126.29                                   | 108.98                                | 100.98                       | 115.88                 | 117.26                | 13 <mark>6.66</mark>      | 149.18                                | 161.99   |            | _            |
| lf instanta                    | aneous w                        | vater heatii                            | ng at point                          | of use (no                                           | hot water                                | storage),                             | enter 0 in                   | boxes (46              | ) to (61)             | <mark>⊺ota</mark> l = Su  | m(45) <sub>112</sub> =                |          | 1613.38    | (45)         |
| (46)m=                         | <mark>2</mark> 5.09             | 21.94                                   | 22.64                                | 19. <mark>7</mark> 4                                 | 18.94                                    | 16.35                                 | 15.15                        | 17.38                  | 17.59                 | 20.5                      | 22.38                                 | 24.3     |            | (46)         |
| Water s                        | storage                         | loss:<br>e (litres)                     | includir                             | ng any so                                            | olar or M                                | /WHRS                                 | storage                      | within sa              | ame ves               | ما                        |                                       | 160      |            | (47)         |
| lf com                         | nunity h                        | eating a                                | nd no te                             | ink in dw                                            | velling e                                | nter 110                              | litres in                    | (47)                   |                       | 501                       | L                                     | 160      |            | (47)         |
| Otherw                         | ise if no                       | o stored                                | hot wate                             | er (this in                                          | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |            |              |
| Water s                        | storage                         | loss:                                   |                                      |                                                      |                                          |                                       |                              |                        |                       |                           |                                       |          | L          |              |
| a) If m                        | anufact                         | urer's de                               | eclared I                            | oss facto                                            | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48)         |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                                   |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49)         |
| Energy                         | lost fro                        | om water                                | storage                              | , kWh/y∉                                             | ear                                      | on : o mot                            | lun numu                     | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50)         |
| Hot wat                        | ter stor                        | age loss                                | factor fr                            | om Tabl                                              | e 2 (kW                                  | h/litre/da                            | whown.<br>ay)                |                        |                       |                           | 0.                                    | 02       |            | (51)         |
| If comn                        | nunity r                        | from Ta                                 | ee secti<br>ble 22                   | on 4.3                                               |                                          |                                       |                              |                        |                       |                           |                                       | 00       |            | (50)         |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                                   |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03<br>6  |            | (52)<br>(53) |
| Energy                         | lost fro                        | m water                                 | storage                              |                                                      | oor                                      |                                       |                              | (47) x (51)            | ) y (52) y (          | 53) -                     |                                       | .0       |            | (50)         |
| Enter (                        | 50) or (                        | (54) in (5                              | 55)                                  | , KVVII/yt                                           | sai                                      |                                       |                              | (47) X (01)            | / ( ( ) ~ ( )         | 55) –                     | 1.                                    | 03       |            | (54)         |
| Water s                        | storage                         | loss cal                                | culated t                            | for each                                             | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |            |              |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56)         |
| If cylinde                     | r contain                       | s dedicate                              | d solar sto                          | rage, (57)                                           | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | l<br>lix H |              |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (57)         |
| Primary                        | / circuit                       | loss (ar                                | nual) fro                            | om Table                                             | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |            | (58)         |
| Primary                        | / circuit                       | loss cal                                | culated                              | for each                                             | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     | . 4                       | - ( - ( )                             |          |            |              |
| mod)<br>ר                      | itied by                        | tactor fi                               | rom Tab                              | le H5 if t                                           | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | stat)                                 |          | I          |              |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                                | 22.51                                                | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59)         |

| Combi     | loss ca   | alculated        | for eac  | ch n       | nonth (              | 61)m =        | (60      | )) ÷ 36    | 65 × (41)            | m              |                |         |              |              |                 |                 |                             |
|-----------|-----------|------------------|----------|------------|----------------------|---------------|----------|------------|----------------------|----------------|----------------|---------|--------------|--------------|-----------------|-----------------|-----------------------------|
| (61)m=    | 0         | 0                | 0        |            | 0                    | 0             |          | 0          | 0                    | 0              | (              | 0       | 0            | 0            | 0               |                 | (61)                        |
| Total h   | neat req  | uired for        | water    | hea        | ating ca             | lculated      | l fo     | r each     | n month              | (62)m          | = 0.8          | 5 × (   | (45)m +      | - (46)m +    | • (57)m •       | + (59)m + (61)m |                             |
| (62)m=    | 222.55    | 196.23           | 206.24   | ŀ          | 185.11               | 181.57        | 16       | 62.47      | 156.26               | 171.1          | 6 170          | ).76    | 191.94       | 202.67       | 217.27          |                 | (62)                        |
| Solar D   | HW input  | calculated       | using Ap | pen        | ndix G or            | Appendix      | н (      | negativ    | e quantity           | ) (entei       | '0' if no      | sola    | r contribu   | ution to wat | er heating      | ))              |                             |
| (add a    | dditiona  | al lines if      | FGHR     | Sa         | nd/or V              | VWHRS         | ap       | plies,     | see Ap               | pendix         | (G)            |         | _            |              |                 | _               |                             |
| (63)m=    | 0         | 0                | 0        |            | 0                    | 0             |          | 0          | 0                    | 0              | (              | 0       | 0            | 0            | 0               |                 | (63)                        |
| Outpu     | t from w  | vater hea        | iter     |            |                      |               |          |            |                      |                |                |         |              |              |                 |                 |                             |
| (64)m=    | 222.55    | 196.23           | 206.24   | ŀ          | 185.11               | 181.57        | 16       | 62.47      | 156.26               | 171.1          | 6 170          | ).76    | 191.94       | 202.67       | 217.27          |                 |                             |
|           |           |                  | -        |            |                      |               |          |            |                      | 0              | utput fro      | om wa   | ater heat    | er (annual)  | 112             | 2264.22         | (64)                        |
| Heat g    | ains fro  | om water         | heatin   | g, k       | Wh/mo                | onth 0.2      | 5 í      | [0.85      | × (45)m              | + (61          | )m] + (        | 0.8 ×   | (46)n (      | n + (57)m    | n + (59)r       | n ]             |                             |
| (65)m=    | 74.23     | 65.45            | 68.81    |            | 61.77                | 60.6          | 5        | 4.24       | 52.19                | 57.14          | L 5            | 57      | 64.05        | 67.61        | 72.47           | 7               | (65)                        |
| inclu     | ude (57)  | )m in calo       | culatior | n of       | (65)m                | only if c     | ylir     | nder is    | s in the c           | dwellir        | g or h         | ot w    | ater is      | from con     | nmunity         | _<br>heating    |                             |
| 5. In     | ternal g  | ains (see        | e Table  | 5 a        | and 5a)              | 1             |          |            |                      |                |                |         |              |              |                 |                 |                             |
| Metab     | olic gai  | ns (Table        | •5) Wa   | atts       | ,<br>:               |               |          |            |                      |                |                |         |              |              |                 |                 |                             |
| motab     | Jan       | Feb              | Mar      |            | Apr                  | May           |          | Jun        | Jul                  | Au             | a s            | бер     | Oct          | Nov          | Dec             | 7               |                             |
| (66)m=    | 143.88    | 143.88           | 143.88   | 3 1        | 143.88               | 143.88        | 14       | 43.88      | 143.88               | 143.8          | 8 143          | 3.88    | 143.88       | 143.88       | 143.88          |                 | (66)                        |
| Lightir   | g gains   | (calcula         | ted in A | ı<br>qq/   | endix l              | . equati      | ion      | L9 or      | <sup>.</sup> L9a), a | lso se         | e Tabl         | e 5     |              |              |                 | -               |                             |
| (67)m=    | 30.38     | 26.98            | 21.94    | Ť          | 16. <mark>6</mark> 1 | 12.42         | 1        | 0.48       | 11.33                | 14.72          | 19             | .76     | 25.09        | 29.29        | 31.22           | 1               | (67)                        |
| Applia    | nces da   | ains (calc       | ulated   | in A       | Append               | lix L. ea     | uat      | ion L'     | 13 or L1             | 3a), al        | so see         | - Ta    | ble 5        | -            |                 | -               |                             |
| (68)m=    | 290.33    | 293.35           | 285.75   |            | 269.59               | 249.19        | 2        | 30.01      | 217.2                | 214.1          | 9 221          | .78     | 237.95       | 258.35       | 277.52          | 7               | (68)                        |
| Cookir    |           | L<br>s (calcula  | ated in  | _L<br>Anr  | endix                | L equat       | ior      | 115        | or   15a)            | also           | See T          | ahle    | 5            |              |                 | -               |                             |
| (69)m=    | 37.39     | 37.39            | 37.39    | T<br>T     | 37.39                | 37.39         | 3        | 7.39       | 37.39                | 37.39          | 37             | .39     | 37.39        | 37.39        | 37.39           | 7               | (69)                        |
| Pump      | and fa    | ins gains        | (Table   | 52         | )                    |               |          |            |                      |                |                |         |              |              |                 |                 |                             |
| (70)m-    |           |                  |          |            | 0                    | 0             |          | 0          | 0                    | 0              |                | n       | 0            | 0            | 0               | 7               | (70)                        |
|           |           |                  |          |            |                      | oc) (Tob      |          |            | •                    |                |                | •       | Ů            | Ů            | Ů               |                 |                             |
| (71)m-    | -115 1    |                  |          |            | -115 1               | -115 1        |          | )<br>115 1 | -115 1               | -115           | 1 _11          | 51      | -115 1       | _115 1       | _115 1          | 7               | (71)                        |
| (/ I)III- | heating   |                  |          |            | 110.1                | 110.1         |          | 110.1      | 110.1                | 110.           | .              | 0.1     | 110.1        | 110.1        | -110.1          |                 | ()                          |
|           |           | $\int_{0.74}$    |          | )<br>      | 95 70                | 01 <i>1</i> E | 7        | E 24       | 70.14                | 76.9           | 70             | 17      | 06.00        | 02.0         | 07.41           | 7               | (72)                        |
| (72)III=  | 99.77     | 97.4             | 92.40    |            | 05.79                | 01.45         |          | 0.04       | 70.14                | 70.0           |                | . 17    | (70) 20.09   | 71) m + (70  | 97.41           |                 | (12)                        |
|           | Interna   | I gains =        |          |            | 420.46               | 400.00        |          | (00)       | 264.94               |                | $\frac{11}{2}$ | - 07    | (70)11 + (   | 7 1)11 + (72 | 472.22          | 7               | (73)                        |
| (73)III=  | 400.04    | 403.09           | 400.34   | · ] '      | 430.10               | 409.22        |          | 302        | 304.04               | 571.0          | 0 300          | 5.07    | 415.29       | 447.7        | 472.52          |                 | (13)                        |
| Solar (   | nains are | s.<br>calculated | usina so | lar fl     | lux from             | Table 6a :    | and      | associ     | ated equa            | tions to       | convert        | t to th | e applica    | ble orienta  | ation           |                 |                             |
| Orient    | ation:    | Access F         | Factor   |            | Area                 |               |          | Flu        | x                    |                | a              |         | io appilo    | FF           |                 | Gains           |                             |
| Choine    |           | Table 6d         | aotor    |            | m²                   |               |          | Tab        | ole 6a               |                | Table          | e 6b    | -            | Table 6c     |                 | (W)             |                             |
| North     | 0.9x      | 0.77             |          | ×Г         | 5.4                  | ٩             | ×        | 1          | 0.63                 | ×Г             | 0.8            | 5       | _ × ۱        | 0.7          | =               | 24.07           | 7(74)                       |
| North     | 0.9x      | 0.77             |          | ι<br>Σ     | 5.4                  | <u> </u>      | x        | י<br>ר     | 0.32                 |                | 0.0            | 5       |              | 0.7          | =               | /6              | ](74)                       |
| North     | 0.9x      | 0.77             |          | ι<br>ΣΓ    | 5.4                  | <u> </u>      | x        | 2          | 4.53                 | L ^ L<br>V x L | 0.0            | 5       | ^ L<br>⊣ ↓ r | 0.7          | $= \frac{1}{2}$ | 79.17           | ](74)                       |
| North     | 0.9x      | 0.77             |          | ι<br>Γ     | 5.4                  | <u> </u>      | Ϋ́       | 5          | 5.46                 |                | 0.0            | 5       |              | 0.7          | =               | 125.56          | ](74)                       |
| North     | 0.04      | 0.77             |          | ^ L<br>↓ Γ | 5.4<br>              |               | ^  <br>v | - 5        | 4 70                 | ^ L<br>  ↓ Γ   | 0.0            | 5       | ╡╏╏          | 0.7          |                 | 160.44          | 」(' <sup>-*)</sup><br>](74) |
|           | 0.38      | 0.77             |          | ^ L        | ວ.4                  | 3             | ^        |            | 4.12                 | ^ L            | 0.8            | J       | ^            | 0.7          |                 | 109.14          | (**)                        |

|         | -                       |              |          |      |                | _        |         |            | 7      |              |                     |                |        |        |      |
|---------|-------------------------|--------------|----------|------|----------------|----------|---------|------------|--------|--------------|---------------------|----------------|--------|--------|------|
| North   | 0.9x                    | 0.77         | >        | (    | 5.49           | _ ×      |         | 79.99      | ×      | 0.85         | x                   | 0.7            | =      | 181.06 | (74) |
| North   | 0.9x                    | 0.77         | )        | (    | 5.49           | ×        |         | 74.68      | x      | 0.85         | x                   | 0.7            | =      | 169.05 | (74) |
| North   | 0.9x                    | 0.77         | )        | (    | 5.49           | ×        |         | 59.25      | x      | 0.85         | x                   | 0.7            | =      | 134.12 | (74) |
| North   | 0.9x                    | 0.77         | )        | (    | 5.49           | ×        |         | 41.52      | x      | 0.85         | x                   | 0.7            | =      | 93.98  | (74) |
| North   | 0.9x                    | 0.77         | >        | (    | 5.49           | ×        |         | 24.19      | x      | 0.85         | x                   | 0.7            | =      | 54.76  | (74) |
| North   | 0.9x                    | 0.77         | >        | (    | 5.49           | ×        |         | 13.12      | x      | 0.85         | x                   | 0.7            | =      | 29.69  | (74) |
| North   | 0.9x                    | 0.77         | >        | ¢    | 5.49           | ×        |         | 8.86       | x      | 0.85         | x                   | 0.7            | =      | 20.07  | (74) |
| South   | 0.9x                    | 0.77         | )        | C    | 4.7            | ×        |         | 46.75      | x      | 0.85         | x                   | 0.7            | =      | 90.6   | (78) |
| South   | 0.9x                    | 0.77         | )        | C    | 4.7            | ×        |         | 76.57      | x      | 0.85         | x                   | 0.7            | =      | 148.39 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 97.53      | x      | 0.85         | x                   | 0.7            | =      | 189.02 | (78) |
| South   | 0.9x                    | 0.77         | >        | (    | 4.7            | ×        |         | 110.23     | x      | 0.85         | x                   | 0.7            | =      | 213.63 | (78) |
| South   | 0.9x                    | 0.77         | >        | ¢    | 4.7            | ×        |         | 114.87     | x      | 0.85         | x                   | 0.7            | =      | 222.62 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 110.55     | x      | 0.85         | x                   | 0.7            | =      | 214.24 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 108.01     | x      | 0.85         | x                   | 0.7            | =      | 209.32 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 104.89     | x      | 0.85         | x                   | 0.7            | =      | 203.28 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 101.89     | x      | 0.85         | x                   | 0.7            | =      | 197.45 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 82.59      | x      | 0.85         | x                   | 0.7            | =      | 160.05 | (78) |
| South   | 0.9x                    | 0.77         | )        | (    | 4.7            | ×        |         | 55.42      | x      | 0.85         | x                   | 0.7            | =      | 107.4  | (78) |
| South   | 0.9x                    | 0.77         | >        | Ċ    | 4.7            | ₹ ×      |         | 40.4       | x      | 0.85         | x                   | 0.7            | -      | 78.29  | (78) |
| Solar   | pains in                | watts, ca    | lculate  | d .  | for each mo    | nth      |         |            | (83)m  | n = Sum(74)m | n(82)m              | 1              |        |        |      |
| (83)m=  | 114.68                  | 194.39       | 267.18   | T    | 339.19 391.    | 75       | 395.3   | 378.37     | 337    | 7.4 291.43   | 214.8               | 1 137.09       | 98.36  | 1      | (83) |
| Total g | <mark>gain</mark> s – i | nternal ar   | nd sola  | ar ( | (84)m = (73)   | m +      | (83)m   | n, watts   |        |              |                     |                |        | -      |      |
| (84)m=  | 601.32                  | 678.28       | 733.53   |      | 777.35 800.    | 97       | 777.3   | 743.21     | 709    | .28 678.31   | 6 <mark>30</mark> . | 1 584.79       | 570.67 |        | (84) |
| 7. Me   | an inter                | nal temp     | erature  | e (  | heating seas   | son)     |         |            |        |              |                     |                |        |        |      |
| Temp    | perature                | during he    | eating   | ре   | eriods in the  | living   | g area  | from Ta    | ble 9  | , Th1 (°C)   |                     |                |        | 21     | (85) |
| Utilis  | ation fac               | tor for ga   | ins for  | liv  | ving area, h'  | 1,m (    | see T   | able 9a)   |        |              |                     |                |        | L      |      |
|         | Jan                     | Feb          | Mar      | Т    | Apr Ma         | ay       | Jun     | Jul        | A      | ug Sep       | Oc                  | t Nov          | Dec    | ]      |      |
| (86)m=  | 1                       | 1            | 1        |      | 1 1            |          | 0.99    | 0.97       | 0.9    | 98 1         | 1                   | 1              | 1      |        | (86) |
| Mear    | n interna               | l tempera    | ature in | n li | ving area T1   | (fol     | low st  | eps 3 to   | 7 in T | able 9c)     |                     | -              |        | -      |      |
| (87)m=  | 19.07                   | 19.18        | 19.41    | Τ    | 19.76 20.1     | 13       | 20.49   | 20.73      | 20.    | 69 20.39     | 19.9                | 2 19.45        | 19.06  | ]      | (87) |
| Temr    | erature                 | durina he    | eating   | ne   | eriods in rest | ofd      | wellin  | a from T:  | able   |              |                     | <b>!</b>       |        | -      |      |
| (88)m=  | 18.94                   | 18.95        | 18.95    | T    | 18.97 18.9     | 97       | 18.99   | 18.99      | 18.    | 99 18.98     | 18.9                | 7 18.97        | 18.96  | 1      | (88) |
| Litilia |                         | tor for go   | uno for  |      | l              |          | 0 m (c  |            |        |              |                     |                |        | ]      |      |
| Utilisa |                         |              |          | T    |                | a I      | 2, m (s |            | 9a)    | 86 0.98      | 1                   | 1              | 1      | 1      | (89) |
| (03)11- |                         | <u>  '  </u> | ·        | 1    | 1 0.3          | <u> </u> | 0.90    | 0.02       | 0.0    |              | <u> </u>            |                |        | ]      | (00) |
| Mear    | interna                 | l tempera    | ature in | n th | ne rest of dw  | /ellin   | g T2 (  | follow ste | eps 3  | to 7 in Tal  | ble 9c)             | 7 47.07        | 40.5   | 1      | (00) |
| (90)m=  | 16.5                    | 16.67        | 17.02    |      | 17.53 18.0     | ,,       | 18.61   | 18.9       | 18.    | 8/ 18.46     | 17.7                | 11.07          | 16.5   |        |      |
|         |                         |              |          |      |                |          |         |            |        |              |                     | iving alea - ( |        | 0.3    | (91) |
| Mear    | interna                 | l tempera    | ature (f | or   | the whole d    | welli    | ng) =   | fLA × T1   | + (1   | - fLA) × T2  | 2                   |                |        | •      |      |
| (92)m=  | 17.28                   | 17.43        | 17.74    |      | 18.2   18.6    | 69       | 19.18   | 19.45      | 19.    | 42   19.04   | 18.4                | 2   17.79      | 17.27  |        | (92) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 17.28                     | 17.43                 | 17.74                 | 18.2                   | 18.69                   | 19.18                  | 19.45                 | 19.42      | 19.04       | 18.42        | 17.79        | 17.27       |           | (93)        |
|-----------------------|---------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|-----------------------|------------|-------------|--------------|--------------|-------------|-----------|-------------|
| 8. Sp                 | ace hea                   | ting requ             | uirement              |                        |                         |                        |                       |            |             |              |              |             |           |             |
| Set T<br>the ut       | i to the r<br>ilisation   | mean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta   | re obtain<br>Ible 9a    | ed at ste              | ep 11 of <sup>-</sup> | Table 9t   | o, so tha   | t Ti,m=(     | 76)m an      | d re-calc   | ulate     |             |
|                       | Jan                       | Feb                   | Mar                   | Apr                    | May                     | Jun                    | Jul                   | Aug        | Sep         | Oct          | Nov          | Dec         |           |             |
| Utilisa               | ation fac                 | tor for g             | ains, hm              | :                      |                         |                        |                       |            |             |              |              |             |           |             |
| (94)m=                | 1                         | 1                     | 1                     | 1                      | 0.99                    | 0.97                   | 0.88                  | 0.91       | 0.98        | 1            | 1            | 1           |           | (94)        |
| Usefu                 | I gains,                  | hmGm ,                | W = (94               | 4)m x (84              | 4)m                     |                        |                       |            |             |              |              |             |           |             |
| (95)m=                | 601.17                    | 677.96                | 732.81                | 775.38                 | 794.28                  | 751.07                 | 653.96                | 644.51     | 667.34      | 628.71       | 584.51       | 570.56      |           | (95)        |
| Month                 | nly avera                 | age exte              | rnal tem              | perature               | e from Ta               | able 8                 |                       |            |             |              | -            |             |           |             |
| (96)m=                | 4.3                       | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                   | 16.6                  | 16.4       | 14.1        | 10.6         | 7.1          | 4.2         |           | (96)        |
| Heat                  | loss rate                 | e for mea             | an intern             | al tempe               | erature, l              | Lm , W =               | =[(39)m ×             | ‹ [(93)m-  | – (96)m     | ]            |              |             |           |             |
| (97)m=                | 4240.35                   | 4083.09               | 3653.59               | 2987.43                | 2240.76                 | 1451.55                | 904.1                 | 955.42     | 1573.7      | 2505.1       | 3440.8       | 4228.68     |           | (97)        |
| Space                 | e heatin                  | g require             | ement fo              | r each n               | nonth, k\               | Nh/mont                | th = 0.02             | 4 x [(97)  | )m – (95    | )m] x (4     | 1)m          |             |           |             |
| (98)m=                | 2707.55                   | 2288.24               | 2173.06               | 1592.68                | 1076.19                 | 0                      | 0                     | 0          | 0           | 1396.03      | 2056.52      | 2721.64     |           |             |
|                       |                           |                       |                       |                        |                         |                        |                       | Tota       | l per year  | (kWh/year    | .) = Sum(9   | 8)15,912 =  | 16011.93  | (98)        |
| Space                 | e heatin                  | g require             | ement in              | kWh/m <sup>2</sup>     | /year                   |                        |                       |            |             |              |              | Ì           | 129.13    | (99)        |
| Qh En                 | orav roc                  | uiromor               | ote – Cor             | nmunity                | heating                 | schomo                 |                       |            |             |              |              | l           |           | ]           |
| This pr               |                           |                       |                       | ting one               |                         |                        | ator booti            | ing prov   | ided by     | 0.00mm       |              |             |           |             |
| Fractio               | n of spa                  | ace heat              | from se               | condary                | suppler/                | ng or wa               | neating (             | Table 1    | 1) '0' if n | one          | unity SCI    |             | 0         | (301)       |
| Fractio               | n of one                  |                       | from oo               | mmunitu                | a votom                 | 1 (201                 | 1) _                  |            | .,          |              |              |             |           | ]<br>](202) |
| FIACIO                |                           | ice near              | nom co                | minumity               | system                  | 1 – (301               | () =                  |            |             |              |              | I           | 1         | (302)       |
| The com               | munity so                 | heme may              | y obtain he           | eat from se            | everal sour             | ces. The p             | procedure a           | allows for | CHP and u   | up to four o | other heat   | sources; tl | he latter |             |
| Fractio               | n of hea                  | at from C             | commun                | ity boiler             | 'S                      | om power               | stations. c           | зее дррег  | idix C.     |              |              | [           | 1         | (303a)      |
| Fractio               | n of tota                 | al space              | heat fro              | m Comn                 | nunity bo               | oilers                 |                       |            |             | (3           | 02) x (303   | a) =        | 1         | (304a)      |
| Factor                | for cont                  | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo              | r commu               | inity hea  | ting sys    | tem          |              |             | 1         | (305)       |
| Distrib               | ution los                 | s factor              | (Table 1              | 2c) for c              | communi                 | ity heatir             | ng syster             | m          |             |              |              |             | 1.05      | (306)       |
| Space                 | heating                   | 9                     |                       |                        |                         |                        |                       |            |             |              |              | -           | kWh/year  | _           |
| Annua                 | space                     | heating               | requirem              | nent                   |                         |                        |                       |            |             |              |              |             | 16011.93  |             |
| Space                 | heat fro                  | m Comr                | nunity b              | oilers                 |                         |                        |                       |            | (98) x (30  | 04a) x (30   | 5) x (306) : | =           | 16812.52  | (307a)      |
| Efficier              | ncy of se                 | econdary              | /supple               | mentary                | heating                 | system                 | in % (fro             | m Table    | 4a or A     | ppendix      | E)           |             | 0         | (308        |
| Space                 | heating                   | requirer              | ment fro              | m secon                | dary/sup                | plemen                 | tary syste            | em         | (98) x (30  | 01) x 100 -  | ÷ (308) =    |             | 0         | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>water h | <b>l</b><br>neating r | equirem               | ent                    |                         |                        |                       |            |             |              |              | [           | 2264.22   | 1           |
| If DHW<br>Water       | / from co<br>heat fro     | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                        |                       |            | (64) x (30  | 03a) x (30   | 5) x (306) : | = [         | 2377.43   | (310a)      |
| Electric              | city used                 | d for hea             | t distribu            | ution                  |                         |                        |                       | 0.01       | × [(307a).  | (307e) +     | (310a)(      | 310e)] =    | 191.9     | (313)       |
| Cooling               | g Syster                  | n Energ               | y Efficie             | ncy Ratio              | 0                       |                        |                       |            |             |              |              |             | 0         | (314)       |
| Space                 | cooling                   | (if there             | is a fixe             | d cooling              | g system                | n, if not e            | enter 0)              |            | = (107) ÷   | · (314) =    |              | ĺ           | 0         | (315)       |
| Electric<br>mecha     | city for p<br>nical ve    | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra | velling (1<br>act or po | able 4f)<br>sitive inp | :<br>put from         | outside    |             |              |              |             | 0         | (330a)      |

| warm air heating system fans                                                                                           |                            |                               | 0                        | (330b) |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------|--------|
| pump for solar water heating                                                                                           |                            |                               | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)           | 0                             | (331)                    |        |
| Energy for lighting (calculated in Appendix L)                                                                         |                            |                               | 536.46                   | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                            |                               |                          |        |
|                                                                                                                        | Energy<br>kWh/year         | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | wo fuels repeat (363) to ( | 366) for the second fue       | el 90                    | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x     | 0                             | 4605.59                  | (367)  |
| Electrical energy for heat distribution [(3                                                                            | 13) x                      | 0.52                          | = 99.6                   | (372)  |
| Total CO2 associated with community systems (36                                                                        | 53)(366) + (368)(372)      | :                             | 4705.18                  | (373)  |
| CO2 associated with space heating (secondary) (30                                                                      | 09) x                      | 0                             | = 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneous                                                       | us heater (312) x          | 0.22                          | = 0                      | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =      |                               | 4705.18                  | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | (331)) x                   | 0.52                          | = 0                      | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                    | 0.52                          | 278.42                   | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                            |                               | 4983.61                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                            |                               | 40.19                    | (384)  |
| El rating (section 14)                                                                                                 |                            |                               | 60.38                    | (385)  |

| Assessor Name:       Stroma FSAP 2012       Stroma Vardaress:       Version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | User Details:                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        |                          |                       |                  |                       |              |                                   |                                               |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--------------------------|-----------------------|------------------|-----------------------|--------------|-----------------------------------|-----------------------------------------------|----------|
| Address :       , london         Address :       , london         Address :       Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         Basement       73       (1a) x       2.6       (2a) =       2015.4       (3a)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+((1n)       79       (1a) x       2.6       (2a) =       2015.4       (3a)         Number of chimneys       0       +       0       =       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assessor Name:<br>Software Name:                                                                                                                                                                                                                              | Assessor Name: Stroma FSAP 2012 Software Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version: Version |                                           |                        |                          |                       |                  |                       |              |                                   |                                               |          |
| Number of channeys       Area(m <sup>2</sup> )       Av. Height(m)       Volume(m <sup>2</sup> )         2.6       (2a)       205.4       (3a)         Duelling volume       (2a)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Address :                                                                                                                                                                                                                                                     | london                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | rioperty               | Address.                 | . Onit 10             |                  |                       |              |                                   |                                               |          |
| Area(m <sup>2</sup> )         Av. Height(m)         Volume(m <sup>2</sup> )           Basement         79         (n) x         2.0         (a)           Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)         79         (4)         79         (5)           Dwelling volume         (3a)+(3b)+(3c)+(3d)+(3d)+(3d)+(3d)+((3n)) =         205.4         (5)           2. Ventilation rate:         m <sup>3</sup> per hour         (3a)+(3b)+(3c)+(3d)+(3d)+(3d)+((3n)) =         205.4         (5)           Number of chimneys         0         + 0         0         x40 =         0         (6a)           Number of passive vents         0         x10 =         20         (7a)           Number of flueless gas fires         0         x10 =         0         (7a)           Number of storeys in the dwelling (ns)         x40 =         0         (1a)         0         (1b)           Additional infiltration         2.5 for stell or timber frame or 0.35 for masonry construction         0         (1b)         0         (1b)         0         (1b)         0         (1b)         0         (1c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Overall dwelling dime                                                                                                                                                                                                                                      | nsions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                        |                          |                       |                  |                       |              |                                   |                                               |          |
| Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       79       (a)         Dwelling volume       (3a)+(3b)+(3c)+(3d)+(3e)+(3n)       =       205.4       (5)         2. Ventiliation rate:       main       secondary       other       total       m³ per hour         Number of chimneys       0       +       0       =       0       x40       =       0       (6a)         Number of open flues       0       +       0       =       0       x40       =       0       (6a)         Number of open flues       0       +       0       =       0       x40       =       0       (6a)         Number of open flues       0       +       0       =       0       x40       =       0       (7c)         Number of flueless gas fires       0       ×40       =       0.1       (6)       0       (10)         Number of storeys in the dwelling (ns)       0       ×40       =       0.1       (6)         Additional infiltration       0.25 for steel or timber frame or 0.35 for masonry construction       1       0       (10)         If but ypes of wild are present, use the value coreso       0       1       0       (10)       0       (10) </td <td>Basement</td> <td></td> <td></td> <td>Are</td> <td><b>a(m²)</b><br/>79</td> <td>(1a) x</td> <td>Av. He</td> <td><b>ight(m)</b><br/>2.6</td> <td>(2a) =</td> <td><b>Volume(m<sup>3</sup></b> 205.4</td> <td><b>)</b><br/>(3a)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Basement                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Are                    | <b>a(m²)</b><br>79       | (1a) x                | Av. He           | <b>ight(m)</b><br>2.6 | (2a) =       | <b>Volume(m<sup>3</sup></b> 205.4 | <b>)</b><br>(3a)                              |          |
| Dwelling volume       (3a)+(3b)+(3c)+(3d)+(3a)+(3a)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total floor area TFA = (1a                                                                                                                                                                                                                                    | a)+(1b)+(1c)+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ′1d)+(1e)+(                               | 1n)                    | 79                       | (4)                   |                  |                       | J            | L                                 |                                               |          |
| 2. Ventilation rate:main<br>heatingsecondary<br>heatingothertotalm³ per hourNumber of chimneys0+0=0(6a)Number of open flues0+0=0(6b)Number of intermittent fans2x10 =0(7a)Number of passive vents0x40 =0(7a)Number of flueless gas fires0x40 =0(7a)Number of flueless gas fires0x40 =0(7a)Number of storeys in the dwelling (ns)x40 =20-(5) =0Adducting areas of openings); if equal user 0.35for masonry construction0(11)If buspeed wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)0Percentage of windows and doors draught stripped0(14)0Window infiltration0.25-(0.2 x (14) + 100) =(16)Air permeability value, ep50, expressed in cubic metres per hour per square metre of envelope area1(17)Alf permeability value, ep50, expressed in cubic metres per hour per square metre of envelope area1(16)Air permeability value, ep50, expressed in cubic metres per hour per square metre of envelope area1(16)Air permeability value, ep50, expressed in cubic metres per hour per square metre of envelope area1(16)Air permeability value ep60s if a pressuriation test has been done or a degree air permeability is being used0(14)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwelling volume                                                                                                                                                                                                                                               | , ( -, ( -, )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | ′ <u> </u>             | 10                       | (3a)+(3b)             | )+(3c)+(3c       | d)+(3e)+              | .(3n) =      | 205.4                             | (5)                                           |          |
| main<br>heating<br>heatingscendary<br>heatingothertotalm <sup>a</sup> per hourNumber of chimneys0+0=0x40 =0(6a)Number of open flues0+0=0x20 =0(6b)Number of passive vents2x10 =20(7a)Number of passive vents0x10 =0(7a)Number of flueless gas fires0x40 =0(7a)Infiltration due to chimneys, flues and fans =(6a)+(7a)+(7b)+(7c) =20+ (a) =0Infiltration due to chimneys, flues and fans =(6a)+(7a)+(7b)+(7c) =20+ (a) =0(a)Number of storeys in the dwelling (ns)Additional infiltration(a) =0(a)(a)(a)Additional infiltration0.25 for steel or timber frame or 0.35 for masonry construction0(11)0(10)If both types of wall are present, use the value corresponding to the greater wall area (atter0(12)(14)(14)Window infiltration0.25 for steel or timber frame or 0.35 for masonry construction0(12)(14)If both types of wall are present, use the value corresponding to the greater wall area (atter0(14)(14)Window infiltration rate(b) + (10) + (11) + (12) + (13) + (15) =(16)(16)If parentability value, q60, expressed in cubic metres per hour er square metre of envelope area(10)(17)If based on air permeability value, q60, expressed in cubic metres per hour er square metre of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Ventilation rate:                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        |                          |                       |                  |                       |              |                                   |                                               |          |
| Number of intermittent fans2x10 =20(7a)Number of passive vents0x10 =0(7b)Number of flueless gas fires0x40 =0(7c)Air changes per hourInfiltration due to chimneys, flues and fans = (89)+(60)+(7a)+(7b)+(7b) =20+(5) =0.1(8)If a pressurisation test has been carried out or is intended, proceed to (17) otherwise continue from (9) to (16)0(9)Number of storeys in the dwelling (ns)0(9)0(10)Additional infiltration(10)0(11)0(11)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction0(12)if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducing areas of opening); if equal use: 0.350(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 x (14) + 100] =(15)Infiltration rate(a) + (10) + (11) + (12) + (13) + (15) =0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used0Number of sides sheltered01(19)Air permeability value, applies if a pressurisation test has been d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of chimneys<br>Number of open flues                                                                                                                                                                                                                    | main<br>heating<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | second<br>heating<br>+ 0<br>+ 0           | ary<br><u>9</u><br>+ [ | 0<br>0                   | ] = [                 | <b>total</b> 0 0 | x -                   | 40 =<br>20 = | m <sup>3</sup> per hou            | r<br>(6a)<br>(6b)                             |          |
| Number of passive vents0 $x10 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$ 0 $r0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of intermittent far                                                                                                                                                                                                                                    | าร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                         |                        |                          | - F                   | 2                | x                     | 10 =         | 20                                | (7a)                                          |          |
| Number of flueless gas fires $0$ $x40$ $0$ $7cc$ Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c)$ = $20$ $+(5)$ = $0.1$ $(8)$ If a pressurisation test has been carried out or is intended, proceed to $(17)$ , otherwise continue from $(0)$ to $(36)$ Number of storeys in the dwelling (ns)Additional infiltrationStructural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after doubcing areas at openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00010Nindwaw infiltration0.25 - $[0.2 \times (14) \div 100] =$ 0010011If or draught lobby, enter 0.05, else enter 000001011Air premability value, q50, expressed in cubic metres per hour per square metre of envelope area101011Air premability value, q50, expressed in cubic metres per a per per advance of a degree air permeability is being usedNumber of sides sheltered <td co<="" td=""><td>Number of passive vents</td><td></td><td></td><td></td><td></td><td>Г</td><td>0</td><td>x</td><td>10 =</td><td>0</td><td><br/>(7b)</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>Number of passive vents</td> <td></td> <td></td> <td></td> <td></td> <td>Г</td> <td>0</td> <td>x</td> <td>10 =</td> <td>0</td> <td><br/>(7b)</td>                                                                                                         | Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                        |                          |                       | Г                | 0                     | x            | 10 =                              | 0                                             | <br>(7b) |
| Air changes per hour         Infitration due to chimneys, flues and fans = $[(60)+(70)+(70) =$ 20       + (5) =       0.1       (8)         It a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (2) to (16)       0       (9)         Additional infiltration       [(9)+1]×0.1 =       0       (10)         Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction       0       (11)         if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal use 0.35       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       (12)         If no draught lobby, enter 0.05, else enter 0       0       (13)         Percentage of windows and doors draught stripped       0       (14)         Window infiltration       0.25 - [0.2 x (14) + 100] =       0       (15)         Infiltration rate       (8) + (10) + (11) + (12) + (13) + (15) =       0       (16)         Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area       10       (17)         If based on air permeability value, then (18) = (17) + 20]+(8) atterwise (18) = (16)       0.6       (18)         Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number of flueless gas fir                                                                                                                                                                                                                                    | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                        |                          |                       | 0                | X 4                   | 40 =         | 0                                 | (7c)                                          |          |
| Infiltration due to chimneys, flues and fans = $(66)+(6b)+(7a)+(7b)+(7c) = 20 + (6) = 0.1$ (8)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (9)<br>Additional infiltration (9)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration 0.25 - [0.2 x (14) + 100] =<br>Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (19) = [(17) + 20]+(8), otherwise (18) = (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then (19) = [(17) + 20]+(8), otherwise (18) = (16)<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Lan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7<br>Wind Factor (22a)m = (22)m ÷ 4<br>(22)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                  | Air changes                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        |                          |                       |                  |                       |              |                                   |                                               |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Infiltration due to chimney                                                                                                                                                                                                                                   | s flues and fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ans - (6a) + (6b)                         | +(7a)+(7b)+(           | 7c) =                    | Г                     |                  |                       | • (5)        |                                   |                                               |          |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 0Percentage of windows and doors draught strippedWindow infiltration0.25 - [0.2 x (14) $\div$ 100] =0 (14)Window infiltration0.25 - [0.2 x (14) $\div$ 100] =0 (14)Window infiltration rate(8) $\div$ (10) $\div$ (11) $\div$ (12) $\div$ (13) $\div$ (15)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredNumber of sides sheltered10Shelter factor20) = 1 - [0.075 x (19)] =101011)1111111121131141151151161161171181191191111111111111111111111111111111111111111111111111111111111111111111111111111 <t< td=""><td colspan="10">Infiltration due to chimneys, flues and fans = <math>(6a)+(6b)+(7a)+(7b)+(7c) = 20 \div (5) =</math><br/>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br/>Number of storeys in the dwelling (ns)<br>Additional infiltration</br></td><td>(9)<br/>(10)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 20 \div (5) =$<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        |                          |                       |                  |                       |              |                                   | (9)<br>(10)                                   |          |
| If no draught lobby, enter 0.2 (difference) of 0.1 (sealed), else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $0.25 \cdot [0.2 \times (14) \pm 100] =$<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then $(18) = [(17) \pm 20] + (8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7<br>Wind Factor (22a)m = (22)m $\div 4$<br>(22a)m 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Structural infiltration: 0.<br>if both types of wall are pro-<br>deducting areas of openin                                                                                                                                                                    | 25 fo <mark>r stee</mark> l or<br>esent, use the va<br>gs); if equal user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | timber frame<br>lue corresponding<br>0.35 | or 0.35 fo             | r masonr<br>ter wall are | ry constr<br>a (after | ruction          | •                     |              | 0                                 | ](11)                                         |          |
| In the dradight robuly, club of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object of the original object | If no draught lobby, ent                                                                                                                                                                                                                                      | 001, effet 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (unsealed) of                             | 0.1 (Seale             | eu), eise                |                       |                  |                       |              | 0                                 | = (12) $=$ (13)                               |          |
| Uniformation of the correction and given uppedWindow infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ 0Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.6Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used(18)Number of sides sheltered1(19)Shelter factor(20) = 1 - [0.075 \times (19)] =0.92Infiltration rate incorporating shelter factor(21) = (18) × (20) =0.55Infiltration rate modified for monthly wind speed(21) = (18) × (20) =0.55Monthly average wind speed from Table 7(22)m = $5.1$ $5$ $4.9$ (22)m = $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m = $1.27$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Percentage of windows                                                                                                                                                                                                                                         | and doors dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aught stripped                            |                        |                          |                       |                  |                       |              | 0                                 | = (13) $=$ (14)                               |          |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10(17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.6(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0(16)Number of sides sheltered1(17)0Shelter factor(20) = 1 - [0.075 x (19)] =0.92(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.55(21)Infiltration rate modified for monthly wind speedJanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7(22)m=5.154.94.44.33.83.744.34.54.7Wind Factor (22a)m = (22)m ÷ 4(22a)m=1.231.11.080.950.9211.081.121.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Window infiltration                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        | 0.25 - [0.2              | 2 x (14) ÷ 1          | 00] =            |                       |              | 0                                 | (15)                                          |          |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area10 (17)If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 0.6 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides shelteredNumber of sides sheltered1Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed0.55Monthly average wind speed from Table 7 $(22)m=$ $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ $(22a)m=$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Infiltration rate                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                        | (8) + (10)               | + (11) + (1           | 2) + (13)        | + (15) =              |              | 0                                 | (16)                                          |          |
| If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides sheltered<br>Shelter factor (20) = 1 - [0.075 x (19)] = 10.92 (20)<br>Infiltration rate incorporating shelter factor (21) = (18) x (20) = 0.55 (21)<br>Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$<br>Wind Factor (22a)m = (22)m $\div 4$<br>(22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Air permeability value,                                                                                                                                                                                                                                       | q50, expresse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d in cubic met                            | res per ho             | our per s                | quare m               | etre of e        | envelope              | area         | 10                                | (17)                                          |          |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered1Shelter factor $(20) = 1 \cdot [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed $0.55$ JanFebMarAprMayJunJunAugSepOctNovDecMonthly average wind speed from Table 7(22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.3$ $4.5$ $4.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If based on air permeabili                                                                                                                                                                                                                                    | ty value, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (18) = [(17) ÷ 20]                        | +(8), otherw           | ise (18) = (             | (16)                  |                  |                       |              | 0.6                               | (18)                                          |          |
| Number of sides sheltered       1       (19)         Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $(20) = 1 - [0.075 \times (19)] =$ (20)         Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.92$ (20)         Infiltration rate modified for monthly wind speed $0.55$ (21)         Infiltration rate modified for monthly wind speed $0.55$ (21)         Monthly average wind speed from Table 7 $(22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7$ Wind Factor (22a)m = (22)m ÷ 4 $(22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1  1.08  1.12  1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Air permeability value applies                                                                                                                                                                                                                                | s if a pressurisatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on test has been o                        | lone or a de           | gree air pe              | rmeability            | is being u       | sed                   |              | 1                                 | _                                             |          |
| Infiltration rate incorporating shelter factor       (21) = (18) × (20) = $0.92$ (20)         Infiltration rate incorporating shelter factor       (21) = (18) × (20) = $0.55$ (21)         Infiltration rate modified for monthly wind speed $\overline{1200}$ Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4       (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of sides sheltered<br>Shelter factor                                                                                                                                                                                                                   | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                        | (20) = 1 -               | [0.075 x (1           | 9)] =            |                       |              | 1                                 | (19)                                          |          |
| Initiation rate modified for monthly wind speed       Image wind speed from Table 7       Image wind speed from Table 7         (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m ÷ 4       (22a)m = 1.27 $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Infiltration rate incorporati                                                                                                                                                                                                                                 | na shelter fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tor                                       |                        | (21) = (18)              | $(20) \times (20) =$  | <b>(</b> )]      |                       |              | 0.92                              | $ = \begin{bmatrix} 20 \\ -21 \end{bmatrix} $ |          |
| Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.1$ $5$ $4.9$ $4.4$ $4.3$ $3.8$ $3.7$ $4$ $4.3$ $4.5$ $4.7$ Wind Factor (22a)m = (22)m $\div 4$ (22a)m= $1.27$ $1.25$ $1.23$ $1.1$ $1.08$ $0.95$ $0.92$ $1$ $1.08$ $1.12$ $1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Infiltration rate modified for                                                                                                                                                                                                                                | or monthly win                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | id sneed                                  |                        | () (,                    | ) // (20)             |                  |                       |              | 0.55                              | _(21)                                         |          |
| Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image       Image <t< td=""><td>Jan Feb</td><td>Mar Apr</td><td>May Jur</td><td>Jul</td><td>Αυα</td><td>Sep</td><td>Oct</td><td>Nov</td><td>Dec</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jan Feb                                                                                                                                                                                                                                                       | Mar Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | May Jur                                   | Jul                    | Αυα                      | Sep                   | Oct              | Nov                   | Dec          |                                   |                                               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monthly average wind spe                                                                                                                                                                                                                                      | ed from Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 7                                       |                        | 1                        |                       |                  | 1                     |              | 1                                 |                                               |          |
| Wind Factor (22a)m = (22)m $\div$ 4         (22a)m=       1.27       1.25       1.1       1.08       0.95       0.92       1       1.08       1.12       1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (22)m= 5.1 5                                                                                                                                                                                                                                                  | 4.9 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.3 3.8                                   | 3.8                    | 3.7                      | 4                     | 4.3              | 4.5                   | 4.7          |                                   |                                               |          |
| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wind Factor (22a)m = (22                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                         | _1                     | 1                        | 1                     | 1                |                       | 1            | I                                 |                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (22a)m= 1.27 1.25 1                                                                                                                                                                                                                                           | 1.23 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08 0.95                                 | 0.95                   | 0.92                     | 1                     | 1.08             | 1.12                  | 1.18         | ]                                 |                                               |          |

| Adjust               | ed infiltr               | ation rat               | e (allowi                 | ng for sh                | nelter an   | d wind s      | speed) =        | (21a) x        | (22a)m      |                |             |                    |             |       |
|----------------------|--------------------------|-------------------------|---------------------------|--------------------------|-------------|---------------|-----------------|----------------|-------------|----------------|-------------|--------------------|-------------|-------|
| <u> </u>             | 0.7                      | 0.69                    | 0.68                      | 0.61                     | 0.59        | 0.52          | 0.52            | 0.51           | 0.55        | 0.59           | 0.62        | 0.65               |             |       |
| Calcul<br>If ma      | ate etter                | ctive air               | change                    | rate for t               | he appli    | cable ca      | se              |                |             |                |             |                    | 0           | (220) |
| lf exh               | aust air h               | eat pump                | usina App                 | endix N. (2              | 3b) = (23a  | a) x Fmv (e   | equation (I     | N5)) . other   | wise (23b   | ) = (23a)      |             |                    | 0           | (23a) |
| If bala              | anced with               | heat reco               | overv: effic              | iencv in %               | allowing f  | or in-use f   | actor (fron     | n Table 4h     | ) =         | , (,           |             |                    | 0           | (23c) |
| a) If                | halance                  | d mech                  | ,<br>anical ve            | ntilation                | with he     | at recove     | ∘rv (M\/I       | /<br>HR) (24a  | m = (2)     | 2h)m + (       | 23h) x [′   | l – (23c)          | 0<br>∸ 1001 | (200) |
| (24a)m=              |                          |                         |                           | 0                        | 0           | 0             |                 |                | 0           | 0              |             | 0                  |             | (24a) |
| b) If                | balance                  | l<br>d mech             | I<br>anical ve            | Intilation               | without     | L<br>heat rec | L<br>coverv (N  | L<br>/IV) (24b | )m = (22    | l<br>2b)m + (; | L<br>23b)   |                    |             |       |
| (24b)m=              | 0                        | 0                       |                           | 0                        | 0           | 0             |                 | 0              | 0           | 0              | 0           | 0                  |             | (24b) |
| c) If                | whole h                  | u<br>ouse ex            | ract ver                  | tilation o               | or positiv  | input v       | ı<br>ventilatio | on from c      | outside     |                |             |                    |             |       |
| c)                   | if (22b)n                | n < 0.5 ×               | (23b), 1                  | hen (240                 | c) = (23b   | o); otherv    | vise (24        | c) = (22b      | o) m + 0.   | 5 × (23b       | )           |                    |             |       |
| (24c)m=              | 0                        | 0                       | 0                         | 0                        | 0           | 0             | 0               | 0              | 0           | 0              | 0           | 0                  |             | (24c) |
| d) If                | natural                  | ventilatio              | on or wh                  | ole hous                 | e positiv   | ve input      | ventilatio      | on from l      | oft         |                |             |                    |             |       |
| i                    | if (22b)n                | n = 1, th               | en (24d)                  | m = (22                  | o)m othe    | erwise (2     | 4d)m =          | 0.5 + [(2      | 2b)m² x     | 0.5]           |             |                    |             |       |
| (24d)m=              | 0.75                     | 0.74                    | 0.73                      | 0.68                     | 0.68        | 0.64          | 0.64            | 0.63           | 0.65        | 0.68           | 0.69        | 0.71               |             | (24d) |
| Effe                 | ctive air                | change                  | rate - er                 | nter (24a                | ) or (24t   | o) or (24     | c) or (24       | d) in box      | (25)        |                |             |                    |             |       |
| (25)m=               | 0.75                     | 0.74                    | 0.73                      | 0.68                     | 0.68        | 0.64          | 0.64            | 0.63           | 0.65        | 0.68           | 0.69        | 0.71               |             | (25)  |
| 3. He                | at l <mark>osse</mark>   | s and he                | eat loss                  | oaramete                 | er:         |               |                 |                |             |                |             |                    |             |       |
| ELEN                 |                          | Gros                    | ss                        | Openin                   | gs          | Net Ar        | ea              | U-valu         | Je          | AXU            |             | k-value            | e           | AXk   |
|                      |                          | area                    | (m²)                      | m                        | 2           | A ,r          | n²              | W/m2           | ĸ           | (W/I           | K)          | kJ/m²·l            | <           | kJ/K  |
| Doors                |                          |                         |                           |                          |             | 1.6           | x               | 1.4            | = [         | 2.24           |             |                    |             | (26)  |
| Windo                | ws Type                  | e 1                     |                           |                          |             | 3.12          | x1              | /[1/( 4.8 )+   | 0.04] =     | 12.56          |             |                    |             | (27)  |
| Windo                | ws Type                  | e 2                     |                           |                          |             | 3.66          | x1              | /[1/( 4.8 )+   | 0.04] =     | 14.74          |             |                    |             | (27)  |
| Walls <sup>-</sup>   | Type1                    | 89.                     | 2                         | 6.78                     |             | 82.42         | <u>2</u> X      | 1.27           | =           | 104.83         |             |                    |             | (29)  |
| Walls 7              | Type2                    | 26.6                    | 63                        | 1.6                      |             | 25.03         | 3 X             | 2.1            | =           | 52.56          |             |                    |             | (29)  |
| Roof                 |                          | 46.                     | 5                         | 0                        |             | 46.5          | x               | 0.28           | =           | 13.02          |             |                    |             | (30)  |
| Total a              | area of e                | elements                | , m²                      |                          |             | 162.3         | 3               |                |             |                |             |                    |             | (31)  |
| Party v              | wall                     |                         |                           |                          |             | 5.3           | x               | 0              |             | 0              |             |                    |             | (32)  |
| * for win            | idows and                | roof wind               | ows, use e                | effective wi             | ndow U-va   | alue calcul   | ated using      | g formula 1,   | /[(1/U-valu | ie)+0.04] a    | as given in | paragraph          | <br>1 3.2   |       |
| ** inclua            | le the area              | as on both              | sides of ir               | nternal wal              | ls and par  | titions       |                 |                |             |                |             |                    |             |       |
| Fabric               | heat los                 | ss, W/K :               | = S (A x                  | U)                       |             |               |                 | (26)(30)       | + (32) =    |                |             |                    | 199.96      | (33)  |
| Heat c               | apacity                  | Cm = S(                 | (A x k )                  |                          |             |               |                 |                | ((28)       | .(30) + (32    | 2) + (32a). | (32e) =            | 0           | (34)  |
| Therm                | al mass                  | parame                  | ter (TM                   | <sup>-</sup> = Cm ÷      | - TFA) ir   | n kJ/m²K      |                 |                | Indica      | tive Value     | : High      |                    | 450         | (35)  |
| For desi<br>can be i | ign assess<br>used inste | sments wh<br>ad of a de | ere the de<br>tailed calc | tails of the<br>ulation. | construct   | ion are not   | t known pr      | recisely the   | indicative  | values of      | TMP in Ta   | able 1f            |             |       |
| Therm                | al bridge                | es : S (L               | x Y) cal                  | culated (                | using Ap    | pendix ł      | <               |                |             |                |             |                    | 24.8        | (36)  |
| if details           | s of therma              | al bridging             | are not kr                | own (36) =               | = 0.15 x (3 | 1)            |                 |                |             |                |             |                    | 2110        | ()    |
| Total f              | abric he                 | at loss                 |                           |                          |             |               |                 |                | (33) +      | (36) =         |             |                    | 224.76      | (37)  |
| Ventila              | ation hea                | at loss ca              | alculated                 | monthl                   | /           |               |                 |                | (38)m       | = 0.33 × (     | 25)m x (5)  |                    |             |       |
|                      | Jan                      | Feb                     | Mar                       | Apr                      | May         | Jun           | Jul             | Aug            | Sep         | Oct            | Nov         | Dec                |             |       |
| (38)m=               | 50.71                    | 50.06                   | 49.42                     | 46.41                    | 45.85       | 43.23         | 43.23           | 42.74          | 44.24       | 45.85          | 46.99       | 48.18              |             | (38)  |
| Heat tr              | ransfer o                | coefficie               | nt, W/K                   |                          |             |               |                 |                | (39)m       | = (37) + (3    | 38)m        |                    |             |       |
| (39)m=               | 275.47                   | 274.82                  | 274.18                    | 271.17                   | 270.61      | 267.99        | 267.99          | 267.5          | 269         | 270.61         | 271.75      | 272.94             |             |       |
|                      | E                        |                         |                           |                          |             |               |                 |                |             | Average =      | Sum(39)1    | <sub>12</sub> /12= | 271.17      | (39)  |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | /m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |         |         |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|---------|---------|
| (40)m=                         | 3.49                            | 3.48                                   | 3.47                                 | 3.43                                    | 3.43                                     | 3.39                                  | 3.39                         | 3.39                   | 3.41                  | 3.43                      | 3.44                                  | 3.45     |         |         |
| · / L                          |                                 |                                        | L                                    |                                         |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1                              | 12 /12=  | 3.43    | (40)    |
| Numbe                          | r of day                        | s in moi                               | nth (Tab                             |                                         | May                                      | lun                                   |                              | <u><u>Aug</u></u>      | Son                   | Oct                       | Nov                                   | Dec      |         |         |
| (11)m-                         | Jan<br>21                       | reb                                    | 1VId1                                | 20                                      | 1VIA y                                   | 20                                    | 21                           | Aug                    | Sep                   | 21                        | 20                                    | 21       |         | (11)    |
| (41)m=                         | 31                              | 20                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |         | (41)    |
| 4. Wat                         | ter heat                        | ting ene                               | rgy requ                             | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:    |         |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | ipancy,  <br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                              | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 2.<br>.9)                             | 44       |         | (42)    |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 92<br>f                               | 2.24     |         | (43)    |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |         |         |
| Hot wate                       | r usage ii                      | n litres pei                           | r day for ea                         | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                   | (43)                   |                       |                           |                                       |          | I       |         |
| (44)m=                         | 101.46                          | 97.77                                  | 94.08                                | 90.39                                   | 86.7                                     | 83.01                                 | 83.01                        | 86.7                   | 90.39                 | 94.08                     | 97.77                                 | 101.46   |         | <b></b> |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,ı                            | m x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1106.83 | (44)    |
| (45)m=                         | 150.46                          | 131.59                                 | 135.79                               | 118.39                                  | 113.6                                    | 98.02                                 | 90.83                        | 104.23                 | 105.48                | 122.93                    | 134.18                                | 145.71   |         | _       |
| lf instanta                    | aneous w                        | ater heati                             | ng at point                          | t of use (no                            | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1451.23 | (45)    |
| (46)m=                         | 22.57                           | 19.74                                  | 20.37                                | 17.76                                   | 17.04                                    | 14.7                                  | 13.63                        | 15.64                  | 15.82                 | 18.44                     | 20.13                                 | 21.86    |         | (46)    |
| Storage                        | e volum                         | e (litres)                             | includir                             | ng any so                               | olar or W                                | WHRS                                  | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |         | (47)    |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                               | velling, e                               | nter 110                              | ) litres in                  | (47)                   |                       |                           |                                       |          |         |         |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this ir                             | ncludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | (47)                                  |          |         |         |
| Water s                        | storage                         | loss:                                  |                                      |                                         | '- I                                     |                                       | - (- )-                      |                        |                       |                           |                                       |          | I       | (10)    |
| a) if ma                       | anufact                         | urer's de                              | eclared I                            | OSS TACIO                               | or is kno                                | wn (kvvi                              | n/day):                      |                        |                       |                           |                                       | 0        |         | (48)    |
| Tempe                          |                                 |                                        | m rabie                              |                                         |                                          |                                       |                              | (40) (40)              | \<br>\                |                           |                                       | 0        |         | (49)    |
| Energy<br>b) If m              | lost fro                        | m water<br>urer's de                   | storage                              | , KVVN/ye<br>cylinder l                 | ear<br>loss fact                         | or is not                             | known:                       | (48) X (49)            | ) =                   |                           | 1                                     | 10       |         | (50)    |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                 | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       |         | (51)    |
| Volume                         | e factor                        | from Ta                                | ble 2a                               | 011 4.0                                 |                                          |                                       |                              |                        |                       |                           | 1.                                    | .03      |         | (52)    |
| Tempe                          | rature fa                       | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |         | (53)    |
| Energy                         | lost fro                        | m water                                | <sup>-</sup> storage                 | , kWh/ye                                | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | .03      |         | (54)    |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  | ·                                       |                                          |                                       |                              |                        |                       |                           | 1.                                    | .03      |         | (55)    |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |         |         |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (56)    |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)                              | m = (56)m                                | x [(50) – (                           | [H11)] ÷ (5                  | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | ix H    |         |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (57)    |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |         | (58)    |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                | month (                                  | 59)m =                                | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |         |         |
| (mod                           | itied by                        | tactor f                               | rom Tab                              | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | ostat)                                | 00.0-    | l       |         |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |         | (59)    |

