17 EAST HEATH ROAD, LONDON, NW3 1AL

BASEMENT IMPACT ASSESSMENT IN SUPPORT OF PLANNING APPLICATION

Job No: 162611

Date: 03rd November 2016

Prepared by Chartered Engineer: Rob Markovits C.Eng.M.I.Struct.E

Revision: P2

Art

Residential

Commercial

Conservation

Retail

Education

Form

Hotels

Period

Prepared R. Mar Checked E. Holl Verified

Docume Basem Revision P2

	Date
ed By:	
rkovits	03.11.16
ed By:	
llingum	03.11.16
l By:	
ent Ref:	
nent Impact Assessment	
n:	

Contents

- 1.0 Introduction
- 2.0 The Site and Existing Building
- 3.0 Ground Conditions/Geology
- 4.0 Hydrogeology & Hydrology
- 5.0 Arboriculture
- 6.0 Underground Structures
- 7.0 Existing Utilities and Underground Drainage
- 8.0 Boundary Conditions
- 9.0 Sub-Structure Construction
- 10.0 Temporary Works Systems and Principals to be used or
- 11.0 Potential Ground Movement and Monitoring of Adjoining
- 12.0 Excavation of Soil
- 13.0 Waterproofing and Drainage systems
- 14.0 Demolition, Recycling, Dust/Noise Control & Site Hoardi
- 15.0 Superstructure
- Appendix A Preliminary Form Structural Drawings
- Appendix B Underpinning Specification
- Appendix C Building Damage Classification Table
- Appendix D Design Philosophy & Preliminary Calculations

	6
	6
	7
	7
	7
	7
	8
	8
	9
n each part of the works	9
g Properties	10
	10
	10
ing	10
	10

PREAMBLE

This report has been prepared by Form Structural Design Ltd on the instructions of the project architects, Marek Wojciechowski Architects, acting on behalf of the client and is for the sole use and benefit of the client.

Form Structural Design Ltd shall not be responsible for any use of the report or its contents for any purpose than that it was prepared and provided. If the client wishes to pass copies of the report to other parties, the whole of the report should be copied. No professional liability or warranty is extended to other parties by Form Structural Design Ltd as a result of permitting the report to be copied or by any other cause without the express written agreement of Form Structural Design Ltd

ABOUT FORM STRUCTURAL DESIGN

Form has undertaken over 250 projects involving subterranean development, both new build and retrospective, using numerous techniques and sequences of construction. This extensive design, site and local geology/hydrology experience has positioned the practice as one of London's leading subterranean engineering design consultants.

Many of our subterranean projects are in the London Boroughs of RBKC, Westminster, Camden, Hammersmith & Fulham and Haringey, making us familiar with the most recent requirements of subterranean development.

Form has designed multi-level basements using techniques including open dig, underpinning (mass and 'L' shaped R.C. special foundations), temporary and permanent steel sheet piling, temporary and permanent concrete piled retaining walls, top down construction and tunnelling.

TERMS OF REFERENCE

We were appointed by the project architects, Marek Wojciechowski Architects, to prepare a Construction Method Statement in support of a planning submission for refurbishment including extending the lower ground floor further into the rear garden at 17 East Heath Road, London, NW3 1AL.

Executive Summary

The proposal complies with the requirements set out in Camden Development Policy DP27 2010 - 2025. Specifically:

- The proposal will have no impact on the structural stability of the existing and adjoining buildings. This is ensured in both the permanent state and for the duration of the site works. Respectively, the permanent and temporary works will be designed to sustain the loads applied by the existing structures where necessary.
- As the services within the property are not to be significantly altered and the extent of hard standings are not proposed to be increased, the flow rate into public sewers in terms of foul or storm runoff is not expected to increase and therefore the existing utilisation of the public sewer will not be altered by the development.
- Alterations to the structure will be designed in such a way as to maintain independent stability and avoid taking any support from adjacent structures. There is no effect on local groundwater levels and flows, this has been assessed by Card Geotechnics in a separate BIA.
- The proposed development will not adversely affect any class A trees in the vicinity.
- As the extension to the lower ground floor is proposed in a location which is currently occupied by a raised terrace, there is no adverse effect on soil provision.
- The site is not expected to be of archaeological significance.

The permanent and temporary works will be designed to relevant British Standards. The temporary works and the method of works will be developed such that the effect on the neighbours is kept to category 1 levels according to CIRIA guide C580 (see **Appendix C**)

Introduction

Introduction 1.0

This report has been prepared as a supporting document to the planning application for the redevelopment of the site currently known as 17 East Heath Road (17EHR). The proposals involve the formation/expansion of some openings in internal loadbearing walls at lower ground floor level, the lowering of the lower ground floor level, the erection of a new single storey glazed extension to the rear and the extension of the lower ground floor further into the rear garden.

This report predominantly presents an outline structural scheme for the construction of the new section of lower ground floor but also touches on the alterations to the superstructure.

Limitations

This report and the structural information produced to date is based on a review of the proposed architectural plans and visual inspection of the existing structure. A borehole has been undertaken to verify the ground conditions and trial pits have been carried out to verify the foundations of adjacent party fence structures and ensure adequate safeguarding is put in place during the works.

The Site and Existing Building 2.0

The existing structure is a late-Victorian semi-detached house located on East Heath Road, close to the junction with Squires Mount. The property is Grade II listed and is within the Hampstead conservation area. The existing property is laid out over four storeys with storage in the roof void and constructed from masonry walls with timber floors and a timber cut roof.

Figure 1 - Front View

Figure 2 - Stanford's Library Map of London and its Suburbs 1864

Figure 3 – Current Street Map

Figure 5 – Front Aerial View

Site Information

3.0 Ground Conditions/Geology

A check on the British Geological Survey website indicates that the site is underlain by sand with no superficial deposits recorded. This is corroborated by a search of local historic boreholes, the nearest being on Squires Mount. This borehole shows made ground and sandy gravel over sand at 2.7m.

A site investigation including boreholes and trial holes has been carried out, is to be submitted as part of the planning application. The borehole information confirmed the presence of sand below a layer of made ground. Sampling and laboratory testing confirmed the soil parameters required for the design of the new foundations.

The construction methods proposed within this report and associated structural proposals are appropriate for the geology and are capable for supporting the structural loads of the proposed development, the techniques that will be used for the construction are well established in the industry. Refer to **Appendix A**.

Summary of Window Sample Log WS1					
Description of Strata	Depth				
Made Ground Finishes, slab, rubble, gravel and sand.	0.0m – 0.75m				
Sand Medium dense yellow grey fine sand with occasional orange brown bands up to 5mm thick. (Bagshot Formation)	0.75m – 4.45m				
Sand Yellow grey slightly clayey fine sand. (Bagshot Formation)	4.45m – 4.90m				
Sand Medium dense yellow grey fine SAND with occasional orange brown bands up to 5mm thick. (Bagshot Formation)	4.90m – 7.45m				

Slope stability

The site is considered to be generally level and not cut into the side of hills or valleys therefore slope stability is not considered to be a problem.

4.0 Hydrogeology & Hydrology

A separate Basement Impact Assessment has been carried out by Card Geotechnics Limited which is to be submitted as part of the planning application. This covers existing ground conditions and reviews possible impacts on ground water and neighbouring structures.

5.0 Arboriculture

An Arboriculture report has been carried out by Simon Pryce which will be submitted as part of this application. Two trees were noted in the front garden and one in the back. The two trees in the front garden have been judged as category U and are to be removed. The category C tree in the rear garden is also to be removed in order to facilitate the works but is not judged to make minimal contribution outside the garden and is easily replaceable.

6.0 Underground Structures

It can be seen from **Figure 7** below that the LUL Northern Line runs to the West of the site through Hampstead, the tunnel is approximately 430m from the property. It will therefore not be necessary to advise London Underground asset protection department to check alignments and agreed works will not affect any existing tunnels or access shafts. No other underground structures, tunnels or vaults are expected in the vicinity of the proposed works.

Figure 7- Proximity of LUL Lines to 17 East Heath Road

7.0 Existing Utilities and Underground Drainage

Gas and Electrical

As the extent of excavation is small and to the rear of the house it is assumed that no services will be affected. However if required, services will be diverted and replaced to modern day standards where necessary as determined by the Mechanical and Electrical Engineer for the project. All services that are required to pass through new structure will be sleeved and articulated accordingly to allow for future movements and settlements of the surrounding structure.

Below Ground Drainage

It is assumed that drainage for the property runs to a sewer below East Heath although this has not been verified. This will need to be verified prior to commencement of excavation works.

As the extent of hard standings are not proposed to be increased, the flow rate into public sewers in terms of foul or storm runoff is not expected to increase and therefore the existing utilisation of the public sewer will not be altered by the development.

8.0 Boundary Conditions

The property has six adjoining owners and one boundary with the public highway.

South Eastern (Rear) Boundary

The rear boundary of the property is formed by the rear external wall of The Cottage, Squires Mount which is a grade II listed, two-storey early to mid C19 property with no basement.

North Western (Front) Boundary

The front boundary of the property is separated from the footway of East Heath Road by the front garden wall of 17EHR.

