

Mendick Waring Ltd Edelman House 1238 High Road London N20 0LH

T: 020 8446 9696

26 Christchurch Hill

Sustainability Statement

Oct-16

Project	26 Christchurch Hill
MW Reference	J2233 26 Christchurch Hill
Location	Camden
Local Authority	London Borough of Camden
Report Scope	Sustainability Statement
Quantity of Residential Units	2
Other	N/A

Issue 01

Date 26/10/2016 Author Ana Petrovska

Signature Ana Petrovska

Checked by Alex Mozaffari

Signature

Disclaimer

The performances of renewable systems, especially wind and solar, are difficult to predict with any certainty. This is due to the variability of environmental conditions from location to location and from year to year. As such all budget/cost and figures, which are based upon the best available information, are to be taken as an estimation only and should not be considered as a guarantee. This report relates to pre-planning stage therefore final specification must be provided by an M & E consultant after stage C.

Mendick Waring Ltd disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and Mendick Waring Ltd accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk

Contents

4
6
7
12
12
14
19

Executive Summary

- 1.1 The proposed development comprises excavation of basement to provide additional accommodation to Grade II listed house.
- 1.2 Mendick Waring have been appointed to produce a Sustainability Strategy identifying how the development will address the targets set out by Building Regulations Part L1A, 2013 edition, for the newly constructed spaces within the basement.
- 1.3 In line with Building Control the strategy demonstrates that the new development (subject of the extension) will achieve compliance with 2013 Building Regulations through overall energy efficiency (DER < TER) and FEE (fabric energy efficiency).
- 1.4 It should be noted that this strategy has been completed as follows:
 - All new fabric thermal elements proposed will be designed to achieve the following fabric performance, superseding the minimum standard as defined under Part L1A, 2013 edition (Table 1).

Building Element	New Elements Part L minimum standard U-value	Design U-values
Floors	0.25 W/m ² K	0.13 W/m ² K
Roofs	0.20 W/m ² K	0.13 W/m ² K
External Walls	0.30 W/m ² K	0.14 -0.16 W/m ² K
Glazing	2.00 W/m ² K	1.4 W/m ² K
Doors	2.00 W/m ² K	1.5 W/m ² K
Air permeability	10.0 m ³ /(h*m ²)	5.00 m ³ /(h*m ²)

- Approved Construction Details have been used for the thermal bridging calculations required under Part L 1A, 2013 edition.
 - (Accredited Construction Details (ACDs) have been developed to assist the construction industry achieve the performance standards required to demonstrate compliance with the energy efficiency requirements (Part L) of the Building Regulations.)
- Efficient energy use and distribution is assured by specifying efficient heating, cooling and ventilation systems.
 - Space heating will be provided by high efficient gas system boiler.
 - Domestic hot water will be provided by the separate Hot Water Cylinders.
- The Heat Distribution System will be a Pre-insulated medium temp variable flow system.

- Heating emitter will be Underfloor Heating (UFH). The heating controls will have time and temperature zone control.
- o Highly efficient whole house mechanical extract ventilation system is specified.
- Cooling is provided by high efficient air source heat pump ASHP (Energy label class A), via split and multi split system with variable speed compressor.
- Internal lighting to have luminous efficacy of ≥ 45 lumens/watt. 100% energy efficient lighting is specified.
- The predicted water use should be ≤125 litres/person/day.

The result of the calculations shows that the Dwelling Emissions Rate (DER) is 1.5% below the Target Emissions Rate (TER). The development therefore meets the Camden Local Development Framework (Core Strategy and Development Policy documents) as adopted on 8th November 2010, The London Plan 2015 Consolidated with Alterations (2011) and the NPPF (2012).

1 Introduction

- 1.1 Mendick Waring Ltd has been commissioned by Mr Ron Pascalovici to prepare a Sustainability Statement for the basement extension at 26 Christchurch Hill and have developed a strategy to comply with Building Regulations PART L1A Conservation of fuel and power in new dwellings, 2013 edition.
- 1.2 In line with the above regulations, a fabric first approach has been followed prior to the consideration of energy efficient building services, incorporating passive measures such as: low U-values, low air leakage and low thermal bridging, approved accredited construction details. Energy efficient building services for heating, cooling and ventilation, with appropriate controls have been incorporated in the design to result in lower energy demand and CO₂ emissions for/from the development.

2 Site location and development proposal

- 2.1 26 Christchurch Hill is an early 19th (c.1812) century grade II listed detached house situated within the Hampstead Conservation Area. It is constructed with multi coloured stock brick of two storeys under a slated roof with 20th century parapets. The entrance is flanked by 2 storey late 19th century red brick bays. Within the curtilage lies a single storey former garage in the garden fronting Well Road. The house received a substantial side extension in 1973, a rear extension was added to this in 2005.
- 2.2 The development proposal comprises excavation of basement to provide additional accommodation to the Grade II listed house and installation of secondary glazing.

Figure 1 - Existing site

Figure 2 – Proposed Site Plan

Figure 3 – Proposed Basement Floor Plan With Site Context

Figure 4 – Proposed Ground Floor Plan With Site Context

Figure 5 – Proposed Section B-B

Figure 6 – Proposed Roof Plan

3 Planning Policy Guidance and Legislation

- 3.1 The relevant polices that would apply to this proposal are taken from the London Borough of Camden Local Development Framework (Core Strategy and Development Policy documents) as adopted on 8th November 2010, The London Plan 2015 Consolidated with Alterations (2011) and the NPPF (2012).
- 3.2 This development will conform to Building Regulations Part L1A, Edition 2013
 - Approved document Part L1A Conservation of fuel and power sets, in new dwellings the standard for energy performance for new dwellings and was last revised in April 2014 (Part L: 2013). The proposed dwellings will need to comply with the criteria set out in the Approved Document, as follows:
 - 1. The predicted Dwelling CO₂ Emission Rate (DER) must be no greater than the Target CO₂ Emission Rate (TER).
 - 2. The performance of the building fabric and fixed building services should be no worse than the design limits set out in Table 2 of the Approved Document.
 - 3. The dwellings will have appropriate passive control measures to limit the effect of solar gains on indoor temperatures in summer.
 - 4. That the performance of dwellings as-built comply with the DER values achieved, including site testing of a representative sample of dwellings demonstrating that the 'air permeability' rate achieved is as per that specified, or better.
 - 5. The necessary provisions for energy efficient operation of dwellings are put in place, including operation and maintenance instructions aimed at achieving economy in the use of fuel and power in a way that householders can understand.

Compliance with the Approved Document Part L1A should be demonstrated at detailed design stage, prior to construction.

4 Methodology

4.1 The Standard Assessment Procedure (SAP) is the Government's approved methodology for assessing the predicted energy consumption and carbon dioxide emissions of new dwellings. Results are derived in respect of floor area and consider energy use (kWh/m2/yr) and associated CO₂ emissions (kg.CO₂/m²/yr) from the following:

Space heating

Domestic hot water

Ventilation

Lighting

- 4.2 SAP is compliant with the EU Energy Performance of Buildings Directive and is carried out using approved software. For the purposes of this report NHER Plan Assessor 6.2.1 has been used to generate the data.
- 4.3 Energy demand and resultant CO₂ emissions are estimated for the base case Target Emissions Rate (TER) and improved, through energy efficiency, Dwelling Emission Rate (DER). Low and zero-carbon energy technology is then applied to further enhance performance to meet the target.
- 4.4 Government approved software (NHER Plan Assessor 6.1) has been used to calculate energy consumption based on current SAP methodology (2012).