| Combi                                                                                                            | loss ca  | alculated   | for eac         | h mont       | h (61)m =   | (60  | D) ÷ 36 | 65 × (41)   | m            |              |            |              |             |               |      |
|------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------|--------------|-------------|------|---------|-------------|--------------|--------------|------------|--------------|-------------|---------------|------|
| (61)m=                                                                                                           | 0        | 0           | 0               | 0            | 0           |      | 0       | 0           | 0            | 0            | 0          | 0            | 0           |               | (61) |
| Total h                                                                                                          | eat rec  | quired for  | water l         | heating      | calculate   | d fo | or eacl | h month     | (62)m =      | = 0.85 ×     | (45)m +    | (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=                                                                                                           | 205.74   | 181.52      | 191.07          | 171.8        | 8 168.87    | 1    | 51.52   | 146.11      | 159.51       | 158.97       | 178.2      | 187.68       | 200.99      | ]             | (62) |
| Solar DI                                                                                                         | HW input | calculated  | using Ap        | pendix C     | or Appendi  | хH   | (negati | ve quantity | v) (enter 'C | ' if no sola | r contribu | tion to wate | er heating) | -             |      |
| (add a                                                                                                           | dditiona | al lines if | FGHR            | S and/c      | r WWHR      | S ap | oplies  | , see Ap    | pendix (     | G)           |            |              |             | _             |      |
| (63)m=                                                                                                           | 0        | 0           | 0               | 0            | 0           |      | 0       | 0           | 0            | 0            | 0          | 0            | 0           |               | (63) |
| Output                                                                                                           | from v   | vater hea   | ter             |              |             |      |         |             |              | -            | -          |              | _           | _             |      |
| (64)m=                                                                                                           | 205.74   | 181.52      | 191.07          | 171.8        | 8 168.87    | 1    | 51.52   | 146.11      | 159.51       | 158.97       | 178.2      | 187.68       | 200.99      |               | _    |
|                                                                                                                  |          |             |                 |              |             |      |         |             | Out          | out from w   | ater heate | er (annual)  | 12          | 2102.07       | (64) |
| Heat g                                                                                                           | ains fro | om water    | heating         | g, kWh/      | month 0.2   | 25 ´ | [0.85   | × (45)m     | + (61)n      | n] + 0.8 x   | x [(46)m   | + (57)m      | + (59)m     | ]             |      |
| (65)m=                                                                                                           | 68.64    | 60.56       | 63.76           | 57.3         | 56.38       |      | 50.6    | 48.81       | 53.27        | 53.08        | 59.48      | 62.63        | 67.06       |               | (65) |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating |          |             |                 |              |             |      |         |             |              |              |            |              |             |               |      |
| 5. Int                                                                                                           | ternal g | ains (see   | e Table         | 5 and        | 5a):        |      |         |             |              |              |            |              |             |               |      |
| Metab                                                                                                            | olic gai | ns (Table   | e 5), Wa        | atts         |             |      |         |             |              |              |            |              |             |               |      |
|                                                                                                                  | Jan      | Feb         | Mar             | Ар           | · May       | Γ    | Jun     | Jul         | Aug          | Sep          | Oct        | Nov          | Dec         |               |      |
| (66)m=                                                                                                           | 122.18   | 122.18      | 122.18          | 122.1        | 8 122.18    | 1    | 22.18   | 122.18      | 122.18       | 122.18       | 122.18     | 122.18       | 122.18      |               | (66) |
| Lightin                                                                                                          | g gains  | (calcula    | ted in A        | Append       | x L, equa   | tion | L9 o    | r L9a), a   | lso see      | Table 5      |            |              |             |               |      |
| (67)m=                                                                                                           | 22.54    | 20.02       | 16.28           | 12.3         | 9.21        |      | 7.78    | 8.4         | 10.92        | 14.66        | 18.62      | 21.73        | 23.16       |               | (67) |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                              |          |             |                 |              |             |      |         |             |              |              |            |              |             |               |      |
| (68)m=                                                                                                           | 217.34   | 219.59      | 213.91          | 201.8        | 1 186.54    | 1    | 72.18   | 162.59      | 160.34       | 166.02       | 178.12     | 193.39       | 207.75      |               | (68) |
| Cookir                                                                                                           | ng gains | s (calcula  | ted in <i>i</i> | Append       | ix L, equa  | tion | ר L15   | or L15a)    | , also s     | ee Table     | 5          |              |             |               |      |
| (69)m=                                                                                                           | 35.22    | 35.22       | 35.22           | 35.2         | 35.22       | 3    | 35.22   | 35.22       | 35.22        | 35.22        | 35.22      | 35.22        | 35.22       |               | (69) |
| Pumps                                                                                                            | and fa   | ans gains   | (Table          | 5a)          |             |      |         |             |              |              |            |              |             |               |      |
| (70)m=                                                                                                           | 0        | 0           | 0               | 0            | 0           | Г    | 0       | 0           | 0            | 0            | 0          | 0            | 0           | ]             | (70) |
| Losses                                                                                                           | s e.g. e | vaporatio   | n (neg          | ative va     | lues) (Tal  | ble  | 5)      |             |              |              |            | <u>.</u>     |             | 1             |      |
| (71)m=                                                                                                           | -97.74   | -97.74      | -97.74          | -97.7        | 4 -97.74    | -    | 97.74   | -97.74      | -97.74       | -97.74       | -97.74     | -97.74       | -97.74      | ]             | (71) |
| Water                                                                                                            | heating  | gains (T    | able 5          | )            |             |      |         |             |              |              | <b></b>    | <u>.</u>     |             | 1             |      |
| (72)m=                                                                                                           | 92.26    | 90.13       | 85.7            | 79.6         | 75.78       | 7    | 70.28   | 65.61       | 71.6         | 73.72        | 79.95      | 86.98        | 90.13       | ]             | (72) |
| Total i                                                                                                          | nterna   | l gains =   |                 |              |             |      | (66)    | m + (67)m   | + (68)m ·    | + (69)m +    | (70)m + (  | 71)m + (72)  | m           | 1             |      |
| (73)m=                                                                                                           | 391.79   | 389.39      | 375.54          | 353.4        | 8 331.19    | 3    | 309.9   | 296.26      | 302.51       | 314.06       | 336.34     | 361.76       | 380.7       | ]             | (73) |
| 6. So                                                                                                            | lar gain | is:         | 1               | 1            |             | -    |         |             |              | <u> </u>     |            |              |             |               |      |
| Solar g                                                                                                          | ains are | calculated  | using so        | lar flux fro | om Table 6a | and  | lassoci | iated equa  | tions to co  | onvert to th | ne applica | ble orientat | ion.        |               |      |
| Orienta                                                                                                          | ation:   | Access F    | actor           | Ar           | ea          |      | Flu     | х           |              | g_           |            | FF           |             | Gains         |      |
|                                                                                                                  |          | Table 6d    |                 | rr           | 2           |      | Tal     | ole 6a      | Т            | able 6b      | T          | able 6c      |             | (W)           |      |
| North                                                                                                            | 0.9x     | 0.77        |                 | x            | 3.66        | x    | 1       | 0.63        | x            | 0.85         | x          | 0.7          | =           | 16.05         | (74) |
| North                                                                                                            | 0.9x     | 0.77        | :               | x            | 3.66        | x    | 2       | .32         | x            | 0.85         | x          | 0.7          | =           | 30.67         | (74) |
| North                                                                                                            | 0.9x     | 0.77        |                 | x            | 3.66        | x    | 3       | 4.53        | x            | 0.85         | x          | 0.7          | =           | 52.11         | (74) |
| North                                                                                                            | 0.9x     | 0.77        |                 | ×            | 3.66        | x    | 5       | 5.46        | x            | 0.85         | x          | 0.7          | =           | 83.7          | (74) |
| North                                                                                                            | 0.9x     | 0.77        |                 | x            | 3.66        | x    | 7       | 4.72        | x            | 0.85         | _ × [      | 0.7          | =           | 112.76        | (74) |

| North                 | 0.9x                   | 0.77                   | :         | x     | 3.66           |                | x    | 79.99                                     | x      | 0.85                        | x                   | 0.7           | =          | 120.71 | (74) |
|-----------------------|------------------------|------------------------|-----------|-------|----------------|----------------|------|-------------------------------------------|--------|-----------------------------|---------------------|---------------|------------|--------|------|
| North                 | 0.9x                   | 0.77                   |           | x     | 3.66           |                | x    | 74.68                                     | x      | 0.85                        | x                   | 0.7           | =          | 112.7  | (74) |
| North                 | 0.9x                   | 0.77                   | :         | x     | 3.66           |                | x    | 59.25                                     | x      | 0.85                        | x                   | 0.7           | =          | 89.41  | (74) |
| North                 | 0.9x                   | 0.77                   |           | x     | 3.66           |                | x    | 41.52                                     | x      | 0.85                        | x                   | 0.7           | =          | 62.65  | (74) |
| North                 | 0.9x                   | 0.77                   | :         | x     | 3.66           |                | x    | 24.19                                     | x      | 0.85                        | x                   | 0.7           | =          | 36.51  | (74) |
| North                 | 0.9x                   | 0.77                   |           | x     | 3.66           |                | x    | 13.12                                     | x      | 0.85                        | x                   | 0.7           | =          | 19.8   | (74) |
| North                 | 0.9x                   | 0.77                   | :         | x     | 3.66           |                | x    | 8.86                                      | x      | 0.85                        | ×                   | 0.7           | =          | 13.38  | (74) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 46.75                                     | x      | 0.85                        | x                   | 0.7           | =          | 60.15  | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 76.57                                     | x      | 0.85                        | ×                   | 0.7           | =          | 98.5   | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 97.53                                     | x      | 0.85                        | x                   | 0.7           | =          | 125.48 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 110.23                                    | x      | 0.85                        | ×                   | 0.7           | =          | 141.81 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 114.87                                    | x      | 0.85                        | x                   | 0.7           | =          | 147.78 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 110.55                                    | x      | 0.85                        | ×                   | 0.7           | =          | 142.22 | (78) |
| South                 | 0.9x                   | 0.77                   |           | x     | 3.12           |                | x    | 108.01                                    | x      | 0.85                        | x                   | 0.7           | =          | 138.96 | (78) |
| South                 | 0.9x                   | 0.77                   |           | x     | 3.12           |                | x    | 104.89                                    | x      | 0.85                        | x                   | 0.7           | =          | 134.95 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 101.89                                    | x      | 0.85                        | x                   | 0.7           | =          | 131.07 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 82.59                                     | x      | 0.85                        | x                   | 0.7           | =          | 106.25 | (78) |
| South                 | 0.9x                   | 0.77                   | :         | x     | 3.12           |                | x    | 55.42                                     | х      | 0.85                        | x                   | 0.7           | =          | 71.29  | (78) |
| South                 | 0.9x                   | 0.77                   |           | x     | 3.12           |                | х    | 40.4                                      | x      | 0.85                        | ×                   | 0.7           | =          | 51.97  | (78) |
|                       |                        |                        |           |       |                |                |      |                                           |        |                             |                     |               |            |        |      |
| Sola <mark>r (</mark> | <mark>gain</mark> s in | watts, <mark>ca</mark> | lculate   | d     | for each mo    | nth            |      |                                           | (83)m  | n = Sum(74)m .              | <mark>(8</mark> 2)m |               |            | ,      |      |
| (83)m=                | 76.19                  | 129.17                 | 177.59    |       | 225.52 260.    | .54            | 20   | 52.93 25 <b>1.65</b>                      | 224    | .36 193.73                  | 142.7               | 5 91.09       | 65.35      |        | (83) |
| Total g               | gains – i              | nternal a              | nd sola   | ar    | (84)m = (73)   | )m +           | + (8 | B3)m, watts                               | r      |                             |                     | _             | . <u> </u> |        |      |
| (84)m=                | 467.98                 | 518.56                 | 553.13    |       | 578.99 591.    | .72            | 5    | 72.83 547.91                              | 526    | .87 507.79                  | 479.0               | 9 452.85      | 446.05     |        | (84) |
| 7. Me                 | ean inter              | nal temp               | erature   | e (   | heating seas   | son)           | )    |                                           |        |                             |                     |               |            | -      |      |
| Temp                  | perature               | during he              | eating    | pe    | eriods in the  | livir          | ng   | area from Tal                             | ole 9  | , Th1 (°C)                  |                     |               |            | 21     | (85) |
| Utilis                | ation fac              | tor for ga             | ains fo   | r liv | ving area, h   | 1,m            | (s   | ee Table 9a)                              |        |                             |                     |               |            | 7      |      |
|                       | Jan                    | Feb                    | Mar       | ╡     | Apr M          | ay             |      | Jun Jul                                   | A      | ug Sep                      | Oct                 | t Nov         | Dec        |        |      |
| (86)m=                | 1                      | 1                      | 1         |       | 1 0.9          | 9              | (    | 0.98 0.96                                 | 0.9    | 0.99                        | 1                   | 1             | 1          |        | (86) |
| Mear                  | interna                | l tempera              | ature ir  | n li  | ving area T1   | l (fo          | ollo | w steps 3 to 7                            | 7 in T | able 9c)                    |                     |               |            | _      |      |
| (87)m=                | 18.61                  | 18.74                  | 19.02     |       | 19.43 19.8     | 38             | 2    | 0.33 20.62                                | 20.    | 58 20.21                    | 19.64               | 19.07         | 18.6       |        | (87) |
| Temp                  | perature               | during he              | eating    | ре    | eriods in rest | tof            | dw   | elling from Ta                            | able 9 | 9, Th2 (°C)                 |                     |               |            |        |      |
| (88)m=                | 18.53                  | 18.53                  | 18.53     | T     | 18.55 18.5     | 55             | 1    | 8.57 18.57                                | 18.    | 57 18.56                    | 18.55               | 5 18.55       | 18.54      |        | (88) |
| Utilis                | ation fac              | tor for a              | ains fo   | r re  | est of dwellir | na. h          | า2.  | m (see Table                              | 9a)    |                             |                     |               |            | -      |      |
| (89)m=                | 1                      | 1                      | 1         | T     | 1 0.9          | 9              | ,    | 0.94 0.76                                 | 0.8    | 31 0.97                     | 1                   | 1             | 1          | ]      | (89) |
| Mear                  | interna                | l tempera              | ature ir  |       | he rest of dw  | velli          | na   | T2 (follow ste                            |        | to 7 in Tabl                | 2 9c)               |               |            | 4      |      |
| (90)m=                | 15.61                  | 15.8                   | 16.21     | T     | 16.81 17.4     | 47             | 1    | 8.12 18.47                                | 18.    | 44 17.96                    | 17.13               | 3 16.29       | 15.6       | ]      | (90) |
|                       |                        |                        | · · · · · |       | I              |                |      |                                           |        | f                           | LA = Li             | ving area ÷ ( | 4) =       | 0.28   | (91) |
| Maar                  | intorno                | ltompore               | aturo (4  | for   | the whole d    | wo!            | lin  | a) _ fl ∧ ⊤4                              | . /1   | fl A) To                    |                     |               |            |        |      |
| (92)m=                | 16.44                  |                        | 16.98     | T     | 17.54 18       | $\frac{1}{14}$ | 111  | $y_{j} = 1 - A \times 11$<br>8.73   19.07 | +(1    | $\frac{-1LA}{03} \times 12$ | 17 82               | 2 17.06       | 16.43      | 1      | (92) |
| ·····                 |                        |                        |           | - 1   |                |                |      |                                           |        |                             |                     |               |            | •      | (/   |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                                                                                                                                                                                                                             | 16.44                       | 16.61                 | 16.98                 | 17.54                    | 18.14                   | 18.73                   | 19.07         | 19.03     | 18.58       | 17.82       | 17.06        | 16.43       |           | (93)   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------|--------------------------|-------------------------|-------------------------|---------------|-----------|-------------|-------------|--------------|-------------|-----------|--------|
| 8. Sp                                                                                                                                                                                                                              | ace hea                     | ting requ             | uirement              |                          |                         |                         |               |           |             |             |              |             |           |        |
| Set T<br>the ut                                                                                                                                                                                                                    | i to the r<br>tilisation    | mean int<br>factor fo | ernal ter<br>or gains | mperatui<br>using Ta     | re obtain<br>Ible 9a    | ed at ste               | ep 11 of      | Table 9t  | o, so tha   | t Ti,m=(    | 76)m an      | d re-calc   | ulate     |        |
|                                                                                                                                                                                                                                    | Jan                         | Feb                   | Mar                   | Apr                      | May                     | Jun                     | Jul           | Aug       | Sep         | Oct         | Nov          | Dec         |           |        |
| Utilisa                                                                                                                                                                                                                            | ation fac                   | tor for g             | ains, hm              |                          |                         |                         |               | -         | ·           |             |              |             |           |        |
| (94)m=                                                                                                                                                                                                                             | 1                           | 1                     | 1                     | 0.99                     | 0.98                    | 0.95                    | 0.84          | 0.87      | 0.97        | 0.99        | 1            | 1           |           | (94)   |
| Usefu                                                                                                                                                                                                                              | ıl gains,                   | hmGm                  | W = (94               | 4)m x (84                | 4)m                     |                         |               |           |             |             |              |             |           |        |
| (95)m=                                                                                                                                                                                                                             | 467.47                      | 517.68                | 551.49                | 575.36                   | 582.04                  | 542.87                  | 461.32        | 459.76    | 492.54      | 476.19      | 452.02       | 445.65      |           | (95)   |
| Month                                                                                                                                                                                                                              | nly avera                   | age exte              | rnal tem              | perature                 | e from Ta               | able 8                  |               |           |             |             | _            |             |           |        |
| (96)m=                                                                                                                                                                                                                             | 4.3                         | 4.9                   | 6.5                   | 8.9                      | 11.7                    | 14.6                    | 16.6          | 16.4      | 14.1        | 10.6        | 7.1          | 4.2         |           | (96)   |
| Heat                                                                                                                                                                                                                               | loss rate                   | e for mea             | an intern             | al tempe                 | erature,                | Lm , W =                | =[(39)m >     | k [(93)m- | – (96)m     | ]           |              |             |           |        |
| (97)m=                                                                                                                                                                                                                             | 3343.15                     | 3218.05               | 2874                  | 2342.05                  | 1741.69                 | 1106.73                 | 660.6         | 703.52    | 1205.2      | 1954.26     | 2705.53      | 3337.08     |           | (97)   |
| Space                                                                                                                                                                                                                              | e heatin                    | g require             | ement fo              | r each n                 | nonth, k\               | Nh/mont                 | th = 0.02     | 4 x [(97) | )m – (95    | )m] x (4    | 1)m          |             |           |        |
| (98)m=                                                                                                                                                                                                                             | 2139.51                     | 1814.65               | 1727.95               | 1272.01                  | 862.78                  | 0                       | 0             | 0         | 0           | 1099.68     | 1622.53      | 2151.23     |           | _      |
|                                                                                                                                                                                                                                    |                             |                       |                       |                          |                         |                         |               | Tota      | l per year  | (kWh/year   | ) = Sum(9    | 8)15,912 =  | 12690.34  | (98)   |
| Space                                                                                                                                                                                                                              | e heatin                    | g require             | ement in              | kWh/m <sup>2</sup>       | /year                   |                         |               |           |             |             |              |             | 160.64    | (99)   |
| 9h Fn                                                                                                                                                                                                                              | erav rec                    | uiremer               | nts – Cor             | mmunity                  | heating                 | scheme                  |               |           |             |             |              | L           |           | 7      |
| This pa                                                                                                                                                                                                                            | art is use                  | ed for sp             | ace hea               | iting, spa               | ace cooli               | ng or wa                | ater heat     | ina prov  | ided by     | a comm      | unitv sch    | neme.       |           |        |
| Fractic                                                                                                                                                                                                                            | on of spa                   | ace heat              | from se               | condary/                 | /supplen                | nentary l               | neating (     | Table 1   | 1) '0' if n | one         |              |             | 0         | (301)  |
| Fractic                                                                                                                                                                                                                            | on of spa                   | ace heat              | from co               | mmunity                  | v svstem                | 1 - (301                | 1) =          |           |             |             |              | l<br>l      | 1         | (302)  |
| The con                                                                                                                                                                                                                            |                             |                       | cobtoin be            | not from or              | voral aqui              |                         | rooduro       | allow for | CHP and     | in to four  | other beet   | nouroon: fl | ho lottor | ]```   |
| ine community scheme may obtain neat from several sources. The procedure allows for CHP and up to four other heat sources; the latter includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. |                             |                       |                       |                          |                         |                         |               |           |             |             |              |             |           |        |
| Fractic                                                                                                                                                                                                                            | on of hea                   | at from C             | ommun                 | <mark>ity b</mark> oiler | s                       |                         |               |           |             |             |              |             | 1         | (303a) |
| Fractic                                                                                                                                                                                                                            | on of tota                  | al space              | heat fro              | m Comn                   | nunity bo               | oilers                  |               |           |             | (3          | 02) x (303   | a) =        | 1         | (304a) |
| Factor                                                                                                                                                                                                                             | for cont                    | rol and o             | charging              | method                   | (Table 4                | 4c(3)) fo               | r commu       | inity hea | ting sys    | tem         |              |             | 1         | (305)  |
| Distrib                                                                                                                                                                                                                            | ution los                   | s factor              | (Table 1              | 2c) for a                | commun                  | ity heatir              | ng syster     | m         |             |             |              |             | 1.05      | (306)  |
| Space                                                                                                                                                                                                                              | heating                     | g                     |                       |                          |                         |                         |               |           |             |             |              |             | kWh/year  | _      |
| Annua                                                                                                                                                                                                                              | l space                     | heating               | requirem              | nent                     |                         |                         |               |           |             |             |              |             | 12690.34  |        |
| Space                                                                                                                                                                                                                              | heat fro                    | om Comr               | nunity b              | oilers                   |                         |                         |               |           | (98) x (30  | 04a) x (30  | 5) x (306) = | =           | 13324.86  | (307a) |
| Efficier                                                                                                                                                                                                                           | ncy of se                   | econdary              | /supple               | mentary                  | heating                 | system                  | in % (fro     | m Table   | 4a or A     | ppendix     | E)           |             | 0         | (308   |
| Space                                                                                                                                                                                                                              | heating                     | require               | ment fro              | m secon                  | dary/sup                | oplemen                 | tary syst     | em        | (98) x (30  | 01) x 100 - | ÷ (308) =    |             | 0         | (309)  |
| Water<br>Annua                                                                                                                                                                                                                     | <b>heating</b><br>I water h | <b>j</b><br>neating r | equirem               | ent                      |                         |                         |               |           |             |             |              |             | 2102.07   | 1      |
| lf DHW<br>Water                                                                                                                                                                                                                    | / from c<br>heat fro        | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers            |                         |                         |               |           | (64) x (30  | 03a) x (30  | 5) x (306) : | =           | 2207.17   | (310a) |
| Electri                                                                                                                                                                                                                            | city used                   | d for hea             | ıt distribu           | ution                    |                         |                         |               | 0.01      | × [(307a).  | (307e) +    | · (310a)…(   | 310e)] =    | 155.32    | (313)  |
| Coolin                                                                                                                                                                                                                             | g Syster                    | n Energ               | y Efficie             | ncy Rati                 | D                       |                         |               |           |             |             |              |             | 0         | (314)  |
| Space                                                                                                                                                                                                                              | cooling                     | (if there             | is a fixe             | d coolin                 | g system                | n, if not e             | enter 0)      |           | = (107) ÷   | (314) =     |              |             | 0         | (315)  |
| Electrie<br>mecha                                                                                                                                                                                                                  | city for p<br>inical ve     | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra   | velling (1<br>act or po | Table 4f)<br>sitive inj | :<br>put from | outside   |             |             |              |             | 0         | (330a) |

| warm air heating system fans                                                                                           |                            |                               | 0                      | (330b)   |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|------------------------|----------|
| pump for solar water heating                                                                                           |                            |                               | 0                      | (330g)   |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)           | 0                             | (331)                  |          |
| Energy for lighting (calculated in Appendix L)                                                                         |                            |                               | 398.03                 | (332)    |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                            |                               |                        |          |
|                                                                                                                        | Energy<br>kWh/year         | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/ye | s<br>ear |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | wo fuels repeat (363) to ( | 366) for the second fue       | 90                     | (367a)   |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x     | 0                             | = 3727.6               | 69 (367) |
| Electrical energy for heat distribution [(3                                                                            | 13) x                      | 0.52                          | = 80.61                | ı (372)  |
| Total CO2 associated with community systems (36                                                                        | 63)(366) + (368)(372)      | :                             | = 3808.                | 3 (373)  |
| CO2 associated with space heating (secondary) (30                                                                      | 09) x                      | 0                             | = 0                    | (374)    |
| CO2 associated with water from immersion heater or instantaneous                                                       | us heater (312) x          | 0.22                          | = 0                    | (375)    |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =      |                               | 3808.                  | 3 (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | (331)) x                   | 0.52                          | = 0                    | (378)    |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                    | 0.52                          | = 206.5                | 8 (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                            |                               | 4014.8                 | 38 (383) |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                            |                               | 50.82                  | 2 (384)  |
| El rating (section 14)                                                                                                 |                            |                               | 56.53                  | 3 (385)  |

| User Details:                                                                              |                                                                                                                                                                                                                                                                                            |                               |                                         |                    |                  |                        |                       |              |                                     |                   |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|--------------------|------------------|------------------------|-----------------------|--------------|-------------------------------------|-------------------|--|
| Assessor Name:<br>Software Name:                                                           | Stroma FSAP 20 <sup>-</sup>                                                                                                                                                                                                                                                                | 12                            |                                         | Stroma<br>Softwa   | a Num<br>ire Ver | ber:<br>sion:          |                       | Versio       | on: 1.0.3.15                        |                   |  |
|                                                                                            | landan                                                                                                                                                                                                                                                                                     | Pro                           | operty A                                | Address:           | Unit 11          |                        |                       |              |                                     |                   |  |
| Address :                                                                                  |                                                                                                                                                                                                                                                                                            |                               |                                         |                    |                  |                        |                       |              |                                     |                   |  |
| Basement                                                                                   |                                                                                                                                                                                                                                                                                            |                               | Area                                    | <b>a(m²)</b><br>51 | (1a) x           | <b>Av. He</b>          | <b>ight(m)</b><br>1.9 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>96.9 | <b>)</b><br>(3a)  |  |
| Total floor area TFA = (1a                                                                 | )+(1b)+(1c)+(1d)+(1                                                                                                                                                                                                                                                                        | e)+(1n)                       | )                                       | 51                 | (4)              |                        |                       |              |                                     |                   |  |
| Dwelling volume                                                                            |                                                                                                                                                                                                                                                                                            |                               |                                         |                    | (3a)+(3b)        | +(3c)+(3d              | l)+(3e)+              | .(3n) =      | 96.9                                | (5)               |  |
| 2. Ventilation rate:                                                                       | -                                                                                                                                                                                                                                                                                          |                               |                                         |                    |                  |                        |                       |              |                                     |                   |  |
| Number of chimneys<br>Number of open flues                                                 | $\begin{array}{c c} main & s \\ heating & \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$                                                                                                                                                                                           | econdary<br>heating<br>0<br>0 | / · · · · · · · · · · · · · · · · · · · | 0<br>0             | ] = [            | <b>total</b><br>0<br>0 | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou              | r<br>(6a)<br>(6b) |  |
| Number of intermittent fan                                                                 | S                                                                                                                                                                                                                                                                                          |                               |                                         |                    | Г                | 2                      | x ´                   | 10 =         | 20                                  | (7a)              |  |
| Number of passive vents                                                                    |                                                                                                                                                                                                                                                                                            |                               |                                         |                    | Ē                | 0                      | x ^                   | 10 =         | 0                                   | (7b)              |  |
| Number of flueless gas fire                                                                | es                                                                                                                                                                                                                                                                                         |                               |                                         |                    |                  | 0                      | X 4                   | 40 =         | 0                                   | (7c)              |  |
| Air changes per hour                                                                       |                                                                                                                                                                                                                                                                                            |                               |                                         |                    |                  |                        |                       |              |                                     |                   |  |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 20 \div (5) = $ |                                                                                                                                                                                                                                                                                            |                               |                                         |                    |                  |                        |                       |              |                                     | (8)               |  |
| Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2        | If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration [(9)-1]x0.1 = [ Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction |                               |                                         |                    |                  |                        |                       |              |                                     |                   |  |
| If both types of wall are pre<br>deducting areas of opening                                | sent, use the value corre<br>gs); if equal user 0.35<br>oor enter 0.2 (unsea                                                                                                                                                                                                               | sponding to t                 | tne greate                              | d) else            | a (atter         |                        |                       |              | 0                                   | <b>–</b> (12)     |  |
| If no draught lobby, ente                                                                  | r 0.05, else enter 0                                                                                                                                                                                                                                                                       |                               | , (ooalo                                | u), 0.00           |                  |                        |                       |              | 0                                   | (12)              |  |
| Percentage of windows                                                                      | and doors draught s                                                                                                                                                                                                                                                                        | tripped                       |                                         |                    |                  |                        |                       |              | 0                                   | (14)              |  |
| Window infiltration                                                                        | Ū                                                                                                                                                                                                                                                                                          |                               |                                         | 0.25 - [0.2        | x (14) ÷ 1       | = [00                  |                       |              | 0                                   | (15)              |  |
| Infiltration rate                                                                          |                                                                                                                                                                                                                                                                                            |                               |                                         | (8) + (10) -       | + (11) + (1      | 2) + (13) -            | + (15) =              |              | 0                                   | (16)              |  |
| Air permeability value, c                                                                  | 50, expressed in cul                                                                                                                                                                                                                                                                       | bic metres                    | s per ho                                | ur per so          | quare m          | etre of e              | nvelope               | area         | 10                                  | (17)              |  |
| If based on air permeabilit                                                                | y value, then (18) = [(                                                                                                                                                                                                                                                                    | 17) ÷ 20]+(8)                 | ), otherwis                             | se (18) = (        | 16)              |                        |                       |              | 0.71                                | (18)              |  |
| Air permeability value applies                                                             | if a pressurisation test ha                                                                                                                                                                                                                                                                | is been done                  | e or a deg                              | iree air pei       | meability i      | is being u             | sed                   |              | r                                   | <b>-</b>          |  |
| Number of sides sheltered                                                                  | 1                                                                                                                                                                                                                                                                                          |                               |                                         | (20) = 1 - [       | 0.075 x (1       | 9)] =                  |                       |              | 1                                   | (19)              |  |
| Infiltration rate incorporati                                                              | ng shelter factor                                                                                                                                                                                                                                                                          |                               |                                         | (21) = (18)        | x (20) =         | -/1                    |                       |              | 0.92                                | (20)              |  |
| Infiltration rate modified fo                                                              | r monthly wind spee                                                                                                                                                                                                                                                                        | d                             |                                         | x / x -/           | ( -)             |                        |                       |              | 0.05                                | (21)              |  |
| Jan Feb                                                                                    | Mar Apr Mav                                                                                                                                                                                                                                                                                | Jun                           | Jul                                     | Aua                | Sep              | Oct                    | Nov                   | Dec          |                                     |                   |  |
| Monthly average wind spe                                                                   | ed from Table 7                                                                                                                                                                                                                                                                            |                               | •••                                     |                    |                  |                        |                       | - • •        | 1                                   |                   |  |
| (22)m= 5.1 5 4                                                                             | 4.9 4.4 4.3                                                                                                                                                                                                                                                                                | 3.8                           | 3.8                                     | 3.7                | 4                | 4.3                    | 4.5                   | 4.7          |                                     |                   |  |
| Wind Factor (22a)m = (22                                                                   | )m ÷ 4                                                                                                                                                                                                                                                                                     | 1 1                           |                                         |                    |                  |                        | 1                     | 1            | I                                   |                   |  |
| (22a)m= 1.27 1.25 1                                                                        | .23 1.1 1.08                                                                                                                                                                                                                                                                               | 0.95                          | 0.95                                    | 0.92               | 1                | 1.08                   | 1.12                  | 1.18         | ]                                   |                   |  |
| Adjust                 | ed infiltra               | ation rat               | e (allowi                  | ng for sł                   | nelter an                | d wind s                | peed) =              | (21a) x                 | (22a)m         |                 |             |           | _      |             |         |
|------------------------|---------------------------|-------------------------|----------------------------|-----------------------------|--------------------------|-------------------------|----------------------|-------------------------|----------------|-----------------|-------------|-----------|--------|-------------|---------|
|                        | 0.83                      | 0.82                    | 0.8                        | 0.72                        | 0.7                      | 0.62                    | 0.62                 | 0.6                     | 0.65           | 0.7             | 0.74        | 0.77      |        |             |         |
| Calcul                 | ate effec                 | ctive air               | change i<br>tion:          | rate for t                  | he appli                 | cable ca                | se                   |                         |                |                 |             |           |        |             |         |
| lf exh                 | aust air he               |                         | using Anne                 | endix N (2                  | 3h) - (23a               | ) x Fmv (e              | equation (N          | (15)) other             | wise (23h      | ) – (23a)       |             |           | 0      |             |         |
| If bal                 | anced with                | heat reco               |                            | iency in %                  | allowing f               | or in-use f             | actor (from          | n Table 4h              | ) –            | ) = (200)       |             |           | 0      |             |         |
| a) If                  |                           | d moch                  |                            |                             | with hor                 |                         |                      |                         | $\gamma = -$   | 2b)m i (        | 22b) v [    | 1 (220)   | 0      |             | (230)   |
| a) II<br>(24a)m-       |                           |                         |                            |                             |                          |                         |                      |                         | () $(22)$      | $\frac{20}{10}$ |             | 1 - (230) | ]<br>] |             | (24a)   |
| (2-40)11-              |                           | d moob                  |                            |                             | without                  | boot roc                |                      |                         | m = (2)        |                 | 22h)        | Ū         | l      |             | (2.103) |
| (24b)m-                |                           |                         |                            |                             |                          |                         |                      | 0 (240                  | 0 $11 = (22)$  |                 | 230)        | 0         | 1      |             | (24b)   |
| (240)III-              |                           |                         | tract vor                  |                             |                          |                         | vontilatio           | n from c                | vuteido        | Ŭ               | Ů           | Ů         | J      |             | (,      |
| 0) 11                  | if (22b)n                 | 1 < 0.5 ×               | (23b), t                   | hen (24                     | c) = (23b)               | ); other                | vise (24             | c) = (22b)              | b) m + 0.      | 5 × (23b        | )           |           |        |             |         |
| (24c)m=                | 0                         | 0                       | 0                          | 0                           | 0                        | 0                       | 0                    | 0                       | 0              | 0               | 0           | 0         |        |             | (24c)   |
| d) If                  | natural                   | ventilatio              | on or wh<br>en (24d)       | ole hous<br>m = (22)        | e positiv                | /e input v<br>erwise (2 | ventilatio<br>4d)m – | on from 1<br>0.5 + [(2) | oft<br>2h)m² x | 0 51            |             |           |        |             |         |
| (24d)m=                | 0.85                      | 0.83                    | 0.82                       | 0.76                        | 0.75                     | 0.69                    | 0.69                 | 0.68                    | 0.71           | 0.75            | 0.77        | 0.79      | ]      |             | (24d)   |
| Fffe                   | ctive air                 | change                  | rate - er                  | L<br>ter (24a               | ) or (24t                | ) or (24                | L<br>c) or (24       | d) in boy               | (25)           |                 |             | I         | 1      |             |         |
| (25)m=                 | 0.85                      | 0.83                    | 0.82                       | 0.76                        | 0.75                     | 0.69                    | 0.69                 | 0.68                    | 0.71           | 0.75            | 0.77        | 0.79      |        |             | (25)    |
|                        |                           |                         |                            |                             |                          |                         |                      |                         |                |                 |             |           | 1      |             |         |
| 3. He                  | at losse                  | s and he                | eat loss p                 | Daramet                     | ər:                      |                         |                      |                         |                |                 |             | 1 -1      |        |             | · •     |
| ELEN                   | /IEN I                    | area                    | ss<br>(m²)                 | Openin                      | gs<br>I <sup>2</sup>     | Net Ar<br>A ,r          | ea<br>n²             | W/m2                    | K              | AXU<br>(W/I     | <)          | k-value   | e<br>K | A X<br>kJ/l | к<br>К  |
| Doo <mark>rs</mark>    |                           |                         |                            |                             |                          | 1.9                     | x                    | 1.4                     | = [            | 2.66            |             |           |        |             | (26)    |
| Windo                  | ws Type                   | :1                      |                            |                             |                          | 1.67                    | x1.                  | /[1/( 4.8 )+            | 0.04] =        | 6.72            |             |           |        |             | (27)    |
| Windo                  | ws Type                   | 2                       |                            |                             |                          | 0.84                    | x1.                  | /[1/( 4.8 )+            | 0.04] =        | 3.38            | Ē.          |           |        |             | (27)    |
| Walls                  | Type1                     | 45.3                    | 3                          | 2.51                        |                          | 42.79                   | ) X                  | 2.1                     | =              | 89.86           |             |           |        |             | (29)    |
| Walls                  | Type2                     | 15.3                    | 9                          | 1.9                         |                          | 13.49                   | ) X                  | 2.1                     | =              | 28.33           |             |           |        |             | (29)    |
| Roof                   |                           | 31.9                    | 9                          | 0                           |                          | 31.9                    | x                    | 0.28                    | =              | 8.93            |             |           |        |             | (30)    |
| Total a                | area of e                 | lements                 | , m²                       |                             |                          | 92.59                   | )                    |                         |                |                 |             |           |        |             | (31)    |
| * for win<br>** includ | ndows and<br>le the area  | roof wind<br>as on both | ows, use e<br>sides of ir  | effective wi<br>nternal wal | ndow U-va<br>Is and part | alue calcul<br>titions  | ated using           | formula 1,              | /[(1/U-valu    | ie)+0.04] a     | ns given in | paragraph | 1 3.2  |             |         |
| Fabric                 | heat los                  | s, W/K :                | = S (A x                   | U)                          |                          |                         |                      | (26)(30)                | + (32) =       |                 |             |           | 139    | .89         | (33)    |
| Heat c                 | apacity                   | Cm = S(                 | (Axk)                      |                             |                          |                         |                      |                         | ((28)          | .(30) + (32     | 2) + (32a). | (32e) =   | 0      |             | (34)    |
| Therm                  | al mass                   | parame                  | ter (TMF                   |                             | - TFA) ir                | n kJ/m²K                |                      |                         | Indica         | tive Value      | : High      |           | 45     | 0           | (35)    |
| For desi<br>can be ι   | ign assess<br>used instea | ments wh<br>ad of a de  | ere the de<br>tailed calci | tails of the<br>ulation.    | constructi               | ion are not             | t known pr           | ecisely the             | e indicative   | values of       | TMP in T    | able 1f   |        |             | _       |
| Therm                  | al bridge                 | es : S (L               | x Y) cal                   | culated                     | using Ap                 | pendix ł                | <                    |                         |                |                 |             |           | 14     | 1           | (36)    |
| if details             | s of therma               | al bridging             | are not kn                 | own (36) =                  | = 0.15 x (3              | 1)                      |                      |                         |                |                 |             |           |        |             | _       |
| Total f                | abric he                  | at loss                 |                            |                             |                          |                         |                      |                         | (33) +         | (36) =          |             |           | 153    | .89         | (37)    |
| Ventila                | ation hea                 | at loss ca              | alculated                  | monthl                      | y                        |                         |                      |                         | (38)m          | = 0.33 × (      | 25)m x (5   | )         | 1      |             |         |
|                        | Jan                       | Feb                     | Mar                        | Apr                         | May                      | Jun                     | Jul                  | Aug                     | Sep            | Oct             | Nov         | Dec       |        |             |         |
| (38)m=                 | 27.09                     | 26.65                   | 26.23                      | 24.25                       | 23.88                    | 22.15                   | 22.15                | 21.83                   | 22.81          | 23.88           | 24.63       | 25.41     | J      |             | (38)    |
| Heat ti                | ransfer o                 | coefficier              | nt, W/K                    | -                           |                          |                         |                      |                         | (39)m          | = (37) + (3     | 38)m        |           |        |             |         |
| (39)m=                 | 180.97                    | 180.54                  | 180.12                     | 178.14                      | 177.76                   | 176.04                  | 176.04               | 175.72                  | 176.7          | 177.76          | 178.52      | 179.3     |        |             | -       |
|                        |                           |                         |                            |                             |                          |                         |                      |                         | /              | Average =       | Sum(39)1    | 12 /12=   | 178    | .13         | (39)    |

| Heat loss parameter (HLP), W/m²K       (40)m = (39)m ÷ (4)         (40)m=       3.55       3.54       3.53       3.49       3.45       3.45       3.46       3.49       3.5       3.52 |                                 |                                        |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          |                   |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|-------------------|------|
| (40)m=                                                                                                                                                                                 | 3.55                            | 3.54                                   | 3.53                                 | 3.49                                      | 3.49                                     | 3.45                                  | 3.45                         | 3.45                   | 3.46                  | 3.49                      | 3.5                                   | 3.52     |                   |      |
| L                                                                                                                                                                                      | r of dov                        |                                        | ı                                    |                                           |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.49              | (40) |
|                                                                                                                                                                                        | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Αυσ                    | Sep                   | Oct                       | Nov                                   | Dec      |                   |      |
| (41)m=                                                                                                                                                                                 | 31                              | 28                                     | 31                                   | 30                                        | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |                   | (41) |
|                                                                                                                                                                                        |                                 |                                        |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | 1                 |      |
| 4. Wat                                                                                                                                                                                 | ter heat                        | ting enei                              | rgy requ                             | irement:                                  |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:              |      |
| Assume<br>if TF/<br>if TF/                                                                                                                                                             | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13                   | 1.<br>.9)                             | 72       |                   | (42) |
| Annual<br>Reduce t<br>not more                                                                                                                                                         | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br>r day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]                 | (43) |
|                                                                                                                                                                                        | Jan                             | Feb                                    | Mar                                  | Apr                                       | Мау                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |                   |      |
| Hot wate                                                                                                                                                                               | r usage ii                      | n litres per                           | r day for ea                         | ach month                                 | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           | 1                                     |          | 1                 |      |
| (44)m=                                                                                                                                                                                 | 82.54                           | 79.54                                  | 76.54                                | 73.54                                     | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |                   |      |
| Energy c                                                                                                                                                                               | ontent of                       | hot water                              | used - cal                           | culated mo                                | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48            | (44) |
| (45)m=                                                                                                                                                                                 | 122.41                          | 107.06                                 | 110.48                               | 96.32                                     | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |                   | _    |
| lf instanta                                                                                                                                                                            | aneous w                        | vater heatii                           | ng at point                          | t of use (no                              | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67           | (45) |
| (46)m=                                                                                                                                                                                 | 18.36                           | 16.06                                  | 16.57                                | 14.45                                     | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |                   | (46) |
| Storage                                                                                                                                                                                | storage                         | ioss:<br>ie (litres)                   | includir                             | ng any so                                 | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      | 1                 | (47) |
| lf comm                                                                                                                                                                                | nunity h                        | eating a                               | ind no ta                            | ink in dw                                 | vellina. e                               | nter 110                              | litres in                    | (47)                   |                       |                           | L                                     | 100      |                   | ()   |
| Otherw                                                                                                                                                                                 | ise if no                       | o stored                               | hot wate                             | er (this in                               | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |                   |      |
| Water s                                                                                                                                                                                | storage                         | loss:                                  |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          |                   |      |
| a) If ma                                                                                                                                                                               | anufact                         | urer's de                              | eclared I                            | oss facto                                 | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |                   | (48) |
| Tempe                                                                                                                                                                                  | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           |                                       | 0        |                   | (49) |
| Energy                                                                                                                                                                                 | lost fro                        | m water                                | storage                              | e, kWh/y€                                 | ear                                      |                                       | lun numu                     | (48) x (49)            | ) =                   |                           | 1                                     | 10       |                   | (50) |
| Hot wat                                                                                                                                                                                | ter stora                       | age loss                               | factor fr                            | om Tabl                                   | e 2 (kW                                  | h/litre/da                            | whown.<br>ay)                |                        |                       |                           | 0.                                    | 02       | ]                 | (51) |
| If comm                                                                                                                                                                                | hunity h                        | from To                                | ee secti                             | on 4.3                                    |                                          |                                       |                              |                        |                       |                           |                                       |          | 1                 | (50) |
| Tempe                                                                                                                                                                                  | rature f                        | actor fro                              | ne za<br>m Table                     | 2h                                        |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03<br>6  |                   | (52) |
| Energy                                                                                                                                                                                 | lost fro                        | m water                                | storage                              |                                           | aar                                      |                                       |                              | $(47) \times (51)$     | ) x (52) x (          | 53) -                     |                                       | .0       | ]                 | (54) |
| Enter (                                                                                                                                                                                | 50) or (                        | (54) in (5                             | 55)                                  | , KVVII/yt                                | 501                                      |                                       |                              | (41) X (01)            | / x (02) x (          | 50) –                     | 1.                                    | 03       |                   | (55) |
| Water s                                                                                                                                                                                | storage                         | loss cal                               | culated t                            | for each                                  | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1                 |      |
| (56)m=                                                                                                                                                                                 | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                   | (56) |
| If cylinder                                                                                                                                                                            | r contains                      | s dedicate                             | d solar sto                          | rage, (57)                                | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | <b>J</b><br>lix H |      |
| (57)m=                                                                                                                                                                                 | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |                   | (57) |
| Primary                                                                                                                                                                                | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                  | 93                                       |                                       |                              |                        |                       |                           |                                       | 0        | ]                 | (58) |
| Primary                                                                                                                                                                                | / circuit                       | loss cal                               | culated                              | for each                                  | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          | -                 |      |
| (mod                                                                                                                                                                                   | ified by                        | factor fi                              | rom Tab                              | le H5 if t                                | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | stat)                                 |          | 1                 |      |
| (59)m=                                                                                                                                                                                 | 23.26                           | 21.01                                  | 23.26                                | 22.51                                     | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |                   | (59) |

| Combi    | loss ca       | alculated                | for eac   | h month      | (61)m =     | (60) ÷ 3    | 865 × (41     | )m               |              |                     |                 |             |               |      |
|----------|---------------|--------------------------|-----------|--------------|-------------|-------------|---------------|------------------|--------------|---------------------|-----------------|-------------|---------------|------|
| (61)m=   | 0             | 0                        | 0         | 0            | 0           | 0           | 0             | 0                | 0            | 0                   | 0               | 0           |               | (61) |
| Total h  | eat req       | uired for                | water h   | neating c    | alculated   | l for ea    | ch month      | (62)m =          | • 0.85 ×     | (45)m +             | (46)m +         | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 177.69        | 156.99                   | 165.75    | 149.81       | 147.69      | 133.24      | 129.18        | 140.08           | 139.31       | 155.28              | 162.66          | 173.82      |               | (62) |
| Solar DH | -<br>IW input | calculated               | using Ap  | pendix G c   | r Appendix  | H (nega     | tive quantity | /) (enter '0     | ' if no sola | r contribut         | tion to wate    | er heating) |               |      |
| (add a   | dditiona      | al lines if              | FGHR      | S and/or     | WWHRS       | applie      | s, see Ap     | pendix (         | G)           |                     |                 |             | _             |      |
| (63)m=   | 0             | 0                        | 0         | 0            | 0           | 0           | 0             | 0                | 0            | 0                   | 0               | 0           |               | (63) |
| Output   | from w        | vater hea                | ter       |              |             |             |               |                  |              |                     |                 |             |               |      |
| (64)m=   | 177.69        | 156.99                   | 165.75    | 149.81       | 147.69      | 133.24      | 129.18        | 140.08           | 139.31       | 155.28              | 162.66          | 173.82      |               | _    |
|          |               |                          |           |              |             |             |               | Out              | out from w   | ater heate          | r (annual)₁     | 12          | 1831.51       | (64) |
| Heat g   | ains fro      | om water                 | heating   | , kWh/m      | onth 0.2    | 5 ´ [0.8    | 5 × (45)m     | ı + (61)n        | n] + 0.8 x   | k [(46)m            | + (57)m         | + (59)m     | ]             |      |
| (65)m=   | 59.31         | 52.41                    | 55.34     | 50.03        | 49.34       | 44.53       | 43.18         | 46.81            | 46.54        | 51.86               | 54.31           | 58.03       |               | (65) |
| inclu    | de (57)       | )m in calo               | culation  | of (65)m     | n only if c | ylinder     | is in the o   | dwelling         | or hot w     | ater is f           | rom com         | munity h    | eating        |      |
| 5. Int   | ernal g       | ains (see                | e Table   | 5 and 5a     | ı):         |             |               |                  |              |                     |                 |             |               |      |
| Metab    | olic daii     | ns (Table                | e 5). Wa  | itts         |             |             |               |                  |              |                     |                 |             |               |      |
|          | Jan           | Feb                      | Mar       | Apr          | May         | Jun         | Jul           | Aug              | Sep          | Oct                 | Nov             | Dec         |               |      |
| (66)m=   | 85.98         | 85.98                    | 85.98     | 85.98        | 85.98       | 85.98       | 85.98         | 85.98            | 85.98        | 8 <mark>5.98</mark> | 85.98           | 85.98       |               | (66) |
| Lightin  | g gains       | (calcula                 | ted in A  | ppendix      | L, equat    | ion L9 d    | or L9a), a    | lso see          | Table 5      |                     |                 |             |               |      |
| (67)m=   | 17.13         | 15.21                    | 12.37     | 9.36         | 7           | 5.91        | 6.39          | 8.3              | 11.14        | 14.15               | 16.51           | 17.6        |               | (67) |
| Applia   | nces ga       | ains (ca <mark>lc</mark> | ulated i  | n Appen      | dix L, ea   | uation I    | _13 or L1     | 3a), also        | see Ta       | ble 5               |                 |             | 1             |      |
| (68)m=   | 149.83        | 151.39                   | 147.47    | 139.13       | 128.6       | 118.7       | 112.09        | 110.54           | 114.45       | 122.8               | 133.32          | 143.22      |               | (68) |
| Cookir   | g gains       | s (calcula               | ted in A  | Appendix     | L, equat    | ion L15     | or L15a       | ), also se       | ee Table     | 5                   |                 |             | 1             |      |
| (69)m=   | 31.6          | 31.6                     | 31.6      | 31.6         | 31.6        | 31.6        | 31.6          | 31.6             | 31.6         | 31.6                | 31.6            | 31.6        |               | (69) |
| Pumps    | and fa        | ins gains                | (Table    | 5a)          |             |             |               |                  |              |                     |                 |             |               |      |
| (70)m=   | 0             | 0                        | 0         | 0            | 0           | 0           | 0             | 0                | 0            | 0                   | 0               | 0           |               | (70) |
| Losses   | s e.q. e      | vaporatic                | n (nega   | ative valu   | ies) (Tab   | le 5)       |               | Į                | ļ            | Į                   | 1               | Į           | 1             |      |
| (71)m=   | -68.78        | -68.78                   | -68.78    | -68.78       | -68.78      | ,<br>-68.78 | -68.78        | -68.78           | -68.78       | -68.78              | -68.78          | -68.78      |               | (71) |
| Water    | heating       | u dains (T               | able 5)   | 1            |             |             | 1             |                  |              |                     | 1               |             | 1             |      |
| (72)m=   | 79.72         | 77.99                    | 74.39     | 69.49        | 66.32       | 61.84       | 58.04         | 62.91            | 64.64        | 69.71               | 75.43           | 77.99       |               | (72) |
| Total i  | nterna        | l gains =                | I         |              | Į           | (66         | 5)m + (67)m   | ı<br>1 + (68)m - | + (69)m +    | l<br>(70)m + (7     | 1<br>1)m + (72) | m           | 1             |      |
| (73)m=   | 295.47        | 293.38                   | 283.02    | 266.78       | 250.71      | 235.25      | 225.31        | 230.54           | 239.03       | 255.44              | 274.06          | 287.61      | ]             | (73) |
| 6. Sol   | lar gain      | s:                       | 1         | 1            |             |             | 1             |                  |              |                     |                 |             |               |      |
| Solar g  | ains are      | calculated               | using sol | ar flux from | Table 6a    | and asso    | ciated equa   | itions to co     | onvert to th | ne applical         | ole orientat    | ion.        |               |      |
| Orienta  | ation:        | Access F                 | actor     | Area         | a           | FI          | ux            |                  | g_           |                     | FF              |             | Gains         |      |
|          |               | Table 6d                 |           | m²           |             | Та          | able 6a       | Т                | able 6b      | Т                   | able 6c         |             | (VV)          |      |
| East     | 0.9x          | 1                        | )         | <b>(</b> 1.  | 67          | x           | 19.64         | x                | 0.85         | x                   | 0.7             | =           | 13.52         | (76) |
| East     | 0.9x          | 1                        | )         | 1.           | 67          | x           | 38.42         | x                | 0.85         | ×                   | 0.7             | =           | 26.46         | (76) |
| East     | 0.9x          | 1                        | )         | ( 1.         | 67          | ×           | 63.27         | x                | 0.85         | ×                   | 0.7             | =           | 43.57         | (76) |
| East     | 0.9x          | 1                        | )         | ( 1.         | 67          | x           | 92.28         | x 🗌              | 0.85         | × [                 | 0.7             | =           | 63.54         | (76) |
| East     | 0.9x          | 1                        | )         | ( 1.         | 67          | x           | 113.09        | x 🗌              | 0.85         | ×                   | 0.7             | =           | 77.88         | (76) |