North Eastern Boundary

To the north east the property adjoins 16 East Heath Road. The houses share a party wall with the front and rear gardens separated by a party garden wall. 16EHR is grade II listed in conjunction with 17EHR.

South Western Boundary

To the South West, the property adjoins the rear of No.s 1-4 Squires Mount. In some locations the boundary wall remains a garden wall and in others it has been enclosed upon to form the external wall of a rear extension. This row of properties are mid C19 and grade II listed.

Development Proposals

It is proposed to extend the current rear projection at lower ground floor further back into the garden. As the rear section of the garden is circa 2m higher than the internal ground floor level this will necessitate some excavation and the formation of new RC cantilever retaining walls. It is also proposed to lower the existing floor slabs within the house at lower ground floor level and within the vaults to the front of the property. The slabs within the house are to be reduced in level as much as possible without undermining the existing foundations. The vault walls will need to be underpinned as the proposed slab level reduction would undermine the existing walls. An existing wall is also to be removed within the vault and a new support beam provided.

9.0 Sub-Structure Construction

The proposals for the construction of the substructure to the rear take account of the development proposals as indicated on the architect's drawings, anticipated ground conditions, the stability of the neighbouring properties, health and safety considerations and the physical constraints of the site. (See drawings in **Appendix A** for proposed structural arrangement).

10.0 Temporary Works Systems and Principals to be used on each part of the works

It is proposed to construct the new rear extension by forming L-shaped reinforced concrete cantilever retaining walls in underpin fashion. Some of these sections will be formed below the party wall with Nos. 3 and 4 Squires Mount, some will be simply retaining the high level garden to the rear within the boundary of 17EHR.

The reinforced concrete underpins have been designed to be freestanding i.e. no props are required in the temporary or permanent condition. Conservative levels and loads for the adjoining buildings have been taken at this stage, further investigation will be carried out prior to construction. No groundwater is expected.

The existing boundary garden wall between 17 and 16 East Heath Road may need to be underpinned in order to facilitate the reduction in ground level. The foundation beneath the party wall with 3 Squires mount will need to be investigated further as it was not possible to expose it in the original site investigations. This may also need mass concrete underpinning depending on the actual depth. The wall to the rear of the garden which forms the back wall of The Cottage, Squires Mount will need to be partially underpinned in order to facilitate a reduction in level.

All of the works, particularly the sub-structure, are to be carried out in a manner which minimises any noise and vibration that may affect the neighbouring properties. The engineer will make regular site visits during the basement works in order to ensure good practise is being followed. The ground works contractors will provide detailed method statements for the works and temporary propping to the basement for approval by the engineer prior to commencement of the works.

11.0 Potential Ground Movement and Monitoring of Adjoining Properties

Based on experience from many similar projects within the RBKC, Westminster and Camden, monitoring during the works typically records maximum vertical and horizontal movements of 5mm. We therefore expect the maximum category of movement to be a category 1 of the Building Damage classification table based on Boscardin and Cording / Burland et al. See Appendix C. We have extensive experience of underpinning and contiguous piling and will visit the site periodically during the works to ensure it is being carried out to our specifications.

Monitoring of the surrounding buildings will be carried out during the works to assess possible movements and the findings will be reported to the adjoining surveyors periodically. It is anticipated that only the adjacent structures at 3 and 4 Squires mount are within the zone of influence of the sub-structure works, it is therefore proposed to monitor the party wall in this area. The details of the monitoring regime will be agreed with the adjoining owners' surveyors as part of the party wall approval process. Form will produce a full monitoring specification which will form part of the party wall documentation. This will detail, amongst other things, the frequency of monitoring, tolerances and location of monitoring points. Monitoring points will be placed in multiple locations at high and low levels in order to monitor vertical and lateral movement of all structures within the zone of influence of the works. Trigger levels will be suggested and agreed with the adjoining owners' surveyors. These trigger levels will set out quantities of settlement at which the adjoining owners will be notified and works on site reviewed by the project engineer.

12.0 Excavation of Soil

The soil will be excavated and transferred to normal 7m skips kept on site. The excavation would be undertaken by small excavators and transferred to the skip to the front of the site by hand. The footpath and street adjacent to the site will be cleaned each evening. The frequency of vehicle movement will be confirmed by the chosen contractor and approved by the council before works commence. The skip is to be located in the front garden.

13.0 Waterproofing and Drainage systems

Reinforced concrete retaining walls will be designed as a water retaining structure in accordance with BS 8007 and detailed with hydrophyllic strips at all concrete joints in order to minimise water ingress. As the proposed level of the substrycture is not lower than the existing adjacent floor no significant water is expected however final waterproofing details will need to be confirmed by the architect / specialist.

Drainage will remain as a gravity system.

14.0 Demolition, Recycling, Dust/Noise Control & Site Hoarding

The demolition works are to take place within the hoarded confines of the site. Any scaffolding on the site perimeter is to be clad with monoflex sheeting above the 6 foot plywood hoarding line to minimise any dust or debris from falling onto the neighbouring streets.

Materials such as stock-bricks, re-useable timbers, steel beams etc are to be recycled where possible.

To minimise dust and dirt from the demolition phase of the project, the following measures shall be implemented:

- All brickwork and concrete demolition work is to be constantly watered to reduce any airborne dust.
- Demolished materials are to be removed to a skip placed at the front of the site.
- The pavement to the sides of the property is to be washed and cleaned down each day.
- Any debris or dust / dirt falling on to the street and public highway will be cleared as it occurs by designated cleaners and washed down fully every night.

Building work which can be heard at the boundary of the site will not be carried out on Sundays and Bank Holidays and will be carried out within working hours as agreed with the council.

Rubbish Removal and Recycling:

An important part of the site management process involves site cleansing, rubbish removal and recycling.

To reduce and manage site waste:

- All material removed from site is to be taken to waste recycling stations and separated for recycling where possible. Records of the waste recycling will be provided by the recycling stations.
- Waste types to facilitate recycling activities.
- All Duty of Care and other legal requirements are complied with during the disposal of wastes. •
- Suppliers are to be consulted to determine correct / appropriate disposal routes for waste products and containers.

It will be the responsibility of each contractor to keep the site area under his control safe from build-up of rubbish.

15.0 Superstructure

No structural work is proposed above lower ground floor.

Appendix A

Preliminary Form Structural Drawings

162611 - L(23)01	PROPOSED GROUND FLOOR PLAN	P4
162611 - L(23)02	PROPOSED FIRST FLOOR PLAN	P2
162611 - A(23)01	PROPOSED SECTIONS AND DETAILS GENERAL ARRANGEMENT	P1
162611 - A(28)01	PROPOSED CROSS SECTION A-A GENERAL ARRANGEMENT	P4

ITECTS DETAILS

COMPRESSIBLE FILLER D WITH 2 PART SULPHIDE SEALENT

CTION 02 ALE 1:10 @A1 1:20@A3 COMPRESSIBLE BOARD

SECTION 03

SCALE 1:10 @A1 1:20@A3

SCALE 1:50 @A1 1:100@A3

 \neg

Appendix B

Underpinning Specification:

To be read in conjunction with the Preliminaries and General Conditions.

WORKMANSHIP: The work shall be carried out in accordance with the Engineer's drawings and instructions and to the approval of the Architect and the Building Control Officer. This specification is intended to be used for mass concrete underpinning.

Any other sequence of operations or method of working proposed by the Contractor is to be submitted to the Architect and copied to the Engineer and agreed in writing a minimum of 14 days before work is to be commenced on site.

CONTRACTORS RESPONSIBILITIES: The Contractor shall be responsible for the safety of the underpinned structure and provide all necessary shoring, strutting and bracing to ensure its safety and stability at all times.

SERVICES: The Contractor is also to carry out a survey of the property and adjacent area to establish the location of obstructions such as service runs or drains. Any obstruction found is to be brought to the attention of the Architect / Engineer. The Contractor is to allow for any temporary support to the services or obstructions during the underpinning.

CONSTRUCTION SEQUENCE: The underpinning is to be undertaken in short sections not exceeding 1 metre in length. The underpinning is to be undertaken on a 'hit and miss' sequence as shown on the drawings.

No adjacent pin is to be excavated until a minimum 48 hours after the adjacent pin has been cast and packed up.

The Contractor is to provide drawings marked up to show the proposed sequence of underpinning a minimum of 14 days before work is commenced.

EXCAVATIONS: Excavation shall be to the depth and width shown on the drawings. However, where tree roots are encountered new underpins are to extend 600mm below the last trace of any root activity. The sides of the excavations shall be adequately shored and propped to prevent subsidence or slip of the soil. Soil faces behind the pin and at the formation level shall be undisturbed.

Any soil faces behind the underpinning that require to be retained shall be by precast concrete poling boards. The boards are to have holes to enable the void behind the boards to be grouted up. The poling boards are to be measured as left in.

INSPECTIONS: All excavations are to be inspected by the Engineer and/or the Building Control Officer. Minimum notice of 24 hours is to be given when excavations are ready for inspection.