5 Energy Modelling

- 5.1 The proposed development looks to integrate low U-values, a high performance building thermal envelope for the built fabric and provide the necessary improvements to minimise CO₂ of the scheme.
- 5.2 Government approved software (NHER Plan Assessor 6.2.1) has been used to calculate energy consumption based on SAP methodology (2012) and Part L1A 2013 edition.

Fabric Efficiency

5.3 All new fabric elements proposed will be designed to achieve average fabric performance above the minimum standard as defined under AD Part L1A 2013 (Table 2).

Building Element	New Elements Part L minimum standard U-value	Design U-values
Floors	0.25 W/m ² K	$0.13~W/m^2K$
Roofs	0.20 W/m ² K	0.13 W/m ² K
External Walls	0.30 W/m ² K	0.14-0.16 W/m ² K
Glazing	2.00 W/m ² K	1.4 W/m ² K
Doors	2.00 W/m ² K	1.5 W/m ² K
Air permeability	10.0 m ³ /(h*m ²)	5.00 m ³ /(h*m ²)

- 5.4 Approved Construction Details have been used for the thermal bridging calculations required under Part L 2013 1A.
 - (Accredited Construction Details (ACDs) have been developed to assist the construction industry achieve the performance standards required to demonstrate compliance with the energy efficiency requirements (Part L) of the Building Regulations.)
- 5.5 Efficient energy use and distribution is assured by specifying efficient heating, cooling and ventilation systems.

Heating System

- 5.6 Space heating will be provided by high efficient gas system boiler.
- 5.7 Domestic hot water will be provided by the separate Hot Water Cylinder.
- 5.8 The Heat Distribution System should be a Pre-insulated medium temp variable flow system.
- 5.9 Heating emitters will be underfloor heating. Heating controls should have time and temperature zone control.

5.10 Internal lighting should be designed to have luminous efficacy of ≥ 45 lumens/watt. 100% energy efficient internal lighting.

Cooling

5.11 Cooling will be provided by Air Source Heat Pump to the spaces via Split and multi-split w/ Variable speed compressor (Energy label class A).

Ventilation

5.12 Whole house (MEV) mechanical extract ventilation system is specified.

Full Specification

5.13 The following specification has been used to model energy efficiency for the development:

Project: Project No: Engineer: Date: Building Regs: Status:	26 Christchurch Hill J2233 Zach Steels 06/10/2016 2013 Part L1A As Design	
Element	U-Value (W/m²K)	Construction
Basement Floor	0.13	Solid
External wall	0.16	solid brickwork
Basement Wall	0.14	solid reinforced concrete piled column (600dia) with 200mm thick blockwork wall and 100mm stud wall with insulation
Underground Roof	0.13	Solid
Roof	0.15	Flat
Doors	1.5	Aluminium double glazed doors
Windows	1.4	Aluminium double glazed windows
Building Service	Detail	
Ventilation	Whole house (MEV) mechanical extract ventilatio	n system
Dwelling Heating System	System gas boilers	
Heat Distribution System Heater Emitter Heating Controls Secondary Heating	Pre-insulated low temp variable flow (1991 or late Underfloor Heating Time and temperature zone control None	er)

1	
Hot water	System Hot water Cylinder
PV	N/A
Solar Water Heating	N/A
Other Renewables	N/A
Internal Lighting	100% have luminous efficacy of ≥ 45 lumens/watt
Miscellaneous	Detail
Electricity Tariff	Standard
Design air permeability	5 m ³ /hm ²
Y-Value	ACD
Thermal Mass	
Parameter	Medium
Window Security Grilles	Installed to the windows of ground floor flats if required by building control
Window Ventilation	Fully open half the time
Window Shading	No Curtains
Cooling	ASHP via Split and multi-split w/ Variable speed compressor (Energy label class A)
Water use	≤125 litres/person/day

Figure 7 shows the Dwelling Emissions Rate (DER) vs Target Emissions Rate (TER)

Figure 7 – DER vs TER

6 Conclusion

The strategy is based on Part L1A Conservation of fuel and power in new dwellings, 2013 edition, which supports the energy efficiency requirements of Building Regulations in terms of:

- · Limiting heat gains and losses
- through thermal elements and other parts of the building fabric
- from pipes, ducts and vessels used for space heating, space cooling and hot water services
- Providing fixed building services which
- Are energy efficient
- Have effective controls
- Are commissioned and tested to ensure they use no more fuel and power than is reasonable in the circumstances
- New dwellings to achieve or better a fabric energy efficiency target in addition to the carbon dioxide target

The proposed passive measures used alongside the active measures proposed for the basement extension have resulted in decreasing the overall energy demand and related CO₂ emissions from the development.

The current proposal includes: high efficient boiler (89%) for space heating, high efficient cooling system, alongside controls across both, mechanical extract ventilation, highly insulated fabric elements with low U-values, low air permeability (low fabric leakage), 100% energy efficient internal lighting.

The Dwelling CO₂ Emission Rate (DER) of 18.68 is lower compared to the Target CO₂ Emission Rate (TER) of 18.96. This is due to the improved building fabric efficiency on the thermal envelope and efficient building services, which results in 1.5% reduction in CO₂ emissions when measured against Part L1A 2013 Building Regulations.

Appendix A- SAP Worksheet

SAP Worksheet

Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Ms Ana Petrovska	Assessor number	2459
Client		Last modified	06/10/2016
Address	26 Christchurch Hill, London, NW3 1LG		

Client							La	st modified	d	06/10	0/2016	
Address	26 Christo	church Hill,	London, N	IW3 1LG								
1. Overall dwelling dimens	sions											
				А	rea (m²)			rage storey eight (m)	′	Vo	olume (m³)	
Lowest occupied					112.31	(1a) x		2.90	(2a) =		325.70	(3a
otal floor area	(1a)	+ (1b) + (1c	c) + (1d)(1n) =	112.31	(4)						
Owelling volume							(3a)	+ (3b) + (3	3c) + (3d)(3r	n) =	325.70	(5)
2. Ventilation rate												
										m	³ per hour	
Number of chimneys								0	x 40 =		0	(6a
Number of open flues								0	x 20 =		0	[6I
Number of intermittent fans	S							0	x 10 =		0	(78
Number of passive vents								0	x 10 =		0	(7
lumber of flueless gas fires								0	x 40 =		0	(7
										Air	changes pe hour	r
nfiltration due to chimneys	, flues, fans	, PSVs		(6a)	+ (6b) + (7	a) + (7b) + (7c) =	0	÷ (5) =		0.00	(8)
f a pressurisation test has b	een carried	out or is in	ntended, pi	roceed to (17), otherw	vise continue	e from (9) t	0 (16)	_			
Air permeability value, q50,	expressed	in cubic me	tres per h	our per squ	are metre	of envelope	e area				5.00	(1
f based on air permeability	value, then	(18) = [(17) ÷ 20] + (8	3), otherwis	se (18) = (1	6)					0.25	(1
Number of sides on which the	he dwelling	is sheltere	d								2	(19
Shelter factor								1	- [0.075 x (19))] =	0.85	(20
nfiltration rate incorporatir	ng shelter fa	ictor							(18) x (20	0) =	0.21	(2:
nfiltration rate modified for	r monthly w	vind speed:										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind spee	d from Tabl	le U2										
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	(22
Wind factor (22)m ÷ 4												
Wind factor (22)m ÷ 4 1.28	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	(22
Wind factor (22)m ÷ 4 1.28 Adjusted infiltration rate (al				•	1	0.95	0.93	1.00	1.08	1.13	1.18	(22