| East $0.9x$ 1x $1.67$ x $110.22$ x $0.85$ x $0.7$ = $75.9$ East $0.9x$ 1x $1.67$ x $94.68$ x $0.85$ x $0.7$ = $65.19$ East $0.9x$ 1x $1.67$ x $73.59$ x $0.85$ x $0.7$ = $50.67$ East $0.9x$ 1x $1.67$ x $45.59$ x $0.85$ x $0.7$ = $31.39$ East $0.9x$ 1x $1.67$ x $24.49$ x $0.85$ x $0.7$ = $16.86$ East $0.9x$ 1x $1.67$ x $16.15$ x $0.85$ x $0.7$ = $11.12$ West $0.9x$ $0.77$ x $0.84$ x $10.65$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $21.92$ West $0.9x$ $0.77$ x $0.84$ x $9.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $9.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $31.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| East $0.9x$ 1       x $1.67$ x $94.68$ x $0.85$ x $0.7$ = $65.19$ East $0.9x$ 1       x $1.67$ x $73.59$ x $0.85$ x $0.7$ = $50.67$ East $0.9x$ 1       x $1.67$ x $24.49$ x $0.85$ x $0.7$ = $11.39$ East $0.9x$ 1       x $1.67$ x $24.49$ x $0.85$ x $0.7$ = $11.12$ West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ $x$ $0.84$ x $38.42$ $x$ $0.85$ $x$ $0.7$ $=$ $13.31$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $22.8$ $0.85$ $x$ $0.7$ $=$ $31.96$ West $0.9x$ $0.77$ $x$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (76)         (76)         (76)         (76)         (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| East $0.9x$ 1x1.67x73.59x $0.85$ x $0.7$ = $50.67$ East $0.9x$ 1x1.67x $45.59$ x $0.85$ x $0.7$ = $31.39$ East $0.9x$ 1x1.67x $24.49$ x $0.85$ x $0.7$ = $16.86$ East $0.9x$ 1x1.67x16.15x $0.85$ x $0.7$ = $11.12$ West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $13.31$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $21.92$ West $0.9x$ $0.77$ x $0.84$ x $92.28$ x $0.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $39.17$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $24.49$ x <t< td=""><td>(76)         (76)         (76)         (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (76)         (76)         (76)         (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| East $0.9x$ 1x $1.67$ x $45.59$ x $0.85$ x $0.7$ = $31.39$ East $0.9x$ 1x $1.67$ x $24.49$ x $0.85$ x $0.7$ = $16.86$ East $0.9x$ 1x $1.67$ x $16.15$ x $0.85$ x $0.7$ = $11.12$ West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $13.31$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $21.92$ West $0.9x$ $0.77$ x $0.84$ x $92.28$ x $0.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $39.17$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ $x$ $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ x $110.22$ $x$ $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ = $32.79$ West $0.9x$ $0.77$ $x$ $0.84$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (76)         (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| East $0.9x$ 1x $1.67$ x $24.49$ x $0.85$ x $0.7$ = $16.86$ East $0.9x$ 1x $1.67$ x $16.15$ x $0.85$ x $0.7$ = $11.12$ West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $13.31$ West $0.9x$ $0.77$ x $0.84$ x $63.27$ x $0.85$ x $0.7$ = $21.92$ West $0.9x$ $0.77$ x $0.84$ x $92.28$ x $0.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $39.17$ West $0.9x$ $0.77$ x $0.84$ x $115.77$ x $0.85$ x $0.7$ = $40.1$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $73.59$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $73.59$ x $0.85$ x $0.7$ = $34.48$ West $0.9x$ $0.77$ x $0.84$ x $24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (76)         (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| East $0.9x$ 1 × 1.67 × 16.15 × 0.85 × 0.7 = 11.12<br>West $0.9x$ 0.77 × 0.84 × 19.64 × 0.85 × 0.7 = 6.8<br>West $0.9x$ 0.77 × 0.84 × 38.42 × 0.85 × 0.7 = 13.31<br>West $0.9x$ 0.77 × 0.84 × 63.27 × 0.85 × 0.7 = 21.92<br>West $0.9x$ 0.77 × 0.84 × 92.28 × 0.85 × 0.7 = 31.96<br>West $0.9x$ 0.77 × 0.84 × 113.09 × 0.85 × 0.7 = 31.96<br>West $0.9x$ 0.77 × 0.84 × 115.77 × 0.85 × 0.7 = 39.17<br>West $0.9x$ 0.77 × 0.84 × 110.22 × 0.85 × 0.7 = 38.18<br>West $0.9x$ 0.77 × 0.84 × 110.22 × 0.85 × 0.7 = 38.18<br>West $0.9x$ 0.77 × 0.84 × 110.22 × 0.85 × 0.7 = 38.18<br>West $0.9x$ 0.77 × 0.84 × 110.22 × 0.85 × 0.7 = 5.59<br>Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (76)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ x $0.84$ x $19.64$ x $0.85$ x $0.7$ = $6.8$ West $0.9x$ $0.77$ x $0.84$ x $38.42$ x $0.85$ x $0.7$ = $13.31$ West $0.9x$ $0.77$ x $0.84$ x $63.27$ x $0.85$ x $0.7$ = $21.92$ West $0.9x$ $0.77$ x $0.84$ x $92.28$ x $0.85$ x $0.7$ = $31.96$ West $0.9x$ $0.77$ x $0.84$ x $113.09$ x $0.85$ x $0.7$ = $39.17$ West $0.9x$ $0.77$ x $0.84$ x $115.77$ x $0.85$ x $0.7$ = $40.1$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $110.22$ x $0.85$ x $0.7$ = $32.79$ West $0.9x$ $0.77$ x $0.84$ x $73.59$ x $0.85$ x $0.7$ = $25.49$ West $0.9x$ $0.77$ x $0.84$ x $24.49$ x $0.85$ x $0.7$ = $8.48$ West $0.9x$ $0.77$ x $0.84$ x $24.49$ x $0.85$ x $0.7$ = $5.59$ Solar gains in watts, calculated for each month(83)m = Sum(74)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)         (80)                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $38.42$ $x$ $0.85$ $x$ $0.7$ $=$ $13.31$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $63.27$ $x$ $0.85$ $x$ $0.7$ $=$ $21.92$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $92.28$ $x$ $0.85$ $x$ $0.7$ $=$ $31.96$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $113.09$ $x$ $0.85$ $x$ $0.7$ $=$ $39.17$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $115.77$ $x$ $0.85$ $x$ $0.7$ $=$ $40.1$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $110.22$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $16.15$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month $(83)m = Sum(74)m(82)m$ $x$ $x$ $x$ $x$ $x$ <t< td=""><td>(80)<br/>(80)<br/>(80)<br/>(80)<br/>(80)<br/>(80)<br/>(80)<br/>(80)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $63.27$ $x$ $0.85$ $x$ $0.7$ $=$ $21.92$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $92.28$ $x$ $0.85$ $x$ $0.7$ $=$ $31.96$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $113.09$ $x$ $0.85$ $x$ $0.7$ $=$ $39.17$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $115.77$ $x$ $0.85$ $x$ $0.7$ $=$ $40.1$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $110.22$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $94.68$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month $(83)m = Sum(74)m(82)m$ $Sum = Sum(74)m(82)m$ $Sum = Sum(74)m(82)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $92.28$ $x$ $0.85$ $x$ $0.7$ $=$ $31.96$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $113.09$ $x$ $0.85$ $x$ $0.7$ $=$ $39.17$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $115.77$ $x$ $0.85$ $x$ $0.7$ $=$ $40.1$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $110.22$ $x$ $0.85$ $x$ $0.7$ $=$ $38.18$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $94.68$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $16.15$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$ $x$ $x$ $x$ $x$ $x$ $x$ $x$ $x$ $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $113.09$ $\times$ $0.85$ $\times$ $0.7$ $=$ $39.17$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $115.77$ $\times$ $0.85$ $\times$ $0.7$ $=$ $40.1$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $110.22$ $\times$ $0.85$ $\times$ $0.7$ $=$ $38.18$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $94.68$ $\times$ $0.85$ $\times$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $73.59$ $\times$ $0.85$ $\times$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $45.59$ $\times$ $0.85$ $\times$ $0.7$ $=$ $15.79$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $24.49$ $\times$ $0.85$ $\times$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $\times$ $0.84$ $\times$ $16.15$ $\times$ $0.85$ $\times$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month( $83$ )m = Sum(74)m(82)m $=$ $8.48$ $=$ $8.3m$ $=$ $8.2m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $115.77$ $x$ $0.85$ $x$ $0.7$ $=$ $40.1$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $110.22$ $x$ $0.85$ $x$ $0.7$ $=$ $38.18$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $94.68$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $45.59$ $x$ $0.85$ $x$ $0.7$ $=$ $15.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $16.15$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month( $83$ )m = Sum(74)m( $82$ )m $x$ $x$ $x$ $x$ $x$ $x$ $x$ $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (80)<br>(80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $110.22$ $x$ $0.85$ $x$ $0.7$ $=$ $38.18$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $94.68$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $45.59$ $x$ $0.85$ $x$ $0.7$ $=$ $15.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $16.15$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month( $83$ )m = Sum(74)m( $82$ )m $x$ $x$ $x$ $x$ $x$ $x$ $x$ $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West $0.9x$ $0.77$ $x$ $0.84$ $x$ $94.68$ $x$ $0.85$ $x$ $0.7$ $=$ $32.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $73.59$ $x$ $0.85$ $x$ $0.7$ $=$ $25.49$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $45.59$ $x$ $0.85$ $x$ $0.7$ $=$ $15.79$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $24.49$ $x$ $0.85$ $x$ $0.7$ $=$ $8.48$ West $0.9x$ $0.77$ $x$ $0.84$ $x$ $16.15$ $x$ $0.85$ $x$ $0.7$ $=$ $5.59$ Solar gains in watts, calculated for each month( $83$ )m = Sum(74)m( $82$ )m $x$ $x$ $x$ $x$ $x$ $x$ $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (80)<br>(80)<br>(80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West       0.9x       0.77       x       0.84       x       73.59       x       0.85       x       0.77       =       25.49         West       0.9x       0.77       x       0.84       x       45.59       x       0.85       x       0.77       =       15.79         West       0.9x       0.77       x       0.84       x       24.49       x       0.85       x       0.77       =       8.48         West       0.9x       0.77       x       0.84       x       16.15       x       0.85       x       0.77       =       5.59         Solar gains in watts, calculated for each month       (83)m = Sum(74)m(82)m       5.59       5.59       5.59       5.59       5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (80)<br>(80)<br>(80)                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West       0.9x       0.77       x       0.84       x       45.59       x       0.85       x       0.77       =       15.79         West       0.9x       0.77       x       0.84       x       24.49       x       0.85       x       0.77       =       8.48         West       0.9x       0.77       x       0.84       x       16.15       x       0.85       x       0.77       =       5.59         Solar gains in watts, calculated for each month       (83)m = Sum(74)m(82)m       5.59       5.59       5.59       5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (80)<br>(80)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West       0.9x       0.77       x       0.84       x       24.49       x       0.85       x       0.77       =       8.48         West       0.9x       0.77       x       0.84       x       16.15       x       0.85       x       0.77       =       5.59         Solar gains in watts, calculated for each month       (83)m = Sum(74)m(82)m       83/m       Sum(74)m(82)m       83/m       Sum(74)m(82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (80)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| West         0.9x         0.77         x         0.84         x         16.15         x         0.85         x         0.7         =         5.59           Solar gains in watts, calculated for each month         (83)m = Sum(74)m(82)m         (83)m = Sum(74)m(82)m         (83)m = Sum(74)m(82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (80)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9x 0.9x 0.77 x 0.84 x 16.15 x 0.85 x 0.7 = 5.59 (80)                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (83)m= 20.33 39.76 65.49 95.51 117.05 119.82 114.07 97.99 76.16 47.18 25.35 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (83)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $[0,1]_{T} = \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 245 & 0 \\ $ | (94)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (64)/11= 315.0 333.14 346.5 302.20 307.75 335.07 339.38 326.53 315.19 302.03 299.4 304.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (04)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7. Mean internal temperature (heating season)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Temperature during heating periods in the living area from Table 9, Th1 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (85)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Utilisation factor for gains for living area, h1,m (see Table 9a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (96)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (86)M = 1 1 1 1 1 1 0.99 0.97 0.97 0.99 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (00)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (87)m= 18.59 18.71 18.98 19.4 19.85 20.3 20.6 20.56 20.19 19.62 19.05 18.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (87)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (88)m=         18.5         18.51         18.52         18.53         18.54         18.54         18.54         18.53         18.52         18.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (88)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (89)m=         1         1         1         0.99         0.95         0.78         0.82         0.97         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (89)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (90)m= 15.56 15.73 16.14 16.75 17.41 18.07 18.44 18.4 17.91 17.07 16.24 15.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (90)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $fLA = Living area \div (4) = 0.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (91)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (92)m= 17.27 17.41 17.74 18.24 18.79 19.33 19.66 19.62 19.2 18.51 17.83 17.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (02)                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                                                                                                                                                                                                                            | 17.27                     | 17.41                 | 17.74                 | 18.24                  | 18.79                   | 19.33                  | 19.66         | 19.62     | 19.2        | 18.51       | 17.83        | 17.27      |          | (93)   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|---------------|-----------|-------------|-------------|--------------|------------|----------|--------|
| 8. Sp                                                                                                                                                                                                                             | ace hea                   | ting requ             | uirement              |                        |                         |                        |               |           |             |             |              |            |          |        |
| Set T<br>the ut                                                                                                                                                                                                                   | i to the r<br>ilisation   | mean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta   | e obtain<br>ble 9a      | ed at ste              | ep 11 of      | Table 9t  | o, so tha   | t Ti,m=(    | 76)m an      | d re-calc  | ulate    |        |
|                                                                                                                                                                                                                                   | Jan                       | Feb                   | Mar                   | Apr                    | May                     | Jun                    | Jul           | Aug       | Sep         | Oct         | Nov          | Dec        |          |        |
| Utilisa                                                                                                                                                                                                                           | ation fac                 | tor for g             | ains, hm              | :                      |                         |                        |               |           |             |             |              |            |          |        |
| (94)m=                                                                                                                                                                                                                            | 1                         | 1                     | 1                     | 1                      | 0.99                    | 0.97                   | 0.91          | 0.93      | 0.98        | 1           | 1            | 1          |          | (94)   |
| Usefu                                                                                                                                                                                                                             | I gains,                  | hmGm ,                | W = (94               | 4)m x (84              | 4)m                     |                        |               |           |             |             |              |            |          |        |
| (95)m=                                                                                                                                                                                                                            | 315.47                    | 332.68                | 347.72                | 360.66                 | 363.73                  | 343.72                 | 309.53        | 304.95    | 309.39      | 301.33      | 298.92       | 304.05     |          | (95)   |
| Month                                                                                                                                                                                                                             | nly avera                 | age exte              | rnal tem              | perature               | e from Ta               | able 8                 |               |           |             |             |              |            |          |        |
| (96)m=                                                                                                                                                                                                                            | 4.3                       | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                   | 16.6          | 16.4      | 14.1        | 10.6        | 7.1          | 4.2        |          | (96)   |
| Heat                                                                                                                                                                                                                              | loss rate                 | e for mea             | an intern             | al tempe               | erature,                | Lm , W =               | =[(39)m >     | k [(93)m- | – (96)m     | ]           |              |            |          |        |
| (97)m=                                                                                                                                                                                                                            | 2347.74                   | 2259.23               | 2025.38               | 1664.58                | 1259.97                 | 832.96                 | 538.38        | 566.18    | 900.41      | 1406.09     | 1915.15      | 2342.71    |          | (97)   |
| Space                                                                                                                                                                                                                             | e heatin                  | g require             | ement fo              | r each m               | nonth, k\               | Nh/mont                | th = 0.02     | 4 x [(97) | )m – (95    | )m] x (4′   | 1)m          |            |          |        |
| (98)m=                                                                                                                                                                                                                            | 1512.01                   | 1294.65               | 1248.18               | 938.83                 | 666.8                   | 0                      | 0             | 0         | 0           | 821.95      | 1163.68      | 1516.76    |          | _      |
|                                                                                                                                                                                                                                   |                           |                       |                       |                        |                         |                        |               | Tota      | l per year  | (kWh/year   | ) = Sum(9    | 8)15,912 = | 9162.85  | (98)   |
| Space                                                                                                                                                                                                                             | e heating                 | g require             | ement in              | kWh/m <sup>2</sup>     | /year                   |                        |               |           |             |             |              | Ī          | 179.66   | (99)   |
| Qh En                                                                                                                                                                                                                             | erav rea                  | uiromor               | ote – Cor             | nmunity                | heating                 | schama                 |               |           |             |             |              | L          |          | ].     |
| This pr                                                                                                                                                                                                                           | art is use                | ad for en             |                       | ting spr               |                         |                        | ator boat     | ing prov  | ided by     |             | unity sch    | omo        |          |        |
| Fractio                                                                                                                                                                                                                           | n of spa                  | ace heat              | from se               | condary/               | supplen/                | ng of wa               | neating       | Table 1   | 1) '0' if n | one         | unity SCI    |            | 0        | (301)  |
| Fractio                                                                                                                                                                                                                           | n of one                  | no hoot               | from oo               | mmunitu                | avetom                  | 1 (204                 | 1) _          |           | , -         |             |              | <br>Г      |          |        |
| FIACIO                                                                                                                                                                                                                            | n or spa                  | ice neal              | Hom co                | minumity               | system                  | 1 - (30)               | () =          |           |             |             |              | [          | 1        | (302)  |
| The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C |                           |                       |                       |                        |                         |                        |               |           |             |             |              |            |          |        |
| Fractio                                                                                                                                                                                                                           | n of hea                  | at from C             | commun                | ity boiler             | 'S                      | ion power              | stations.     | See Apper | idix C.     |             |              | [          | 1        | (303a) |
| Fractio                                                                                                                                                                                                                           | n of tota                 | al space              | heat fro              | m Comn                 | nunity bo               | oilers                 |               |           |             | (3          | 02) x (303   | a) =       | 1        | (304a) |
| Factor                                                                                                                                                                                                                            | for cont                  | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo              | r commu       | inity hea | ting sys    | tem         |              | [          | 1        | (305)  |
| Distrib                                                                                                                                                                                                                           | ution los                 | s factor              | (Table 1              | 2c) for c              | commun                  | ity heatir             | ng systei     | m         |             |             |              | [          | 1.05     | (306)  |
| Space                                                                                                                                                                                                                             | heating                   | 9                     |                       |                        |                         |                        |               |           |             |             |              | _          | kWh/year | _      |
| Annua                                                                                                                                                                                                                             | space                     | heating               | requirem              | nent                   |                         |                        |               |           |             |             |              |            | 9162.85  |        |
| Space                                                                                                                                                                                                                             | heat fro                  | m Comr                | nunity b              | oilers                 |                         |                        |               |           | (98) x (30  | 04a) x (308 | 5) x (306) = | = [        | 9620.99  | (307a) |
| Efficier                                                                                                                                                                                                                          | ncy of se                 | econdary              | //supple              | mentary                | heating                 | system                 | in % (fro     | m Table   | 4a or A     | ppendix     | E)           | [          | 0        | (308   |
| Space                                                                                                                                                                                                                             | heating                   | requirer              | ment froi             | m secon                | dary/sup                | plemen                 | tary syst     | em        | (98) x (30  | 01) x 100 ÷ | + (308) =    | [          | 0        | (309)  |
| <b>Water</b><br>Annua                                                                                                                                                                                                             | <b>heating</b><br>water h | <b>l</b><br>neating r | equirem               | ent                    |                         |                        |               |           |             |             |              | ſ          | 1831.51  | 1      |
| If DHW                                                                                                                                                                                                                            | / from co                 | ommunit               | ty schem              | ne:                    |                         |                        |               |           |             |             |              | l          |          | J      |
| Water                                                                                                                                                                                                                             | heat fro                  | m Comn                | nunity bo             | oilers                 |                         |                        |               |           | (64) x (30  | 03a) x (308 | 5) x (306) = | = [        | 1923.08  | (310a) |
| Electric                                                                                                                                                                                                                          | city used                 | d for hea             | ıt distribu           | ution                  |                         |                        |               | 0.01      | × [(307a).  | (307e) +    | (310a)(      | 310e)] =   | 115.44   | (313)  |
| Cooling                                                                                                                                                                                                                           | g Syster                  | n Energ               | y Efficiei            | ncy Ratio              | C                       |                        |               |           |             |             |              | [          | 0        | (314)  |
| Space                                                                                                                                                                                                                             | cooling                   | (if there             | is a fixe             | d cooling              | g system                | n, if not e            | enter 0)      |           | = (107) ÷   | (314) =     |              | [          | 0        | (315)  |
| Electric<br>mecha                                                                                                                                                                                                                 | city for p<br>nical ve    | oumps aintilation     | nd fans v<br>- balanc | within dw<br>ed, extra | velling (1<br>act or po | able 4f)<br>sitive inp | :<br>put from | outside   |             |             |              | [          | 0        | (330a) |

| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                               | 0                        | (330b) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|--------|
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                               | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =(330a) + (330b             | ) + (330g) =                  | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                               | 302.44                   | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                               |                          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of | two fuels repeat (363) to ( | 366) for the second fue       | el 90                    | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10b)] x 100 ÷ (367b) x      | 0                             | = 2770.58                | (367)  |
| Electrical energy for heat distribution [(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 313) x                      | 0.52                          | = 59.91                  | (372)  |
| Total CO2 associated with community systems (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63)(366) + (368)(372)       | :                             | = 2830.49                | (373)  |
| CO2 associated with space heating (secondary) (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09) x                       | 0                             | = 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ous heater (312) x          | 0.22                          | = 0                      | (375)  |
| Total CO2 associated with space and water heating (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73) + (374) + (375) =       |                               | 2830.49                  | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g (331)) x                  | 0.52                          | = 0                      | (378)  |
| CO2 associated with electricity for lighting (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32))) x                     | 0.52                          | = 156.96                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                               | 2987.46                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                               | 58.58                    | (384)  |
| El rating (section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                               | 58.16                    | (385)  |

| User Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |                             |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-----------------------------|----------------|
| Assessor Name:       Stroma Number         Software Name:       Stroma FSAP 2012         Software Vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oer:<br>sion:                         | Versio       | n: 1.0.3.15                 |                |
| Property Address: Unit 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |                             |                |
| Address : , London                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |              |                             |                |
| Basement 55 (1a) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Av. Height(m)                         | (2a) =       | <b>Volume(m³)</b><br>119.35 | (3a)           |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 55 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |                             |                |
| Dwelling volume (3a)+(3b)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +(3c)+(3d)+(3e)+                      | .(3n) =      | 119.35                      | (5)            |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                             |                |
| main<br>heatingsecondary<br>heatingotherNumber of chimneys $0$ + $0$ + $0$ =Number of open flues $0$ + $0$ + $0$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         x 2           0         x 2 | 40 =<br>20 = | 0<br>0                      | (6a)<br>(6b)   |
| Number of intermittent fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 × 7                                 | 10 =         | 20                          | (7a)           |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 x <sup>2</sup>                      | 10 =         | 0                           | (7b)           |
| Number of flueless gas fires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 × 4                                 | 40 =         | 0                           | (7c)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Air ch       | ange <mark>s per</mark> ho  | ur             |
| Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue fro<br>Number of storeys in the dwelling (ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17                                  | (8)<br>(9)   |                             |                |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [(9)-                                 | 1]x0.1 =     | 0                           | (10)           |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constru-<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uction                                | ]            | 0                           | ](11)<br>](12) |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | l            | 0                           | (12)           |
| Percentage of windows and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | l            | 0                           | (13)           |
| Window infiltration $0.25 - [0.2 \times (14) \div 10]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00] =                                 | l            | 0                           | (15)           |
| Infiltration rate (8) + (10) + (11) + (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) + (13) + (15) =                    |              | 0                           | (16)           |
| Air permeability value, q50, expressed in cubic metres per hour per square me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | etre of envelope                      | area         | 10                          | (17)           |
| If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |              | 0.67                        | (18)           |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s being used                          | r            |                             | _              |
| Number of sides sheltered $(20) = 1 - 10.075 \times (100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9)] =                                 |              | 2                           | (19)           |
| (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1  (20) = 1 | 5)] -                                 | ]<br>I       | 0.85                        | (20)           |
| Infiltration rate modified for monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |              | 0.57                        | (21)           |
| lan Feb Mar Apr May Jun Jul Aug Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oct Nov                               | Dec          |                             |                |
| Monthly average wind speed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |              |                             |                |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3 4.5                               | 4.7          |                             |                |
| Wind Eactor (22a)m = (22)m $\cdot 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |                             |                |
| (22a)m = 1.27  1.25  1.23  1.1  1.08  0.95  0.95  0.92  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.08 1.12                             | 1.18         |                             |                |

| Adjuste          | ed infiltra            | ation rat   | e (allowi      | ing for sh   | nelter an   | d wind s    | speed) =        | (21a) x       | (22a)m         |             |                      |                      |        |        |
|------------------|------------------------|-------------|----------------|--------------|-------------|-------------|-----------------|---------------|----------------|-------------|----------------------|----------------------|--------|--------|
|                  | 0.72                   | 0.71        | 0.7            | 0.62         | 0.61        | 0.54        | 0.54            | 0.52          | 0.57           | 0.61        | 0.64                 | 0.67                 |        |        |
| Calcula<br>If me | ate etteo<br>chanica   | ctive air   | change         | rate for t   | he appli    | cable ca    | ise             |               |                |             |                      | 1                    | 0      | (232)  |
| If exh           | aust air he            | eat pump    | usina App      | endix N. (2  | 3b) = (23a  | ) × Fmv (e  | equation (      | N5)) . othe   | rwise (23b     | ) = (23a)   |                      | l<br>I               | 0      | (23b)  |
| If bala          | anced with             | heat reco   | overy: effic   | iency in %   | allowing f  | or in-use f | actor (fron     | n Table 4h    | ) =            | , ( ,       |                      | l<br>I               | 0      | (23c)  |
| a) If            | halance                | d mech      | anical ve      | ntilation    | with he     | at recov    | erv (MV/        | HR) (24:      | ′<br>a)m – (2' | 2h)m + (    | 23h) v [             | <br>1 – (23c)        | 0<br>  | (200)  |
| (24a)m=          | 0                      |             |                |              | 0           | 0           |                 |               |                |             |                      |                      | . 100] | (24a)  |
| b) If            | halance                | d mech      | anical ve      | I            | without     | heat rec    | covery (I       | I<br>MV) (24k | 1 = (2)        | 2h)m + (    | 23b)                 |                      |        |        |
| (24b)m=          | 0                      | 0           |                | 0            | 0           | 0           |                 |               |                |             | 0                    | 0                    |        | (24b)  |
| c) If            | whole h                | ouse ex     | I<br>tract ver | ntilation of | or positiv  | re input v  | I<br>ventilatio | n from o      | L<br>outside   |             |                      |                      |        |        |
| i i              | f (22b)n               | n < 0.5 ×   | (23b), 1       | then (240    | c) = (23b   | ); other    | wise (24        | c) = (22      | o) m + 0       | .5 × (23t   | <b>)</b> )           |                      |        |        |
| (24c)m=          | 0                      | 0           | 0              | 0            | 0           | 0           | 0               | 0             | 0              | 0           | 0                    | 0                    |        | (24c)  |
| d) If            | natural                | ventilatio  | on or wh       | ole hous     | e positiv   | ve input    | ventilati       | on from       | loft           | -           | -                    |                      |        |        |
| i                | f (22b)n               | n = 1, th   | en (24d)       | m = (22k     | o)m othe    | rwise (2    | 24d)m =         | 0.5 + [(2     | 2b)m² x        | 0.5]        | r                    |                      |        |        |
| (24d)m=          | 0.76                   | 0.75        | 0.74           | 0.69         | 0.69        | 0.65        | 0.65            | 0.64          | 0.66           | 0.69        | 0.7                  | 0.72                 |        | (24d)  |
| Effec            | ctive air              | change      | rate - er      | nter (24a    | ) or (24b   | o) or (24   | c) or (24       | d) in bo      | x (25)         |             |                      | ,                    |        |        |
| (25)m=           | 0.76                   | 0.75        | 0.74           | 0.69         | 0.69        | 0.65        | 0.65            | 0.64          | 0.66           | 0.69        | 0.7                  | 0.72                 |        | (25)   |
| 3. Hea           | at l <mark>osse</mark> | s and he    | eat loss       | paramete     | er:         |             |                 |               |                |             |                      |                      |        |        |
| ELEN             | 1ENT                   | Gros        | s              | Openin       | gs          | Net Ar      | rea             | U-val         | ue             | AXU         |                      | k-value              |        | AXk    |
| Deere            |                        | area        | (m²)           | m            | 12          | A ,r        | m²              | VV/m2         | 2K             | (VV/        | K)                   | kJ/m <sup>2</sup> ·ł | < l    | kJ/K   |
| Doors            | . <b>.</b>             |             |                |              |             | 1.9         | ×               | 1.4           | =              | 2.66        | -                    |                      |        | (26)   |
| vvindo\          | ws Type                | :1          |                |              |             | 4.59        | x1              | /[1/( 1.6 )+  | 0.04] =        | 6.9         | Ľ.                   |                      |        | (27)   |
| Window           | ws Type                | 2           |                |              |             | 1.87        | x <sup>1</sup>  | /[1/( 4.8 )+  | 0.04] =        | 7.53        |                      |                      |        | (27)   |
| Window           | ws Type                | 93          |                |              |             | 0.65        | x1              | /[1/( 4.8 )+  | 0.04] =        | 2.62        |                      |                      |        | (27)   |
| Window           | ws Type                | e 4         |                |              |             | 1.87        | x1              | /[1/( 1.6 )+  | 0.04] =        | 2.81        |                      |                      |        | (27)   |
| Floor            |                        |             |                |              |             | 55          | x               | 0.93          | =              | 51.15       |                      |                      |        | (28)   |
| Walls 7          | Гуре1                  | 28.         | 9              | 8.33         |             | 20.57       | 7 X             | 2.1           | =              | 43.2        |                      |                      |        | (29)   |
| Walls 7          | Гуре2                  | 7.8         | 1              | 2.55         |             | 5.26        | X               | 2.1           | =              | 11.05       |                      |                      |        | (29)   |
| Total a          | rea of e               | lements     | , m²           |              |             | 91.71       | 1               |               |                |             |                      |                      |        | (31)   |
| Party v          | vall                   |             |                |              |             | 27.9        | x               | 0             | =              | 0           |                      |                      |        | (32)   |
| Party v          | vall                   |             |                |              |             | 1.13        | x               | 0             | =              | 0           |                      |                      |        | (32)   |
| * for win        | dows and               | roof wind   | ows, use e     | effective wi | ndow U-va   | alue calcul | lated using     | g formula 1   | /[(1/U-valu    | ıe)+0.04] a | as given in          | paragraph            | 3.2    |        |
| ** includ        | e the area             | as on both  | sides of in    | nternal wal  | ls and part | itions      |                 | (26) (20)     | ) (22)         |             |                      |                      |        |        |
| Fabric           | neat los               | S, W/K :    | = 5 (A X       | 0)           |             |             |                 | (20)(30)      | ) + (32) =     | (00) . (0)  | 0) . (00 .)          | (00.)                | 127.9  | 1 (33) |
| Heat Ca          |                        | Cm = S(     | (A X K )       |              |             | 1/1021      |                 |               | ((28).         | (30) + (3)  | 2) + (32a).          | (32e) =              | 0      | (34)   |
| For dooi         |                        | parame      |                | - = CM +     | - IFA) IN   | i KJ/IN-K   | t known n       | raciaaly th   | indicativ      | uve value   | . піgn<br>: тмр ін т | able 1f              | 450    | (35)   |
| can be u         | used inste             | ad of a de  | tailed calc    | ulation.     | CONSTRUCT   | on are no   | ι κποιντη ρι    | ecisely ine   |                | - values of |                      |                      |        |        |
| Therma           | al bridge              | es : S (L   | x Y) cal       | culated u    | using Ap    | pendix l    | K               |               |                |             |                      |                      | 14.4   | (36)   |
| if details       | of therma              | al bridging | are not kr     | nown (36) =  | = 0.15 x (3 | 1)          |                 |               |                |             |                      |                      |        |        |
| Total fa         | abric he               | at loss     |                |              |             |             |                 |               | (33) +         | (36) =      |                      |                      | 142.3  | 1 (37) |

| Ventila   | 'entilation heat loss calculated monthly     (38)m = 0.33 × (25)m × (5)       Jan     Feb     Mar     Apr     May     Jun     Jul     Aug     Sep     Oct     Nov     Dec |                          |                        |                          |                            |                           |                   |                    |              |                          |                        |          |         |      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|--------------------------|----------------------------|---------------------------|-------------------|--------------------|--------------|--------------------------|------------------------|----------|---------|------|
|           | Jan                                                                                                                                                                       | Feb                      | Mar                    | Apr                      | May                        | Jun                       | Jul               | Aug                | Sep          | Oct                      | Nov                    | Dec      |         |      |
| (38)m=    | 30                                                                                                                                                                        | 29.6                     | 29.21                  | 27.37                    | 27.02                      | 25.42                     | 25.42             | 25.12              | 26.03        | 27.02                    | 27.72                  | 28.45    |         | (38) |
| Heat ti   | ransfer o                                                                                                                                                                 | coefficie                | nt, W/K                |                          |                            |                           |                   |                    | (39)m        | = (37) + (               | 38)m                   |          |         |      |
| (39)m=    | 172.32                                                                                                                                                                    | 171.92                   | 171.52                 | 169.68                   | 169.34                     | 167.73                    | 167.73            | 167.43             | 168.35       | 169.34                   | 170.03                 | 170.76   |         |      |
|           |                                                                                                                                                                           |                          |                        |                          |                            |                           |                   |                    | (10)         | Average =                | Sum(39)1               | 12 /12=  | 169.68  | (39) |
| Heat lo   | oss para                                                                                                                                                                  | imeter (H                | HLP), W                | /m²K                     | 0.00                       | 0.05                      | 0.05              | 0.04               | (40)m        | = (39)m ÷                | - (4)                  |          |         |      |
| (40)m=    | 3.13                                                                                                                                                                      | 3.13                     | 3.12                   | 3.09                     | 3.08                       | 3.05                      | 3.05              | 3.04               | 3.06         | 3.08                     | 3.09                   | 3.1      | 2.00    |      |
| Numbe     | er of day                                                                                                                                                                 | /s in mo                 | nth (Tab               | le 1a)                   |                            |                           |                   |                    | ,            | Average =                | Sum(40)1               | 12 / 12= | 3.09    | (40) |
|           | Jan                                                                                                                                                                       | Feb                      | Mar                    | Apr                      | May                        | Jun                       | Jul               | Aug                | Sep          | Oct                      | Nov                    | Dec      |         |      |
| (41)m=    | 31                                                                                                                                                                        | 28                       | 31                     | 30                       | 31                         | 30                        | 31                | 31                 | 30           | 31                       | 30                     | 31       |         | (41) |
|           |                                                                                                                                                                           |                          |                        |                          |                            |                           |                   |                    |              |                          |                        |          |         |      |
| 4 Wa      | ater heat                                                                                                                                                                 | ting ene                 | rav reau               | irement <sup>.</sup>     |                            |                           |                   |                    |              |                          |                        | kWh/ve   | ear:    |      |
|           |                                                                                                                                                                           |                          | igy ioqu               |                          |                            |                           |                   |                    |              |                          |                        |          |         |      |
|           |                                                                                                                                                                           | upancy, I                | N<br>1 76 v            | [1 ovp                   | ( 0 0003                   |                           | - 120             | \2\ <u>1 - 0</u> ( | 1012 v (*    | TEA 12                   | 1.                     | .84      |         | (42) |
| if TF     | A £ 13.                                                                                                                                                                   | 9, $N = 1$<br>9, $N = 1$ | + 1.70 X               | . [1 - exp               | (-0.0003                   | 949 X (11                 | -A -13.9          | )2)] + 0.0         | JU13 X (     | IFA-13.                  | .9)                    |          |         |      |
| Annua     | l averag                                                                                                                                                                  | je hot wa                | ater usag              | ge in litre              | es per da                  | ay Vd,av                  | erage =           | (25 x N)           | + 36         |                          | 77                     | .84      |         | (43) |
| Reduce    | the annua<br>e that 125                                                                                                                                                   | al average<br>litres per | hot water<br>person pe | usage by<br>r dav (all w | 5% if the a<br>ater use. I | lwelling is<br>hot and co | designed i<br>Id) | to achieve         | a water us   | se target o              | f                      |          |         |      |
|           |                                                                                                                                                                           |                          | Max                    |                          |                            |                           |                   | <b>A</b>           | 0.00         | Ort                      | Neu                    |          |         |      |
| Hot wat   | Jan<br>er usage i                                                                                                                                                         | n litres per             | Iviar<br>dav for ea    | Apr<br>ach month         | Vd.m = fa                  | ctor from 7               | JUI<br>Table 1c x | (43)               | Sep          | Oct                      | INOV                   | Dec      |         |      |
| (44)m-    | 85.62                                                                                                                                                                     | 82.51                    | 79 30                  | 76.28                    | 73 17                      | 70.05                     | 70.05             | 73 17              | 76.28        | 79 39                    | 82.51                  | 85.62    |         |      |
| (++)11-   | 05.02                                                                                                                                                                     | 02.51                    | 79.55                  | 10.20                    | 15.11                      | 10.05                     | 10.00             | 73.17              | - 10.20      | $\frac{79.59}{100} = Su$ | m(44)1 12 =            | 00.02    | 934.05  | (44) |
| Energy    | content of                                                                                                                                                                | hot water                | used - ca              | lculated me              | onthly $= 4$ .             | 190 x Vd,r                | n x nm x E        | OTm / 3600         | ) kWh/mor    | oth (see Ta              | ables 1b, 1            | c, 1d)   | 001.00  |      |
| (45)m=    | 126.97                                                                                                                                                                    | 111.05                   | 114.6                  | 99.91                    | 95.86                      | 82.72                     | 76.65             | 87.96              | 89.01        | 103.74                   | 113.24                 | 122.97   |         |      |
|           |                                                                                                                                                                           |                          |                        |                          |                            |                           |                   |                    |              | Total = Su               | m(45) <sub>112</sub> = | =        | 1224.68 | (45) |
| lf instan | taneous w                                                                                                                                                                 | ater heati               | ng at point            | t of use (no             | o hot water                | r storage),               | enter 0 in        | boxes (46          | ) to (61)    |                          |                        |          |         |      |
| (46)m=    | 19.05                                                                                                                                                                     | 16.66                    | 17.19                  | 14.99                    | 14.38                      | 12.41                     | 11.5              | 13.19              | 13.35        | 15.56                    | 16.99                  | 18.45    |         | (46) |
| Storag    | storage                                                                                                                                                                   | 1055:<br>Do (litros)     | includir               |                          | alar ar M                  | /\//HBC                   | storada           | within s           | ame ves      | ما                       |                        | 400      |         | (47) |
| If com    | munity h                                                                                                                                                                  | e (illes)                | and no to              | ng any su<br>ank in du   | velling e                  | ntor 110                  | litros in         | (47)               |              | 501                      |                        | 160      |         | (47) |
| Otherv    | vise if no                                                                                                                                                                | o stored                 | hot wate               | er (this in              | ncludes i                  | nstantar                  | neous co          | ombi boil          | ers) ente    | er '0' in (              | (47)                   |          |         |      |
| Water     | storage                                                                                                                                                                   | loss:                    |                        | ,                        |                            |                           |                   |                    | ,            | ·                        |                        |          |         |      |
| a) If m   | nanufact                                                                                                                                                                  | urer's de                | eclared I              | oss facto                | or is kno                  | wn (kWł                   | n/day):           |                    |              |                          |                        | 0        |         | (48) |
| Tempe     | erature f                                                                                                                                                                 | actor fro                | m Table                | 2b                       |                            |                           |                   |                    |              |                          |                        | 0        |         | (49) |
| Energy    | y lost fro                                                                                                                                                                | m water                  | storage                | e, kWh/ye                | ear                        |                           |                   | (48) x (49)        | ) =          |                          | 1                      | 10       |         | (50) |
| b) If m   | nanufact                                                                                                                                                                  | urer's de                | eclared (              | cylinder  <br>com Tabl   | loss fact                  | or is not<br>b/litro/da   | known:            |                    |              |                          |                        |          |         | (54) |
| If com    | munity h                                                                                                                                                                  | neating s                | ee secti               | on 4.3                   |                            | 1/11110/08                | iy)               |                    |              |                          | 0.                     | .02      |         | (51) |
| Volum     | e factor                                                                                                                                                                  | from Ta                  | ble 2a                 |                          |                            |                           |                   |                    |              |                          | 1.                     | .03      |         | (52) |
| Tempe     | erature f                                                                                                                                                                 | actor fro                | m Table                | 2b                       |                            |                           |                   |                    |              |                          | 0                      | .6       |         | (53) |
| Energy    | y lost fro                                                                                                                                                                | m water                  | storage                | e, kWh/ye                | ear                        |                           |                   | (47) x (51         | ) x (52) x ( | 53) =                    | 1.                     | .03      |         | (54) |
| Enter     | (50) or (                                                                                                                                                                 | (54) in (5               | 55)                    |                          |                            |                           |                   |                    |              |                          | 1.                     | .03      |         | (55) |
| Water     | storage                                                                                                                                                                   | loss cal                 | culated                | for each                 | month                      |                           |                   | ((56)m = (         | 55) × (41)   | m                        |                        |          |         |      |
| (56)m=    | 32.01                                                                                                                                                                     | 28.92                    | 32.01                  | 30.98                    | 32.01                      | 30.98                     | 32.01             | 32.01              | 30.98        | 32.01                    | 30.98                  | 32.01    |         | (56) |

| If cylinde           | er contain | s dedicated | d solar sto | rage, (57)ı         | m = (56)m  | x [(50) – (    | H11)] ÷ (50          | 0), else (57  | 7)m = (56)  | m where (                 | H11) is fro | m Append    | ix H       |        |
|----------------------|------------|-------------|-------------|---------------------|------------|----------------|----------------------|---------------|-------------|---------------------------|-------------|-------------|------------|--------|
| (57)m=               | 32.01      | 28.92       | 32.01       | 30.98               | 32.01      | 30.98          | 32.01                | 32.01         | 30.98       | 32.01                     | 30.98       | 32.01       |            | (57)   |
| Primar               | y circuit  | loss (an    | inual) fro  | om Table            | e 3        |                |                      |               |             |                           |             | 0           |            | (58)   |
| Primar               | y circuit  | loss cal    | culated     | for each            | month (    | 59)m = (       | 58) ÷ 36             | 5 × (41)      | m           |                           |             |             |            |        |
| (mod                 | dified by  | factor fr   | rom Tab     | le H5 if t          | here is s  | solar wat      | er heatir            | ng and a      | cylinde     | r thermo                  | stat)       |             |            |        |
| (59)m=               | 23.26      | 21.01       | 23.26       | 22.51               | 23.26      | 22.51          | 23.26                | 23.26         | 22.51       | 23.26                     | 22.51       | 23.26       |            | (59)   |
| Combi                | loss ca    | lculated    | for each    | month (             | (61)m =    | (60) ÷ 36      | 65 × (41)            | )m            |             |                           |             |             |            |        |
| (61)m=               | 0          | 0           | 0           | 0                   | 0          | 0              | 0                    | 0             | 0           | 0                         | 0           | 0           |            | (61)   |
| Total h              | eat req    | uired for   | water h     | eating ca           | alculated  | for eacl       | n month              | (62)m =       | 0.85 × (    | (45)m +                   | (46)m +     | (57)m +     | (59)m + (6 | 61)m   |
| (62)m=               | 182.25     | 160.98      | 169.87      | 153.4               | 151.14     | 136.22         | 131.93               | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24      |            | (62)   |
| Solar DH             | HW input   | calculated  | using App   | endix G or          | Appendix   | H (negativ     | ve quantity          | /) (enter '0' | if no sola  | r contributi              | ion to wate | er heating) |            |        |
| (add a               | dditiona   | l lines if  | FGHRS       | and/or V            | WWHRS      | applies        | , see Ap             | pendix G      | G)          |                           |             |             |            |        |
| (63)m=               | 0          | 0           | 0           | 0                   | 0          | 0              | 0                    | 0             | 0           | 0                         | 0           | 0           |            | (63)   |
| Output               | from w     | ater hea    | ter         |                     |            |                |                      |               |             |                           |             |             |            |        |
| (64)m=               | 182.25     | 160.98      | 169.87      | 153.4               | 151.14     | 136.22         | 131.93               | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24      |            |        |
|                      |            |             |             |                     |            |                |                      | Outp          | out from wa | ater heate                | r (annual)₁ | 12          | 1875.5     | 2 (64) |
| Hea <mark>t g</mark> | ains fro   | m water     | heating,    | kWh/mo              | onth 0.2   | 5´[0.85        | × (45)m              | + (61)m       | n] + 0.8 x  | (46)m                     | + (57)m     | + (59)m     | ]          |        |
| (65)m=               | 60.83      | 53.73       | 56.71       | 51. <mark>23</mark> | 50.48      | 4 <u>5.5</u> 1 | 44.1                 | 47.86         | 47.61       | 53.1                      | 55.66       | 59.5        |            | (65)   |
| inclu                | de (57)    | m in calc   | culation    | of (65)m            | only if c  | ylinder is     | s in the c           | dwelling      | or hot w    | ate <mark>r is f</mark> r | om com      | munity h    | eating     |        |
| 5. Int               | ernal ga   | ains (see   | Table 5     | and 5a              | ):         |                |                      |               |             |                           |             |             |            |        |
| Metabo               | olic gain  | s (Table    | 5) Wat      | ts                  |            |                |                      |               |             |                           |             |             |            |        |
| in o to to           | Jan        | Feb         | Mar         | Apr                 | May        | Jun            | Jul                  | Aug           | Sep         | Oct                       | Nov         | Dec         |            |        |
| (66)m=               | 91.87      | 91.87       | 91.87       | 91. <mark>87</mark> | 91.87      | 91.87          | 91.87                | 91.87         | 91.87       | 91.87                     | 91.87       | 91.87       |            | (66)   |
| Lightin              | g gains    | (calculat   | ted in Ap   | opendix             | L, equati  | ion L9 oi      | <sup>-</sup> L9a), a | lso see       | Table 5     |                           |             |             |            |        |
| (67)m=               | 14.74      | 13.1        | 10.65       | 8.06                | 6.03       | 5.09           | 5.5                  | 7.15          | 9.59        | 12.18                     | 14.22       | 15.15       |            | (67)   |
| Applia               | nces ga    | ins (calc   | ulated ir   | Append              | dix L, eq  | uation L       | 13 or L1:            | 3a), also     | see Tal     | ble 5                     |             |             |            |        |
| (68)m=               | 160.19     | 161.85      | 157.66      | 148.74              | 137.49     | 126.91         | 119.84               | 118.18        | 122.36      | 131.28                    | 142.54      | 153.12      |            | (68)   |
| Cookin               | ig gains   | (calcula    | ted in A    | ppendix             | L, equat   | ion L15        | or L15a)             | , also se     | e Table     | 5                         |             |             |            |        |
| (69)m=               | 32.19      | 32.19       | 32.19       | 32.19               | 32.19      | 32.19          | 32.19                | 32.19         | 32.19       | 32.19                     | 32.19       | 32.19       |            | (69)   |
| Pumps                | and fai    | ns gains    | (Table 5    | 5a)                 |            |                |                      |               |             |                           |             |             |            |        |
| (70)m=               | 0          | 0           | 0           | 0                   | 0          | 0              | 0                    | 0             | 0           | 0                         | 0           | 0           |            | (70)   |
| Losses               | s e.g. ev  | aporatio    | n (nega     | tive valu           | es) (Tab   | le 5)          |                      |               |             |                           |             |             |            |        |
| (71)m=               | -73.49     | -73.49      | -73.49      | -73.49              | -73.49     | -73.49         | -73.49               | -73.49        | -73.49      | -73.49                    | -73.49      | -73.49      |            | (71)   |
| Water                | heating    | gains (T    | able 5)     |                     |            |                |                      |               |             |                           |             |             |            |        |
| (72)m=               | 81.76      | 79.96       | 76.23       | 71.15               | 67.86      | 63.22          | 59.27                | 64.32         | 66.12       | 71.37                     | 77.31       | 79.97       |            | (72)   |
| Total i              | nternal    | gains =     |             |                     |            | (66)           | m + (67)m            | ı + (68)m +   | - (69)m + ( | (70)m + (7                | 1)m + (72)  | m           |            |        |
| (73)m=               | 307.25     | 305.46      | 295.1       | 278.52              | 261.93     | 245.77         | 235.17               | 240.21        | 248.64      | 265.4                     | 284.62      | 298.8       |            | (73)   |
| 6. Sol               | ar gains   | 5:          |             |                     |            |                |                      |               |             |                           |             |             |            |        |
| Solar g              | ains are o | calculated  | using sola  | r flux from         | Table 6a a | and associ     | ated equa            | tions to co   | nvert to th | e applicat                | le orientat | ion.        |            |        |
| Orienta              | ation: A   | Access F    | actor       | Area                |            | Flu            | х                    |               | g_          |                           | FF          |             | Gains      |        |
|                      | ٦          | Table 6d    |             | m²                  |            | Tab            | ole 6a               | Т             | able 6b     | Ta                        | able 6c     |             | (W)        |        |

| North | 0.9x | 0.77 | x   | 1.87 | x | 10.63  | x        | 0.85 | x | 0.7 | =   | 8.2    | (74) |
|-------|------|------|-----|------|---|--------|----------|------|---|-----|-----|--------|------|
| North | 0.9x | 0.77 | x   | 0.65 | x | 10.63  | x        | 0.85 | x | 0.7 | ] = | 2.85   | (74) |
| North | 0.9x | 0.77 | ×   | 1.87 | x | 20.32  | x        | 0.85 | x | 0.7 | ] = | 15.67  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 20.32  | x        | 0.85 | x | 0.7 | =   | 5.45   | (74) |
| North | 0.9x | 0.77 | ×   | 1.87 | x | 34.53  | x        | 0.85 | x | 0.7 | ] = | 26.63  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 34.53  | x        | 0.85 | x | 0.7 | =   | 9.25   | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 55.46  | x        | 0.85 | x | 0.7 | ] = | 42.77  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 14.87  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 74.72  | x        | 0.85 | x | 0.7 | ] = | 57.61  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | × | 74.72  | x        | 0.85 | x | 0.7 | =   | 20.03  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 61.67  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 21.44  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | × | 74.68  | x        | 0.85 | x | 0.7 | =   | 57.58  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 20.01  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 45.68  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 15.88  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 41.52  | x        | 0.85 | x | 0.7 | =   | 32.01  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | X | 41.52  | x        | 0.85 | х | 0.7 | ] = | 11.13  | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | х | 24.19  | x        | 0.85 | x | 0.7 | =   | 18.65  | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | x | 24.19  | <b>x</b> | 0.85 | x | 0.7 | =   | 6.48   | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 13.12  | x        | 0.85 | x | 0.7 | ] = | 10.11  | (74) |
| North | 0.9x | 0.77 | ] × | 0.65 | × | 13.12  | х        | 0.85 | x | 0.7 | =   | 3.52   | (74) |
| North | 0.9x | 0.77 | x   | 1.87 | x | 8.86   | x        | 0.85 | x | 0.7 | ] = | 6.84   | (74) |
| North | 0.9x | 0.77 | x   | 0.65 | × | 8.86   | x        | 0.85 | x | 0.7 | =   | 2.38   | (74) |
| East  | 0.9x | 1    | x   | 1.87 | x | 19.64  | x        | 0.76 | x | 0.7 | =   | 13.54  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 38.42  | x        | 0.76 | x | 0.7 | =   | 26.49  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 63.27  | x        | 0.76 | x | 0.7 | =   | 43.62  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 92.28  | x        | 0.76 | x | 0.7 | =   | 63.62  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 113.09 | x        | 0.76 | x | 0.7 | =   | 77.97  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | × | 115.77 | x        | 0.76 | x | 0.7 | ] = | 79.81  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 110.22 | x        | 0.76 | x | 0.7 | =   | 75.99  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 94.68  | x        | 0.76 | x | 0.7 | =   | 65.27  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 73.59  | x        | 0.76 | x | 0.7 | =   | 50.73  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 45.59  | x        | 0.76 | x | 0.7 | =   | 31.43  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | × | 24.49  | x        | 0.76 | x | 0.7 | ] = | 16.88  | (76) |
| East  | 0.9x | 1    | x   | 1.87 | x | 16.15  | x        | 0.76 | x | 0.7 | =   | 11.14  | (76) |
| South | 0.9x | 0.77 | ×   | 4.59 | × | 46.75  | x        | 0.76 | x | 0.7 | =   | 79.11  | (78) |
| South | 0.9x | 0.77 | x   | 4.59 | × | 76.57  | x        | 0.76 | x | 0.7 | =   | 129.57 | (78) |
| South | 0.9x | 0.77 | ×   | 4.59 | × | 97.53  | x        | 0.76 | x | 0.7 | ] = | 165.05 | (78) |
| South | 0.9x | 0.77 | ×   | 4.59 | × | 110.23 | ×        | 0.76 | x | 0.7 | =   | 186.54 | (78) |
| South | 0.9x | 0.77 | ×   | 4.59 | × | 114.87 | x        | 0.76 | x | 0.7 | =   | 194.39 | (78) |