PREPARATION: The sides of the completed pin are to be thoroughly cleaned and scabbled to the satisfaction of the Engineer.

The soffit of the existing footings is to be levelled off and cleaned of all loose or detrimental material.

No projecting partitions of the existing footings are to be trimmed except as shown on the drawings or directed by the Engineer.

The Contractor must provide shear keys.

Allow for 150 deep x 100 wide shear keys across width of scabbled interfaces at 1m maximum vertical centres. Minimum 2 per face. Form in timber or polystyrene.

ANTI-HEAVE PRECAUTIONS: Before carrying out concreting introduce anti-heave precautions in the form of clay master as directed by the Engineer to the faces of the excavation.

PLACING CONCRETE: The concrete for the underpinning is to be mass concrete and poured continuously to 75mm below the soffit of the existing footing. The concrete is to be fully compacted using a mechanical vibrator.

The top 75mm of the pin is to be filled to the full depth and width of the void with a well rammed C35 concrete using 5mm – 10mm coarse aggregate and "Conbex 100" expanding admixture by Messrs Fosroc UK Limited in accordance with their instructions. The filling of this void is to be undertaken 24 hours after the mass concrete has been poured.

CONCRETE GRADE: On works where a full specification has not been provided, a FND2 mix should be used. This has characteristic 28 day strength of 35N/mm² and is suitable for Class 2 sulphate soils.

OVER-EXCAVATION: Except where noted otherwise on the drawings, areas of over-excavation are to be backfilled with a granular material and compacted in 225mm layers to provide a stable sub-base compatible with the final finishes.

SPOIL: The contractor will include in his prices for the removal of all spoil arising from the works which is not suitable for backfilling purposes.

RECORDS: A full record of each section underpinned is to be kept on site and readily available for inspection by the Engineer or Building Control Officer.

GUARANTEE The Contractor is to provide a 10 year insurance backed guarantee for the underpinning works.

Appendix C

Classification of visible damage to walls (after Burland et al, 1977, Boscardin and Cording, 1989; and Burland, 2001)

Ca da	ategory of mage	Description of typical damage (ease of repair is underlined)	Approximate crack width (mm)	Limiting tensile strain ε _{lim} (per cent)
0	Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible.	< 0.1	0.0–0.05
1	Very slight	Fine cracks that can easily be treated during normal decoration. Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection.	<1	0.05-0.075
2	Slight	<u>Cracks easily filled. Redecoration probably</u> <u>required.</u> Several slight fractures showing inside of building. Cracks are visible externally and <u>some repointing may be required externally</u> to ensure weathertightness. Doors and windows may stick slightly.	< 5	0.075–0.15
3	Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5–15 or a number of cracks > 3	0.15–0.3
4	Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 but also depends on number of cracks	> 0.3
5	Very severe	<u>This requires a major repair involving partial or</u> <u>complete rebuilding.</u> Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion. Danger of instability.	usually > 25 but depends on number of cracks.	

1. In assessing the degree of damage, account must be taken of its location in the building or structure.

2. Crack width is only one aspect of damage and should not be used on its own as a direct measure of it.

Appendix D

Design Philosophy & Preliminary Calculations

	I	
Form	Project	17 East H
Form Structural Design	Calcs for	
77 St. John Street		Party Wa
	Calcs by	Calcs date
	EH	03/11/2016
Saturated density of retained ma	aterial	γs = 20.0 kl
Design shear strength		φ' = 24.2 de
Angle of wall friction		δ = 18.6 de
Base material details		
Firm clay		
Moist density		γmb = 18.0
Design shear strength		φ' _b = 24.2 c
Design base friction		$\delta_{\text{b}}=\textbf{18.6}~\text{d}$
Allowable bearing pressure		Pbearing = 10
Using Coulomb theory		
Active pressure coefficient for re	etained material	
$K_a = sin(\alpha)$	+ ϕ') ² / (sin(α) ² ×	$\sin(\alpha - \delta) \times [1 + \delta]$
Passive pressure coefficient for	base material	0 +1 >2 / /=:=/0(
	$K_p = SIN(9)$	0 - φ _b)- / (sin(90
At-rest pressure		
At-rest pressure for retained ma	terial	$K_0 = 1 - SII$
Loading details		
Surcharge load on plan		Surcharge
Applied vertical dead load on wa	all	W dead = 14.
Applied vertical live load off wall Resition of applied vortical load	on wall	VV _{live} = 0.0
Applied horizontal dead load on	wall	$F_{doad} = 0.0$
Applied horizontal live load on w	vall	Flive = 0.0 k
Height of applied horizontal load	d on wall	$h_{load} = 0 \text{ mr}$
C		
4		

39.3

25.2

Form	Project				Job no.	
	17 East Heath Road				162611	
Form Structural Design 77 St. John Street	Calcs for Party Wall Underpin			Start page no./Revision 3		
London EC1M 4NN	Calcs by EH	Calcs date 03/11/2016	Checked by	Checked date	Approved by	Approved date

 $w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 10.5 \text{ kN/m}$ $W_{base} = I_{base} \times t_{base} \times \gamma_{base} = 13.8 \text{ kN/m}$ $w_{ds} = d_{ds} \times t_{ds} \times \gamma_{base} = 2.5 \text{ kN/m}$ $w_{sur} = Surcharge \times I_{heel} = 0.2 \text{ kN/m}$ $W_{m w} = I_{heel} \times (h_{stem} - h_{sat}) \times \gamma_m = 4.9 \text{ kN/m}$ $W_v = W_{dead} + W_{live} = 14 \text{ kN/m}$ $W_{total} = W_{wall} + W_{base} + W_{ds} + W_{sur} + W_{m_w} + W_v = 45.9 \text{ kN/m}$

 $F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 1.4 \text{ kN/m}$ $F_{m_a} = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{20.6 kN/m}$ $F_{total} = F_{sur} + F_{m_a} = 22 \text{ kN/m}$

 $F_p = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 10.8 \text{ kN/m}$ $F_{res} = F_p + (W_{total} - w_{sur}) \times tan(\delta_b) = 26.2 \text{ kN/m}$ PASS - Resistance force is greater than sliding force

 $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 1.5 \text{ kNm/m}$ $M_m = F_m \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 12.4 \text{ kNm/m}$ $M_{p_o} = F_p \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 1.3 \text{ kNm/m}$ $M_{ot} = M_{sur} + M_{m_a} + M_{p_o} = 15.2 \text{ kNm/m}$

 $M_{wall} = W_{wall} \times (I_{toe} + t_{wall} / 2) = 14.7 \text{ kNm/m}$ $M_{\text{base}} = w_{\text{base}} \times I_{\text{base}} / 2 = 11.4 \text{ kNm/m}$ $M_{ds} = w_{ds} \times (I_{ds} + t_{ds} / 2) = 0.4 \text{ kNm/m}$ $M_{m_r} = (w_{m_w} \times (I_{base} - I_{heel} / 2) + w_{m_s} \times (I_{base} - I_{heel} / 3)) = 7.9 \text{ kNm/m}$ $M_{dead} = W_{dead} \times I_{load} = 19.6 \text{ kNm/m}$ $M_{rest} = M_{wall} + M_{base} + M_{ds} + M_{m r} + M_{dead} = 54.1 \text{ kNm/m}$

M_{ot} = **15.2** kNm/m M_{rest} = **54.1** kNm/m PASS - Restoring moment is greater than overturning moment

 $M_{sur_r} = w_{sur} \times (I_{base} - I_{heel} / 2) = 0.4 \text{ kNm/m}$ $M_{total} = M_{rest} - M_{ot} + M_{sur_r} = 39.3 \text{ kNm/m}$ $R = W_{total} = 45.9 \text{ kN/m}$ $x_{bar} = M_{total} / R = 856 mm$ $e = abs((I_{base} / 2) - x_{bar}) = 24 mm$ Reaction acts within middle third of base $p_{toe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 25.2 \text{ kN/m}^2$ $p_{heel} = (R / I_{base}) + (6 \times R \times e / I_{base}^2) = 29.9 \text{ kN/m}^2$ PASS - Maximum bearing pressure is less than allowable bearing pressure