	0.27	0.27	0.26	0.23	0.23	0.20	0.20	0.20	0.21	0.23	0.24	0.25	(22b)
Calculate effective	ve air chang	ge rate for t	he applical	ole case:									
If mechanical	ventilation	ı: air change	e rate throu	ıgh system								0.50	(23a)
If balanced w	ith heat red	covery: effic	ciency in %	allowing fo	r in-use fac	ctor from T	able 4h					76.50	(23c)
a) If balanced	mechanica	al ventilatio	n with hea	t recovery (MVHR) (22	b)m + (23b) x [1 - (23c) ÷ 100]					
	0.39	0.38	0.38	0.35	0.35	0.32	0.32	0.31	0.33	0.35	0.36	0.37	(24a)
Effective air char	nge rate - e	nter (24a) c	or (24b) or	(24c) or (24	d) in (25)								
	0.39	0.38	0.38	0.35	0.35	0.32	0.32	0.31	0.33	0.35	0.36	0.37	(25)

3. Heat losses and heat loss parameter									
Element	Gross area, m²	Openings m ²		area m²	U-value W/m²K	A x U W,	′K κ-value, kJ/m².K	Ахк, kJ/K	
Window			12	2.38 x	1.33	= 16.41			(27)
Basement floor			11	2.31 x	0.13	= 14.60			(28)
External wall			15	6.06 x	0.14	= 21.85			(29a)
External wall			8	.69 x	0.16	= 1.39			(29a)
Roof			26	5.79 x	0.15	= 4.02			(30)
Roof			36	5.39 x	0.13	= 4.73			(30)
Total area of external elements ΣA , m^2			35	2.62					(31)
Fabric heat loss, W/K = \sum (A × U)						(26)(30) + (32) = [63.00	(33)
Heat capacity Cm = \sum (A x κ)					(28).	(30) + (32) +	(32a)(32e) = [N/A	(34)
Thermal mass parameter (TMP) in kJ/m²K								250.00	(35)
Thermal bridges: $\Sigma(L \times \Psi)$ calculated using App	endix K							15.21	(36)
Total fabric heat loss							(33) + (36) =	78.22	(37)
Jan Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct No	ov Dec	
Ventilation heat loss calculated monthly 0.33	x (25)m x (5)								_
41.75 41.18 40.65	l 37.75	37.18	34.33	34.33	33.76	35.47	37.18 38.	32 39.47	(38)
Heat transfer coefficient, W/K (37)m + (38)m	i								_
119.97 119.39 118.8	2 115.97	115.40	112.54	112.54	111.97	113.68	115.40 116	.54 117.68	
	.					Average = ∑	(39)112/12 = [115.83	(39)
Heat loss parameter (HLP), W/m²K (39)m ÷ (4	,			1.00	1	1 101			7
1.07 1.06 1.06	1.03	1.03	1.00	1.00	1.00	1.01	1.03 1.0		
Number of days in month (Table 1a)						Average = >	(40)112/12 = [1.03	(40)
31.00 28.00 31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00 30.0	00 31.00	(40)
31.00 20.00 31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00 30.	51.00	(40)
4. Water heating energy requirement									
Assumed occupancy, N								2.83	(42)
Annual average hot water usage in litres per d	ay Vd,average	= (25 x N) +	36					101.37	(43)
Jan Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct No	v Dec	
Hot water usage in litres per day for each mon				1					_
111.50 107.45 103.3	9 99.34	95.28	91.23	91.23	95.28	99.34	103.39 107.		_
	_ ,.						∑(44)112 = [1216.38	(44)
Energy content of hot water used = 4.18 x Vd,				1		11		. 1	7
165.35 144.62 149.2	3 130.11	124.84	107.73	99.83	114.55	115.92	135.09 147.		
Distribution loss 0.15 v /45)m							∑(45)112 = [1594.87	(45)
Distribution loss 0.15 x (45)m	10.52	10.72	16.16	14.07	17.10	17.20	20.26 22	12 24 02	7 (46)
24.80 21.69 22.39 Water storage loss calculated for each month		18.73	16.16	14.97	17.18	17.39	20.26 22.	12 24.02	(46)
0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00 0.0	0.00	(56)
If the vessel contains dedicated solar storage of		· · · · · · · · · · · · · · · · · · ·		1	-1	0.00	0.00 0.0	0.00	(30)
0.00 0.00 0.00		0.00	0.00	0.00	0.00	0.00	0.00 0.0	0.00	(57)
Primary circuit loss for each month from Table		1 0.00	0.00	1 0.00	1 0.00	0.00	0.00 0.0	,0 0.00	(37)
0.00 0.00 0.00	1	0.00	0.00	0.00	0.00	0.00	0.00 0.0	0.00	(59)
Combi loss for each month from Table 3a, 3b of	ļ	1 0.00	0.00	0.00	1 0.00	0.00	0.00 0.0	,0.00	(59)
50.96 46.03 50.96		48.56	44.99	46.49	48.56	48.99	50.96 49.	32 50.96	(61)
Total heat required for water heating calculate		· · · · · · · · · · · · · · · · · · ·		-	-				(~=/