| South              | 0.9x                | 0.77           | ,        | 4.                 | 59        | x     | 1             | 10.55      | x        |      | 0.76      | x                   | Γ         | 0.7         |       | =    | 187.07 | (78) |
|--------------------|---------------------|----------------|----------|--------------------|-----------|-------|---------------|------------|----------|------|-----------|---------------------|-----------|-------------|-------|------|--------|------|
| South              | 0.9x                | 0.77           | ,        | 4.                 | 59        | x     | 1             | 08.01      | x        |      | 0.76      | - x                 | Г         | 0.7         |       | =    | 182.78 | (78) |
| South              | 0.9x                | 0.77           |          | 4.                 | 59        | x     | 1             | 04.89      | x        |      | 0.76      | ×                   | Ē         | 0.7         |       | =    | 177.5  | (78) |
| South              | 0.9x                | 0.77           |          | 4.                 | 59        | x     | 1             | 01.89      | x        |      | 0.76      | ×                   | Γ         | 0.7         |       | =    | 172.41 | (78) |
| South              | 0.9x                | 0.77           |          | 4.                 | 59        | x     | <u>ــــــ</u> | 32.59      | x        |      | 0.76      | ۲<br>× آ            | Г         | 0.7         |       | =    | 139.75 | (78) |
| South              | 0.9x                | 0.77           | >        | 4.                 | 59        | x     | 5             | 55.42      | x        |      | 0.76      | ×                   | Ē         | 0.7         |       | =    | 93.78  | (78) |
| South              | 0.9x                | 0.77           |          | 4.                 | 59        | x     |               | 40.4       | x        |      | 0.76      | - x                 | Γ         | 0.7         |       | =    | 68.36  | (78) |
|                    | L                   |                |          |                    |           |       |               |            |          |      |           |                     | -         |             |       |      |        |      |
| Solar (            | gains in            | watts, ca      | alculate | d for eac          | h mont    | h     |               |            | (83)m    | = Sı | um(74)m . | (82)r               | n         |             |       |      |        |      |
| (83)m=             | 103.7               | 177.17         | 244.55   | 307.79             | 349.99    | )     | 350           | 336.36     | 304      | .34  | 266.29    | 196.                | 32        | 124.29      | 88.   | 71   |        | (83) |
| Total g            | gains – i           | nternal a      | nd sola  | ar (84)m :         | = (73)m   | ) + ( | 83)m          | , watts    |          |      |           |                     |           |             |       |      |        |      |
| (84)m=             | 410.95              | 482.64         | 539.65   | 586.31             | 611.92    | 2 5   | 95.77         | 571.53     | 544      | .55  | 514.92    | 461.                | 71        | 408.91      | 387   | .51  |        | (84) |
| 7. Me              | ean intei           | nal temp       | perature | e (heating         | g seaso   | n)    |               |            |          |      |           |                     |           |             |       |      |        |      |
| Temp               | perature            | during h       | eating   | periods i          | n the liv | /ing  | area          | from Tak   | ole 9,   | Th   | 1 (°C)    |                     |           |             |       |      | 21     | (85) |
| Utilis             | ation fac           | ctor for g     | ains for | living ar          | ea, h1,ı  | m (s  | ее Та         | able 9a)   |          |      |           |                     |           |             |       | I    |        |      |
|                    | Jan                 | Feb            | Mar      | Apr                | May       | /     | Jun           | Jul        | A        | ug   | Sep       | 00                  | ct        | Nov         | D     | ec   |        |      |
| (86)m=             | 1                   | 1              | 1        | 0.99               | 0.98      | T     | 0.95          | 0.88       | 0.9      | Э    | 0.97      | 0.9                 | 9         | 1           | 1     |      |        | (86) |
| Mear               | interna             | temper         | ature in | living ar          | ea T1 (   | follo | w ste         | ens 3 to 7 | 7 in T   | able | e 9c)     |                     |           |             |       |      |        |      |
| (87)m=             | 18.89               | 19.04          | 19.33    | 19.73              | 20.16     |       | 20.56         | 20.8       | 20.      | 76   | 20.43     | 19.8                | 38        | 19.32       | 18.   | 87   |        | (87) |
| Tamm               |                     | du univo en la |          |                    |           |       |               | from To    |          |      |           |                     |           |             |       |      |        |      |
| l emt              |                     |                |          |                    | 18 71     |       | eiiing        |            |          | 73 I | 18 72     | 187                 | 71        | 18.7        | 18    | 7    |        | (88) |
| (00)11-            | 10.00               | 10.00          | 10.00    | 10.71              | 10.71     |       | 10.75         | 10.75      | 10.      | / 5  | 10.72     | 10.7                | •         | 10.7        |       | . /  |        | (00) |
| Utilis             | ation fac           | tor for g      | ains for | rest of d          | welling   | , h2  | ,m (se        | e Table    | 9a)      |      |           |                     | _         |             |       |      | 1      | (00) |
| (89)m=             | 1                   | 1              | 0.99     | 0.99               | 0.96      |       | 0.84          | 0.58       | 0.6      | 4    | 0.92      | 0.9                 | 9         | 1           | 1     |      |        | (89) |
| Me <mark>ar</mark> | interna             | l temper       | ature in | the rest           | of dwe    | lling | T2 (f         | ollow ste  | eps 3    | to 7 | in Tabl   | e 9 <mark>c)</mark> |           |             |       |      |        |      |
| (90)m=             | 16.09               | 16.32          | 16.74    | 17.34              | 17.95     |       | 18.49         | 18.69      | 18.      | 68   | 18.33     | 17.5                | 55        | 16.73       | 16.   | 07   |        | (90) |
|                    |                     |                |          |                    |           |       |               |            |          |      | f         | LA = L              | ivin      | g area ÷ (4 | 4) =  |      | 0.55   | (91) |
| Mear               | n interna           | l temper       | ature (f | or the wh          | nole dw   | ellin | g) = f        | LA x T1    | + (1     | – fL | A) × T2   |                     |           |             |       |      |        |      |
| (92)m=             | 17.63               | 17.81          | 18.16    | 18.65              | 19.17     |       | 19.63         | 19.85      | 19.8     | 82   | 19.48     | 18.8                | 33        | 18.15       | 17.   | 61   |        | (92) |
| Apply              | / adjustr           | nent to t      | he mea   | n interna          | l tempe   | eratu | ure fro       | m Table    | e 4e, '  | whe  | re appro  | opriat              | e         |             |       |      | L      |      |
| (93)m=             | 17.63               | 17.81          | 18.16    | 18.65              | 19.17     | Ŀ     | 19.63         | 19.85      | 19.8     | 82   | 19.48     | 18.8                | 33        | 18.15       | 17.   | 61   |        | (93) |
| 8. Sp              | ace hea             | ting requ      | uiremer  | nt                 |           |       |               |            |          |      |           |                     |           |             |       |      |        |      |
| Set T              | i to the tilisation | mean int       | ernal te | mperatu            | re obta   | inec  | at st         | ep 11 of   | Tabl     | e 9b | o, so tha | t Ti,n              | า=(       | 76)m an     | d re- | calc | ulate  |      |
| ine u              | lan                 | Feb            | Mar      |                    |           | ,     | lun           |            | Δ        |      | Sen       | 0                   | <b>~t</b> | Nov         | П     | 90   |        |      |
| Utilis             | ation fac           | tor for a      | ains, hr | <u>ן איז</u><br>n: |           |       | Juli          |            |          | ug [ | OCP       | 0                   |           | INOV        |       | 00   | I      |      |
| (94)m=             | 1                   | 1              | 0.99     | 0.99               | 0.96      | Т     | 0.9           | 0.77       | 0.8      | 1    | 0.94      | 0.9                 | 9         | 1           | 1     |      |        | (94) |
| Usefu              | ul gains.           | hmGm           | W = (9   | <br>94)m x (8      | 1<br>4)m  |       |               | I          | <u> </u> |      |           |                     |           |             |       |      | i .    |      |
| (95)m=             | 410.33              | 481.23         | 536.43   | 578.12             | 589.75    | 5 5   | 36.45         | 439.68     | 440      | .15  | 485.81    | 456.                | 54        | 407.77      | 387   | .05  |        | (95) |
| Mont               | hly aver            | age exte       | rnal ter | nperature          | e from    | Tab   | le 8          | !          |          |      |           |                     |           |             |       |      |        |      |
| (96)m=             | 4.3                 | 4.9            | 6.5      | 8.9                | 11.7      |       | 14.6          | 16.6       | 16.      | 4    | 14.1      | 10.                 | 6         | 7.1         | 4.    | 2    |        | (96) |
| Heat               | loss rat            | e for mea      | an inter | nal temp           | erature   | , Ln  | י, W          | =[(39)m    | x [(93   | 3)m- | – (96)m   | ]                   |           |             |       |      |        |      |
| (97)m=             | 2296.27             | 2219.89        | 2000.14  | 1655.19            | 1264.1    | 38    | 42.86         | 544.66     | 572      | .64  | 906.46    | 1393                | .84       | 1879.44     | 2289  | 9.52 |        | (97) |
| Spac               | e heatin            | g require      | ement f  | or each r          | nonth, l  | kWł   | n/mon         | th = 0.02  | 24 x [   | (97) | m – (95   | )m] x               | (4        | 1)m         | _     |      | I      |      |
| (98)m=             | 1403.13             | 1168.38        | 1089     | 775.49             | 501.74    |       | 0             | 0          | 0        |      | 0         | 697.                | 35        | 1059.6      | 1415  | 5.44 |        |      |

|                                                                                                                 | Total per year (kWh/y                                            | ear) = Sum(98) <sub>15,912</sub> | = 81             | 10.13          | (98)            |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|------------------|----------------|-----------------|
| Space heating requirement in kWh/m²/year                                                                        |                                                                  |                                  | 14               | 47.46          | (99)            |
| 9b. Energy requirements – Community heating scheme                                                              | )                                                                |                                  |                  |                |                 |
| This part is used for space heating, space cooling or wa<br>Fraction of space heat from secondary/supplementary | ater heating provided by a com<br>heating (Table 11) '0' if none | munity scheme.                   | <b></b>          | 0              | (301)           |
| Fraction of space heat from community system $1 - (30)$                                                         | 1) =                                                             |                                  |                  | 1              | ](302)          |
| The community scheme may obtain heat from several sources. The                                                  | '<br>procedure allows for CHP and up to fo                       | ur other heat sources            | s; the latter    |                | 1               |
| includes boilers, heat pumps, geothermal and waste heat from power<br>Fraction of heat from Community boilers   | r stations. See Appendix C.                                      |                                  |                  | 1              | (303a)          |
| Fraction of total space heat from Community boilers                                                             |                                                                  | (302) x (303a) =                 |                  | 1              | (304a)          |
| Factor for control and charging method (Table 4c(3)) fo                                                         | r community heating system                                       |                                  |                  | 1              | (305)           |
| Distribution loss factor (Table 12c) for community heating                                                      | ng system                                                        |                                  | · · ·            | 1.05           | (306)           |
| Space heating                                                                                                   |                                                                  |                                  | k\               | Nh/year        | -               |
| Annual space heating requirement                                                                                |                                                                  |                                  | 81               | 10.13          |                 |
| Space heat from Community boilers                                                                               | (98) x (304a) x (                                                | 305) x (306) =                   | 85               | 515.63         | (307a)          |
| Efficiency of secondary/supplementary heating system                                                            | in % (from Table 4a or Append                                    | dix E)                           |                  | 0              | (308            |
| Space heating requirement from secondary/supplemen                                                              | tary system (98) x (301) x 10                                    | 00 ÷ (308) =                     |                  | 0              | (309)           |
| Water heating                                                                                                   |                                                                  |                                  |                  |                | -               |
| Annual water heating requirement                                                                                |                                                                  |                                  | 18               | 375.52         | ]               |
| If DHW from community scheme:<br>Water heat from Community boilers                                              | (64) x (303a) x (                                                | 305) x (306) =                   | 1                | 060 3          | <b>]</b> (310a) |
| Electricity used for heat distribution                                                                          | 0.01 × [(307a)(307e                                              | e) + (310a)(310e)] :             | = 1              | 04.85          | ](313)          |
| Cooling System Energy Efficiency Ratio                                                                          |                                                                  |                                  |                  | 0              | (314)           |
| Space cooling (if there is a fixed cooling system, if not                                                       | enter 0) $= (107) \div (314) =$                                  | =                                |                  | 0              | (315)           |
| Electricity for pumps and fans within dwelling (Table 4f)                                                       | :                                                                |                                  |                  |                |                 |
| mechanical ventilation - balanced, extract or positive in                                                       | put from outside                                                 |                                  |                  | 0              | (330a)          |
| warm air heating system fans                                                                                    |                                                                  |                                  |                  | 0              | (330b)          |
| pump for solar water heating                                                                                    |                                                                  |                                  |                  | 0              | (330g)          |
| Total electricity for the above, kWh/year                                                                       | =(330a) + (330b                                                  | ) + (330g) =                     |                  | 0              | (331)           |
| Energy for lighting (calculated in Appendix L)                                                                  |                                                                  |                                  | 20               | 60.39          | (332)           |
| 12b. CO2 Emissions – Community heating scheme                                                                   |                                                                  |                                  |                  |                |                 |
|                                                                                                                 | Energy<br>kWh/year                                               | Emission facto<br>kg CO2/kWh     | r Emiss<br>kg CO | ions<br>2/year |                 |
| CO2 from other sources of space and water heating (no<br>Efficiency of heat source 1 (%)                        | ot CHP)<br>CHP using two fuels repeat (363) to (                 | 366) for the second f            | uel              | 90             | (367a)          |
| CO2 associated with heat source 1                                                                               | [(307b)+(310b)] x 100 ÷ (367b) x                                 | 0                                | = 2              | 2516.38        | (367)           |
| Electrical energy for heat distribution                                                                         | [(313) x                                                         | 0.52                             | =                | 54.42          | (372)           |
| Total CO2 associated with community systems                                                                     | (363)(366) + (368)(372)                                          | )                                | =                | 2570.8         | (373)           |
| CO2 associated with space heating (secondary)                                                                   | (309) x                                                          | 0                                | =                | 0              | (374)           |

| CO2 associated with water from immer      | sion heater or insta                                                        | ntaneous heater (312) x | 0.22 | =      | 0       | (375) |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------|------|--------|---------|-------|--|--|--|--|
| Total CO2 associated with space and v     | vater heating                                                               | (373) + (374) + (375) = |      |        | 2570.8  | (376) |  |  |  |  |
| CO2 associated with electricity for pum   | D2 associated with electricity for pumps and fans within dwelling $(331)$ x |                         |      |        |         |       |  |  |  |  |
| CO2 associated with electricity for light | (332))) x                                                                   | 0.52                    | =    | 135.14 | (379)   |       |  |  |  |  |
| Total CO2, kg/year                        | sum of (376)(382) =                                                         |                         |      |        | 2705.94 | (383) |  |  |  |  |
| Dwelling CO2 Emission Rate                | (383) ÷ (4) =                                                               |                         |      |        | 49.2    | (384) |  |  |  |  |
| El rating (section 14)                    |                                                                             |                         |      |        | 63.74   | (385) |  |  |  |  |
|                                           |                                                                             |                         |      |        |         |       |  |  |  |  |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                      | User D                               | etails:                              |                                     |                       |                       |                      |                             |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-----------------------|-----------------------|----------------------|-----------------------------|---------------------|--|--|--|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stroma FSAP 2012                                                                                                                       | 2                                    | concertu /                           | Stroma<br>Softwa                     | a Num<br>ire Ver                    | ber:<br>sion:         |                       | Versic               | on: 1.0.3.15                |                     |  |  |  |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . london                                                                                                                               |                                      | openy /                              | Audress.                             |                                     |                       |                       |                      |                             |                     |  |  |  |
| 1. Overall dwelling dimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | isions:                                                                                                                                |                                      |                                      |                                      |                                     |                       |                       |                      |                             |                     |  |  |  |
| Basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                      | Area                                 | <b>a(m²)</b><br>51                   | (1a) x                              | <b>Av. He</b>         | <b>ight(m)</b><br>.17 | (2a) =               | <b>Volume(m</b> 3<br>110.67 | 3 <b>)</b><br>(3a)  |  |  |  |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )+(1b)+(1c)+(1d)+(1e)                                                                                                                  | )+(1n                                | )                                    | 51                                   | (4)                                 |                       |                       |                      |                             |                     |  |  |  |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                      |                                      |                                      | (3a)+(3b)                           | +(3c)+(3c             | l)+(3e)+              | .(3n) =              | 110.67                      | (5)                 |  |  |  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                      |                                      |                                      |                                      |                                     |                       |                       |                      |                             |                     |  |  |  |
| Number of chimneys<br>Number of open flues<br>Number of intermittent fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} main & se \\ heating & heating \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$                                | econdary<br>eating<br>0<br>0         | y + [] + []                          | 0<br>0<br>0                          | ] = [<br>] = [                      | total 0 2             |                       | 40 =<br>20 =<br>10 = | m <sup>3</sup> per hou      | (6a)<br>(6b)        |  |  |  |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                      |                                      |                                      |                                     |                       | x /                   | 10 =                 |                             |                     |  |  |  |
| Number of flueless res fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                      |                                      |                                      |                                     | 0                     |                       | 10 -                 | 0                           |                     |  |  |  |
| $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \hline \hline$ |                                                                                                                                        |                                      |                                      |                                      |                                     |                       |                       |                      |                             |                     |  |  |  |
| If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre-<br>deducting areas of opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en carried out or is intende<br>e dwelling (ns)<br>25 for steel or timber f<br>esent, use the value corresp<br>gs); if equal user 0.35 | d, proceed<br>rame or<br>boonding to | to (17), c<br>0.35 for<br>the greate | therwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | om (9) to (<br>uction | (16)<br>[(9)          | -1]x0.1 =            | 0 0 0                       | (9)<br>(10)<br>(11) |  |  |  |
| If suspended wooden flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oor, enter 0.2 (unseale                                                                                                                | ed) or 0.                            | 1 (seale                             | d), else                             | enter 0                             |                       |                       |                      | 0                           | (12)                |  |  |  |
| If no draught lobby, ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er 0.05, else enter 0                                                                                                                  |                                      |                                      |                                      |                                     |                       |                       |                      | 0                           | (13)                |  |  |  |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and doors draught str                                                                                                                  | ipped                                |                                      | 0 25 - [0 2                          | x (14) ∸ 1                          | 001 =                 |                       |                      | 0                           | (14)                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                      |                                      | (8) + (10) -                         | F (11) + (1                         | 2) + (13) ·           | + (15) =              |                      | 0                           | (15)                |  |  |  |
| Air permeability value, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50. expressed in cubi                                                                                                                  | ic metre                             | s per ho                             | ur per so                            | uare m                              | etre of e             | envelope              | area                 | 10                          |                     |  |  |  |
| If based on air permeabilit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y value, then (18) = [(17                                                                                                              | 7) ÷ 20]+(8                          | ), otherwi                           | se (18) = (                          | 16)                                 |                       |                       |                      | 0.68                        | (18)                |  |  |  |
| Air permeability value applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | if a pressurisation test has                                                                                                           | been don                             | e or a deg                           | ıree air pei                         | meability                           | is being u            | sed                   |                      |                             |                     |  |  |  |
| Number of sides sheltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł                                                                                                                                      |                                      |                                      |                                      |                                     |                       |                       |                      | 3                           | (19)                |  |  |  |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                      |                                      | (20) = 1 - [                         | 0.075 x (1                          | 9)] =                 |                       |                      | 0.78                        | (20)                |  |  |  |
| Infiltration rate incorporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng shelter factor                                                                                                                      |                                      |                                      | (21) = (18)                          | x (20) =                            |                       |                       |                      | 0.53                        | (21)                |  |  |  |
| Infiltration rate modified fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r monthly wind speed                                                                                                                   |                                      |                                      |                                      |                                     |                       |                       |                      | 1                           |                     |  |  |  |
| Jan Feb I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mar   Apr   May                                                                                                                        | Jun                                  | Jul                                  | Aug                                  | Sep                                 | Oct                   | Nov                   | Dec                  | J                           |                     |  |  |  |
| Monthly average wind spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed from Table 7                                                                                                                        |                                      |                                      |                                      |                                     |                       |                       | 1                    | 1                           |                     |  |  |  |
| (22)m= 5.1 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.9 4.4 4.3                                                                                                                            | 3.8                                  | 3.8                                  | 3.7                                  | 4                                   | 4.3                   | 4.5                   | 4.7                  | J                           |                     |  |  |  |
| Wind Factor (22a)m = (22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )m ÷ 4                                                                                                                                 |                                      |                                      |                                      |                                     |                       | 1                     | r                    | 1                           |                     |  |  |  |
| (22a)m= 1.27 1.25 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .23 1.1 1.08                                                                                                                           | 0.95                                 | 0.95                                 | 0.92                                 | 1                                   | 1.08                  | 1.12                  | 1.18                 | J                           |                     |  |  |  |

| Adjust               | ed infiltr               | ation rat                      | e (allow                 | ing for sh    | nelter an   | d wind s       | speed) =       | (21a) x        | (22a)m       |                | -                     |                    | _           |               |
|----------------------|--------------------------|--------------------------------|--------------------------|---------------|-------------|----------------|----------------|----------------|--------------|----------------|-----------------------|--------------------|-------------|---------------|
|                      | 0.67                     | 0.66                           | 0.65                     | 0.58          | 0.57        | 0.5            | 0.5            | 0.49           | 0.53         | 0.57           | 0.59                  | 0.62               | ĺ           |               |
| Calcul<br>If m       | ate effe                 | <i>ctive air</i><br>al ventila | change                   | rate for t    | he appli    | cable ca       | se             |                |              |                |                       |                    | 0           | (23a)         |
| lf exh               | aust air h               | eat pump                       | using App                | endix N, (2   | 3b) = (23a  | a) × Fmv (e    | equation (I    | N5)), othei    | rwise (23b   | ) = (23a)      |                       |                    |             | (23b)         |
| If bala              | anced with               | h heat reco                    | overy: effic             | iency in %    | allowing f  | or in-use f    | actor (fron    | n Table 4h     | ) =          | , , ,          |                       |                    |             | (23c)         |
| a) If                | balance                  | ed mecha                       | anical ve                | entilation    | with he     | at recove      | erv (MVI       | HR) (24a       | a)m = (22    | 2b)m + (       | 23b) x [ <sup>,</sup> | 1 – (23c)          | ÷ 1001      | (200)         |
| (24a)m=              | 0                        | 0                              | 0                        | 0             | 0           | 0              | 0              | 0              | 0            | 0              | 0                     | 0                  |             | (24a)         |
| b) If                | balance                  | ed mecha                       | ı<br>anical ve           | entilation    | without     | heat rec       | L<br>Covery (N | u<br>MV) (24b  | )m = (22     | 1<br>2b)m + (2 | 23b)                  |                    | 1           |               |
| ,<br>(24b)m=         | 0                        | 0                              | 0                        | 0             | 0           | 0              | 0              | 0              | 0            | 0              | 0                     | 0                  |             | (24b)         |
| c) If                | whole h                  | iouse ex                       | tract ver                | ntilation of  | or positiv  | /e input v     | ventilatio     | on from c      | outside      | !              |                       |                    | 1           |               |
| ,                    | if (22b)r                | n < 0.5 ×                      | <b>(23b)</b> , t         | then (24o     | c) = (23b   | o); otherv     | wise (24       | c) = (22b      | o) m + 0.    | 5 × (23b       | ))                    |                    |             |               |
| (24c)m=              | 0                        | 0                              | 0                        | 0             | 0           | 0              | 0              | 0              | 0            | 0              | 0                     | 0                  | ĺ           | (24c)         |
| d) If                | natural                  | ventilatio                     | on or wh                 | ole hous      | e positiv   | ve input       | ventilatio     | on from I      | oft          |                |                       |                    |             |               |
| (2.1.1)              | if (22b)r                | n = 1, th                      | en (24d)                 | m = (22k      | o)m othe    | erwise (2      | 24d)m =        | 0.5 + [(2      | 2b)m² x      | 0.5]           |                       |                    | 1           |               |
| (24d)m=              | 0.73                     | 0.72                           | 0.71                     | 0.67          | 0.66        | 0.63           | 0.63           | 0.62           | 0.64         | 0.66           | 0.68                  | 0.69               | l           | (240)         |
| Effe                 | ctive air                | change                         | rate - er                | nter (24a     | ) or (24t   | o) or (240     | c) or (24      | d) in boy      | (25)         | 0.00           | 0.00                  | 0.00               | 1           | (25)          |
| (25)m=               | 0.73                     | 0.72                           | 0.71                     | 0.67          | 0.66        | 0.63           | 0.63           | 0.62           | 0.64         | 0.66           | 0.68                  | 0.69               | J           | (25)          |
| 3. He                | at l <mark>osse</mark>   | s and he                       | eat loss                 | paramete      | er:         |                |                |                |              |                |                       |                    |             |               |
| ELEN                 |                          | G <mark>ros</mark><br>area     | ss<br>(m²)               | Openin<br>m   | gs<br>2     | Net Ar<br>A ,r | rea<br>m²      | U-valı<br>W/m2 | ue<br>K      | A X U<br>(W/I  | K)                    | k-value<br>kJ/m²·l | )<br>K      | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                          |                                |                          |               |             | 1.9            | x              | 1.4            | =            | 2.66           |                       |                    |             | (26)          |
| Windo                | <mark>ws</mark> Type     | e 1                            |                          |               |             | 4.59           | x1             | /[1/( 1.6 )+   | 0.04] =      | 6.9            |                       |                    |             | (27)          |
| Win <mark>do</mark>  | ws Type                  | e 2                            |                          |               |             | 4.64           | x1             | /[1/( 4.8 )+   | 0.04] =      | 18.68          |                       |                    |             | (27)          |
| Floor                |                          |                                |                          |               |             | 51             | x              | 0.99           | =            | 50.49          | 5                     |                    | <b>┐</b> ┌─ | (28)          |
| Walls <sup>-</sup>   | Type1                    | 16.1                           | 4                        | 4.59          |             | 11.55          | 5 X            | 2.1            |              | 24.25          | ז ד                   |                    | <b>=</b>    | (29)          |
| Walls <sup>-</sup>   | Type2                    | 16.                            | 1                        | 6.54          |             | 9.56           | x              | 2.1            |              | 20.08          | ז ד                   |                    | <b>⊣</b> ⊢  | (29)          |
| Total a              | area of e                | elements                       | , m²                     |               |             | 83.24          | 1              |                |              |                |                       |                    |             | (31)          |
| Party v              | wall                     |                                |                          |               |             | 33.3           | x              | 0              | =            | 0              |                       |                    |             | (32)          |
| * for win            | idows and                | l roof wind                    | ows, use e<br>sides of i | effective wi  | ndow U-va   | alue calcul    | ated using     | g formula 1,   | /[(1/U-valu  | ıe)+0.04] a    | as given in           | paragraph          | 1 3.2       |               |
| Fabric               | heat los                 | ss. W/K :                      | = S (A x                 | U)            | o una pun   |                |                | (26)(30)       | + (32) =     |                |                       |                    | 123.07      | (33)          |
| Heat c               | apacity                  | Cm = S(                        | (Axk)                    | -)            |             |                |                |                | ((28)        | (30) + (32     | 2) + (32a).           | (32e) =            | 0           | (34)          |
| Therm                | al mass                  | parame                         | ter (TMI                 | ⊃ = Cm ÷      | - TFA) ir   | ר kJ/m²K       |                |                | Indica       | tive Value     | : High                |                    | 450         | (35)          |
| For desi<br>can be i | ign asses:<br>used inste | sments wh<br>ad of a de        | ere the de               | etails of the | construct   | ion are not    | t known pi     | recisely the   | e indicative | e values of    | TMP in Ta             | able 1f            |             | (```          |
| Therm                | al bridg                 | es : S (L                      | x Y) cal                 | culated u     | using Ap    | pendix ł       | <              |                |              |                |                       |                    | 12.8        | (36)          |
| if details           | s of therma              | al bridging                    | ,<br>are not kr          | nown (36) =   | = 0.15 x (3 | :1)            |                |                |              |                |                       |                    |             |               |
| Total f              | abric he                 | at loss                        |                          |               |             |                |                |                | (33) +       | (36) =         |                       |                    | 135.87      | (37)          |
| Ventila              | ation hea                | at loss ca                     | alculated                | d monthly     | /           |                |                |                | (38)m        | = 0.33 × (     | (25)m x (5)           |                    |             |               |
|                      | Jan                      | Feb                            | Mar                      | Apr           | May         | Jun            | Jul            | Aug            | Sep          | Oct            | Nov                   | Dec                |             |               |
| (38)m=               | 26.52                    | 26.2                           | 25.89                    | 24.41         | 24.13       | 22.85          | 22.85          | 22.61          | 23.34        | 24.13          | 24.69                 | 25.28              | J           | (38)          |
| Heat ti              | ransfer o                | coefficier                     | nt, W/K                  |               |             |                |                |                | (39)m        | = (37) + (3    | 38)m                  |                    | _           |               |
| (39)m=               | 162.39                   | 162.07                         | 161.75                   | 160.28        | 160         | 158.72         | 158.72         | 158.48         | 159.21       | 160            | 160.56                | 161.14             |             |               |
|                      |                          |                                |                          |               |             |                |                |                |              | Average =      | Sum(39)1              | 12 /12=            | 160.28      | (39)          |

| Heat lo                        | ss para                         | imeter (H                              | HLP), W                              | /m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷   | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|-------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 3.18                            | 3.18                                   | 3.17                                 | 3.14                                    | 3.14                                     | 3.11                                  | 3.11                         | 3.11                   | 3.12                  | 3.14        | 3.15                                  | 3.16     |            |      |
| L                              | r of day                        |                                        | I                                    |                                         |                                          | <u> </u>                              |                              |                        | ,                     | Average =   | Sum(40)1.                             | 12 /12=  | 3.14       | (40) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Αυσ                    | Sep                   | Oct         | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31          | 30                                    | 31       |            | (41) |
| Ϋ́ L                           |                                 |                                        |                                      |                                         |                                          |                                       |                              |                        |                       |             |                                       |          | l          |      |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                |                                          |                                       |                              |                        |                       |             |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | :[1 - exp                               | (-0.0003                                 | 849 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13     | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the a<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o | 75<br>f                               | .04      | ]          | (43) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct         | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage ii                      | n litres per<br>I                      | r day for ea<br>I                    | ach month<br>I                          | Vd,m = fa                                | ctor from                             | Table 1c x<br>I              | (43)                   |                       |             |                                       |          | 1          |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                   | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54       | 79.54                                 | 82.54    | 000.40     |      |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                              | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | 0Tm / 3600             | ) kWh/mor             | total = Su  | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                   | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01      | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | vater heatii                           | ng at point                          | of use (no                              | hot water                                | storage),                             | enter 0 in                   | boxes (46              | ) to (61)             | Fotal = Su  | m(45) <sub>112</sub> =                |          | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                   | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15          | 16.37                                 | 17.78    |            | (46) |
| Storage                        | e volum                         | loss:<br>le (litres)                   | includir                             | na anv so                               | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel         |                                       | 160      | 1          | (47) |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                               | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |             |                                       |          |            |      |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this ir                             | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in ( | (47)                                  |          |            |      |
| Water s                        | storage                         | loss:                                  |                                      |                                         |                                          |                                       |                              |                        |                       |             |                                       |          | 1          |      |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |             |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |             |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/ye                               | ear                                      | or io not                             | known:                       | (48) x (49)            | ) =                   |             | 1                                     | 10       |            | (50) |
| Hot wat                        | ter stor                        | age loss                               | factor fr                            | om Tabl                                 | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |             | 0.                                    | 02       | ]          | (51) |
| Volume                         | factor                          | from Ta                                | ble 2a                               | on 4.3                                  |                                          |                                       |                              |                        |                       |             | 1                                     | 03       | 1          | (52) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |             | 0                                     | .6       |            | (52) |
| '<br>Enerav                    | lost fro                        | m water                                | . storage                            | kWh/ve                                  | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =       |                                       | 02       | ]          | (54) |
| Enter (                        | 50) or (                        | (54) in (5                             | 55)                                  | ,, , .                                  | Jul                                      |                                       |                              | ( ) (- )               | ( (- / (              | ,           | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m           |                                       |          | 1          |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01       | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contains                      | s dedicate                             | l<br>d solar sto                     | rage, (57)                              | m = (56)m                                | x [(50) – (                           | <b>I</b><br>H11)] ÷ (5       | 0), else (5            | 7)m = (56)            | m where (   | H11) is fro                           | m Append | I<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01       | 30.98                                 | 32.01    |            | (57) |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                | e 3                                      |                                       |                              |                        |                       |             |                                       | 0        | ]          | (58) |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |             |                                       |          | -          |      |
| (mod                           | ified by                        | factor f                               | rom Tab                              | le H5 if t                              | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo    | ostat)                                |          | 1          |      |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26       | 22.51                                 | 23.26    |            | (59) |

| Combi    | loss ca   | lculated        | for eacl     | n month         | (61)m =        | (60) ÷ 3 | 365 × (41     | )m               |                  |                     |                  |             |               |                  |
|----------|-----------|-----------------|--------------|-----------------|----------------|----------|---------------|------------------|------------------|---------------------|------------------|-------------|---------------|------------------|
| (61)m=   | 0         | 0               | 0            | 0               | 0              | 0        | 0             | 0                | 0                | 0                   | 0                | 0           |               | (61)             |
| Total h  | eat req   | uired for       | water h      | eating c        | alculated      | l for ea | ch month      | (62)m =          | = 0.85 ×         | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |                  |
| (62)m=   | 177.69    | 156.99          | 165.75       | 149.81          | 147.69         | 133.24   | 129.18        | 140.08           | 139.31           | 155.28              | 162.66           | 173.82      |               | (62)             |
| Solar DH | IW input  | calculated      | using Ap     | pendix G o      | r Appendix     | H (nega  | tive quantity | /) (enter 'C     | )' if no sola    | r contribu          | tion to wate     | er heating) | -             |                  |
| (add a   | dditiona  | al lines if     | FGHRS        | and/or          | WWHRS          | applie   | s, see Ap     | pendix (         | G)               |                     |                  |             | _             |                  |
| (63)m=   | 0         | 0               | 0            | 0               | 0              | 0        | 0             | 0                | 0                | 0                   | 0                | 0           |               | (63)             |
| Output   | from w    | ater hea        | ter          |                 |                |          |               |                  |                  |                     |                  |             |               |                  |
| (64)m=   | 177.69    | 156.99          | 165.75       | 149.81          | 147.69         | 133.24   | 129.18        | 140.08           | 139.31           | 155.28              | 162.66           | 173.82      |               |                  |
|          |           |                 |              |                 |                |          | -             | Out              | put from w       | ater heate          | r (annual)₁      | 12          | 1831.51       | (64)             |
| Heat g   | ains fro  | m water         | heating      | , kWh/m         | onth 0.2       | 5 ´ [0.8 | 5 × (45)m     | ı + (61)n        | n] + 0.8 x       | k [(46)m            | + (57)m          | + (59)m     | ]             |                  |
| (65)m=   | 59.31     | 52.41           | 55.34        | 50.03           | 49.34          | 44.53    | 43.18         | 46.81            | 46.54            | 51.86               | 54.31            | 58.03       |               | (65)             |
| inclu    | de (57)   | m in calo       | culation     | of (65)m        | only if c      | ylinder  | is in the     | dwelling         | or hot w         | ater is f           | rom com          | munity h    | -<br>neating  |                  |
| 5. Int   | ernal g   | ains (see       | Table        | 5 and 5a        | ):             |          |               |                  |                  |                     |                  |             |               |                  |
| Metabo   | olic gair | ns (Table       | e 5). Wa     | tts             |                |          |               |                  |                  |                     |                  |             |               |                  |
|          | Jan       | Feb             | Mar          | Apr             | May            | Jun      | Jul           | Aug              | Sep              | Oct                 | Nov              | Dec         |               |                  |
| (66)m=   | 85.98     | 85.98           | 85.98        | 85.98           | 85.98          | 85.98    | 85.98         | 85.98            | 85.98            | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66)             |
| Lightin  | g gains   | (calcula        | ted in A     | ppendix         | L, equat       | ion L9   | or L9a), a    | lso see          | Table 5          |                     |                  |             |               |                  |
| (67)m=   | 13.51     | 12              | 9.76         | 7.39            | 5.52           | 4.66     | 5.04          | 6.55             | 8.79             | 11.16               | 13.03            | 13.89       |               | (67)             |
| Appliar  | nces ga   | ins (calc       | ulated i     | n Appen         | dix L, eq      | uation   | L13 or L1     | 3a), also        | see Ta           | ble 5               |                  |             | 1             |                  |
| (68)m=   | 149.83    | 151.39          | 147.47       | 139.13          | 128.6          | 118.7    | 112.09        | 110.54           | 114.45           | 122.8               | 133.32           | 143.22      |               | (68)             |
| Cookin   | a gains   | s (calcula      | ted in A     | ppendix         | L. equat       | ion L1   | 5 or L15a     | ), also s        | ee Table         | 5                   |                  |             | 1             |                  |
| (69)m=   | 31.6      | 31.6            | 31.6         | 31.6            | 31.6           | 31.6     | 31.6          | 31.6             | 31.6             | 31.6                | 31.6             | 31.6        | 1             | (69)             |
| Pumps    | and fa    | ns gains        | (Table       | 5a)             |                |          |               | I                |                  |                     |                  | I           |               |                  |
| (70)m=   | 0         | 0               | 0            | 0               | 0              | 0        | 0             | 0                | 0                | 0                   | 0                | 0           | ]             | (70)             |
| Losses   |           | I<br>vaporatio  | n (neas      | u<br>ntive valu | i<br>les) (Tab | le 5)    | _!            |                  | I                |                     | I                |             | 1             |                  |
| (71)m=   | -68.78    | -68.78          | -68.78       | -68.78          | -68.78         | -68.78   | -68.78        | -68.78           | -68.78           | -68.78              | -68.78           | -68.78      | ]             | (71)             |
| Water    | heating   | L<br>L dains (T | l<br>able 5) |                 |                |          |               |                  |                  |                     |                  |             | 1             |                  |
| (72)m=   | 79.72     | 77.99           | 74.39        | 69.49           | 66.32          | 61.84    | 58.04         | 62.91            | 64.64            | 69.71               | 75.43            | 77.99       | 1             | (72)             |
| Total i  | nterna    | l<br>aains –    |              | 1               | 1              | (6       |               | L<br>1 + (68)m · | L<br>+ (69)m + ( | L(70)m + (7         | 1<br>(1)m + (72) |             | 1             |                  |
| (73)m=   | 291.86    | 290.17          | 280.41       | 264.8           | 249.23         | 234      | 223.96        | 228.79           | 236.68           | 252.46              | 270.57           | 283.89      | 1             | (73)             |
| 6. Sol   | ar gain   | s:              |              | 1               | 1              |          | 1             |                  | 1                | [                   |                  |             |               | · ,              |
| Solar g  | ains are  | calculated      | using sola   | ar flux from    | Table 6a       | and asso | ciated equa   | itions to co     | onvert to th     | ne applical         | ole orientat     | ion.        |               |                  |
| Orienta  | ation:    | Access F        | actor        | Area            |                | F        | lux           |                  | g_               |                     | FF               |             | Gains         |                  |
|          | -         | Table 6d        |              | m²              |                | Т        | able 6a       | Г                | able 6b          | Т                   | able 6c          |             | (W)           |                  |
| North    | 0.9x      | 0.77            | ×            | 4.0             | 64             | x        | 10.63         | x                | 0.85             | x                   | 0.7              | =           | 20.34         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.0             | 64             | x        | 20.32         |                  | 0.85             | = × [               | 0.7              | =           | 38.88         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.0             | 64             | x        | 34.53         | i x 🗖            | 0.85             | =                   | 0.7              | =           | 66.06         | (74)             |
| North    | 0.9x      | 0.77            | ×            | 4.0             | 64             | × 🕅      | 55.46         | i x 🗖            | 0.85             | ╡ <u> </u>          | 0.7              | =           | 106.12        | <b>–</b><br>(74) |
| North    | 0.9x      | 0.77            | ×            | 4.0             | 64             | ×        | 74.72         | i × 🗆            | 0.85             | ≓ × [               | 0.7              | =           | 142.95        | (74)             |

| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 7                  | 9.99      | x        | 0.8           | 85          | ) × [                 | 0.7          |      | =   | 153.03 | (74) |
|---------|-----------|------------|---------|------------|-----------|---------|---------|--------------------|-----------|----------|---------------|-------------|-----------------------|--------------|------|-----|--------|------|
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 7                  | 4.68      | x        | 3.0           | 85          | ] × [                 | 0.7          |      | = [ | 142.87 | (74) |
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 5                  | 59.25     | x        | 3.0           | 85          | _ × [                 | 0.7          |      | = [ | 113.35 | (74) |
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | ×       | 4                  | 1.52      | x        | 3.0           | 85          | ] × [                 | 0.7          |      | = [ | 79.43  | (74) |
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 2                  | 24.19     | x        | 3.0           | 85          | _ × [                 | 0.7          |      | = [ | 46.28  | (74) |
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 1                  | 3.12      | x        | 3.0           | 85          | _ × [                 | 0.7          |      | = [ | 25.1   | (74) |
| North   | 0.9x      | 0.77       |         | x          | 4.6       | 4       | x       | 6                  | 8.86      | x        | 3.0           | 85          | _ × [                 | 0.7          |      | = [ | 16.96  | (74) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 4                  | 6.75      | x        | 0.7           | 76          | ×                     | 0.7          |      | = [ | 79.11  | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 7                  | 6.57      | x        | 0.7           | 76          | <b>x</b>              | 0.7          |      | = [ | 129.57 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | g                  | 97.53     | <b>x</b> | 0.7           | 76          | ) × [                 | 0.7          |      | =   | 165.05 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 10.23     | x        | 0.7           | 76          | ) × [                 | 0.7          |      | = [ | 186.54 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 14.87     | x        | 0.7           | 76          | ×                     | 0.7          |      | =   | 194.39 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 10.55     | x        | 0.7           | 76          | ] × [                 | 0.7          |      | = [ | 187.07 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 08.01     | x        | 0.7           | 76          | ) × [                 | 0.7          |      | =   | 182.78 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 04.89     | x        | 0.7           | 76          | ×                     | 0.7          |      | =   | 177.5  | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 1                  | 01.89     | x        | 0.7           | 76          | ) × [                 | 0.7          |      | =   | 172.41 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 8                  | 32.59     | x        | 0.7           | 76          | ×                     | 0.7          |      | =   | 139.75 | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | ×       | 5                  | 5.42      | x        | 0.7           | 76          | ×                     | 0.7          |      | =[  | 93.78  | (78) |
| South   | 0.9x      | 0.77       |         | x          | 4.5       | 9       | x       | 4                  | 40.4      | ] x      | 0.7           | 76          | ×                     | 0.7          |      | = [ | 68.36  | (78) |
|         |           |            |         |            |           |         |         |                    |           |          |               |             |                       |              |      |     |        |      |
| Solar ( | gains in  | watts, ca  |         | ted        | for each  |         | th      |                    | 005.05    | (83)m    | n = Sum(7)    | 74)m        | . <mark>(8</mark> 2)m | 110.00       | 05   | ~~  |        | (02) |
| (83)m=  | 99.46     | 168.45     | 231.1   |            | (84)m –   | 337.3   | 4 · · · | $\frac{340.1}{83}$ | 325.65    | 290      | .86 25        | 1.84        | 186.03                | 118.88       | 85.  | 32  |        | (03) |
| (84)m-  | 301 32    | 458 62     | 511.5   | 212        | 557 46    | 586 5   |         | 74 1               | , walls   | 510      | 65 48         | 8 53        | 138 10                | 380.45       | 360  | 22  |        | (84) |
| (04)11- | 001.02    | 400.02     | 011.0   | <u>~</u> [ | 337.40    | 500.5   |         | // 4.1             | 040.02    |          | .00   40      | 0.00        | 430.43                | 505.45       | 000  | .22 |        | (01) |
| 7. Me   | ean inter | nal temp   | eratu   | re (       | heating   | seaso   | on)     |                    |           |          | <b>T 4</b> (0 |             |                       |              |      | Г   |        |      |
| Temp    | perature  | during h   | eating  | g pe       | eriods in | the li  | ving    | area               | from Tab  | ole 9    | , Th1 (°      | 'C)         |                       |              |      |     | 21     | (85) |
| Utilis  | ation fac | tor for ga | ains fo | or li      | ving are  | a, h1,  | m (s    | ee Ta              | ible 9a)  |          |               |             | 0.1                   |              |      |     |        |      |
| (00)    | Jan       | Feb        | Ma      | ır         | Apr       | Ma      | /       | Jun                | Jul       | A        | ug t          | Sep         | Oct                   | Nov          |      | ec  |        | (96) |
| (86)m=  | 1         | 1          | 1       |            | 0.99      | 0.98    |         | 0.94               | 0.87      | 0.       | 9 0           | .97         | 0.99                  | 1            | 1    |     |        | (00) |
| Mear    | n interna | l temper   | ature   | in li      | iving are | ea T1   | (follo  | w ste              | ps 3 to 7 | 7 in T   | able 90       | <u>)</u>    |                       |              | -    |     |        |      |
| (87)m=  | 18.87     | 19.02      | 19.3    | 1          | 19.72     | 20.16   | 2       | 20.56              | 20.8      | 20.      | 76 20         | 0.42        | 19.87                 | 19.3         | 18.  | 85  |        | (87) |
| Temp    | erature   | during h   | eating  | g pe       | eriods ir | rest o  | of dw   | elling             | from Ta   | able 9   | 9, Th2 (      | (°C)        |                       |              |      |     |        |      |
| (88)m=  | 18.66     | 18.66      | 18.6    | 7          | 18.68     | 18.68   |         | 18.7               | 18.7      | 18       | .7 18         | 3.69        | 18.68                 | 18.68        | 18.  | 67  |        | (88) |
| Utilis  | ation fac | ctor for g | ains fo | or re      | est of d  | velling | j, h2   | ,m (se             | e Table   | 9a)      |               |             |                       |              |      |     |        |      |
| (89)m=  | 1         | 1          | 0.99    | )          | 0.99      | 0.95    |         | 0.83               | 0.56      | 0.6      | 63 0          | .91         | 0.99                  | 1            | 1    | l   |        | (89) |
| Mear    | n interna | l temper   | ature   | in t       | he rest   | of dwe  | ellina  | T2 (f              | ollow ste | eps 3    | to 7 in       | Table       | 9c)                   | -            |      |     |        |      |
| (90)m=  | 16.05     | 16.27      | 16.7    | ·          | 17.3      | 17.93   |         | 18.46              | 18.66     | 18.      | 65 1          | 8.3         | 17.52                 | 16.69        | 16.  | 02  |        | (90) |
|         | L         |            |         |            |           |         |         |                    | I         |          | I             | fL          | A = Liv               | ing area ÷ ( | 4) = |     | 0.55   | (91) |
| Mear    | interna   | l temper   | ature   | (for       | the wh    | مام طب  | ollin   | a) – fl            | ΙΔ 🗸 Τ1   | ⊥ (1     | _ fl Δ) ·     | <b>∨</b> T2 |                       |              |      | L   |        |      |
| (92)m=  | 17.61     | 17.8       | 18.1    | 5          | 18.64     | 19.16   |         | 97 – 11<br>19.63   | 19.85     | 19.      | 82 19         | 9.48        | 18.82                 | 18.14        | 17.  | 59  |        | (92) |
| · /···  | L         |            |         |            |           |         |         |                    |           | 1        |               | -           |                       | _            | 1    |     |        |      |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 17.61                       | 17.8                  | 18.15                 | 18.64                  | 19.16                   | 19.63                  | 19.85         | 19.82      | 19.48       | 18.82        | 18.14        | 17.59       |           | (93)   |
|-----------------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------|---------------|------------|-------------|--------------|--------------|-------------|-----------|--------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                        |                         |                        |               |            |             |              |              |             |           |        |
| Set T<br>the ut       | i to the r<br>ilisation     | mean int<br>factor fo | ernal ter<br>or gains | mperatu<br>using Ta    | re obtain<br>able 9a    | ied at ste             | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(     | 76)m an      | d re-calc   | ulate     |        |
|                       | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                    | Jul           | Aug        | Sep         | Oct          | Nov          | Dec         |           |        |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | 1 <u>.</u><br>1:       |                         |                        |               |            |             |              |              |             |           |        |
| (94)m=                | 1                           | 1                     | 0.99                  | 0.98                   | 0.96                    | 0.89                   | 0.76          | 0.8        | 0.94        | 0.99         | 1            | 1           |           | (94)   |
| Usefu                 | I gains,                    | hmGm                  | , W = (94             | 4)m x (84              | 4)m                     |                        |               |            |             |              |              |             |           |        |
| (95)m=                | 390.65                      | 457.14                | 508.22                | 549.06                 | 563.55                  | 512.99                 | 417.82        | 416.97     | 459.68      | 433.2        | 388.24       | 368.72      |           | (95)   |
| Month                 | nly avera                   | age exte              | ernal tem             | iperature              | e from Ta               | able 8                 |               |            |             |              |              |             |           |        |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                   | 16.6          | 16.4       | 14.1        | 10.6         | 7.1          | 4.2         |           | (96)   |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe               | erature,                | Lm , W =               | =[(39)m >     | x [(93)m·  | – (96)m     | ]            |              |             |           |        |
| (97)m=                | 2161.61                     | 2090.45               | 1884.16               | 1561.9                 | 1194.33                 | 797.77                 | 515.33        | 541.66     | 856.45      | 1315.47      | 1772.4       | 2157.57     |           | (97)   |
| Space                 | e heatin                    | g require             | ement fo              | r each n               | nonth, k\               | Nh/mon                 | th = 0.02     | 4 x [(97)  | )m – (95    | )m] x (4     | 1)m          |             |           |        |
| (98)m=                | 1317.59                     | 1097.58               | 1023.7                | 729.25                 | 469.3                   | 0                      | 0             | 0          | 0           | 656.41       | 996.6        | 1330.91     |           |        |
|                       |                             |                       |                       |                        |                         |                        |               | Tota       | l per year  | (kWh/year    | r) = Sum(9   | 8)15,912 =  | 7621.33   | (98)   |
| Space                 | e heatin                    | g require             | ement in              | kWh/m²                 | ²/year                  |                        |               |            |             |              |              |             | 149.44    | (99)   |
| Qh En                 | orav roo                    | uiromor               | ote – Cor             | nmunity                | heating                 | schomo                 |               |            |             |              |              |             |           | ]```   |
| Thic pr               | art is use                  | d for on              |                       |                        |                         |                        | tor boot      | ing prov   | idod by     | 0.0000       | upity och    | omo         |           |        |
| Fractio               | on of spa                   | ace heat              | from se               | condarv                | /supplen                | nentarv l              | heating       | Table 1    | 1) '0' if n | one          |              | leme.       | 0         | (301)  |
| Freetie               | n of one                    |                       | (rem ee               |                        |                         | 4 (20)                 | 1)            |            | ., •        |              |              |             |           |        |
| Fractio               | on or spa                   | ace neat              | from co               | mmunity                | system                  | 1 - (30                | 1) =          |            |             |              |              | _           | 1         | (302)  |
| The com               | nmunity so                  | cheme may             | y obtain he           | eat from se            | everal sour             | ces. The p             | procedure a   | allows for | CHP and u   | up to four ( | other heat   | sources; ti | he latter |        |
| Fractio               | on of hea                   | at from C             | Commun                | itv boiler             | 'S                      | iom power              | Stations.     | See Apper  | iuix C.     |              |              |             | 1         | (303a) |
| Fractio               | on of tota                  | al space              | heat fro              | m Comn                 | nunity bo               | oilers                 |               |            |             | (3           | 02) x (303   | a) =        | 1         | (304a) |
| Factor                | for cont                    | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo              | r commu       | inity hea  | ting sys    | tem          |              |             | 1         | (305)  |
| Distrib               | ution los                   | s factor              | (Table 1              | I2c) for a             | commun                  | ity heatii             | ng syster     | m          |             |              |              |             | 1.05      | (306)  |
| Space                 | heating                     | a                     |                       |                        |                         |                        |               |            |             |              |              |             | kWh/year  |        |
| Annua                 | l space                     | heating               | requirem              | nent                   |                         |                        |               |            |             |              |              |             | 7621.33   | ]      |
| Space                 | heat fro                    | om Comr               | munity b              | oilers                 |                         |                        |               |            | (98) x (30  | 04a) x (30   | 5) x (306) = | =           | 8002.39   | (307a) |
| Efficier              | ncy of se                   | econdary              | y/supple              | mentary                | heating                 | system                 | in % (fro     | m Table    | e 4a or A   | ppendix      | E)           |             | 0         | (308   |
| Space                 | heating                     | require               | ment fro              | m secon                | dary/sup                | oplemen                | tary syst     | em         | (98) x (30  | 01) x 100 -  | ÷ (308) =    |             | 0         | (309)  |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | <b>j</b><br>neating r | equirem               | ent                    |                         |                        |               |            |             |              |              |             | 1831.51   | 1      |
| If DHW<br>Water       | / from co<br>heat fro       | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>oilers          |                         |                        |               |            | (64) x (30  | 03a) x (30   | 5) x (306) : | =           | 1923.08   | (310a) |
| Electric              | city used                   | d for hea             | at distribu           | ution                  |                         |                        |               | 0.01       | × [(307a).  | (307e) +     | · (310a)…(   | [310e)] =   | 99.25     | (313)  |
| Cooling               | g Syster                    | n Energ               | y Efficie             | ncy Rati               | 0                       |                        |               |            |             |              |              |             | 0         | (314)  |
| Space                 | cooling                     | (if there             | is a fixe             | d coolin               | g system                | n, if not e            | enter 0)      |            | = (107) ÷   | · (314) =    |              |             | 0         | (315)  |
| Electric<br>mecha     | city for p<br>nical ve      | oumps aintilation     | nd fans v<br>- balanc | within dv<br>ed, extra | velling (1<br>act or po | Fable 4f)<br>sitive in | :<br>put from | outside    |             |              |              |             | 0         | (330a) |

| warm air heating system fans                                                                                                        |                                  |             | 0                      | (330b) |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|------------------------|--------|
| pump for solar water heating                                                                                                        |                                  |             | 0                      | (330g) |
| Total electricity for the above, kWh/year =(33                                                                                      | i0a) + (330b) + (330g) =         |             | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                      |                                  |             | 238.64                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                       |                                  |             |                        | _      |
| Energy<br>kWh/ye                                                                                                                    | Emission fact<br>ar kg CO2/kWh   | or Er<br>kg | nissions<br>J CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using two fuels repe | at (363) to (366) for the second | fuel        | 90                     | (367a) |
| CO2 associated with heat source 1 $[(307b)+(310b)] \times 100 \div$                                                                 | (367b) x 0                       | =           | 2382.11                | (367)  |
| Electrical energy for heat distribution [(313) x                                                                                    | 0.52                             | =           | 51.51                  | (372)  |
| Total CO2 associated with community systems (363)(366) + (                                                                          | (368)(372)                       | =           | 2433.63                | (373)  |
| CO2 associated with space heating (secondary) (309) x                                                                               | 0                                | =           | 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneous heater                                                             | (312) x 0.22                     | =           | 0                      | (375)  |
| Total CO2 associated with space and water heating (373) + (374) +                                                                   | (375) =                          |             | 2433.63                | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling $(331)$ x                                                        | 0.52                             | =           | 0                      | (378)  |
| CO2 associated with electricity for lighting (332))) x                                                                              | 0.52                             | =           | 123.85                 | (379)  |
| Total CO2, kg/year         sum of (376)(382) =                                                                                      |                                  |             | 2557.4 <mark>8</mark>  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                            |                                  |             | 50.15                  | (384)  |
| El rating (section 14)                                                                                                              |                                  |             | 64.3                   | (385)  |