RET/

Form	Project				Job no.		
		17 East Heath Road					
Form Structural Design	Calcs for	Party Wall Underpin			Start page no./Re	4	
London	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
EC1M 4NN	EH	03/11/2016					
	6 9002-1004)						
ALTAINING WALL DESIGN (D	<u>3 6002.1994)</u>				TEDDS calculation	version 1.2.01.06	
Ultimate limit state load factor	ſS						
Dead load factor		$\gamma_{f_d} = 1.4$					
Live load factor		$\gamma_{f_l} = 1.6$					
Earth and water pressure factor		$\gamma_{f_e} = 1.4$					
Factored vertical forces on wa	all						
Wall stem		$W_{wall_f} = \gamma_{f_d}$	$ imes$ h _{stem} $ imes$ t _{wall} $ imes$ γ	ywall = 14.6 kN/m			
Wall base		$W_{base_f} = \gamma_{f_d}$	$\times I_{\text{base}} \times t_{\text{base}} \times$	$\gamma_{\text{base}} = 19.3 \text{ kN}/$	m		
Wall downstand		$W_{ds_f} = \gamma_{f_d} \times$	$d_{ds} \times t_{ds} \times \gamma_{base}$	e = 3.5 kN/m			
Surcharge		$w_{sur_f} = \gamma_{f_l} \times$	Surcharge \times I	heel = 0.4 kN/m			
Moist backfill to top of wall		$w_{m_w_f} = \gamma_{f_d}$	$\timesI_{heel}\times(h_{stem}$ -	$h_{sat}) \times \gamma_m \ = \textbf{6.9}$	kN/m		
Applied vertical load		$W_{\nu_f} = \gamma_{f_d} \times$	Wdead + $\gamma_{f_l} \times V$	V _{live} = 19.6 kN/m			
Total vertical load		$W_{total_f} = W_{wa}$	$all_f + W_{base_f} + W$	$V_{ds_f} + W_{sur_f} + W_{m_f}$	$_{w_f} + W_{v_f} = 64.$	2 kN/m	
Factored horizontal at-rest for	ces on wall						
Surcharge		$F_{sur_f} = \gamma_{f_l} \times$	$K_0 \times Surcharg$	$e \times h_{eff} = 3.8 \text{ kN/}$	'n		
Moist backfill above water table		$F_{m_a_f} = \gamma_{f_e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{48.5 kN/m}$					
Total horizontal load		$F_{total_f} = F_{sur_f}$	$al_{f} = F_{sur_{f}} + F_{m_{a}f} = 52.4 \text{ kN/m}$				
Passive resistance of soil in from	nt of wall	$F_{p_f} = \gamma_{f_e} \times$	$F_{p_f} = \gamma_{L_e} \times 0.5 \times K_p \times cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 15.1$				
kN/m							
Factored overturning moment	S						
Surcharge		$M_{sur_f} = F_{sur_f}$	$_{_{\rm f}} \times ({\rm h}_{\rm eff} - 2 \times {\rm d})$	_{ds}) / 2 = 4 kNm/n	ı		
Moist backfill above water table		$M_{m_a_f} = F_{m_}$	$_a_f \times (h_{eff} + 2 \times$	h_{water} - $3 imes d_{ds}$) /	3 = 29.3 kNm/n	n	
Soil in front of wall		$M_{p_o_f} = F_{p_f} \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 1.8 \text{ kNm/m}$					
Total overturning moment		$M_{ot_{f}} = M_{sur_{f}} + M_{m_{a_{f}}} + M_{p_{o_{f}}} = 35.1 \text{ kNm/m}$					
Restoring moments							
Wall stem		$M_{wall_f} = w_{wal}$	$I_{f} \times (I_{toe} + t_{wall} / $	2) = 20.6 kNm/n	n		
Wall base		$M_{base_f} = w_{base_f}$	$_{ase_f} \times I_{base} / 2 =$	16 kNm/m			
Wall downstand		$M_{ds_f} = w_{ds_f}$	imes (I _{ds} + t _{ds} / 2)	= 0.6 kNm/m			
Surcharge		$M_{sur_r_f} = w_{su}$	$\mu_{\rm r_f} imes (I_{\rm base} - I_{\rm heel})$	/ 2) = 0.6 kNm/r	n		
Moist backfill		$M_{m_r_f} = (w_m$	$_{w_f} \times (I_{base} - I_{hee})$	$(1 - 1) + W_{m_s_f} \times (1 - 1)$	$I_{base} - I_{heel} / 3)) =$	11 kNm/m	
Design vertical load		$M_{v_f} = W_{v_f} \times I_{load} = \textbf{27.4 kNm/m}$					
Total restoring moment		$M_{\text{rest}_f} = M_{\text{was}}$	$II_f + M_{base_f} + N$	$M_{ds_f} + M_{sur_r_f} + N_{sur_r_f}$	$I_{m_r_f} + M_{v_f} = 76$	5.3 kNm/m	
Factored bearing pressure							
Total moment for bearing		$M_{total_f} = M_{res}$	st_f - Mot_f = 41 .	2 kNm/m			
Total vertical reaction		$R_f = W_{total_f}$	= 64.2 kN/m				
Distance to reaction $x_{bar_f} = M_{total_f} / R_f = 641 \text{ mm}$							
Eccentricity of reaction		$e_f = abs((I_{ba}$	se / 2) - Xbar_f) =	192 mm	within middle	third of boos	
Bearing pressure at too		$\mathbf{D}_{\mathbf{D}}}}}}}}}}$	$ _{haaa}) + (6 \vee D.)$	reaction acts	3 kN/m ²	uniu ui base	
$p_{\text{toe_f}} = (\Pi f / I_{\text{base}}) + (O \times \Pi f \times ef / I_{\text{base}}) = 03.3 \text{ KIV/}\Pi^2$ $P_{\text{toe_f}} = (\Pi f / I_{\text{base}}) + (O \times \Pi f \times ef / I_{\text{base}}) = 03.3 \text{ KIV/}\Pi^2$							
Bate of change of base reaction	1	$Pnee_{I} = (n_{f})$	$\frac{1}{10000} = (\mathbf{U} \times \mathbf{n}_{f})$	$-32.04 \text{ kN/m}^2/\text{m}^2$			
Bearing pressure at stem / toe	I	$D_{\text{stem too } f} = r$	$\max(D_{\text{top} f} - (rat))$	$e \times I_{toe}$ 0 kN/m ²) = 23 .6 kN/m ²		
Bearing pressure at mid stem		$P_{\text{stem mid } f} = 1$	$p_{\text{stem_null}} = - max(p_{\text{lue}_1} + (rate \times (l_{\text{lue}_1} + t_{\text{wall}} / 2)) + 0 \text{ kN/m}^2) = 20.2 \text{ kN/m}^2$				

Passive resistance of soil in front of wall Resistance to sliding

Vertical forces on wall

Moist backfill to top of wall

Horizontal forces on wall

Moist backfill above water table

Calculate stability against sliding

Applied vertical load

Total horizontal load

Total vertical load

Wall stem

Wall base

Surcharge

Surcharge

Wall downstand

Overturning moments

Surcharge Moist backfill above water table Soil in front of wall Total overturning moment

Restoring moments

Wall stem Wall base Wall downstand Moist backfill Design vertical dead load Total restoring moment

Check stability against overturning Total overturning moment

Total restoring moment

Check bearing pressure

Surcharge Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe Bearing pressure at heel

Form	Project Job no. 17 East Heath Road					2611
Form Structural Docian	Cales for				Start page no./Revision	
77 St. John Street		Party Wa	ll Underpin		6	
London	Calcs by	Calcs date	Checked by	Approved by	Approved date	
EC1M 4NN	EH	03/11/2016			FI	
						· .
From DC0110.Dout 1.1007 To		PASS -	Design sheai	r stress is less t	nan maximun	n shear stress
From BS8110:Part 1:1997 - Ta	able 3.8	. 0.4 <i>/</i>	$12 \text{ N}/\text{mm}^2$			
Design concrete shear stress		Vc_toe = U.4 4	13 IN/IIIII-	AV No of	oor roinforoo	mont required
			Vic	$e < Vc_toe - NO SI$		ment required
Design of reinforced concrete	e retaining wall	heel (BS 8002:	1994)			
Material properties						
Characteristic strength of concre	ete	$f_{cu} = 40 \text{ N/m}$	nm²			
Characteristic strength of reinfor	rcement	$f_y = 500 \text{ N/r}$	nm²			
Base details						
Minimum area of reinforcement		k = 0.13 %				
Cover to reinforcement in heel		Cheel = 30 m	im			
Calculate shear for heel desig	ın					
Shear from bearing pressure		V _{heel_bear} = (Pheel_f + Pstem_he	$e_{el_f} \times I_{heel} / 2 = 2$.1 kN/m	
Shear from weight of base		Vheel_wt_base	= $\gamma_{f_d} \times \gamma_{base} \times I$	heel \times tbase = 1.7 k	N/m	
Shear from weight of moist back	<fill< td=""><td>V_{heel_wt_m} =</td><td>w_{m_w_f} = 6.9 kN</td><td>l/m</td><td></td><td></td></fill<>	V _{heel_wt_m} =	w _{m_w_f} = 6.9 kN	l/m		
Shear from surcharge		$V_{\text{heel}_\text{sur}} = w$	sur_f = 0.4 kN/n	ı		
Total shear for heel design		$V_{heel} = - V_h$	eel_bear + Vheel_w	t_base + Vheel_wt_m -	+ V _{heel_sur} = 6.9	kN/m
Calculate moment for heel de	sign					
Moment from bearing pressure	0	M _{heel_bear} =	$(2 \times p_{heel_f} + p_{st})$	$m_{mid_f} \times (I_{heel} + 1)$	$t_{wall} / 2)^2 / 6 = 0$.5 kNm/m
Moment from weight of base		Mheel_wt_base	= $(\gamma_{f_d} \times \gamma_{base} \times$	$t_{base} \times (I_{heel} + t_{wall})$	$(2)^{2}/(2) = 0.4$	kNm/m
Moment from weight of moist ba	ackfill	M _{heel} wt m =	Wm w f × (Iheel +	twall) / 2 = 1.3 kN	lm/m	
Moment from surcharge		M _{heel} sur = W	$I_{sur f} \times (I_{heel} + t_w)$, all) / 2 = 0.1 kNm	/m	
Total moment for heel design		M _{heel} = - M	heel bear + Mheel	wt base + Mheel wt m	$h + M_{heel sur} = 1$.	2 kNm/m
	4 —200—	→			_	
350	•	٠	•	•	•	
<u> </u>						
Ober de la sel la la se d'an						
Width of bool		b 1000 m	m/m			
Notified the	$d_{hard} = t_{hard}$	D = 1000 mm/m				
Constant		uneel = tbase - Cheel - $(\Psi heel / 2) = 314.0$ [1][1]				
Constant		$\mathbf{r}_{\text{heel}} = \mathbf{v}_{\text{heel}} / (\mathbf{U} \times \mathbf{U}_{\text{heel}} \times \mathbf{I}_{\text{cu}}) = \mathbf{U}_{\text{cu}} \mathbf{U}_{\text{u}}$				s not required
l ever arm	$Z_{\text{heel}} = \min(0)$	compression removement is not required				
	Z _{heel} = 298	mm	((,,,,	- 100	
Area of tension reinforcement re	equired	As heel des =	M_{heel} / (0.87 $ imes$	$f_y \times z_{heel}$) = 9 mm	1²/m	
Minimum area of tension reinfor	cement	A_s heel min =	$\mathbf{k} \times \mathbf{b} \times \mathbf{t}_{\text{base}} = \mathbf{b}$	455 mm²/m		
Area of tension reinforcement re	equired	As heel reg =	Max(As heat day	$A_{s heel min} = 455$	5 mm²/m	
Reinforcement provided	1	12 mm dia	12 mm dia.bars @ 200 mm centres			
-						