	01001	I I	202.12	.=0.00	1=0.10	1-0-0		1.50.11	10101			1 244 42	1 (60)
Calan DINA in a	216.31	190.65	200.19	179.09	173.40	152.72	146.31	163.11	164.91	186.05	196.78	211.10	(62)
Solar DHW inpu				i								1	1 ,
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(63)
Output from wa			. ,	, ,	, ,		T	T	1	T	Г	T	7
	216.31	190.65	200.19	179.09	173.40	152.72	146.31	163.11	164.91	186.05	196.78	211.10]
										∑(64)1	12 = 2	2180.61	(64)
Heat gains from	water heat	ing (kWh/m	onth) 0.2!	5 × [0.85 ×	(45)m + (61 -	L)m] + 0.8 ×	[(46)m + (!	57)m + (59) -	m]			_	-
	67.72	59.59	62.36	55.51	53.65	47.07	44.81	50.23	50.79	57.66	61.36	65.99	(65)
5. Internal gai	ns												
3. Internal gan	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains		160	IVIGI	Дрі	iviay	Juli	Jui	Aug	Зер	Oct	NOV	Dec	
Metabolic gains		160.60	4.60.60	160.60	160.60	160.60	160.60	160.60	460.60	160.60	460.60	160.60	166
Linkton nato d	169.68	169.68	169.68	169.68	169.68	169.68	169.68	169.68	169.68	169.68	169.68	169.68	(66)
Lighting gains (1			I					1	1
	69.27	61.53	50.04	37.88	28.32	23.91	25.83	33.58	45.07	57.22	66.79	71.20	(67)
Appliance gains	(calculated	in Appendix	k L, equation	on L13 or L1	13a), also s	ee Table 5							,
	410.20	414.46	403.73	380.89	352.07	324.98	306.88	302.62	313.35	336.18	365.01	392.10	(68)
Cooking gains (calculated in	Appendix L	., equation	L15 or L15	a), also see	Table 5							_
	54.80	54.80	54.80	54.80	54.80	54.80	54.80	54.80	54.80	54.80	54.80	54.80	(69)
Pump and fan g	ains (Table !	5a)											
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	(70)
Losses e.g. evap	oration (Tal	ble 5)											
	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	-113.12	(71)
Water heating §	gains (Table	5)											
					72.44		CO 22	67.51	70.54	77.50	85.22	88.69	(72)
	91.02	88.68	83.82	77.09	72.11	65.37	60.23	67.51	70.54	77.50	85.22	00.03	(72)
Total internal g					1		60.23	07.51	70.54	//.50	85.22	00.03] (72)
Total internal g					1		507.30	518.06	543.31	585.26	631.37	666.34	(72)
Total internal g	ains (66)m -	+ (67)m + (6	8)m + (69)	m + (70)m ·	+ (71)m + (72)m							1
Total internal ga	ains (66)m -	+ (67)m + (6	8)m + (69)	m + (70)m ·	+ (71)m + (72)m							1
	ains (66)m -	+ (67)m + (6	8)m + (69) 651.94 Access 1	m + (70)m · 610.22	+ (71)m + (566.85	72)m 528.61 Sol	507.30 ar flux	518.06	543.31	585.26	631.37	666.34 Gains	1
	ains (66)m -	+ (67)m + (6	8)m + (69) 651.94	m + (70)m · 610.22	+ (71)m + (566.85	72)m 528.61 Sol	507.30	518.06	543.31	585.26	631.37	666.34	1
6. Solar gains	ains (66)m -	+ (67)m + (6	8)m + (69) 651.94 Access t Table	m + (70)m - 610.22 factor 6d	+ (71)m + (566.85 Area m ²	72)m 528.61 Sol	507.30 ar flux //m²	518.06 spec or T	g ific data able 6b	585.26 FF specific c or Table	631.37	666.34 Gains W] (73)
6. Solar gains SouthEast	ains (66)m -	+ (67)m + (6	8)m + (69) 651.94 Access 1 Table	m + (70)m - 610.22 Factor 6d	+ (71)m + (566.85 Area m ²	72)m 528.61 Sol	507.30 ar flux //m²	\$pec or T	g ific data able 6b	FF specific c or Table	631.37	Gains W 34.97] (73)
6. Solar gains SouthEast NorthEast	ains (66)m -	+ (67)m + (6	8)m + (69) 651.94 Access 1 Table 0.7	m + (70)m + 610.22 Factor 6d 7 x 7 x	+ (71)m + (566.85 Area m ² 3.11 7.66	72)m 528.61 Sol W x 3 x 1	507.30 ar flux //m² 6.79 x 1.28 x	\$pec or T 0.9 x (g ific data able 6b 0.63 x 0.63 x	FF specific c or Table	631.37	Gains W 34.97 26.41] (73)] (77)] (75)
6. Solar gains SouthEast NorthEast NorthWest	684.85	679.02	8)m + (69) 651.94 Access 1 Table	m + (70)m + 610.22 Factor 6d 7 x 7 x	+ (71)m + (566.85 Area m ²	72)m 528.61 Sol W x 3 x 1	507.30 ar flux //m² 6.79 x 1.28 x	\$pec or T 0.9 x	g ific data able 6b	585.26 FF specific c or Table 0.70 0.70	631.37	Gains W 34.97] (73)
6. Solar gains SouthEast NorthEast	ains (66)m - 684.85	+ (67)m + (6 679.02	8)m + (69) 651.94 Access 1 Table 0.7 0.7	m + (70)m + (610.22 cactor 6d 7 x 7 x 7 x 7 x 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61	72)m 528.61 Sol W x 3 x 1 x 1	507.30 ar flux //m² 6.79 x 1.28 x	\$pec or T 0.9 x (0.9 x (g ific data able 6b 0.63	585.26 FF specific c or Table 0.70 0.70 0.70	631.37 lata 6c	Gains W 34.97 26.41 5.55] (73)] (77)] (75)] (81)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w	ains (66)m - 684.85 atts Σ(74)m 66.94	+ (67)m + (6 679.02	8)m + (69) 651.94 Access f Table 0.7 0.7	m + (70)m + 610.22 Factor 6d 7 x 7 x	+ (71)m + (566.85 Area m ² 3.11 7.66	72)m 528.61 Sol W x 3 x 1	507.30 ar flux //m² 6.79 x 1.28 x	\$pec or T 0.9 x (g ific data able 6b 0.63 x 0.63 x	FF specific c or Table	631.37	Gains W 34.97 26.41] (73)] (77)] (75)
6. Solar gains SouthEast NorthEast NorthWest	ains (66)m - 684.85 atts ∑(74)m 66.94 ernal and so	n(82)m 124.63 plar (73)m +	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m	m + (70)m + (610.22 Factor 6d 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61	72)m 528.61 Sol W x 3 x 1 x 1 388.19	507.30 ar flux //m² 6.79	\$pec or T 0.9 x (0.9 x (0.9 x (304.97	g ific data able 6b 0.63 x 0.63 x 0.63 x	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = = = = = = = = = = = = = = = = = = =	Gains W 34.97 26.41 5.55] (73)] (77)] (75)] (81)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w	ains (66)m - 684.85 atts Σ(74)m 66.94	+ (67)m + (6 679.02	8)m + (69) 651.94 Access f Table 0.7 0.7	m + (70)m + (610.22 cactor 6d 7 x 7 x 7 x 7 x 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61	72)m 528.61 Sol W x 3 x 1 x 1	507.30 ar flux //m² 6.79 x 1.28 x	\$pec or T 0.9 x (0.9 x (g ific data able 6b 0.63	585.26 FF specific c or Table 0.70 0.70 0.70	631.37 lata 6c	Gains W 34.97 26.41 5.55] (73)] (77)] (75)] (81)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int	atts Σ(74)m 66.94 ernal and so	124.63 blar (73)m + 803.65	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67	m + (70)m + (610.22 Factor 6d 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61	72)m 528.61 Sol W x 3 x 1 x 1 388.19	507.30 ar flux //m² 6.79	\$pec or T 0.9 x (0.9 x (0.9 x (304.97	g ific data able 6b 0.63 x 0.63 x 0.63 x	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = = = = = = = = = = = = = = = = = = =	Gains W 34.97 26.41 5.55] (73)] (77)] (75)] (81)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int	ains (66)m - 684.85 atts ∑(74)m 66.94 ernal and so 751.78 nal tempera	1(82)m 124.63 10lar (73)m + 803.65	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67	m + (70)m + (610.22 Factor 6d 