|                                                                                                                                                                                                                                                           |                                                   |                     | User D                | etails:            |                  |                  |                       |              |                                       |                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|-----------------------|--------------------|------------------|------------------|-----------------------|--------------|---------------------------------------|-----------------------|--|
| Assessor Name:<br>Software Name:                                                                                                                                                                                                                          | Stroma FSAP 2                                     | 2012                | roperty               | Stroma<br>Softwa   | a Num<br>are Ver | ber:<br>sion:    |                       | Versio       | n: 1.0.3.15                           |                       |  |
| Address :                                                                                                                                                                                                                                                 | . london                                          |                     | roperty /             | -luui 033.         |                  |                  |                       |              |                                       |                       |  |
| 1. Overall dwelling dimer                                                                                                                                                                                                                                 | sions:                                            |                     |                       |                    |                  |                  |                       |              |                                       |                       |  |
| Basement                                                                                                                                                                                                                                                  |                                                   |                     | Area                  | <b>a(m²)</b><br>51 | (1a) x           | <b>Av. He</b>    | <b>ight(m)</b><br>.18 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)      |  |
| Total floor area TFA = (1a                                                                                                                                                                                                                                | )+(1b)+(1c)+(1d)+                                 | (1e)+(1n            | ı)                    | 51                 | (4)              |                  |                       |              |                                       |                       |  |
| Dwelling volume                                                                                                                                                                                                                                           |                                                   |                     |                       |                    | (3a)+(3b)        | )+(3c)+(3c       | l)+(3e)+              | .(3n) =      | 111.18                                | (5)                   |  |
| 2. Ventilation rate:                                                                                                                                                                                                                                      |                                                   |                     |                       |                    |                  |                  |                       |              | <u> </u>                              |                       |  |
| Number of chimneys<br>Number of open flues                                                                                                                                                                                                                | main<br>heating<br>0 +                            | secondar<br>heating | y<br>] + [_<br>] + [_ | 0<br>0             | ] = [            | <b>total</b> 0 0 |                       | 40 =<br>20 = | 0<br>0                                | r<br>(6a)<br>(6b)     |  |
| Number of intermittent fan                                                                                                                                                                                                                                | S                                                 |                     |                       |                    |                  | 2                | x ′                   | 10 =         | 20                                    | (7a)                  |  |
| Number of passive vents                                                                                                                                                                                                                                   |                                                   |                     |                       |                    |                  | 0                | x ′                   | 10 =         | 0                                     | <br>(7b)              |  |
| Number of flueless gas fire                                                                                                                                                                                                                               | 0                                                 | (7c)                |                       |                    |                  |                  |                       |              |                                       |                       |  |
|                                                                                                                                                                                                                                                           |                                                   |                     |                       |                    |                  |                  |                       | Air ch       | anges <mark>per</mark> ho             | ur                    |  |
| Air change         Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ 20 $\div$ (5) =         If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) $\bullet$ (5) = |                                                   |                     |                       |                    |                  |                  |                       |              |                                       |                       |  |
| Additional infiltration                                                                                                                                                                                                                                   |                                                   |                     |                       |                    |                  |                  | [(9)                  | -1]x0.1 =    | 0                                     | (10)                  |  |
| Structural infiltration: 0.2                                                                                                                                                                                                                              | 25 for steel or timb                              | er frame or         | 0.35 for              | masonr             | y constr         | uction           |                       |              | 0                                     | (11)                  |  |
| if both types of wall are pre<br>deducting areas of opening                                                                                                                                                                                               | sent, use the value co<br>ns); if equal user 0.35 | rresponding to      | the great             | er wall area       | a (after         |                  |                       |              |                                       | _                     |  |
| If suspended wooden flo                                                                                                                                                                                                                                   | oor, enter 0.2 (uns                               | ealed) or 0.        | 1 (seale              | ed), else          | enter 0          |                  |                       |              | 0                                     | (12)                  |  |
| If no draught lobby, ente                                                                                                                                                                                                                                 | er 0.05, else enter                               | ()<br>tetrioned     |                       |                    |                  |                  |                       |              | 0                                     |                       |  |
| Window infiltration                                                                                                                                                                                                                                       | and doors draugh                                  | tstripped           |                       | 0.25 - [0.2        | x (14) - 1       | 001 =            |                       |              | 0                                     | $-\frac{(14)}{(15)}$  |  |
| Infiltration rate                                                                                                                                                                                                                                         |                                                   |                     |                       | (8) + (10) -       | + (11) + (1      | 2) + (13) ·      | + (15) =              |              | 0                                     | $-1^{(15)}_{(16)}$    |  |
| Air permeability value, o                                                                                                                                                                                                                                 | 50. expressed in (                                | cubic metre         | s per ho              | our per so         | uare m           | etre of e        | envelope              | area         | 10                                    | $= \frac{(10)}{(17)}$ |  |
| If based on air permeabilit                                                                                                                                                                                                                               | y value, then $(18) =$                            | = [(17) ÷ 20]+(8    | 3), otherwi           | se (18) = (        | 16)              |                  |                       |              | 0.68                                  | (18)                  |  |
| Air permeability value applies                                                                                                                                                                                                                            | if a pressurisation test                          | has been don        | e or a deg            | gree air pei       | meability        | is being u       | sed                   |              |                                       |                       |  |
| Number of sides sheltered                                                                                                                                                                                                                                 | l                                                 |                     |                       |                    |                  |                  |                       |              | 2                                     | (19)                  |  |
| Shelter factor                                                                                                                                                                                                                                            |                                                   |                     |                       | (20) = 1 - [       | 0.075 x (1       | 9)] =            |                       |              | 0.85                                  | (20)                  |  |
| Infiltration rate incorporation                                                                                                                                                                                                                           | ng shelter factor                                 |                     |                       | (21) = (18)        | x (20) =         |                  |                       |              | 0.58                                  | (21)                  |  |
| Infiltration rate modified to                                                                                                                                                                                                                             | r monthly wind spe                                | eed                 |                       |                    | 0                |                  |                       |              |                                       |                       |  |
| Jan Feb I                                                                                                                                                                                                                                                 | Mar Apr Ma                                        | ay Jun              | Jul                   | Aug                | Sep              | Oct              | Nov                   | Dec          |                                       |                       |  |
| Monthly average wind spe                                                                                                                                                                                                                                  | ed from Table 7                                   |                     | 2.0                   | 0.7                | 4                | 4.0              | 4.5                   | 4 7          |                                       |                       |  |
| (22)m= 5.1 5 2                                                                                                                                                                                                                                            | 4.4 4.3                                           | 3.8                 | 3.ర                   | 3.1                | 4                | 4.3              | 4.5                   | 4./          |                                       |                       |  |
| Wind Factor (22a)m = (22                                                                                                                                                                                                                                  | )m÷4                                              | 0.05                | 0.05                  | 0.02               | 1                | 1.09             | 1 10                  | 1 10         |                                       |                       |  |
| (22a)III= 1.27 1.25 1                                                                                                                                                                                                                                     | .23 1.1 1.0                                       | 0.95                | 0.95                  | 0.92               | 1                | 1.08             | 1.12                  | 1.18         |                                       |                       |  |

| Adjust                       | ed infiltr              | ation rat                 | e (allow                  | ing for sh                  | nelter an               | d wind s                | peed) =     | (21a) x       | (22a)m       |                |                       | -         | _            |        |
|------------------------------|-------------------------|---------------------------|---------------------------|-----------------------------|-------------------------|-------------------------|-------------|---------------|--------------|----------------|-----------------------|-----------|--------------|--------|
| <u> </u>                     | 0.74                    | 0.72                      | 0.71                      | 0.64                        | 0.62                    | 0.55                    | 0.55        | 0.53          | 0.58         | 0.62           | 0.65                  | 0.68      | ĺ            |        |
| Calcula<br>If me             | ate etter               | ctive air<br>al ventila   | change                    | rate for t                  | he appli                | cable ca                | se          |               |              |                |                       |           | 0            | (23a)  |
| lf exh                       | aust air h              | eat pump                  | using App                 | endix N, (2                 | 3b) = (23a              | a) × Fmv (e             | equation (I | N5)) , othei  | rwise (23b   | ) = (23a)      |                       |           |              | (23b)  |
| lf bala                      | anced with              | heat reco                 | overy: effic              | iency in %                  | allowing f              | or in-use fa            | actor (fron | n Table 4h    | ) =          | , , ,          |                       |           |              | (23c)  |
| a) If                        | balance                 | ed mecha                  | anical ve                 | entilation                  | with he                 | at recove               | erv (MVI    | HR) (24a      | a)m = (22    | 2b)m + (       | 23b) x [ <sup>,</sup> | 1 – (23c) | <br>_ ÷ 1001 | (200)  |
| (24a)m=                      | 0                       | 0                         | 0                         | 0                           | 0                       | 0                       | 0           | 0             | 0            | 0              | 0                     | 0         |              | (24a)  |
| b) If                        | balance                 | i<br>ed mecha             | anical ve                 | entilation                  | without                 | heat rec                | coverv (N   | MV) (24b      | m = (22)     | 1<br>2b)m + (; | 23b)                  |           | 1            |        |
| (24b)m=                      | 0                       | 0                         | 0                         | 0                           | 0                       | 0                       | 0           | 0             | 0            | 0              | 0                     | 0         |              | (24b)  |
| c) If                        | whole h                 | iouse ex                  | tract ver                 | ntilation of                | or positiv              | ve input v              | ventilatio  | on from c     | outside      |                | !                     |           | 1            |        |
| ,<br>i                       | if (22b)n               | n < 0.5 ×                 | : (23b), t                | then (24d                   | c) = (23b               | ); otherv               | wise (24    | c) = (22b     | o) m + 0.    | 5 × (23b       | ))                    |           |              |        |
| (24c)m=                      | 0                       | 0                         | 0                         | 0                           | 0                       | 0                       | 0           | 0             | 0            | 0              | 0                     | 0         |              | (24c)  |
| d) If                        | natural                 | ventilatio                | on or wh                  | ole hous                    | e positiv               | ve input                | ventilatio  | on from l     | oft          |                |                       |           |              |        |
| i                            | if (22b)n               | n = 1, th                 | en (24d)                  | m = (22k                    | o)m othe                | erwise (2               | 4d)m =      | 0.5 + [(2     | 2b)m² x<br>I | 0.5]           |                       | 1         | 1            |        |
| (24d)m=                      | 0.77                    | 0.76                      | 0.75                      | 0.7                         | 0.69                    | 0.65                    | 0.65        | 0.64          | 0.67         | 0.69           | 0.71                  | 0.73      | l            | (240)  |
| Effe                         | ctive air               | change                    | rate - er                 | nter (24a                   | ) or (24k               | o) or (240              | c) or (24   | d) in boy     | (25)         |                |                       |           | 1            | (05)   |
| (25)m=                       | 0.77                    | 0.76                      | 0.75                      | 0.7                         | 0.69                    | 0.65                    | 0.65        | 0.64          | 0.67         | 0.69           | 0.71                  | 0.73      |              | (25)   |
| 3. He                        | at l <mark>osse</mark>  | s and he                  | at loss                   | paramete                    | er:                     |                         |             |               |              |                |                       |           |              |        |
| ELEN                         |                         | Gros                      | $(m^2)$                   | Openin                      | gs                      | Net Ar                  | ea          | U-valu        | Je           | A X U          |                       | k-value   | e<br>e       | A X k  |
| Doors                        |                         | aica                      | (111-)                    |                             |                         |                         |             |               |              | 2.66           |                       | NJ/111-1  | `            | (26)   |
| Windo                        |                         | 1                         |                           |                             |                         | 1.9                     |             | /[1/( 1 6 )+  | 0 041 -      | 2.00           | H                     |           |              | (20)   |
| Windo                        |                         |                           |                           |                             |                         | 4.42                    |             | /[1/( 1.0 )]  | 0.041        | 6.65           | 8                     |           |              | (27)   |
| Floor                        | ws type                 | 52                        |                           |                             |                         | 4.96                    |             | /[ 1/( 4.0 )+ | 0.04] =      | 19.97          | ╘┤╷                   |           |              | (27)   |
|                              | Turned                  |                           |                           |                             |                         | 51                      | ×           | 0.97          |              | 49.47          | ╡╎                    |           | $\dashv$     | (28)   |
|                              | турет                   | 39.3                      | 2                         | 4.96                        |                         | 34.24                   | ×           | 2.1           | =            | 71.9           |                       |           | $\dashv$     | (29)   |
| vvalis                       | Type2                   | 10.9                      | 9                         | 6.32                        |                         | 4.67                    | X           | 2.1           | =            | 9.81           |                       |           |              | (29)   |
| lotal a                      | area of e               | elements                  | , m²                      |                             |                         | 101.1                   | 9           |               |              |                |                       |           |              | (31)   |
| Party v                      | wall                    |                           |                           |                             |                         | 16.1                    | X           | 0             | =            | 0              |                       |           |              | (32)   |
| * for win<br>** includ       | dows and<br>le the area | l roof wind<br>as on both | ows, use e<br>sides of ii | effective wi<br>nternal wal | ndow U-va<br>Is and par | alue calcula<br>titions | ated using  | g formula 1,  | /[(1/U-valu  | ıe)+0.04] a    | as given in           | paragraph | 1 3.2        |        |
| Fabric                       | heat los                | ss, W/K :                 | = S (A x                  | U)                          |                         |                         |             | (26)(30)      | + (32) =     |                |                       |           | 160.4        | 6 (33) |
| Heat c                       | apacity                 | Cm = S(                   | Axk)                      | ,                           |                         |                         |             |               | ((28)        | (30) + (32     | 2) + (32a).           | (32e) =   | 0            | (34)   |
| Therm                        | al mass                 | parame                    | ter (TMI                  | ⊃ = Cm ÷                    | - TFA) ir               | n kJ/m²K                |             |               | Indica       | tive Value     | : High                |           | 450          | (35)   |
| For desi                     | ign assess              | sments wh                 | ere the de                | tails of the                | construct               | ion are not             | t known pi  | recisely the  | e indicative | values of      | TMP in Ta             | able 1f   | <u> </u>     |        |
| can be ι<br>—.               | used inste              | ad of a de                | tailed calc               | ulation.                    |                         |                         |             |               |              |                |                       |           |              |        |
| Therm                        | al bridge               | es : S (L                 | x Y) cal                  | culated u                   | using Ap                | pendix ł                | <           |               |              |                |                       |           | 15.2         | (36)   |
| <i>if details</i><br>Total f | of therma<br>abric he   | al bridging<br>at loss    | are not kr                | 10wn (36) =                 | = 0.15 x (3             | 1)                      |             |               | (33) +       | (36) =         |                       |           | 175.0        | (37)   |
| Ventila                      | ation her               | at loss c                 | alculated                 | 1 monthly                   | ,                       |                         |             |               | (38)m        | (00) =         | 25)m x (5)            |           | 175.0        | 5 (57) |
| v Gritilo                    | Jan                     | Feh                       | Mar                       | Anr                         | Mav                     | Jun                     | .lul        | Aug           | Sen          |                |                       | Dec       |              |        |
| (38)m=                       | 28.3                    | 27.92                     | 27.54                     | 25.76                       | 25.42                   | 23.87                   | 23.87       | 23.59         | 24.47        | 25.42          | 26.1                  | 26.8      |              | (38)   |
| Heat tr                      | L                       |                           | L                         |                             |                         |                         |             |               | (30)m        | - (37) ± (*    | 38)m                  |           | I            |        |
| (39)m=                       | 203.97                  | 203.58                    | 203.2                     | 201.42                      | 201.09                  | 199.53                  | 199.53      | 199.25        | 200.13       | 201.09         | 201.76                | 202.46    | I            |        |
| ()                           |                         | 1                         |                           |                             | 0                       |                         |             | L             |              | Average =      | Sum(39)1              |           | 201.4        | 2 (39) |

| Heat lo                        | ss para                         | meter (H                                | HLP), W                              | /m²K                                    |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 4                               | 3.99                                    | 3.98                                 | 3.95                                    | 3.94                                     | 3.91                                  | 3.91                         | 3.91                   | 3.92                  | 3.94                      | 3.96                                  | 3.97     |            |      |
| L                              | r of day                        |                                         | u<br>ath (Tab                        | l <u> </u>                              |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.95       | (40) |
| ]                              | .lan                            | Feb                                     | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Αυσ                    | Sen                   | Oct                       | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                      | 31                                   | 30                                      | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41) |
| Ύ L                            |                                 |                                         | _                                    |                                         |                                          |                                       |                              |                        |                       | _                         |                                       | _        | l          |      |
| 4. Wat                         | ter hea                         | ting enei                               | rgy requ                             | irement:                                |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, I<br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 x                        | :[1 - exp                               | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 72       | ]          | (42) |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person per | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]          | (43) |
| [                              | Jan                             | Feb                                     | Mar                                  | Apr                                     | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage i                       | n litres per                            | day for ea                           | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                   | (43)                   |                       | -                         |                                       |          |            |      |
| (44)m=                         | 82.54                           | 79.54                                   | 76.54                                | 73.54                                   | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            |      |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                               | used - cal                           | culated m                               | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x D                   | 0Tm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                  | 110.48                               | 96.32                                   | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 10 <mark>0.01</mark>      | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | vater heatii                            | ng at point                          | t of use (no                            | o hot water                              | r storage),                           | enter 0 in                   | boxes (46)             | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                   | 16.57                                | 14.45                                   | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46) |
| Water s                        | storage                         | loss:                                   |                                      |                                         |                                          |                                       |                              |                        |                       |                           |                                       |          | 1          |      |
| Storage                        | e volum                         | ie (litres)                             | Includir                             | ig any se                               | olar or V                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |            | (47) |
| It comn<br>Otherw              | nunity r<br>ise if no           | eating a                                | nd no ta<br>hot wate                 | ink in dw<br>er (this ir                | /elling, e<br>ncludes i                  | nter 110<br>nstantar                  | nitres in                    | (47)<br>mbi boil       | ers) ente             | er 'O' in <i>(</i>        | (47)                                  |          |            |      |
| Water s                        | storage                         | loss:                                   | not mate                             |                                         |                                          | notantai                              |                              |                        |                       |                           | ,                                     |          |            |      |
| a) If ma                       | anufact                         | urer's de                               | eclared I                            | oss facto                               | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                 | storage                              | , kWh/ye                                | ear                                      |                                       |                              | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50) |
| b) If m                        | anufact                         | urer's de                               | eclared                              | cylinder                                | loss fact                                | or is not                             | known:                       |                        |                       |                           |                                       |          | 1          |      |
| Hot was                        | ter stor:<br>nunity h           | age loss                                | Tactor II                            | rom 1 ab                                | ie z (kvv                                | n/litre/da                            | iy)                          |                        |                       |                           | 0.                                    | 02       |            | (51) |
| Volume                         | factor                          | from Tal                                | ble 2a                               | 011 4.0                                 |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       | ]          | (52) |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                      |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53) |
| Energy                         | lost fro                        | m water                                 | storage                              | , kWh/ye                                | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |            | (54) |
| Enter (                        | 50) or                          | (54) in (5                              | 55)                                  |                                         |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                                | culated                              | for each                                | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1          |      |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contain                       | s dedicate                              | d solar sto                          | rage, (57)                              | <b>I</b><br>m = (56)m                    | x [(50) – (                           | <b>I</b><br>H11)] ÷ (5       | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | I<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                   | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (57) |
| Primary                        | / circuit                       | loss (an                                | nual) fro                            | om Table                                | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |            | (58) |
| Primary                        | / circuit                       | loss cal                                | culated                              | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          | _          |      |
| (mod                           | lified by                       | factor fi                               | rom Tab                              | le H5 if t<br>r                         | here is s                                | solar wat                             | ter heati                    | ng and a               | t cylinde             | r thermo                  | stat)                                 |          | 1          | 1-01 |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                                | 22.51                                   | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59) |

| Combi I  | oss ca              | Iculated   | for eac    | h month         | (61)m =       | (60) ÷ 3  | 65 × (41)   | )m               |              |                     |              |             |               |           |
|----------|---------------------|------------|------------|-----------------|---------------|-----------|-------------|------------------|--------------|---------------------|--------------|-------------|---------------|-----------|
| (61)m=   | 0                   | 0          | 0          | 0               | 0             | 0         | 0           | 0                | 0            | 0                   | 0            | 0           |               | (61)      |
| Total he | eat req             | uired for  | water h    | neating ca      | alculated     | for eac   | h month     | (62)m =          | 0.85 × 0     | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |           |
| (62)m=   | 177.69              | 156.99     | 165.75     | 149.81          | 147.69        | 133.24    | 129.18      | 140.08           | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)      |
| Solar DH | N input             | calculated | using Ap   | pendix G o      | r Appendix    | H (negati | ve quantity | /) (enter '0     | ' if no sola | r contribut         | ion to wate  | er heating) |               |           |
| (add ad  | ditiona             | l lines if | FGHRS      | and/or          | WWHRS         | applies   | , see Ap    | pendix (         | G)           |                     |              |             |               |           |
| (63)m=   | 0                   | 0          | 0          | 0               | 0             | 0         | 0           | 0                | 0            | 0                   | 0            | 0           |               | (63)      |
| Output f | rom w               | ater heat  | ter        |                 |               |           |             |                  |              |                     |              |             |               |           |
| (64)m=   | 177.69              | 156.99     | 165.75     | 149.81          | 147.69        | 133.24    | 129.18      | 140.08           | 139.31       | 155.28              | 162.66       | 173.82      |               |           |
| _        |                     |            |            | -               |               |           | -           | Outp             | out from w   | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)      |
| Heat ga  | ins fro             | m water    | heating    | j, kWh/m        | onth 0.2      | 5 ´ [0.85 | × (45)m     | + (61)m          | n] + 0.8 x   | k [(46)m            | + (57)m      | + (59)m     | ]             |           |
| (65)m=   | 59.31               | 52.41      | 55.34      | 50.03           | 49.34         | 44.53     | 43.18       | 46.81            | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)      |
| incluc   | le (57)             | m in calc  | ulation    | of (65)m        | only if c     | ylinder i | s in the c  | dwelling         | or hot w     | vater is fi         | rom com      | munity h    | leating       |           |
| 5. Inte  | rnal g              | ains (see  | Table      | 5 and 5a        | ):            |           |             |                  |              |                     |              |             |               |           |
| Metabol  | lic gair            | ns (Table  | 5). Wa     | tts             | ,             |           |             |                  |              |                     |              |             |               |           |
| Γ        | Jan                 | Feb        | Mar        | Apr             | May           | Jun       | Jul         | Aug              | Sep          | Oct                 | Nov          | Dec         |               |           |
| (66)m=   | 85.98               | 85.98      | 85.98      | 85.98           | 85.98         | 85.98     | 85.98       | 85.98            | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)      |
| Lighting | gains               | (calculat  | ted in A   | ppendix         | L, equat      | ion L9 o  | r L9a), a   | lso see          | Table 5      |                     |              |             |               |           |
| (67)m=   | 1 <mark>3.48</mark> | 11.97      | 9.74       | 7.37            | 5.51          | 4.65      | 5.03        | 6.53             | 8.77         | 11.14               | 13           | 13.86       |               | (67)      |
| Applian  | ces da              | ins (calc  | ulated i   | n Appene        | dix L. ea     | uation L  | 13 or L1    | 3a), also        | see Ta       | ble 5               | 1            |             |               |           |
| (68)m=   | 149.83              | 151.39     | 147.47     | 139.13          | 128.6         | 118.7     | 112.09      | 110.54           | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)      |
| Cooking  | aains               | (calcula   | ted in A   | ppendix         | L equat       | ion I 15  | or L 15a)   | also se          | e Table      | 5                   |              |             |               |           |
| (69)m=   | 31.6                | 31.6       | 31.6       | 31.6            | 31.6          | 31.6      | 31.6        | 31.6             | 31.6         | 31.6                | 31.6         | 31.6        |               | (69)      |
| Pumps    | and fa              | ns gains   | (Table     | 5a)             |               |           |             |                  |              |                     |              |             |               |           |
| (70)m=   | 0                   |            | 0          |                 | 0             | 0         | 0           | 0                | 0            | 0                   | 0            | 0           |               | (70)      |
|          |                     | anoratio   | n (nea:    | I<br>ative valu | L<br>es) (Tab | le 5)     |             |                  |              |                     |              |             |               |           |
| (71)m=   | -68.78              | -68.78     | -68.78     | -68.78          | -68.78        | -68.78    | -68.78      | -68.78           | -68.78       | -68.78              | -68.78       | -68.78      | l             | (71)      |
| Water b  | eating              | T) aning   | able 5)    |                 |               |           |             |                  |              |                     |              |             |               | . ,       |
| (72)m =  | 79 72               | 77 99      | 74.39      | 69 49           | 66.32         | 61 84     | 58.04       | 62 91            | 64 64        | 69 71               | 75 43        | 77 99       | l             | (72)      |
|          | tornal              | gaine -    |            |                 | 00.01         | (66)      | m + (67)m   | + (68)m -        | + (69)m + 1  | (70)m + (7)         | (1)m + (72)  |             |               | ( )       |
| (73)m-   | 291.82              | 290 14     | 280 39     | 264 79          | 249.22        | 233.99    | 223.95      | 228 78           | 236.66       | 252 43              | 270 54       | 283.86      | l             | (73)      |
| (73)III- | r gain              | 200.14     | 200.00     | 204.75          | 243.22        | 200.00    | 220.00      | 220.10           | 200.00       | 202.40              | 270.04       | 200.00      |               | (10)      |
| Solar ga | ins are o           | calculated | using sol  | ar flux from    | Table 6a      | and assoc | iated equa  | tions to co      | onvert to th | ne applicat         | ole orientat | ion.        |               |           |
| Orientat | tion:               | Access F   | actor      | Area            | l             | Flu       | IX          |                  | q            |                     | FF           |             | Gains         |           |
|          | -                   | Fable 6d   |            | m²              |               | Та        | ble 6a      | Т                | able 6b      | Т                   | able 6c      |             | (W)           |           |
| North    | 0.9x                | 0.77       | )          | 4.9             | 96            | x r       | 10.63       | x                | 0.85         | x                   | 0.7          | =           | 21.75         | (74)      |
| North    | 0.9x                | 0.77       | ,          | 4.9             | 96            | x 2       | 20.32       | x                | 0.85         |                     | 0.7          | =           | 41.56         | (74)      |
| North    | 0.9x                | 0.77       | <u> </u>   | 4.9             | 96            | x         | 34.53       | x                | 0.85         | ╡╷┝                 | 0.7          |             | 70.62         | (74)      |
| North    | 0.9x                | 0.77       | <b>—</b> , | 4.9             | 96            | x .       | 55.46       | ×                | 0.85         | ╡╷┝                 | 0.7          | =           | 113.43        | (74)      |
|          | Ļ                   |            |            |                 |               |           |             | _ <del>  -</del> | 0.05         | ╡╷╞                 | 0.7          | ≓_          | 450.04        | ]<br>(74) |

| North                 | 0.9x                     | 0.77                   | ;        | <b>k</b> | 4.96            | ] ,   | < [              | 79.99                      | x      | 0.85           | ×                   | 0.7           | =      | 163.58 | (74) |
|-----------------------|--------------------------|------------------------|----------|----------|-----------------|-------|------------------|----------------------------|--------|----------------|---------------------|---------------|--------|--------|------|
| North                 | 0.9x                     | 0.77                   |          | <        | 4.96            | ] ,   | < [              | 74.68                      | x      | 0.85           | ×                   | 0.7           | =      | 152.73 | (74) |
| North                 | 0.9x                     | 0.77                   | :        | ĸ        | 4.96            | )     | <mark>،</mark> ( | 59.25                      | x      | 0.85           | x                   | 0.7           | =      | 121.17 | (74) |
| North                 | 0.9x                     | 0.77                   | ;        | <        | 4.96            | ] ,   | < [              | 41.52                      | x      | 0.85           | x                   | 0.7           | =      | 84.91  | (74) |
| North                 | 0.9x                     | 0.77                   | :        | <        | 4.96            | ] ,   | < [              | 24.19                      | x      | 0.85           | x                   | 0.7           | =      | 49.47  | (74) |
| North                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.96            | ] ,   | < [              | 13.12                      | x      | 0.85           | ×                   | 0.7           | =      | 26.83  | (74) |
| North                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.96            | ] ,   | <u>،</u> (       | 8.86                       | x      | 0.85           | ×                   | 0.7           | =      | 18.13  | (74) |
| South                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.42            | ] ,   | < [              | 46.75                      | x      | 0.76           | ×                   | 0.7           | =      | 76.18  | (78) |
| South                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.42            | ] ,   | < [              | 76.57                      | x      | 0.76           | ×                   | 0.7           | =      | 124.77 | (78) |
| South                 | 0.9x                     | 0.77                   | :        | <        | 4.42            | ] ,   | × [              | 97.53                      | x      | 0.76           | x                   | 0.7           | =      | 158.94 | (78) |
| South                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.42            | ) ,   | < [              | 110.23                     | x      | 0.76           | x                   | 0.7           | =      | 179.63 | (78) |
| South                 | 0.9x                     | 0.77                   | :        | ĸ        | 4.42            | )     | <mark>،</mark> ( | 114.87                     | x      | 0.76           | x                   | 0.7           | =      | 187.19 | (78) |
| South                 | 0.9x                     | 0.77                   | 3        | ĸ        | 4.42            | ] ,   | < [              | 110.55                     | x      | 0.76           | x                   | 0.7           | =      | 180.14 | (78) |
| South                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.42            | ] ,   | < [              | 108.01                     | x      | 0.76           | ×                   | 0.7           | =      | 176.01 | (78) |
| South                 | 0.9x                     | 0.77                   | ;        | ĸ        | 4.42            | ] ,   | < [              | 104.89                     | x      | 0.76           | ×                   | 0.7           | =      | 170.93 | (78) |
| South                 | 0.9x                     | 0.77                   |          | ĸ        | 4.42            | ] ,   | < [              | 101.89                     | x      | 0.76           | ×                   | 0.7           | =      | 166.03 | (78) |
| South                 | 0.9x                     | 0.77                   | :        | <b>k</b> | 4.42            | ] ,   | × [              | 82.59                      | x      | 0.76           | x                   | 0.7           | =      | 134.58 | (78) |
| South                 | 0.9x                     | 0.77                   | 2        | ĸ        | 4.42            | ] >   | < [              | 55.42                      | х      | 0.76           | x                   | 0.7           | =      | 90.3   | (78) |
| South                 | 0.9x                     | 0.77                   | :        | <b>k</b> | 4.42            | )     | ×                | 40.4                       | x      | 0.76           | x                   | 0.7           | =      | 65.83  | (78) |
|                       |                          |                        |          |          |                 |       |                  |                            |        |                |                     |               |        |        |      |
| Sola <mark>r g</mark> | <mark>gain</mark> s in t | watts, <mark>ca</mark> | lculate  | d        | for each mor    | nth   |                  |                            | (83)m  | n = Sum(74)m . | <mark>(8</mark> 2)m |               |        | ,      |      |
| (83)m=                | 97.93                    | 166.33                 | 229.56   |          | 293.07 340      |       | 34               | 13.73 32 <mark>8.74</mark> | 292    | 2.1 250.94     | 184.0               | 5 117.13      | 83.96  |        | (83) |
| Total g               | jains – ii               | nternal ar             | nd sola  | ar       | (84)m = (73)i   | m +   | 3)               | 33)m, watts                | r -    |                |                     |               |        | ,      |      |
| (84)m=                | 389.76                   | 456.47                 | 509.94   | L        | 557.85 589.2    | 21    | 57               | 7.72 552.69                | 520    | .88 487.6      | 436.4               | 8 387.68      | 367.82 |        | (84) |
| 7. Me                 | an inter                 | nal temp               | erature  | e (I     | heating seas    | on)   |                  |                            |        |                |                     |               |        |        |      |
| Temp                  | erature                  | during he              | eating   | pe       | eriods in the I | ivin  | ga               | area from Tab              | ole 9  | , Th1 (°C)     |                     |               |        | 21     | (85) |
| Utilisa               | ation fac                | tor for ga             | ins for  | · liv    | ving area, h1   | ,m    | (se              | ee Table 9a)               |        |                |                     |               |        | 7      |      |
|                       | Jan                      | Feb                    | Mar      | ╇        | Apr Ma          | ıy    | ,                | Jun Jul                    | A      | ug Sep         | Oct                 | t Nov         | Dec    | -      |      |
| (86)m=                | 1                        | 1                      | 1        |          | 0.99 0.98       | ;     | C                | 0.95 0.9                   | 0.9    | 0.97           | 0.99                | 1             | 1      |        | (86) |
| Mear                  | interna                  | l tempera              | ature ir | ۱ li     | ving area T1    | (fo   | llo              | w steps 3 to 7             | 7 in T | able 9c)       |                     |               |        | -      |      |
| (87)m=                | 18.42                    | 18.58                  | 18.91    |          | 19.38 19.8      | 9     | 2                | 0.37 20.67                 | 20.    | 62 20.22       | 19.57               | 7 18.92       | 18.4   |        | (87) |
| Temp                  | erature                  | during he              | eating   | ре       | eriods in rest  | of c  | w                | elling from Ta             | able 9 | 9, Th2 (°C)    |                     |               |        |        |      |
| =m(88)                | 18.33                    | 18.34                  | 18.34    |          | 18.35 18.3      | 5     | 1                | 8.36 18.36                 | 18.    | 37 18.36       | 18.35               | 5 18.35       | 18.34  | ]      | (88) |
| Utilisa               | ation fac                | tor for ga             | ins foi  | · re     | est of dwellin  | g, h  | n2,              | m (see Table               | 9a)    |                |                     |               |        | -      |      |
| (89)m=                | 1                        | 1                      | 0.99     | Т        | 0.98 0.95       | ;     | Ć                | 0.85 0.57                  | 0.6    | 64 0.92        | 0.99                | 1             | 1      | ]      | (89) |
| Mean                  | interna                  | l tempera              | ature ir | n tł     | ne rest of dw   | ellir | na               | T2 (follow ste             | ens 3  | to 7 in Tabl   | e 9c)               | -1            |        | -      |      |
| (90)m=                | 15.23                    | 15.48                  | 15.95    | T        | 16.65 17.3      | 8     | 1                | 8.03 18.32                 | 18.    | 29 17.85       | 16.93               | 3 15.98       | 15.21  | 1      | (90) |
|                       |                          | <u> </u>               |          | _        | I               |       |                  | I                          | !      | f              | LA = Li             | ving area ÷ ( | 4) =   | 0.47   | (91) |
| Mean                  | interna                  | l tompora              | ature /ł | 'n       | the whole du    | الصرر | ling             | n) – fl∆ v ⊤1              | ⊥ (1   | _ fl Δ) 🗸 Το   |                     |               |        | L      |      |
| (92)m=                | 16.74                    | 16.94                  | 17.35    | T        | 17.94 18.5      | 6     | 1                | 9.14 19.43                 | 19.    | 39 18.97       | 18.18               | 3 17.37       | 16.71  | 1      | (92) |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=              | 16.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.94                    | 17.35                 | 17.94                    | 18.56              | 19.14       | 19.43         | 19.39      | 18.97      | 18.18                | 17.37        | 16.71                      |           | (93)        |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------|--------------------|-------------|---------------|------------|------------|----------------------|--------------|----------------------------|-----------|-------------|
| 8. Sp               | ace hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ting requ                | uirement              |                          |                    |             |               |            |            |                      |              |                            |           |             |
| Set T<br>the ut     | i to the r<br>tilisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mean int<br>factor fo    | ernal ter<br>or gains | nperatur<br>using Ta     | e obtain<br>ble 9a | ed at ste   | ep 11 of      | Table 9t   | o, so tha  | t Ti,m=(             | 76)m an      | d re-calc                  | ulate     |             |
|                     | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb                      | Mar                   | Apr                      | May                | Jun         | Jul           | Aug        | Sep        | Oct                  | Nov          | Dec                        |           |             |
| Utilisa             | ation fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tor for g                | ains, hm              | :                        |                    |             |               |            |            |                      |              |                            |           |             |
| (94)m=              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 0.99                  | 0.98                     | 0.96               | 0.89        | 0.77          | 0.81       | 0.94       | 0.99                 | 1            | 1                          |           | (94)        |
| Usefu               | ıl gains,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hmGm                     | W = (94               | 4)m x (84                | 4)m                |             |               |            |            |                      |              |                            |           |             |
| (95)m=              | 388.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 454.4                    | 505.69                | 548                      | 564.62             | 517.01      | 423.26        | 420.18     | 457.86     | 430.1                | 385.95       | 367.03                     |           | (95)        |
| Month               | nly avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | age exte                 | rnal tem              | perature                 | from Ta            | able 8      |               |            |            |                      |              |                            |           |             |
| (96)m=              | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.9                      | 6.5                   | 8.9                      | 11.7               | 14.6        | 16.6          | 16.4       | 14.1       | 10.6                 | 7.1          | 4.2                        |           | (96)        |
| Heat                | loss rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e for mea                | an intern             | al tempe                 | erature,           | Lm , W =    | =[(39)m >     | k [(93)m   | – (96)m    | ]                    |              |                            |           |             |
| (97)m=              | 2536.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2451.88                  | 2205.01               | 1820.41                  | 1380.16            | 905.61      | 564.51        | 596.43     | 974.38     | 1524.28              | 2072.09      | 2533.6                     |           | (97)        |
| Space               | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g require                | ement fo              | r each m                 | nonth, k\          | Nh/mon      | th = 0.02     | 4 x [(97)  | )m – (95   | )m] x (4             | 1)m          |                            |           |             |
| (98)m=              | 1598.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1342.31                  | 1264.29               | 916.14                   | 606.76             | 0           | 0             | 0          | 0          | 814.07               | 1214.03      | 1611.93                    |           | -           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                       |                          |                    |             |               | Tota       | l per year | (kWh/year            | ) = Sum(9    | 8)15,912 =                 | 9367.75   | (98)        |
| Space               | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g require                | ement in              | kWh/m²                   | /year              |             |               |            |            |                      |              |                            | 183.68    | (99)        |
| 9b. En              | erav rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uiremer                  | nts – Cor             | nmunitv                  | heating            | scheme      | 2             |            |            |                      |              | L                          |           | 7           |
| This pa             | art is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed for sp                | ace hea               | ting, spa                | ace cooli          | ng or wa    | ater heat     | ing prov   | ided by    | a c <mark>omm</mark> | unity sch    | neme.                      |           | 1(204)      |
| Flacic              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ace near                 | nom se                | condary/                 | supplen            | lentary i   | lieating (    | Table I    | 1) 0 11 11 | one                  |              |                            | 0         | (301)       |
| Fractic             | on of spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ace heat                 | from co               | mmunity                  | system             | 1 – (301    | 1) =          |            |            |                      |              |                            | 1         | (302)       |
| The con             | nmunity so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cheme m <mark>a</mark> g | y obtain he           | eat from se              | everal sour        | ces. The p  | procedure a   | allows for | CHP and u  | up to four o         | other heat   | sou <mark>rces</mark> ; tl | he latter |             |
| includes<br>Fractic | boilers, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eat pumps<br>at from C   | s, geotherr<br>Commun | nal and wa<br>ity boiler | aste heat fi<br>S  | rom powei   | r stations. S | See Apper  | ndix C.    |                      |              | _                          | 1         | (303a)      |
| Fractic             | on of tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al space                 | heat fro              | m Comm                   | nunity bo          | oilers      |               |            |            | (3                   | 02) x (303   | a) =                       | 1         | (304a)      |
| Factor              | for cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rol and o                | charging              | method                   | (Table 4           | 4c(3)) fo   | r commu       | inity hea  | ting syst  | tem                  |              |                            | 1         | (305)       |
| Distrib             | ution los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s factor                 | (Table 1              | 2c) for c                | communi            | ity heatii  | ng syster     | m          |            |                      |              |                            | 1.05      | (306)       |
| Space               | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g                        |                       |                          |                    |             |               |            |            |                      |              |                            | kWh/year  | -           |
| Annua               | l space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | heating                  | requirem              | nent                     |                    |             |               |            |            |                      |              |                            | 9367.75   |             |
| Space               | heat fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | om Comr                  | nunity b              | oilers                   |                    |             |               |            | (98) x (30 | 04a) x (30           | 5) x (306) = | =                          | 9836.14   | (307a)      |
| Efficier            | ncy of se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | econdary                 | //supple              | mentary                  | heating            | system      | in % (fro     | m Table    | 4a or A    | ppendix              | E)           |                            | 0         | (308        |
| Space               | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | require                  | ment froi             | m secon                  | dary/sup           | plemen      | tary syst     | em         | (98) x (30 | 01) x 100 -          | ÷ (308) =    |                            | 0         | (309)       |
| Water<br>Annua      | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>j</b><br>neating r    | equirem               | ent                      |                    |             |               |            |            |                      |              | [                          | 1831.51   | 1           |
| If DHW<br>Water     | / from contract from heat from the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of | ommunit<br>m Comn        | ty schem              | ne:<br>pilers            |                    |             |               |            | (64) x (30 | )3a) x (30           | 5) x (306) = | =                          | 1923.08   | ]<br>(310a) |
| Electri             | city used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d for hea                | t distribi            | ution                    |                    |             |               | 0.01       | × [(307a). | (307e) +             | (310a)(      | 310e)] =                   | 117.59    | ]<br>(313)  |
| Coolin              | g Syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Enera                  | y Efficier            | ncy Ratio                | C                  |             |               |            | L          | x - 7 -              |              | /*                         | 0         | ]<br>(314)  |
| Space               | cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (if there                | is a fixe             | -<br>d cooling           | g system           | n, if not e | enter 0)      |            | = (107) ÷  | (314) =              |              | l                          | 0         | ]<br>(315)  |
| Electri             | city for p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oumps ai                 | nd fans v             | within dw                | velling (T         | Table 4f)   | :             |            |            |                      |              | I                          |           |             |
| mecha               | inical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntilation                | - balanc              | ea, extra                | act or po          | sitive in   | put from      | outside    |            |                      |              |                            | 0         | (330a)      |

|                                                                                                                          |                             |                              |             |                        | -      |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-------------|------------------------|--------|
| warm air heating system fans                                                                                             |                             |                              |             | 0                      | (330b) |
| pump for solar water heating                                                                                             |                             |                              |             | 0                      | (330g) |
| Total electricity for the above, kWh/year                                                                                | =(330a) + (330b)            | ) + (330g) =                 |             | 0                      | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                           |                             |                              |             | 238.08                 | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                            |                             |                              |             |                        |        |
|                                                                                                                          | Energy<br>kWh/year          | Emission facto<br>kg CO2/kWh | or Er<br>kg | nissions<br>J CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using the | wo fuels repeat (363) to (3 | 366) for the second          | fuel        | 90                     | (367a) |
| CO2 associated with heat source 1 [(307b)+(37                                                                            | 10b)] x 100 ÷ (367b) x      | 0                            | =           | 2822.21                | (367)  |
| Electrical energy for heat distribution [(3                                                                              | 13) x                       | 0.52                         | =           | 61.03                  | (372)  |
| Total CO2 associated with community systems (36                                                                          | 63)(366) + (368)(372)       |                              | =           | 2883.24                | (373)  |
| CO2 associated with space heating (secondary) (30                                                                        | 09) x                       | 0                            | =           | 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneou                                                          | us heater (312) x           | 0.22                         | =           | 0                      | (375)  |
| Total CO2 associated with space and water heating (37                                                                    | 73) + (374) + (375) =       |                              |             | 2883.24                | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                       | (331)) x                    | 0.52                         | =           | 0                      | (378)  |
| CO2 associated with electricity for lighting (33                                                                         | 32))) x                     | 0.52                         | =           | 123.56                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                   |                             |                              |             | <mark>3006.8</mark> 1  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                 |                             |                              |             | 58.96                  | (384)  |
| El rating (section 14)                                                                                                   |                             |                              |             | 57.9                   | (385)  |

|                                                                                                                                                                                                                       |                                                                                                                                                        |                                                           | User D                                               | etails:                                        |                                     |                             |                      |                      |                                        |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------|----------------------|----------------------|----------------------------------------|----------------------------|
| Assessor Name:<br>Software Name:                                                                                                                                                                                      | Stroma FSAP 20                                                                                                                                         | 12                                                        |                                                      | Stroma<br>Softwa                               | a Num<br>Ire Ver                    | ber:<br>sion:               |                      | Versic               | n: 1.0.3.15                            |                            |
| A daha a a                                                                                                                                                                                                            | London                                                                                                                                                 | PI                                                        | roperty <i>i</i>                                     | Address:                                       | Unit 15                             |                             |                      |                      |                                        |                            |
| Address :                                                                                                                                                                                                             | , London                                                                                                                                               |                                                           |                                                      |                                                |                                     |                             |                      |                      |                                        |                            |
| Basement                                                                                                                                                                                                              | 50015.                                                                                                                                                 |                                                           | Area                                                 | <b>a(m²)</b><br>55                             | (1a) x                              | <b>Av. He</b>               | <b>ight(m)</b><br>17 | (2a) =               | <b>Volume(m<sup>3</sup>)</b><br>119.35 | <b>)</b><br>(3a)           |
| Total floor area TFA = (1a)                                                                                                                                                                                           | )+(1b)+(1c)+(1d)+(1                                                                                                                                    | e)+(1n                                                    | )                                                    | 55                                             | (4)                                 |                             |                      |                      |                                        |                            |
| Dwelling volume                                                                                                                                                                                                       |                                                                                                                                                        |                                                           |                                                      |                                                | (3a)+(3b)                           | +(3c)+(3c                   | d)+(3e)+             | .(3n) =              | 119.35                                 | (5)                        |
| 2. Ventilation rate:                                                                                                                                                                                                  |                                                                                                                                                        |                                                           |                                                      | _                                              |                                     |                             |                      |                      |                                        |                            |
| Number of chimneys<br>Number of open flues                                                                                                                                                                            | main         s           heating         •           0         +           0         +                                                                 | secondar<br>heating<br>0<br>0                             | y<br>] + [_<br>] + [_                                | 0<br>0                                         | ] = [                               | <b>total</b> 0 0            | x 4                  | 40 =<br>20 =         | m <sup>3</sup> per hou                 | r<br>(6a)<br>(6b)          |
| Number of intermittent fan                                                                                                                                                                                            | S                                                                                                                                                      |                                                           |                                                      |                                                | Γ                                   | 2                           | X <sup>2</sup>       | 10 =                 | 20                                     | (7a)                       |
| Number of passive vents                                                                                                                                                                                               |                                                                                                                                                        |                                                           |                                                      |                                                | Γ                                   | 0                           | x ′                  | 10 =                 | 0                                      | (7b)                       |
| Number of flueless gas fire                                                                                                                                                                                           | es                                                                                                                                                     |                                                           |                                                      |                                                | Ľ                                   | 0                           | X 4                  | 40 =                 | 0                                      | (7c)                       |
|                                                                                                                                                                                                                       |                                                                                                                                                        |                                                           |                                                      |                                                |                                     |                             |                      | Air ch               | anges per ho                           | ur                         |
| Infiltration due to chimneys<br>If a pressurisation test has be<br>Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | s, flues and fans =<br>en carried out or is inten-<br>e dwelling (ns)<br>25 for steel or timbe<br>sent, use the value corre<br>rs); if equal user 0.35 | 6a)+(6b)+(7<br>ded, proceed<br>r frame or<br>esponding to | a)+(7b)+(7<br>d to (17), c<br>0.35 for<br>the greate | 7c) =<br>otherwise c<br>masonr<br>er wall area | ontinue fro<br>y constr<br>a (after | 20<br>om (9) to (<br>uction | (16)<br>[(9)         | ÷ (5) =<br>-1]x0.1 = | 0.17 0 0 0 0                           | (8)<br>(9)<br>(10)<br>(11) |
| If suspended wooden flo                                                                                                                                                                                               | oor, enter 0.2 (unsea                                                                                                                                  | aled) or 0.                                               | 1 (seale                                             | ed), else                                      | enter 0                             |                             |                      |                      | 0                                      | (12)                       |
| If no draught lobby, ente                                                                                                                                                                                             | er 0.05, else enter 0                                                                                                                                  |                                                           |                                                      |                                                |                                     |                             |                      |                      | 0                                      | (13)                       |
| Percentage of windows                                                                                                                                                                                                 | and doors draught                                                                                                                                      | stripped                                                  |                                                      |                                                |                                     |                             |                      |                      | 0                                      | (14)                       |
| Window infiltration                                                                                                                                                                                                   |                                                                                                                                                        |                                                           |                                                      | 0.25 - [0.2                                    | x (14) ÷ 1                          | = [00                       |                      |                      | 0                                      | (15)                       |
| Infiltration rate                                                                                                                                                                                                     | 50 1.                                                                                                                                                  |                                                           |                                                      | (8) + (10) ·                                   | + (11) + (1                         | 2) + (13) ·                 | + (15) =             |                      | 0                                      | (16)                       |
| Air permeability value, q                                                                                                                                                                                             | 50, expressed in cu                                                                                                                                    | 101C metre:                                               | s per ho                                             | our per so                                     | quare m                             | etre of e                   | envelope             | area                 | 10                                     | (17)                       |
| Air permeability value applies                                                                                                                                                                                        | y value, then $(10) - 1$                                                                                                                               | as been don                                               | e or a deo                                           | aree air nei                                   | meability                           | is heina u                  | sed                  |                      | 0.67                                   | (18)                       |
| Number of sides sheltered                                                                                                                                                                                             |                                                                                                                                                        |                                                           | o or a dog                                           | , ee an per                                    | incusinty i                         | o bonng u                   |                      |                      | 2                                      | (19)                       |
| Shelter factor                                                                                                                                                                                                        |                                                                                                                                                        |                                                           |                                                      | (20) = 1 - [                                   | 0.075 x (1                          | 9)] =                       |                      |                      | 0.85                                   | (20)                       |
| Infiltration rate incorporatir                                                                                                                                                                                        | ng shelter factor                                                                                                                                      |                                                           |                                                      | (21) = (18)                                    | x (20) =                            |                             |                      |                      | 0.57                                   | (21)                       |
| Infiltration rate modified fo                                                                                                                                                                                         | r monthly wind spee                                                                                                                                    | ed                                                        |                                                      |                                                |                                     |                             |                      |                      |                                        |                            |
| Jan Feb M                                                                                                                                                                                                             | /lar Apr May                                                                                                                                           | , Jun                                                     | Jul                                                  | Aug                                            | Sep                                 | Oct                         | Nov                  | Dec                  |                                        |                            |
| Monthly average wind spe                                                                                                                                                                                              | ed from Table 7                                                                                                                                        |                                                           |                                                      |                                                |                                     |                             |                      |                      |                                        |                            |
| (22)m= 5.1 5 4                                                                                                                                                                                                        | 4.4 4.3                                                                                                                                                | 3.8                                                       | 3.8                                                  | 3.7                                            | 4                                   | 4.3                         | 4.5                  | 4.7                  |                                        |                            |
| Wind Factor (22a)m = (22)                                                                                                                                                                                             | )m ÷ 4                                                                                                                                                 | 1 1                                                       |                                                      |                                                |                                     |                             | 1                    |                      | I                                      |                            |
| (zza)m= 1.27 1.25 1.                                                                                                                                                                                                  | 1.1 1.08                                                                                                                                               | 0.95                                                      | 0.95                                                 | 0.92                                           | 1                                   | 1.08                        | 1.12                 | 1.18                 |                                        |                            |

| Adjuste              | ed infiltr              | ation rat               | e (allowi                 | ing for sh                | elter an        | d wind s             | speed) =       | (21a) x        | (22a)m         |                |             |             |             |               |
|----------------------|-------------------------|-------------------------|---------------------------|---------------------------|-----------------|----------------------|----------------|----------------|----------------|----------------|-------------|-------------|-------------|---------------|
|                      | 0.72                    | 0.71                    | 0.7                       | 0.62                      | 0.61            | 0.54                 | 0.54           | 0.52           | 0.57           | 0.61           | 0.64        | 0.67        |             |               |
| Calcula              | ate ette                | ctive air               | change                    | rate for t                | he appli        | cable ca             | ise            |                |                |                |             | 1           | 0           |               |
| lf exh               | aust air h              | eat nump                | using App                 | endix N (2                | 3b) = (23a      | u) x Fmv (e          | equation (I    | N5)) othe      | rwise (23h     | ) = (23a)      |             | l           | 0           | (234)         |
| lf bala              | anced with              | n heat reco             | overv: effic              | viency in %               | allowing f      | or in-use f          | actor (fron    | n Table 4h     | ) –            | <i>(</i> 200)  |             | l           | 0           | (230)         |
| a) If                |                         | d moob                  |                           |                           | with hor        |                      |                |                | $\gamma = (2)$ | 0h) m i (      | 22h) [      | <br>1 (22م) | 0           | (230)         |
| a) II                |                         |                         |                           |                           | with nea        |                      |                | лк) (24a       | a = (2)        | $\frac{20}{1}$ | 230) × [    | 1 - (230)   | ÷ 100]      | (24a)         |
| (24a)III=            |                         |                         |                           |                           | 0               | 0                    |                |                |                |                |             | 0           |             | (244)         |
| D) IT                | balance                 |                         | anical ve                 |                           | without         | neat rec             | covery (r      | VIV) (240<br>T | p)m = (2, 1)   | 2b)m + (.<br>T | 23D)        |             |             | (24b)         |
| (240)m=              |                         | 0                       | 0                         |                           | 0               |                      |                | 0              |                | 0              | 0           | 0           |             | (240)         |
| c) If                | whole h                 |                         | tract ver                 | tilation o                | or positiv      | e input v            | ventilatio     | on from (      | b) m i 0       | 5 v (22h       | 2)          |             |             |               |
| (24c)m-              |                         |                         |                           |                           | <i>)</i> = (230 |                      |                | C = (22)       | $\frac{1}{1}$  |                |             |             |             | (24c)         |
| (۲۹۵) If             |                         | vontilati               |                           |                           |                 |                      | Ventileti      | n from         |                | 0              | 0           | 0           |             | (210)         |
| a) n                 | if (22b)n               | n = 1, th               | en (24d)                  | m = (22k)                 | b)m othe        | e input<br>erwise (2 | 24d)m =        | 0.5 + [(2      | 2b)m² x        | 0.5]           |             |             |             |               |
| (24d)m=              | 0.76                    | 0.75                    | 0.74                      | 0.69                      | ,<br>0.69       | 0.65                 | 0.65           | 0.64           | 0.66           | 0.69           | 0.7         | 0.72        |             | (24d)         |
| Effe                 | ctive air               | change                  | rate - er                 | nter (24a                 | ) or (24b       | ) or (24             | L<br>c) or (24 | d) in bo       | x (25)         | <u> </u>       | <u> </u>    | 1           |             |               |
| (25)m=               | 0.76                    | 0.75                    | 0.74                      | 0.69                      | 0.69            | 0.65                 | 0.65           | 0.64           | 0.66           | 0.69           | 0.7         | 0.72        |             | (25)          |
|                      |                         |                         |                           |                           |                 |                      |                |                |                |                | I           |             |             |               |
| 3. He                | at losse                | s and he                | eat loss                  | paramete                  | er:             |                      |                |                |                |                |             |             |             |               |
| ELEN                 |                         | Gros                    | SS<br>(m²)                | Openin                    | gs<br>2         | Net Ar               | rea<br>m²      | U-val<br>W/m2  | ue<br>2K       | A X U<br>(W/I  | K)          | k-value     | )<br><      | A X k<br>kJ/K |
| Doors                |                         |                         | ()                        |                           |                 | 19                   | x              | 14             |                | 2.66           |             |             |             | (26)          |
| Window               |                         | e 1                     |                           |                           |                 | 3                    |                | /[1/( 1.6 )+   | - 0.041 –      | 1.51           | Ħ           |             |             | (27)          |
| Window               |                         | 2                       |                           |                           |                 | 1 76                 |                | /[1/( 4 8 )+   | 0.041 -        | 7.00           | H           |             |             | (27)          |
| Windo                |                         | 2                       |                           |                           |                 | 1.76                 |                | /[1/( 4.0 )]   | 0.04]          | 7.09           | 4           |             |             | (27)          |
|                      | ws type<br>T            |                         |                           |                           |                 | 0.64                 |                | /[1/(4.0)+     | 0.04] =        | 2.58           |             |             |             | (27)          |
|                      | ws Type                 | 94                      |                           |                           |                 | 3.84                 | X1             | /[1/( 1.6 )+   | 0.04] =        | 5.77           | _ ,         |             |             | (27)          |
| Floor                |                         |                         |                           |                           |                 | 55                   | X              | 0.93           | =              | 51.15          |             |             | $\_$ $\_$   | (28)          |
| Walls 7              | Type1                   | 28.                     | 9                         | 8.6                       |                 | 20.3                 | X              | 2.1            | =              | 42.63          |             |             |             | (29)          |
| Walls 7              | Гуре2                   | 7.8                     | 1                         | 2.54                      |                 | 5.27                 | x              | 2.1            | =              | 11.07          |             |             |             | (29)          |
| Total a              | rea of e                | elements                | s, m²                     |                           |                 | 91.71                | 1              |                |                |                |             |             |             | (31)          |
| Party v              | vall                    |                         |                           |                           |                 | 27.9                 | x              | 0              | =              | 0              |             |             | $\neg$      | (32)          |
| Party v              | vall                    |                         |                           |                           |                 | 1.13                 | x              | 0              | =              | 0              | i F         |             | $\neg \neg$ | (32)          |
| * for win            | dows and                | roof wind               | ows, use e                | effective wi              | ndow U-va       | alue calcul          | lated using    | formula 1      | l/[(1/U-valu   | ıe)+0.04] a    | as given in | paragraph   | 3.2         |               |
| ** includ            | le the area             | as on both              | sides of ir               | nternal wall              | s and part      | titions              |                |                |                |                |             |             |             |               |
| Fabric               | heat los                | ss, W/K                 | = S (A x                  | U)                        |                 |                      |                | (26)(30        | ) + (32) =     |                |             |             | 127.4       | 6 (33)        |
| Heat c               | apacity                 | Cm = S                  | (A x k )                  |                           |                 |                      |                |                | ((28).         | (30) + (32     | 2) + (32a). | (32e) =     | 0           | (34)          |
| Therm                | al mass                 | parame                  | eter (TMF                 | <sup>-</sup> = Cm ÷       | - TFA) in       | ∩ kJ/m²K             |                |                | Indica         | tive Value     | : High      |             | 450         | (35)          |
| For desi<br>can be u | gn assess<br>ised inste | sments wh<br>ad of a de | ere the de<br>tailed calc | etails of the<br>ulation. | constructi      | ion are no           | t known pr     | ecisely the    | e indicative   | e values of    | TMP in T    | able 1f     |             |               |
| Therm                | al bridg                | es : S (L               | x Y) cal                  | culated u                 | using Ap        | pendix I             | K              |                |                |                |             | [           | 14.4        | (36)          |
| if details           | of therma               | al bridging             | are not kn                | nown (36) =               | = 0.15 x (3     | 1)                   |                |                |                | ()             |             |             |             |               |
| Fotal fa             | abric he                | at loss                 |                           |                           |                 |                      |                |                | (33) +         | (36) =         |             |             | 141.8       | 6 (37)        |