Form	Project				Job no.	
	17 East Heath Road				16	2611
Form Structural Design	Calcs for	Calcs for			Start page no./Revision	
77 St. John Street		Party Wa	II Underpin			7
London	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
EC1M 4NN	EH	03/11/2016				
Area of reinforcement provided		$A_{s_heel_prov} =$	= 565 mm²/m			
		PASS - Reinf	orcement pro	vided at the reta	aining wall he	el is adequate
Check shear resistance at he	el					
Design shear stress		Vheel = Vheel	$/(b \times d_{heel}) = 0$).022 N/mm ²		
Allowable shear stress		Vadm = min($0.8 \times \sqrt{(f_{eu}/1)}$	N/mm^2) 5) × 1 N/	$mm^2 = 5.000$ N	J/mm ²
			Design shear	r stress is less t	han maximun	n shear stress
		1400	Design Shea			
From BS8110:Part 1:1997 – Ta	able 3.8					
Design concrete shear stress		Vc_heel = 0.4	43 N/mm ²			
			Vhee	el < Vc_heel - No sh	ear reinforce	nent required
Design of reinforced concrete	e retaining wa	II downstand (B	S 8002:1994)			
Material properties			<u>_</u> _			
Characteristic strength of conor	oto	f 40 N//	mm^2			
Characteristic strength of conc	ele	$I_{cu} = 40 \text{ N/I}$	11111 ⁻ mm ²			
	rcement	$I_y = 500 \text{ N/}$				
Base details						
Minimum area of reinforcement		k = 0.13 %				
Cover to reinforcement in down	stand	c _{ds} = 30 mi	n			
Calculate shear for downstan	d design					
Total shear for downstand desig	gn					
		$V_{down} = \gamma_{f_e}$	$ imes K_p imes cos(\delta_b)$	$ imes \gamma_{m} imes d_{ds} imes (d_{cove})$	r + t _{base} + d _{ds} / 2	2) = 13.3 kN/m
Calculate moment for downst	and design					
Total moment for downstand de						
	$\cos(\delta_1) \times \alpha \times$	d v [(d t	$) \times (t_1 + d_2)$	$d_{1} \times (t_{1} / 2)$	$2 \times d_{1} / (2) 1 / (2)$	2 - 45 kNm/m
$Vidown = \gamma t_e \times r x_p \times$	COS(Ob) × γm ×	Uds × [(Ucover + Ibase	e) × (lbase + Uds)	+ Uds × (Ibase / 2 -	F Z X Uds / 3)] / /	2 = 4.3 KINIII/III
T T						
4						
350	>					
_ ★	•	•	•	•	•	
	4 —200-					
Check downstand in bending						
Width of downstand		b = 1000 m	ım/m			
Depth of reinforcement		$d_{down} = t_{ds} - c_{ds} - (\phi_{down}/2) = 314.0 \text{ mm}$				
Constant		$K_{down} = M_{down} / (h \times d_{down} 2 \times f_{ex}) = 0.001$				
Constant		r\down = Ivido	wn / (D × Udown ⁻	$\times I_{cu}$ = 0.001	inforcement i	- not vo avvivo d
						s not required
Lever arm		Z _{down} = Min	(0.5 + √(0.25 -	(min(K _{down} , 0.228	b) / 0.9)),0.95) (× d down
		Zdown = 298	mm			
Area of tension reinforcement re	equired	As_down_des =	= M _{down} / (0.87	\times f _y \times z _{down}) = 35	mm²/m	
Minimum area of tension reinfo	rcement	$A_{s_down_min} =$	$= k \times b \times t_{ds} = 4$	I55 mm²/m		
Area of tension reinforcement re	equired	As_down_req =	= Max(As_down_d	es, $A_{s_down_min}$) = 4	55 mm²/m	
Reinforcement provided		12 mm dia	.bars @ 200 r	nm centres		
Area of reinforcement provided		As_down_prov	= 565 mm²/m			

Form	Project	
		17 East H
Form Structural Design	Calcs for	Party Wa
London	Calaa bu	Color data
EC1M 4NN	EH	03/11/2016
	PASS	- Reinforceme
Check shear resistance at dov	wnstand	
Design shear stress		$v_{\text{down}} = V_{\text{dow}}$
Allowable shear stress		$v_{adm} = min($
		PASS -
From BS8110:Part 1:1997 – Ta	able 3.8	
Design concrete shear stress		$V_{c_{down}} = 0.$
Design of reinforced concrete	retaining wall	stem (BS 8002
Material properties		
Characteristic strength of concre	ete	f _{cu} = 40 N/r
Characteristic strength of reinfo	rcement	$f_y = 500 \text{ N/m}$
Wall details		
Minimum area of reinforcement		k = 0.13 %
Cover to reinforcement in stem		C _{stem} = 30 n
Cover to reinforcement in wall		c _{wall} = 30 m
Factored horizontal at-rest for	rces on stem	
Surcharge		$F_{s_sur_f} = \gamma_{f_}$
Moist backfill above water table		$F_{s_m_a_f} = 0$
Calculate shear for stem desig	gn	
Shear at base of stem		$V_{stem} = F_{s_s}$
Calculate moment for stem de	esign	
Surcharge		$M_{s_sur} = F_{s_}$
Moist backfill above water table		$M_{s_m_a} = F_s$
Total moment for stem design		$M_{stem} = M_{s}$
-215		
	•	•
_		
	4 —200—	
Check wall stem in bending		
Width of wall stem		b = 1000 m
Depth of reinforcement		$d_{stem} = t_{wall} \cdot$
Constant		$K_{stem} = M_{ste}$
Lever arm		z _{stem} = min
		Zstem = 168
Area of tension reinforcement re	equired	As stem des =

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided

Form	Project				Job no.	
	17 East Heath Road				162611	
Form Structural Design	Calcs for				Start page no./Revision	
77 St. John Street		Party Wall	Underpin			9
London	Calcs by C	alcs date	Checked by	Checked date	Approved by	Approved date
EC1M 4NN	EH	03/11/2016				
Area of reinforcement provided		As stem prov =	1005 mm²/m			
	F	PASS - Reinfor	rcement provi	ded at the retain	ning wall stem	is adequate
Check shear resistance at wal	l stem					
Design shear stress		$v_{\text{stem}} = V_{\text{stem}}$	$/ (b \times d_{stem}) = 0$.175 N/mm ²		
Allowable shear stress		$v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 N/mm^2), 5) \times 1 N/mm^2} = 5.000 N/mm^2$				
		PASS -	Design shear s	stress is less th	an maximum	shear stress
From BS8110:Part 1:1997 - Ta	ble 3.8					
Design concrete shear stress		Vc_stem = 0.75	51 N/mm²			
			Vstem <	: Vc_stem - No she	ar reinforcem	ent required
Check retaining wall deflection	n					
Basic span/effective depth ratio		$ratio_{bas} = 7$				
Design service stress		$f_s = 2 \times f_y \times I$	$A_{s_stem_req}$ / (3 ×	$A_{s_stem_prov}$) = 125	5.5 N/mm ²	
Modification factor	factor _{tens} = min(0.8	55 + (477 N/mr	$m^2 - f_s)/(120 \times (120))$	0.9 N/mm ² + (M _{st}	$_{tem}/(b \times d_{stem}^2)))$),2) = 2.00
Maximum span/effective depth r	atio	ratio _{max} = ra	$tio_{bas} imes factor_{ten}$	s = 14.00		
Actual span/effective depth ratio	1	$ratio_{act} = h_{ste}$	m / d _{stem} = 11.6	4		
				PASS - Span to	o depth ratio i	s acceptable