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90	72)m 528.61 Sol W x 3 x 1 x 1 388.19	507.30 ar flux //m² 6.79	\$pec or T 0.9 x (0.9 x (0.9 x (304.97	g ific data able 6b 0.63 x 0.63 x 0.63 x	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = = = = = = = = = = = = = = = = = = =	Gains W 34.97 26.41 5.55 56.03] (73)] (77)] (75)] (81)] (83)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int	ains (66)m - 684.85 atts ∑(74)m 66.94 ernal and so 751.78 nal tempera	1(82)m 124.63 blar (73)m + 803.65 ture (heating periods in	8)m + (69) 651.94 Access the Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a	iactor 6d	+ (71)m + (566.85 Area m ² 3.11 7.66 1.61 371.90 938.75	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 366.36	spec or T 0.9 x (0.9 x (0.9 x (304.97)	g ific data able 6b 0.63 x 0.63 x 231.10	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03] (73)] (77)] (75)] (81)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean interr Temperature definition	ains (66)m - 684.85 684.85 atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating	1(82)m 124.63 blar (73)m + 803.65 ture (heating periods in Feb	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a	m + (70)m + (610.22 Factor 6d 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Th1	72)m 528.61 Sol W x 3 x 1 x 1 388.19	507.30 ar flux //m² 6.79	\$pec or T 0.9 x (0.9 x (0.9 x (304.97	g ific data able 6b 0.63 x 0.63 x 0.63 x	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = = = = = = = = = = = = = = = = = = =	Gains W 34.97 26.41 5.55 56.03] (73)] (77)] (75)] (81)] (83)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int	ains (66)m - 684.85 684.85 atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f	1(82)m 124.63 124.63 10lar (73)m + 803.65 1ture (heating periods in Feb or living are	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (se	iactor 6d	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Th1	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 1.28 x Jul	spec or T 0.9 x (0.9 x (0.9 x (4) 304.97	g ific data able 6b 0.63 x 0.63 x 231.10 774.41	585.26 FF specific c or Table 0.70 0.70 145.35 730.61	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03 722.37 21.00 Dec] (73)] (77)] (75)] (81)] (83)] (84)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean interr Temperature de Utilisation factor	atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f 1.00	1(82)m 124.63 blar (73)m + 803.65 ture (heating periods in Feb for living are	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (see 0.99	m + (70)m + (7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Thi May 0.90	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 366.36	spec or T 0.9 x (0.9 x (0.9 x (304.97)	g ific data able 6b 0.63 x 0.63 x 231.10	585.26 FF specific c or Table 0.70 0.70 145.35	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03] (73)] (77)] (75)] (81)] (83)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean interr Temperature definition	atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f 1.00 emp of livin	124.63 blar (73)m + 803.65 ture (heating periods in Feb for living are 0.99 g area T1 (st	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (see 0.99) teps 3 to 7	iactor 6d	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 able 9, Th1 May 0.90 c)	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 1.28 x Jul 0.56	spec or T 0.9 x (0.9 x (0.9 x (4) 4) 4) 4) 4) 4) 4) 4) 4) 4)	g ific data able 6b 0.63	585.26 FF specific c or Table 0.70 0.70 145.35 730.61 Oct	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03 722.37 21.00 Dec 1.00] (73)] (77)] (75)] (81)] (83)] (84)] (85)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean intern Temperature de Utilisation factor Mean internal t	atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f 1.00 emp of livin 20.15	1(82)m 124.63 124.63 10lar (73)m + 803.65 ture (heating periods in Feb for living area T1 (state of the second periods in 10.99) g area T1 (state of the second periods in 10.99)	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (see 0.99) teps 3 to 7 20.39	7 x 6 7 x 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Thi May 0.90 c) 20.80	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 1.28 x Jul	spec or T 0.9 x (0.9 x (0.9 x (4) 304.97	g ific data able 6b 0.63 x 0.63 x 231.10 774.41	585.26 FF specific c or Table 0.70 0.70 145.35 730.61	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03 722.37 21.00 Dec] (73)] (77)] (75)] (81)] (83)] (84)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean interr Temperature de Utilisation factor	atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f 1.00 emp of livin 20.15 uring heating	1(82)m 124.63 124.63 124.63 10lar (73)m + 803.65 ture (heating periods in Feb for living area T1 (so 20.23) g periods in Peb	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (see 0.99) teps 3 to 7 20.39 the rest of	610.22 610.22 620 630 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Tha May 0.90 c) 20.80 rom Table 9	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 1.28 x 1.28 x 1.28 x 2.366.36	spec or T 0.9 x (0.9 x (0.9 x (0.9 x (0.9 x (0.9 d) (0.9 d) (0.61	g ific data able 6b 0.63	585.26 FF specific c or Table 0.70 0.70 145.35 730.61 Oct 0.97	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03 722.37 21.00 Dec 1.00] (73)] (77)] (75)] (81)] (83)] (84)] (85)
6. Solar gains SouthEast NorthEast NorthWest Solar gains in w Total gains - int 7. Mean intern Temperature de Utilisation factor Mean internal t	atts ∑(74)m 66.94 ernal and so 751.78 nal tempera uring heating Jan or for gains f 1.00 emp of livin 20.15	1(82)m 124.63 124.63 10lar (73)m + 803.65 ture (heating periods in Feb for living area T1 (state of the second periods in 10.99) g area T1 (state of the second periods in 10.99)	8)m + (69) 651.94 Access f Table 0.7 0.7 0.7 198.73 (83)m 850.67 the living a Mar a n1,m (see 0.99) teps 3 to 7 20.39	7 x 6 7 x 7	+ (71)m + (566.85 Area m² 3.11 7.66 1.61 371.90 938.75 Table 9, Thi May 0.90 c) 20.80	72)m 528.61 Sol W x	507.30 ar flux //m² 6.79 x 1.28 x 1.28 x 1.28 x Jul 0.56	spec or T 0.9 x (0.9 x (0.9 x (4) 4) 4) 4) 4) 4) 4) 4) 4) 4)	g ific data able 6b 0.63	585.26 FF specific c or Table 0.70 0.70 145.35 730.61 Oct	631.37 lata 6c = [Gains W 34.97 26.41 5.55 56.03 722.37 21.00 Dec 1.00] (73)] (77)] (75)] (81)] (83)] (84)] (85)