| Ventila                 | ation hea                          | at loss ca                      | alculated         | d monthl                 | у                       |             |                                       |                         | (38)m                 | = 0.33 × (                | (25)m x (5)                           |                     |         |              |
|-------------------------|------------------------------------|---------------------------------|-------------------|--------------------------|-------------------------|-------------|---------------------------------------|-------------------------|-----------------------|---------------------------|---------------------------------------|---------------------|---------|--------------|
|                         | Jan                                | Feb                             | Mar               | Apr                      | May                     | Jun         | Jul                                   | Aug                     | Sep                   | Oct                       | Nov                                   | Dec                 |         |              |
| (38)m=                  | 30                                 | 29.6                            | 29.21             | 27.37                    | 27.02                   | 25.42       | 25.42                                 | 25.12                   | 26.03                 | 27.02                     | 27.72                                 | 28.45               |         | (38)         |
| Heat t                  | ransfer o                          | coefficie                       | nt, W/K           |                          |                         |             |                                       |                         | (39)m                 | = (37) + (3               | 38)m                                  |                     |         |              |
| (39)m=                  | 171.86                             | 171.46                          | 171.07            | 169.22                   | 168.88                  | 167.27      | 167.27                                | 166.98                  | 167.89                | 168.88                    | 169.57                                | 170.3               |         |              |
| Heat le                 | oss para                           | meter (I                        | HLP), W           | /m²K                     |                         |             |                                       |                         | (40)m                 | Average =<br>= (39)m ÷    | Sum(39)₁<br>· (4)                     | 12 /12=             | 169.22  | (39)         |
| (40)m=                  | 3.12                               | 3.12                            | 3.11              | 3.08                     | 3.07                    | 3.04        | 3.04                                  | 3.04                    | 3.05                  | 3.07                      | 3.08                                  | 3.1                 |         |              |
| Numb                    | er of day                          | /s in mo                        | nth (Tab          | le 1a)                   |                         |             |                                       |                         |                       | Average =                 | Sum(40)1                              | 12 /12=             | 3.08    | (40)         |
|                         | Jan                                | Feb                             | Mar               | Apr                      | May                     | Jun         | Jul                                   | Aug                     | Sep                   | Oct                       | Nov                                   | Dec                 |         |              |
| (41)m=                  | 31                                 | 28                              | 31                | 30                       | 31                      | 30          | 31                                    | 31                      | 30                    | 31                        | 30                                    | 31                  |         | (41)         |
|                         |                                    |                                 | -                 | -                        |                         |             |                                       | •                       | -                     |                           | -                                     |                     |         |              |
| 4. Wa                   | ater heat                          | ting ene                        | rgy requ          | irement:                 |                         |             |                                       |                         |                       |                           |                                       | kWh/ye              | ear:    |              |
| Assum<br>if TF<br>if TF | ned occu<br>FA > 13.9<br>FA £ 13.9 | upancy,<br>9, N = 1<br>9, N = 1 | N<br>+ 1.76 >     | ([1 - exp                | (-0.0003                | 349 x (TF   | <sup>-</sup> A -13.9                  | )2)] + 0.(<br>(25 x NI) | 0013 x ( <sup>-</sup> | TFA -13.                  | 1.<br>.9)                             | 84                  |         | (42)         |
| Reduce                  | the annua                          | al average                      | hot water         | usage by                 | 5% if the a             | lwelling is | designed                              | (25 X N)<br>to achieve  | + 30<br>a water us    | se target o               | f 77                                  | .84                 |         | (43)         |
| not mor                 | e that 125                         | litres per                      | person pe         | r day (all w             | vater use, l            | hot and co  | ld)                                   |                         |                       |                           | _                                     |                     |         |              |
|                         | Jan                                | Feb                             | Mar               | Apr                      | May                     | Jun         | Jul                                   | Aug                     | Sep                   | Oct                       | Nov                                   | Dec                 |         |              |
| Hot wat                 | er usage i                         | n litres pei                    | r day for e       | ach m <mark>onth</mark>  | Vd,m = fa               | ctor from T | Table 1c x                            | (43)                    |                       |                           |                                       |                     |         |              |
| (44)m=                  | <mark>8</mark> 5.62                | 82.51                           | 79.39             | 76.28                    | 73.17                   | 70.05       | 70.05                                 | 73.17                   | 76.28                 | 79.39                     | 82.51                                 | <mark>8</mark> 5.62 |         | _            |
| Energy                  | content of                         | hot water                       | used - ca         | lculated m               | onthly = 4.             | 190 x Vd,r  | m x nm x E                            | 0Tm / 3600              | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | =<br>c, 1d)         | 934.05  | (44)         |
| (45)m=                  | 126.97                             | 111.05                          | 114.6             | 99. <mark>9</mark> 1     | 95.86                   | 82.72       | 76. <mark>6</mark> 5                  | 87.96                   | 89.01                 | 10 <mark>3.74</mark>      | 113.24                                | 122.97              |         | _            |
| lf instan               | taneous w                          | vater heati                     | ng at poin        | t of use (no             | o hot water             | r storage), | enter 0 in                            | boxes (46               | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | =                   | 1224.68 | (45)         |
| (46)m=                  | 19.05                              | 16.66                           | 17.19             | 14.99                    | 14.38                   | 12.41       | 11.5                                  | 13.19                   | 13.35                 | 15.56                     | 16.99                                 | 18.45               |         | (46)         |
| Water                   | storage                            | loss:                           |                   |                          |                         |             |                                       |                         |                       |                           |                                       |                     |         |              |
| Storag                  | je volum                           | ie (litres)                     | ) incluair        | ng any s                 | Diar or W               | /WHRS       | storage                               |                         | ame ves               | sei                       |                                       | 160                 |         | (47)         |
| If com<br>Others        | munity r<br>vise if no             | b stored                        | hot wate          | ank in dw<br>er (this ir | velling, e<br>ncludes i | nstantar    | ) litres in<br>neous co               | (47)<br>ombi boil       | ers) ente             | er '0' in (               | (47)                                  |                     |         |              |
| a) If n                 | nanufact                           | urer's d                        | eclared           | loss fact                | or is kno               | wn (kWł     | n/dav):                               |                         |                       |                           |                                       | 0                   |         | (48)         |
| Tempe                   | erature f                          | actor fro                       | m Table           | e 2b                     |                         | ,           | , , , , , , , , , , , , , , , , , , , |                         |                       |                           |                                       | 0                   |         | (49)         |
| Energ                   | v lost fro                         | m water                         | storage           | e. kWh/v                 | ear                     |             |                                       | (48) x (49              | ) =                   |                           |                                       | 10                  |         | (50)         |
| b) If n                 | nanufact                           | urer's d                        | eclared           | cylinder                 | loss fact               | or is not   | known:                                |                         |                       |                           | L'                                    | 10                  |         | ()           |
| Hot wa                  | ater stor                          | age loss                        | factor f          | rom Tab                  | le 2 (kW                | h/litre/da  | ay)                                   |                         |                       |                           | 0.                                    | 02                  |         | (51)         |
| If com                  | munity h                           | eating s                        | ee secti          | on 4.3                   |                         |             |                                       |                         |                       |                           |                                       |                     | I       |              |
| Volum                   | e tactor<br>erature f              | Trom Ta                         | ble 2a<br>m Table | 2h                       |                         |             |                                       |                         |                       |                           | 1.                                    | .03                 |         | (52)         |
| Temp                    |                                    |                                 |                   |                          |                         |             |                                       | (47) × (64)             | ) y (FQ) y (          | 50)                       |                                       | .6                  |         | (55)         |
| Energ                   | y iost tro<br>(50) or /            | (54) in (4                      | storage<br>55)    | ε, κννη/y                | al                      |             |                                       | (47) X (51)             | ) X (⊃∠) X (          | 53) =                     |                                       | 03                  |         | (54)<br>(55) |
| Wator                   | storage                            |                                 | culated           | for each                 | month                   |             |                                       | ((56)m - (              | 55) × (41)            | m                         | L1.                                   | US                  |         | (55)         |
| (56)~                   | 22.04                              | 20 00                           | 22.04             | 20.00                    | 22.04                   | 20.00       | 22.04                                 | 22.04                   | 20.00                 | 22.04                     | 20.00                                 | 22.04               | l       | (56)         |
| =m(ac)                  | 32.01                              | 28.92                           | 32.01             | 30.98                    | 32.01                   | 30.98       | 32.01                                 | 32.01                   | 30.98                 | 32.01                     | 30.98                                 | 32.01               |         | (30)         |

| If cylinde           | er contains | s dedicated | d solar sto | rage, (57)ı          | m = (56)m  | x [(50) – (           | H11)] ÷ (50              | 0), else (57  | 7)m = (56)i | m where (                 | H11) is fro | m Append   | ix H       |        |
|----------------------|-------------|-------------|-------------|----------------------|------------|-----------------------|--------------------------|---------------|-------------|---------------------------|-------------|------------|------------|--------|
| (57)m=               | 32.01       | 28.92       | 32.01       | 30.98                | 32.01      | 30.98                 | 32.01                    | 32.01         | 30.98       | 32.01                     | 30.98       | 32.01      |            | (57)   |
| Primar               | y circuit   | loss (an    | inual) fro  | om Table             | e 3        | -                     |                          |               |             |                           |             | 0          |            | (58)   |
| Primar               | y circuit   | loss cal    | culated     | for each             | month (    | 59)m = (              | (58) ÷ 36                | 5 × (41)      | m           |                           |             |            |            |        |
| (mod                 | dified by   | factor fr   | rom Tab     | le H5 if t           | here is s  | solar wat             | er heatir                | ng and a      | cylinder    | r thermo                  | stat)       |            |            |        |
| (59)m=               | 23.26       | 21.01       | 23.26       | 22.51                | 23.26      | 22.51                 | 23.26                    | 23.26         | 22.51       | 23.26                     | 22.51       | 23.26      |            | (59)   |
| Combi                | loss ca     | lculated    | for each    | month (              | (61)m =    | (60) ÷ 36             | 65 × (41)                | )m            |             |                           |             |            |            |        |
| (61)m=               | 0           | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (61)   |
| Total h              | eat requ    | uired for   | water h     | eating ca            | alculated  | for eacl              | n month                  | (62)m =       | 0.85 × (    | 45)m +                    | (46)m +     | (57)m +    | (59)m + (6 | 61)m   |
| (62)m=               | 182.25      | 160.98      | 169.87      | 153.4                | 151.14     | 136.22                | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24     |            | (62)   |
| Solar DH             | W input     | calculated  | using App   | endix G or           | Appendix   | H (negativ            | ve quantity              | /) (enter '0' | if no sola  | r contribut               | on to wate  | r heating) |            |        |
| (add ad              | dditiona    | l lines if  | FGHRS       | and/or V             | WWHRS      | applies.              | , see Ap                 | pendix G      | <b>3</b> )  |                           |             |            |            |        |
| (63)m=               | 0           | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (63)   |
| Output               | from w      | ater hea    | ter         |                      |            |                       |                          |               |             |                           |             |            |            |        |
| (64)m=               | 182.25      | 160.98      | 169.87      | 153.4                | 151.14     | 136.22                | 131.93                   | 143.24        | 142.51      | 159.01                    | 166.73      | 178.24     |            |        |
| I                    |             |             |             |                      |            |                       |                          | Outp          | out from wa | ater heate                | r (annual)  | 12         | 1875.52    | 2 (64) |
| Hea <mark>t g</mark> | ains fro    | m water     | heating,    | kWh/mo               | onth 0.2   | 5´[0.85               | × (45)m                  | + (61)m       | ] + 0.8 x   | (46)m                     | + (57)m     | + (59)m    | ]          |        |
| (65)m=               | 60.83       | 53.73       | 56.71       | 51. <mark>2</mark> 3 | 50.48      | 45.51                 | 44.1                     | 47.86         | 47.61       | 53.1                      | 55.66       | 59.5       |            | (65)   |
| inclu                | de (57)     | m in calc   | culation of | of (65)m             | only if c  | ylinder is            | s in th <mark>e</mark> c | dwelling      | or hot w    | ate <mark>r is f</mark> r | om com      | munity h   | eating     |        |
| 5. Int               | ernal ga    | ains (see   | Table 5     | and 5a               | ):         |                       |                          |               |             |                           |             |            |            |        |
| Metabo               | olic gain   | s (Table    | 5). Wat     | ts                   |            |                       |                          |               |             |                           |             |            |            |        |
|                      | Jan         | Feb         | Mar         | Apr                  | May        | Jun                   | Jul                      | Aug           | Sep         | Oct                       | Nov         | Dec        |            |        |
| (66)m=               | 91.87       | 91.87       | 91.87       | 91. <mark>87</mark>  | 91.87      | 91.87                 | 91.87                    | 91.87         | 91.87       | 91.87                     | 91.87       | 91.87      |            | (66)   |
| Lightin              | g gains     | (calculat   | ted in Ap   | opendix              | L, equati  | ion L9 oi             | r L9a), a                | lso see       | Table 5     |                           |             |            |            |        |
| (67)m=               | 14.68       | 13.04       | 10.6        | 8.03                 | 6          | 5.06                  | 5.47                     | 7.11          | 9.55        | 12.12                     | 14.15       | 15.08      |            | (67)   |
| Appliar              | nces ga     | ins (calc   | ulated ir   | Append               | dix L, eq  | uation L <sup>.</sup> | 13 or L1                 | 3a), also     | see Tal     | ole 5                     |             |            |            |        |
| (68)m=               | 160.19      | 161.85      | 157.66      | 148.74               | 137.49     | 126.91                | 119.84                   | 118.18        | 122.36      | 131.28                    | 142.54      | 153.12     |            | (68)   |
| Cookin               | g gains     | (calcula    | ted in A    | ppendix              | L, equat   | ion L15               | or L15a)                 | , also se     | e Table     | 5                         |             |            |            |        |
| (69)m=               | 32.19       | 32.19       | 32.19       | 32.19                | 32.19      | 32.19                 | 32.19                    | 32.19         | 32.19       | 32.19                     | 32.19       | 32.19      |            | (69)   |
| Pumps                | and fai     | ns gains    | (Table 5    | 5a)                  |            |                       |                          |               |             |                           |             |            |            |        |
| (70)m=               | 0           | 0           | 0           | 0                    | 0          | 0                     | 0                        | 0             | 0           | 0                         | 0           | 0          |            | (70)   |
| Losses               | s e.g. ev   | vaporatio   | n (nega     | tive valu            | es) (Tab   | le 5)                 |                          |               |             |                           |             |            |            |        |
| (71)m=               | -73.49      | -73.49      | -73.49      | -73.49               | -73.49     | -73.49                | -73.49                   | -73.49        | -73.49      | -73.49                    | -73.49      | -73.49     |            | (71)   |
| Water                | heating     | gains (T    | able 5)     |                      |            |                       |                          |               |             |                           |             |            |            |        |
| (72)m=               | 81.76       | 79.96       | 76.23       | 71.15                | 67.86      | 63.22                 | 59.27                    | 64.32         | 66.12       | 71.37                     | 77.31       | 79.97      |            | (72)   |
| Total i              | nternal     | gains =     |             |                      |            | (66)                  | m + (67)m                | ı + (68)m +   | - (69)m + ( | 70)m + (7                 | 1)m + (72)  | m          |            |        |
| (73)m=               | 307.18      | 305.4       | 295.05      | 278.48               | 261.9      | 245.75                | 235.14                   | 240.17        | 248.59      | 265.34                    | 284.55      | 298.73     |            | (73)   |
| 6. Sol               | ar gains    | s:          |             | •                    | •          | •                     |                          |               |             |                           |             |            |            |        |
| Solar g              | ains are o  | calculated  | using sola  | r flux from          | Table 6a a | and associ            | ated equa                | tions to co   | nvert to th | e applicab                | le orientat | ion.       |            |        |
| Orienta              | ation: A    | Access F    | actor       | Area                 |            | Flu                   | x                        | _             | g           | _                         | FF          |            | Gains      |        |
|                      |             | i able 6d   |             | m <sup>2</sup>       |            | Iat                   | Die 6a                   | I             | able 6b     | E                         | adie 60     |            | (VV)       |        |

| North | 0.9x | 0.77 | x   | 1.76 | x | 10.63  | x        | 0.85 | x | 0.7 | =   | 7.72   | (74) |
|-------|------|------|-----|------|---|--------|----------|------|---|-----|-----|--------|------|
| North | 0.9x | 0.77 | x   | 0.64 | x | 10.63  | x        | 0.85 | x | 0.7 | ] = | 2.81   | (74) |
| North | 0.9x | 0.77 | ×   | 1.76 | x | 20.32  | x        | 0.85 | x | 0.7 | ] = | 14.75  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 20.32  | x        | 0.85 | x | 0.7 | =   | 5.36   | (74) |
| North | 0.9x | 0.77 | ×   | 1.76 | x | 34.53  | x        | 0.85 | x | 0.7 | ] = | 25.06  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 34.53  | x        | 0.85 | x | 0.7 | =   | 9.11   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 40.25  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 55.46  | x        | 0.85 | x | 0.7 | =   | 14.64  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 74.72  | x        | 0.85 | x | 0.7 | ] = | 54.22  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | × | 74.72  | x        | 0.85 | x | 0.7 | =   | 19.72  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 58.05  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 79.99  | x        | 0.85 | x | 0.7 | =   | 21.11  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 54.19  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 74.68  | x        | 0.85 | x | 0.7 | =   | 19.71  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 43     | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 59.25  | x        | 0.85 | x | 0.7 | =   | 15.63  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 41.52  | x        | 0.85 | x | 0.7 | =   | 30.13  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | X | 41.52  | x        | 0.85 | х | 0.7 | ] = | 10.96  | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | х | 24.19  | x        | 0.85 | x | 0.7 | =   | 17.55  | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | x | 24.19  | <b>x</b> | 0.85 | x | 0.7 | =   | 6.38   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 13.12  | x        | 0.85 | x | 0.7 | ] = | 9.52   | (74) |
| North | 0.9x | 0.77 | ] × | 0.64 | × | 13.12  | х        | 0.85 | x | 0.7 | =   | 3.46   | (74) |
| North | 0.9x | 0.77 | x   | 1.76 | x | 8.86   | x        | 0.85 | x | 0.7 | =   | 6.43   | (74) |
| North | 0.9x | 0.77 | x   | 0.64 | × | 8.86   | x        | 0.85 | x | 0.7 | =   | 2.34   | (74) |
| East  | 0.9x | 1    | x   | 3.84 | x | 19.64  | x        | 0.76 | x | 0.7 | =   | 27.81  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 38.42  | x        | 0.76 | x | 0.7 | =   | 54.39  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 63.27  | x        | 0.76 | x | 0.7 | =   | 89.58  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 92.28  | x        | 0.76 | x | 0.7 | =   | 130.64 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 113.09 | x        | 0.76 | x | 0.7 | =   | 160.11 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 115.77 | x        | 0.76 | x | 0.7 | ] = | 163.9  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 110.22 | x        | 0.76 | x | 0.7 | =   | 156.04 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 94.68  | x        | 0.76 | x | 0.7 | =   | 134.03 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 73.59  | x        | 0.76 | x | 0.7 | ] = | 104.18 | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 45.59  | x        | 0.76 | x | 0.7 | =   | 64.54  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | × | 24.49  | x        | 0.76 | x | 0.7 | ] = | 34.67  | (76) |
| East  | 0.9x | 1    | x   | 3.84 | x | 16.15  | x        | 0.76 | x | 0.7 | =   | 22.87  | (76) |
| South | 0.9x | 0.77 | x   | 3    | × | 46.75  | x        | 0.76 | x | 0.7 | =   | 51.71  | (78) |
| South | 0.9x | 0.77 | x   | 3    | × | 76.57  | x        | 0.76 | x | 0.7 | =   | 84.69  | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 97.53  | x        | 0.76 | × | 0.7 | ] = | 107.88 | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 110.23 | ×        | 0.76 | x | 0.7 | ] = | 121.92 | (78) |
| South | 0.9x | 0.77 | ×   | 3    | × | 114.87 | x        | 0.76 | x | 0.7 | =   | 127.05 | (78) |

| South             | 0.9x       | 0.77       | ×         |                      | 3                                                                               | x       | 1          | 10.55          | ] × [               |               | 0.76                                  | <b>x</b>            | 0.7           | =         | 122.27 | (78) |
|-------------------|------------|------------|-----------|----------------------|---------------------------------------------------------------------------------|---------|------------|----------------|---------------------|---------------|---------------------------------------|---------------------|---------------|-----------|--------|------|
| South             | 0.9x       | 0.77       | ×         | 3                    | 3                                                                               | x       | 1          | 08.01          | i × [               |               | 0.76                                  |                     | 0.7           | =         | 119.46 | (78) |
| South             | 0.9x       | 0.77       | ×         | 3                    | 3                                                                               | x       | 1          | 04.89          | i × [               |               | 0.76                                  | <br>× [             | 0.7           | =         | 116.02 | (78) |
| South             | 0.9x       | 0.77       | ×         |                      | 3                                                                               | x       | 1          | 01.89          | i . [               |               | 0.76                                  | = .                 | 0.7           | = =       | 112.69 | (78) |
| South             | 0.9x       | 0.77       | ×         |                      | 3                                                                               | x       | 8          | 32.59          | i x F               |               | 0.76                                  |                     | 0.7           | =         | 91.34  | (78) |
| South             | 0.9x       | 0.77       | ×         | 3                    | 3                                                                               | x       | 5          | 5.42           | 1 × [               |               | 0.76                                  |                     | 0.7           | =         | 61.29  | (78) |
| South             | 0.9x       | 0.77       | ×         | 3                    | 3                                                                               | x       |            | 40.4           | i . [               |               | 0.76                                  |                     | 0.7           |           | 44.68  | (78) |
|                   | L          |            |           |                      |                                                                                 |         |            |                |                     |               |                                       | I                   |               |           |        |      |
| Solar g           | gains in   | watts, ca  | alculate  | d for eac            | h month                                                                         | ו       |            |                | (83)m =             | = Sur         | m(74)m                                | (82)m               |               |           |        |      |
| (83)m=            | 90.04      | 159.19     | 231.62    | 307.45               | 361.1                                                                           | 3       | 65.32      | 349.4          | 308.6               | 58 I          | 257.95                                | 179.82              | 108.94        | 76.32     |        | (83) |
| Total g           | jains – i  | nternal a  | ind sola  | r (84)m =            | -<br>= (73)m                                                                    | + (     | 83)m       | , watts        |                     |               |                                       |                     |               |           |        |      |
| (84)m=            | 397.22     | 464.59     | 526.67    | 585.93               | 623                                                                             | 6       | 11.07      | 584.54         | 548.8               | 35            | 506.55                                | 445.16              | 393.5         | 375.05    |        | (84) |
| 7. Me             | an inter   | nal temp   | erature   | (heating             | seasor                                                                          | า)      |            |                |                     |               |                                       |                     |               |           |        |      |
| Temp              | erature    | during h   | eating    | periods i            | n the liv                                                                       | ing     | area       | from Tak       | ole 9, <sup>·</sup> | Th1           | (°C)                                  |                     |               |           | 21     | (85) |
| Utilisa           | ation fac  | tor for g  | ains for  | living are           | ea, h1,n                                                                        | n (s    | ee Ta      | ble 9a)        |                     |               | . ,                                   |                     |               |           |        |      |
|                   | Jan        | Feb        | Mar       | Apr                  | May                                                                             | Ì       | Jun        | Jul            | Au                  | g             | Sep                                   | Oct                 | Nov           | Dec       |        |      |
| (86)m=            | 1          | 1          | 1         | 0.99                 | 0.98                                                                            |         | 0.94       | 0.87           | 0.9                 | <u> </u>      | 0.97                                  | 1                   | 1             | 1         |        | (86) |
| Moan              | intorna    | tompor     | atura in  | living or            | 00 T1 /f                                                                        | مالە    | w sto      | r = 3 to 7     | I<br>7 in Ta        |               | ـــــــــــــــــــــــــــــــــــــ |                     |               |           | 1      |      |
| (87)m=            | 18.88      | 19.03      | 19.32     | 19.74                | 20.17                                                                           |         | 0.57       | 20.8           | 20.7                |               | 20.43                                 | 19.87               | 19.31         | 18.86     |        | (87) |
| _                 |            |            |           |                      |                                                                                 |         |            | · · ·          |                     |               |                                       |                     |               |           | 1      |      |
| l emp             |            | during h   | eating    |                      | n rest of                                                                       | t dw    | elling     | from 1a        | able 9, $10.7$      | $\frac{1}{2}$ | 2 (°C)                                | 40.70               | 40.74         | 40.7      | 1      | (99) |
| (00)11=           | 16.69      | 10.09      | 10.7      | 10.71                | 10.72                                                                           |         | 0.73       | 16.73          | 16.75               |               | 10.72                                 | 10.72               | 10.71         | 10.7      | l      | (00) |
| Utilisa           | ation fac  | tor for g  | ains for  | rest of d            | welling,                                                                        | h2,     | ,m (se     | e Table        | 9a)                 |               |                                       |                     |               |           | 1      |      |
| (89)m=            | 1          | 1          | 1         | 0.99                 | 0.95                                                                            |         | 0.83       | 0.57           | 0.64                | ·             | 0.92                                  | 0.99                | 1             | 1         | J      | (89) |
| Mear              | interna    | l temper   | ature in  | the rest             | of dwel                                                                         | ling    | T2 (f      | ollow ste      | eps 3 t             | to 7          | in Tabl                               | e 9 <mark>c)</mark> |               |           |        |      |
| (90)m=            | 16.08      | 16.3       | 16.73     | 17.35                | 17.97                                                                           |         | 18.5       | 18.7           | 18.6                | 8             | 18.33                                 | 17.54               | 16.72         | 16.07     |        | (90) |
|                   |            |            |           |                      |                                                                                 |         |            |                |                     |               | fl                                    | LA = Liv            | ing area ÷ (4 | 4) =      | 0.55   | (91) |
| Mean              | interna    | l temper   | ature (fe | or the wh            | ole dwe                                                                         | ellin   | g) = fl    | LA × T1        | + (1 –              | - fLA         | () × T2                               |                     |               |           |        |      |
| (92)m=            | 17.62      | 17.8       | 18.15     | 18.66                | 19.18                                                                           | 1       | 9.64       | 19.85          | 19.8                | 2             | 19.48                                 | 18.82               | 18.14         | 17.6      |        | (92) |
| Apply             | adjustr    | nent to t  | he mea    | n interna            | l tempe                                                                         | ratu    | ire fro    | m Table        | 4e, w               | here          | e appro                               | priate              | •             |           | 1      |      |
| (93)m=            | 17.62      | 17.8       | 18.15     | 18.66                | 19.18                                                                           | 1       | 9.64       | 19.85          | 19.8                | 2             | 19.48                                 | 18.82               | 18.14         | 17.6      |        | (93) |
| 8. Sp             | ace hea    | iting requ | uiremen   | t                    |                                                                                 |         |            |                |                     |               |                                       |                     |               |           |        |      |
| Set T             | i to the   | mean int   | ernal te  | mperatu              | re obtai                                                                        | ned     | at ste     | ep 11 of       | Table               | 9b,           | so that                               | t Ti,m=             | (76)m an      | d re-calo | culate |      |
| the ut            | tilisation | tactor fo  | or gains  | using Ta             | able 9a                                                                         | 1       |            |                |                     |               |                                       |                     | 1             |           | 1      |      |
| 1.1411            | Jan        | Feb        | Mar       | Apr                  | Мау                                                                             |         | Jun        | Jul            | Au                  | g             | Sep                                   | Oct                 | Nov           | Dec       | J      |      |
| Utilisa<br>(04)m- |            | tor for g  | ains, nn  | n:                   | 0.06                                                                            | Т       | 0.90       | 0.76           | 0.91                |               | 0.05                                  | 0.00                | 1             | 1         | 1      | (94) |
|                   |            |            | 0.99      | (0.99)               | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |         | 0.69       | 0.76           | 0.01                |               | 0.95                                  | 0.99                |               | I         | J      | (34) |
| (05)m-            |            | 163.4      | VV = (9)  | 4)111 X (0<br>577 77 | 4)111<br>500.28                                                                 | 5       | 16 51      | 111 20         | 111                 | <u> </u>      | 170.06                                | 440 71              | 302 53        | 374 65    | 1      | (95) |
| Montl             | hlv aver   |            | rnal ten  |                      | from T                                                                          | <br>ahl | - 8<br>- 8 | 44.23          |                     | 5             | 475.00                                | 40.71               | 002.00        | 074.00    | l      | (00) |
| (96)m=            | 4.3        | 4.9        | 6.5       | 8.9                  | 11.7                                                                            |         | 14.6       | 16.6           | 16.4                |               | 14.1                                  | 10.6                | 7.1           | 4.2       | 1      | (96) |
| Heat              | loss rate  | e for me   | an inter  | nal temp             | I<br>erature                                                                    | Lm      | 1.W=       | I<br>=[(39)m   | x [(93)             | <br>)m_       | (96)m                                 | 1                   | 1             |           | I      |      |
| (97)m=            | 2288.92    | 2211.97    | 1993.62   | 1651.6               | 1263.19                                                                         | 8       | 42.84      | 544.36         | 571.8               | 33            | 903.47                                | 1388.0              | 9 1872.71     | 2282.38   |        | (97) |
| Spac              | L heatin   | g require  | ement fo  | or each n            | nonth. k                                                                        | Wh      | /mon       | u<br>th = 0.02 | 24 x [(             | <br>97)n      | n – (95)                              | )m] x (             | 41)m          | <u> </u>  | 1      |      |
| (98)m=            | 1407.83    | 1175.04    | 1093.56   | 773.16               | 493.95                                                                          | Τ       | 0          | 0              | 0                   | Í             | 0                                     | 704.85              | , 1065.72     | 1419.35   | 1      |      |
|                   | L          | ·          |           |                      | ·                                                                               | _       |            | ·              | L                   |               |                                       |                     |               |           | 1      |      |

|                                                                                                                   | Total per year (kWh/y                           | ear) = Sum(98) <sub>15,912</sub> | = 8133.46              | (98)    |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|------------------------|---------|
| Space heating requirement in kWh/m²/year                                                                          |                                                 |                                  | 147.88                 | (99)    |
| 9b. Energy requirements – Community heating scheme                                                                |                                                 |                                  |                        |         |
| This part is used for space heating, space cooling or wa<br>Fraction of space heat from secondary/supplementary h | ter heating provided by a com                   | munity scheme.                   | 0                      | (301)   |
| Fraction of space heat from community system $1 - (301)$                                                          |                                                 |                                  | 1                      | (302)   |
| The community scheme may obtain heat from several sources. The o                                                  | , –<br>rocedure allows for CHP and up to fo     | ur other heat sources            | the latter             | (002)   |
| includes boilers, heat pumps, geothermal and waste heat from power<br>Fraction of heat from Community boilers     | stations. See Appendix C.                       |                                  | 1                      | (303a)  |
| Fraction of total space heat from Community boilers                                                               |                                                 | (302) x (303a) =                 | 1                      | (304a)  |
| Factor for control and charging method (Table 4c(3)) for                                                          | community heating system                        |                                  | 1                      | (305)   |
| Distribution loss factor (Table 12c) for community heatin                                                         | g system                                        |                                  | 1.05                   | (306)   |
| Space heating                                                                                                     |                                                 |                                  | kWh/y                  | ear     |
| Annual space heating requirement                                                                                  |                                                 |                                  | 8133.46                |         |
| Space heat from Community boilers                                                                                 | (98) x (304a) x (                               | (305) x (306) =                  | 8540.14                | (307a)  |
| Efficiency of secondary/supplementary heating system in                                                           | n % (from Table 4a or Append                    | dix E)                           | 0                      | (308    |
| Space heating requirement from secondary/supplement                                                               | ary system (98) x (301) x 10                    | 00 ÷ (308) =                     | 0                      | (309)   |
| Water heating                                                                                                     |                                                 |                                  |                        |         |
| Annual water heating requirement                                                                                  |                                                 |                                  | 1875.52                |         |
| If DHW from community scheme:<br>Water heat from Community boilers                                                | (64) x (303a) x (                               | 305) x (306) =                   | 1969.3                 | (310a)  |
| Electricity used for heat distribution                                                                            | 0.01 × [(307a)(307e                             | e) + (310a)(310e)] =             | = 1 <mark>05.09</mark> | (313)   |
| Cooling System Energy Efficiency Ratio                                                                            |                                                 |                                  | 0                      | (314)   |
| Space cooling (if there is a fixed cooling system, if not e                                                       | nter 0) = (107) ÷ (314) =                       | =                                | 0                      | (315)   |
| Electricity for pumps and fans within dwelling (Table 4f):                                                        | ut from outside                                 |                                  |                        | (330a)  |
| warm air beating system fors                                                                                      |                                                 |                                  | 0                      | (330b)  |
| nume for onlor water booting                                                                                      |                                                 |                                  | 0                      | (3300)  |
|                                                                                                                   | (2200) + (2200                                  | ) + (220~)                       | 0                      | (3309)  |
|                                                                                                                   | =(3308) + (3300                                 | ) + (330g) =                     | 0                      |         |
|                                                                                                                   |                                                 |                                  | 259.19                 | (332)   |
| 12b. CO2 Emissions – Community heating scheme                                                                     | Energy                                          | Emission factor                  | r Emissions            |         |
|                                                                                                                   | kWh/year                                        | kg CO2/kWh                       | kg CO2/yea             | ar      |
| CO2 from other sources of space and water heating (no<br>Efficiency of heat source 1 (%)                          | t CHP)<br>CHP using two fuels repeat (363) to ( | 366) for the second fu           | Jel 90                 | (367a)  |
| CO2 associated with heat source 1                                                                                 | [(307b)+(310b)] x 100 ÷ (367b) x                | 0                                | = 2522.2               | 7 (367) |
| Electrical energy for heat distribution                                                                           | [(313) x                                        | 0.52                             | = 54.54                | (372)   |
| Total CO2 associated with community systems                                                                       | (363)(366) + (368)(372)                         | )                                | = 2576.8               | 1 (373) |
| CO2 associated with space heating (secondary)                                                                     | (309) x                                         | 0                                | =0                     | (374)   |

| CO2 associated with water from immer      | sion heater or insta                                                        | ntaneous heater (312) x | 0.22   | =     | 0       | (375) |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------|--------|-------|---------|-------|--|--|--|
| Total CO2 associated with space and v     | vater heating                                                               | (373) + (374) + (375) = |        |       | 2576.81 | (376) |  |  |  |
| CO2 associated with electricity for pum   | D2 associated with electricity for pumps and fans within dwelling $(331)$ x |                         |        |       |         |       |  |  |  |
| CO2 associated with electricity for light | 0.52                                                                        | =                       | 134.52 | (379) |         |       |  |  |  |
| Total CO2, kg/year                        | sum of (376)(382) =                                                         |                         |        |       | 2711.33 | (383) |  |  |  |
| Dwelling CO2 Emission Rate                | (383) ÷ (4) =                                                               |                         |        |       | 49.3    | (384) |  |  |  |
| El rating (section 14)                    |                                                                             |                         |        | 63.67 | (385)   |       |  |  |  |
|                                           |                                                                             |                         |        |       |         |       |  |  |  |


|                                                                                             |                                                                                                        |                             | User D                  | etails:                     |                             |                   |                       |              |                                       |                   |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-------------------|-----------------------|--------------|---------------------------------------|-------------------|
| Assessor Name:<br>Software Name:                                                            | Stroma FSAP 201                                                                                        | 2                           |                         | Stroma<br>Softwa            | a Num<br>ire Ver            | ber:<br>sion:     |                       | Versio       | n: 1.0.3.15                           |                   |
|                                                                                             | landan                                                                                                 | Pro                         | operty A                | Address:                    | Unit 16                     |                   |                       |              |                                       |                   |
| Address :                                                                                   |                                                                                                        |                             |                         |                             |                             |                   |                       |              |                                       |                   |
| Basement                                                                                    |                                                                                                        |                             | Area                    | 1 <b>(m²)</b><br>51         | (1a) x                      | <b>Av. He</b>     | <b>ight(m)</b><br>.17 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>110.67 | <b>)</b><br>(3a)  |
| Total floor area TFA = (1a                                                                  | )+(1b)+(1c)+(1d)+(1e                                                                                   | e)+(1n)                     |                         | 51                          | (4)                         |                   |                       |              |                                       |                   |
| Dwelling volume                                                                             |                                                                                                        |                             |                         |                             | (3a)+(3b)                   | +(3c)+(3c         | d)+(3e)+              | .(3n) =      | 110.67                                | (5)               |
| 2. Ventilation rate:                                                                        |                                                                                                        |                             |                         |                             |                             |                   |                       |              | <u> </u>                              |                   |
| Number of chimneys<br>Number of open flues                                                  | $ \begin{array}{ccc} \text{main} & \text{s} \\ \text{heating} & \text{I} \\ \hline 0 & + \end{array} $ | econdary<br>neating<br>0    | ) + [<br>] + [          | 0<br>0<br>0                 | ] = [                       | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | m <sup>3</sup> per hou                | r<br>(6a)<br>(6b) |
| Number of intermittent fan                                                                  | S                                                                                                      |                             |                         |                             |                             | 2                 | Х ′                   | 10 =         | 20                                    | (7a)              |
| Number of passive vents                                                                     |                                                                                                        |                             |                         |                             |                             | 0                 | x ′                   | 10 =         | 0                                     | (7b)              |
| Number of flueless gas fire                                                                 | es                                                                                                     |                             |                         |                             |                             | 0                 | X 4                   | 40 =         | 0                                     | (7c)              |
|                                                                                             |                                                                                                        |                             |                         |                             |                             |                   |                       | Air ch       | anges <mark>per</mark> ho             | ur                |
| Infiltration due to chimney<br>If a pressurisation test has be                              | s, flues and fans = (6<br>en carried out or is intend                                                  | a)+(6b)+(7a<br>ed, proceed  | )+(7b)+(7<br>to (17), o | (c) =<br>therwise c         | ontinue fro                 | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.18                                  | (8)               |
| Additional infiltration                                                                     |                                                                                                        |                             |                         |                             |                             |                   | [(9)                  | -1]x0.1 =    | 0                                     | (10)              |
| Structural infiltration: 0.2<br>if both types of wall are pre<br>deducting areas of opening | 25 for steel or timber<br>esent, use the value corres<br>gs); if equal user 0.35                       | frame or (<br>sponding to t | ).35 for                | masonr<br>er wall area      | y constr<br>a <i>(after</i> | uction            |                       |              | 0                                     | (11)              |
| If no draught lobby, onto                                                                   | 0.2  (unsea                                                                                            |                             | (Seale                  | u), eise                    |                             |                   |                       |              | 0                                     | (12)              |
| Percentage of windows                                                                       | and doors draught s                                                                                    | tripped                     |                         |                             |                             |                   |                       |              | 0                                     | (13)              |
| Window infiltration                                                                         |                                                                                                        | inpped                      | (                       | 0.25 - [0.2                 | x (14) ÷ 1                  | 00] =             |                       |              | 0                                     | (15)              |
| Infiltration rate                                                                           |                                                                                                        |                             |                         | (8) + (10) -                | + (11) + (1                 | 2) + (13) -       | + (15) =              |              | 0                                     | (16)              |
| Air permeability value, o                                                                   | 50, expressed in cut                                                                                   | oic metres                  | per ho                  | ur per so                   | uare m                      | etre of e         | envelope              | area         | 10                                    | (17)              |
| If based on air permeabilit                                                                 | y value, then (18) = [(1                                                                               | 7) ÷ 20]+(8)                | , otherwis              | se (18) = (*                | 16)                         |                   |                       |              | 0.68                                  | (18)              |
| Air permeability value applies                                                              | if a pressurisation test ha                                                                            | s been done                 | or a deg                | ree air per                 | meability                   | is being u        | sed                   |              |                                       | _                 |
| Number of sides sheltered                                                                   | 1                                                                                                      |                             |                         | (20) - 1 [                  | 0 075 v (1                  | 0)1               |                       |              | 3                                     | (19)              |
| Sheller lactor                                                                              | ag aboltar factor                                                                                      |                             |                         | (20) = 1 - [<br>(21) = (18) | v (20) -                    | 9)] =             |                       |              | 0.78                                  | (20)              |
| Inflitration rate incorporation                                                             | ng sheller lactor                                                                                      | 1                           |                         | (21) = (10)                 | x (20) =                    |                   |                       |              | 0.53                                  | (21)              |
|                                                                                             | Apr Apr Max                                                                                            |                             | lul                     | Aug                         | Son                         | Oct               | Nov                   | Dee          |                                       |                   |
|                                                                                             | vial Api Viay                                                                                          |                             | Jui                     | Aug                         | Sep                         | 001               |                       | Dec          |                                       |                   |
| $(22)_{m=}$                                                                                 |                                                                                                        | 3.8                         | 3.8                     | 37                          | Δ                           | 43                | 15                    | A 7          |                                       |                   |
|                                                                                             | ···· · ··· ···· ·····                                                                                  |                             | 0.0                     | 5.7                         | Ŧ                           | - <del>1</del> .0 | L 7.5                 | <sup></sup>  |                                       |                   |
| Wind Factor (22a)m = (22<br>(22a)m = 1.27 1.25 1                                            | )m ÷ 4<br>.23 1.1 1.08                                                                                 | 0.95                        | 0.95                    | 0.92                        | 1                           | 1.08              | 1.12                  | 1.18         |                                       |                   |
|                                                                                             |                                                                                                        | <u> </u>                    |                         |                             |                             |                   | ļ                     |              | I                                     |                   |

| Adjust               | ed infiltr               | ation rat                      | e (allow                  | ing for sh                | nelter an   | d wind s       | peed) =        | (21a) x        | (22a)m           |                | -                |                    | _          |               |
|----------------------|--------------------------|--------------------------------|---------------------------|---------------------------|-------------|----------------|----------------|----------------|------------------|----------------|------------------|--------------------|------------|---------------|
| ~ ' '                | 0.67                     | 0.66                           | 0.65                      | 0.58                      | 0.57        | 0.5            | 0.5            | 0.49           | 0.53             | 0.57           | 0.59             | 0.62               |            |               |
| Calcul<br>If me      | ate ette                 | <i>ctive air</i><br>al ventila | change                    | rate for t                | he appli    | cable ca       | se             |                |                  |                |                  |                    | 0          | (23a)         |
| lf exh               | aust air h               | eat pump                       | using App                 | endix N, (2               | 3b) = (23a  | a) × Fmv (e    | equation (I    | N5)) , other   | wise (23b        | ) = (23a)      |                  |                    | 0          | (23b)         |
| lf bala              | anced with               | h heat reco                    | overy: effic              | iency in %                | allowing f  | or in-use f    | actor (fron    | n Table 4h)    | ) =              | , , ,          |                  |                    |            | (23c)         |
| a) If                | balance                  | ed mech                        | ,<br>anical ve            | entilation                | with he     | at recove      | erv (MVI       | HR) (24a       | n)m = (22)       | 2b)m + (       | 23b) <b>x</b> [* | 1 – (23c)          | 1001       | (200)         |
| (24a)m=              | 0                        | 0                              |                           | 0                         | 0           | 0              | 0              | 0              | 0                | 0              | 0                | 0                  |            | (24a)         |
| b) If                | balance                  | ed mecha                       | ı<br>anical ve            | entilation                | without     | heat rec       | L<br>Coverv (N | MV) (24b       | )m = (22         | 1<br>2b)m + () | 1<br>23b)        |                    | 1          |               |
| (24b)m=              | 0                        | 0                              | 0                         | 0                         | 0           | 0              | 0              | 0              | 0                | 0              | 0                | 0                  | ]          | (24b)         |
| c) If                | whole h                  | iouse ex                       | tract ver                 | ntilation of              | or positiv  | ve input v     | ventilatio     | on from c      | outside          | !              |                  |                    | 1          |               |
| í                    | if (22b)r                | n < 0.5 ×                      | (23b), t                  | then (24d                 | c) = (23b   | ); otherv      | wise (24       | c) = (22b      | o) m + 0.        | 5 × (23b       | ))               |                    |            |               |
| (24c)m=              | 0                        | 0                              | 0                         | 0                         | 0           | 0              | 0              | 0              | 0                | 0              | 0                | 0                  |            | (24c)         |
| d) If                | natural                  | ventilatio                     | on or wh                  | ole hous                  | e positiv   | /e input       | ventilatio     | on from I      | oft              |                |                  |                    |            |               |
| (0.4.1)              | if (22b)r                | n = 1, th                      | en (24d)                  | m = (22k)                 | o)m othe    | erwise (2      | 4d)m =         | 0.5 + [(2      | 2b)m² x          | 0.5]           |                  | 0.00               | 1          | (244)         |
| (24d)m=              | 0.73                     | 0.72                           | 0.71                      | 0.67                      | 0.66        | 0.63           | 0.63           | 0.62           | 0.64             | 0.66           | 0.68             | 0.69               | J          | (240)         |
| Effe                 | ctive air                | change                         | rate - er                 | nter (24a                 | ) or (24t   | o) or (240     | c) or (24      | d) in box      | (25)             | 0.00           | 0.00             | 0.00               | 1          | (25)          |
| (25)m=               | 0.73                     | 0.72                           | 0.71                      | 0.67                      | 0.66        | 0.63           | 0.63           | 0.62           | 0.64             | 0.66           | 0.68             | 0.69               |            | (25)          |
| 3. He                | at l <mark>osse</mark>   | s and he                       | eat loss                  | paramete                  | er:         |                |                |                |                  |                |                  |                    |            |               |
| ELEN                 |                          | Gros<br>area                   | ss<br>(m²)                | Openin<br>m               | gs<br>2     | Net Ar<br>A ,r | ea<br>n²       | U-valı<br>W/m2 | le<br>K          | A X U<br>(W/I  | K)               | k-value<br>kJ/m²·l | ¥<br>K     | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                          |                                |                           |                           |             | 1.9            | x              | 1.4            | = [              | 2.66           |                  |                    |            | (26)          |
| Win <mark>do</mark>  | <mark>ws</mark> Type     | e 1                            |                           |                           |             | 4.8            | x1             | /[1/( 1.6 )+   | 0.04] =          | 7.22           |                  |                    |            | (27)          |
| Windo                | ws Type                  | e 2                            |                           |                           |             | 4.16           | <b>x</b> 1     | /[1/( 4.8 )+   | 0.04] =          | 16.75          | F                |                    |            | (27)          |
| Floor                |                          |                                |                           |                           |             | 51             | ×              | 0.99           | =                | 50.49          |                  |                    |            | (28)          |
| Walls <sup>-</sup>   | Type1                    | 16.1                           | 4                         | 4.8                       |             | 11.34          | ×              | 2.1            |                  | 23.81          |                  |                    | $\exists$  | (29)          |
| Walls <sup>-</sup>   | Type2                    | 16.                            | 1                         | 6.06                      |             | 10.04          | ×              | 2.1            |                  | 21.08          |                  |                    | $\dashv$   | (29)          |
| Total a              | area of e                | elements                       | , m²                      |                           |             | 83.24          |                |                | เ                |                | L                |                    |            | (31)          |
| Partv v              | wall                     |                                |                           |                           |             | 33.3           | ×              | 0              | = [              | 0              |                  |                    |            | (32)          |
| * for win            | dows and                 | l roof wind                    | ows, use e                | effective wi              | ndow U-va   | alue calcul    | ated using     | formula 1,     | L<br>/[(1/U-valu | ie)+0.04] a    | L<br>as given in | paragraph          | L<br>1 3.2 | (/            |
| ** inclua            | le the area              | as on both                     | sides of in               | nternal wall              | ls and par  | titions        |                |                |                  |                |                  |                    |            |               |
| Fabric               | heat los                 | ss, W/K :                      | = S (A x                  | U)                        |             |                |                | (26)(30)       | + (32) =         |                |                  |                    | 122.02     | (33)          |
| Heat c               | apacity                  | Cm = S(                        | (Axk)                     |                           |             |                |                |                | ((28)            | (30) + (32     | 2) + (32a).      | (32e) =            | 0          | (34)          |
| Therm                | al mass                  | parame                         | ter (TMI                  | ⊃ = Cm ÷                  | - TFA) ir   | n kJ/m²K       |                |                | Indica           | tive Value     | : High           |                    | 450        | (35)          |
| For desi<br>can be ι | ign asses:<br>used inste | sments wh<br>ead of a de       | ere the de<br>tailed calc | etails of the<br>ulation. | construct   | ion are not    | t known pi     | ecisely the    | indicative       | e values of    | TMP in Ta        | able 1f            |            |               |
| Therm                | al bridg                 | es : S (L                      | x Y) cal                  | culated u                 | using Ap    | pendix ł       | <              |                |                  |                |                  |                    | 12.8       | (36)          |
| if details           | of therma                | al bridging                    | are not kr                | 10wn (36) =               | = 0.15 x (3 | 1)             |                |                | (00)             | (0.0)          |                  |                    |            |               |
|                      | abric ne                 | atioss                         |                           | 1                         |             |                |                |                | (33) +           | (36) =         |                  |                    | 134.82     | (37)          |
| ventila              |                          |                                |                           |                           | /           | 1              | 1. 1           | Δ              | (38)m            | = 0.33 × (     | 25)m x (5)       | Det                | 1          |               |
| (29)~                | Jan                      |                                |                           | Apr                       | May         | Jun            | JUI            | Aug            | Sep              | UCt            | 1NOV             | Dec                | {          | (38)          |
| (30)11)=             | 20.02                    | 20.2                           | 25.69                     | 24.41                     | 24.13       | 22.00          | 22.00          | 22.01          | 23.34            | 24.13          | 24.09            | 20.28              | I          | (00)          |
| Heat tr              | ranster of               |                                | nt, W/K                   | 450.00                    | 450.05      | 457.00         | 457.00         | 457.40         | (39)m            | = (37) + (37)  | 38)m             | 400.00             | 1          |               |
| (ວອ)ເມ=              | 101.34                   | 101.02                         | 100.7                     | 159.23                    | 158.95      | 00.101         | 137.00         | 157.43         | 138.16           |                | Sum(30)          | 100.09             | 159.23     | (39)          |
|                      |                          |                                |                           |                           |             |                |                |                |                  | ugu -          |                  |                    | 100.20     | (30)          |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | /m²K                                      |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |          |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|----------|
| (40)m=                         | 3.16                            | 3.16                                   | 3.15                                 | 3.12                                      | 3.12                                     | 3.09                                  | 3.09                         | 3.09                   | 3.1                   | 3.12                      | 3.13                                  | 3.14     |            |          |
| L                              | r of day                        |                                        | I                                    | l <u> </u>                                |                                          |                                       |                              |                        | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.12       | (40)     |
|                                | .lan                            | Feb                                    | Mar                                  | Anr                                       | May                                      | Jun                                   | Jul                          | Aug                    | Sen                   | Oct                       | Nov                                   | Dec      |            |          |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                        | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41)     |
| Ϋ́ L                           |                                 |                                        |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | l          |          |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                  |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |          |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | ıpancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13                   | 1.<br>.9)                             | 72       |            | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br>r day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]          | (43)     |
| [                              | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |          |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea                         | ach month                                 | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           |                                       |          | 1          |          |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                     | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            | <b>—</b> |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                                | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44)     |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                     | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |            | _        |
| lf instanta                    | aneous w                        | ater heatii                            | ng at point                          | of use (no                                | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67    | (45)     |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14. <mark>45</mark>                       | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46)     |
| Storage                        | e volum                         | e (litres)                             | includir                             | ng any so                                 | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      | 1          | (47)     |
| lf comm                        | nunitv h                        | eating a                               | and no ta                            | ink in dw                                 | vellina. e                               | nter 110                              | litres in                    | (47)                   |                       |                           |                                       | 100      |            | ()       |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                               | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | (47)                                  |          |            |          |
| Water s                        | storage                         | loss:                                  |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          |            |          |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                                 | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48)     |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49)     |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/y€                                 | ear                                      |                                       | lun numu                     | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50)     |
| Hot wat                        | ter stor                        | age loss                               | factor fr                            | om Tabl                                   | e 2 (kW                                  | h/litre/da                            | whown.<br>ay)                |                        |                       |                           | 0.                                    | 02       | ]          | (51)     |
| If comm<br>Volume              | nunity n<br>factor              | from Ta                                | iee secti<br>hle 2a                  | on 4.3                                    |                                          |                                       |                              |                        |                       |                           | 1                                     | 02       | 1          | (52)     |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (52)     |
| Enerav                         | lost fro                        | m water                                | . storage                            | kWh/ve                                    | ar                                       |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 02       | ]          | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                             | 55)                                  | ,, , .                                    |                                          |                                       |                              |                        | ( (- / (              | ,                         | 1.                                    | 03       |            | (55)     |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                  | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1          |          |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56)     |
| If cylinde                     | r contains                      | s dedicate                             | l<br>d solar sto                     | rage, (57)ı                               | m = (56)m                                | x [(50) – (                           | <b>I</b><br>H11)] ÷ (5       | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | l<br>lix H |          |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    | ]          | (57)     |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                  | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        | ]          | (58)     |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                  | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |          |
| mod)<br>ר                      | ified by                        | factor f                               | rom Tab                              | le H5 if t                                | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | ostat)                                |          | 1          |          |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                     | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59)     |