Toe bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Heel bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Downstand bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Form	Project	17 East H
Form Structural Design 77 St. John Street	Calcs for	Garden Re
London EC1M 4NN	Calcs by EH	Calcs date 30/09/2016
Saturated density of retained ma Design shear strength Angle of wall friction	aterial	γ _s = 20.0 k φ' = 24.2 d δ = 18.6 de
Firm clay Moist density Design shear strength Design base friction Allowable bearing pressure Using Coulomb theory Active pressure coefficient for re $K_a = sin(\alpha)$ Passive pressure coefficient for	etained material + φ')² / (sin(α)² × base material K _p = sin(9	$\gamma_{mb} = 18.0$ $\phi'_b = 24.2 \text{ c}$ $\delta_b = 18.6 \text{ c}$ $P_{bearing} = 10$ $\sin(\alpha - \delta) \times [1 - 0.0000000000000000000000000000000000$
At-rest pressure At-rest pressure for retained ma	terial	K ₀ = 1 – si
Loading details Surcharge load on plan Applied vertical dead load on wa Applied vertical live load on wall Position of applied vertical load Applied horizontal dead load on Applied horizontal live load on w Height of applied horizontal load	all on wall wall vall d on wall	Surcharge $W_{dead} = 0.0$ $W_{live} = 0.0$ $I_{load} = 0 mn$ $F_{dead} = 0.0$ $F_{live} = 0.0$ k $h_{load} = 0 mn$

Form	Project				Job no.	
	17 East Heath Road				162611	
Form Structural Design 77 St. John Street	Calcs for Garden Retaining Wall			Start page no./Revision 3		
London EC1M 4NN	Calcs by EH	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date

 $w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 17 \text{ kN/m}$ $w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 14.9 \text{ kN/m}$ $w_{ds} = d_{ds} \times t_{ds} \times \gamma_{base} = 2.5 \text{ kN/m}$ $w_{sur} = Surcharge \times I_{heel} = 0.2 \text{ kN/m}$ $w_{m_w} = I_{heel} \times (h_{stem} - h_{sat}) \times \gamma_m = 4.9 \text{ kN/m}$ $W_{total} = W_{wall} + W_{base} + W_{ds} + W_{sur} + W_{mw} = 39.5 \text{ kN/m}$

 $F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = \textbf{1.4 kN/m}$ $F_{m_a} = 0.5 \times K_a \times \cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = 20.6 \text{ kN/m}$ $F_{total} = F_{sur} + F_{m_a} = 22 \text{ kN/m}$

 $F_{\text{p}} = 0.5 \times K_{\text{p}} \times \text{cos}(\delta_{\text{b}}) \times (d_{\text{cover}} + t_{\text{base}} + d_{\text{ds}} - d_{\text{exc}})^2 \times \gamma_{\text{mb}} = 10.8 \text{ kN/m}$ $F_{res} = F_p + (W_{total} - w_{sur}) \times tan(\delta_b) = 24.0 \text{ kN/m}$ PASS - Resistance force is greater than sliding force

 $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 1.5 \text{ kNm/m}$ $M_{m a} = F_{m a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 12.4 \text{ kNm/m}$ $M_{p,o} = F_p \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 1.3 \text{ kNm/m}$ $M_{ot} = M_{sur} + M_{m a} + M_{p o} = 15.2 \text{ kNm/m}$

 $M_{wall} = W_{wall} \times (I_{toe} + t_{wall} / 2) = 25.1 \text{ kNm/m}$ $M_{\text{base}} = w_{\text{base}} \times I_{\text{base}} / 2 = 13.4 \text{ kNm/m}$ $M_{ds} = w_{ds} \times (I_{ds} + t_{ds} / 2) = 0.4 \text{ kNm/m}$ $M_{m_r} = (W_{m_w} \times (I_{base} - I_{heel} / 2) + W_{m_s} \times (I_{base} - I_{heel} / 3)) = 8.5 \text{ kNm/m}$ $M_{rest} = M_{wall} + M_{base} + M_{ds} + M_{m_r} = 47.4 \text{ kNm/m}$

M_{ot} = **15.2** kNm/m M_{rest} = **47.4** kNm/m PASS - Restoring moment is greater than overturning moment

 $M_{sur r} = W_{sur} \times (I_{base} - I_{heel} / 2) = 0.4 \text{ kNm/m}$ M_{total} = M_{rest} - M_{ot} + M_{sur} r = **32.7** kNm/m $R = W_{total} = 39.5 \text{ kN/m}$ $x_{\text{bar}} = M_{\text{total}} / R = 826 \text{ mm}$ $e = abs((I_{base} / 2) - x_{bar}) = 74 mm$ Reaction acts within middle third of base $p_{toe} = (R / I_{base}) + (6 \times R \times e / I_{base}^2) = 27.4 \text{ kN/m}^2$ $p_{heel} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 16.6 \text{ kN/m}^2$ PASS - Maximum bearing pressure is less than allowable bearing pressure

RET

Form Project Job no.									
17 East Heath Road					162611				
Form Structural Design	Calcs for			Start page no./Revision					
77 St. John Street		Garden Re	Garden Retaining Wall			4			
London	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
EC1M 4NN	EH	30/09/2016							
RETAINING WALL DESIGN (B	S 8002:1994)								
				٦	EDDS calculation	version 1.2.01.06			
Ultimate limit state load factor	rs								
Dead load factor		$\gamma_{f_d} = 1.4$							
Live load factor		$\gamma_{f_{-}I} = 1.6$							
Earth and water pressure factor		$\gamma_{f_e} = 1.4$							
Factored vertical forces on wa	all								
Wall stem		Wwall $f = \gamma f d$	$ imes$ h _{stem} $ imes$ t _{wall} $ imes$ γ_w	_{all} = 23.8 kN/m					
Wall base		Wease $f = \gamma f d$	\times lbase \times tbase $\times \gamma$	base = 20.8 kN/n	n				
Wall downstand		$W_{ds} f = V_{f} d \times$	$d_{ds} \times t_{ds} \times v_{base}$	= 3.5 kN/m					
Surcharge		Wour $f = V + X$		a = 0.4 kN/m					
Moist backfill to top of wall		Wsu_i = 7i_i ×		e – 0.4 kt/m) × v – 6 9 k	N/m				
Total vertical load		$W_{\text{fm}} = y_{\text{fm}}$							
		v total_t - vvw	ai_i + vvbase_i + vvd		w_r = 33.4 KIN/III				
Factored norizontal at-rest for	rces on wall	Г и и	K. v. Curaharaa						
Surcharge		$F_{sur_f} = \gamma_{f_i} \times$	K₀ × Surcharge	\times fleff = 3.0 KIN/f					
Moist backfill above water table		$F_{m_a_f} = \gamma_{f_e}$	$Fm_a = f = \gamma f_a \times 0.3 \times N_0 \times \gamma m \times (\text{If eff} - 1 \text{ I water})^2 = 40.3 \text{ KIV/III}$						
lotal norizontal load		$F_{total_f} = F_{sur_f}$	$F_{total_f} = F_{sur_f} + F_{m_af} = 52.4 KIV/M$						
Passive resistance of soil in from	it of wall	$F_{p_f} = \gamma_{f_e} \times$	$F_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times COS(O_b) \times (C_{Cover} + T_{base} + C_{ds} - C_{exc})^2 \times \gamma_{mb} = 15.1$						
Factored overturning moment	ts		<i>"</i>						
Surcharge		$M_{sur_f} = F_{sur_f}$	$M_{sur_{f}} = F_{sur_{f}} \times (h_{eff} - 2 \times d_{ds}) / 2 = 4 \text{ kNm/m}$						
Moist backfill above water table		$M_{m_a_f} = F_{m_a}$	$M_{m_a_f} = F_{m_a_f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 29.3 \text{ kNm/m}$						
Soil in front of wall		$M_{p_o_f} = F_{p_f}$	$M_{p_0_f} = F_{p_f} \times [2 \times d_{ds} - t_{base} - d_{cover} + d_{exc}] / 3 = 1.8 \text{ kNm/m}$						
lotal overturning moment		$M_{ot_f} = M_{sur_f}$	$IV_{lot_f} = IV_{lsur_f} + IV_{lm_af} + IV_{lp_of} = 35.1 KINM/M$						
Restoring moments									
Wall stem		$M_{wall_f} = W_{wa}$	$M_{wall_f} = W_{wall_f} \times (I_{toe} + t_{wall} / 2) = 35.1 \text{ kNm/m}$						
Wall base		$M_{base_f} = W_{base_f}$	$M_{base_f} = w_{base_f} \times I_{base} / 2 = 18.7 \text{ kNm/m}$						
Wall downstand		$M_{ds_f} = w_{ds_f}$	$M_{ds_f} = w_{ds_f} \times (I_{ds} + t_{ds} / 2) = \textbf{0.6} \text{ kNm/m}$						
Surcharge		$M_{sur_r_f} = W_{st}$	$M_{sur_r_f} = w_{sur_f} \times (I_{base} - I_{heel} / 2) = \textbf{0.6} \text{ kNm/m}$						
Moist backfill		$M_{m_r_f} = (w_m$	$I_w_f \times (I_{base} - I_{heel})$	$/ 2) + W_{m_s_f} \times (I_{b})$	$_{ase}$ - I_{heel} / 3)) =	11.9 kNm/m			
Total restoring moment		$M_{\text{rest}_f} = M_{\text{was}}$	$II_f + M_{base_f} + M_d$	$s_f + M_{sur_r_f} + M_r$	n_r_f = 67 kNm/i	m			
Factored bearing pressure									
Total moment for bearing		$M_{total_f} = M_{re}$	st_f - Mot_f = 31.9	kNm/m					
Total vertical reaction		$R_f = W_{total_f}$	= 55.4 kN/m						
Distance to reaction		$x_{bar_f} = M_{total}$	_f / Rf = 577 mm						
Eccentricity of reaction		$e_f = abs((I_{ba}$	$_{se}$ / 2) - x_{bar_f} = 3	323 mm					
			R	eaction acts ou	itside middle	third of base			
Bearing pressure at toe		$p_{toe_f} = R_f / ($	$(1.5 \times x_{bar_f}) = 64$	kN/m²					
Bearing pressure at heel		$p_{\text{heel}_f} = 0 \text{ kN}$	$N/m^2 = 0 \text{ kN/m}^2$						
Rate of change of base reaction	1	$rate = p_{toe_f}$	rate = $p_{toe_f} / (3 \times x_{bar_f}) = 37.01 \text{ kN/m}^2/\text{m}$						
Bearing pressure at stem / toe		pstem_toe_f = f	$p_{stem_toe_f} = max(p_{toe_f} - (rate \times I_{toe}), 0 \text{ kN/m}^2) = 15.9 \text{ kN/m}^2$						
Bearing pressure at mid stem		$p_{stem_mid_f} =$	max(p _{toe_f} - (rate	\times (I _{toe} + t _{wall} / 2))	, 0 kN/m²) = 9 .	4 kN/m ²			
Bearing pressure at stem / heel		$p_{stem_heel_f} =$	max(p _{toe_f} - (rate	$e \times (I_{toe} + t_{wall})), 0$	$kN/m^{2}) = 3 kN$	/m²			