Utilisation facto	r for gains f	or rest of d	welling n2,	m									
	1.00	0.99	0.98	0.95	0.86	0.65	0.45	0.50	0.79	0.96	0.99	1.00	(89)
Mean internal to	emperature	in the rest	of dwelling	g T2 (follow	steps 3 to	7 in Table 9	9c)						
	18.89	19.02	19.24	19.58	19.84	19.99	20.01	20.01	19.94	19.62	19.23	18.90	(90)
Living area fract	ion				•		•		Liv	ving area ÷	(4) =	0.00	(91)
Mean internal to	emperature	for the wh	ole dwellin	ng fLA x T1 +	+(1 - fLA) x	T2							
	18.89	19.02	19.24	19.58	19.84	19.99	20.01	20.01	19.94	19.62	19.23	18.90	(92)
Apply adjustmen	nt to the me	ean internal	l temperat	ure from Ta	ble 4e wh		iate						_ ` ′
	18.74	18.87	19.09	19.43	19.69	19.84	19.86	19.86	19.79	19.47	19.08	18.75	(93)
8. Space heatir	ng requirem	nent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation facto	r for gains,	ηm											
	0.99	0.99	0.98	0.94	0.84	0.62	0.42	0.47	0.76	0.95	0.99	0.99	(94)
Useful gains, ηm	nGm, W (94	4)m x (84)m	_ _										
	746.80	795.21	832.54	851.15	787.13	570.97	365.11	384.63	590.28	693.87	704.43	718.47	(95)
Monthly average	e external t	emperature	e from Tab	le U1									-
	4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate fo			I	1		(96)m]				•	•	•	_
	1732.43	1667.38	1496.12	1220.92	921.82	589.58	366.73	387.58	646.45	1023.83	1395.79	1712.13	(97)
Space heating re				1	1								
5,711	733.30	586.10	493.71	266.24	100.21	0.00	0.00	0.00	0.00	245.48	497.77	739.29	٦
	733.30	300.10	433.71	200.24	100.21	0.00	0.00	0.00		3)15, 10		3662.10	 (98)
Space heating re	auiromont	k\\\h /m²/\\	nar						2(30	(98)		32.61	(98) (99)
Space neating re	equirement	. KVVII/III / yt	cai							(36)	· (4) [32.01	_] (33)
8c. Space cooli	ng requirer	nent											
8c. Space cooli	ng requirer Jan	ment Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
8c. Space cooli Heat loss rate Lr	Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	Jan		Mar 0.00	Apr 0.00	May	Jun 1057.90	Jul 832.81	Aug 850.98	Sep	Oct 0.00	Nov	Dec 0.00	(100)
	Jan n 0.00	Feb	.								_		(100)
Heat loss rate Lr	Jan n 0.00	Feb	.								_		(100)
Heat loss rate Lr	Jan m 0.00 r for loss ŋr 0.00	Feb 0.00 m 0.00	0.00	0.00	0.00	1057.90	832.81	850.98	0.00	0.00	0.00	0.00	_
Heat loss rate Lr Utilisation facto	Jan m 0.00 r for loss ŋr 0.00	Feb 0.00 m 0.00	0.00	0.00	0.00	1057.90	832.81	850.98	0.00	0.00	0.00	0.00	_
Heat loss rate Lr Utilisation facto	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 m 0.00 100)m x (10	0.00 0.00 01)m	0.00	0.00	0.81	0.89	850.98	0.00	0.00	0.00	0.00	(101)
Heat loss rate Lr Utilisation facto Useful loss ηmLi	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00	0.00 m 0.00 100)m x (10	0.00 0.00 01)m 0.00	0.00	0.00	0.81	0.89	850.98 0.86 731.35	0.00	0.00	0.00	0.00	(101)
Heat loss rate Lr Utilisation facto Useful loss nmLi Gains	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00	Feb 0.00 m 0.00 100)m x (10 0.00	0.00 0.00 01)m 0.00	0.00	0.00	0.81 861.50	0.89 743.31 932.51	850.98 0.86 731.35	0.00	0.00	0.00	0.00	(101)
Heat loss rate Lr Utilisation facto Useful loss ηmLi	Jan m 0.00 r for loss ηr 0.00 m (watts) (0.00 0.00 equirement,	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 , whole dwe	0.00 0.00 0.00 0.00 0.00 elling, conti	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4:	850.98 0.86 731.35 871.52	0.00	0.00	0.00	0.00	(101)
Heat loss rate Lr Utilisation facto Useful loss nmLi Gains	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00	Feb 0.00 m 0.00 100)m x (10 0.00	0.00 0.00 01)m 0.00	0.00	0.00	0.81 861.50	0.89 743.31 932.51	850.98 0.86 731.35	0.00	0.00 0.00 0.00 0.00	0.00	0.00	(101) (102) (103)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re	Jan m 0.00 r for loss ηr 0.00 m (watts) (0.00 0.00 equirement,	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 , whole dwe	0.00 0.00 0.00 0.00 0.00 elling, conti	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4:	850.98 0.86 731.35 871.52	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 Σ(104)6.	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 329.90	(101) (102) (103) (104)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re Cooled fraction	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement,	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 , whole dwe	0.00 0.00 0.00 0.00 0.00 elling, conti	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4:	850.98 0.86 731.35 871.52	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00	(101) (102) (103)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00	Feb 0.00 m 0.00 100)m x (10 0.00 0.00 0.00 , whole dween 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4: 140.76	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 Σ(104)6. oled area ÷	0.00 0.00 0.00 0.00 0.00 8 = [(4) = [0.00 0.00 0.00 0.00 329.90 0.51	(101) (102) (103) (104)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re Cooled fraction	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement,	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 , whole dwe	0.00 0.00 0.00 0.00 0.00 elling, conti	0.00 0.00 0.00 0.00 inuous (kW	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4:	850.98 0.86 731.35 871.52	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 Σ(104)6. oled area ÷	0.00 0.00 0.00 0.00 0.00 (4) =	0.00 0.00 0.00 0.00 329.90 0.51	(101) (102) (103) (104) (105)
Heat loss rate Lr Utilisation facto Useful loss ηmLr Gains Space cooling re Cooled fraction Intermittency fa	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00 actor (Table 0.00	0.00 m 0.00 100)m x (100 0.00 0.00 10) 0.00 10)	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 inuous (kW 0.00	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4: 140.76	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 Σ(104)6. oled area ÷	0.00 0.00 0.00 0.00 0.00 (4) =	0.00 0.00 0.00 0.00 329.90 0.51	(101) (102) (103) (104)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re Cooled fraction	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00 ctor (Table 0.00	Feb 0.00 m 0.00 100)m x (10 0.00 0.00 0.00 10) 0.00 (104)m x (1	0.00 0.00 0.00 0.00 0.00 elling, conti 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00	0.81 861.50 979.34 [(103)m - (1 84.85	932.51 02)m] x (4: 0.25	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 Σ(104)6. bled area ÷ 0.00 Σ(106)6.	0.00 0.00 0.00 0.00 0.00 8 = [0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105)
Heat loss rate Lr Utilisation facto Useful loss ηmLr Gains Space cooling re Cooled fraction Intermittency fa	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00 actor (Table 0.00	0.00 m 0.00 100)m x (100 0.00 0.00 10) 0.00 10)	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 inuous (kW 0.00	0.00 0.00 0.00 0.00 h) 0.024 x	0.81 861.50 979.34 [(103)m - (1	0.89 743.31 932.51 02)m] x (4: 140.76	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 (4) = 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105) (106)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re Cooled fraction Intermittency fa	Jan m	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 0.00 10) 0.00 (104)m x (1 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00	0.81 861.50 979.34 [(103)m - (1 84.85	932.51 02)m] x (4: 0.25	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 8 = [0.00 8 = [0.00 8 = [0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105) (106)
Heat loss rate Lr Utilisation facto Useful loss ηmLr Gains Space cooling re Cooled fraction Intermittency fa	Jan m	0.00 m 0.00 100)m x (10 0.00 0.00 0.00 0.00 10) 0.00 (104)m x (1 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00	0.81 861.50 979.34 [(103)m - (1 84.85	932.51 02)m] x (4: 0.25	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 8 = [0.00 8 = [0.00 8 = [0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105) (106)
Heat loss rate Lr Utilisation facto Useful loss ηmLi Gains Space cooling re Cooled fraction Intermittency fa Space cooling re	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00 cquirement 0.00	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 inuous (kW 0.00 0.00 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00 0.00	0.81 861.50 979.34 [(103)m - (1 84.85	932.51 02)m] x (4: 0.25	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 8 = [0.00 8 = [0.00 8 = [0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105) (106)
Heat loss rate Lr Utilisation facto Useful loss nmLr Gains Space cooling re Cooled fraction Intermittency fa	Jan m 0.00 r for loss nr 0.00 m (watts) (0.00 0.00 equirement, 0.00 ctor (Table 0.00 equirement 0.00	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 inuous (kW 0.00 0.00 0.00	0.00 0.00 0.00 0.00 h) 0.024 x 0.00 0.00	0.81 861.50 979.34 [(103)m - (1 84.85	932.51 02)m] x (4: 0.25	850.98 0.86 731.35 871.52 1)m 104.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 8 = [0.00 8 = [0.00 8 = [0.00	0.00 0.00 0.00 0.00 0.00 329.90 0.51 0.00 0.75	(101) (102) (103) (104) (105) (106)