| Combi    | loss ca   | alculated                | for eac   | h month      | (61)m =    | (60) ÷     | 365 × (41        | )m             |               |                     |                  |             |               |      |
|----------|-----------|--------------------------|-----------|--------------|------------|------------|------------------|----------------|---------------|---------------------|------------------|-------------|---------------|------|
| (61)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0                | 0              | 0             | 0                   | 0                | 0           |               | (61) |
| Total h  | eat req   | uired for                | water h   | neating c    | alculated  | l for e    | ach month        | (62)m =        | = 0.85 ×      | (45)m +             | (46)m +          | (57)m +     | (59)m + (61)m |      |
| (62)m=   | 177.69    | 156.99                   | 165.75    | 149.81       | 147.69     | 133.2      | 4 129.18         | 140.08         | 139.31        | 155.28              | 162.66           | 173.82      |               | (62) |
| Solar DH | W input   | calculated               | using Ap  | pendix G o   | r Appendix | H (neg     | ative quantit    | y) (enter '(   | )' if no sola | r contribu          | tion to wate     | er heating) |               |      |
| (add a   | dditiona  | al lines if              | FGHRS     | S and/or     | WWHRS      | appli      | es, see Ap       | pendix         | G)            |                     |                  |             | _             |      |
| (63)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0                | 0              | 0             | 0                   | 0                | 0           | ]             | (63) |
| Output   | from w    | ater hea                 | ter       |              |            |            |                  |                |               |                     |                  |             |               |      |
| (64)m=   | 177.69    | 156.99                   | 165.75    | 149.81       | 147.69     | 133.2      | 4 129.18         | 140.08         | 139.31        | 155.28              | 162.66           | 173.82      |               |      |
|          |           |                          |           |              | -          |            | -                | Out            | put from w    | ater heate          | er (annual)₁     | 12          | 1831.51       | (64) |
| Heat g   | ains fro  | m water                  | heating   | , kWh/m      | onth 0.2   | 5 ´ [0.8   | 35 × (45)m       | ı + (61)r      | n] + 0.8 x    | x [(46)m            | + (57)m          | + (59)m     | ]             |      |
| (65)m=   | 59.31     | 52.41                    | 55.34     | 50.03        | 49.34      | 44.5       | 3 43.18          | 46.81          | 46.54         | 51.86               | 54.31            | 58.03       |               | (65) |
| inclu    | de (57)   | m in calo                | culation  | of (65)m     | only if c  | ylinde     | r is in the      | dwelling       | or hot w      | ater is f           | rom com          | munity h    | neating       |      |
| 5. Int   | ernal g   | ains (see                | e Table   | 5 and 5a     | ):         |            |                  |                |               |                     |                  |             |               |      |
| Metabo   | olic dair | ns (Table                | e 5). Wa  | itts         |            |            |                  |                |               |                     |                  |             |               |      |
|          | Jan       | Feb                      | Mar       | Apr          | May        | Jur        | n Jul            | Aug            | Sep           | Oct                 | Nov              | Dec         |               |      |
| (66)m=   | 85.98     | 85.98                    | 85.98     | 85.98        | 85.98      | 85.9       | 3 85.98          | 85.98          | 85.98         | 8 <mark>5.98</mark> | 85.98            | 85.98       |               | (66) |
| Lightin  | g gains   | (calcula                 | ted in A  | ppendix      | L, equat   | ion L9     | or L9a), a       | lso see        | Table 5       |                     |                  |             |               |      |
| (67)m=   | 13.58     | 12.06                    | 9.81      | 7.42         | 5.55       | 4.69       | 5.06             | 6.58           | 8.83          | 11.21               | 13.09            | 13.95       |               | (67) |
| Applia   | nces ga   | ains (ca <mark>lc</mark> | ulated i  | n Appen      | dix L, ea  | uation     | L13 or L1        | 3a), also      | o see Ta      | ble 5               |                  |             |               |      |
| (68)m=   | 149.83    | 151.39                   | 147.47    | 139.13       | 128.6      | 118.       | 7 112.09         | 110.54         | 114.45        | 122.8               | 133.32           | 143.22      | 1             | (68) |
| Cookin   | g gains   | s (calcula               | ted in A  | ,<br>ppendix | L, equat   | ion L1     | 5 or L15a        | ), also s      | ee Table      | 9 5                 |                  |             | ,             |      |
| (69)m=   | 31.6      | 31.6                     | 31.6      | 31.6         | 31.6       | 31.6       | 31.6             | 31.6           | 31.6          | 31.6                | 31.6             | 31.6        | 1             | (69) |
| Pumps    | and fa    | ns gains                 | (Table    | 5a)          |            |            |                  |                |               |                     |                  |             |               |      |
| (70)m=   | 0         | 0                        | 0         | 0            | 0          | 0          | 0                | 0              | 0             | 0                   | 0                | 0           | 1             | (70) |
| Losses   | se.g. e   | vaporatio                | n (nega   | ative valu   | ies) (Tab  | le 5)      |                  | Į              | 1             | 1                   | 1                | Į           | 1             |      |
| (71)m=   | -68.78    | -68.78                   | -68.78    | -68.78       | -68.78     | ,<br>-68.7 | 8 -68.78         | -68.78         | -68.78        | -68.78              | -68.78           | -68.78      | ]             | (71) |
| Water    | heating   | u dains (T               | able 5)   | 1            |            |            |                  |                | 1             | ļ                   |                  |             | 1             |      |
| (72)m=   | 79.72     | 77.99                    | 74.39     | 69.49        | 66.32      | 61.84      | 4 58.04          | 62.91          | 64.64         | 69.71               | 75.43            | 77.99       | ]             | (72) |
| Total i  | nterna    | l gains =                | I         | 1            |            | I (        | <br>66)m + (67)n | ı<br>1 + (68)m | + (69)m +     | (70)m + (7          | 1<br>71)m + (72) | l<br>Im     | 1             |      |
| (73)m=   | 291.92    | 290.22                   | 280.45    | 264.84       | 249.26     | 234.0      | 2 223.99         | 228.82         | 236.72        | 252.51              | 270.63           | 283.96      | ]             | (73) |
| 6. Sol   | lar gain  | s:                       |           | 1            | <b>I</b>   |            |                  | 1              |               |                     | 1                |             |               |      |
| Solar g  | ains are  | calculated               | using sol | ar flux from | Table 6a   | and ass    | ociated equa     | ations to c    | onvert to th  | ne applica          | ble orientat     | ion.        |               |      |
| Orienta  | ation:    | Access F                 | actor     | Area         | l          | F          | lux              |                | g_            |                     | FF               |             | Gains         |      |
|          |           | Table 6d                 |           | m²           |            | ٦          | able 6a          | ٦              | Table 6b      | Т                   | able 6c          |             | (VV)          |      |
| North    | 0.9x      | 0.77                     | )         | 4.           | 16         | ×          | 10.63            | x 🗌            | 0.85          | x                   | 0.7              | =           | 18.24         | (74) |
| North    | 0.9x      | 0.77                     | >         | 4.           | 16         | x          | 20.32            | ) x [          | 0.85          | ×                   | 0.7              | =           | 34.86         | (74) |
| North    | 0.9x      | 0.77                     | >         | 4.           | 16         | ×          | 34.53            | ) x [          | 0.85          | ×                   | 0.7              | =           | 59.23         | (74) |
| North    | 0.9x      | 0.77                     | )         | 4.           | 16         | x          | 55.46            | ) x [          | 0.85          | × [                 | 0.7              | =           | 95.14         | (74) |
| North    | 0.9x      | 0.77                     | )         | 4.           | 16         | ×          | 74.72            | ) × [          | 0.85          | × [                 | 0.7              | =           | 128.16        | (74) |

| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         | 7       | 9.99             | x      | 0.85           | x                    | 0.7           | =      | 137.2  | (74) |
|---------|------------------------|--------------------------|----------|----------|-----------------|-----------|---------|------------------|--------|----------------|----------------------|---------------|--------|--------|------|
| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         | 7       | 4.68             | x      | 0.85           | x                    | 0.7           | =      | 128.09 | (74) |
| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         | 5       | 9.25             | x      | 0.85           | x                    | 0.7           | =      | 101.63 | (74) |
| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         | 4       | 1.52             | x      | 0.85           | x                    | 0.7           | =      | 71.21  | (74) |
| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         | 2       | 4.19             | x      | 0.85           | x                    | 0.7           | =      | 41.49  | (74) |
| North   | 0.9x                   | 0.77                     | x        | Γ        | 4.16            | x         | 1       | 3.12             | x      | 0.85           | x                    | 0.7           | =      | 22.5   | (74) |
| North   | 0.9x                   | 0.77                     | x        |          | 4.16            | x         |         | 8.86             | x      | 0.85           | x                    | 0.7           | =      | 15.21  | (74) |
| South   | 0.9x                   | 0.77                     | x        | Γ        | 4.8             | x         | 4       | 6.75             | x      | 0.76           | x                    | 0.7           | =      | 82.73  | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 7       | 6.57             | x      | 0.76           | x                    | 0.7           | =      | 135.5  | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | g       | 7.53             | x      | 0.76           | x                    | 0.7           | =      | 172.6  | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 1       | 10.23            | x      | 0.76           | x                    | 0.7           | =      | 195.08 | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 1       | 14.87            | x      | 0.76           | x                    | 0.7           | =      | 203.28 | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 1       | 10.55            | x      | 0.76           | x                    | 0.7           | =      | 195.63 | (78) |
| South   | 0.9x                   | 0.77                     | x        | Γ        | 4.8             | x         | 1       | 08.01            | x      | 0.76           | x                    | 0.7           | =      | 191.14 | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 1       | 04.89            | x      | 0.76           | x                    | 0.7           | =      | 185.63 | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 1       | 01.89            | x      | 0.76           | x                    | 0.7           | =      | 180.3  | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 6       | 2.59             | x      | 0.76           | x                    | 0.7           | =      | 146.15 | (78) |
| South   | 0.9x                   | 0.77                     | x        |          | 4.8             | x         | 5       | 5.42             | x      | 0.76           | x                    | 0.7           | =      | 98.07  | (78) |
| South   | 0.9x                   | 0.77                     | ×        | Γ        | 4.8             | x         |         | 40.4             | x      | 0.76           | x                    | 0.7           |        | 71.49  | (78) |
|         |                        |                          |          |          |                 |           |         |                  |        |                |                      |               |        |        |      |
| Solar g | <mark>gain</mark> s in | watts, <mark>ca</mark> l | lculateo | d fo     | or each mont    | :h        |         |                  | (83)m  | n = Sum(74)m . | ( <mark>8</mark> 2)m |               |        | ,      |      |
| (83)m=  | 100.97                 | 170.35                   | 231.83   | 29       | 90.21 331.44    | 1 3       | 32.83   | 319.24           | 287    | .25 251.52     | 187.6                | 4 120.57      | 86.7   |        | (83) |
| Total ( | gains – i              | nternal ar               | nd sola  | r (8     | (73)m = (73)m   | ו + (<br> | 83)m    | , watts          | -      |                | -                    | _             | i      |        |      |
| (84)m=  | 392.89                 | 460.58                   | 512.28   | 55       | 55.05 580.7     |           | 66.85   | 543.22           | 516    | .07 488.24     | 440.1                | 5 391.2       | 370.66 |        | (84) |
| 7. Me   | ean inter              | nal tempe                | erature  | (he      | eating seaso    | n)        |         |                  |        |                |                      |               |        |        |      |
| Temp    | perature               | during he                | eating p | beri     | iods in the liv | ving      | area    | from Tab         | ble 9  | , Th1 (°C)     |                      |               |        | 21     | (85) |
| Utilis  | ation fac              | tor for ga               | ins for  | livir    | ng area, h1,    | m (s      | see Ta  | ble 9a)          |        |                |                      |               |        | 7      |      |
|         | Jan                    | Feb                      | Mar      |          | Apr May         | /         | Jun     | Jul              | A      | ug Sep         | Oct                  | Nov           | Dec    |        |      |
| (86)m=  | 1                      | 1                        | 1        | (        | 0.99 0.98       |           | 0.94    | 0.87             | 0.     | 9 0.97         | 0.99                 | 1             | 1      |        | (86) |
| Mear    | n interna              | l tempera                | iture in | livi     | ing area T1     | follo     | ow ste  | ps 3 to 7        | 7 in T | able 9c)       | -                    |               |        | _      |      |
| (87)m=  | 18.88                  | 19.03                    | 19.32    | 1        | 19.73 20.16     | :         | 20.56   | 20.8             | 20.    | 76 20.43       | 19.88                | 19.31         | 18.86  |        | (87) |
| Tem     | perature               | during he                | eating p | beri     | iods in rest c  | of dv     | velling | from Ta          | able 9 | 9, Th2 (°C)    |                      |               |        |        |      |
| (88)m=  | 18.67                  | 18.67                    | 18.68    | 1        | 18.69 18.69     |           | 18.7    | 18.7             | 18.    | 71 18.7        | 18.69                | 18.69         | 18.68  | ]      | (88) |
| Utilis  | ation fac              | tor for ga               | ins for  | res      | st of dwelling  | . h2      | .m (se  | e Table          | 9a)    |                |                      |               |        | -      |      |
| (89)m=  | 1                      | 1                        | 0.99     | (        | 0.99 0.95       | T         | 0.84    | 0.57             | 0.6    | 63 0.91        | 0.99                 | 1             | 1      | ]      | (89) |
| Moor    |                        | l tempera                | itura in | the      | rest of dwe     | lling     | T2 (f   | l<br>ollow sta   |        | to 7 in Tabl   |                      | <b>I</b>      | ļ      | 1      |      |
| (90)m=  | 16.07                  | 16.3                     | 16.72    | 1        | 17.32 17.94     |           | 18.47   | 18.67            | 18.    | 66 18.32       | 17.54                | 16.71         | 16.05  | 1      | (90) |
| . /     |                        |                          |          | <u> </u> |                 |           |         | ļ                |        |                | LA = Liv             | /ing area ÷ ( | 4) =   | 0.55   | (91) |
| Maar    | intorna                | Itomnore                 | turo /f  | \r 4L    | ho whole du     |           | (a) - 4 | ΛΤ4              | . /4   |                |                      |               |        |        |      |
| (92)m=  | 17.63                  |                          | 18.16    |          | 18.66 19.17     |           | 19,63   | LA × II<br>19.85 | +(1    | - ILA) × IZ    | 18.84                | 18 16         | 17.61  | 1      | (92) |
|         |                        | , I                      |          |          |                 |           |         |                  |        |                |                      | 1 10.10       |        |        | ( /  |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                     | 17.63                     | 17.82                  | 18.16                 | 18.66                    | 19.17                   | 19.63                 | 19.85         | 19.82      | 19.49       | 18.84       | 18.16                  | 17.61                                    |           | (93)                      |
|----------------------------|---------------------------|------------------------|-----------------------|--------------------------|-------------------------|-----------------------|---------------|------------|-------------|-------------|------------------------|------------------------------------------|-----------|---------------------------|
| 8. Spa                     | ace hea                   | ting requ              | uirement              |                          |                         |                       |               |            |             |             |                        |                                          |           |                           |
| Set Ti<br>the ut           | i to the r<br>ilisation   | nean int<br>factor fo  | ernal ter<br>or gains | nperatur<br>using Ta     | e obtain<br>ble 9a      | ed at ste             | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(    | 76)m an                | d re-calc                                | ulate     |                           |
|                            | Jan                       | Feb                    | Mar                   | Apr                      | May                     | Jun                   | Jul           | Aug        | Sep         | Oct         | Nov                    | Dec                                      |           |                           |
| Utilisa                    | ation fac                 | tor for g              | ains, hm              | :                        |                         |                       |               |            |             |             |                        |                                          |           |                           |
| (94)m=                     | 1                         | 1                      | 0.99                  | 0.99                     | 0.96                    | 0.9                   | 0.76          | 0.8        | 0.94        | 0.99        | 1                      | 1                                        |           | (94)                      |
| Usefu                      | ıl gains,                 | hmGm ,                 | , W = (94             | 4)m x (84                | 4)m                     |                       |               |            |             |             | -                      |                                          |           |                           |
| (95)m=                     | 392.23                    | 459.09                 | 508.98                | 546.81                   | 558.48                  | 507.93                | 414.81        | 414.87     | 459.38      | 434.79      | 389.98                 | 370.16                                   |           | (95)                      |
| Month                      | nly avera                 | age exte               | rnal tem              | perature                 | from Ta                 | able 8                |               |            |             |             |                        |                                          |           |                           |
| (96)m=                     | 4.3                       | 4.9                    | 6.5                   | 8.9                      | 11.7                    | 14.6                  | 16.6          | 16.4       | 14.1        | 10.6        | 7.1                    | 4.2                                      |           | (96)                      |
| Heat                       | loss rate                 | e for mea              | an intern             | al tempe                 | erature,                | _m , W =              | =[(39)m :     | x [(93)m   | – (96)m     | ]           |                        |                                          |           |                           |
| (97)m=                     | 2150.66                   | 2079.93                | 1874.55               | 1553.44                  | 1187.39                 | 793.04                | 512.58        | 538.88     | 852.2       | 1309.03     | 1763.48                | 2146.51                                  |           | (97)                      |
| Space                      | e heating                 | g require              | ement fo              | r each m                 | nonth, k\               | Wh/mont               | th = 0.02     | 24 x [(97) | )m – (95    | )m] x (4    | 1)m                    |                                          |           |                           |
| (98)m=                     | 1308.27                   | 1089.21                | 1015.98               | 724.77                   | 467.91                  | 0                     | 0             | 0          | 0           | 650.43      | 988.92                 | 1321.61                                  |           | -                         |
|                            |                           |                        |                       |                          |                         |                       |               | Tota       | l per year  | (kWh/yeai   | <sup>•</sup> ) = Sum(9 | 8)15,912 =                               | 7567.09   | (98)                      |
| Space                      | e heating                 | g require              | ement in              | kWh/m²                   | /year                   |                       |               |            |             |             |                        |                                          | 148.37    | (99)                      |
| 9b. En                     | erav rea                  | uiremer                | nts – Cor             | nmunitv                  | heating                 | scheme                | 1             |            |             |             |                        | L. L. L. L. L. L. L. L. L. L. L. L. L. L |           | 7                         |
| This pa                    | art is use                | ed for sp              | ace hea               | ting, spa                | ace cooli               | ng or wa              | ater heat     | ing prov   | ided by     | a comm      | unity sch              | neme.                                    |           | 1/22.45                   |
| Fractio                    | n of spa                  | ice neat               | trom se               | condary/                 | suppien                 | ientary i             | neating (     | Table 1    | 1) 'U' If n | one         |                        |                                          | 0         | (301)                     |
| Fractio                    | n of spa                  | ice heat               | from co               | <mark>mmu</mark> nity    | system                  | 1 - (301              | 1) =          |            |             |             |                        |                                          | 1         | (302)                     |
| The com                    | nmunity so                | heme may               | y obtain he           | eat from se              | everal sour             | ces. The p            | procedure .   | allows for | CHP and u   | up to four  | other heat             | sources; tl                              | ne latter |                           |
| <i>includes</i><br>Fractio | boilers, h<br>n of hea    | eat pumps<br>at from C | s, geotherr<br>Commun | nal and wa<br>ity boiler | aste heat fi<br>S       | rom powei             | r stations.   | See Apper  | ndix C.     |             |                        |                                          | 1         | (303a)                    |
| Fractio                    | n of tota                 | al space               | heat fro              | m Comn                   | nunity bo               | oilers                |               |            |             | (3          | 02) x (303             | a) =                                     | 1         | (304a)                    |
| Factor                     | for cont                  | rol and o              | charging              | method                   | (Table 4                | 4c(3)) fo             | r commu       | unity hea  | ting sys    | tem         |                        |                                          | 1         | (305)                     |
| Distrib                    | ution los                 | s factor               | (Table 1              | 2c) for c                | commun                  | ity heatir            | ng syste      | m          |             |             |                        | [                                        | 1.05      | (306)                     |
| Space                      | heating                   | 3                      |                       |                          |                         |                       |               |            |             |             |                        | _                                        | kWh/year  | _                         |
| Annua                      | space                     | heating                | requirem              | nent                     |                         |                       |               |            |             |             |                        |                                          | 7567.09   | ]                         |
| Space                      | heat fro                  | m Comr                 | nunity b              | oilers                   |                         |                       |               |            | (98) x (30  | 04a) x (30  | 5) x (306) =           | -                                        | 7945.45   | (307a)                    |
| Efficier                   | ncy of se                 | econdary               | //supple              | mentary                  | heating                 | system                | in % (fro     | om Table   | 4a or A     | ppendix     | E)                     |                                          | 0         | (308                      |
| Space                      | heating                   | requirer               | ment froi             | m secon                  | dary/sup                | plemen                | tary syst     | tem        | (98) x (30  | 01) x 100 - | ÷ (308) =              |                                          | 0         | (309)                     |
| <b>Water</b><br>Annual     | <b>heating</b><br>water h | l<br>neating r         | equirem               | ent                      |                         |                       |               |            |             |             |                        | [                                        | 1831.51   | 1                         |
| lf DHW<br>Water            | / from co<br>heat fro     | ommunit<br>m Comn      | ty schem              | ne:<br>pilers            |                         |                       |               |            | (64) x (30  | 03a) x (30  | 5) x (306) :           | =                                        | 1923.08   | ]<br>(310a)               |
| Electric                   | city used                 | d for hea              | t distribu            | ution                    |                         |                       |               | 0.01       | × [(307a).  | (307e) +    | (310a)(                | [310e)] =                                | 98.69     | 」 <sup>、</sup> (<br>(313) |
| Cooline                    | g Syster                  | n Energ                | y Efficier            | ncy Ratio                | C                       |                       |               |            | /           |             |                        | · · · ·                                  | 0         | (314)                     |
| Space                      | cooling                   | (if there              | is a fixe             | d cooling                | g system                | n, if not e           | enter 0)      |            | = (107) ÷   | (314) =     |                        |                                          | 0         | (315)                     |
| Electric                   | city for p<br>nical ve    | oumps aintilation      | nd fans v<br>- balanc | within dw<br>ed, extra   | velling (1<br>act or po | able 4f)<br>sitive in | :<br>put from | outside    |             |             |                        | ·                                        | 0         | (330a)                    |

| warm air heating system fans                                                                                         |                             |                               |                | 0                | (330b) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|----------------|------------------|--------|
| pump for solar water heating                                                                                         |                             |                               |                | 0                | (330g) |
| Total electricity for the above, kWh/year                                                                            | =(330a) + (330b)            | ) + (330g) =                  |                | 0                | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                       |                             |                               | 2              | 39.76            | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                        |                             |                               |                |                  |        |
|                                                                                                                      | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emiss<br>kg CC | sions<br>)2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using | two fuels repeat (363) to ( | 366) for the second fu        | el             | 90               | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                         | 310b)] x 100 ÷ (367b) x     | 0                             | =              | 2368.45          | (367)  |
| Electrical energy for heat distribution [(                                                                           | 313) x                      | 0.52                          | =              | 51.22            | (372)  |
| Total CO2 associated with community systems (3                                                                       | 363)(366) + (368)(372)      |                               | =              | 2419.67          | (373)  |
| CO2 associated with space heating (secondary) (3                                                                     | 309) x                      | 0                             | =              | 0                | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                       | ous heater (312) x          | 0.22                          | =              | 0                | (375)  |
| Total CO2 associated with space and water heating (3                                                                 | 373) + (374) + (375) =      |                               |                | 2419.67          | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                    | (331)) x                    | 0.52                          | =              | 0                | (378)  |
| CO2 associated with electricity for lighting (3                                                                      | 332))) x                    | 0.52                          | =              | 124.43           | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                               |                             |                               |                | 2544.1           | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                             |                             |                               |                | 49.88            | (384)  |
| El rating (section 14)                                                                                               |                             |                               |                | 64.49            | (385)  |

|                                                                                         |                                                                                                                    | Use                             | r Details:           |                   |                   |                       |              |                                       |                     |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------|-------------------|-----------------------|--------------|---------------------------------------|---------------------|
| Assessor Name:<br>Software Name:                                                        | Stroma FSAP 2012                                                                                                   | 2                               | Stroma<br>Softwa     | a Numi<br>Ire Ver | ber:<br>sion:     |                       | Versio       | n: 1.0.3.15                           |                     |
|                                                                                         | leveleve                                                                                                           | Proper                          | ty Address:          | Unit 17           |                   |                       |              |                                       |                     |
| Address :                                                                               | , london                                                                                                           |                                 |                      |                   |                   |                       |              |                                       |                     |
| Basement                                                                                | 1510115.                                                                                                           | A                               | <b>rea(m²)</b><br>51 | (1a) x            | <b>Av. He</b>     | <b>ight(m)</b><br>.18 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>111.18 | <b>)</b><br>(3a)    |
| Total floor area TFA = (1a                                                              | ı)+(1b)+(1c)+(1d)+(1e)                                                                                             | +(1n)                           | 51                   | (4)               |                   |                       |              |                                       |                     |
| Dwelling volume                                                                         |                                                                                                                    |                                 |                      | (3a)+(3b)         | +(3c)+(3d         | l)+(3e)+              | .(3n) =      | 111.18                                | (5)                 |
| 2. Ventilation rate:                                                                    | -                                                                                                                  |                                 |                      |                   |                   |                       |              |                                       |                     |
| Number of chimneys<br>Number of open flues                                              | $\begin{array}{c} main & se \\ heating & he \\ \hline 0 & + \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array}$ | condary<br>eating<br>0 +<br>0 + | 0 0                  | ] = [             | <b>total</b> 0 0  | x 4                   | 40 =<br>20 = | 0<br>0                                | (6a)<br>(6b)        |
| Number of intermittent far                                                              | IS                                                                                                                 |                                 | -                    | - F               | 2                 | x 1                   | 0 =          | 20                                    | (7a)                |
| Number of passive vents                                                                 |                                                                                                                    |                                 |                      |                   | 0                 | x 1                   | 10 =         | 0                                     | (7b)                |
| Number of flueless gas fir                                                              | es                                                                                                                 |                                 |                      |                   | 0                 | x 4                   | 40 =         | 0                                     | (7c)                |
|                                                                                         |                                                                                                                    |                                 |                      |                   |                   |                       | Air ch       | ange <mark>s per</mark> ho            | our                 |
| Infiltration due to chimney                                                             | s, flues and fans = $(6a)$                                                                                         | (+(6b)+(7a)+(7b))               | (7c) =               |                   | 20<br>om (9) to ( | (16)                  | ÷ (5) =      | 0.18                                  | (8)                 |
| Number of storeys in the<br>Additional infiltration<br>Structural infiltration: 0.2     | e dwelling (ns)<br>25 for steel or timber fi                                                                       | rame or 0.35                    | for masonr           | y constru         | uction            | [(9)-                 | ·1]x0.1 =    | 0 0 0                                 | (9)<br>(10)<br>(11) |
| if both types of wall are pre<br>deducting areas of opening                             | esent, use the value corresp<br>gs); if equal user 0.35                                                            | oonding to the gr               | eater wall area      | a (after          |                   |                       | r            |                                       |                     |
| If suspended wooden fil                                                                 | oor, enter 0.2 (unseale                                                                                            | ed) or 0.1 (se                  | aled), else          | enter U           |                   |                       |              | 0                                     | (12)                |
| Percentage of windows                                                                   | and doors draught str                                                                                              | inned                           |                      |                   |                   |                       | l            | 0                                     | (13)                |
| Window infiltration                                                                     | and doors dradynt str                                                                                              | ipped                           | 0.25 - [0.2          | x (14) ÷ 1        | 00] =             |                       | l            | 0                                     | (14)                |
| Infiltration rate                                                                       |                                                                                                                    |                                 | (8) + (10) -         | + (11) + (1       | -<br>2) + (13) -  | + (15) =              |              | 0                                     | (16)                |
| Air permeability value, o                                                               | q50, expressed in cubi                                                                                             | c metres per                    | hour per so          | quare me          | etre of e         | nvelope               | area         | 10                                    | (17)                |
| If based on air permeabilit                                                             | ty value, then (18) = [(17                                                                                         | ') ÷ 20]+(8), othe              | erwise (18) = (      | 16)               |                   |                       | ĺ            | 0.68                                  | (18)                |
| Air permeability value applies                                                          | if a pressurisation test has                                                                                       | been done or a                  | degree air per       | meability i       | is being u        | sed                   |              |                                       | _                   |
| Number of sides sheltered                                                               | b                                                                                                                  |                                 | (00) 4 5             | 0.075 (4          | 0)1               |                       |              | 2                                     | (19)                |
| Shelter factor                                                                          | n n al altan fa stan                                                                                               |                                 | (20) = 1 - [         | 0.075 X (1        | 9)] =             |                       |              | 0.85                                  | (20)                |
| Inflitration rate incorporation                                                         | ng sheiter factor                                                                                                  |                                 | (21) = (18)          | x (20) =          |                   |                       | l            | 0.58                                  | (21)                |
|                                                                                         | or monthly wind speed                                                                                              |                                 |                      | San               | Oct               | Nov                   | Dee          |                                       |                     |
|                                                                                         |                                                                                                                    | Jun Ju                          | i Aug                | Sep               | OCI               | NOV                   | Dec          |                                       |                     |
| $(22)m = \begin{bmatrix} 51 \\ 51 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ |                                                                                                                    | 38 28                           | 37                   | 4                 | 43                | 45                    | 47           |                                       |                     |
|                                                                                         |                                                                                                                    | 0.0 0.0                         | 5.7                  | 7                 | - <del>1</del> .0 |                       | -7.7         |                                       |                     |
| Wind Factor (22a)m = (22<br>(22a)m = $1.27$ $1.25$ $1$                                  | )m ÷ 4                                                                                                             | 0.95 0.95                       | 5 0.92               | 1                 | 1.08              | 1.12                  | 1.18         |                                       |                     |
|                                                                                         |                                                                                                                    | 0.00                            | 0.02                 | ·                 |                   | L <u>-</u>            |              |                                       |                     |

| Adjust               | ed infiltr              | ation rat                      | e (allowi                 | ing for sh               | nelter an               | d wind s               | peed) =     | (21a) x        | (22a)m      |                | -           | -                  | _      |               |
|----------------------|-------------------------|--------------------------------|---------------------------|--------------------------|-------------------------|------------------------|-------------|----------------|-------------|----------------|-------------|--------------------|--------|---------------|
|                      | 0.74                    | 0.72                           | 0.71                      | 0.64                     | 0.62                    | 0.55                   | 0.55        | 0.53           | 0.58        | 0.62           | 0.65        | 0.68               |        |               |
| If m                 | ate effe                | <i>ctive air</i><br>al ventila | change                    | rate for t               | he appli                | cable ca               | se          |                |             |                |             |                    | 0      | (23a)         |
| lf exh               | aust air h              | eat pump                       | using App                 | endix N, (2              | 3b) = (23a              | a) × Fmv (e            | equation (I | N5)), othei    | rwise (23b  | ) = (23a)      |             |                    |        | (23b)         |
| If bala              | anced wit               | h heat reco                    | overy: effic              | iency in %               | allowing f              | or in-use f            | actor (fron | n Table 4h     | ) =         | , , ,          |             |                    | 0      | (23c)         |
| a) If                | balance                 | ed mech                        | anical ve                 | entilation               | with he                 | at recove              | erv (MV     | HR) (24a       | u)m = (22   | 2b)m + (       | 23b) x [′   | 1 – (23c)          | ÷ 1001 | (200)         |
| (24a)m=              | 0                       | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  |        | (24a)         |
| b) If                | balance                 | ed mecha                       | ı<br>anical ve            | entilation               | without                 | heat rec               | overv (ľ    | MV) (24b       | )m = (22    | 1<br>2b)m + (; | 23b)        |                    | 1      |               |
| ,<br>(24b)m=         | 0                       | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  | 1      | (24b)         |
| c) If                | whole h                 | iouse ex                       | tract ver                 | ntilation of             | or positiv              | ve input v             | ventilatio  | on from c      | outside     | !              |             |                    | 1      |               |
| ,                    | if (22b)r               | n < 0.5 ×                      | (23b), t                  | then (24o                | c) = (23b               | ); otherv              | wise (24    | c) = (22b      | o) m + 0.   | 5 × (23b       | ))          |                    |        |               |
| (24c)m=              | 0                       | 0                              | 0                         | 0                        | 0                       | 0                      | 0           | 0              | 0           | 0              | 0           | 0                  |        | (24c)         |
| d) If                | natural                 | ventilatio                     | on or wh                  | ole hous                 | e positiv               | ve input               | ventilati   | on from I      | oft         |                |             |                    |        |               |
|                      | if (22b)r               | n = 1, th                      | en (24d)                  | m = (22k                 | o)m othe                | erwise (2              | 4d)m =      | 0.5 + [(2      | 2b)m² x     | 0.5]           |             |                    | 1      |               |
| (24d)m=              | 0.77                    | 0.76                           | 0.75                      | 0.7                      | 0.69                    | 0.65                   | 0.65        | 0.64           | 0.67        | 0.69           | 0.71        | 0.73               | J      | (240)         |
| Effe                 | ctive air               | change                         | rate - er                 | nter (24a                | ) or (24t               | o) or (24)             | c) or (24   | d) in boy      | (25)        | 0.00           | 0.74        | 0.70               | 1      | (25)          |
| (25)m=               | 0.77                    | 0.76                           | 0.75                      | 0.7                      | 0.69                    | 0.65                   | 0.65        | 0.64           | 0.67        | 0.69           | 0.71        | 0.73               |        | (25)          |
| 3. He                | at l <mark>osse</mark>  | s and he                       | eat loss                  | paramete                 | er:                     |                        |             |                |             |                |             |                    |        |               |
| ELEN                 |                         | Gros<br>area                   | ss<br>(m²)                | Openin<br>m              | gs<br>2                 | Net Ar<br>A ,r         | ea<br>n²    | U-valı<br>W/m2 | le<br>K     | A X U<br>(W/I  | K)          | k-value<br>kJ/m²·l | )<br>K | A X k<br>kJ/K |
| Doo <mark>rs</mark>  |                         |                                |                           |                          |                         | 1.9                    | x           | 1.4            | = [         | 2.66           |             |                    |        | (26)          |
| Windo                | <mark>ws</mark> Type    | e 1                            |                           |                          |                         | 4.8                    | x1          | /[1/( 1.6 )+   | 0.04] =     | 7.22           |             |                    |        | (27)          |
| Win <mark>do</mark>  | ws Type                 | e 2                            |                           |                          |                         | 4.32                   | x1          | /[1/( 4.8 )+   | 0.04] =     | 17.4           |             |                    |        | (27)          |
| Floor                |                         |                                |                           |                          |                         | 51                     | ×           | 0.97           | = [         | 49.47          |             |                    |        | (28)          |
| Walls <sup>-</sup>   | Type1                   | 39.                            | 2                         | 4.32                     |                         | 34.88                  | 3 X         | 2.1            |             | 73.25          |             |                    | ╡      | (29)          |
| Walls <sup>-</sup>   | Type2                   | 10.9                           | 9                         | 6.7                      |                         | 4.29                   | ×           | 2.1            | = [         | 9.01           |             |                    | ╡      | (29)          |
| Total a              | area of e               | elements                       | , m²                      |                          |                         | 101.1                  | 9           |                |             |                |             |                    |        | (31)          |
| Party v              | wall                    |                                |                           |                          |                         | 16.1                   | ×           | 0              | =           | 0              |             |                    |        | (32)          |
| * for win            | idows and               | l roof wind<br>as on both      | ows, use e<br>sides of ir | effective wi             | ndow U-va<br>Is and par | alue calcul<br>titions | ated using  | g formula 1,   | /[(1/U-valu | ie)+0.04] a    | as given in | paragraph          | 1 3.2  |               |
| Fabric               | heat los                | ss, W/K :                      | = S (A x                  | U)                       |                         |                        |             | (26)(30)       | + (32) =    |                |             |                    | 159    | (33)          |
| Heat c               | apacity                 | Cm = S(                        | (Axk)                     | ,                        |                         |                        |             |                | ((28)       | (30) + (32     | 2) + (32a). | (32e) =            | 0      | (34)          |
| Therm                | al mass                 | parame                         | ter (TMI                  | - = Cm ÷                 | - TFA) ir               | n kJ/m²K               |             |                | Indica      | tive Value     | : High      |                    | 450    | (35)          |
| For desi<br>can be ı | ign asses<br>used inste | sments wh<br>ad of a de        | ere the de<br>tailed calc | tails of the<br>ulation. | construct               | ion are not            | t known pi  | recisely the   | indicative  | e values of    | TMP in Ta   | able 1f            |        |               |
| Therm                | al bridg                | es : S (L                      | x Y) cal                  | culated u                | using Ap                | pendix ł               | <           |                |             |                |             |                    | 15.2   | (36)          |
| if details           | s of therma             | al bridging                    | are not kr                | nown (36) =              | = 0.15 x (3             | 1)                     |             |                |             |                |             |                    |        |               |
| Total f              | abric he                | at loss                        |                           |                          |                         |                        |             |                | (33) +      | (36) =         |             |                    | 174.2  | (37)          |
| Ventila              | ation hea               | at loss ca                     | alculated                 | d monthly                | /                       |                        |             |                | (38)m       | = 0.33 × (     | 25)m x (5)  | )                  | 1      |               |
|                      | Jan                     | Feb                            | Mar                       | Apr                      | May                     | Jun                    | Jul         | Aug            | Sep         | Oct            | Nov         | Dec                |        |               |
| (38)m=               | 28.3                    | 27.92                          | 27.54                     | 25.76                    | 25.42                   | 23.87                  | 23.87       | 23.59          | 24.47       | 25.42          | 26.1        | 26.8               | J      | (38)          |
| Heat ti              | ransfer o               | coefficie                      | nt, W/K                   |                          |                         |                        |             | <b></b>        | (39)m       | = (37) + (     | 38)m        |                    | 1      |               |
| (39)m=               | 202.51                  | 202.12                         | 201.74                    | 199.96                   | 199.63                  | 198.08                 | 198.08      | 197.79         | 198.67      | 199.63         | 200.3       | 201                |        |               |
|                      |                         |                                |                           |                          |                         |                        |             |                |             | Average =      | Sum(39)1    | 12 /12=            | 199.96 | (39)          |

| Heat lo                        | ss para                         | meter (H                               | HLP), W                              | /m²K                                      |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |            |      |
|--------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|------------|------|
| (40)m=                         | 3.97                            | 3.96                                   | 3.96                                 | 3.92                                      | 3.91                                     | 3.88                                  | 3.88                         | 3.88                   | 3.9                   | 3.91                      | 3.93                                  | 3.94     |            |      |
| L                              | r of day                        |                                        | I                                    |                                           |                                          |                                       |                              | I                      | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.92       | (40) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                       | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| (41)m=                         | 31                              | 28                                     | 31                                   | 30                                        | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |            | (41) |
| Ϋ́ Υ                           |                                 |                                        |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | l          |      |
| 4. Wat                         | ter heat                        | ting enei                              | rgy requ                             | irement:                                  |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:       |      |
| Assume<br>if TF/<br>if TF/     | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, l<br>9, N = 1<br>9, N = 1      | N<br>+ 1.76 x                        | : [1 - exp                                | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | FFA -13                   | 1.<br>.9)                             | 72       |            | (42) |
| Annual<br>Reduce t<br>not more | averag<br>he annua<br>that 125  | e hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person pel | ge in litre<br>usage by s<br>r day (all w | es per da<br>5% if the a<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed :<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 75<br>f                               | .04      | ]          | (43) |
|                                | Jan                             | Feb                                    | Mar                                  | Apr                                       | Мау                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |            |      |
| Hot wate                       | r usage ii                      | n litres per                           | r day for ea                         | ach month                                 | Vd,m = fa                                | ctor from T                           | Table 1c x                   | (43)                   |                       |                           | 1                                     |          | 1          |      |
| (44)m=                         | 82.54                           | 79.54                                  | 76.54                                | 73.54                                     | 70.54                                    | 67.54                                 | 67.54                        | 70.54                  | 73.54                 | 76.54                     | 79.54                                 | 82.54    |            |      |
| Energy c                       | ontent of                       | hot water                              | used - cal                           | culated mo                                | onthly $= 4$ .                           | 190 x Vd,r                            | n x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>oth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 900.48     | (44) |
| (45)m=                         | 122.41                          | 107.06                                 | 110.48                               | 96.32                                     | 92.42                                    | 79.75                                 | 73.9                         | 84.8                   | 85.81                 | 100.01                    | 109.17                                | 118.55   |            | _    |
| lf instanta                    | aneous w                        | vater heatii                           | ng at point                          | of use (no                                | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                | -        | 1180.67    | (45) |
| (46)m=                         | 18.36                           | 16.06                                  | 16.57                                | 14.45                                     | 13.86                                    | 11.96                                 | 11.08                        | 12.72                  | 12.87                 | 15                        | 16.37                                 | 17.78    |            | (46) |
| Storage                        | e volum                         | loss.<br>le (litres)                   | includir                             | na anv so                                 | olar or W                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      | 1          | (47) |
| If comm                        | nunity h                        | eating a                               | and no ta                            | ink in dw                                 | elling, e                                | nter 110                              | litres in                    | (47)                   |                       |                           |                                       |          |            |      |
| Otherw                         | ise if no                       | o stored                               | hot wate                             | er (this in                               | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |            |      |
| Water s                        | storage                         | loss:                                  |                                      |                                           |                                          |                                       |                              |                        |                       |                           |                                       |          | 1          |      |
| a) If ma                       | anufact                         | urer's de                              | eclared I                            | oss facto                                 | or is kno                                | wn (kWł                               | n/day):                      |                        |                       |                           |                                       | 0        |            | (48) |
| Tempe                          | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           |                                       | 0        |            | (49) |
| Energy                         | lost fro                        | m water                                | storage                              | e, kWh/y∉<br>≫dindor l                    | ear<br>ann faot                          | or io not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |            | (50) |
| Hot wat                        | ter stora                       | age loss                               | factor fr                            | om Tabl                                   | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       | ]          | (51) |
| Volume                         | factor                          | from Ta                                | ble 2a                               | 011 4.3                                   |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |            | (52) |
| Temper                         | rature f                        | actor fro                              | m Table                              | 2b                                        |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |            | (53) |
| Enerav                         | lost fro                        | m water                                | storage                              | . kWh/ve                                  | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     |                                       | 03       | ]          | (54) |
| Enter (                        | 50) or (                        | (54) in (5                             | 55)                                  | , <b>,</b>                                |                                          |                                       |                              |                        |                       | ,                         | 1.                                    | 03       |            | (55) |
| Water s                        | storage                         | loss cal                               | culated                              | for each                                  | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          | 1          |      |
| (56)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |            | (56) |
| If cylinde                     | r contains                      | s dedicate                             | d solar sto                          | rage, (57)ı                               | m = (56)m                                | x [(50) – (                           | L<br>H11)] ÷ (5              | i0), else (5           | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | I<br>lix H |      |
| (57)m=                         | 32.01                           | 28.92                                  | 32.01                                | 30.98                                     | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    | ]          | (57) |
| Primary                        | / circuit                       | loss (ar                               | nnual) fro                           | om Table                                  | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |            | (58) |
| Primary                        | / circuit                       | loss cal                               | culated                              | for each                                  | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           |                                       |          |            |      |
| (mod                           | ified by                        | factor fi                              | rom Tab                              | le H5 if t                                | here is s                                | solar wat                             | ter heati                    | ng and a               | cylinde               | r thermo                  | stat)                                 |          | 1          |      |
| (59)m=                         | 23.26                           | 21.01                                  | 23.26                                | 22.51                                     | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |            | (59) |

| Combi I  | oss ca   | lculated       | for eac    | h month         | (61)m =        | (60) ÷ 3  | 65 × (41)   | )m           |              |                     |              |             |               |           |
|----------|----------|----------------|------------|-----------------|----------------|-----------|-------------|--------------|--------------|---------------------|--------------|-------------|---------------|-----------|
| (61)m=   | 0        | 0              | 0          | 0               | 0              | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (61)      |
| Total he | eat req  | uired for      | water h    | neating c       | alculated      | l for eac | h month     | (62)m =      | 0.85 ×       | (45)m +             | (46)m +      | (57)m +     | (59)m + (61)m |           |
| (62)m=   | 177.69   | 156.99         | 165.75     | 149.81          | 147.69         | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               | (62)      |
| Solar DH | N input  | calculated     | using Ap   | pendix G o      | r Appendix     | H (negati | ve quantity | /) (enter '0 | ' if no sola | r contribut         | ion to wate  | er heating) |               |           |
| (add ad  | ditiona  | l lines if     | FGHR       | S and/or        | WWHRS          | applies   | , see Ap    | pendix (     | G)           |                     |              | -           |               |           |
| (63)m=   | 0        | 0              | 0          | 0               | 0              | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (63)      |
| Output f | rom w    | ater hea       | ter        |                 |                |           |             |              |              |                     |              |             |               |           |
| (64)m=   | 177.69   | 156.99         | 165.75     | 149.81          | 147.69         | 133.24    | 129.18      | 140.08       | 139.31       | 155.28              | 162.66       | 173.82      |               |           |
| _        |          | -              |            |                 | -              |           | -           | Out          | out from w   | ater heate          | r (annual)₁  | 12          | 1831.51       | (64)      |
| Heat ga  | ins fro  | m water        | heating    | g, kWh/m        | onth 0.2       | 5 ´ [0.85 | × (45)m     | + (61)n      | n] + 0.8 x   | k [(46)m            | + (57)m      | + (59)m     | ]             |           |
| (65)m=   | 59.31    | 52.41          | 55.34      | 50.03           | 49.34          | 44.53     | 43.18       | 46.81        | 46.54        | 51.86               | 54.31        | 58.03       |               | (65)      |
| incluc   | le (57)  | m in calc      | ulation    | of (65)m        | only if c      | ylinder i | s in the o  | dwelling     | or hot w     | vater is fi         | rom com      | munity h    | eating        |           |
| 5. Inte  | rnal g   | ains (see      | Table      | 5 and 5a        | ):             |           |             |              |              |                     |              |             |               |           |
| Metabol  | lic gair | ns (Table      | 5). Wa     | atts            | ,<br>          |           |             |              |              |                     |              |             |               |           |
| Γ        | Jan      | Feb            | Mar        | Apr             | May            | Jun       | Jul         | Aug          | Sep          | Oct                 | Nov          | Dec         |               |           |
| (66)m=   | 85.98    | 85.98          | 85.98      | 85.98           | 85.98          | 85.98     | 85.98       | 85.98        | 85.98        | 8 <mark>5.98</mark> | 85.98        | 85.98       |               | (66)      |
| Lighting | gains    | (calculat      | ted in A   | ppendix         | L, equat       | ion L9 o  | r L9a), a   | lso see      | Table 5      |                     |              |             |               |           |
| (67)m=   | 13.54    | 12.03          | 9.78       | 7.4             | 5.53           | 4.67      | 5.05        | 6.56         | 8.81         | 11.18               | 13.05        | 13.92       |               | (67)      |
| Applian  | ces da   | ins (calc      | ulated i   | n Appen         | dix L. ea      | uation L  | 13 or L1    | 3a), also    | see Ta       | ble 5               |              |             |               |           |
| (68)m=   | 149.83   | 151.39         | 147.47     | 139.13          | 128.6          | 118.7     | 112.09      | 110.54       | 114.45       | 122.8               | 133.32       | 143.22      |               | (68)      |
| Cooking  | aains    | (calcula       | ted in A   | Appendix        | L equat        | ion I 15  | or I 15a)   | also se      | e Table      | 5                   |              |             |               |           |
| (69)m=   | 31.6     | 31.6           | 31.6       | 31.6            | 31.6           | 31.6      | 31.6        | 31.6         | 31.6         | 31.6                | 31.6         | 31.6        |               | (69)      |
| Pumps    | and fa   | ns gains       | (Table     | 5a)             |                |           |             |              |              |                     |              |             |               |           |
| (70)m=   | 0        |                | 0          |                 | 0              | 0         | 0           | 0            | 0            | 0                   | 0            | 0           |               | (70)      |
|          |          | l<br>vanoratio | n (nea:    | l<br>ative valu | l<br>les) (Tab | le 5)     |             |              |              |                     |              |             |               |           |
| (71)m=   | -68.78   | -68.78         | -68.78     | -68.78          | -68.78         | -68.78    | -68.78      | -68.78       | -68.78       | -68.78              | -68.78       | -68.78      | l             | (71)      |
| Water b  | oating   |                |            |                 |                |           |             |              |              |                     |              |             |               | . ,       |
| (72)m =  | 79 72    | 921113 (1      | 74 39      | 69.49           | 66 32          | 61 84     | 58.04       | 62 91        | 64 64        | 69.71               | 75.43        | 77 99       | l             | (72)      |
|          | tornal   |                | 1 1.00     | 00.10           | 00.02          | (66       | m + (67)m   | + (68)m -    | (60)m ± (    | (70)m + (7)         | (1)m + (72)  |             |               | (/        |
| (73)m-   | 201 88   | 200 10         | 280.43     | 264.82          | 249.24         | 234.01    | 223.07      | 228.8        | 236.7        | 252.48              | 270.6        | 283.92      |               | (73)      |
| (73)III- | r gain   | 230.13         | 200.43     | 204.02          | 243.24         | 204.01    | 220.07      | 220.0        | 200.1        | 202.40              | 270.0        | 200.02      |               | (10)      |
| Solar ga | ins are  | calculated     | using sol  | ar flux from    | Table 6a       | and assoc | iated equa  | tions to co  | onvert to th | ne applicat         | ole orientat | ion.        |               |           |
| Orientat | tion:    | Access F       | actor      | Area            | l              | Flu       | IX          |              | q            |                     | FF           |             | Gains         |           |
|          | -        | Table 6d       |            | m²              |                | Та        | ble 6a      | Т            | able 6b      | Т                   | able 6c      |             | (W)           |           |
| North    | 0.9x     | 0.77           | ,          | <b>4</b> .      | 32             | x         | 10.63       | x            | 0.85         | x                   | 0.7          | =           | 18.94         | (74)      |
| North    | 0.9x     | 0.77           | ,          | < <u>4.</u>     | 32             | x         | 20.32       | x            | 0.85         |                     | 0.7          |             | 36.2          | (74)      |
| North    | 0.9x     | 0.77           | ,          | ( 4.3           | 32             | x [:      | 34.53       | ×            | 0.85         | ╡╷┝                 | 0.7          |             | 61.51         | (74)      |
| North    | 0.9x     | 0.77           | <b>—</b> , | 4               | 32             | x .       | 55.46       | ×            | 0.85         | ╡╷┝                 | 0.7          | =           | 98.8          | (74)      |
|          |          | 0.77           | $\dashv$   |                 | 32             | x         | 74.72       |              | 0.85         | ╡╷┝                 | 0.7          |             | 133.09        | ]<br>(74) |

| North               | Г          |                        |          | 1        |           |         |           | <u> </u> |                | 1        |         |                | י ר                   |               |           | Г   |        |           |
|---------------------|------------|------------------------|----------|----------|-----------|---------|-----------|----------|----------------|----------|---------|----------------|-----------------------|---------------|-----------|-----|--------|-----------|
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | x         | 7        | 9.99           | ] ×      |         | 0.85           |                       | 0.7           |           | =   | 142.48 | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | x         | 7        | 4.68           | X        | (       | 0.85           | ×                     | 0.7           |           | = [ | 133.02 | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | x         | 5        | 9.25           | X        | (       | 0.85           | ×                     | 0.7           |           | = [ | 105.53 | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | х         | 4        | 1.52           | X        | (       | 0.85           | _ ×                   | 0.7           |           | = [ | 73.95  | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | X         | 2        | 4.19           | x        | (       | 0.85           | ×                     | 0.7           |           | =   | 43.09  | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | x         | 1        | 3.12           | x        | (       | 0.85           | ×                     | 0.7           |           | = [ | 23.37  | (74)      |
| North               | 0.9x       | 0.77                   |          | x        | 4.32      |         | x         | 8        | 3.86           | x        | (       | 0.85           | ×                     | 0.7           |           | =   | 15.79  | (74)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 4        | 6.75           | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 82.73  | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 7        | 6.57           | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 135.5  | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 9        | 7.53           | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 172.6  | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 1        | 10.23          | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 195.08 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 1        | 14.87          | x        | (       | 0.76           | ×                     | 0.7           |           | = [ | 203.28 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 1        | 10.55          | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 195.63 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 10       | 08.01          | x        | (       | 0.76           | ×                     | 0.7           |           | =   | 191.14 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 10       | 04.89          | x        | (       | 0.76           | ×                     | 0.7           |           | = [ | 185.63 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 10       | 01.89          | x        | (       | 0.76           | ×                     | 0.7           |           | = [ | 180.3  | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 8        | 2.59           | x        | (       | 0.76           | ×                     | 0.7           |           | = [ | 146.15 | (78)      |
| South               | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 5        | 5.42           | х        |         | 0.76           | x                     | 0.7           |           | =   | 98.07  | (78)      |
| Sout <mark>h</mark> | 0.9x       | 0.77                   |          | x        | 4.8       |         | x         | 4        | 40.4           | x        |         | 0.76           | x                     | 0.7           |           | = [ | 71.49  | (78)      |
|                     |            |                        |          |          |           |         |           |          |                |          |         |                |                       |               |           |     |        |           |
| Solar (             | pains in   | watts, <mark>ca</mark> | Iculate  | d        | for each  | mont    | h         |          |                | (83)m    | n = Sum | n(74)m         | . <mark>(8</mark> 2)m |               |           |     |        | (00)      |
| (83)m=              | 101.68     | 171.7                  | 234.11   |          | 293.87    | (72)    | 3         | 38.11    | 324.16         | 291      | .16 2   | 254.25         | 189.24                | 121.43        | 87.       | .28 |        | (83)      |
|                     | jains – II |                        |          | ar       | (84)m =   | (73)IT  |           | 83)m     | , watts        | 540      | 07      | 400.05         | 444 70                | 202.02        | 07        | 4.0 |        | (94)      |
| (84)11=             | 393.00     | 401.89                 | 514.54   | 1        | 556.69    | 365.01  |           | 72.12    | 546.14         | 519      | .97     | 490.95         | 441.72                | 392.03        | 37        | 1.2 |        | (04)      |
| 7. Me               | an inter   | nal temp               | erature  | e (      | heating s | seaso   | n)        |          |                |          |         |                |                       |               |           |     |        |           |
| Temp                | perature   | during he              | eating   | pe       | eriods in | the liv | ring      | area     | from Tab       | ole 9    | , Th1   | (°C)           |                       |               |           |     | 21     | (85)      |
| Utilis              | ation fac  | tor for ga             | ins fo   | r li     | ving area | a, h1,r | n (s      | ee Ta    | ble 9a)        | <u> </u> |         |                |                       |               |           |     |        |           |
|                     | Jan        | Feb                    | Mar      |          | Apr       | Мау     | ′ <b></b> | Jun      | Jul            | A        | ug      | Sep            | Oct                   | Nov           | D         | ec  |        |           |
| (86)m=              | 1          | 1                      | 1        |          | 0.99      | 0.98    |           | 0.95     | 0.9            | 0.9      | 92      | 0.97           | 0.99                  | 1             | 1         | 1   |        | (86)      |
| Mear                | interna    | l tempera              | ature ir | n li     | ving area | a T1 (  | follo     | w ste    | ps 3 to 7      | 7 in T   | able    | 9c)            |                       |               |           |     |        |           |
| (87)m=              | 18.44      | 18.6                   | 18.93    |          | 19.39     | 19.89   | 2         | 20.38    | 20.67          | 20.      | 63      | 20.23          | 19.59                 | 18.94         | 18.       | .41 |        | (87)      |
| Temp                | erature    | during he              | eating   | ре       | eriods in | rest o  | f dw      | elling   | from Ta        | able 9   | 9, Th2  | 2 (°C)         |                       |               |           |     |        |           |
| (88)m=              | 18.34      | 18.35                  | 18.35    | T        | 18.36     | 18.36   | 1         | 8.37     | 18.37          | 18.      | 38      | 18.37          | 18.36                 | 18.36         | 18.       | .35 |        | (88)      |
| Utilis              | ation fac  | tor for a              | nins fo  | r re     | est of dw | ellina  | h2        | m (se    | e Table        | 9a)      |         | •              |                       | •             |           |     |        |           |
| (89)m=              | 1          | 1                      | 0.99     | T        | 0.98      | 0.96    |           | 0.85     | 0.57           | 0.6      | 64      | 0.92           | 0.99                  | 1             | 1         | 1   |        | (89)      |
| Moor                |            |                        | aturo ir | <br>> ti | he rest o | f dwo   | lling     | T2 (f    | l<br>ollow ste |          | to 7 i  | in Table       |                       |               |           |     |        |           |
| (90)m=              | 15.26      | 15.51                  | 15.98    | T        | 16.67     | 17.39   |           | 12 (10   | 18.33          | 18       | 3       | 17.86          | 16.96                 | 16.01         | 15        | 24  |        | (90)      |
| ·- ·/··· ·          |            |                        |          | _        |           |         |           |          |                |          | -       | fL             | A = Liv               | ing area ÷ (4 | 1<br>4) = | -+  | 0.47   | )<br>(91) |
|                     |            |                        |          |          |           |         | - 112     |          | ۸ <del>۲</del> |          |         | \ <del></del>  |                       | - ``          |           | L   |        |           |
| Mear                | interna    | tempera                | ature (  | tor<br>T | the who   | le dw   | ellin     | g) = fl  | $A \times T1$  | + (1     | - tLA   | $) \times [2]$ | 10.0                  | 47.00         | 40        | 74  |        | (00)      |
| (92)M=              | 16.76      | 10.97                  | 17.37    | 1        | 17.96     | 18.57   | 1 1       | 9.14     | 19.44          | I 19     | .4      | 18.98          | 18.2                  | 17.39         | 1 16.     | .14 |        | (92)      |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 16.76                       | 16.97                 | 17.37                 | 17.96                  | 18.57                   | 19.14                   | 19.44         | 19.4       | 18.98       | 18.2         | 17.39        | 16.74       |           | (93)        |
|-----------------------|-----------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|---------------|------------|-------------|--------------|--------------|-------------|-----------|-------------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                        |                         |                         |               |            |             |              |              |             |           |             |
| Set T<br>the ut       | i to the r<br>ilisation     | nean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta   | e obtain<br>Ible 9a     | ed at ste               | ep 11 of      | Table 9t   | o, so tha   | t Ti,m=(     | 76)m an      | d re-calc   | ulate     |             |
|                       | Jan                         | Feb                   | Mar                   | Apr                    | May                     | Jun                     | Jul           | Aug        | Sep         | Oct          | Nov          | Dec         |           |             |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | :                      |                         |                         |               |            |             |              |              |             |           |             |
| (94)m=                | 1                           | 1                     | 0.99                  | 0.98                   | 0.96                    | 0.9                     | 0.77          | 0.81       | 0.94        | 0.98         | 1            | 1           |           | (94)        |
| Usefu                 | Il gains,                   | hmGm ,                | W = (94               | 4)m x (84              | 4)m                     |                         |               |            |             |              |              |             |           |             |
| (95)m=                | 392.51                      | 459.74                | 510.17                | 548.82                 | 561.51                  | 512.98                  | 420.9         | 419.4      | 460.54      | 435.09       | 390.25       | 370.39      |           | (95)        |
| Month                 | nly avera                   | age exte              | rnal tem              | perature               | e from Ta               | able 8                  |               |            |             |              |              |             |           |             |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                    | 11.7                    | 14.6                    | 16.6          | 16.4       | 14.1        | 10.6         | 7.1          | 4.2         |           | (96)        |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe               | erature, l              | Lm , W =                | =[(39)m >     | k [(93)m∙  | – (96)m     | ]            |              |             |           |             |
| (97)m=                | 2523.66                     | 2439.48               | 2193.86               | 1810.63                | 1372.12                 | 900.2                   | 561.56        | 593.54     | 969.94      | 1517.12      | 2061.56      | 2520.18     |           | (97)        |
| Space                 | e heatin                    | g require             | ement fo              | r each n               | nonth, k\               | Nh/mont                 | th = 0.02     | 4 x [(97)  | )m – (95    | )m] x (4     | 1)m          |             |           |             |
| (98)m=                | 1585.58                     | 1330.38               | 1252.66               | 908.5                  | 603.09                  | 0                       | 0             | 0          | 0           | 805.03       | 1203.34      | 1599.44     |           |             |
|                       |                             |                       |                       |                        |                         |                         |               | Tota       | l per year  | (kWh/year    | ) = Sum(9    | 8)15,912 =  | 9288.03   | (98)        |
| Space                 | e heatin                    | g require             | ement in              | kWh/m <sup>2</sup>     | /year                   |                         |               |            |             |              |              | Ì           | 182.12    | (99)        |
| Oh En                 | oraviroo                    | uiromor               | te Cor                | nmunity                | hosting                 | schomo                  |               |            |             |              |              | l           | -         | ], ,        |
| Thic pr               | ergy rec                    | d for co              |                       | ting one               |                         |                         | tor boot      | ing prov   | idod by     | 0.0000       |              |             |           |             |
| Fractio               | n of spa                    | ace heat              | from se               | condary                | suppler                 | ng of wa                | heating (     | Table 1    | 1) '0' if n | one          | unity SCI    |             | 0         | (301)       |
| Fractio               | n of one                    |                       | from oo               | o no unitu             | aveters                 | 1 (20)                  | 1)            |            | .,          |              |              |             |           |             |
| Fractio               | in or spa                   | ice neal              | from co               | mmunity                | system                  | 1 - (30                 | 1) =          |            |             |              |              |             | 1         | (302)       |
| The com               | nmunity so                  | heme may              | y obtain he           | eat from se            | everal sour             | ces. The p              | procedure a   | allows for | CHP and u   | up to four o | other heat   | sources; tl | ne latter |             |
| Fractio               | n of hea                    | at from C             | commun                | ity boiler             | Sie near n              |                         | stations.     | See Apper  | IUIX C.     |              |              |             | 1         | (303a)      |
| Fractio               | n of tota                   | al space              | heat fro              | m Comn                 | nunity bo               | oilers                  |               |            |             | (3           | 02) x (303   | a) =        | 1         | (304a)      |
| Factor                | for cont                    | rol and o             | charging              | method                 | (Table 4                | 4c(3)) fo               | r commu       | inity hea  | ting sys    | tem          |              |             | 1         | (305)       |
| Distrib               | ution los                   | s factor              | (Table 1              | 2c) for c              | communi                 | ity heatir              | ng syster     | m          |             |              |              |             | 1.05      | (306)       |
| Space                 | heating                     | 9                     |                       |                        |                         |                         |               |            |             |              |              |             | kWh/year  | _           |
| Annua                 | space                       | heating               | requirem              | nent                   |                         |                         |               |            |             |              |              |             | 9288.03   | ]           |
| Space                 | heat fro                    | m Comr                | nunity b              | oilers                 |                         |                         |               |            | (98) x (30  | 04a) x (30   | 5) x (306) = | =           | 9752.44   | (307a)      |
| Efficier              | ncy of se                   | econdary              | /supple               | mentary                | heating                 | system                  | in % (fro     | m Table    | e 4a or A   | ppendix      | E)           |             | 0         | (308        |
| Space                 | heating                     | requirer              | ment froi             | m secon                | dary/sup                | oplemen                 | tary syst     | em         | (98) x (30  | 01) x 100 -  | - (308) =    |             | 0         | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | l<br>neating r        | equirem               | ent                    |                         |                         |               |            |             |              |              | I           | 1831.51   | ]           |
| If DHW<br>Water       | / from co<br>heat fro       | ommunit<br>m Comn     | ty schem<br>nunity bo | ne:<br>pilers          |                         |                         |               |            | (64) x (30  | 03a) x (30   | 5) x (306) = | = [         | 1923.08   | ]<br>(310a) |
| Electric              | city used                   | d for hea             | t distribu            | ution                  |                         |                         |               | 0.01       | × [(307a).  | (307e) +     | (310a)(      | 310e)] =    | 116.76    | (313)       |
| Cooling               | g Syster                    | n Energ               | y Efficiei            | ncy Ratio              | C                       |                         |               |            |             |              |              |             | 0         | (314)       |
| Space                 | cooling                     | (if there             | is a fixe             | d cooling              | g system                | n, if not e             | enter 0)      |            | = (107) ÷   | · (314) =    |              | <br>        | 0         | (315)       |
| Electric<br>mecha     | city for p<br>nical ve      | oumps ai<br>ntilation | nd fans v<br>- balanc | within dw<br>ed, extra | velling (1<br>act or po | Table 4f)<br>sitive inj | :<br>put from | outside    |             |              |              | ·<br>[      | 0         | (330a)      |