Overturning moments

Surcharge Moist backfill above water table Soil in front of wall Total overturning moment

Restoring moments

Vertical forces on wall

Moist backfill to top of wall

Horizontal forces on wall

Moist backfill above water table

Calculate stability against sliding

Passive resistance of soil in front of wall

Wall stem

Wall base

Surcharge

Surcharge

Wall downstand

Total vertical load

Total horizontal load

Resistance to sliding

Wall stem Wall base Wall downstand Moist backfill Total restoring moment

Check stability against overturning

Total overturning moment Total restoring moment

Check bearing pressure

Surcharge Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe Bearing pressure at heel

Form	Project	17 East H	Job no. 16	Job no. 162611			
Form Structural Design 77 St. John Street	Calcs for Garden Retaining Wall				Start page no./F	Start page no./Revision 5	
London EC1M 4NN	Calcs by EH	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date	
Design of reinforced concrete retaining wall Material properties Characteristic strength of concrete Characteristic strength of reinforcement		all toe (BS 8002:1 f _{cu} = 40 N/r f _y = 500 N/	994) nm² mm²				
Base details							

k = **0.13** %

c_{toe} = **30** mm

 $V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 52 \text{ kN/m}$

 $M_{toe_bear} = (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} / 2)^2 / 6 = 49.9 \text{ kNm/m}$

 $M_{toe_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = 12.6 \text{ kNm/m}$

 $M_{toe} = M_{toe_bear} - M_{toe_wt_base} - M_{toe_wt_ds} = 32.8 \text{ kNm/m}$

.

 $M_{toe_wt_ds} = \gamma_{f_d} \times \gamma_{base} \times d_{ds} \times t_{ds} \times (I_{toe} - I_{ds} + (t_{wall} - t_{ds}) / 2) = 4.5 \text{ kNm/m}$

 $V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 15 \text{ kN/m}$

 $V_{toe_wt_ds} = \gamma_{f_d} \times \gamma_{base} \times d_{ds} \times t_{ds} = 3.5 \text{ kN/m}$ Vtoe = Vtoe_bear - Vtoe_wt_base - Vtoe_wt_ds = **33.5** kN/m

Minimum area of reinforcement Cover to reinforcement in toe

Calculate shear for toe design

Shear from bearing pressure Shear from weight of base Shear from weight of downstand Total shear for toe design

Calculate moment for toe design

Moment from bearing pressure Moment from weight of base Moment from weight of downstand Total moment for toe design

←__200**→**

Check toe in bending

Width of toe Depth of reinforcement Constant

Lever arm

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided

Check shear resistance at toe Design shear stress Allowable shear stress

	b = 1000 mm/m
	$d_{\text{toe}} = t_{\text{base}} - c_{\text{toe}} - (\phi_{\text{toe}} / 2) = \textbf{314.0} \text{ mm}$
	$K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.008$
	Compression reinforcement is not required
	$z_{toe} = min(0.5 + \sqrt{(0.25 - (min(K_{toe}, 0.225) / 0.9)), 0.95)} \times d_{toe}$
	z _{toe} = 298 mm
	$A_{s_toe_des} = M_{toe} / (0.87 \times f_y \times z_{toe}) = \textbf{253} \text{ mm}^2/\text{m}$
	$A_{s_toe_min} = k \times b \times t_{base} = \textbf{455} \ mm^2/m$
	$A_{s_toe_req} = Max(A_{s_toe_des}, A_{s_toe_min}) = \textbf{455} \ mm^2/m$
	12 mm dia.bars @ 200 mm centres
	$A_{s_toe_prov} = 565 \text{ mm}^2/\text{m}$
P	ASS - Reinforcement provided at the retaining wall toe is adequate
	$v_{toe} = V_{toe} / (b \times d_{toe}) = \textbf{0.107} \text{ N/mm}^2$

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stress

Form Project Job no.								
		17 East H	eath Road	162611				
Form Structural Design 77 St. John Street	Calcs for	Garden Re	taining Wall	Start page no./Revision 6				
London EC1M 4NN	Calcs by EH	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date		
From BS8110:Part 1:1997 – Ta Design concrete shear stress	able 3.8	Vc_toe = 0.44	v _{c_toe} = 0.443 N/mm ² v _{toe} < v _{c_toe} - No shear reinforcement required					
Design of reinforced concrete	retaining wall	heel (BS 8002:	1994 <u>)</u>					
Material properties								
Characteristic strength of concre Characteristic strength of reinfor	f _{cu} = 40 N/m f _y = 500 N/m	nm²						
Base details								
Minimum area of reinforcement		k = 0.13 %						
Cover to reinforcement in heel		Cheel = 30 m	m					
Calculate shear for heel desig	n							
Shear from bearing pressure		$V_{heel_bear} = p$	$O_{stem_heel_f} \times ((3 \times 3))$	x _{bar_f}) - I _{toe} - t _{wall})	/ 2 = 0.1 kN/m			
Shear from weight of base		$V_{heel_wt_base} =$	= $\gamma_{f_d} \times \gamma_{base} \times I_{hee}$	k = 1.7 kN	/m			
Shear from weight of moist back	cfill	$V_{heel_wt_m} = v_{heel_wt_m}$	<i>w</i> _{m_w_f} = 6.9 kN/m	า				
Shear from surcharge		$V_{heel_sur} = W_s$	_{sur_f} = 0.4 kN/m					
Total shear for heel design		$V_{heel} = - V_{heel}$	$V_{heel} = -V_{heel_bear} + V_{heel_wt_base} + V_{heel_wt_m} + V_{heel_sur} = 8.9 \text{ kN/m}$					
Calculate moment for heel dea	sign							
Moment from bearing pressure		$M_{heel_bear} = p$	$M_{heel_bear} = p_{stem_mid_f} \times ((3 \times x_{bar_f}) - I_{toe} - t_{wall} / 2)^2 / 6 = \textbf{0.1} \text{ kNm/m}$					
Moment from weight of base		Mheel_wt_base	$M_{heel_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{heel} + t_{wall} / 2)^2 / 2) = 0.6 \text{ kNm/m}$					
Moment from weight of moist ba	ickfill	$M_{heel_wt_m} = 1$	$M_{heel_wt_m} = w_{m_w_f} \times (I_{heel} + t_{wall}) / 2 = 1.7 \text{ kNm/m}$					
Moment from surcharge		$M_{heel_sur} = W$	$M_{heel_sur} = w_{sur_f} \times (I_{heel} + t_{wall}) / 2 = 0.1 \text{ kNm/m}$					
Total moment for heel design		$M_{heel} = - M_{heel}$	M _{heel} = - M _{heel_bear} + M _{heel_wt_base} + M _{heel_wt_m} + M _{heel_sur} = 2.3 kNm/m					
	↓ 200	→						
350	•	•	•	• •				
Check heel in bending								
Width of heel		b = 1000 m	b = 1000 mm/m					
Depth of reinforcement	dheel = tbase -	$d_{heel} = t_{base} - c_{heel} - (\phi_{heel} / 2) = 314.0 \text{ mm}$						
Constant	$K_{heel} = M_{heel}$	$K_{heel} = M_{heel} / (b \times d_{heel}^2 \times f_{cu}) = 0.001$						
Lever arm		z _{heel} = min((z _{heel} = 298 r	0.5 + √(0.25 - (m nm	in(K _{heel} , 0.225) /	0.9)),0.95) × 0	not requirea		
Area of tension reinforcement re	equired	$A_{s_heel_des} =$	$A_{s_heel_des} = M_{heel} \ / \ (0.87 \times f_y \times z_{heel}) = 18 \ mm^2/m$					
Minimum area of tension reinfor	cement	$A_{s_heel_min} =$	$k \times b \times t_{base} = 45$	5 mm²/m				
Area of tension reinforcement re	equired	$A_{s_heel_req} =$	Max(As_heel_des, A	us_heel_min) = 455 r	mm²/m			
Reinforcement provided		12 mm dia.	bars @ 200 mm	n centres				
Area of reinforcement provided		$A_{s_heel_prov} =$	As_heel_prov = 565 mm ² /m					