				/						0.00	(204)
Fraction of space hea			ntary syster	n (table 11	L)				1 (201)	0.00	
Fraction of space hea									1 - (201)		
Fraction of space hea								(2)	02) x [1- (203)] :	= 1.00	
Fraction of total space		•						(20	(202) x (203)		== ` '
Efficiency of main sys		nam system z							(202) X (203)	89.80	
Cooling system energ		atio (Tablo 10c)								4.32	
	Jan Fel		Apr	May	Jun	Jul	Aug	Sep	Oct		(209) Dec
Space heating fuel (n				way	3411	Jui	Aug	эср	000		
	16.59 652.		296.48	111.60	0.00	0.00	0.00	0.00	273.37 5	54.32 823	3.26
_ 01	0.55 052.	07 343.73	250.40	111.00	0.00	0.00	1 0.00		1)15, 1012		
Water heating								2(==	_,,		(===)
Efficiency of water he	eater										
8	7.50 87.3	86.90	85.81	83.67	80.50	80.50	80.50	80.50	85.54	36.95 87	'.55 (217)
Water heating fuel, k	l e		l l								
24	17.22 218.	32 230.36	208.70	207.23	189.71	181.76	202.62	204.85	217.50 2	26.30 243	1.10
	<u> </u>	<u> </u>			1				∑(219a)112		58 (219)
Space cooling fuel, k	Wh/month										
C	0.00	0.00	0.00	0.00	2.53	4.19	3.11	0.00	0.00	0.00 0.	.00
	·								∑(221)68	= 9.83	(221)
Annual totals											
Space heating fuel - r	main system 1	Į.								4078.0	07
Water heating fuel										2575.6	58
Space cooling fuel										9.83	
Electricity for pumps	, fans and elec	ctric keep-hot (Table 4f)								
mechanical ventil											
	ation fans - ba	alanced, extract	t or positive	input fror	m outside			268.21			(230a)
central heating pu					n outside			268.21 30.00]		(230a) (230c)
					n outside]]]		, ,
central heating pu	ump or water	pump within w			m outside			30.00]	343.2	(230c) (230e)
central heating pu	ump or water he above, kWl	pump within w h/year			m outside			30.00]	343.2 489.3	(230c) (230e) 1 (231)
central heating pu boiler flue fan Total electricity for th	ump or water he above, kWl g (Appendix L)	pump within w h/year			m outside			30.00 45.00	(232)(237b)	489.3	(230c) (230e) 1 (231) 4 (232)
central heating pu boiler flue fan Total electricity for th Electricity for lighting Total delivered energ	ump or water he above, kWl g (Appendix L) gy for all uses	pump within w h/year	arm air hea	ting unit	m outside			30.00 45.00]] (232)(237b) :	489.3	(230c) (230e) 1 (231) 4 (232)
central heating pu boiler flue fan Total electricity for th Electricity for lighting	ump or water he above, kWl g (Appendix L) gy for all uses	pump within w h/year	arm air hea	ting unit			(211)(222	30.00 45.00 1) + (231) +]] . (232)(237b) :	489.3 = 7496.1	(230c) (230e) 1 (231) 4 (232) 13 (238)
central heating pu boiler flue fan Total electricity for th Electricity for lighting Total delivered energ	ump or water he above, kWl g (Appendix L) gy for all uses	pump within w h/year	arm air hea	ting unit	m outside Fuel Wh/year		(211)(222	30.00 45.00]] (232)(237b) :	489.3	(230c) (230e) 1 (231) 4 (232) 13 (238)
central heating pu boiler flue fan Total electricity for th Electricity for lighting Total delivered energ	ump or water he above, kWl g (Appendix L) gy for all uses dividual heatin	pump within w h/year	arm air hea	o-CHP	Fuel	x	(211)(222	30.00 45.00 1) + (231) +	x 0.01 =	489.3 = 7496.1	(230c) (230e) 1 (231) 4 (232) 13 (238)
central heating public boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind	ump or water he above, kWl g (Appendix L) gy for all uses dividual heatin	pump within w h/year	arm air hea	b-CHP	Fuel Wh/year		(211)(222	30.00 45.00 1) + (231) + uel price	7	489.3 = 7496.1 Fuel cost £/y	(230c) (230e) 1 (231) 4 (232) 13 (238)
central heating published boiler flue fan Total electricity for the Electricity for lighting Total delivered energe 10a. Fuel costs - ind Space heating - main	ump or water he above, kWl g (Appendix L) gy for all uses dividual heatin	pump within w h/year	arm air hea	b-CHP	Fuel Wh/year	х	(211)(22:	30.00 45.00 1) + (231) + uel price 3.48	x 0.01 =	489.3 = 7496.1 Fuel cost £/y	(230c) (230e) 1 (231) 4 (232) 13 (238) (238) (240) 3 (247)
central heating published boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - index Space heating - main Water heating	ump or water he above, kWl g (Appendix L) gy for all uses dividual heatin	pump within w h/year	arm air hea	D-CHP kV	Fuel Wh/year 1078.07	x x	(211)(223	30.00 45.00 1) + (231) + uel price 3.48 3.48	x 0.01 = x 0.01 =	489.3 = 7496.1 Fuel cost £/y 141.9 89.63	(230c) (230e) 1 (231) 4 (232) 13 (238) (238) (240) 3 (247) (248)
central heating published boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling	ump or water he above, kWl g (Appendix L) gy for all uses dividual heatin	pump within w h/year	arm air hea	CHP kt	Fuel Wh/year 1078.07 2575.68	x x x	(211)(22:	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19	x 0.01 = x 0.01 = x 0.01 =	### 489.3 Fuel cost £/y	(230c) (230e) 1 (231) 4 (232) 13 (238) (238) (247) (247) (248) 7 (249)
central heating published boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans	ump or water the above, kWl g (Appendix L) gy for all uses dividual heating a system 1	pump within w h/year	arm air hea	CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22:	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### 489.3 Fuel cost f/y	(230c) (230e) 1 (231) 4 (232) 13 (238) rear 2 (240) 3 (247) (248) 7 (249) 4 (250)
central heating purboiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - index Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting	ump or water the above, kWl g (Appendix L) gy for all uses dividual heating a system 1	pump within w h/year	arm air hea	CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### 489.3 Fuel cost £/y	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251)
central heating puboiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost	ump or water the above, kWl g (Appendix L) gy for all uses dividual heatin a system 1 g charges	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### 489.3 Fuel cost £/y	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251)
central heating public boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind	ump or water the above, kWl g (Appendix L) gy for all uses dividual heatin a system 1 g charges	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### ##################################	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251) 6 (255)
central heating published boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind Energy cost deflator	ump or water the above, kWl g (Appendix L) gy for all uses dividual heating gy system 1 gy charges dividual heating gy for all uses dividual heating gy for all uses dividual heating gy for all uses	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### A89.3 Fuel cost f/y	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251) 6 (255)
central heating puboiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind Energy cost deflator Energy cost factor (Editor)	ump or water the above, kWl g (Appendix L) gy for all uses dividual heating gy system 1 gy charges dividual heating gy for all uses dividual heating gy for all uses dividual heating gy for all uses	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### ##################################	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251) 6 (255) (256) (257)
central heating public boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind Energy cost deflator of Energy cost factor (Ed. SAP value)	ump or water the above, kWl g (Appendix L) gy for all uses dividual heatin g system 1 g charges dividual heatin (Table 12) CF)	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	### ##################################	(230c) (230e) 1 (231) 4 (232) 13 (238) (247) (248) 7 (249) 1 (250) 0 (251) 6 (255) (256) (257)
central heating puboiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind Energy cost deflator in Energy cost factor (Ed. SAP value) SAP rating (section 1)	ump or water the above, kWl g (Appendix L) gy for all uses dividual heatin g system 1 g charges dividual heatin (Table 12) CF)	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 =	### ##################################	(230c) (230e) 1 (231) 4 (232) 13 (238) (240) 3 (247) (248) 7 (249) 4 (250) 0 (251) 6 (255) (256) (257)
central heating public boiler flue fan Total electricity for the Electricity for lighting Total delivered energy 10a. Fuel costs - ind Space heating - main Water heating Space cooling Pumps and fans Electricity for lighting Additional standing of Total energy cost 11a. SAP rating - ind Energy cost deflator of Energy cost factor (Ed. SAP value)	ump or water the above, kWl g (Appendix L) gy for all uses dividual heatin g system 1 g charges dividual heatin (Table 12) CF)	pump within w	uding micro	b-CHP kt	Fuel Wh/year 4078.07 2575.68 9.83	x x x x	(211)(22)	30.00 45.00 1) + (231) + uel price 3.48 3.48 13.19 13.19	x 0.01 =	### ##################################	(230c) (230e) 1 (231) 4 (232) 13 (238) (247) (248) 7 (249) 1 (250) 0 (251) 6 (255) (256) (257)