| warm air heating system fans                                                                                           |                            |                               | 0                       | (330b) |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|--------|
| pump for solar water heating                                                                                           |                            |                               | 0                       | (330g) |
| Total electricity for the above, kWh/year                                                                              | =(330a) + (330b)           | 0                             | (331)                   |        |
| Energy for lighting (calculated in Appendix L)                                                                         |                            |                               | 239.12                  | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                          |                            |                               |                         |        |
|                                                                                                                        | Energy<br>kWh/year         | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/yea | r      |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using t | wo fuels repeat (363) to ( | 366) for the second fu        | el 90                   | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                           | 10b)] x 100 ÷ (367b) x     | 0                             | = 2802.12               | (367)  |
| Electrical energy for heat distribution [(3                                                                            | 313) x                     | 0.52                          | = 60.6                  | (372)  |
| Total CO2 associated with community systems (3                                                                         | 63)(366) + (368)(372)      |                               | = 2862.72               | (373)  |
| CO2 associated with space heating (secondary) (3                                                                       | 09) x                      | 0                             | = 0                     | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                         | us heater (312) x          | 0.22                          | = 0                     | (375)  |
| Total CO2 associated with space and water heating (3                                                                   | 73) + (374) + (375) =      |                               | 2862.72                 | (376)  |
| CO2 associated with electricity for pumps and fans within dwelling                                                     | g (331)) x                 | 0.52                          | = 0                     | (378)  |
| CO2 associated with electricity for lighting (3                                                                        | 32))) x                    | 0.52                          | = 124.11                | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                 |                            |                               | 2986.83                 | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                               |                            |                               | 58.57                   | (384)  |
| El rating (section 14)                                                                                                 |                            |                               | 58.17                   | (385)  |

| User Details:                                               |                                                                                                                                   |                              |                       |                    |             |                  |                       |              |                                      |                       |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|--------------------|-------------|------------------|-----------------------|--------------|--------------------------------------|-----------------------|--|
| Assessor Name:<br>Software Name:                            | Assessor Name: Stroma FSAP 2012 Software Version: Versio Property Address: Unit 18                                                |                              |                       |                    |             |                  |                       |              |                                      |                       |  |
| Address :                                                   | . london                                                                                                                          |                              | operty /              | 1001000.           | Onic TO     |                  |                       |              |                                      |                       |  |
| 1. Overall dwelling dimen                                   | isions:                                                                                                                           |                              |                       |                    |             |                  |                       |              |                                      |                       |  |
| Basement                                                    |                                                                                                                                   |                              | Area                  | <b>a(m²)</b><br>79 | (1a) x      | Av. He           | <b>ight(m)</b><br>2.6 | (2a) =       | <b>Volume(m<sup>3</sup></b><br>205.4 | <b>)</b><br>(3a)      |  |
| Total floor area TFA = (1a)                                 | )+(1b)+(1c)+(1d)+(1e                                                                                                              | e)+(1n)                      | )                     | 79                 | (4)         |                  |                       |              |                                      |                       |  |
| Dwelling volume                                             |                                                                                                                                   |                              |                       |                    | (3a)+(3b)   | +(3c)+(3c        | l)+(3e)+              | .(3n) =      | 205.4                                | (5)                   |  |
| 2. Ventilation rate:                                        |                                                                                                                                   | _                            |                       |                    |             |                  |                       |              |                                      |                       |  |
| Number of chimneys<br>Number of open flues                  | $ \begin{array}{ccc} \text{main} & \text{se} \\ \text{heating} & \text{h} \\ \hline 0 & + \\ \hline 0 & + \\ \hline \end{array} $ | econdary<br>eating<br>0<br>0 | /<br>] + [_<br>] + [_ | 0<br>0             | ] = [       | <b>total</b> 0 0 | x 4                   | 40 =<br>20 = | <b>m<sup>3</sup> per hou</b> 0 0     | r<br>(6a)<br>(6b)     |  |
| Number of intermittent fan                                  | S                                                                                                                                 |                              |                       |                    | Γ           | 2                | x ′                   | 10 =         | 20                                   | (7a)                  |  |
| Number of passive vents                                     |                                                                                                                                   |                              |                       |                    |             | 0                | x                     | 10 =         | 0                                    | <br>(7b)              |  |
| Number of flueless gas fire                                 | ЭS                                                                                                                                |                              |                       |                    | Ē           | 0                | X 4                   | 40 =         | 0                                    | (7c)                  |  |
|                                                             | ange <mark>s per</mark> ho                                                                                                        | ur                           |                       |                    |             |                  |                       |              |                                      |                       |  |
| Infiltration due to chimneys                                | 0.1                                                                                                                               | (8)                          |                       |                    |             |                  |                       |              |                                      |                       |  |
| Number of storeys in the<br>Additional infiltration         | e dwelling (ns)<br>25 for steel or timber                                                                                         | frame or                     | 0.35 for              | masonr             | v constr    | uction           | [(9)-                 | -1]x0.1 =    | 0                                    | (9)<br>(10)<br>(11)   |  |
| if both types of wall are pre<br>deducting areas of opening | sent, use the value corres                                                                                                        | ponding to                   | the greate            | er wall area       | a (after    | Gotton           |                       |              | 0                                    |                       |  |
| If suspended wooden flo                                     | bor, enter 0.2 (unseal                                                                                                            | ed) or 0.2                   | 1 (seale              | d), else           | enter 0     |                  |                       |              | 0                                    | (12)                  |  |
| If no draught lobby, ente                                   | r 0.05, else enter 0                                                                                                              | rinned                       |                       |                    |             |                  |                       |              | 0                                    |                       |  |
| Window infiltration                                         | and doors draught st                                                                                                              | npped                        |                       | 0 25 - [0 2        | x (14) - 1  | 001 =            |                       |              | 0                                    | $-\frac{(14)}{(15)}$  |  |
| Infiltration rate                                           |                                                                                                                                   |                              |                       | (8) + (10) -       | + (11) + (1 | 2) + (13) ·      | + (15) =              |              | 0                                    | $-1^{(15)}_{(16)}$    |  |
| Air permeability value, o                                   | 150. expressed in cub                                                                                                             | oic metres                   | s per ho              | ur per so          | auare m     | etre of e        | envelope              | area         | 10                                   | $= \frac{(10)}{(17)}$ |  |
| If based on air permeabilit                                 | y value, then $(18) = [(1)]$                                                                                                      | 7) ÷ 20]+(8)                 | ), otherwis           | se (18) = (        | 16)         |                  |                       |              | 0.6                                  |                       |  |
| Air permeability value applies                              | if a pressurisation test has                                                                                                      | s been done                  | e or a deg            | ıree air pei       | meability   | is being u       | sed                   |              |                                      |                       |  |
| Number of sides sheltered                                   | 1                                                                                                                                 |                              |                       | (                  |             | - 17             |                       |              | 1                                    | (19)                  |  |
| Shelter factor                                              |                                                                                                                                   |                              |                       | (20) = 1 - [       | 0.075 x (1  | 9)] =            |                       |              | 0.92                                 | (20)                  |  |
| Infiltration rate incorporatir                              | ng shelter factor                                                                                                                 | _                            |                       | (21) = (18)        | x (20) =    |                  |                       |              | 0.55                                 | (21)                  |  |
| Infiltration rate modified fo                               | r monthly wind speed                                                                                                              | и<br>Г.Т                     |                       |                    | -           | <u> </u>         |                       |              |                                      |                       |  |
| Jan Feb N                                                   | viar Apr May                                                                                                                      | Jun                          | Jui                   | Aug                | Sep         | Oct              | NOV                   | Dec          |                                      |                       |  |
| Monthly average wind spe                                    | ed from Table 7                                                                                                                   |                              | 2.0                   | 0.7                | 4           | 4.0              | 4.5                   | 4 7          |                                      |                       |  |
| (22)m= 5.1 5 4                                              | 9.9 4.4 4.3                                                                                                                       | 3.8                          | ა.ზ                   | 3.1                | 4           | 4.3              | 4.5                   | 4./          |                                      |                       |  |
| Wind Factor (22a)m = $(22)$                                 | $)m \div 4$                                                                                                                       | 0.95                         | 0.95                  | 0.92               | 1           | 1 08             | 1 12                  | 1 18         |                                      |                       |  |
|                                                             |                                                                                                                                   |                              | 0.00                  | 0.02               | •           |                  |                       |              |                                      |                       |  |

| Adjust                | ed infiltr              | ation rat                      | e (allowi                 | ng for sh           | nelter an               | d wind s               | speed) =       | (21a) x                                                                                     | (22a)m       |                   |             |                      |             |           |                        |
|-----------------------|-------------------------|--------------------------------|---------------------------|---------------------|-------------------------|------------------------|----------------|---------------------------------------------------------------------------------------------|--------------|-------------------|-------------|----------------------|-------------|-----------|------------------------|
| <u> </u>              | 0.7                     | 0.69                           | 0.68                      | 0.61                | 0.59                    | 0.52                   | 0.52           | 0.51                                                                                        | 0.55         | 0.59              | 0.62        | 0.65                 |             |           |                        |
| Calcul<br>If me       | ate effe                | <i>ctive air</i><br>al ventila | change                    | rate for t          | he appli                | cable ca               | se             |                                                                                             |              |                   |             |                      |             |           | <b>(23a)</b>           |
| lf exh                | aust air h              | eat pump                       | usina App                 | endix N. (2         | 3b) = (23a              | a) × Fmv (e            | equation (1    | N5)) . othei                                                                                | wise (23b    | ) = (23a)         |             |                      |             | )         | $\int_{(23h)}^{(23h)}$ |
| If bala               | anced with              | n heat reco                    | overv: effic              | iencv in %          | allowing f              | or in-use f            | actor (from    | n Table 4h                                                                                  | ) =          | , (,              |             |                      |             |           | (230)                  |
| a) If                 | balance                 | ed mech                        | ,<br>anical ve            | entilation          | with he                 | at recove              | erv (MVI       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | )<br>m = (22 | 2b)m + (          | 23b) x [    | 1 – (23c)            | ⊥<br>∸ 1001 |           |                        |
| (24a)m=               | 0                       | 0                              | 0                         | 0                   | 0                       | 0                      | 0              | 0                                                                                           | 0            | 0                 | 0           | 0                    |             |           | (24a)                  |
| b) If                 | balance                 | ed mecha                       | L<br>anical ve            | entilation          | without                 | L<br>heat rec          | L<br>Coverv (N | I<br>//V) (24b                                                                              | )m = (22     | L<br>2b)m + ()    | 1<br>23b)   |                      |             |           |                        |
| (24b)m=               | 0                       | 0                              | 0                         | 0                   | 0                       | 0                      | 0              | 0                                                                                           | 0            | 0                 | 0           | 0                    |             |           | (24b)                  |
| c) If                 | whole h                 | i<br>louse ex                  | ract ver                  | ntilation of        | n<br>pripositiv         | i<br>ve input v        | ventilatio     | n from c                                                                                    | outside      |                   |             |                      |             |           |                        |
|                       | if (22b)r               | n < 0.5 ×                      | (23b), t                  | hen (24             | c) = (23b               | ); other               | wise (24       | c) = (22b                                                                                   | o) m + 0.    | 5 × (23b          | )           |                      |             |           |                        |
| (24c)m=               | 0                       | 0                              | 0                         | 0                   | 0                       | 0                      | 0              | 0                                                                                           | 0            | 0                 | 0           | 0                    |             |           | (24c)                  |
| d) If                 | natural                 | ventilatio                     | on or wh                  | ole hous            | e positiv               | /e input               | ventilatio     | on from I                                                                                   | oft          | -                 | -           | -                    |             |           |                        |
| i                     | if (22b)r               | n = 1, th                      | en (24d)<br>I             | m = (22l            | o)m othe                | erwise (2              | 24d)m =        | 0.5 + [(2                                                                                   | 2b)m² x      | 0.5]              |             |                      | I           |           |                        |
| (24d)m=               | 0.75                    | 0.74                           | 0.73                      | 0.68                | 0.68                    | 0.64                   | 0.64           | 0.63                                                                                        | 0.65         | 0.68              | 0.69        | 0.71                 |             |           | (24d)                  |
| Effe                  | ctive air               | change                         | rate - er                 | nter (24a           | ) or (24k               | o) or (24)             | c) or (24      | d) in box                                                                                   | (25)         |                   |             |                      | 1           |           | (05)                   |
| (25)m=                | 0.75                    | 0.74                           | 0.73                      | 0.68                | 0.68                    | 0.64                   | 0.64           | 0.63                                                                                        | 0.65         | 0.68              | 0.69        | 0.71                 |             |           | (25)                   |
| 3. He                 | at l <mark>osse</mark>  | s and he                       | at loss                   | paramete            | er:                     |                        |                |                                                                                             |              |                   |             |                      |             |           |                        |
| ELEN                  | /IENT                   | Gros                           | s                         | Openin              | gs                      | Net Ar                 | ea             | U-valu                                                                                      | Je           | AXU               |             | k-value              | e l         | AX        | < k                    |
| Deere                 |                         | area                           | (m²)                      | m                   | 12                      | A ,r                   | n²             | VV/m2                                                                                       | K<br>T       | (VV/              | K)          | KJ/M <sup>2</sup> ·I | 1           | KJ/       | K                      |
| Duuis                 |                         |                                |                           |                     |                         | 1.6                    |                |                                                                                             |              | 2.24              |             |                      |             |           | (26)                   |
| windo                 | ws Type                 |                                |                           |                     |                         | 11.64                  |                | /[1/( 4.8 )+                                                                                | 0.04] =      | 46.87             | H           |                      |             |           | (27)                   |
| vvindo                | ws type                 | e Z                            |                           | _                   | \                       | 4.55                   | <b>x</b> 1     | /[1/( 4.8 )+                                                                                | 0.04] =      | 18.32             | Ľ,          |                      |             |           | (27)                   |
| walls                 | Type1                   | 89.1                           | 2                         | 16.19               | 9                       | 73.01                  | x              | 1.27                                                                                        | = [          | 92.87             | _ ļ         |                      | _ L         |           | (29)                   |
| Walls                 | Type2                   | 26.6                           | 63                        | 1.6                 |                         | 25.03                  | 3 X            | 2.1                                                                                         | =            | 52.56             |             |                      |             |           | (29)                   |
| Total a               | area of e               | elements                       | , m²                      |                     |                         | 115.8                  | 3              |                                                                                             |              |                   |             |                      |             |           | (31)                   |
| Party v               | wall                    |                                |                           |                     |                         | 5.3                    | x              | 0                                                                                           | =            | 0                 |             |                      |             |           | (32)                   |
| * for win             | dows and<br>le the area | l roof wind<br>as on both      | ows, use e<br>sides of ir | effective wi        | ndow U-va<br>Is and par | alue calcul<br>titions | ated using     | formula 1                                                                                   | /[(1/U-valu  | ie)+0.04] a       | as given in | paragraph            | 3.2         |           |                        |
| Fabric                | heat los                | ss. W/K :                      | = S (A x                  | U)                  | o una pun               |                        |                | (26)(30)                                                                                    | + (32) =     |                   |             |                      | 212         | 2 86      | <b>(</b> 33)           |
| Heat c                | apacity                 | Cm = S(                        | Axk)                      | -)                  |                         |                        |                |                                                                                             | ((28)        | .(30) + (32       | 2) + (32a). | (32e) =              |             | <br><br>ງ | (34)                   |
| Therm                 | al mass                 | parame                         | ter (TMI                  | <sup>-</sup> = Cm ÷ | - TFA) ir               | n kJ/m²K               |                |                                                                                             | Indica       | tive Value        | : High      |                      | 45          |           | (35)                   |
| For desi              | ign asses:              | sments wh                      | ere the de                | tails of the        | construct               | ion are noi            | t known pr     | ecisely the                                                                                 | indicative   | values of         | TMP in T    | able 1f              |             |           |                        |
| can be ι              | used inste              | ad of a de                     | tailed calc               | ulation.            |                         |                        |                |                                                                                             |              |                   |             |                      |             |           | _                      |
| Therm                 | al bridg                | es : S (L                      | x Y) cal                  | culated u           | using Ap                | pendix I               | <              |                                                                                             |              |                   |             |                      | 24          | .8        | (36)                   |
| if details<br>Total f | of therma<br>abric he   | al bridging<br>at loss         | are not kr                | 10wn (36) =         | = 0.15 x (3             | 1)                     |                |                                                                                             | (33) +       | (36) =            |             |                      | 007         | 7.66      | 7(37)                  |
| Ventila               | ation he                | at loss c                      | alculater                 | 1 monthly           |                         |                        |                |                                                                                             | (38)m        | $= 0.33 \times ($ | 25)m x (5   |                      | 237         | .00       |                        |
| ventile               | .lan                    | Feb                            | Mar                       | Apr                 | Mav                     | Jun                    | Jul            | Αυσ                                                                                         | Sen          | Oct               | Nov         | Dec                  |             |           |                        |
| (38)m=                | 50.71                   | 50.06                          | 49.42                     | 46.41               | 45.85                   | 43.23                  | 43.23          | 42.74                                                                                       | 44.24        | 45.85             | 46.99       | 48.18                |             |           | (38)                   |
| Heat tr               | L                       |                                | L                         |                     |                         |                        | L              |                                                                                             | (30)m        | - (37) ± (*       | 1<br>38)m   |                      | I           |           |                        |
| (39)m=                | 288.38                  | 287.72                         | 287.08                    | 284.08              | 283.51                  | 280.89                 | 280.89         | 280.41                                                                                      | 281.9        | 283.51            | 284.65      | 285.84               |             |           |                        |
| · / ··                |                         | L                              |                           |                     |                         |                        | L              |                                                                                             |              | Average =         | Sum(39)1    | 12 /12=              | 284         | 1.07      | (39)                   |

| Heat lo                        | ss para                         | meter (H                                | HLP), W/                             | ′m²K                                                 |                                          |                                       |                              |                        | (40)m                 | = (39)m ÷                 | - (4)                                 |          |         |          |
|--------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------------------------|----------|---------|----------|
| (40)m=                         | 3.65                            | 3.64                                    | 3.63                                 | 3.6                                                  | 3.59                                     | 3.56                                  | 3.56                         | 3.55                   | 3.57                  | 3.59                      | 3.6                                   | 3.62     |         |          |
| Numbe                          | r of day                        | l<br>/s in mor                          | unth (Tab                            | le 1a)                                               |                                          |                                       |                              | 1                      | ,                     | Average =                 | Sum(40)1.                             | 12 /12=  | 3.6     | (40)     |
| [                              | Jan                             | Feb                                     | Mar                                  | Apr                                                  | May                                      | Jun                                   | Jul                          | Αυσ                    | Sep                   | Oct                       | Nov                                   | Dec      |         |          |
| (41)m=                         | 31                              | 28                                      | 31                                   | 30                                                   | 31                                       | 30                                    | 31                           | 31                     | 30                    | 31                        | 30                                    | 31       |         | (41)     |
|                                |                                 |                                         | _                                    |                                                      | -                                        |                                       |                              |                        |                       | _                         |                                       | _        |         |          |
| 4. Wa                          | ter heat                        | ting enei                               | rgy requi                            | irement:                                             |                                          |                                       |                              |                        |                       |                           |                                       | kWh/ye   | ear:    |          |
| Assum<br>if TF/<br>if TF/      | ed occu<br>A > 13.9<br>A £ 13.9 | upancy, I<br>9, N = 1<br>9, N = 1       | N<br>+ 1.76 x                        | [1 - exp                                             | (-0.0003                                 | 349 x (TF                             | FA -13.9                     | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13                   | 2.<br>.9)                             | 44       |         | (42)     |
| Annual<br>Reduce t<br>not more | averag<br>the annua<br>that 125 | je hot wa<br>al average<br>litres per j | ater usag<br>hot water<br>person per | ge in litre<br>usage by s<br><sup>r</sup> day (all w | es per da<br>5% if the d<br>rater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed i<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o               | 92<br>f                               | .24      |         | (43)     |
| [                              | Jan                             | Feb                                     | Mar                                  | Apr                                                  | May                                      | Jun                                   | Jul                          | Aug                    | Sep                   | Oct                       | Nov                                   | Dec      |         |          |
| Hot wate                       | r usage i                       | n litres per                            | day for ea                           | ach month                                            | Vd,m = fa                                | ctor from                             | Table 1c x                   | (43)                   |                       | -                         |                                       |          |         |          |
| (44)m=                         | 101.46                          | 97.77                                   | 94.08                                | 90.39                                                | 86.7                                     | 83.01                                 | 83.01                        | 86.7                   | 90.39                 | 94.08                     | 97.77                                 | 101.46   |         | <b>-</b> |
| Ener <mark>gy c</mark>         | ontent of                       | hot water                               | used - cal                           | culated mo                                           | onthly $= 4$ .                           | 190 x Vd,r                            | m x nm x D                   | OTm / 3600             | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b, 1 | c, 1d)   | 1106.83 | (44)     |
| (45)m=                         | 150.46                          | 131.59                                  | 135.79                               | <mark>118</mark> .39                                 | 113.6                                    | 98.02                                 | 90.83                        | 104.23                 | 105.48                | 122.93                    | 134.18                                | 145.71   |         | _        |
| lf instanta                    | aneous w                        | /ater heatii                            | ng at point                          | of use (no                                           | hot water                                | r storage),                           | enter 0 in                   | boxes (46              | ) to (61)             | Total = Su                | m(45) <sub>112</sub> =                |          | 1451.23 | (45)     |
| (46)m=                         | 22.57                           | 19.74                                   | 20.37                                | 17. <mark>7</mark> 6                                 | 17.04                                    | 14.7                                  | 13.63                        | 15.64                  | 15.82                 | 18.44                     | 20.13                                 | 21.86    |         | (46)     |
| Storage                        | storage                         | loss:<br>le (litres)                    | includir                             | ng any so                                            | olar or M                                | /WHRS                                 | storage                      | within sa              | ame ves               | sel                       |                                       | 160      |         | (47)     |
| lf comn                        | nunity h                        | neating a                               | ind no ta                            | ink in dw                                            | vellina, e                               | nter 110                              | litres in                    | (47)                   |                       |                           |                                       | 100      |         | (-17)    |
| Otherw                         | ise if no                       | o stored                                | hot wate                             | er (this in                                          | icludes i                                | nstantar                              | neous co                     | ombi boil              | ers) ente             | er '0' in (               | 47)                                   |          |         |          |
| Water s                        | storage                         | loss:                                   |                                      |                                                      |                                          | . /1 \ \ //                           | (1-1                         |                        |                       |                           |                                       |          | I       | ( )      |
| a) if ma                       | anutact                         | urer's de                               | eciared I                            | oss tacto                                            | or is kno                                | wn (kvvr                              | n/day):                      |                        |                       |                           |                                       | 0        |         | (48)     |
| Tempe                          | rature f                        | actor fro                               | m l able                             | 20                                                   |                                          |                                       |                              | ((                     |                       |                           |                                       | 0        |         | (49)     |
| Energy                         | lost fro                        | om water                                | storage                              | , KVVN/ye<br>sylinder l                              | ear<br>oss fact                          | or is not                             | known:                       | (48) x (49)            | ) =                   |                           | 1                                     | 10       |         | (50)     |
| Hot wa                         | ter stor                        | age loss                                | factor fr                            | rom Tabl                                             | e 2 (kW                                  | h/litre/da                            | ay)                          |                        |                       |                           | 0.                                    | 02       |         | (51)     |
| Volume                         | e factor                        | from Tal                                | ble 2a                               | 011 4.5                                              |                                          |                                       |                              |                        |                       |                           | 1                                     | 03       |         | (52)     |
| Tempe                          | rature f                        | actor fro                               | m Table                              | 2b                                                   |                                          |                                       |                              |                        |                       |                           | 0                                     | .6       |         | (53)     |
| Energy                         | lost fro                        | m water                                 | storage                              | , kWh/ye                                             | ear                                      |                                       |                              | (47) x (51)            | ) x (52) x (          | 53) =                     | 1.                                    | 03       |         | (54)     |
| Enter (                        | (50) or (                       | (54) in (5                              | 55)                                  | ·                                                    |                                          |                                       |                              |                        |                       |                           | 1.                                    | 03       |         | (55)     |
| Water s                        | storage                         | loss cal                                | culated f                            | for each                                             | month                                    |                                       |                              | ((56)m = (             | 55) × (41)ı           | m                         |                                       |          |         |          |
| (56)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (56)     |
| If cylinde                     | r contains                      | s dedicate                              | d solar sto                          | rage, (57)ı                                          | m = (56)m                                | x [(50) – (                           | H11)] ÷ (5                   | 0), else (5            | 7)m = (56)            | m where (                 | H11) is fro                           | m Append | lix H   |          |
| (57)m=                         | 32.01                           | 28.92                                   | 32.01                                | 30.98                                                | 32.01                                    | 30.98                                 | 32.01                        | 32.01                  | 30.98                 | 32.01                     | 30.98                                 | 32.01    |         | (57)     |
| Primary                        | / circuit                       | loss (an                                | nual) fro                            | om Table                                             | e 3                                      |                                       |                              |                        |                       |                           |                                       | 0        |         | (58)     |
| Primary                        | / circuit                       | loss cal                                | culated                              | for each                                             | month (                                  | 59)m = (                              | (58) ÷ 36                    | 65 × (41)              | m                     |                           | - 1 - 1                               |          |         |          |
| (mod                           | infied by                       | ractor fi                               |                                      |                                                      | nere is s                                | solar wat                             | ter heati                    | ng and a               |                       |                           | stat)                                 | 00.00    | l       | (50)     |
| (59)m=                         | 23.26                           | 21.01                                   | 23.26                                | 22.51                                                | 23.26                                    | 22.51                                 | 23.26                        | 23.26                  | 22.51                 | 23.26                     | 22.51                                 | 23.26    |         | (59)     |

| Combi                                                                                                             | loss ca                                                                                                          | alculated            | for eac   | h month      | (61)m =    | (60) ÷ 3           | 65 × (41)   | )m               |                |             |              |             |               |      |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|-----------|--------------|------------|--------------------|-------------|------------------|----------------|-------------|--------------|-------------|---------------|------|
| (61)m=                                                                                                            | 0                                                                                                                | 0                    | 0         | 0            | 0          | 0                  | 0           | 0                | 0              | 0           | 0            | 0           |               | (61) |
| Total h                                                                                                           | eat rec                                                                                                          | uired for            | water h   | neating ca   | alculated  | for eac            | h month     | (62)m =          | 0.85 ×         | (45)m +     | (46)m +      | (57)m +     | (59)m + (61)m |      |
| (62)m=                                                                                                            | 205.74                                                                                                           | 181.52               | 191.07    | 171.88       | 168.87     | 151.52             | 146.11      | 159.51           | 158.97         | 178.2       | 187.68       | 200.99      |               | (62) |
| Solar DI                                                                                                          | -IW input                                                                                                        | calculated           | using Ap  | pendix G o   | r Appendix | H (negat           | ve quantity | /) (enter '0     | ' if no sola   | r contribut | tion to wate | er heating) |               |      |
| (add a                                                                                                            | dditiona                                                                                                         | al lines if          | FGHRS     | and/or       | WWHRS      | applies            | , see Ap    | pendix (         | G)             |             |              |             |               |      |
| (63)m=                                                                                                            | 0                                                                                                                | 0                    | 0         | 0            | 0          | 0                  | 0           | 0                | 0              | 0           | 0            | 0           |               | (63) |
| Output                                                                                                            | from v                                                                                                           | vater hea            | ter       |              |            |                    |             |                  |                |             |              |             |               |      |
| (64)m=                                                                                                            | 205.74                                                                                                           | 181.52               | 191.07    | 171.88       | 168.87     | 151.52             | 146.11      | 159.51           | 158.97         | 178.2       | 187.68       | 200.99      |               | -    |
|                                                                                                                   |                                                                                                                  |                      |           |              |            |                    |             | Out              | out from w     | ater heate  | r (annual)₁  | 12          | 2102.07       | (64) |
| Heat g                                                                                                            | ains fro                                                                                                         | om water             | heating   | ∣, kWh/m     | onth 0.2   | 5 ´ [0.85          | × (45)m     | + (61)n          | n] + 0.8 >     | k [(46)m    | + (57)m      | + (59)m     | ]             |      |
| (65)m=                                                                                                            | 68.64                                                                                                            | 60.56                | 63.76     | 57.37        | 56.38      | 50.6               | 48.81       | 53.27            | 53.08          | 59.48       | 62.63        | 67.06       |               | (65) |
| inclu                                                                                                             | include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating |                      |           |              |            |                    |             |                  |                |             |              |             |               |      |
| 5. Int                                                                                                            | ternal g                                                                                                         | ains (see            | Table     | 5 and 5a     | ):         |                    |             |                  |                |             |              |             |               |      |
| Metab                                                                                                             | olic gai                                                                                                         | ns (Table            | 5), Wa    | tts          | -          |                    | -           | -                | -              | -           | -            | -           |               |      |
|                                                                                                                   | Jan                                                                                                              | Feb                  | Mar       | Apr          | May        | Jun                | Jul         | Aug              | Sep            | Oct         | Nov          | Dec         |               |      |
| (66)m=                                                                                                            | 122.18                                                                                                           | 122.18               | 122.18    | 122.18       | 122.18     | 122.18             | 122.18      | 122.18           | 122.18         | 122.18      | 122.18       | 122.18      |               | (66) |
| Ligh <mark>tin</mark>                                                                                             | g gains                                                                                                          | (calcula             | ted in A  | ppendix      | L, equati  | ion L9 o           | r L9a), a   | lso see          | Table 5        |             |              |             |               |      |
| (67)m=                                                                                                            | 1 <mark>9.38</mark>                                                                                              | 17.21                | 14        | 10.6         | 7.92       | <mark>6</mark> .69 | 7.23        | 9.39             | 12.61          | 16.01       | 18.68        | 19.91       |               | (67) |
| App <mark>liance</mark> s gains (ca <mark>lculat</mark> ed in Appendix L, equation L13 or L13a), also see Table 5 |                                                                                                                  |                      |           |              |            |                    |             |                  |                |             |              |             |               |      |
| (68)m=                                                                                                            | 217.34                                                                                                           | 219.5 <mark>9</mark> | 213.91    | 201.81       | 186.54     | 172.18             | 162.59      | 160.34           | 166.02         | 178.12      | 193.39       | 207.75      |               | (68) |
| Cookir                                                                                                            | ng gains                                                                                                         | s (calcula           | ited in A | ppendix      | L, equat   | ion L15            | or L15a)    | ), also se       | ee Table       | 5           |              | -           |               |      |
| (69)m=                                                                                                            | 35.22                                                                                                            | 35.22                | 35.22     | 35.22        | 35.22      | 35.22              | 35.22       | 35.22            | 35.22          | 35.22       | 35.22        | 35.22       |               | (69) |
| Pumps                                                                                                             | and fa                                                                                                           | ins gains            | (Table    | 5a)          |            |                    |             |                  |                |             |              |             |               |      |
| (70)m=                                                                                                            | 0                                                                                                                | 0                    | 0         | 0            | 0          | 0                  | 0           | 0                | 0              | 0           | 0            | 0           |               | (70) |
| Losses                                                                                                            | s e.g. e                                                                                                         | vaporatio            | n (nega   | ative valu   | es) (Tab   | le 5)              |             | •                |                | -           |              |             |               |      |
| (71)m=                                                                                                            | -97.74                                                                                                           | -97.74               | -97.74    | -97.74       | -97.74     | -97.74             | -97.74      | -97.74           | -97.74         | -97.74      | -97.74       | -97.74      |               | (71) |
| Water                                                                                                             | heating                                                                                                          | ,<br>g gains (T      | able 5)   | •            |            |                    | •           |                  | •              | •           | •            |             |               |      |
| (72)m=                                                                                                            | 92.26                                                                                                            | 90.13                | 85.7      | 79.69        | 75.78      | 70.28              | 65.61       | 71.6             | 73.72          | 79.95       | 86.98        | 90.13       |               | (72) |
| Total i                                                                                                           | nterna                                                                                                           | I gains =            |           |              |            | (66                | )m + (67)m  | •<br>n + (68)m · | •<br>+ (69)m + | (70)m + (7  | 1)m + (72)   | m           |               |      |
| (73)m=                                                                                                            | 388.62                                                                                                           | 386.58               | 373.26    | 351.75       | 329.89     | 308.81             | 295.08      | 300.98           | 312.01         | 333.73      | 358.71       | 377.45      |               | (73) |
| 6. So                                                                                                             | lar gain                                                                                                         | IS:                  |           | •            |            |                    | •           |                  | 1              | 1           |              |             |               |      |
| Solar g                                                                                                           | jains are                                                                                                        | calculated           | using sol | ar flux from | Table 6a   | and assoc          | iated equa  | tions to co      | onvert to th   | ne applicat | ole orientat | ion.        |               |      |
| Orienta                                                                                                           | ation:                                                                                                           | Access F             | actor     | Area         |            | Flu                | IX          | _                | g_             | _           | FF           |             | Gains         |      |
|                                                                                                                   |                                                                                                                  | Table 6d             |           | m²           |            | Та                 | ble 6a      | Т                | able 6b        | Т           | able 6c      |             | (W)           |      |
| North                                                                                                             | 0.9x                                                                                                             | 0.77                 | )         | 4.           | 55         | x                  | 10.63       | x                | 0.85           | x           | 0.7          | =           | 19.95         | (74) |
| North                                                                                                             | 0.9x                                                                                                             | 0.77                 | >         | 4.           | 55         | x                  | 20.32       | x                | 0.85           | x           | 0.7          | =           | 38.12         | (74) |
| North                                                                                                             | 0.9x                                                                                                             | 0.77                 | )         | 4.5          | 55         | x;                 | 34.53       | x                | 0.85           | x           | 0.7          | =           | 64.78         | (74) |
| North                                                                                                             | 0.9x                                                                                                             | 0.77                 | >         | 4.           | 55         | x !                | 55.46       | x                | 0.85           | x           | 0.7          | =           | 104.06        | (74) |
| North                                                                                                             | 0.9x                                                                                                             | 0.77                 | )         | 4.           | 55         | x                  | 74.72       | x                | 0.85           | ×           | 0.7          | =           | 140.18        | (74) |

| North                 | 0.9x                   | 0.77                     | x        |        | 4.55            | x         | 7                 | 9.99             | x      | 0.85             | ×                   | 0.7            | =      | 150.06 | (74)      |
|-----------------------|------------------------|--------------------------|----------|--------|-----------------|-----------|-------------------|------------------|--------|------------------|---------------------|----------------|--------|--------|-----------|
| North                 | 0.9x                   | 0.77                     | x        |        | 4.55            | x         | 7                 | 4.68             | x      | 0.85             | x                   | 0.7            | =      | 140.1  | (74)      |
| North                 | 0.9x                   | 0.77                     | x        |        | 4.55            | x         | 5                 | 9.25             | x      | 0.85             | x                   | 0.7            | =      | 111.15 | (74)      |
| North                 | 0.9x                   | 0.77                     | x        |        | 4.55            | x         | 4                 | 1.52             | x      | 0.85             | x                   | 0.7            | =      | 77.89  | (74)      |
| North                 | 0.9x                   | 0.77                     | x        | Γ      | 4.55            | x         | 2                 | 4.19             | x      | 0.85             | ×                   | 0.7            | =      | 45.38  | (74)      |
| North                 | 0.9x                   | 0.77                     | x        | Γ      | 4.55            | x         | 1                 | 3.12             | x      | 0.85             | ×                   | 0.7            | =      | 24.61  | (74)      |
| North                 | 0.9x                   | 0.77                     | x        | Γ      | 4.55            | x         | 8                 | 3.86             | x      | 0.85             | ×                   | 0.7            | =      | 16.63  | (74)      |
| South                 | 0.9x                   | 0.77                     | ×        | Γ      | 11.64           | x         | 4                 | 6.75             | x      | 0.85             | ×                   | 0.7            | =      | 224.39 | (78)      |
| South                 | 0.9x                   | 0.77                     | x        | Γ      | 11.64           | x         | 7                 | 6.57             | x      | 0.85             | ×                   | 0.7            | =      | 367.49 | (78)      |
| South                 | 0.9x                   | 0.77                     | x        |        | 11.64           | x         | 9                 | 7.53             | x      | 0.85             | x                   | 0.7            | =      | 468.12 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        | Ē      | 11.64           | x         | 1'                | 10.23            | x      | 0.85             | ×                   | 0.7            | =      | 529.08 | (78)      |
| South                 | 0.9x                   | 0.77                     | x        | Γ      | 11.64           | x         | 1                 | 14.87            | x      | 0.85             | ×                   | 0.7            | =      | 551.33 | (78)      |
| South                 | 0.9x                   | 0.77                     | x        | Γ      | 11.64           | x         | 1                 | 10.55            | x      | 0.85             | ×                   | 0.7            | =      | 530.58 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        | Ē      | 11.64           | x         | 10                | 08.01            | x      | 0.85             | ×                   | 0.7            | =      | 518.41 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        | Γ      | 11.64           | x         | 10                | )4.89            | x      | 0.85             | ×                   | 0.7            | =      | 503.45 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        | Γ      | 11.64           | x         | 10                | 01.89            | x      | 0.85             | ×                   | 0.7            | =      | 489.01 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        | Ē      | 11.64           | x         | 8                 | 2.59             | x      | 0.85             | ×                   | 0.7            | =      | 396.38 | (78)      |
| South                 | 0.9x                   | 0.77                     | ×        |        | 11.64           | X         | 5                 | 5.42             | x      | 0.85             | x                   | 0.7            | =      | 265.98 | (78)      |
| Sout <mark>h</mark>   | 0.9x                   | 0.77                     | ×        | Ē      | 11.64           | x         | 4                 | 40.4             | x      | 0.85             | x                   | 0.7            |        | 193.89 | (78)      |
|                       |                        |                          |          |        |                 |           |                   |                  |        |                  |                     |                |        |        |           |
| Sola <mark>r</mark> g | <mark>gain</mark> s in | watts, <mark>ca</mark> l | Iculate  | d fo   | or each mont    | h         |                   |                  | (83)m  | n = Sum(74)m .   | <mark>(8</mark> 2)m |                |        | ,      |           |
| (83)m=                | 244.34                 | 405.62                   | 532.9    | 6      | 33.14 691.51    | 6         | 80.65             | 658.51           | 614    | .6 566.9         | 441.7               | 6 290.59       | 210.52 |        | (83)      |
| Total (               | gains – i              | nternal ar               | nd sola  | r (8   | (73)m = (73)m   | ) + (<br> | 83)m              | , watts          | r      |                  |                     | _              |        |        |           |
| (84)m=                | 632.96                 | 792.2                    | 906.16   | 9      | 84.88 1021.4    | 1 9       | 89.45             | 953.6            | 915    | .58 878.9        | 775.4               | 9 649.3        | 587.98 |        | (84)      |
| 7. Me                 | ean inter              | nal tempe                | erature  | (he    | eating seasc    | n)        |                   |                  |        |                  |                     |                |        |        |           |
| Temp                  | perature               | during he                | eating   | oeri   | iods in the liv | /ing      | area f            | rom Tab          | ole 9  | , Th1 (°C)       |                     |                |        | 21     | (85)      |
| Utilis                | ation fac              | tor for ga               | ins for  | livi   | ng area, h1,    | m (s      | ee Ta             | ble 9a)          |        |                  |                     |                |        | 7      |           |
|                       | Jan                    | Feb                      | Mar      |        | Apr May         | /         | Jun               | Jul              | A      | ug Sep           | Oct                 | t Nov          | Dec    |        |           |
| (86)m=                | 1                      | 1                        | 0.99     | (      | 0.99 0.97       |           | 0.93              | 0.86             | 0.8    | 38 0.96          | 0.99                | 1              | 1      |        | (86)      |
| Mear                  | n interna              | l tempera                | ature in | livi   | ing area T1 (   | follo     | ow ste            | ps 3 to 7        | 7 in T | able 9c)         |                     |                |        | _      |           |
| (87)m=                | 18.62                  | 18.81                    | 19.14    | 1      | 19.59 20.06     |           | 20.5              | 20.76            | 20.    | 72 20.37         | 19.75               | 5 19.11        | 18.59  |        | (87)      |
| Temp                  | perature               | during he                | eating   | oeri   | iods in rest c  | of dv     | velling           | from Ta          | able 9 | 9, Th2 (°C)      |                     |                |        |        |           |
| (88)m=                | 18.46                  | 18.46                    | 18.47    | 1      | 18.48 18.48     | Т         | 18.5              | 18.5             | 18     | .5 18.49         | 18.48               | 3 18.48        | 18.47  | ]      | (88)      |
| Utilis                | ation fac              | tor for ga               | ins for  | res    | st of dwelling  | . h2      | .m (se            | e Table          | 9a)    |                  |                     | -              | -      | -      |           |
| (89)m=                | 1                      | 1                        | 0.99     | (      | 0.98 0.94       | Ť         | 0.81              | 0.52             | 0.5    | 68 0.88          | 0.98                | 1              | 1      | ]      | (89)      |
| Mear                  | interna                | l tempera                | ature in | the    | e rest of dwe   | lling     | T2 (fr            | nllow ste        |        | to 7 in Tabl     | e 9c)               |                |        | J      |           |
| (90)m=                | 15.58                  | 15.86                    | 16.35    |        | 17.01 17.68     |           | 18.25             | 18.47            | 18.    | 45 18.1          | 17.25               | 5 16.31        | 15.55  | ]      | (90)      |
| . /                   |                        |                          |          | 1      |                 |           |                   |                  |        | f                | LA = Li             | ving area ÷ (4 | 4) =   | 0.28   | (91)      |
| Maar                  | interne                | Itomnora                 | turo /f  | - r 41 | ho whole due    | مالات     | a) 4              | ۸., ד.           | . /4   | fl A) TO         |                     |                |        |        | ` ′       |
| (92)m=                | 16 42                  |                          | 17.12    |        | 17.72 18.33     |           | (y) = 11<br>18.87 | _A X I I<br>19.1 | + (1   | $-1LA \times 12$ | 17.94               | 17.08          | 16.39  | 1      | (92)      |
| ·····                 |                        |                          |          |        |                 |           |                   |                  |        |                  |                     |                |        | •      | · · · · / |

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

| (93)m=                | 16.42                       | 16.68                 | 17.12                 | 17.72                | 18.33              | 18.87      | 19.1      | 19.08      | 18.73                    | 17.94        | 17.08        | 16.39       |                          | (93)        |
|-----------------------|-----------------------------|-----------------------|-----------------------|----------------------|--------------------|------------|-----------|------------|--------------------------|--------------|--------------|-------------|--------------------------|-------------|
| 8. Sp                 | ace hea                     | ting requ             | uirement              |                      |                    |            |           |            |                          |              |              |             |                          |             |
| Set T<br>the ut       | i to the r<br>ilisation     | nean int<br>factor fo | ernal ter<br>or gains | nperatur<br>using Ta | e obtain<br>ble 9a | ed at ste  | ep 11 of  | Table 9t   | o, so tha                | t Ti,m=(     | 76)m an      | d re-calc   | ulate                    |             |
|                       | Jan                         | Feb                   | Mar                   | Apr                  | May                | Jun        | Jul       | Aug        | Sep                      | Oct          | Nov          | Dec         |                          |             |
| Utilisa               | ation fac                   | tor for g             | ains, hm              | :                    |                    |            |           |            |                          |              |              |             |                          |             |
| (94)m=                | 1                           | 0.99                  | 0.99                  | 0.97                 | 0.94               | 0.84       | 0.64      | 0.69       | 0.89                     | 0.98         | 0.99         | 1           |                          | (94)        |
| Usefu                 | Il gains,                   | hmGm                  | W = (94               | 4)m x (84            | 4)m                |            |           |            |                          |              |              |             |                          |             |
| (95)m=                | 631.06                      | 787.09                | 894.38                | 957.41               | 955.26             | 828.76     | 611.72    | 630.75     | 785.18                   | 756.9        | 645.52       | 586.61      |                          | (95)        |
| Month                 | nly avera                   | age exte              | rnal tem              | perature             | e from Ta          | able 8     |           |            |                          |              | _            |             |                          |             |
| (96)m=                | 4.3                         | 4.9                   | 6.5                   | 8.9                  | 11.7               | 14.6       | 16.6      | 16.4       | 14.1                     | 10.6         | 7.1          | 4.2         |                          | (96)        |
| Heat                  | loss rate                   | e for mea             | an intern             | al tempe             | erature,           | Lm , W =   | =[(39)m : | x [(93)m-  | – (96)m                  | ]            |              |             |                          |             |
| (97)m=                | 3494.95                     | 3388.72               | 3048.26               | 2505.69              | 1880.69            | 1199.29    | 702.21    | 751.31     | 1304.59                  | 2080.64      | 2841.02      | 3484.74     |                          | (97)        |
| Space                 | e heating                   | g require             | ement fo              | r each m             | nonth, k\          | Nh/mont    | th = 0.02 | 24 x [(97) | )m – (95                 | )m] x (4     | 1)m          |             |                          |             |
| (98)m=                | 2130.73                     | 1748.3                | 1602.48               | 1114.76              | 688.52             | 0          | 0         | 0          | 0                        | 984.86       | 1580.76      | 2156.21     |                          |             |
|                       |                             |                       |                       |                      |                    |            |           | Tota       | l per year               | (kWh/year    | .) = Sum(9   | 8)15,912 =  | 12006.63                 | (98)        |
| Space                 | e heating                   | g require             | ement in              | kWh/m <sup>2</sup>   | /year              |            |           |            |                          |              |              | Ī           | 151.98                   | (99)        |
| Qh En                 | orav roa                    | uiromor               | ote – Cor             | nmunity              | heating            | schomo     |           |            |                          |              |              | L           |                          | ], ,        |
| Thic pr               | ergy rec                    | d for on              |                       | ting one             |                    |            | ator boot | ing prov   | ided by                  | o comm       | upity och    |             |                          |             |
| Fractio               | n of spa                    | ace heat              | from se               | condarv/             | supplen/           | ng or wa   | neating   | Table 1    | 10e0 by (<br>1) '0' if n | one          | unity SCI    | leme.       | 0                        | (301)       |
| Freetie               |                             |                       | 6 m m m m m m m       |                      |                    | 4 (20)     | 1         |            | ,                        |              |              |             |                          |             |
| Fractio               | in or spa                   | ice neal              | from co               | minumity             | system             | 1 - (30    | () =      |            |                          |              |              | [           | 1                        | (302)       |
| The com               | nmunity so                  | heme may              | y obtain he           | eat from se          | everal sour        | ces. The p | procedure | allows for | CHP and u                | up to four o | other heat   | sources; th | ne latter                |             |
| Fractio               | on of hea                   | at from C             | commun                | ity boiler           | 'S                 | ioni power | stations. | See Apper  | idix C.                  |              |              |             | 1                        | (303a)      |
| Fractio               | on of tota                  | al space              | heat fro              | m Comn               | nunity bo          | oilers     |           |            |                          | (3           | 02) x (303   | a) =        | 1                        | (304a)      |
| Factor                | for cont                    | rol and o             | charging              | method               | (Table 4           | 4c(3)) fo  | r commu   | unity hea  | ting syst                | tem          |              | [           | 1                        | (305)       |
| Distrib               | ution los                   | s factor              | (Table 1              | 2c) for c            | commun             | ity heatir | ng syste  | m          |                          |              |              | [           | 1.05                     | (306)       |
| Space                 | heating                     | 9                     |                       |                      |                    |            |           |            |                          |              |              | ,           | kWh/year                 |             |
| Annua                 | space                       | heating               | requirem              | nent                 |                    |            |           |            |                          |              |              | l           | 12006.63                 | ]           |
| Space                 | heat fro                    | m Comr                | nunity b              | oilers               |                    |            |           |            | (98) x (30               | 04a) x (30   | 5) x (306) = | = [         | 12606.96                 | (307a)      |
| Efficier              | ncy of se                   | econdary              | /supple               | mentary              | heating            | system     | in % (fro | om Table   | e 4a or A                | ppendix      | E)           |             | 0                        | (308        |
| Space                 | heating                     | require               | ment froi             | m secon              | dary/sup           | plemen     | tary syst | tem        | (98) x (30               | 01) x 100 -  | ÷ (308) =    |             | 0                        | (309)       |
| <b>Water</b><br>Annua | <b>heating</b><br>I water h | <b>l</b><br>neating r | equirem               | ent                  |                    |            |           |            |                          |              |              | [           | 2102.07                  | 1           |
| If DHW<br>Water       | / from co                   | ommunit<br>m Comn     | ty schem              | ne:<br>Dilers        |                    |            |           |            | (64) x (30               | )3a) x (30)  | 5) x (306) : | ו<br>_ [    | 2207 17                  | ]<br>(310a) |
| Flectri               | rity user                   | for hea               | t distribu            | ition                |                    |            |           | 0.01       | x [(307a)                | (307e) +     | (310a) (     | 310e)] - [  | 1/2 1/                   | ](313)      |
| Coolin                | n Sveter                    |                       | v Efficien            | ncv Rati             | n                  |            |           | 0.01       |                          | (0076) T     | (υτυα)(      | - [[]       | ۱ <del>4</del> 0.14<br>۸ | (314)       |
| Snace                 | cooling                     | (if there             | is a five             | d cooling            | n svetam           | if not a   | onter (1) |            | = (107) <b>∸</b>         | (314) –      |              | l<br>I      | 0                        | (315)       |
|                       | site of a second            |                       |                       |                      |                    |            |           |            | - (101) -                | (017) -      |              | l           | U                        | ](010)      |
| mecha                 | nical ve                    | ntilation             | - balanc              | ed, extra            | act or po          | sitive in  | put from  | outside    |                          |              |              | [           | 0                        | (330a)      |

| warm air heating system fans                                                                                                          |                             |                               | 0                        | (330b) |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------|--------|
| pump for solar water heating                                                                                                          |                             |                               | 0                        | (330g) |
| Total electricity for the above, kWh/year                                                                                             | =(330a) + (330b)            | ) + (330g) =                  | 0                        | (331)  |
| Energy for lighting (calculated in Appendix L)                                                                                        |                             |                               | 342.18                   | (332)  |
| 12b. CO2 Emissions – Community heating scheme                                                                                         |                             |                               |                          |        |
|                                                                                                                                       | Energy<br>kWh/year          | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)<br>Efficiency of heat source 1 (%) If there is CHP using the source 1 (%) | two fuels repeat (363) to ( | 366) for the second fue       | el 90                    | (367a) |
| CO2 associated with heat source 1 [(307b)+(3                                                                                          | 10b)] x 100 ÷ (367b) x      | 0                             | = 3555.39                | (367)  |
| Electrical energy for heat distribution [(                                                                                            | 313) x                      | 0.52                          | = 76.89                  | (372)  |
| Total CO2 associated with community systems (3                                                                                        | 63)(366) + (368)(372)       | :                             | = 3632.28                | (373)  |
| CO2 associated with space heating (secondary) (3                                                                                      | 09) x                       | 0                             | = 0                      | (374)  |
| CO2 associated with water from immersion heater or instantaneo                                                                        | ous heater (312) x          | 0.22                          | = 0                      | (375)  |
| Total CO2 associated with space and water heating (3                                                                                  | 73) + (374) + (375) =       |                               | 3632.28                  | (376)  |
| CO2 associated with electricity for pumps and fans within dwellin                                                                     | g (331)) x                  | 0.52                          | = 0                      | (378)  |
| CO2 associated with electricity for lighting (3                                                                                       | 32))) x                     | 0.52                          | = 177.59                 | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                                                |                             |                               | 3809.87                  | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                                              |                             |                               | 48.23                    | (384)  |
| El rating (section 14)                                                                                                                |                             |                               | 58.69                    | (385)  |