Form	Project				Job no.	
	Calas far	Orlea for			TO2	.011
Form Structural Design 77 St. John Street	Garden Re	Garden Retaining Wall			7	
London EC1M 4NN	Calcs by EH	Calcs date 30/09/2016	Checked by	Checked date	Approved by	Approved date
		PASS - Reinfo	prcement provi	ded at the retail	ning wall hee	l is adequate
Check shear resistance at he	al				0	
Design shear stress	ei	Viscal – Viscal	$(b \times d_{b}) = 0$	128 N/mm ²		
Allowable shear stress		Viele - viel	$(\mathbf{D} \times \mathbf{O}) = \mathbf{O}$	mm^2) 5) \sim 1 N/m	2 – 5 000 NJ	mm ²
Anowable shear stress		PASS -	Design shear s	stress is less th	an maximum	shear stress
From BS8110:Part 1:1997 – Ta	able 3.8					
Design concrete shear stress		V _{c heel} = 0.44	43 N/mm²			
0			Vheel <	< Vc_heel - No she	ar reinforcen	ent required
Design of reinforced concrete	e retaining wal	I downstand (BS	8002:1994 <u>)</u>			
Material properties						
Characteristic strength of concr	ete	f _{cu} = 40 N/m	1m²			
Characteristic strength of reinfo	rcement	f _v = 500 N/r	nm²			
Base details						
Minimum area of reinforcement		k = 0.13 %				
Cover to reinforcement in down	stand	$C_{ds} = 30 mn$	ı			
Calculate shear for downstan	d design					
Total shear for downstand desig	an					
	5	$V_{down} = \gamma_{fe}$	$\langle K_{\rm p} \times \cos(\delta_{\rm b}) \times \rangle$	$\gamma_{\rm m} \times {\sf d}_{\rm ds} \times ({\sf d}_{\rm cover} -$	+ t _{base} + d _{ds} / 2) = 13.3 kN/m
Calculate moment for downst	and design					
Total moment for downstand de	esign					
$M_{down} = \gamma_{\underline{f}} \times K_{p} $	$\cos(\delta_b) \times \gamma_m \times d$	ds × [(d _{cover} + t _{base})	$) \times (t_{base} + d_{ds}) +$	$d_{ds} \times (t_{base} / 2 + 2)$	2 × d _{ds} / 3)] / 2	= 4.5 kNm/m
▼ <u></u>	•	•	•	• •		
	∢ ——200—					
Check downstand in bending						
Width of downstand		b = 1000 m	m/m			
Depth of reinforcement		$d_{down} = t_{ds} - $	$c_{ds} - (\phi_{down} / 2) =$	= 314.0 mm		
Constant		$K_{down} = M_{dow}$	$_{vn}$ / (b $ imes$ d _{down} ² $ imes$	f _{cu}) = 0.001		
			Co	ompression rein	forcement is	not required
Lever arm		$z_{down} = Min($	0.5 + √(0.25 - (r	min(K _{down} , 0.225)	/ 0.9)),0.95) ×	d _{down}
		Z _{down} = 298	mm	() 07	0.4	
Area of tension reinforcement r	equirea	As_down_des =	M_{down} / (0.87 ×	$T_y \times Z_{down}$ = 35 m	m²/m	
Minimum area of tension reinfor	rcement	$A_{s_down_min} =$	$k \times b \times t_{ds} = 45$	5 mm²/m	- 0/	
Area of tension reinforcement re	equired	As_down_req =	IVIAX(As_down_des,	$A_{s_{down_{min}}} = 458$	o mm²/m	
Area of reinforcement provided		12 mm dia.	pars @ 200 mi	n centres		
Area or reinforcement provided	PAS	As_down_prov =	nt provided at	the retaining wa	all downstand	l is adequate
	1 40					

Form	Project	17 Eas
Form Structural Design	Calcs for	
77 St. John Street		Garden
London	Calcs by	Calcs date
EC1M 4NN	EH	30/09/2016
Check shear resistance at dow	wnstand	
Design shear stress		V _{down} = V
Allowable shear stress		V _{adm} = mi
		PASS
From BS8110:Part 1:1997 – Ta	able 3.8	
Design concrete shear stress		Vc down =
C C		-
Design of reinforced concrete	retaining wall	stem (BS 80
Neterial preparties	y	
Characteristic strength of sener	ata	f 40 b
Characteristic strength of concre	e	Icu = 40 ľ
Characteristic strength of reinio	Cement	ly = 300 l
Wall details		
Minimum area of reinforcement		k = 0.13
Cover to reinforcement in stem		Cstem = 30
Cover to reinforcement in wall		Cwall = 30
Factored horizontal at-rest for	rces on stem	
Surcharge		$F_{s_sur_f} =$
Moist backfill above water table		Fsmaf=
Calculate shear for stem desig	gn	V F
Shear at base of stem		Vstem = F
Calculate moment for stem de	esign	
Surcharge		$M_{s_sur} = F$
Moist backfill above water table		Ms_m_a =
Total moment for stem design		M _{stem} = N
-350	2	

←___200**─**─►

٠

•

Check wall stem in bending	
Width of wall stem	b = 1000
Depth of reinforcement	d _{stem} = t _{wa}
Constant	K _{stem} = Ms
Lever arm	z _{stem} = mi
	Z _{stem} = 29
Area of tension reinforcement required	As_stem_des
Minimum area of tension reinforcement	As_stem_min
Area of tension reinforcement required	$A_{s_stem_req}$

•

Form	Project				Job no.		
	17 East Heath Road					162611	
Form Structural Design	Calcs for		Start page no./F	Start page no./Revision			
77 St. John Street	Garden Retaining Wall					9	
London EC1M 4NN	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
EC1M 4NN	EH	30/09/2016					
Reinforcement provided		16 mm dia	.bars @ 200 r	nm centres			
Area of reinforcement provided			- 1005 mm ² /m				
Area of remolecinent provided		PASS - Reinfo	prcement prov	vided at the retai	ining wall ste	n is adequate	
Check shear resistance at wa	ll stem				-		
Design shear stress		v _{stem} = V _{sten}	$h / (b \times d_{stem}) =$	0.099 N/mm ²			
Allowable shear stress		v _{adm} = min(0.8 × √(f _{cu} / 1 ľ	V/mm^{2}), 5) × 1 N/	mm ² = 5.000 N	J/mm ²	
		PASS -	Design shea	r stress is less t	han maximun	n shear stress	
From BS8110:Part 1:1997 – T	able 3.8		-				
Design concrete shear stress		Vc_stem = 0.5	5 39 N/mm²				
			Vstem	< Vc_stem - No sh	ear reinforce	ment required	
Check retaining wall deflection	n						
Basic span/effective depth ratio		ratio _{bas} = 7					
Design service stress		$f_s = 2 \times f_y \times$	As_stem_req / (3	$\times A_{s_stem_prov}) = 15$	5 0.9 N/mm²		
Modification factor	factor _{tens} = min(0.55 + (477 N/m	m^2 - f _s)/(120 ×	: (0.9 N/mm ² + (N	$I_{stem}/(b \times d_{stem}^2)$))),2) = 2.00	
Maximum span/effective depth	ratio	ratio _{max} = ra	$atio_{bas} \times factor_{t}$	ens = 14.00			
Actual span/effective depth ratio	D	ratio _{act} = h _s	_{tem} / d _{stem} = 6.6	0			
				PASS - Span	to depth ratio	is acceptable	

-Downstand reinforcement

Toe bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Heel bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Downstand bars - 12 mm dia.@ 200 mm centres - (565 mm²/m) Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)