12a. CO ₂ emissions - individual heating systems including micro-CHP							
	Energy kWh/year		Emission factor kg CO₂/kWh		Emissions kg CO₂/year		
Space heating - main system 1	4078.07	x	0.22	=	880.86	(261)	
Water heating	2575.68	x	0.22	=	556.35	(264)	
Space and water heating			(261) + (262) +	(263) + (264) =	1437.21	(265)	
Space cooling	9.83	x	0.52	=	5.10	(266)	
Pumps and fans	343.21	x	0.52	=	178.13	(267)	
Electricity for lighting	489.34	x	0.52	=	253.97	(268)	
Total CO ₂ , kg/year				(265)(271) =	1874.41	(272)	
Dwelling CO₂ emission rate				(272) ÷ (4) =	16.69	(273)	
El value					84.03]	
El rating (section 14)					84	(274)	
El band					В		

	ture CUD			
13a. Primary energy - individual heating systems including m	Energy kWh/year		Primary factor	Primary Energy kWh/year
Space heating - main system 1	4078.07	x	1.22 =	4975.24 (261)
Water heating	2575.68	x	1.22 =	3142.33 (264)
Space and water heating			(261) + (262) + (263) + (264) =	8117.57 (265)
Space cooling	9.83	х	3.07 =	30.18 (266)
Pumps and fans	343.21	x	3.07 =	1053.66 (267)
Electricity for lighting	489.34	х	3.07 =	1502.27 (268)
Primary energy kWh/year				10703.69 (272)
Dwelling primary energy rate kWh/m2/year				95.30 (273)

Appendix B- Building Regulations Compliance Report

L1A 2013 - Regulations Compliance Report

Design - Draft

This design draft submission provides evidence towards compliance with Part L of the Building Regulations, in accordance with Appendix C of AD L1A. It has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the 'as built' property. This report covers only items included within the SAP and is not a complete report of regulations compliance.

Assessor name	Ms Ana Petrovska	Assessor number	2459
Client		Last modified	06/10/2016
Address	26 Christchurch Hill, London, NW3 1LG		

duress 26 Chris	tchurch Hill, Lone	uoii, ivvvo 1LG			
Check	Evidence			Produced by	OK?
Criterion 1: predicted carbon dioxi	ide emission fror	m proposed dwelling	g does not exceed the target		
TER (kg CO₂/m².a)	Fuel = N/A Fuel factor = 1.0 TER = 18.96			Authorised SAP Assessor	
DER for dwelling as designed (kg CO ₂ /m ² .a)	DER = 18.68			Authorised SAP Assessor	
Are emissions from dwelling as designed less than or equal to the target?	DER 18.68 < TEI	R 18.96		Authorised SAP Assessor	Passed
Is the fabric energy efficiency of the dwellling as designed less thar or equal to the target?	DFEE 56.06 < TF า	FEE 63.17		Authorised SAP Assessor	Passed
Criterion 2: the performance of th	e building fabric	and the heating, ho	et water and fixed lighting systems sho	ould be no worse than the design	limits
Fabric U-values					
Are all U-values better than the design limits in Table 2?	Element Wall Party wall Floor Roof Openings	Weighted average 0.14 (max 0.30) (no party wall) 0.13 (max 0.25) 0.14 (max 0.20) 1.40 (max 2.00)	9 Highest 0.16 (max 0.70) 0.13 (max 0.70) 0.15 (max 0.35) 1.40 (max 3.30)	Authorised SAP Assessor	Passed
Thermal bridging					
How has the loss from thermal bridges been calculated?	Thermal bridgir junction	ng calculated from li	inear thermal transmittances for each	Authorised SAP Assessor	
Heating and hot water systems					
Does the efficiency of the heating systems meet the minimum value set out in the Domestic Heating Compliance Guide?	Mains gas, Com asdf Data from man Efficiency = 89. Minimum = 88.	nbi boiler ufacturer 00% 2009 SEDBUK		Authorised SAP Assessor	Passed
Does the insulation of the hot water cylinder meet the standards set out in the Domestic Heating Compliance Guide?	No hot water cy			Authorised SAP Assessor	
Do controls meet the minimum controls provision set out in the Domestic Heating Compliance Guide?	Space heating of Time and temporary Hot water continuous	erature zone contro	ol - plumbing circuit	Authorised SAP Assessor	Passed

Charle	Fridance	Duadwaad hu	01/3
Check	Evidence	Produced by	OK?
Fixed internal lighting			
Does fixed internal lighting comp with paragraphs 42 to 44?	oly Schedule of installed fixed internal lighting Standard lights = 0 Low energy lights = 10 Percentage of low energy lights = 100% Minimum = 75 %	Authorised SAP Assessor	Passed
Criterion 3: the dwelling has app	ropriate passive control measures to limit solar gains		
Does the dwelling have a strong tendency to high summertime temperatures?	Overheating risk (June) = Not significant (18.61°) Overheating risk (July) = Not significant (20.39°) Overheating risk (August) = Not significant (20.17°) Region = Thames Thermal mass parameter = 250.00 Ventilation rate in hot weather = 3.00 ach Blinds/curtains = Dark-coloured curtain or roller blind	Authorised SAP Assessor	Passed
Criterion 4: the performance of t	the dwelling, as designed, is consistent with the DER		
Design air permeability (m³/(h.m²) at 50Pa)	Design air permeability = 5.00 Max air permeability = 10.00	Authorised SAP Assessor	Passed
Mechanical ventilation system Specific fan power (SFP)	Mechanical ventilation with heat recovery: SFP = 0.54 W/(litre/sec) Max SFP = 1.5 W/(litre/sec) Heat recovery efficiency = 90.00 % Min heat recovery efficiency = 70.00 %	Authorised SAP Assessor	Passed
Have the key features of the design been included (or bettere in practice?	The following walls have a U-value less than 0.15W/m²K: ed) • Basement Underground (0.14) Space cooling is specified	Authorised SAP Assessor	